八年级数学分式的复习1
八年级(下)数学期中专题复习(分式)
(一)分式的加减1.计算:x x y ++yy x+=________. 2.计算:32b a -32a a =________.3.计算:32ab +214a=________. 4.计算:2129m -+23m -+23m +.5.计算:21a -+21(1)a -=________. 6.当分式211x --21x +-11x -的值等于零时,则x=_________. 7.已知a+b=3,ab=1,则a b +ba的值等于________ 8.化简1x +12x +13x 等于( ) A .12x B .32x C .116x D .56x9.计算34x x y -+4x y y x +--74yx y-得( )A .-264x y x y +- B .264x yx y+- C .-2 D .210.计算a-b+22b a b+得( )A .22a b b a b -++B .a+bC .22a b a b ++ D .a-b11.计算:222x x x +--2144x x x --+. 12.计算:21x x --x-1.13.先化简,再求值:3a a --263a a a +-+3a,其中a=32(二)分式乘除一、选择题1、计算(2x y)2·(2y x )3÷(-y x )4得( )A .x 5B .x 5yC .y 5D .x 152、计算(2x y)·(y x )÷(-y x )的结果是( )A .2x yB .-2x y C .x y D .-x y3、化简:(3x y z )2·(xzy)·(2yz x )3等于( )A .232y z xB .xy 4z 2C .xy 4z 4D .y 5z4、(-3ab)÷6ab 的结果是( ) A .-8a 2B .-2a bC .-218a bD .-212b5、-3xy ÷223y x的值等于( )A .-292x yB .-2y 2C .-229y xD .-2x 2y2二、计算:1、(-223a b c)3. 2、(2b a )2÷(b a -)·(-34b a )3.3、2223x y mn ·2254m n xy÷53xym n . 4、22121a a a -++÷21a a a -+.5、2216168m m m -++÷428m m -+·22m m -+.(三) 分式方程1.在有理式2x ,13(x+y ),53π-,21x a -,36x y +中,分式有( )A .1个B .2个C .3个D .4个2.如果分式43311x x +-无意义,则x 的值是( )A .x ≠0B .x ≠113C .x=113D .x ≠-343.分式214x -,42xx-的最简公分母为( )A .(x+2)(x-2)B .-2(x+2)(x-2)C .2(x+2)(x-2)D .-(x+2)(x-2) 4.•在解方程43x -+254x +=•1•时,•需要去分母时,•可以把方程两边都乘以_______,•根据是______. 5.下列方程中①35x -=1,②3x =2,③15x x ++=12,④2x +2x =5中是分式方程的有( )A .①②B .②③C .③④D .②③④ 6.把分式方程224x -=32x化为整式方程,方程两边需同时乘以( ) A .2x B .2x-4 C .2x (x-2) D .2x (2x-4)7.解方程:10.(拓展题)如果解分式方程242x x --2xx -=-2出现增根,则增根为( )A .0或2B .0C .2D .1 8.(拓展题)若关于x 的方程211k x ---21x x -=25k x x-+有增根x=-1,那么k 的值为( )A .1B .3C .6D .9 二、解方程: (1)27x x ++23x x -=261x -; (2)25x x --1=552x-.三、若关于x 的方程21x x x +--13x =33x kx +-有增根,求增根和k 的值.(四)分式专项训练(1)1.若分式x yx y+-中的x 、y 的值都变为原来的3倍,则此分式的值 ( ) A 、不变 B 、是原来的3倍 C 、是原来的13 D 、是原来的162.某校学生暑假乘汽车到外地参加夏令营活动,目的地距学校120km 。
八年级数学分式知识点
八年级数学分式知识点八年级数学分式知识点概述一、分式的定义分式(Fraction)是指一个表达式,其中包含一个分子(Numerator)和一个分母(Denominator),形式为 a/b,其中 a 是分子,b 是分母,b 不等于零。
二、分式的基本性质1. 等值变换:分式的分子和分母同时乘以或除以一个非零的数或式子,分式的值不变。
2. 约分:通过找出分子和分母的公因数并约去,使分式化为最简分式。
3. 通分:将两个或多个分式,使其具有相同的分母,这样的操作称为通分。
三、分式的运算1. 分式的加减法:- 同分母分式相加减:分母不变,分子相加减。
- 异分母分式相加减:先通分,再按照同分母分式进行加减。
2. 分式的乘法:- 分子乘分子,分母乘分母。
3. 分式的除法:- 除以一个分式等于乘以它的倒数。
4. 分式的混合运算:- 先乘方,再乘除,最后加减。
- 遇到括号,先计算括号内的运算。
四、分式的条件应用1. 分式方程:- 解分式方程时,通常需要去分母转化为整式方程求解。
2. 分式不等式:- 解分式不等式时,需要注意不等号的性质,通常也需要去分母处理。
3. 分式函数:- 分式可以作为函数的表达式,如 y = f(x) = (ax + b) / (cx + d),其中 a, b, c, d 为常数,且cx + d ≠ 0。
五、分式的化简与求值1. 化简:- 通过约分和通分,将复杂的分式化为最简形式。
2. 求值:- 在已知分式中某些字母的值的情况下,可以通过代入法求出分式的数值。
六、分式的实际应用1. 比例问题:- 分式常用于解决比例问题,如速度、时间和距离的关系。
2. 利率问题:- 分式在计算利息、本金和本息和等问题中有广泛应用。
七、分式的图形表示1. 函数图像:- 分式函数的图像可以通过描点法绘制,注意分母不能为零的点。
2. 几何应用:- 分式在计算几何图形的面积、周长等方面也有应用。
八、分式的综合练习1. 练习题:- 通过解决各种分式相关的数学问题,加深对分式知识点的理解和应用。
八年级初二数学_分式的复习知识点、练习和答案_全面详细易懂
第十六章 分式16.1分式16.1.1从分数到分式1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?5-x y 8+ )(7-x x 71 6)m m m +( 3. 当x 为何值时,分式的值为0?2-x x y564)-x 2)-x x (( ()7m 245y y 2++16.1.2分式的基本性质1.重点: 理解分式的基本性质. 2.难点: 灵活应用分式的基本性质将分式变形.随堂练习1.填空: (1) x x x 3222+= ()3+x (2) 32386b b a =()33a (3) c a b ++1=()cn an + (4) ()222y x y x +-=()y x -2.约分:(1)c ab b a 2263 (2)2228m n n m (3)532164xyzyz x - (4)x y y x --3)(23.通分:(1)321ab 和c b a 2252 (2)xya 2和23xb 2316.2分式的运算16.2.1分式的乘除(一)1.重点:会用分式乘除的法则进行运算.2.难点:灵活运用分式乘除的法则进行运算 .随堂练习计算(1)ab c 2c b a 22⋅ (2)322542n mm n ⋅- (3)⎪⎭⎫ ⎝⎛-÷x x y 27 (4)-8xy xy 52÷16.2.1分式的乘除(二)1.重点:熟练地进行分式乘除法的混合运算.2.难点:熟练地进行分式乘除法的混合运算.随堂练习计算 (1))2(216322ba a bc ab -⋅÷ (2)(2)103326423020)6(25ba c c ab b ac ÷-÷ (3)x y y x x y y x -÷-⋅--9)()()(3432 (4)(4)22222)(x y x xy y xy x x xy -⋅+-÷-16.2.1分式的乘除(三)1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算.随堂练习1.判断下列各式是否成立,并改正.(1)23)2(a b =252a b (2)2)23(a b -=2249ab - (3)3)32(x y -=3398xy (4)2)3(b x x -=2229b x x - 2.计算 (1) 22)35(y x (2)332)23(c b a - (3)32223)2()3(x ay xy a -÷ (4)23322)()(z x z y x -÷- 5))()()(422xy xy y x -÷-⋅- (6)232)23()23()2(ayx y x x y -÷-⋅- 16.2.2分式的加减(一)1.重点:熟练地进行异分母的分式加减法的运算.2.难点:熟练地进行异分母的分式加减法的运算.随堂练习计算 (1)ba ab b a b a b a b a 22255523--+++(2)m n m n m n m n n m -+---+22(3)96312-++a a16.2.2分式的加减(二)1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.随堂练习计算 (1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 答案六、(1)2x (2)ba ab - (3)3 16.2.3整数指数幂1.重点:掌握整数指数幂的运算性质.2.难点:会用科学计数法表示小于1的数.随堂练习1.填空(1)-22= (2)(-2)2= (3)(-2) 0=(4)20= ( 5)2 -3= ( 6)(-2) -3=2.计算(1) (x 3y -2)2 (2)x 2y -2 ·(x -2y)3 (3)(3x 2y -2) 2 ÷(x -2y)3六、1.(1)-4 (2)4 (3)1 (4)1(5) 81 (6)81- 2.(1)46y x (2)4x y (3) 7109yx 16.3分式方程(一)1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.随堂练习解方程 (1)623-=x x (2)(2)1613122-=-++x x x (3)114112=---+x x x1.重点:利用分式方程组解决实际问题.2.难点:列分式方程表示实际问题中的等量关系.1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
初二数学分式重点知识点归纳
初⼆数学分式重点知识点归纳 初⼆开始学习数学的分数知识了,初⼆的分式,⼜是数学的⼀⼤难题,所以学好数学分式,经常整理好分式知识点是很有必要的。
下⾯是店铺分享给⼤家的初⼆数学分式重点知识点,希望⼤家喜欢! 初⼆数学分式重点知识点⼀ (⼀)运⽤公式法: 我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有: a2-b2=(a+b)(a-b) a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 如果把乘法公式反过来,就可以⽤来把某些多项式分解因式。
这种分解因式的⽅法叫做运⽤公式法。
(⼆)平⽅差公式 1.平⽅差公式 (1)式⼦:a2-b2=(a+b)(a-b) (2)语⾔:两个数的平⽅差,等于这两个数的和与这两个数的差的积。
这个公式就是平⽅差公式。
(三)因式分解 1.因式分解时,各项如果有公因式应先提公因式,再进⼀步分解。
2.因式分解,必须进⾏到每⼀个多项式因式不能再分解为⽌。
(四)完全平⽅公式 (1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到: a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 这就是说,两个数的平⽅和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平⽅。
把a2+2ab+b2和a2-2ab+b2这样的式⼦叫完全平⽅式。
上⾯两个公式叫完全平⽅公式。
(2)完全平⽅式的形式和特点 ①项数:三项 ②有两项是两个数的的平⽅和,这两项的符号相同。
③有⼀项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再⽤公式分解。
(4)完全平⽅公式中的a、b可表⽰单项式,也可以表⽰多项式。
这⾥只要将多项式看成⼀个整体就可以了。
(5)分解因式,必须分解到每⼀个多项式因式都不能再分解为⽌。
(五)分组分解法 我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能⽤提取公因式法,再看它⼜不能⽤公式法分解因式. 如果我们把它分成两组(am+an)和(bm+bn),这两组能分别⽤提取公因式的⽅法分别分解因式. 原式=(am+an)+(bm+bn) =a(m+n)+b(m+n) 做到这⼀步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以 原式=(am+an)+(bm+bn) =a(m+n)+b(m+n) =(m+n)?(a+b). 这种利⽤分组来分解因式的⽅法叫做分组分解法.从上⾯的例⼦可以看出,如果把⼀个多项式的项分组并提取公因式后它们的另⼀个因式正好相同,那么这个多项式就可以⽤分组分解法来分解因式. (六)提公因式法 1.在运⽤提取公因式法把⼀个多项式因式分解时,⾸先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是⼀个多项式时,可以⽤设辅助元的⽅法把它转化为单项式,也可以把这个多项式因式看作⼀个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进⾏适当的变形,或改变符号,直到可确定多项式的公因式. 2.运⽤公式x2+(p+q)x+pq=(x+q)(x+p)进⾏因式分解要注意: ⑴.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于⼀次项的系数. ⑵.将常数项分解成满⾜要求的两个因数积的多次尝试,⼀般步骤:a.列出常数项分解成两个因数的积各种可能情况;b.尝试其中的哪两个因数的和恰好等于⼀次项系数. 3.将原多项式分解成(x+q)(x+p)的形式. (七)分式的乘除法 1.把⼀个分式的分⼦与分母的公因式约去,叫做分式的约分. 2.分式进⾏约分的⽬的是要把这个分式化为最简分式. 3.如果分式的分⼦或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分⼦与分母的公因式.如果分⼦或分母中的多项式不能分解因式,此时就不能把分⼦、分母中的某些项单独约分. 4.分式约分中注意正确运⽤乘⽅的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3. 5.分式的分⼦或分母带符号的n次⽅,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次⽅为正、奇次⽅为负来处理.当然,简单的分式之分⼦分母可直接乘⽅. 6.注意混合运算中应先算括号,再算乘⽅,然后乘除,最后算加减. 初⼆数学分式重点知识点⼆ 分数的加减法 1.通分与约分虽都是针对分式⽽⾔,但却是两种相反的变形.约分是针对⼀个分式⽽⾔,⽽通分是针对多个分式⽽⾔;约分是把分式化简,⽽通分是把分式化繁,从⽽把各分式的分母统⼀起来. 2.通分和约分都是依据分式的基本性质进⾏变形,其共同点是保持分式的值不变. 3.⼀般地,通分结果中,分母不展开⽽写成连乘积的形式,分⼦则乘出来写成多项式,为进⼀步运算作准备. 4.通分的依据:分式的基本性质. 5.通分的关键:确定⼏个分式的公分母. 通常取各分母的所有因式的最⾼次幂的积作公分母,这样的公分母叫做最简公分母. 6.类⽐分数的通分得到分式的通分: 把⼏个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. 7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分⼦相加减。
八年级上册数学-第一章分式复习(1)
第一章 分式复习(1)一、知识结构⎧⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎪⎧⎪⎨⎪⎩⎩分式的概念约分分式的性质通分分式的符号变号法则分式乘除法分式的运算乘方加减法分式方程的解法分式方程分式方程的应用二、知识要点: 1.什么叫分式?设f 、g 都是整式,且g 中含有字母,我们把f 除以g 所得的商记作f g ,把fg 叫做分式。
2.分式基本性质设h ≠0,则f f h g g h ⋅=⋅即:分式的分子与分母同时乘以一个非零的多项式,所得分式与原分式相等;分式的分子分母同时约去公因式,所得分式与原分式相等。
3.分式的符号变换法则是什么?,f f f f fg g g g g --===---即:分子、分母、分式本身的符号,任意改变其中两个,分式的值不变。
4.分式的运算法则①分式的乘法:f u f ug v g v⋅⋅=⋅可以先把分子、分母分别相乘再约分,也可以先约分再分子、分母分别相乘。
②分式的除法:f u f v f vg v g u g u⋅÷=⋅=⋅,分式除以分式,把被除式的分子分母颠倒位置后,与被除式相乘。
③分式加减法:同分母:f h f hg g g±±=,分母不变,分子相加减。
异分母:先通分,化为同分母分式加减。
怎样找最简公分母?(三看)系数:取各分母的系数最小公倍数;字母与因式:取所有的;指数:取最高的。
5.整数指数幂的运算法则①同底数的幂的除法:(n m n m na a am -÷=≠、都是正整数,m>n,a 0)②零次幂和负整数指数幂:1(0)a =≠a1(0,nn aa n a-=≠是正整数)11(0a a a -=≠) 负整数指数幂运算通用方法:先取倒数后取正整数次方;或先取正整数次方再取倒数。
③整数指数幂有哪些运算法则:设a ≠0,m,n 都是整数,则:()(),nnm n m nm mnn na a aaa ab a b+⋅===,6.分式有意义(值存在)、无意义(值不存在)、值为0有意义(值存在):分母不为0无意义(值存在):分母为0值为0:分子为0且分母不为0三、例题精讲例1、填空:当x=_____,分式()3(5)(1)2x x x --+无意义。
江苏省徐州市第二十二中学八年级数学下册 《第八章分式的复习(一)》课件 苏科版
1 1.要使分式 有意义的条件是( x 1
B
)
C. x≠0 D. x>1 关键词:分式有意义的条件是:( 分母不等于0 ) x 1 2.要使分式 的值为0条件是( A ) x 1
A. x≠1
B. x≠-1
A. 1
B. -1
C. ±1
2x 1 x 4. 化简: x 1 x 1
知识回顾
a 2 b 2 a 2 ab (2 ) ab 2a 2b
1
.
解:原式
2m m 5.计算:(1) 2 m 4 m2 【关键词】约分与通分,分式运算.
2m m ( m 2) (m 2)( m 2) (m 2)( m 2) 2m m(m 2) (m 2)( m 2) 2m m 2 2m (m 2)( m 2) m2 (m 2)( m 2)
2 x 14 xy 2 y 的值为( x 2 xy y
)
试一试
a b a、b为实数,且ab=1,设P= , a 1 b 1
1 1 Q= , 则 a 1 b 1
P = Q
(填“>”、“<”或“=”).
想一想
x y 探究:⑴当x、y满足什么条件时,分式 的值为0. x 1
D. 0
关键词:分式有意义的条件是:( 分子为0,分母不为0 )
知识回顾
1 a2 3.化简 a 2 2a 1 ,并写出每一步变形的依据
1 a 1 a 解:原式 (平方差和完全平方公式) 2 1 a
1 a (分式的基本性质) 1 a
关键词:分式的基本性质、约分、最简分式
解:x y 0且x 1 0 所以x y且x 1, y 1
新人教版八年级数学(上)分式部分期末复习题精选(1)及答案
新人教版八年级数学(上)分式部分期末复习题精选(1)及答案一、填空:1、若分式112+-x x 的值为0,,则x 的值等于 ; 2、当x=-2时,分式a xb x +-无意义,当x=4时,此分式的值为0,则a+b= ; 3、要使分式11+x 有意义,则x 满足的条件是 ; 4、当x 时,分式242--x x 没有意义,当x 时,分式 xx --12无意义; 5、已知分式ax x x +--532,当x=2时,分式无意义,则a= . 6、若分式35122---b b b 的值为0,则b 的值为 ; 7、若分式3)1)(3(-+-x x x 的值为0,则x 的值为 ; 8、x 时,622---x x x 的值为0;9、化简aa a 22+的结果是 ; 10、已知311=-yx ,则代数式y xy x y xy x ----22142的值为 ; 11、已知0)3(2=++-b a ,2222bab a ab a +++的值为 ; 12、已知1442+-x x =0,则代数式x 21x 2+的值为 ; 13、已知25=b a ,则bb a -= ; 14、已知21,4==y x ,且0<xy ,则=y x ,15、已知a 、b 满足2=+a b b a ,则22224bab a b ab a ++++的值为 ; 16、已知非零实数满足,4422ab b a =+则=a b ; 二、选择:17、当分式21+-x x 的值为0,x 的值是 ( ) A . 0 B. 1 C. -1 D. -218、计算的结果是(ba ab 22)- ( ) 19、化简的结果是4422+--x x y xy ( ) A. a B. b C. 1 D. -b20、化简的结果是(mm n m n -÷-2) ( ) A. -m-1 B. –m+1 C. –mn+m D. –mn-n21、计算的结果是)1(1112-⋅-+÷m m m ( ) A. 122---m m B. 122-+-m m C. 122+-m m D. 12-m三、计算:22、先化简,再求值213,9622-=+--b a b a b a 已知23、已知:.,432222的值求z y x zx yz xy z y x ++--==24、若.))()(,2,0的值(求且满足xyzy x z x z y z y x y z x x z y xyz +++=+=+=+≠答案一、填空:1.1;2. 6;3. 1-≠x ;4. 21=x 1±=x ; 5. a=6; 6. 1; 7. -1; 8. x=-2; 9. a+2; 10. 4; 11. -2; 12. 2; 13. 23; 14. -8; 15. 21; 16. 2; 二,选择:17. B; 18. B; 19.D;20. B; 21. B 三、计算;22. -4;23. 2914-; 24. 8。
新湘教版八年级数学上册第一章分式小结与复习
X2-2x+3
<-2
≥7
>-1
7.要使分式 的值为正数,则x的取值范围是
x-1
-2
x<1
二、分式的基本性质:
1.分式的基本性质: 分式的分子与分母同乘以(或除以) 分式的值 用式子表示: (其中M为 的整式)
x2+y2
10.已知分式 的值为 5/3, 若a,b的值都扩大到原来的5倍,则扩大后分式的值是
3a
2a+b
C
5/3
二、分式的约分与通分:
1.约分
2.通分 (1) (2)
x
6a2b
与
y
9ab2c
a-1
a2+2a+1
与
6
a2-1
(1) (2) (3)
12:15 D x≠-1
THANKS FOR WATCHING
The End
A
B
4.分式 > 0 的条件:
A
B
A
B
形如 ,其中 A ,B 都是整式, 且 B 中含有字母.
1.下列各式(1) (2) (3) (4) (5) 是分式的有( )个。
3
2x
3
2x
x
2x2
x
∏
分式的加减
同分母相加
异分母相加
通分
在分式有关的运算中,一般总是先把分子、分母分解因式; 注意:过程中,分子、分母一般保持分解因式的形式。
(6)计算:
解:
(7)当 x = 200 时,求 的值. 解: 当 x = 200 时,原式=
(8) 已知 求A、B
3-2m
m-4
5.下列各式正确的是( )
北师大版八年级数学下册第五章分式单元复习试题1(附答案).doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第五章复习一、填空题 1.当x 时,分式2+x x有意义。
2.在函数y=22-x 中,自变量x 的取值范围是 。
3.当m = 时,关于x 的分式方程213x mx +=--无解4.当x = 时,分式33x x --为0。
5.约分:112--x x = 。
6.化简211xx x -÷的结果是 . 7.方程423532=-+-xx x 的解是 . 8.某市对一段全长1500米的道路进行改造.原计划每天修x 米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了 天。
二.、选择题 9、代数式42,1,3,31nm b a b a ,x -++π中,分式有( ) A 、1个; B 、2个; C 、3个; D 、4个。
10.若分式122--x x 的值为0,则x 的值为( ) A. 1B. -1C. ±1D.211.计算22()ab ab的结果为( ) A.bB .aC.1 D1b12、将分式yx x +2中的x 、y 的值同时扩大3倍,则 扩大后分式的值( )A 、扩大3倍;B 、缩小3倍;C 、保持不变;D 、无法确定。
13.计算()a b a bb a a+-÷的结果为( )A .a b b - B .a b b + C .a b a - D .a ba+ 14、小马虎在下面的计算中只作对了一道题,他做对的题目是( )A 、b a b a 22=⎪⎭⎫ ⎝⎛ B 、23a a a =÷ C 、b a b a +=+211 D 、1-=---y x y x 15.一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时. A.11a b +; B.1ab ; C.1a b +; D.aba b+ 三.简答题 16.(212x x --2144x x -+)÷222x x -17、解方程:22221=-+-xxx18.先化简,再求值:221111121x x x x x +-÷+--+,其中31x =.19.(课堂上,李老师出了这样一道题:已知352008x -=,求代数式)1x 3x 1(1x 1x 2x 22+-+÷-+-,小明觉得直接代入计算太繁了,请你来帮他解决,并写出具体过程。
人教版八年级数学《分式》期末复习一
分式复习一1、分式的概念:形如BA ,其中A ,B 都是整式, 且B 中含有字母。
.例1:下列式子:(1)b a b a +- (2)π32-x (3)14-x (4)2x属于分式的有(1)(3} 。
例2:有理式x2,)(31y x +,3-πx ,x a -5,42yx -中,分式有( B )。
(A )1个 (B )2个 (C )3个 (D )4个小练习: 1.下列各式:x 2、22+x 、x xyx -、33yx +、23+πx 、()()1123-++x x x 中,分式有(C )A 、1个 B 、2个 C 、3个 D 、4个 2.下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π中,分式有 。
2、分式是否有意义:对于分式A B来说,当分母B ≠0时,分式A B有意义;当分母B=0时,分式A B无意义。
例3、分式322--x x 有意义,则x 取值为( C )。
(A )2≠x (B )3≠x (C )23≠x (D )23-≠x例4、当x 时,分式42-x x无意义。
小练习:1、当x ≠ 3时,代数式32-x 有意义.当38-时,分式8x 32x +-无意义;2、当x 时分式xx2121-+有意义。
3、使分式24xx -有意义的x 的取值范围是(B) A. 2x = B.2x ≠ C.2x =- D.2x ≠-4、列分式中,一定有意义的是(D )(A )152--x x (B )yy 312+ (C )12+x x (D )112+-y y3、分式A B等于0,则分子A=0,且B ≠0。
例5、若分式xx-+44的值为0,则x 值为( a )。
(A )4-=x (B )4=x (C )0=x (D )0≠x例6、若分式293x x-+的值为0,则x 的值为( B )。
(A )3=x (B )3-=x (C )3x =± (D )不存在小练习:1、若分式112+-x x 的值为0,则x 的取值为( A )A 、1=xB 、1-=xC 、1±=xD 、无法确定2、分式392--x x 当x = -3 时分式的值为零。
八年级数学下册第八章分式复习课件(PPT)
2 2m 2 x a1 b 2 a 2 m x 1 ab 4. 化简: (2) 2 5.计算:(1) x 1 m b 4 2am 2b 2 x a 1
.
a ( a b)
2(a b) 2 m a (m 2)( m 2)
1 例1. 在函数 y 中,自变量x的取值范围是(A) x2 A. x 2 B. x 2 C. x≤2 D. ≥—2 x
列分式方程解应用题
列分式方程解应用题的一般步骤
1、审题 ; 2、设未知数;
3、找出能表示题目全部含意的相等关 系,列出分式方程; 4、解分式方程;
5、验根:先检验是否有增根,再 检查是否合符题意;
6、写出答案。
常见题型及相等关系
1、行程问题 :
基本量之间的关系:
路程=速度 X 速度,即s=vt
解:设规定日期为x天,根据题意得
4 x 1 x x6
解得 x=12, 经检验,x=12是原方程的解。 答:规定日期是12天。
小结
列分式方程解应用题的一般步骤
1、审题 ; 2、设未知数;
3、找出能表示题目全部含意的相等关 系,列出分式方程; 4、解分式方程;
5、验根:先检验是否有增根,再 检查是否合符题意;
想一想
x y 探究:⑴当x、y满足什么条件时,分式 的值为0. x 1
解:x y 0且x 1 0 所以x y且x 1, y 1
分式方程
100 60 20 v 20 v
像这样,分母里含有未知数的方程叫 做分式方程.
解分式方程的思路是:
分式 方程
去分母
3.
4.
x 2 (2) 1 x 1 3x 3
人教版八年级数学上册第15章 分式 小结与复习
因为 ( 3)2 ( 3)2 3,所以小玲的计算结果也正确.
例4
解析:本题若先求出 a 的值,再代入求值,显
然比较复杂;但是如果将分式
的分子、
分母颠倒过来,即求
的值,
再利用完全平方公式变形求解就简单多了.
归纳总结 利用 A 和 1 互为倒数的关系,构造已知
A
条件与所求式子的关系,并运用整体代换,可使一 些分式求值问题的思路豁然开朗,简化解题过程.
第十五章 分 式
小结与复习
一、分式 1. 分式的概念:
一般地,如果 A、B 都表示整式,且 B 中含有
字母,那么称 为分式. 其中 A 叫做分式的分子,
B 叫做分式的分母. 2. 分式有意义的条件:
对于分式 :当__B_≠__0__时分式有意义; 当__B__=_0__时分式无意义.
3. 分式值为零的条件: 当 A = 0 且 B≠0 时,分式
的值为零.
4. 分式的基本性质:
A A C , A A C(C 0). B BC B BC
5. 分式的约分: 约分的定义
根据分式的基本性质,把一个分式的分子与分母
的公因式约去,叫做分式的约分.
最简分式的定义 分子与分母没有公因式的分式,叫做最简分式.
注意:分式的约分,一般要约去分子和分母所有 的公因式,使所得的结果成为最简分式或整式.
此方法是在众多未知元之中选取某一元为主元, 其余视为辅元,并将辅元用含有主元的式子表示,从 而达到减元的目的,最终实现化繁为简,化难为易.
针对训练
9.
已知
x y
2 3
,求
x2
x2 y2 2xy
y2
xy 2x2
y2 2xy
人教版 八年级上册数学 第十五章 分式实际应用题 综合复习(一)(含答案)
第十五章分式实际应用题综合复习(一)1.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)2.在防疫新冠状病毒期间,市民对医用口罩的需求越来越大.某药店第一次用3000元购进医用口罩若干个,第二次又用3000元购进该款口罩,但第二次每个口罩的进价是第一次进价的1.25倍,购进的数量比第一次少200个﹒(1)求第一次和第二次分别购进的医用口罩数量为多少个?(2)药店第一次购进口罩后,先以每个4元的价格出售,卖出了a个后购进第二批同款口罩,由于进价提高了,药店将口罩的售价也提升至每个4.5元继续销售卖出了b个后﹒因当地医院医疗物资紧缺,将其已获得口罩销售收入6400元和剩余全部的口罩捐赠给了医院﹒请问药店捐赠口罩至少有多少个?(销售收入=售价×数量)3.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?4.甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?5.为中华人民共和国成立70周年献礼,某灯具厂计划加工6000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.5倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.6.在我市雨污分流工程中,甲、乙两个工程队共同承担茅洲河某段720米河道的清淤任务,已知甲队每天能完成的长度是乙队每天能完成长度的2倍,且甲工程队清理300米河道所用的时间比乙工程队清理200米河道所用的时间少5天.(1)甲、乙两工程队每天各能完成多少米的清淤任务;(2)若甲队每天清淤费用为2万元,乙队每天清淤费用为0.8万元,要使这次清淤的总费用不超过60万元,则至少应安排乙工程队清淤多少天?7.列分式方程解应用题.为缓解市区至通州沿线的通勤压力,北京市政府利用现有国铁线路富余能力,通过线路及站台改造,开通了“京通号”城际动车组,每班动车组预定运送乘客1200人,为提高运输效率,“京通号”车组对动车车厢进行了改装,使得每节车厢乘坐的人数比改装前多了,运送预定数量的乘客所需要的车厢数比改装前减少了4节,求改装后每节车厢可以搭载的乘客人数.8.八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳.已知购买一副羽毛球拍比购买一根跳绳多20元.若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半.(1)求购买一副羽毛球拍、一根跳绳各需多少元?(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的2倍还多10,且该班购买羽毛球拍和跳绳的总费用不超过350元,那么八(1)班最多可购买多少副羽毛球拍?9.为防控“新型冠状病毒”,某超市分别用1600元、6000元购进两批防护口罩,第二批防护口罩的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批口罩进货单价多少元?(2)若这两次购买防护口罩过程中所产生其他费用不少于600元,那么该超市购买这两批防护口罩的平均单价至少为多少元?10.2019年12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.参考答案1.解:(1)设第一批仙桃每件进价x元,则,解得x=180.经检验,x=180是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.可得×0.1y﹣3700≥440,解得y≥6.答:剩余的仙桃每件售价至少打6折.2.解:(1)设第一次购进医用口罩的数量为x个,∴第二次购进医用口罩的数量为(x﹣200)个,∴由题意可知:=1.25×,解得:x=1000,经检验,x=1000是原方程的解,∴x﹣200=800,答:第一次和第二次分别购进的医用口罩数量为1000和800个.(2)由(1)可知两次购进口罩共1800个,由题意可知:4a+4.5b=6400,∴a=1600﹣,∴1800﹣a﹣b=1800﹣(1600﹣)﹣b=200+,∵a≤1000,∴1600﹣≤1000,∴b≥533,∵a,b是整数,∴b是8的倍数,∴b的最小值是536,∴1800﹣a﹣b≥267,答:药店捐赠口罩至少有267个3.解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,依题意,得:﹣=10,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴2x=600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y天,则甲乙两工程队还需合作=(﹣y)天,依题意,得:7000(y+﹣y)+5000(﹣y)≤79000,解得:y≥1,∴﹣y≤﹣=6.答:两工程队最多可以合作施工6天.4.解:(1)设乙厂每天加工x套防护服,则甲厂每天加工1.5x套防护服,根据题意,得﹣=4.解得x=50.经检验:x=50是所列方程的解.则1.5x=75.答:甲厂每天加工75套防护服,乙厂每天加工50套防护服;(2)设甲厂要加工m天,根据题意,得150m+120×≤6360.解得m≥28.答:甲厂至少要加工28天.5.解:设原计划每天加工x个,根据题意,得,解得:x=400,经检验,x=400是原方程的解且符合题意.答:原计划每天加工400个.6.解:(1)设乙工程队每天能完成x米的清淤任务,则甲工程队每天能完成2x米的清淤任务,依题意,得:﹣=5,解得:x=10,经检验,x=10是原方程的解,且符合题意,∴2x=20.答:甲工程队每天能完成20米的清淤任务,乙工程队每天能完成10米的清淤任务.(2)设应安排乙工程队清淤m天,则安排甲工程队清淤天,依题意,得:0.8m+2×≤60,解得:m≥60.答:至少应安排乙工程队清淤60天.7.解:设改装前每节车厢乘坐x人,由题意列分式方程得:=+4,解得:x=120,经检验知x=120是原分式方程的解,则改装后每节车厢可以搭载的乘客人数=120×=200人,答:改装后每节车厢可以搭载的乘客人数为200人8.解:(1)设购买一副羽毛球拍需要x元,则购买一根跳绳需要(x﹣20)元,依题意,得:=×,解得:x=25,经检验,x=25是原方程的解,且符合题意,∴x﹣20=5.答:购买一副羽毛球拍需要25元,购买一根跳绳需要5元.(2)设八(1)班购买m副羽毛球拍,则购买(2m+10)根跳绳,依题意,得:25m+5(2m+10﹣m)≤350,解得:m≤10.答:八(1)班最多可购买10副羽毛球拍.9.解:(1)设第一批口罩进货单价为x元,则第二批进货单价为(x+2)元,依题意,得:3×=,解得:x=8,经检验,x=8是原分式方程的解,且符合题意.答:第一批口罩进货单价为8元.(2)购进第一批防护口罩的数量1600÷8=200(个),购进第二批防护口罩的数量200×3=600(个).设该超市购买这两批防护口罩的平均单价为m元,依题意,得:(200+600)m≥1600+6000+600,解得:m≥10.25.答:该超市购买这两批防护口罩的平均单价至少为10.25元.10.解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,依题意,得:+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.。
八年级数学分式知识点
八年级数学分式知识点八年级数学分式知识点梳理一、轴对称图形1、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
2、把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点。
3、轴对称图形和轴对称的区别与联系。
4、轴对称的性质。
①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线1、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2、线段垂直平分线上的点与这条线段的两个端点的距离相等。
3、与一条线段两个端点距离相等的点,在线段的`垂直平分线上。
三、用坐标表示轴对称小结1、在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数。
关于y轴对称的点横坐标互为相反数,纵坐标相等。
2、三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。
期末数学八年级上册知识点归纳北师大版函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y 都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
八年级数学分式复习1(新编201908)
八年级 分式知识点总结及复习
八年级 分式知识点总结及复习知识点一:分式的定义一般地;如果A ;B 表示两个整数;并且B 中含有字母;那么式子BA 叫做分式;A 为分子;B 为分母。
知识点二:与分式有关的条件①分式有意义:分母不为0(0B ≠)②分式无意义:分母为0(0B =) ③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) ⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)经典例题1、代数式14x-是( ) A.单项式 B.多项式 C.分式 D.整式 2、在2x ;1()3x y +;3ππ-;5a x -;24x y -中;分式的个数为( ) A.1 B.2 C.3 D.4 3、总价9元的甲种糖果和总价是9元的乙种糖果混合;混合后所得的糖果每千克比甲种 糖果便宜1元;比乙种糖果贵0.5元;设乙种糖果每千克x 元;因此;甲种糖果每千克 元;总价9元的甲种糖果的质量为 千克.4、当a 是任何有理数时;下列式子中一定有意义的是( )A.1a a + B.21a a + C.211a a ++ D.211a a +- 5、当1x =时;分式①11x x +-;②122x x --;③211x x --;④311x +中;有意义的是( ) A.①③④ B.③④ C.②④ D.④6、当1a =-时;分式211a a +-( )A.等于0 B.等于1 C.等于-1 D.无意义 7、使分式8483x x +-的值为0;则x 等于( ) A.38 B.12- C.83 D.12 8、若分式2212x x x -+-的值为0;则x 的值是( ) A.1或-1 B.1 C.-1 D.-2 9、当x 时;分式11x x +-的值为正数. 10、当x 时;分式11x x +-的值为负数. 11、当x = 时;分式132x x +-的值为1.12、分式1111x ++有意义的条件是( ) A.0x ≠ B.1x ≠-且0x ≠ C.2x ≠-且0x ≠ D.1x ≠-且2x ≠-13、如果分式33x x --的值为1;则x 的值为( ) A.0x ≥ B.3x > C.0x ≥且3x ≠ D.3x ≠14、下列命题中;正确的有( )①A 、B 为两个整式;则式子A B 叫分式; ②m 为任何实数时;分式13m m -+有意义; ③分式2116x -有意义的条件是4x ≠; ④整式和分式统称为有理数. A.1个 B .2个 C.3个 D.4个15、在分式222x ax x x ++-中a 为常数;当x 为何值时;该分式有意义?当x 为何值时;该分 式的值为0?知识点三:分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式;分式的值不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2a2+2ab
(2a2b )
2.下列变形正确的是( a a2 = b b2 2-x X-2 = X-1 1-x
C
B
) a-b a2-b = a a2 4 = 2a+b 2 a+b
A
C
D
3.填空:
-a-b a+b c-d = ( d-c ) -x +y x+y
x-y = ( -x-y )
2m-3 4.与分式 的值相等的分式是( 4-m
(2)
(3)
x 7.如果把分式 x+y 中的x和y的值都扩大3倍, 则分式的值( B ) A 扩大3倍 B不变 C缩小1/3 D缩小1/6
8.如果把分式
则分式的值(
A 扩大3倍
A
xy x+y 中的x和y的值都扩大3倍, ) B不变 C缩小1/3 D缩小1/6
9.若x,y的值均变为原来的1/3 ,则分式 ( ). C A 是原来的1/3 B 是原来的1/9 C 保持不变 D 不能确定
X-1
(1) X + 2ቤተ መጻሕፍቲ ባይዱ
(2)
1 X -1
(3)
4x X2 -1
(4)
1 X2 - 2x+3
3.下列分式一定有意义的是(B ) X+1 A x2 X+1 B X2+1 X2 +1 C X-1 D 1 X -1
4.当 x .y 满足关系
2x=y 时,分式 2x + y 2x - y
无意义.
5.当x为何值时,下列分式的值为0? X -3 X-4 X-1 (1) (2) (3) X-3 X -2 X+1 X=4 X=1 X=-3
-6x2y 27xy2 m2+4m+4 m2 - 4
(2)
-2(a-b)2 -8(b-a)3
(3)
2.通分
(1)
x 6a2b
与
y 9ab2c
(2)
a-1 a2+2a+1
与
6 a2-1
约分与通分的依据都是:
分式的基本性质
1.已知
x
2
=
y 3
=
Z
4
,试求
x+y-z
x+y+z
的值.
2.已知
1 1 x+ y
学习目标:
• 进一步理解分式、有理式、最简分式、 最简公分母的概念 • 熟练掌握分式的基本性质、分式运算法 则;准确熟练地进行分式的运算 • 通过对例题的学习,进一步理解数学的 整体思想
1.分式的定义:
A 形如 ,其中 A ,B 都是整式, B 且 B 中含有字母.
2.分式有意义的条件:
分式无意义的条件: 3.分式值为 0 的条件: 4.分式 分式 A B > 0 的条件:
B≠0
B=0 A=0且 B ≠0 A>0 ,B>0 或 A<0, B<0 A>0 ,B<0 或 A<0 ,B>0
A < 0 的条件: B
1.下列各式(1) 3 (2) 2x 2x 3 是分式的有 3 个。
2 2x (3) (4) x x ∏
3 (5) 1- 2x
2.下列各式中x 取何值时,分式有意义.
=
5
,求
2x-3xy+2y -x+2xy-y
的值.
3.已知 x +
1
x
=3 , 求
x2
+
1
x2
的值.
变: 已知
x2
– 3x+1=0 ,求
x 2+
1
x2
的值.
1 变:已知 x+ =3 ,求 x
x2 x4+x2+1
的值.
X2 -1 (4) 2 X +2x+1 X=1
6.当x为何值时,分式
2x (x-2) 5x (x+2)
(1) 有意义
X≠0且x≠-2
(2) 值为 0
X=2
7.要使分式
-2 1-x
的值为正数,则x的取值范围是 X>1
8.当x <-2
X2+1 时,分式 X+2
的值是负数.
9.当x
≥7
X-7 时,分式 X2+1
的值是非负数.
10.当x
>-1
X+1 时,分式 2 X -2x+3
的值为正.
1.分式的基本性质:
分式的分子与分母同乘以(或除以)
用式子表示: A B
= 一个不为0的整式
分式的值
不变
AXM (B X M )
A B
=
A÷M ( B÷M )
(其中M为
不为0
的整式)
( -A )
2.分式的符号法则:
A B -A -B A ( B )
= =
A
(-B )
=
-A ( -B )
B
=
=
( -A ) B
=
-A ( B )
1.写出下列等式中的未知的分子或分母.
(a2+ab ) a+b = ab a2b
2 ab+b (2) = 2 ab +b
(1)
a+b
( ab+1 )
(3)
a -b a+b
a2+b2-2ab
=
(
)
a2 –b2
(4)
a+b = ab
3xy 的值 2 x +y2
10.已知分式
3a 2a+b
的值为
5/3,
若a,b的值都扩大到原来的5倍,则扩大后分式的值是 5/3
1.约分 : 把分子.分母的最大公因式(数)约去.
2.通分: 把分母不相同的几个分式化成分母相同的分式.
关键是找最简公分母:各分母所有因式的最高次幂的积.
1.约分
(1)
3-2m A B 4-m 2m-3 4-m
A
) 3-2m m-4
3-2m C D 4-m
5.下列各式正确的是( A A
- x+ y - x- y = X-y X+y
)
- x- y
=
B
- x+ y - x- y
X+y
C - x- y
- x+ y
=
X+y
X-y
D
- x+ y - x- y
=
X-y
X+y
6.不改变分式的值,将下列分式的分子.分母的最高次 项的系数变为正数. (1) -x2+1 x-2 x-x2 3x+1 2-x x-x2