2012高考数学热点考点精析:函数的单调性

合集下载

函数的单调知识点总结

函数的单调知识点总结

函数的单调知识点总结一、函数的增减性1. 函数的单调性定义函数的单调性是指函数在其定义域上的增减性质。

如果对于任意的$x_1, x_2 \in D$, $x_1 <x_2$,有$f(x_1) \le f(x_2)$,则称函数$f(x)$在定义域上是单调不减的;如果对于任意的$x_1, x_2 \in D$, $x_1 < x_2$,有$f(x_1) \ge f(x_2)$,则称函数$f(x)$在定义域上是单调不增的。

2. 函数的单调性判定对于一个给定函数,要判定其在定义域上的增减性,可以通过对函数的导数进行分析来实现。

通常有以下几种方法:(1) 图像法:通过画出函数的图像,观察函数在定义域上的增减性。

(2) 导数法:计算函数的导数并分析其正负性来判定函数的单调性。

(3) 定义域划分法:对函数的定义域进行适当的划分,分别分析函数在各个子区间上的增减性。

3. 函数的单调性与最值函数的单调性可以帮助我们求解函数的最值。

如果一个函数在其定义域上是单调递增的,则其最小值为$f(x)$的最小值;如果一个函数在其定义域上是单调递减的,则其最大值为$f(x)$的最大值。

二、导数的应用1. 函数的导数导数是描述函数变化率的重要工具,它可以帮助我们研究函数的增减性。

对于可导函数$f(x)$,其导数$f'(x)$的正负性可以描述函数在某点附近的增减性。

具体来说:(1) 若$f'(x)>0$,则$f(x)$在$x$点附近是单调递增的;(2) 若$f'(x)<0$,则$f(x)$在$x$点附近是单调递减的。

2. 函数单调性与导数对于可导函数$f(x)$,如果$f'(x)>0$,则$f(x)$在其定义域上是单调递增的;如果$f'(x)<0$,则$f(x)$在其定义域上是单调递减的。

这是函数的单调性与导数之间的重要联系,也是求解函数的单调性的重要方法。

(整理)届高考数学考点讲解考点05函数的性质(单调性奇偶性周期性)(新课标解析版).

(整理)届高考数学考点讲解考点05函数的性质(单调性奇偶性周期性)(新课标解析版).

考点05 函数的性质(单调性、奇偶性、周期性)【高考再现】热点一 函数的单调性1.(2012年高考(天津文))下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .cos 2y x =B .2log ||y x =C .2x x e e y --=D .31y x =+2.(2012年高考(陕西文))下列函数中,既是奇函数又是增函数的为A .1y x =+B .2y x =-C .1y x =D .||y x x =【答案】D【解析】该题主要考察函数的奇偶性和单调性,理解和掌握基本函数的性质是关键.A 是增函数,不是奇函数;B 和C 都不是定义域内的增函数,排除,只有D 正确,因此选D.3.(2012年高考(安徽文))若函数()|2|f x x a =+的单调递增区间是[3,)+∞,则_____a =【方法总结】1.对于给出具体解析式的函数,证明其在某区间上的单调性有两种方法:(1)可以结合定义(基本步骤为取值、作差或作商、变形、判断)求解.(2)可导函数则可以利用导数解之.但是,对于抽象函数单调性的证明,一般采用定义法进行.2.求函数的单调区间与确定单调性的方法一致.(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间.(2)定义法:先求定义域,再利用单调性定义确定单调区间.(3)图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,可由图象的直观性写出它的单调区间.(4)导数法:利用导数取值的正负确定函数的单调区间.3.函数单调性的应用:f(x)在定义域上(或某一单调区间上)具有单调性,则f(x1)<f(x2)⇔f(x1)-f(x2)<0,若函数是增函数,则f(x1)<f(x2) ⇔x1<x2,函数不等式(或方程)的求解,总是想方设法去掉抽象函数的符号,化为一般不等式(或方程)求解,但无论如何都必须在定义域内或给定的范围内进行.热点二函数的奇偶性4.(2012年高考(广东文))(函数)下列函数为偶函数的是()A .sin y x = B .3y x = C .x y e = D .y =5.(2012年高考(重庆文))函数()()(4)f x x a x =+- 为偶函数,则实数a =________【答案】4【解析】本题考查函数奇偶性的应用,若已知一个函数为偶函数,则应有其定义域关于原点对称,且对定义域内的一切a都有()()f a f a =-成立.由函数()f x 为偶函数得()()f a f a =-即()(4)()(4)a a a a a a +-=-+-- 4a ⇒=.6.(2012年高考(上海文))已知)(x f y =是奇函数. 若2)()(+=x f x g 且1)1(=g .则=-)1(g _______ .7.(2012年高考(课标文))设函数()f x 22(+1)sin =1x x x ++的最大值为M ,最小值为m ,则=M m +____【答案】 2【解析】本题主要考查利用函数奇偶性、最值及转换与化归思想,是难题.222(1)sin 2sin ()1,11x x x x f x x x +++==+++设22sin (),()(),()1x x g x g x g x g x x +=-=-∴+为奇函数,由奇函数图像的对称性知max min max min max min ()()0,[()1][()1]2()() 2.g x g x M m g x g x g x g x +=∴+=+++=++=【方法总结】热点三 函数的周期性8.(2012年高考(浙江文))设函数()f x 是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,()f x =+1x ,则3()2f =_______. 【答案】32 【解析】本题主要考查了函数的周期性和奇偶性.331113()(2)()()1222222f f f f =-=-==+=. 9.(2012年高考(江苏))设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为____.【方法总结】求函数周期的方法求一般函数周期常用递推法和换元法,形如y =A sin(ωx +φ),用公式T =2π|ω|计算.递推法:若f (x +a )=-f (x ),则f (x +2a )=f [(x +a )+a ]=-f (x +a )=f (x ),所以周期T =2a .换元法:若f (x +a )=f (x -a ),令x -a =t ,x=t +a ,则f (t )=f (t +2a ),所以周期T =2a .热点四 函数性质的综合应用10.(2012年高考(重庆理))已知()f x 是定义在R 上的偶函数,且以2为周期,则“()f x 为[0,1]上的增函数”是“()f x 为[3,4]上的减函数”的( )A .既不充分也不必要的条件B .充分而不必要的条件C .必要而不充分的条件D .充要条件11.(2012年高考(山东理))定义在R 上的函数()f x 满足(6)()f x f x +=.当31x -≤<- 时,2()(2)f x x =-+,当13x -≤<时,()f x x =. 则(1)(2)(3)(2012)f f f f +++⋅⋅⋅=A . 335B .338C .1678D .2012【方法总结】在解决函数性质有关的问题中,如果结合函数的性质画出函数的简图,根据简图进一步研究函数的性质,就可以把抽象问题变的直观形象、复杂问题变得简单明了,对问题的解决有很大的帮助.(1)一般的解题步骤:利用函数的周期性把大数变小或小数变大,然后利用函数的奇偶性调整正负号,最后利用函数的单调性判断大小;(2)画函数草图的步骤:由已知条件确定特殊点的位置,然后利用单调性确定一段区间的图象,再利用奇偶性确定对称区间的图象,最后利用周期性确定整个定义域内的图象. 【考点剖析】二.命题方向1.利用函数的单调性求单调区间、比较大小、解不等式、求变量的取值是历年高考考查的热点.2.函数的奇偶性是高考考查的热点.3.函数奇偶性的判断、利用奇偶函数图象特点解决相关问题、利用函数奇偶性、周期性求函数值及求参数值等问题是重点,也是难点.3.题型以选择题和填空题为主,函数性质其他知识点交汇命题.三.规律总结一条规律奇、偶函数的定义域关于原点对称.函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件.三种方法判断函数的奇偶性,一般有三种方法:(1)定义法;(2)图象法;(3)性质法.三条结论(1)若对于R上的任意的x都有f(2a-x)=f(x)或f(-x)=f(2a +x),则y=f(x)的图象关于直线x=a对称.(2)若对于R上的任意x都有f(2a-x)=f(x),且f(2b-x)=f(x)(其中a<b),则:y=f(x)是以2(b-a)为周期的周期函数.(3)若f(x+a)=-f(x)或f(x+a)=1f(x)或f(x+a)=-1f(x),那么函数f(x)是周期函数,其中一个周期为T=2a;(3)若f(x+a)=f(x+b)(a≠b),那么函数f(x)是周期函数,其中一个周期为T=2|a-b|.【基础练习】1.(课本习题改编)下列函数中,在区间(0,1)上是增函数的是()A .y =|x |B .y =3-xC .y =1xD .y =-x 2+4【答案】A【解析】y =3-x 在R 上递减,y =1x 在(0,+∞)上递减,y=-x 2+4在(0,+∞)上递减.2.(经典习题)函数f (x )=ln(4+3x -x 2)的单调递减区间是( )A.⎝ ⎛⎦⎥⎤-∞,32 B.⎣⎢⎡⎭⎪⎫32,+∞ C.⎝ ⎛⎦⎥⎤-1,32D.⎣⎢⎡⎭⎪⎫32,43. (课本习题改编)若函数f (x )=x (2x +1)(x -a )为奇函数,则a =( )A.12B.23C.34D .1【答案】A【解析】∵f (x )=x (2x +1)(x -a )是奇函数,利用赋值法,∴f (-1)=-f (1).∴-1(-2+1)(-1-a )=-1(2+1)(1-a ),∴a +1=3(1-a ),解得a =12. 4. (经典习题)设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ).A .f (x )+|g (x )|是偶函数B .f (x )-|g (x )|是奇函数C .|f (x )|+g (x )是偶函数D .|f (x )|-g (x )是奇函数【答案】A【解析】由题意知f (x )与|g (x )|均为偶函数,A 项:偶+偶=偶;B 项:偶-偶=偶,B 错;C 项与D 项:分别为偶+奇=偶,偶-奇=奇均不恒成立,故选A.5.设f (x )是定义在R 上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图象,则f (2 011)+f (2 012)=( )A .3B .26.(经典习题)已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)等于________.【答案】-2【解析】由f (x +4)=f (x ),得f (7)=f (3)=f (-1),又f (x )为奇函数,∴f (-1)=-f (1),f (1)=2×12=2.∴f (7)=-2.【名校模拟】一.基础扎实1. (北京市西城区2012届高三下学期二模试卷文)给定函数:①3y x =;②21y x =-;③sin y x =;④2log y x =,其中奇函数是( )(A )① ② (B )③ ④(C )① ③(D )② ④【答案】C【解析】利用函数图象关于原点对称可知① ③图像满足条件.2. (2012年石家庄市高中毕业班第一次模拟考试理)已知.,若,则f(-a)的值为A. -3B. -2C. -1D. 03.(2012年河南豫东、豫北十所名校阶段性测试(三)理)已知函数.,则该函数是(A)偶函数,且单调递增(B)偶函数,且单调递减(C)奇函数,且单调递增(D)奇函数,且单调递减【答案】C【解析】 注意到当0x >时,0x -<,()()()()21120x x f x f x ---+=-+-=;当0x <时,0x ->,()()()()12210x x f x f x -+=-+-=;()00f =.因此,对任意x R ∈,均有()()0f x f x -+=,即函数()f x 是奇函数.当0x >时,函数()f x 是增函数,因此()f x 是增函数,选C.4.(2012洛阳示范高中联考高三理)下列函数中,在(1, 1)-内有零点且单调递增的是( )A .12log y x =B .21x y =-C .212y x =-D . 3y x =-5. (浙江省杭州学军中学2012届高三第二次月考理)若R x ∈、+∈N n ,定义:)2)(1(++=x x x M n x )1(-+n x ,例如:55-M =(-5)(-4)(-3)(-2)(-1) =-120,则函数199)(-=x xM x f 的奇偶性为( )A.是偶函数而不是奇函数B. 是奇函数而不是偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数6.. (江西省2012届十所重点中学第二次联考文)已知2()35f x ax bx a b =+-+是偶函数,且其定义域为[61,]a a -,则a b +=( )A .17 B .1- C .1D .7【答案】A【解析】因为偶函数的定义域关于原点对称,所以1610,7a a a -+==所以; 又()f x 为偶函数,所以223()535a x bx a b ax bx a b ---+=+-+,得0b =,所以a b +=17,选A. 67.(海南省洋浦中学2012届高三第一次月考数学理)函数)(x f 在区间]3,2[-是增函数,则)5(+=x f y 的递增区间是 ( ) A .]8,3[ B . ]2,7[-- C .]5,0[D .]3,2[-8.(海南省洋浦中学2012届高三第一次月考数学理)已知函数y=f(x)是定义在R 上的奇函数,则下列函数中是奇函数的是 ( )①y=f(|x|);②y=f(-x);③y=x ·f(x);④y=f(x)+x.A.①③B.②③C.①④ D.②④9.(湖北省黄冈中学2012届高三五月模拟考试理)下列函数中既是偶函数,又是区间[-1,0]上的减函数的是A .x y cos =B .1--=x yC .x xy +-=22ln D .x x e e y -+=答案:D解析:由()()x x f x e e f x --=+=,所以函数()x x f x e e -=+为偶函数;又 ()211x xx x e f x e e e -'=-=,当[]1,0x ∈-时,()0f x '<,所以函数为减函数,故选D 。

高考数学知识考点精析3 函数的单调性、周期性、奇偶性、反函数

高考数学知识考点精析3 函数的单调性、周期性、奇偶性、反函数

高考数学知识考点精析3 函数的单调性、周期性、奇偶性、反函数一、函数的单调性:1、定义:对于给定区间D 上的函数f(x),若对于任意x 1,x 2∈D,当x 1<x 2时,都有f(x 1) <f(x 2),则称f(x)是区间上的增函数,当x 1<x 2时,都有f(x 1)> f(x 2),则称f(x)是区间上的减函数。

如果函数y= f(x)在区间上是增函数或减函数,就说函数y= f(x)在区间D 上具有(严格的)单调性,区间D 称为函数f(x)的单调区间。

()()()()121200f x f x x x -><→-增减 任意x 1,x 2∈D 2、函数单调性的证明方法:通常根据定义,其步骤是:1)任取x 1,x 2∈D ,且x 1<x 2 2)作差f(x 1)- f(x 2)或作商()()()()0112≠x f x f x f ,并变形,(4)判定f(x 1)- f(x 2)的符号,或比较()()12x f x f 与1的大小, 4)根据定义作出结论。

有时也根据导数。

()()()()//,0D 0D x D f x f x f x f x ∈>⇒<⇒在上递增,在上递减。

(注:逆命题不成立)3、常见函数的单调性:(1) 一次函数y=kx+b (k ≠0) 1)当k>0时,f(x)在R 上是增函数。

2)当k<0时,f(x)在R 上是减函数。

(2) 二次函数y=ax 2+bx+c 1)当a>o 时,函数f(x)的图象开口向上,在(-∞,-a b 2)上是减函数,在[-ab 2,+∞)上是增函数,2) 当a<0时,函数f(x)的图象开口向下,在(-∞,-a b 2)上是增函数,在[-ab 2,+∞)是减函数。

(3) 反比例函数y=()0≠k xk 1) 当k>0时,f(x)在(-∞,0)与(0,+∞)上都是减函数,2) 当k<0时,f(x)在(-∞,0)与(0,+∞)上都是增函数但要注意在(-∞,0)∪(0,+∞)上f(x)没有单调性。

【高中数学考点精讲】考点一 函数的单调性的判断

【高中数学考点精讲】考点一 函数的单调性的判断

考点08 函数单调性与最值1、函数单调性的判断方法(1)定义法:在定义域内的某个区间上任取并使得,通过作差比较与的大小来判断单调性。

(2)性质法:若函数为增函数,为增函数,为减函数,为减函数,则有①为增函数,②为增函数,③为减函数,④为减函数。

(3)图像法:对于含绝对值或者分段函数经常使用数形结合的思想,通过函数的图象来判断函数的单调性。

由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接.(4)复合函数法:对于函数,可设内层函数为,外层函数为,可以利用复合函数法来进行求解,遵循“同增异减”,即内层函数与外层函数在区间D上的单调性相同,则函数在区间D上单调递增;内层函数与外层函数在区间D 上的单调性相反,则函数在区间D上单调递减.增函数减函数增函数减函数增函数减函数减函数增函数随着的增大而增大随着的增大而增大随着的增大而减小随着的增大而减小增函数增函数减函数减函数2、函数单调性的应用(1)比较大小.比大小常用的方法是①利用单调性比大小;②搭桥法,即引入中间量,从而确定大小关系;③数形结合比大小。

注:一般三个数比较大小使用中间量法(一个大于1,一个介于0-1之间,一个小于0)再结合函数的图像判断大小。

(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.解抽象函数不等式问题(如:f(a2+a-5)<2.)的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的抽象符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.(3)利用函数单调性求参数的取值范围.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②二次函数的单调性与开口和对称轴(对称轴左右两侧单调性相反)有关。

2012年高考数学总复习第一轮函数的单调性与最值学生

2012年高考数学总复习第一轮函数的单调性与最值学生

C.[ a,1] D.[ a, a+1]
图5-1 -
[思路 利用函数图像得到 思路] 利用函数图像得到f(x)的单调性,并结合判断复合函数单调性 的单调性,思路 的单调性 规则求解. 规则求解.
第4讲 │ 要点探究
[2010· 合 肥 模 拟 ] 函 数 f(x) = 2x2-8ax+33x<13, 内单调递减, 在 x∈R 内单调递减,则 a logax3x≥13 的取值范围是( 的取值范围是( 1 A. 0, 2 5 D. ,1 8
第4讲 │ 要点探究
a 3x>13, (1)若 例 3 (1)若 f(x)= a 4- x+23x≤13 2 的取值范围为( 增函数, ) 增函数,则实数 a 的取值范围为(
A.(1,+∞) (1,+∞) ,+ C.(4,8)
x
是 R 上的单调递
B.4,8 D. D.(1,8)
第4讲 │ 知识梳理
2.函数的最值: .函数的最值: 对于函数f(x),假定其定义域为 ,则 对于函数 ,假定其定义域为A, (1)若存在 ∈A,使得对于任意 ∈A,恒有 若存在x0∈ ,使得对于任意x∈ , 若存在 f(x)≥f(x0)成立,则称 成立, 是函数f(x)的________; 成立 则称f(x0)是函数 是函数 的 ; (2)若存在 ∈A,使得对于任意 ∈A,恒有 若存在x0∈ ,使得对于任意x∈ , 若存在 f(x)≤f(x0)成立,则称 成立, 是函数f(x)的________. 成立 则称f(x0)是函数 是函数 的 .
[思路 各段函数在其定义域内都是增函数,并注意 =1处时,两 思路]各段函数在其定义域内都是增函数 并注意x= 处时 处时, 思路 各段函数在其定义域内都是增函数, 段函数的函数值的大小关系

高中数学知识点精讲精析 函数的单调性

高中数学知识点精讲精析 函数的单调性

2.3 函数的单调性在某一区间内,当x 的值增大时,函数值y 也增大图象在该区间内呈上升趋势 当x 的值增大时,函数值y 反而减小图象在该区间内呈下降趋势 如何用x 与来描述上升的图象?在给定区间上任取如何用x 与来描述下降的图象?在给定区间上任取1.用数学语言表达函数值的增减变化:在函数y=f (x )的定义域内的一个区间A 上,如果对于任意两个数x 1,x 2,当x 1<x 2时都有f (x 1)<f (x 2),那么就称函数y=f (x )在区间A 上是增加的(或递增的);在函数y=f (x )的定义域内的一个区间A 上,如果对于任意两个数x 1,x 2,当x 1<x 2时都有f (x 1)>f (x 2),那么就称函数y=f (x )在区间A 上是减少的(或递减的);2.单调性与单调区间:如果函数y=f (x )在区间A 上是增加的或者是减少的,那么就称函数y=f (x )在这个子集上具有单调性;这个区间A 称为函数的一个单调区间;3.单调函数:如果函数y=f (x )在整个定义域内是增加的(或是减少的),我们就称这个函数为增函数(或减函数),统称为单调函数;4.单调函数的图像特征:在单调增区间上,函数的图像是上升的;在单调减区间上,函数的图像是下降的;5.判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤:⇔⇔f x ()x x 12,x x f x f x 1212<⇒<()()f x ()x x 12,x x f x f x 1212<⇒>()()① 任取x 1,x 2∈D ,且x 1<x 2;② 作差f(x 1)-f(x 2);③变形(通常是因式分解和配方); ④定号(即判断差f(x 1)-f(x 2)的正负);⑤下结论(即指出函数f(x)在给定的区间D 上的单调性). 6.函数单调性可以从三个方面理解(1)图形刻画:对于给定区间上的函数f (x ),函数图象如从左向右连续上升,则称函数在该区间上单调递增,函数图象如从左向右连续下降,则称函数在该区间上单调递减.(2)定性刻画:对于给定区间上的函数f (x ),如函数值随自变量的增大而增大,则称函数在该区间上单调递增,如函数值随自变量的增大而减小,则称函数在该区间上单调递减.(3)定量刻画,即定义.上述三方面是我们研究函数单调性的基本途径.注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f(x 1)<f(x 2) . (2) 单调区间:如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D 叫做y=f(x)的单调区间.例1. 证明函数在R 上是增函数. 证明:(1)取值 设是R 上的任意两个实数,且,则 (2)作差(3)判断由,得: 于是(4)结论所以,在R 上是增函数.例2. 判断函数的单调性,并写出单调区间.解:此函数定义域为首先画出函数的图象f x x ()=+32x x 12,x x 12<()()()f x f x x x x x ()()12121232323-=+-+=-x x 12<x x 120-<()()f x f x 120-<f x x ()=+32()y x x =≠10()()-∞+∞,,00 y x =1从图象上观察,我们可知,函数在和上均为单调递减.∴函数的单调减区间为和 注意:我们能说函数在整个定义域内单调递减吗?为什么?例3. 求证:函数在区间上是单调增函数. 证明:(1)取值 设是上的任意两个实数,且,则(2)作差(3)判断又(4)结论所以在区间上是单调增函数. 例4. 如图,定义在闭区间上的函数的图象,根据图象说出的最大值.最小值及单调区间.yO xy x =1()-∞,0()0,+∞y x =1()-∞,0()0,+∞y x =1f x x ()=--11()-∞,0x x 12,()-∞,0xx 12<()()f x f x x x x x x x x x 1212211212111111-=--⎛⎝ ⎫⎭⎪---⎛⎝ ⎫⎭⎪=-=- x x x x 121200<<∴-<,() x x x x 121200,,,∈-∞∴>()()()()∴-=-<∴<f x f x x x x x f x f x 121212120f x x ()=--11()-∞,0[]-66,y f x =()y f x =()解:函数的单调减区间为和,以及函数的单调增区间为和最大值为,最小值为例5. 已知函数的定义域是.当时,是单调增函数;当时,是单调减函数.试证明在时取得最大值.证明:因为当时,是单调增函数 所以对于任意都有又因为当时,是单调减函数所以对于任意的都有因此,对于任意都有即在时取得最大值.例6 下列函数中,在区间(0,2)上为增函数的是A.y =-x +1B.y =xC.y =x 2-4x +5D.y =x2 答案:B例7.函数y =log a (x 2+2x -3),当x =2时,y >0,则此函数的单调递减区间是 A.(-∞,-3) B.(1,+∞) C.(-∞,-1) D.(-1,+∞)解析:当x =2时,y =log a 5>0,∴a >1.由x 2+2x -3>0⇒x <-3或x >1,易见函数t =x 2+2x -3在(-∞,-3)上递减,故函数y =log a (x 2+2x -3)(其中a >1)也在(-∞,-3)上递减.答案:A例8 (2003年北京朝阳区模拟题)函数y =log21|x -3|的单调递减区间是__________________.解析:令u =|x -3|,则在(-∞,3)上u 为x 的减函数,在(3,+∞)上u 为x 的增函数.又∵0<21<1,∴在区间(3,+∞)上,y 为x 的减函数. y f x =()[]--63,[]03,[]56,y f x =()[]-30,[]35,f ()-6f ()3y f x =()[]a b a c b ,,<<[]x a c ∈,f x ()[]x c b ∈,f x ()f x ()x c =[]x a c ∈,f x ()[]x a c ∈,f x f c ()()≤[]x c b ∈,f x ()[]x c b ∈,f x f c ()()≤[]x a b ∈,f x f c ()()≤x c =答案:(3,+∞)。

函数的单调性知识点

函数的单调性知识点

函数的单调性知识点在数学的广阔领域中,函数的单调性是一个非常重要的概念。

它就像是函数世界里的指南针,帮助我们理解函数的行为和变化规律。

首先,咱们来聊聊什么是函数的单调性。

简单说,单调性指的是函数在某个区间内的变化趋势。

如果函数在某个区间内,随着自变量的增大,函数值也一直增大,那这个函数在这个区间就是单调递增的;反过来,如果随着自变量的增大,函数值一直减小,那就是单调递减的。

比如说,一次函数 y = 2x + 1,当 x 越来越大时,y 也会越来越大,这就是单调递增。

再看反比例函数 y = 1/x,在 x > 0 这个区间,x 越大,y 越小,所以它在这个区间是单调递减的。

那怎么判断一个函数的单调性呢?这就需要一些方法和技巧了。

一种常见的方法是利用定义。

假设函数 f(x) 在区间(a, b) 上有定义,如果对于任意的 x1、x2 属于(a, b),当 x1 < x2 时,都有 f(x1) <f(x2),那函数 f(x) 在区间(a, b) 上就是单调递增的;如果都有 f(x1) >f(x2),那就是单调递减的。

举个例子,证明函数 f(x) = x^2 在区间 0, +∞)上是单调递增的。

我们任取 x1、x2 属于 0, +∞),且 x1 < x2。

那么 f(x1) = x1^2 ,f(x2) = x2^2 。

f(x2) f(x1) = x2^2 x1^2 =(x2 x1)(x2 + x1) 。

因为x1 < x2 ,所以 x2 x1 > 0 ,又因为 x1、x2 都大于等于 0 ,所以 x2 +x1 > 0 。

所以 f(x2) f(x1) > 0 ,即 f(x1) < f(x2) ,所以函数 f(x) =x^2 在区间 0, +∞)上是单调递增的。

除了定义法,还有求导法。

如果函数 f(x) 在某个区间内的导数大于0 ,那么函数在这个区间单调递增;如果导数小于 0 ,则单调递减。

比如函数 f(x) = 3x^3 4x ,对它求导得到 f'(x) = 9x^2 4 。

《函数的单调性》知识点及典型例题总结

《函数的单调性》知识点及典型例题总结

函数的单调性要点一、函数单调性的定义(1)增函数与减函数增函数减函数定义一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于区间D 内的任意两个值x 1,x 2当x1<x2时,都有 f(x 1)<f(x 2) ,那么就说函数f(x)在区间I 上是单调增函数当x 1<x 2时,都有f(x 1)>f(x 2) ,那么就说函数f(x)在区间I 上是单调减函数 图 象 描 述自左向右看图象是_上升的__自左向右看图象是__下降的___(2)单调区间的定义若函数f (x )在区间D 上是 或 ,则称函数f (x )在这一区间具有单调性,区间D 叫做y =f (x )的单调区间.要点二、与函数单调性有关的几个常见结论(1)函数y=af (x )与函数y=f (x )的单调性的关系:(2)若函数y=f (x )的值恒为正或恒为负时,函数y =1f (x )和函数y=f (x )的单调性 。

(3)若函数y=f (x )≥0,则函数y=√f (x )与y =f 2(x )的单调性与y=f (x ) (4)函数y=f (x )+g (x )与f (x )和g (x )的单调性的关系: (5)复合函数的单调性:(6)奇函数在关于原点对称的区间上单调性 ;偶函数在关于原点对称的区间上单调性 。

要点三、函数单调性的代数特征(1)若函数满足对任意,x 1≠x 2有()()()()()1212121200f x f x x x f x f x x x --->⇔>⎡⎤⎣⎦- 在[a,b ]上是增函数; (2)若函数满足对任意,x 1≠x 2有()()()()()1212121200f x f x x x f x f x x x ---<⇔<⎡⎤⎣⎦-在[a,b ]上是减函数。

()f x D x x ∈21,()f x ()f x D x x ∈21,()f x要点四、函数单调性的判断(1)定义法:①取值,设,且;②作差,求;③变形(合并同类项、通分、分解因式、配方、分母有理化等);④判断的正负符号;⑤根据函数单调性的定义下结论。

高中数学函数的单调性知识点总结

高中数学函数的单调性知识点总结

高中数学函数的单调性知识点总结
一、函数的单调性
1、什么是单调性
用单调性来描述一个函数的变化,就是说函数沿着正方向或者反方向
的变化是有规律的,而不是曲折转变,也就是说,函数的变化都是连续的,这就是单调性。

2、单调性的三种情况
(1)上升函数:如果在区间[a,b]内使得f(x)单调递增,就可以说f(x)为上升函数,可以简写为f(x)为单调增函数。

(2)下降函数:如果在区间[a,b]内使得f(x)单调递减,就可以说f(x)为下降函数,可以简写为f(x)为单调减函数。

(3)常函数:函数f(x)在区间[a,b]上恒等于常数c,则称函数为常函数,常函数是不存在单调性的。

3、判断函数的单调性
依照函数的单调性情况,可以通过图形方法和导数法来判断函数的单
调性:
(1)图形判断法,即根据函数图像大致的凸凹情况来判断函数的单调性。

(2)导数法,即当函数在其中一区间内正、负、零导数情况来判断函
数的单调性。

二、函数的可导性
1、什么是可导性
可导性是指在其中一区间上,函数的导数存在且唯一,可以说是函数的一种性质,在数学教学中也常常称为连续性或者连续性。

可导代数函数的定义:在其中一区间上,若存在一个函数f(x)的导数f’(x),并且所有的在该区间上的导数经过等价的变换得到f’(x),就称f(x)在该区间上为可导函数。

函数单调性知识点

函数单调性知识点

函数单调性知识点在函数单调性的研究中,常常会用到导数、若尔当定理、拉格朗日中值定理等数学知识。

下面我们将详细介绍函数单调性的知识点,包括单调性的定义、判定与应用。

一、函数的单调性定义对于给定的函数f(x),如果对于任意的x1和x2(x1<x2),有f(x1)<=f(x2),则称f(x)为递增函数;如果对于任意的x1和x2(x1<x2),有f(x1)>=f(x2),则称f(x)为递减函数。

函数的单调性有两种情况,递增和递减。

递增的函数在定义域内从左到右的方向递增,即y增大;递减的函数在定义域内从左到右的方向递减,即y减小。

举个例子,如果我们考虑函数f(x)=x^2,在定义域内,当x1<x2时,f(x1)=x1^2<x2^2=f(x2),所以函数f(x)是递增函数。

二、函数单调性的判定在判定函数的单调性时,我们可以通过求导数来判断。

若导数恒大于0,则函数在该区间上递增;若导数恒小于0,则函数在该区间上递减。

具体来说,对于一个可导的函数f(x),我们可以通过以下步骤来判定其单调性:1.求函数的导数f'(x);2.解方程f'(x)=0,求出导函数f'(x)的零点;3.根据导函数的符号表,分析函数的单调性。

举个例子,我们来判定函数f(x)=x^3的单调性:1.求导数f'(x)=3x^2;2.解方程3x^2=0,得到x=0;3.由于导函数f'(x)=3x^2恒大于0,所以函数f(x)在整个定义域上是递增的。

三、函数单调性的应用函数的单调性在数学中有广泛的应用。

以下是一些应用的例子:1.函数极值的判定:对于一个区间上的函数,如果函数是递增的,那么函数在这个区间的最小值就在区间的最小值点上;如果函数是递减的,那么函数在这个区间的最大值就在区间的最大值点上。

2.不等式求解:当我们在求解一个不等式f(x)≥0时,如果我们可以证明函数f(x)是递增的,那么不等式的解集就是x的取值范围;同样地,如果我们可以证明函数f(x)是递减的,不等式的解集也是x的取值范围。

2012届高考数学难点突破复习-函数的单调性

2012届高考数学难点突破复习-函数的单调性

2012届高考数学难点突破复习:函数的单调性函数的专题复习-函数的单调性高考命题规律内容上,主要考查求函数的单调区间或应用单调性求值域,或用导数法求单调区间(选修内容),是高考命题的热点问题。

函数的单调性是与不等式直接联系的,对函数的单调性的考查与解不等式、求函数的值域、数形结合等相结合。

知识清单:1单调性的定义:设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值时,(1)若________,则f(x)在___上是增函数。

(2)若________,则f(x)在____上是减函数。

2函数的单调区间的定义:若函数f(x)在区间D上是____或____,则称函数f(x)在这一区间上具有单调性,____叫做f(x)的单调区间。

3判别函数单调性的方法:(1)定义法:利用定义严格判断;(2)利用函数的运算性质:如若f(x),g(x)为增函数,则①f(x)+g(x)为增函数,②为减函数(f(x)&gt;0)③为增函数(f(x)≥0)④f(x)g(x)为增函数(f(x)&gt;0,g(x)&gt;0)⑤-f(x)为减函数。

4利用复合函数关系判断单调性:法则是:_______,即两个简单函数的单调性相同,则它们的复合函数为____,若两个简单函数的单调性相反,则它们的复合函数为___。

图象法6导数法:(1)若f(x)在某个区间内可导,当f(x)’&gt;0时,f(x)为__函数,当f(x)’&lt;0时,f(x)为___函数;反之也真。

7函数的单调性是针对确定的区间而言的,所以要受到区间的限制。

如:8熟练掌握函数解析式的化简与转化方法,使问题转化为熟悉的简单函数的单调性问题,缩短对问题的判断过程,即转化为一次函数、二次函数、指、对数函数、三角函数等。

【2011考题精选】1北京)已知函数,(I)求的单调区间;(II)求在区间上的最小值。

2福建22)已知a、b为常数,且a≠0,函数f(x)=-ax+b+axlnx,f(e)=2,(e=271828…是自然对数的底数)。

2012届高考数学函数的单调性与最值知识归纳复习教案

2012届高考数学函数的单调性与最值知识归纳复习教案

2012届高考数学函数的单调性与最值知识归纳复习教案3函数的单调性与最值一、知识梳理:1、函数的单调性(1)函数的单调区间必须在定义域内。

分别在两个区间上单调用“和”连接而不能用并如:求函数的单调区间。

(2)定义:设函数=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1&lt;x2时,都有f(x1)&lt;f(x2)(f(x1)&gt;f(x2)),那么就说f(x)在区间D上是增函数(减函数);(3)函数单调性的证明、判断和求单调区间:定义法,导数法。

定义法:对任意的,,判断的符号,两法因式分解和配方法,以说明之(4)初等函数的单调性:一次函数,反比例函数,二次函数,指数函数,对数函数,幂函数,三角函数等函数的单调区间。

具体说明。

()设是定义在上的函数,若f(x)与g(x)的单调性相反,则在上是减函数;若f(x)与g(x)的单调性相同,则在上是增函数。

如求函数的单调递增区间为,单调递减区间为。

(6)简单性质:①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反;③在公共定义域内:增函数增函数是增函数;减函数减函数是减函数;增函数减函数是增函数;减函数增函数是减函数。

2、函数的最值(1)定义:最大值:一般地,设函数=f(x)的定义域为I,如果存在实数满足:①对于任意的x∈I,都有f(x)≤;②存在x0∈I,使得f(x0) = 。

那么,称是函数=f(x)的最大值。

最小值:一般地,设函数=f(x)的定义域为I,如果存在实数满足:①对于任意的x∈I,都有f(x)≥;②存在x0∈I,使得f(x0) = 。

那么,称是函数=f(x)的最大值。

其意义2点:○1 函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0) = ;○2 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤(f(x)≥)。

高考数学复习点拨:关于函数单调性的几点说明

高考数学复习点拨:关于函数单调性的几点说明

关于函数单调性的几点说明
山东 孙亦建
函数单调性是函数非常重要的性质,由于定义比较抽象,学生理解起来有困难,在认识上很容易出现现偏差,现对定义的理解和应用作以下几点说明。

(一)函数单调性是通过任意两点的变化趋势来刻画整体的变化趋势,“任意”两字是必不可少的。

如果只知道确定两点的函数值大小比较(比如说端点值)是不能确定函数的单调性的。

(二)函数单调性是在一定的区间内讨论的,对于同一个函数在不同的区间内可以有不同的单调性,即使在两个区间上分别是增(减)函数,在这两个区间的并集上也不一定是增(减)函数。

最典型的例子是函数x
x f 1)(=在),0(),0,(+∞-∞分别是减函数,但在),0()0,(+∞-∞Y 却不是减函数,因为12<-但)1()2(f f <-,与减函数定义矛盾
(三)函数单调性反映的是函数的自变量与函数值的相互变化关系,增减函数的定义可以有如下的变形形式:若0))()()(()(2121>--=x f x f x x x f y 为增函数则
若0))()()(()(2121<--=x f x f x x x f y 为减函数则
(四)如果 )(x f y =是增(减)函数,若21x x <,则)()(21x f x f <()()(21x f x f >),反之亦然,这就为我们比较大小提供了一个方法
例题:若)(x f 是定义在(0,+∞)的增函数,且有)13()1(-<+a f a f ,求a 的取值范围
解:Θ)(x f 是定义在(0,+∞)的增函数,)13()1(-<+a f a f
0113>+>-∴a a 得1>a。

(完整版)函数的单调性知识点总结与经典题型归纳,推荐文档

(完整版)函数的单调性知识点总结与经典题型归纳,推荐文档

函数的单调性 知识梳理1. 单调性概念一般地,设函数的定义域为:()f x I (1)如果对于定义域内的某个区间上的任意两个自变量的值,当时,都有I D 12,x x 12x x <,那么就说函数在区间上是增函数;12()()f x f x <()f x D (2)如果对于定义域内的某个区间上的任意两个自变量的值,当时,都有I D 12,x x 12x x <,那么就说函数在区间上是减函数.12()()f x f x >()f x D2. 单调性的判定方法(1)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。

(2)定义法步骤;①取值:设是给定区间内的两个任意值,且 (或);12,x x 12x x <12x x > ②作差:作差,并将此差式变形(注意变形到能判断整个差式符号为止);12()()f x f x - ③定号:判断的正负(要注意说理的充分性),必要时要讨论;12()()f x f x - ④下结论:根据定义得出其单调性.(3)复合函数的单调性:当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的单调性相反时则复合函数为减函数。

也就是说:同增异减(类似于“负负得正”)3. 单调区间的定义如果函数,在区间上是增函数或减函数,那么就说函数在这个区间上具有单调性,()y f x =D 区间叫做的单调区间.D ()y f x =例题精讲【例1】下图为某地区24小时内的气温变化图.(1)从左向右看,图形是如何变化的?(2)在哪些区间上升?哪些区间下降?解:(1)从左向右看,图形先下降,后上升,再下降;(2)在区间和下降,在区间下降。

[0,4][14,24][4,14]【例2】画出下列函数的图象,观察其变化规律:(1)f (x )=x ;①从左至右图象上升还是下降?②在区间(-∞,+∞)上,随着x 的增大,f (x )的值随着怎么变化?(2)f (x )=x 2.①在区间(-∞,0)上,随着x 的增大,f (x )的值随着怎么变化?②在区间[0 ,+∞)上,随着x 的增大,f (x )的值随着怎么变化?解:(1)①从左至右图象是上升的;②在区间(-∞,+∞)上,随着x 的增大,f (x )的值随着增大.(2)①在区间(-∞,0)上,随着x 的增大,f (x )的值随着减小;②在区间[0 ,+∞)上,随着x 的增大,f (x )的值随着增大.【例3】函数在定义域的某区间上存在,满足且,那么函()y f x =D 12,x x 12x x <12()()f x f x <数在该区间上一定是增函数吗?()y f x =解:不一定,例如下图:【例4】下图是定义在闭区间上的函数的图象,根据图象说出函数的单调区间[5,5]-()y f x =,以及在每一单调区间上,它是增函数还是减函数.解:函数的单调区间有;()y f x =[5,2),[2,1),[1,3),[3,5)---其中在区间上是减函数,在区间上是增函数.[5,2),[1,3)--[2,1),[3,5)-【例5】证明函数在上是增函数.()32f x x =+R 证明:设是上的任意两个实数,且 (取值)12,x x R 12x x < 则 (作差)1212()()(32)(32)f x f x x x -=+-+123()x x =-由,得 12x x <120x x -< 于是 (定号)12()()0f x f x -<所以12()()f x f x < 所以,函数在上是增函数。

2012年高考数学二轮难点透析 8 奇偶性与单调性二概要

2012年高考数学二轮难点透析 8 奇偶性与单调性二概要

难点8 奇偶性与单调性(二)函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识.●难点磁场(★★★★★)已知偶函数f (x )在(0,+∞)上为增函数,且f (2)=0,解不等式f[log 2(x 2+5x +4)]≥0.●案例探究[例1]已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,设不等式解集为A ,B =A ∪{x |1≤x ≤5},求函数g (x )=-3x 2+3x -4(x ∈B )的最大值. 命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属★★★★级题目.知识依托:主要依据函数的性质去解决问题.错解分析:题目不等式中的“f ”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域.技巧与方法:借助奇偶性脱去“f ”号,转化为x cos 不等式,利用数形结合进行集合运算和求最值.解:由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得且x ≠0,故0<x <6, 又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数, ∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6}, ∴B =A ∪{x |1≤x ≤5}={x |1≤x <6},又g (x )=-3x 2+3x -4=-3(x -21)2-413知:g (x )在B 上为减函数,∴g (x )max =g (1)=-4.[例2]已知奇函数f (x )的定义域为R ,且f (x )在[0,+∞)上是增函数,是否存在实数m ,使f (cos2θ-3)+f (4m -2m cos θ)>f (0)对所有θ∈[0,2π]都成立?若存在,求出符合条件的所有实数m 的范围,若不存在,说明理由.命题意图:本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力,属★★★★★题目.知识依托:主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题.错解分析:考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法.技巧与方法:主要运用等价转化的思想和分类讨论的思想来解决问题.解:∵f (x )是R 上的奇函数,且在[0,+∞)上是增函数,∴f (x )是R 上的增函数.于是不等式可等价地转化为f (cos2θ-3)>f (2m cos θ-4m ),即cos2θ-3>2m cos θ-4m ,即cos 2θ-m cos θ+2m -2>0.设t =cos θ,则问题等价地转化为函数g (t )=t 2-mt +2m -2=(t -2m )2-42m +2m -2在[0,1]上的值恒为正,又转化为函数g (t )在[0,1]上的最小值为正.∴当2m<0,即m <0时,g (0)=2m -2>0⇒m >1与m <0不符; 当0≤2m≤1时,即0≤m ≤2时,g (m )=-42m +2m -2>0⇒4-22<m <4+22,4-22<m ≤2.当2m>1,即m >2时,g (1)=m -1>0⇒m >1.∴m >2 综上,符合题目要求的m 的值存在,其取值范围是m >4-22.●锦囊妙计本难点所涉及的问题以及解决的方法主要有:(1)运用奇偶性和单调性去解决有关函数的综合性题目.此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力.(2)应用问题.在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决.特别是:往往利用函数的单调性求实际应用题中的最值问题.●歼灭难点训练 一、选择题1.(★★★★)设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)等于( )A.0.5B.-0.5C.1.5D.-1.52.(★★★★)已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0,a 的取值范围是( )A.(22,3)B.(3,10)C.(22,4)D.(-2,3)二、填空题3.(★★★★)若f (x )为奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则xf (x )<0的解集为_________.4. (2012届华师附中第一次月考) (★★★★)如果函数f (x )在R 上为奇函数,在(-1,0)上是增函数,且f (x +2)=-f (x ),试比较f (31),f (32),f (1)的大小关系_________. 三、解答题5.(★★★★★)已知f (x )是偶函数而且在(0,+∞)上是减函数,判断f (x )在(-∞,0)上的增减性并加以证明.6.(★★★★)已知f (x )=xx a 2112+-⋅ (a ∈R )是R 上的奇函数, (1)求a 的值;(2)求f (x )的反函数f -1(x );(3)对任意给定的k ∈R +,解不等式f -1(x )>lgkx+1.7.(★★★★)定义在(-∞,4]上的减函数f (x )满足f (m -sin x )≤f (m 21+-47+cos 2x )对任意x ∈R 都成立,求实数m 的取值范围.8.(★★★★★)已知函数y =f (x )=c bx ax ++12 (a ,b ,c ∈R ,a >0,b >0)是奇函数,当x >0时,f (x )有最小值2,其中b ∈N 且f (1)<25.(1)试求函数f (x )的解析式;(2)问函数f (x )图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由.参考答案难点磁场解:∵f (2)=0,∴原不等式可化为f [log 2(x 2+5x +4)]≥f (2). 又∵f (x )为偶函数,且f (x )在(0,+∞)上为增函数, ∴f (x )在(-∞,0)上为减函数且f (-2)=f (2)=0∴不等式可化为log 2(x 2+5x +4)≥2 ①或log 2(x 2+5x +4)≤-2 ②由①得x 2+5x +4≥4∴x ≤-5或x ≥0 ③由②得0<x 2+5x +4≤41得2105--≤x <-4或-1<x ≤2105+-④由③④得原不等式的解集为{x |x ≤-5或2105--≤x ≤-4或-1<x ≤2105+-或x ≥0} 歼灭难点训练一、1.解析:f (7.5)=f (5.5+2)=-f (5.5)=-f (3.5+2)=f (3.5)=f (1.5+2)=-f (1.5)=-f (-0.5+2)=f (-0.5)=-f (0.5)=-0.5.答案:B2.解析:∵f (x )是定义在(-1,1)上的奇函数又是减函数,且f (a -3)+f (9-a 2)<0.∴f (a -3)<f (a 2-9).∴⎪⎩⎪⎨⎧->-<-<-<-<-9319113122a a a a ∴a ∈(22,3). 答案:A二、3.解析:由题意可知:xf (x )<0⎩⎨⎧<>⎩⎨⎧><⇔0)(00)(0x f x x f x 或 ⎩⎨⎧<>⎩⎨⎧-><⇔⎩⎨⎧<>⎩⎨⎧-><⇔3030 )3()(0 )3()(0x x x x f x f x f x f x 或或 ∴x ∈(-3,0)∪(0,3)答案:(-3,0)∪(0,3)4.解析:∵f (x )为R 上的奇函数 ∴f (31)=-f (-31),f (32)=-f (-32),f (1)=-f (-1),又f (x )在(-1,0)上是增函数且-31> -32>-1. ∴f (-31)>f (-32)>f (-1),∴f (31)<f (32)<f (1). 答案:f (31)<f (32)<f (1)三、5.解:函数f (x )在(-∞,0)上是增函数,设x 1<x 2<0,因为f (x )是偶函数,所以 f (-x 1)=f (x 1),f (-x 2)=f (x 2),由假设可知-x 1>-x 2>0,又已知f (x )(0,+∞)上是减函数,于是有f (-x 1)<f (-x 2),即f (x 1)<f (x 2),由此可知,函数f (x )在(-∞,0)上是增函数.6.解:(1)a =1.(2)f (x )=1212+-x x (x ∈R )⇒f --1(x )=log 2xx -+11 (-1<x <1).(3)由log 2xx-+11>log 2k x +1⇒log 2(1-x )<log 2k ,∴当0<k <2时,不等式解集为{x |1-k <x <1};当k ≥2时,不等式解集为{x |-1<x <1}.7.解:⎪⎩⎪⎨⎧++-≥++-≤-⎪⎪⎪⎩⎪⎪⎪⎨⎧+-+≥-≤+-+≤-1sin sin 4721sin 4 cos 4721sin 4cos 47214sin 222x x m m x m x m x m x m x m 即,对x ∈R 恒成立,⎪⎩⎪⎨⎧=≥≤∴21233m m m 或∴m ∈[23,3]∪{21}. 8.解:(1)∵f (x )是奇函数,∴f (-x )=-f (x ),即c bx c bx c bx ax c bx ax -=+⇒+-+-=++1122 ∴c =0,∵a >0,b >0,x >0,∴f (x )=bx x b a bx ax 112+=+≥22b a ,当且仅当x =a 1时等号成立,于是22b a =2,∴a =b 2,由f (1)<25得ba 1+<25即b b 12+<25,∴2b 2-5b +2<0,解得21<b<2,又b ∈N ,∴b =1,∴a =1,∴f (x )=x +x1. (2)设存在一点(x 0,y 0)在y =f (x )的图象上,并且关于(1,0)的对称点(2-x 0,-y 0)也在y =f (x )图象上,则⎪⎪⎩⎪⎪⎨⎧-=-+-=+0020002021)2(1yxx y x x消去y 0得x 02-2x 0-1=0,x 0=1±2.∴y =f (x )图象上存在两点(1+2,22),(1-2,-22)关于(1,0)对称.。

2012年高考数学二轮难点透析 7 奇偶性与单调性一概要

2012年高考数学二轮难点透析 7 奇偶性与单调性一概要

难点7 奇偶性与单调性(一)函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.●难点磁场(★★★★)设a >0,f (x )=xx e a a e +是R 上的偶函数,(1)求a 的值;(2)证明: f (x )在(0,+∞)上是增函数.●案例探究[例1]已知函数f (x )在(-1,1)上有定义,f (21)=-1,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f (xyyx ++1),试证明: (1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减.命题意图:本题主要考查函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力.属★★★★题目.知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.错解分析:本题对思维能力要求较高,如果“赋值”不够准确,运算技能不过关,结果很难获得.技巧与方法:对于(1),获得f (0)的值进而取x =-y 是解题关键;对于(2),判定21121x x x x --的范围是焦点.证明:(1)由f (x )+f (y )=f (xyyx ++1),令x =y =0,得f (0)=0,令y =-x ,得f (x )+f (-x )=f (21x xx --)=f (0)=0.∴f (x )=-f (-x ).∴f (x )为奇函数. (2)先证f (x )在(0,1)上单调递减.令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)-f (-x 1)=f (21121x x x x --)∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴12121x x x x -->0,又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0 ∴x 2-x 1<1-x 2x 1, ∴0<12121x x x x --<1,由题意知f (21121x x x x --)<0即f (x 2)<f (x 1).∴f (x )在(0,1)上为减函数,又f (x )为奇函数且f (0)=0. ∴f (x )在(-1,1)上为减函数.[例2]设函数f (x )是定义在R 上的偶函数,并在区间(-∞,0)内单调递增,f (2a 2+a +1)<f (3a 2-2a +1).求a 的取值范围,并在该范围内求函数y =(21)132+-a a 的单调递减区间.命题意图:本题主要考查函数奇偶性、单调性的基本应用以及对复合函数单调性的判定方法.本题属于★★★★★级题目.知识依托:逆向认识奇偶性、单调性、指数函数的单调性及函数的值域问题. 错解分析:逆向思维受阻、条件认识不清晰、复合函数判定程序紊乱.技巧与方法:本题属于知识组合题类,关键在于读题过程中对条件的思考与认识,通过本题会解组合题类,掌握审题的一般技巧与方法.解:设0<x 1<x 2,则-x 2<-x 1<0,∵f (x )在区间(-∞,0)内单调递增, ∴f (-x 2)<f (-x 1),∵f (x )为偶函数,∴f (-x 2)=f (x 2),f (-x 1)=f (x 1), ∴f (x 2)<f (x 1).∴f (x )在(0,+∞)内单调递减..032)31(3123,087)41(2122222>+-=+->++=++a a a a a a 又由f (2a 2+a +1)<f (3a 2-2a +1)得:2a 2+a +1>3a 2-2a +1.解之,得0<a <3.又a 2-3a +1=(a -23)2-45.∴函数y =(21)132+-a a 的单调减区间是[23,+∞]结合0<a <3,得函数y =(23)132+-a a 的单调递减区间为[23,3).●锦囊妙计本难点所涉及的问题及解决方法主要有: (1)判断函数的奇偶性与单调性若为具体函数,严格按照定义判断,注意变换中的等价性.若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性.同时,注意判断与证明、讨论三者的区别,针对所列的“磁场”及“训练”认真体会,用好数与形的统一.复合函数的奇偶性、单调性.问题的解决关键在于:既把握复合过程,又掌握基本函数. (2)加强逆向思维、数形统一.正反结合解决基本应用题目,下一节我们将展开研究奇偶性、单调性的应用.●歼灭难点训练 一、选择题1.(★★★★)下列函数中的奇函数是( )A.f (x )=(x -1)xx -+11B.f (x )=2|2|)1lg(22---x xC.f (x )=⎪⎩⎪⎨⎧>+-<+)0()0(22x x x x x xD.f (x )=xx xx sin cos 1cos sin 1++-+2.(★★★★★)函数f (x )=111122+++-++x x x x 的图象( )A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于直线x =1对称 二、填空题3.(★★★★)函数f (x )在R 上为增函数,则y =f (|x +1|)的一个单调递减区间是_________.4.(★★★★★)若函数f (x )=ax 3+bx 2+cx +d 满足f (0)=f (x1)=f (x 2)=0 (0<x 1<x 2),[x 2,+∞)上单调递增,则b 的取值范围是_________.三、解答题5.(★★★★)已知函数f (x )=a x+12+-x x (a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数. (2)用反证法证明方程f (x )=0没有负数根.6.(★★★★★)求证函数f (x )=223)1(-x x 在区间(1,+∞)上是减函数.7. (中山市高三级2011—2012学年度第一学期期末统一考试)(★★★★)设函数f (x )的定义域关于原点对称且满足:(i)f (x 1-x 2)=)()(1)()(1221x f x f x f x f -+⋅;(ii)存在正常数a 使f (a )=1.求证:(1)f (x )是奇函数.(2)f (x )是周期函数,且有一个周期是4a .8.(★★★★★)已知函数f (x )的定义域为R ,且对m 、n ∈R ,恒有f (m +n )=f (m )+f (n )-1,且f (-21)=0,当x >-21时,f (x )>0.(1)求证:f (x )是单调递增函数;(2)试举出具有这种性质的一个函数,并加以验证.参考答案难点磁场(1)解:依题意,对一切x ∈R ,有f (x )=f (-x ),即x x x ae e a a e 1=++ae x .整理,得(a -a1) (e x-x e 1)=0.因此,有a -a1=0,即a 2=1,又a >0,∴a =1 (2)证法一:设0<x 1<x 2,则f (x 1)-f (x 2)=)11)((1121122121--=-+-+x x x x x x xx ee e e e e e 21211211)1(x x x x x x x e e ee ++---=由x 1>0,x 2>0,x 2>x 1,∴112--x x e >0,1-e 21x x +<0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2) ∴f (x )在(0,+∞)上是增函数证法二:由f (x )=e x +e -x ,得f ′(x )=e x -e -x =e -x ·(e 2x -1).当x ∈(0,+∞)时,e -x >0,e 2x-1>0.此时f ′(x )>0,所以f (x )在[0,+∞)上是增函数. 歼灭难点训练一、1.解析:f (-x )=⎪⎩⎪⎨⎧>+--<+-=⎪⎩⎪⎨⎧<-->-)0()()0()()0( )0( 2222x x x x x x x x x x x x =-f (x ),故f (x )为奇函数.答案:C2.解析:f (-x )=-f (x ),f (x )是奇函数,图象关于原点对称. 答案:C 二、3.解析:令t =|x +1|,则t 在(-∞,-1]上递减,又y =f (x )在R 上单调递增,∴y =f (|x +1|)在(-∞,-1]上递减.答案:(-∞,-1] 4.解析:∵f (0)=f (x 1)=f (x 2)=0,∴f (0)=d =0.f (x )=ax (x -x 1)(x -x 2)=ax 3-a (x 1+x 2)x 2+ax 1x 2x ,∴b =-a (x 1+x 2),又f (x )在[x 2,+∞)单调递增,故a >0.又知0<x 1<x ,得x 1+x 2>0,∴b =-a (x 1+x 2)<0. 答案:(-∞,0)三、5.证明:(1)设-1<x 1<x 2<+∞,则x 2-x 1>0, 12x x a ->1且1x a >0, ∴)1(12112-=--x x x x x a a a a >0,又x 1+1>0,x 2+1>0 ∴)1)(1()(3)1)(1()1)(2()1)(2(121221122121121122++-=+++--+-=+--+-x x x x x x x x x x x x x x >0, 于是f (x 2)-f (x 1)=12x x a a -+12121122+--+-x x x x >0 ∴f (x )在(-1,+∞)上为递增函数.(2)证法一:设存在x 0<0(x 0≠-1)满足f (x 0)=0,则12000+--=x x a x 且由0<0x a <1得0<-1200+-x x <1,即21<x 0<2与x 0<0矛盾,故f (x )=0没有负数根. 证法二:设存在x 0<0(x 0≠-1)使f (x 0)=0,若-1<x 0<0,则1200+-x x <-2,0x a <1,∴f (x 0)<-1与f (x 0)=0矛盾,若x 0<-1,则1200+-x x >0, 0x a >0,∴f (x 0)>0与f (x 0)=0矛盾,故方程f (x )=0没有负数根.6.证明:∵x ≠0,∴f (x )=22422322)11(1)1(1)1(1x x x x x x x -=-=-, 设1<x 1<x 2<+∞,则01111,11121222122>->-<<x x x x .2211222222112222)11(1)11(1.0)11()11(x x x x x x x x -<-∴>->-∴∴f (x 1)>f (x 2),f (x )在(1,+∞)上是减函数.(本题也可用求导方法解决)7.证明:(1)不妨令x =x 1-x 2,则f (-x )=f (x 2-x 1)=)()(1)()()()(1)()(12212112x f x f x f x f x f x f x f x f -+-=-+=-f (x 1-x 2)=-f (x ).∴f (x )是奇函数.(2)要证f (x +4a )=f (x ),可先计算f (x +a ),f (x +2a ).∵f (x +a )=f [x -(-a )]=)1)((1)(1)()()(1)()()()(1)()(=+-=--+-=---+-a f x f x f x f a f x f a f x f a f x f a f .).(111)(11)(1)(1)(1)(])[()2(x f x f x f x f a x f a x f a a x f a x f -=++-+-=++-+=++=+∴ ∴f (x +4a )=f [(x +2a )+2a ]=)2(1a x f +-=f (x ),故f (x )是以4a 为周期的周期函数.8.(1)证明:设x 1<x 2,则x 2-x 1-21>-21,由题意f (x 2-x 1-21)>0, ∵f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1=f (x 2-x 1)+f (-21)-1=f [(x 2-x 1)-21]>0,∴f (x )是单调递增函数. (2)解:f (x )=2x +1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点5 函数的单调性与最值、函数的奇偶性与周期性一、选择题1.(2011·安徽高考理科·T3)设()f x 是定义在R上的奇函数,当x ≤时,()22f x x x =-,则()1f =(A)-3 (B)-1 (C)1 (D)3【思路点拨】由奇函数的定义有),()(x f x f -=-所以()1(1).f f =-- 【精讲精析】选A. 由奇函数的定义有),()(x f x f -=-所以()21(1)[2(1)1]3f f =--=-⨯-+=-.2. (2011·福建卷理科·T9)对于函数f (x )=asinx+bx+c (其中,a,b ∈R ,c ∈Z ),选取a,b,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能.....是( ) A.4和6 B.3和1 C.2和4 D.1和2【思路点拨】先求出(1)(1)f f -、,探究(1)(1)f f +-与c 的关系,然后由c Z∈限定(1)(-1).f f 和的取值【精讲精析】选D.(1)sin 1,(1)sin 1,f a b c f a b c =++-=--+ (1)(1)2f f c∴+-=,(1)(1),,2f f c c Z +-∴=∈ 又(1)(1)12f f ∴-和的值一定不可能是和3.(2011·新课标全国高考理科·T2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是A.3y x =B.1y x =+C.21y x =-+ D.2xy -=【思路点拨】对选项进行逐个判断,一是看是否满足奇偶性,二是检验单调性【精讲精析】选 B. 函数3y x=是奇函数,故可排除A ,当0x >时,||11y x x =+=+,是增函数,21y x =-+是减函数,||122()2x xx y --=== 为减函数.4.(2011·新课标全国高考文科·T3)下列函数中,既是偶数又在()0,+∞单调递增的函数是( )A. 3y x=B. 1y x =+ C.21y x =-+ D. 2xy -=[来源:学*科*网]【思路点拨】对选项进行逐个判断,一是看是否满足奇偶性,二是检验单调性【精讲精析】选B 函数3y x=是奇函数,故可排除A ,当0x >时,||11y x x =+=+,是增函数,21y x =-+是减函数,||122()2x xx y --=== 为减函数.5.(2011·辽宁高考文科·T6)若函数)(x f =))(12(a x x x-+为奇函数,则a =(A )21(B )32(C )43(D )1【思路点拨】利用奇函数的定义,从0)()(=+-x f x f 恒成立入手,即得.【精讲精析】选A.∵函数)(x f 为奇函数,∴0)()(=+-x f x f 恒成立.即))(12())(12(=--+--+-+a x x xa x x x恒成立.可化为))(12())(12(a x x a x x +-=-+恒成立.整理得0)21(2=-x a 恒成立,只有21=-a ,∴21=a. 6.(2011·广东高考理科·T4)设函数()f x 和)(x g 分别是R 上的偶函数和奇函数,则下列结论恒成立的是A .()f x +|)(x g |是偶函数B .()f x -|)(x g |是奇函数C .|()f x | +)(x g 是偶函数D .|()f x |- )(x g 是奇函数【思路点拨】本题主要考查函数的奇偶性,可由奇偶性的概念进行判断.【精讲精析】选A.由题意)()(),()(x g x g x f x f -=-=-.令|)(|)()(x g x f x F +=,则)(|)(|)(|)(|)()(x F x g x f x g x f x F =+=-+-=-.)(x F ∴是偶函数.故选A.7.(2011·北京高考理科·T8)设(0,0),(4,0),(4,4),(,4)()A B C t D t t R +∈,记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数()N t 的值域为( ) A.{9,10,11} B.{9,10,12} C.{9,11,12} D.{10,11,12} 【思路点拨】作图,分别求出t=0,1,2,3,4,……时的函数值,即可选出答案.【精讲精析】选C.如图所示.N(0)=9, N(1)=12, N(2)=11,N(3)=12,……,故值域为{9,11,12}. 8.(2011·湖南高考文科T8)已知函数f(x)=1-x e ,g(x)=.342-+-x x 若有f(a)=g(b),则b 的取值范围为 (A ).]22,22[+-(B ).)22,22(+-[来源:学科网](C ).[1,3] (D ).(1,3)【思路点拨】本题以考查函数的值域为载体,重点考查f(a)=g(b)的理解,f(a)=g(b)表示二元方程,把二元方程转化为函数或不等式. 【精讲精析】选B...2222,0242B b b b选+<<-∴<+-∴二、填空题9.(2011·安徽高考文科·T11)设()f x 是定义在R 上的奇函数,当x ≤0时,()f x =22xx -,则(1)f = .【思路点拨】由奇函数的定义有),()(x f x f -=-所以()1(1).f f =-- 【精讲精析】答案:-3.由奇函数的定义有),()(x f x f -=-所以()21(1)[2(1)1]3f f =--=-⨯-+=-.10.(2011·广东高考文科·T12)设函数f(x)=x 3cosx+1,若f(a)=11,则f(-a)=_______.【思路点拨】令g(x)=x 3cosx,利用g(x)是奇函数,求出g(a)=10,从而f(-a)=g(-a)+1=-g(a)+1,可得结论.【精讲精析】答案-9令g(x)=x 3cosx,则f(x)= g(x)+1且g(x)为奇函数,所以g(-a)=-g(a).由f(a)=11得g(a)+1=11,所以g(a)=10 f(-a)=g(-a)+1=-g(a)+1=-10+1=-911.(2011·湖南高考文科T12)已知f(x)为奇函数,g(x)=f(x)+9,g(-2)=3,则f(2)=____【思路点拨】本题考查利用函数为奇函数的性质(对称性)求函数值. 【精讲精析】答案:6.因为f(x)=g(x)-9是奇函数,所以f(-x)=-f(x), ∴g(-x)-9=-[g(x)-9],∴g(-2)-9=-[g(2)-9],3)2(=-g ,g(2)=15,所以f(2)=g(2)-9=6.12.(2011·浙江高考理科·T11)若函数2()f x x x a=-+为偶函数,则实数a =【思路点拨】两个偶函数的和函数亦是偶函数,偶函数与其它函数的和函数为非奇非偶函数. 【精讲精析】解法一:∵)(x f 为偶函数,∴)()(x f x f =-,即22||()||x x a x x a x a x a-+=---+⇒+=-恒成立,∴0=a.解法二:函数2y x=为偶函数,函数y x a=+是由偶函数y x=向左或向右平移了a 个单位,要使整个函数为偶函数,则需0a =.[来源:学科网]13.(2011·北京高考文科·T14)设(0,0),(4,0),(4,3),(,3)()A B C t D t t R +∈,记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N (0)= ;N (t)的所有可能取值为 .【思路点拨】在直角坐标系中作出坐标网格,当t 变化时,可求出N(t)的可能取值.【精讲精析】6 6,7,8.如图所示,N(0)=6,N(1)=8,N(1.5)=7,……,所以可能取值为6,7,8.三、解答题14.(2011·湖南高考理科·T20)(13分)如图6,长方体物体E 在雨中沿面P (面积为S )的垂直方向作匀速移动,速度为v (v>0),雨速沿E 移动方向的分速度为c (c )R ∈,E 移动时单位时间内的淋雨量包括两部分:(1)P 或P 的平行面(只有一个面淋雨)的淋雨量,假设其值与|v-c|S ⨯成正比,比例系数为101;(2)其他面的淋雨量之和,其值为21.记y 为E 移动过程中的总淋雨量.当移动距离d=100,面积S=23时,(Ⅰ)写出y 的表达式;(Ⅱ)设0<v ,50,10≤<≤c 试根据c 的不同取值范围, 确定移动速度v ,使总淋雨量y 最少.【思路点拨】本题考查学生运用知识的能力,重点考查学生的以下能力:一是阅读能力.二是转化能力.三是表达能力.能否把文字语言转化为符号语言的理解能力.四是解题能力.本题主要考查学生的阅读能力和建模能力和运算能力,阅读后建立函数模型是关键.【精讲精析】(I )由题意知,E 移动时单位时间内的淋雨量为31||202v c -+,故100315(||)(3||10)202y v c v c vv=-+=-+.(II )由(I)知,当0v c <≤时,55(310)(3310)15c y c v v v +=-+=-;当10c v <≤时,55(103)(3310)15c y v c vv-=-+=+.故5(310)15,05(103)15,10c v c vy c c v v +⎧-<≤⎪⎪=⎨-⎪+<≤⎪⎩.(1)当1003c <≤时,y 是关于v 的减函数.故当10v =时,m in3202c y =-.(2) 当1053c <≤时,在(0,]c 上,y 是关于v 的减函数;在(,10]c 上,y 是关于v 的增函数;故当v c =时,m in50y c=.。

相关文档
最新文档