01级大学物理(下)A卷答案02
大学物理考卷答案(下学期)
大学物理考卷(下学期)一、选择题(每题4分,共40分)A. 速度B. 力C. 位移D. 加速度2. 在国际单位制中,下列哪个单位属于电学基本单位?A. 安培B. 伏特C. 欧姆D. 瓦特A. 物体不受力时,运动状态不会改变B. 物体受平衡力时,运动状态会改变C. 物体受非平衡力时,运动状态不变D. 物体运动时,必定受到力的作用A. 功B. 动能C. 势能D. 路程A. 速度大小B. 速度方向C. 动能D. 动量6. 下列哪个现象属于光的衍射?A. 彩虹B. 海市蜃楼C. 水中倒影D. 光照射在单缝上产生的条纹A. 恢复力与位移成正比B. 恢复力与位移成反比C. 恢复力与位移的平方成正比D. 恢复力与位移的平方成反比8. 一个电路元件的电压u与电流i的关系为u=2i+3,该元件是:A. 电阻B. 电容C. 电感D. 非线性元件A. 电磁波在真空中传播速度小于光速B. 电磁波在介质中传播速度大于光速C. 电磁波在真空中传播速度等于光速D. 电磁波在介质中传播速度等于光速10. 一个理想变压器的初级线圈匝数为1000匝,次级线圈匝数为200匝,若初级线圈电压为220V,则次级线圈电压为:A. 110VB. 220VC. 440VD. 880V二、填空题(每题4分,共40分)1. 在自由落体运动中,物体的加速度为______。
2. 一个物体做匀速圆周运动,其线速度的大小不变,但方向______。
3. 惠更斯原理是研究______现象的重要原理。
4. 一个电阻的电压为10V,电流为2A,则该电阻的功率为______。
5. 根据电磁感应定律,当磁通量发生变化时,会在导体中产生______。
6. 在交流电路中,电阻、电感和电容元件的阻抗分别为______、______和______。
7. 一个单摆在位移为0时速度最大,此时摆球所受回复力为______。
8. 光的折射率与光的传播速度成______比。
9. 一个电子在电场中受到的电势能变化量为______。
大学物理 下 计算题参考答案
大学物理 下 复习题 部分计算题 参考答案 答案来自网络 仅供参考1四条平行的载流无限长直导线,垂直通过一边长为a 的正方形顶点,每条导线中的电流都是I ,方向如图,求正方形中心的磁感应强度。
⎪⎭⎫⎝⎛a I πμ02解0222Iaμπ=2.如图所示的长空心柱形导体半径分别为1R 和2R ,导体内载有电流I ,设电流均匀分布在导体的横截面上。
求 (1)导体内部各点的磁感应强度。
(2)导体内壁和外壁上各点的磁感应强度。
解:导体横截面的电流密度为2221()IR R δπ=-在P 点作半径为r 的圆周,作为安培环路。
由0B dl I μ∙=∑⎰得 222201012221()2()I r R B r r R R Rμπμδπ-=-=-即 22012221()2()I r R B r R R μπ-=- 对于导体内壁,1r R =,所以 0B = 对于导体外壁,2r R =,所以 022IB R μπ=3. 如图, 一根无限长直导线,通有电流I , 中部一段弯成圆弧形,求图中O 点磁感应强度的大小。
解:根据磁场叠加原理,O 点的磁感应强度是)A (-∞、)ABC (和)C (∞三段共同产生的。
)A (-∞段在O 点磁感应强度大小:)cos (cos x4IB 2101θθπμ-=将6021πθθ==,,a 213cosa x ==π代入 得到:)231(a 2IB 01-=πμ,方向垂直于纸面向里; )C (∞段在O 点磁感应强度大小:)cos (cos x4IB 2102θθπμ-=将πθππθ=-=216,,a 213cos a x ==π带入得到:)231(a 2I B 02-=πμ,方向垂直向里;)ABC (段在O 点磁感应强度大小:⎰=203a Idl 4B πμ,)a 32(a I 4B 203ππμ=,a6IB 03μ=,方向垂直于纸面向里。
O 点磁感应强度的大小:321B B B B ++=,)231(a I a6IB 00-+=πμμ, 方向垂直于纸面向里。
大学物理A1期末考试题及答案
大学物理A1期末考试题及答案一、选择题(每题5分,共20分)1. 光的波长与频率的关系是:A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率的乘积为常数答案:D2. 根据牛顿第二定律,作用力与物体的加速度成正比,与物体的质量成反比。
下列说法正确的是:A. 力是改变物体速度的原因B. 力是维持物体运动的原因C. 力是产生加速度的原因D. 力是产生速度的原因答案:C3. 电磁波的传播不需要介质,下列说法正确的是:A. 电磁波只能在真空中传播B. 电磁波只能在介质中传播C. 电磁波可以在真空和介质中传播D. 电磁波不能在真空中传播答案:C4. 根据热力学第一定律,下列说法正确的是:A. 能量可以被创造B. 能量可以被消灭C. 能量既不能被创造也不能被消灭D. 能量可以被转移答案:C二、填空题(每题5分,共20分)1. 根据欧姆定律,电阻R、电压V和电流I之间的关系是:\[ R =\frac{V}{I} \]。
2. 光的折射定律,即斯涅尔定律,可以表示为:\[ n_1\sin(\theta_1) = n_2 \sin(\theta_2) \],其中\( n_1 \)和\( n_2 \)分别是两种介质的折射率,\( \theta_1 \)和\( \theta_2 \)分别是入射角和折射角。
3. 根据牛顿第三定律,作用力和反作用力的大小相等,方向相反,并且作用在不同的物体上。
4. 热力学第二定律指出,不可能把热从低温物体传到高温物体而不产生其他影响。
三、计算题(每题10分,共20分)1. 一个质量为2kg的物体从静止开始下落,受到重力加速度g=9.8m/s²的作用,忽略空气阻力,求物体下落10秒后的速度。
答案:物体下落10秒后的速度为\[ v = g \times t = 9.8\text{m/s}^2 \times 10 \text{s} = 98 \text{m/s} \]。
《大学物理学》第二版下册习题解答
大学物理学第二版下册习题解答第一章:力学1.1 力学基本概念1.1.1 力的概念问题:什么是力?力的种类有哪些?解答:力是物体之间相互作用导致的物体运动或形变的原因。
力可以分为以下几种:•接触力:当两个物体接触时产生的力,如弹簧力、摩擦力等。
•引力:天体之间由于引力而产生的力,如地球引力、行星引力等。
•重力:地球上物体受到的引力,是一种特殊的引力。
•弹力:当物体被弹性体拉伸或压缩时,物体回复原状所产生的力。
•阻力:物体在流体中运动时受到的阻碍力,如空气阻力、水阻力等。
1.1.2 力的合成与分解问题:什么是力的合成与分解?如何进行力的合成与分解?解答:力的合成是指将多个力按照一定的规律合成为一个力的过程。
力的分解是指将一个力按照一定的规律分解为多个力的过程。
力的合成可以使用力的三角法进行。
假设有两个力F₁、F₂,其方向分别为α₁、α₂,大小分别为|F₁|、|F₂|,则合力F的大小可以通过以下公式计算:F = √(F₁² + F₂² + 2F₁F₂cos(α₁-α₂))合力F的方向则可以通过以下公式计算:tan(θ) = (F₂sin(α₁-α₂))/(F₁+F₂cos(α₁-α₂))力的分解可以使用力的正弦法和余弦法进行。
假设有一个力F,其大小为|F|,方向为α,要将该力分解为水平方向的力F x和竖直方向的力F x,可以通过以下公式计算:Fₓ = |F|cosα, Fᵧ = |F|sinα1.2 牛顿定律与惯性1.2.1 牛顿第一定律问题:什么是牛顿第一定律?牛顿第一定律适用于哪些情况?解答:牛顿第一定律,也称为惯性定律,指的是:物体在没有受到外力或受到的合外力为零时,物体保持静止或匀速直线运动的状态。
牛顿第一定律适用于只有一个物体或多个物体之间相互独立运动的情况。
当物体受到外力时,按照该定律,物体会发生运动或停止运动。
1.2.2 牛顿第二定律问题:什么是牛顿第二定律?如何计算物体所受合外力和加速度的关系?解答:牛顿第二定律指的是:物体所受合外力等于物体的质量乘以加速度。
大学物理(下)题库答案
一、选择题:(每题3分)1、把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π. (B) π/2.(C) 0 . (D) θ. [ C2、两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为(A) )π21cos(2++=αωt A x . (B) )π21cos(2-+=αωt A x . (C) )π23cos(2-+=αωt A x . (D) )cos(2π++=αωt A x . [B ]3、一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2.将它们拿到月球上去,相应的周期分别为1T '和2T '.则有(A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'.(C) 11T T ='且22T T ='. (D) 11T T ='且22T T >'. [ D ]4、一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时,开始计时.则其振动方程为:(A) )21/(cos π+=t m k A x (B) )21/cos(π-=t m k A x (C) )π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x (E) t m /k A x cos = [ B ]5、一物体作简谐振动,振动方程为)41cos(π+=t A x ω.在 t = T /4(T 为周期)时刻,物体的加速度为(A) 2221ωA -. (B) 2221ωA . (C) 2321ωA -. (D) 2321ωA . [ B ]6、一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A .(C) φωcos A -. (D) φωcos A . [ B ]7、一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为(A) T /12. (B) T /8.(C) T /6. (D) T /4. [ C ]8、两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位 (A) 落后π/2. (B) 超前π/2. (C) 落后π . (D) 超前π.[B ]9、一质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是(A) 4f . (B) 2 f . (C) f .(D) 2/f . (E) f /4 [ B ]10、一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的(A) 1/4. (B) 1/2. (C) 2/1. (D) 3/4. (E) 2/3. [ D ]11、一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的(A) 7/16. (B) 9/16. (C) 11/16.(D) 13/16. (E) 15/16. [ E ]12 一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是(A) T /4. (B) 2/T . (C) T .(D) 2 T . (E) 4T . [ B ]13、当质点以频率ν 作简谐振动时,它的动能的变化频率为(A) 4 ν. (B) 2 ν . (C) ν. (D) ν21. [ B ]14、图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) π23. (B) π. (C) π21. (D) 0. [ B ]15、若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则(A) 波速为C . (B) 周期为1/B .(C) 波长为 2π /C . (D) 角频率为2π /B . [ C ]16、下列函数f (x , t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量.其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f +=. (B) )cos(),(bt ax A t x f -=.(C) bt ax A t x f cos cos ),(⋅=. (D) bt ax A t x f sin sin ),(⋅=. [ A ]17、频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为π31,则此两点相距 (A) 2.86 m . (B) 2.19 m .A/ -(C) 0.5 m . (D) 0.25 m . [ C ]18、已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则(A) 波的频率为a . (B) 波的传播速度为 b/a .(C) 波长为 π / b . (D) 波的周期为2π / a . [ D ]19、一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则(A) O 点的振幅为-0.1 m .(B) 波长为3 m . (C) a 、b 两点间相位差为π21 . (D) 波速为9 m/s . [ C ]20、机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则 (A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ B ]21、图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形.若波的表达式以余弦函数表示,则O 点处质点振动的初相为(A) 0.(B) π21. (C) π. (D) π23. [ D ]22、一横波沿x 轴负方向传播,若t 时刻波形曲线如图所示,则在t + T /4时刻x 轴上的1、2、3三点的振动位移分别是 (A) A ,0,-A. (B) -A ,0,A. (C) 0,A ,0. (D) 0,-A ,0. [B ]23一平面简谐波表达式为 )2(sin 05.0x t y -π-= (SI),则该波的频率 ν (Hz), 波速u (m/s)及波线上各点振动的振幅 A (m)依次为(A) 21,21,-0.05. (B) 21,1,-0.05.(C) 21,21,0.05. (D) 2,2,0.05. [C ]24、在下面几种说法中,正确的说法是:(A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的.(B) 波源振动的速度与波速相同.(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计).(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.(按差值不大于π计) [ C ]x y Ou25、在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定 (A) 大小相同,而方向相反. (B) 大小和方向均相同.(C) 大小不同,方向相同. (D) 大小不同,而方向相反.[ A ]26、一平面简谐波沿x 轴负方向传播.已知 x = x 0处质点的振动方程为)c o s(0φω+=t A y .若波速为u ,则此波的表达式为(A) }]/)([cos{00φω+--=u x x t A y .(B) }]/)([cos{00φω+--=u x x t A y .(C) }]/)[(cos{00φω+--=u x x t A y .(D) }]/)[(cos{00φω+-+=u x x t A y . [ A ]27、一平面简谐波,其振幅为A ,频率为ν .波沿x 轴正方向传播.设t = t 0时刻波形如图所示.则x = 0处质点的振动方程为(A) ]21)(2cos[0π++π=t t A y ν. (B) ]21)(2cos[0π+-π=t t A y ν. (C) ]21)(2cos[0π--π=t t A y ν. (D) ])(2cos[0π+-π=t t A y ν. [ B ]28、一平面简谐波的表达式为 )/(2c o sλνx t A y -π=.在t = 1 /ν 时刻,x 1 = 3λ /4与x 2 = λ /4二点处质元速度之比是(A) -1. (B) 31. (C) 1. (D) 3 [ A ]29、在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是(A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4. [ C ]30、如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12. (B) π=-k 212φφ. (C) π=-π+-k r r 2/)(21212λφφ.(D) π=-π+-k r r 2/)(22112λφφ. [ D ]31、沿着相反方向传播的两列相干波,其表达式为)/(2c o s 1λνx t A y -π= 和 )/(2c o s 2λνx t A y +π=. 叠加后形成的驻波中,波节的位置坐标为(A) λk x ±=. (B) λk x 21±=. x y t =t 0u O(C) λ)12(21+±=k x . (D) 4/)12(λ+±=k x . 其中的k = 0,1,2,3, …. [ D ]32、有两列沿相反方向传播的相干波,其表达式为)/(2c o s 1λνx t A y -π= 和 )/(2c o s 2λνx t A y +π=.叠加后形成驻波,其波腹位置的坐标为:(A) x =±k λ. (B) λ)12(21+±=k x . (C) λk x 21±=. (D) 4/)12(λ+±=k x . 其中的k = 0,1,2,3, …. [ C ]33某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是(A) 0 (B) π21(C) π. (D) 5π/4. [ C ]34、沿着相反方向传播的两列相干波,其表达式为)/(2c o s 1λνx t A y -π= 和 )/(2c o s 2λνx t A y +π=.在叠加后形成的驻波中,各处简谐振动的振幅是(A) A . (B) 2A .(C) )/2cos(2λx A π. (D) |)/2cos(2|λx A π. [ D ]35、在波长为λ 的驻波中,两个相邻波腹之间的距离为(A) λ /4. (B) λ /2.(C) 3λ /4. (D) λ . [B ]36、在波长为λ 的驻波中两个相邻波节之间的距离为(A) λ . (B) 3λ /4.(C) λ /2. (D) λ /4. [ C ]37在真空中沿着x 轴正方向传播的平面电磁波,其电场强度波的表达式是)/(2c o s 0λνx t E E z -π=,则磁场强度波的表达式是:(A) )/(2cos /000λνμεx t E H y -π=. (B) )/(2cos /000λνμεx t E H z -π=.(C) )/(2cos /000λνμεx t E H y -π-=. (D) )/(2cos /000λνμεx t E H y +π-=. [ C ]38、在真空中沿着z 轴负方向传播的平面电磁波,其磁场强度波的表达式为)/(co s 0c z t H H x +-=ω,则电场强度波的表达式为:(A) )/(cos /000c z t H E y +=ωεμ.(B) )/(cos /000c z t H E x +=ωεμ. (C) )/(cos /000c z t H E y +-=ωεμ.(D) )/(cos /000c z t H E y --=ωεμ. [ C ] 39、电磁波的电场强度E 、磁场强度 H 和传播速度 u 的关系是:(A) 三者互相垂直,而E 和H 位相相差π21. (B) 三者互相垂直,而且E 、H 、 u 构成右旋直角坐标系. (C) 三者中E 和H 是同方向的,但都与 u 垂直. (D) 三者中E 和H 可以是任意方向的,但都必须与 u 垂直. [ B ]40、电磁波在自由空间传播时,电场强度E 和磁场强度H(A) 在垂直于传播方向的同一条直线上.(B) 朝互相垂直的两个方向传播.(C) 互相垂直,且都垂直于传播方向.(D) 有相位差π21. [ C ] 1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为(A) 1.5 λ. (B) 1.5 λ/ n .(C) 1.5 n λ. (D) 3 λ. [ A ]2、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等.(B) 传播的路程相等,走过的光程不相等.(C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等. [ C ]3、如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2.路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) )()(111222t n r t n r +-+(B) ])1([])1([211222t n r t n r -+--+(C) )()(111222t n r t n r ---(D) 1122t n t n - [ B ]4、真空中波长为λ的单色光,在折射率为n 的均匀透明媒质中,从A 点沿某一路径传播到B 点,路径的长度为l .A 、B 两点光振动相位差记为∆φ,则(A) l =3 λ / 2,∆φ=3π. (B) l =3 λ / (2n ),∆φ=3n π.(C) l =3 λ / (2n ),∆φ=3π. (D) l =3n λ / 2,∆φ=3n π. [ C ]P S 1S 2 r 1 n 1 n 2 t 2 r 2 t 15、如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为 (A) 4πn 2 e / λ. (B) 2πn 2 e / λ.(C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) -π. [ A ] 6、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2 .(C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2).[ A ]7、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1< n 2> n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①与②示意)的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2.(C) 2n 2 e -λ . (D) 2n 2 e -λ / (2n 2).[B ]8在双缝干涉实验中,两缝间距为d ,双缝与屏幕的距离为D (D>>d ),单色光波长为λ,屏幕上相邻明条纹之间的距离为(A) λ D/d . (B) λd /D .(C) λD /(2d ). (D) λd/(2D ). [ A ]9、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源. [ B ]10、在双缝干涉实验中,光的波长为600 nm (1 nm =10-9 m ),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm . (B) 0.9 mm .(C) 1.2 mm (D) 3.1 mm . [ B ]11、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于图中O 处.现将光源S 向下移动到示意图中的S '位置,则 (A) 中央明条纹也向下移动,且条纹间距不变.(B) 中央明条纹向上移动,且条纹间距不变. (C) 中央明条纹向下移动,且条纹间距增大. (D) 中央明条纹向上移动,且条纹间距增大. [ B ]Bn 1 3λn 3 n 3 S S '12、在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A) 向下平移,且间距不变. (B) 向上平移,且间距不变.(C) 不移动,但间距改变. (D) 向上平移,且间距改变. [ B ]13、在双缝干涉实验中,两缝间距离为d ,双缝与屏幕之间的距离为D (D >>d ).波长为λ的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2λD / d . (B) λ d / D .(C) dD / λ. (D) λD /d . [ D ]14把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d ,双缝到屏的距离为D(D >>d ),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是(A) λD / (nd ) (B) n λD /d .(C) λd / (nD ). (D) λD / (2nd ). [ A ]15、一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ). [ B ]16、在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃扳在中心恰好接触,它们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径r k 的表达式为(A) r k =R k λ. (B) r k =n R k /λ.(C) r k =R kn λ. (D) r k =()nR k /λ. [ B ]17、在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n -1 ) d . (B) 2nd .(C) 2 ( n -1 ) d +λ / 2. (D) nd .(E) ( n -1 ) d . [ A ]18、在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是(A) λ / 2. (B) λ / (2n ).(C) λ / n . (D) ()12-n λ. [D ]19、在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2 个. (B) 4 个.(C) 6 个. (D) 8 个. [ B ]20、一束波长为λ的平行单色光垂直入射到一单如果P是中央亮纹一侧第一个暗纹所在的位置,则BC的长度为(A) λ / 2.(B) λ.(C) 3λ / 2 .(D) 2λ.B[B ]21、根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S,则S的前方某点P的光强度决定于波阵面S上所有面积元发出的子波各自传到P点的(A) 振动振幅之和.(B) 光强之和.(C) 振动振幅之和的平方.(D) 振动的相干叠加.[D ]22、波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为θ=±π / 6,则缝宽的大小为(A) λ / 2.(B) λ.(C) 2λ.(D) 3 λ.[C ]23、在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小.(B) 对应的衍射角变大.(C) 对应的衍射角也不变.(D) 光强也不变.[ B ]24、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为ϕ=30°的方位上.所用单色光波长为λ=500 nm,则单缝宽度为(A) 2.5³10-5 m.(B) 1.0³10-5 m.(C) 1.0³10-6 m.(D) 2.5³10-7.[ C ]25、一单色平行光束垂直照射在宽度为1.0 mm的单缝上,在缝后放一焦距为2.0 m的会聚透镜.已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.0 mm,则入射光波长约为(1nm=10−9m)(A) 100 nm (B) 400 nm(C) 500 nm (D) 600 nm [ C ]26、在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小.(B) 宽度变大.(C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大.[A ]27、在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小;(B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D) 宽度不变,但中心强度变小.[ B ]28、在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成3个半波带,则缝宽度a等于(A) λ.(B) 1.5 λ.(C) 2 λ. (D) 3 λ. [ D ]29、在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的23,同时使入射的单色光的波长λ变为原来的3 / 4,则屏幕C 上单缝衍射条纹中央明纹的宽度∆x 将变为原来的 (A) 3 / 4倍. (B) 2 / 3倍. (C) 9 / 8倍. (D) 1 / 2倍.(E) 2倍. [ D ]30、测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 .(C) 单缝衍射. (D) 光栅衍射. [ D ]31、一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现?(A) a +b =2 a . (B) a +b =3 a .(C) a +b =4 a . (A) a +b =6 a . [ B ]32、一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是(A) 紫光. (B) 绿光. (C) 黄光. (D) 红光. [ D ]33、对某一定波长的垂直入射光,衍射光栅的屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该(A) 换一个光栅常数较小的光栅.(B) 换一个光栅常数较大的光栅.(C) 将光栅向靠近屏幕的方向移动.(D) 将光栅向远离屏幕的方向移动. [ B ]34、若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 5.0³10-1 mm . (B) 1.0³10-1 mm . D(C) 1.0³10-2 mm . (D) 1.0³10-3 mm . [ D ]35、在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a=21b . (B) a=b . (C) a=2b . (D) a=3 b . [ B ]36、在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹.若在两缝后放一个偏振片,则(A) 干涉条纹的间距不变,但明纹的亮度加强. λ(B) 干涉条纹的间距不变,但明纹的亮度减弱.(C) 干涉条纹的间距变窄,且明纹的亮度减弱.(D) 无干涉条纹.[B ]37、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I0的自然光垂直入射在偏振片上,则出射光强为(A) I0 / 8.(B) I0 / 4.(C) 3 I0 / 8.(D) 3 I0 / 4.[A ]38、一束光强为I0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I为(A) 4/0I2.(B) I0 / 4.(C) I0 / 2.(D) 2I0 / 2.[ B ]39、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I0的自然光垂直入射在偏振片上,则出射光强为(A) I0 / 8.(B) I0 / 4.(C) 3 I0 / 8.(D) 3 I0 / 4.[ A ]40、自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光.[ C ]一、选择题:(每题3分)1、在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态.A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为(A) 3 p1.(B) 4 p1.(C) 5 p1.(D) 6 p1.[D ]2、若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为:(A) pV / m.(B) pV / (kT).(C) pV / (RT).(D) pV / (mT).[ B ]3、有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有0.1 kg 某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度的氧气的质量为:(A) (1/16) kg.(B) 0.8 kg.(C) 1.6 kg.(D) 3.2 kg.[ C ]4、在标准状态下,任何理想气体在1 m3中含有的分子数都等于(A) 6.02³1023.(B)6.02³1021.(C) 2.69³1025 .(D)2.69³1023.(玻尔兹曼常量k =1.38³10-23 J ²K -1 ) [ C ]5、一定量某理想气体按pV 2=恒量的规律膨胀,则膨胀后理想气体的温度(A) 将升高. (B) 将降低.(C) 不变. (D)升高还是降低,不能确定. [ B ]6、一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是:(A) p 1> p 2. (B) p 1< p 2.(C) p 1=p 2. (D)不确定的. [ C ]7、已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强.(B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度.(C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大.(D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大. [ D ]8、已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强.(B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度.(C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大.(D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大. [ D ]9、温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等. (B) ε相等,而w 不相等.(C) w 相等,而ε不相等. (D) ε和w 都不相等. [ C ]10、1 mol 刚性双原子分子理想气体,当温度为T 时,其内能为(A)RT 23. (B) kT 23. (C) RT 25. (D) kT 25. [ C ] (式中R 为普适气体常量,k 为玻尔兹曼常量)11、两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ 不同.(B) n 不同,(E K /V )不同,ρ 相同.(C) n 相同,(E K /V )相同,ρ 不同.(D) n 相同,(E K /V )相同,ρ 相同. [ C ]12、有容积不同的A 、B 两个容器,A 中装有单原子分子理想气体,B 中装有双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能(E / V )A 和(E / V )B 的关系(A) 为(E / V )A <(E / V )B .(B) 为(E / V )A >(E / V )B .(C) 为(E / V )A =(E / V )B .(D) 不能确定. [ A ]13、两个相同的容器,一个盛氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相等,现将6 J 热量传给氦气,使之升高到一定温度.若使氢气也升高同样温度,则应向氢气传递热量(A) 12 J . (B) 10 J(C) 6 J . (D) 5 J . [ B ]14、压强为p 、体积为V 的氢气(视为刚性分子理想气体)的内能为: (A)25pV . (B) 23pV . (C) pV . (D) 21pV . [ A ]15、下列各式中哪一式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,N A 为阿伏加得罗常量)(A) pV M m 23. (B) pV M M mol23. (C)npV 23. (D)pV N MM A 23mol . [ A ]16、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则:(A) 两种气体分子的平均平动动能相等.(B) 两种气体分子的平均动能相等.(C) 两种气体分子的平均速率相等.(D) 两种气体的内能相等. [ A ]17、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为(A) (N 1+N 2) (23kT +25kT ). (B) 21(N 1+N 2) (23kT +25kT ). (C) N 123kT +N 225kT . (D) N 125kT + N 223kT . [ C ]18、设声波通过理想气体的速率正比于气体分子的热运动平均速率,则声波通过具有相同温度的氧气和氢气的速率之比22H O /v v 为(A) 1 . (B) 1/2 .(C) 1/3 . (D) 1/4 . [ D ]19、设v 代表气体分子运动的平均速率,p v 代表气体分子运动的最概然速率,2/12)(v 代表气体分子运动的方均根速率.处于平衡状态下理想气体,三种速率关系为(A) p v v v ==2/12)( (B) 2/12)(v v v <=p (C)2/12)(v v v <<p (D)2/12)(v v v >>p[ C ]20、已知一定量的某种理想气体,在温度为T 1与T 2时的分子最概然速率分别为v p 1和v p 2,分子速率分布函数的最大值分别为f (v p 1)和f (v p 2).若T 1>T 2,则(A) v p 1 > v p 2, f (v p 1)> f (v p 2).(B) v p 1 > v p 2, f (v p 1)< f (v p 2).(C) v p 1 < v p 2, f (v p 1)> f (v p 2).(D) v p 1 < v p 2, f (v p 1)< f (v p 2). [ B ]21、 两种不同的理想气体,若它们的最概然速率相等,则它们的(A) 平均速率相等,方均根速率相等.(B) 平均速率相等,方均根速率不相等.(C) 平均速率不相等,方均根速率相等.(D) 平均速率不相等,方均根速率不相等. [ A ]22、假定氧气的热力学温度提高一倍,氧分子全部离解为氧原子,则这些氧原子的平均速率是原来氧分子平均速率的(A) 4倍. (B) 2倍.(C) 2倍. (D) 21倍. [ B ]23、 麦克斯韦速率分布曲线如图所示,图中A 、B 两部分面积相等,则该图表示(A) 0v 为最概然速率. (B) 0v 为平均速率. (C) 0v 为方均根速率. (D) 速率大于和小于0v 的分子数各占一半. [ D ]24、速率分布函数f (v )的物理意义为:(A) 具有速率v 的分子占总分子数的百分比.(B) 速率分布在v 附近的单位速率间隔中的分子数占总分子数的百分比.(C) 具有速率v 的分子数.(D) 速率分布在v 附近的单位速率间隔中的分子数. [ B ]25、若N 表示分子总数,T 表示气体温度,m 表示气体分子的质量,那么当分子速率v 确定后,决定麦克斯韦速率分布函数f (v )的数值的因素是(A) m ,T . (B) N .(C) N ,m . (D) N ,T .f (v )0(E) N,m,T.[ A ]26、气缸内盛有一定量的氢气(可视作理想气体),当温度不变而压强增大一倍时,氢气分子的平均碰撞频率Z和平均自由程λ的变化情况是:(A) Z和λ都增大一倍.(B) Z和λ都减为原来的一半.(C) Z增大一倍而λ减为原来的一半.(D) Z减为原来的一半而λ增大一倍.[C ]27、一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z减小而λ不变.(B) Z减小而λ增大.(C) Z增大而λ减小.(D) Z不变而λ增大.[ B ]28、一定量的理想气体,在温度不变的条件下,当压强降低时,分子的平均碰撞频率Z和平均自由程λ的变化情况是:(A) Z和λ都增大.(B) Z和λ都减小.(C) Z增大而λ减小.(D) Z减小而λ增大.[ D ]29、一定量的理想气体,在体积不变的条件下,当温度降低时,分子的平均碰撞频率Z和平均自由程λ的变化情况是:(A) Z减小,但λ不变.(B) Z不变,但λ减小.(C) Z和λ都减小.(D) Z和λ都不变.[ A ]30、一定量的理想气体,在体积不变的条件下,当温度升高时,分子的平均碰撞频率Z和平均自由程λ的变化情况是:(A) Z 增大,λ不变. (B) Z 不变,λ增大.(C) Z 和λ都增大. (D) Z 和λ都不变. [ A ]31、 在一个体积不变的容器中,储有一定量的理想气体,温度为T 0时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ.当气体温度升高为4T 0时,气体分子的平均速率v ,平均碰撞频率Z 和平均自由程λ分别为:(A) v =40v ,Z =40Z ,λ=40λ.(B) v =20v ,Z =20Z ,λ=0λ.(C) v =20v ,Z =20Z ,λ=40λ.(D) v =40v ,Z =20Z ,λ=0λ. [ B ]32、在一封闭容器中盛有1 mol 氦气(视作理想气体),这时分子无规则运动的平均自由程仅决定于(A) 压强p . (B) 体积V .(C) 温度T . (D) 平均碰撞频率Z . [ B ]33、一定量的某种理想气体若体积保持不变,则其平均自由程λ和平均碰撞频率Z 与温度的关系是:(A) 温度升高,λ减少而Z 增大.(B) 温度升高,λ增大而Z 减少.(C) 温度升高,λ和Z 均增大.(D) 温度升高,λ保持不变而Z 增大. [ D ]34、一容器贮有某种理想气体,其分子平均自由程为0λ,若气体的热力学温度降到原来的一半,但体积不变,分子作用球半径不变,则此时平均自由程为 (A)02λ. (B) 0λ. (C)2/0. (D) 0/ 2. [ B ]35、图(a)、(b)、(c)各表示联接在一起的两个循环过程,其中(c)图是两个半径相等的圆构成的两个循环过程,图(a)和(b)则为半径不等的两个圆.那么: C(A) 图(a)总净功为负.图(b)总净功为正.图(c)总净功为零.(B) 图(a)总净功为负.图(b)总净功为负.图(c)总净功为正.(C) 图(a)总净功为负.图(b)总净功为负.图(c)总净功为零.(D) 图(a)总净功为正.图(b)总净功为正.图(c)总净功为负.V 图(a) V图(b) V 图(c)36、关于可逆过程和不可逆过程的判断:(1) 可逆热力学过程一定是准静态过程.(2) 准静态过程一定是可逆过程.(3) 不可逆过程就是不能向相反方向进行的过程.(4) 凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是(A) (1)、(2)、(3).(B) (1)、(2)、(4).(C)(2)、(4).(D)(1)、(4).[ D ]37、如图所示,当气缸中的活塞迅速向外移动从而使气体膨胀时,气体所经历的过程(A) 是平衡过程,它能用p─V图上的一条曲线表示.(B) 不是平衡过程,但它能用p─V图上的一条曲线表示.(C) 不是平衡过程,它不能用p─V图上的一条曲线表示.(D) 是平衡过程,但它不能用p─V图上的一条曲线表示.[C ]38、在下列各种说法(1) 平衡过程就是无摩擦力作用的过程.(2) 平衡过程一定是可逆过程.(3) 平衡过程是无限多个连续变化的平衡态的连接.(4) 平衡过程在p-V图上可用一连续曲线表示.中,哪些是正确的?(A) (1)、(2).(B) (3)、(4).(C) (2)、(3)、(4).(D) (1)、(2)、(3)、(4).[ B ]39、设有下列过程:(1) 用活塞缓慢地压缩绝热容器中的理想气体.(设活塞与器壁无摩擦)(2) 用缓慢地旋转的叶片使绝热容器中的水温上升.(3) 一滴墨水在水杯中缓慢弥散开.(4) 一个不受空气阻力及其它摩擦力作用的单摆的摆动.其中是可逆过程的为(A) (1)、(2)、(4).(B) (1)、(2)、(3).(C) (1)、(3)、(4).(D) (1)、(4).[ D ]40、在下列说法(1) 可逆过程一定是平衡过程.(2) 平衡过程一定是可逆的.(3) 不可逆过程一定是非平衡过程.(4) 非平衡过程一定是不可逆的.。
大学物理下练习题标准答案
大学物理下练习题答案————————————————————————————————作者:————————————————————————————————日期:大学物理下练习题一、选择题(每题1分,共41分)1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的?(B )(A) 场强E 的大小与试验电荷q 0的大小成反比;(B) 对场中某点,试验电荷受力F 与q 0的比值不因q 0而变; (C) 试验电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试验电荷q 0,则F = 0,从而E = 0.2.下列几个说法中哪一个是正确的?(C )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。
(B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。
(C )场强方向可由 E =F /q 定出,其中 q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场力。
( D )以上说法都不正确。
3.图1.1所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和-λ ( x > 0),则xOy 平面上(0, a )点处的场强为: (A )(A )i a02πελ. (B) 0.(C)i a 04πελ. (D))(40j +i aπελ.4. 边长为a 的正方形的四个顶点上放置如图1.2所示的点电荷,则中心O 处场强(C )(A) 大小为零.(B) 大小为q/(2πε0a 2), 方向沿x 轴正向.(C) 大小为()2022a q πε, 方向沿y 轴正向.(D) 大小为()2022a q πε, 方向沿y 轴负向.5. 如图1.3所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(D )(A) πR 2E .(B) πR 2E /2 . (C) 2πR 2E . (D) 0 .6. 下列关于高斯定理理解的说法中,正确的是:(B )(A)当高斯面内电荷代数和为零时,高斯面上任意点的电场强度都等于零+λ -• (0, xyO 图1.1O q a --2x y 图1.2E O图1.3 xy(B)高斯面上电场强处处为零,则高斯面内的电荷代数和必为零。
大学物理学第版版北京邮电大学出版社下册习题答案
习题10选择题(1) 对于安培环路定理的理解,正确的是:(A )若环流等于零,则在回路L 上必定是H 处处为零; (B )若环流等于零,则在回路L 上必定不包围电流;(C )若环流等于零,则在回路L 所包围传导电流的代数和为零; (D )回路L 上各点的H 仅与回路L 包围的电流有关。
[答案:C](2) 对半径为R 载流为I 的无限长直圆柱体,距轴线r 处的磁感应强度B () (A )内外部磁感应强度B 都与r 成正比;(B )内部磁感应强度B 与r 成正比,外部磁感应强度B 与r 成反比; (C )内外部磁感应强度B 都与r 成反比;(D )内部磁感应强度B 与r 成反比,外部磁感应强度B 与r 成正比。
[答案:B](3)质量为m 电量为q 的粒子,以速率v 与均匀磁场B 成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要()(A ) 增加磁场B ;(B )减少磁场B ;(C )增加θ角;(D )减少速率v 。
[答案:B](4)一个100匝的圆形线圈,半径为5厘米,通过电流为安,当线圈在的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为() (A );(B );(C );(D )14J 。
[答案:A]填空题(1)边长为a 的正方形导线回路载有电流为I ,则其中心处的磁感应强度 。
[答案:aIπμ220,方向垂直正方形平面](2)计算有限长的直线电流产生的磁场 用毕奥——萨伐尔定律,而 用安培环路定理求得(填能或不能)。
[答案:能, 不能](3)电荷在静电场中沿任一闭合曲线移动一周,电场力做功为 。
电荷在磁场中沿任一闭合曲线移动一周,磁场力做功为 。
[答案:零,正或负或零](4)两个大小相同的螺线管一个有铁心一个没有铁心,当给两个螺线管通以 电流时,管内的磁力线H 分布相同,当把两螺线管放在同一介质中,管内的磁力线H 分布将 。
[答案:相同,不相同]在同一磁感应线上,各点B ϖ的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B ϖ的方向?解: 在同一磁感应线上,各点B ϖ的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B ϖ的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B ϖ的方向.题图(1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B ϖ的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B ρϖ=∴ 21B B ρϖ=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B ϖ方向相反,即21B B ρϖ≠.用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管外面环绕一周(见题图)的环路积分⎰外B L ϖ·d l ϖ=0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为 ⎰外B L ϖ·d l ϖ=I 0μ这是为什么? 解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μϖϖ外,与⎰⎰=⋅=⋅Ll l B 0d 0d ϖϖϖ外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L的电流为I ,因此实际螺线管若是无限长时,只是外B ϖ的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离. 题 图如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.已知磁感应强度0.2=B Wb ·m-2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题图所示题图(1)通过abcd 面积1S 的磁通是 (2)通过befc 面积2S 的磁通量 (3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ϖϖΦWb (或24.0-Wb )题图如题图所示,AB 、CD 为长直导线,C B )为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题图所示,O 点磁场由AB 、C B )、CD 三部分电流产生.其中AB产生 01=B ϖCD产生RIB 1202μ=,方向垂直向里CD段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题图解:如题图所示,A B ϖ方向垂直纸面向里 (2)设0=B ϖ在2L 外侧距离2L 为r 处 则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题图如题图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
大学物理试题(含答案)
故:
k1 5, k2 8
(a b) sin k11
k11 5 6562 A ab 5.0 106 m sin sin 41
V2 Q1 A RT ln 5.35 103 J V1 T2 1 2)由热机效率: 1 T1 4
A 1 Q1 A 1.34 103 J Q1 4 4
3)
Q2 Q1 A 4.01103 J
3、一平面简谐波在 t = 0 时刻的波形图,设此简谐波的频率为 250Hz,且此时质点P 的运动方向向下,求 1)该波的波动方程; 2)在距原点O为 100m 处质点的 振动方程与振动速度表达式。 y (m) 2A / 2 P 解:1)由题意知: 2 500 传播方向向左。 o 设波动方程为: A
x2 0.05 cos(t 19 / 12) 2
其合成运动的运动方程为 x = (
0.05 cos(t
)
12
)
5、有两个同相的相干点光源 S1 和 S2 ,发出波长为 λ 的光。A 是它们连线的中垂线上的一点。若 在S1与A之间插入厚度为 e、折射率为n 的薄玻璃片,则两光源发出的光在A点的位相 差△φ =( )。若已知 λ = 5000Å,n = 1.5,A点恰为 第四级明纹中心,则 e = ( )Å。 2 e S1 (n 1)e n A
√
9、一束自然光自空气射向一块平板玻璃,设入射角等于布儒 斯特角 i0 。则在界面2 的反射光
√
A)自然光 B)完全偏振光且光矢量的 振动方向垂直于入射面。 C)完全偏振光且光矢量的 振动方向平行于入射面。 D)部分偏振光
i0
(完整版)《大学物理》下期末考试有答案
《大学物理》(下)期末统考试题(A 卷)说明 1考试答案必须写在答题纸上,否则无效。
请把答题纸撕下。
一、 选择题(30分,每题3分)1.一质点作简谐振动,振动方程x=Acos(ωt+φ),当时间t=T/4(T 为周期)时,质点的速度为:(A) -Aωsinφ; (B) Aωsinφ; (C) -Aωcosφ; (D) Aωcosφ参考解:v =dx/dt = -Aωsin (ωt+φ),cos )sin(424/ϕωϕωπA A v T T T t -=+⋅-== ∴选(C)2.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的(A) 7/6 (B) 9/16 (C) 11/16 (D )13/16 (E) 15/16 参考解:,1615)(2212421221221221=-=kA k kA kA mv A ∴选(E )3.一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A) 它的动能转换成势能.(B) 它的势能转换成动能.(C) 它从相邻的一段质元获得能量其能量逐渐增大.(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小.参考解:这里的条件是“平面简谐波在弹性媒质中传播”。
由于弹性媒质的质元在平衡位置时的形变最大,所以势能动能最大,这时动能也最大;由于弹性媒质的质元在最大位移处时形变最小,所以势能也最小,这时动能也最小。
质元的机械能由最大变到最小的过程中,同时也把该机械能传给相邻的一段质元。
∴选(D )4.如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2 .(C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2). 参考解:半波损失现象发生在波由波疏媒质到波密媒质的界面的反射现象中。
大学物理a考试题及答案详解
大学物理a考试题及答案详解一、选择题(每题4分,共20分)1. 以下哪个选项不是牛顿运动定律的内容?A. 物体的加速度与作用力成正比,与物体质量成反比B. 物体的加速度与作用力成正比,与物体质量成正比C. 作用力和反作用力大小相等,方向相反D. 力是改变物体运动状态的原因答案:B2. 光在真空中的传播速度是多少?A. 299,792 km/sB. 299,792 m/sC. 299,792 cm/sD. 299,792 mm/s答案:A3. 根据热力学第一定律,下列哪个选项是正确的?A. 系统内能的变化等于系统吸收的热量与对外做的功之和B. 系统内能的变化等于系统吸收的热量与对外做的功之差C. 系统内能的变化等于系统对外做的功与吸收的热量之和D. 系统内能的变化等于系统对外做的功与吸收的热量之差答案:B4. 以下哪个选项不是电磁波的特性?A. 电磁波可以在真空中传播B. 电磁波具有波粒二象性C. 电磁波的速度在所有介质中都是相同的D. 电磁波具有能量答案:C5. 根据麦克斯韦方程组,以下哪个选项是正确的?A. 变化的磁场可以产生稳定的电场B. 变化的电场可以产生稳定的磁场C. 变化的磁场可以产生变化的电场D. 变化的电场可以产生变化的磁场答案:C二、填空题(每题3分,共15分)1. 根据牛顿第二定律,物体的加速度 \( a \) 与作用力 \( F \) 和物体质量 \( m \) 的关系是 \( a = \frac{F}{m} \)。
2. 光年是天文学上用来表示距离的单位,1光年等于光在真空中一年内传播的距离,约为 \( 9.46 \times 10^{15} \) 米。
3. 热力学第二定律表明,不可能从单一热源吸热使之完全变为功而不产生其他影响。
4. 电磁波的波长 \( \lambda \)、频率 \( f \) 和光速 \( c \) 之间的关系是 \( c = \lambda f \)。
《大学物理》下册试卷及答案解析
2008-2009《大学物理》(下)考试试卷一、选择题(单选题,每小题3分,共30分):1、两根无限长平行直导线载有大小相等方向相反的电流I ,I 以dI/dt 的变化率增长,一矩形线圈位于导线平面内(如图所示),则 。
(A),矩形线圈中无感应电流;(B),矩形线圈中的感应电流为顺时针方向;(C),矩形线圈中的感应电流为逆时针方向; (D),矩形线圈中的感应电流的方向不确定;2,如图所示的系统作简谐运动,则其振动周期为 。
(A),k m T π2=;(B), k m T θπsin 2=;(C), k m T θπcos 2=; (D), θθπcos sin 2k m T =;3,在示波器的水平和垂直输入端分别加上余弦交变电压,屏上出现如图所示的闭合曲线,已知水平方向振动的频率为600Hz ,则垂直方向的振动频率为 。
(A),200Hz ;(B), 400Hz ;(C), 900Hz ; (D), 1800Hz ;4,振幅、频率、传播速度都相同的两列相干波在同一直线上沿相反方向传播时叠加可形成驻波,对于一根长为100cm 的两端固定的弦线,要形成驻波,下面哪种波长不能在其中形成驻波? 。
(A),λ=50cm ;(B), λ=100cm ;(C), λ=200cm ;(D), λ=400cm ;5,关于机械波在弹性媒质中传播时波的能量的说法,不对的是 。
(A),在波动传播媒质中的任一体积元,其动能、势能、总机械能的变化是同相位的; (B), 在波动传播媒质中的任一体积元,它都在不断地接收和释放能量,即不断地传播能量。
所以波的传播过程实际上是能量的传播过程;(C), 在波动传播媒质中的任一体积元,其动能和势能的总和时时刻刻保持不变,即其总的机械能守恒;(D), 在波动传播媒质中的任一体积元,任一时刻的动能和势能之和与其振动振幅的平方成正比;6,以下关于杨氏双缝干涉实验的说法,错误的有 。
(A),当屏幕靠近双缝时,干涉条纹变密; (B), 当实验中所用的光波波长增加时,干涉条 纹变密;(C),当双缝间距减小时,干涉条纹变疏;(D),杨氏双缝干涉实验的中央条纹是明条纹,当在上一个缝S 1处放一玻璃时,如图所示,则整个条纹向S 1所在的方向移动,即向上移动。
大学大气科学专业《大学物理(下册)》期末考试试题 含答案
大学大气科学专业《大学物理(下册)》期末考试试题含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一质点在OXY平面内运动,其运动方程为,则质点在任意时刻的速度表达式为________;加速度表达式为________。
2、一质点作半径为0.1m的圆周运动,其角位置的运动学方程为:,则其切向加速度大小为=__________第1秒末法向加速度的大小为=__________。
3、刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成______,与刚体本身的转动惯量成反比。
(填“正比”或“反比”)。
4、两列简谐波发生干涉的条件是_______________,_______________,_______________。
5、反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为:()。
①②③④试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处。
(1) 变化的磁场一定伴随有电场;__________________(2) 磁感线是无头无尾的;________________________(3) 电荷总伴随有电场.__________________________6、一条无限长直导线载有10A的电流.在离它 0.5m远的地方它产生的磁感强度B为____________。
一条长直载流导线,在离它1cm处产生的磁感强度是T,它所载的电流为____________。
7、一个绕有500匝导线的平均周长50cm的细螺绕环,铁芯的相对磁导率为600,载有0.3A 电流时, 铁芯中的磁感应强度B的大小为___________;铁芯中的磁场强度H的大小为___________ 。
8、在热力学中,“作功”和“传递热量”有着本质的区别,“作功”是通过__________来完成的; “传递热量”是通过___________来完成的。
温州大学物理专业大一《物理学下》考试A卷及答案
(1);
(2)。
4、光的偏振现象说明光波是;光在折射率为n的介质里走了几何路程r相当于光在真空中走了光程。
5、产生动生电动势的原因是;产生感生电动势的原因是。
6、当自然光以60°的入射角入射一透明介质表面时,反射光为线偏振光,则介质折射率为;折射光为;折射角为。
当 时, ,
时,
∴ ,方向沿半径向外.
cm时,
∴ 沿半径向外.
2.解:(1)
(2)
(3)取 ;
3.解:(1) 方向垂直 向左,大小
同理 方向垂直 向右,大小
方向垂直 向上,大小为
方向垂直 向下,大小为
4.
方向垂直纸面向里
5.
6.
n=1.58
C、磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零
D、磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度不可能为零
三、计算题(共6小题,每小题11分,共66分)
1、均匀带电球壳内半径6cm,外半径10cm,电荷体密度为2× C·m-3求距球心5cm,8cm,12cm各点的场强。
4、一长直导线被弯曲成如图的形状,通过的电流为I,半径为R。求圆心O处的磁感应强度的大小和方向。
5、如图长为L的导体棒OP处于均匀磁场中,并绕 轴以角速度 旋转,棒与转轴间夹角恒为 ,磁感应强度为B与转轴平行。求OP棒在图示位置处的电动势。
6、如图在双缝实验中入射光的波长为550nm,用一厚度 为的透明薄片盖住 缝,发现中央明纹移动3个条纹,向上移至P。试求:透明薄片的折射率。
D、凹陷,且深度为 /4
2、当高斯面上的E通量为0时,则()
A、高斯面内必无电荷B、高斯面外必无电荷
2020-2021-1大学物理(下)Ⅰ-AB答案
20202021(1)大学物理I (下)答案(A,B )一、选择题(30分)A 卷 BBABD CCDBAB 卷 BBBAC DDCAB二、填空题(30分)A 卷 1.服从 2.感生电场力(或涡旋电场力) 3. 零 4.√32NabIB 5.2(n −1)d6.4 7.线偏振光(完全偏振光) 8.变小 9.2(2l +1) 10.2.55B 卷1.感生电场力(或涡旋电场力) 2.服从 3.√32NabIB 4.零 5.4 6.2(n −1)d 7.变小 8.线偏振光(完全偏振光) 9.2.55 10.2(2l +1) 三、计算题A1(B2)解:如图所示,dF⃗ =I 2dL ⃗ ×B ⃗ (3分) dF =I 2dr μ0I 12πr (3分)F =∫I 2dr μ0I 12πr a+b a =μ0I 1I 22πln a+b a (3分) 方向:竖直向上 (1分) A2(B1)解:连接cd ,半圆形导线中的感应电动势与直导线cd 中的感应电动势大小相等 (2分)取线元dx ,其感应电动势 dε=(v ⃗ ×B⃗ )∙dl (2分) 其中 B =μ0I 2πx (2分) 总电动势 ε=∫v μ0I 2πx dx a+2b a =μ0Iv 2πln (a+2b )a (2分)c 点电势高(或d 指向c ) (2分)A3(B4)解: (1) 中央明纹宽度为:Δx 0=2λa f =2×500×10−6×50×100.025mm =2cm (6分) (2) 由缺级条件:(a +b)sinφ=kλ,asinφ=k ′λ 知 k k′=a+b a =0.10.25=41 k =4,8,12,16,⋯缺级,单缝衍射中央明纹包迹内有k =0,±1,±2,±3共7条双缝衍射明条纹.(4分) A4(B3)题解: δ=2ne +λ2=kλ(8分) 取 k =5,e =845.8nm (2分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.填空题I(每空2分) 1. (1)
R
I R
I 83400μπμ+
,(2)垂直纸面向里; 2. (3)
2
04R
ev
πμ,(4)
4
2
22032R
v
e π
μ; 3. (5) 2ln 20π
μL ,(6)
2ln 250π
μL ,(7) adcba 逆时针;
4. (8)x 轴正方向,(9)
c
E 0;
5. (10)
3
π
,(11)
8
30I ;
二.填空题II(每空2分)
1. (1)
2
λ
, (2)
n
2λ
;
2. (3) m 7
10
83.4-⨯,
(4) 2710348.7-⋅⨯m W ; 3. (5) 3
23
)(1m c
v l
-,(6)
2
)
(1c
v -ρ
; 4. (7) s 8100.3-⨯=τ, (8) m 2.7; 5. (9) 等于, (10) 大于;
三、 (12分) 1)
磁矩的大小: )(314.01.01022m A IS P m ⋅=⨯⨯==π 方向:垂直纸面出来
2)
线圈所受磁力矩: B P M m
⨯=
大小: )(14.310314.0m N B P M m ⋅=⨯=⋅= 方向:平行纸面向上
3) )(14.3)0(J BS I I A =-==∆Φ
四、(8分):
① λϕ2sin )(2=+b a
光栅常数:)(40003
.06002sin 22
nm b a =⨯=
=
+ϕλ;
②7.6sin ≈+<
+=
λ
ϕλ
b
a b
a k ,6=m k , 4±=k 为缺级,
屏上可能观察到的明条纹数: 11212=-+=m k N (条)
五、 (8分)解:λkR r k =
①
λλR R k k r r k
k 5)5(2
2
5=-+=-+,
)(1010
8.632510516.2578.1259
6
2
2
5m r r R k
k =⨯⨯⨯⨯=
-=
--+λ
;
② k 的级次:λkR r k =2
,410
8.6321010
031.59
62
2
=⨯⨯⨯=
=--λ
R r k k
六、 (10分)解:)(1242)(10310626.6834eV nm J hc ⋅=⨯⨯⨯=- (1).钾电子的逸出功:)(25.255112420
0eV hc
h A ==
=
=λν
(2). )(99.125.2300
1242eV A hc
A h E eU km a
=-=
-=
-==λ
ν, )(99.1V U a =
七、 (10分)解:
(1) . 0.12)(2.10)6.13(4.312<=---=-eV E E
0.12)(1.12)6.13(5.113>=---=-eV E E
氢原子所能达到的最高能态为n=2的第一激发态; (2) .
12E E hc
-=λ
)(8.1212
.1012421
2nm E E hc ==
-=
λ
八、 (10分)解:
(1) ab 杆上动生电动势的大小:2
2
1)(L B Bdr r l d B v L
i ωωε=
=
⋅⨯=⎰⎰
方向:a b →
(2) f d r M d
⨯=, Bdr R
r dM i
⋅⋅
-=ε
ab 杆受到的磁力矩:R
L B BL
R
Bdr R
r dM
M i
L
i
424
22
ωεε-
=-
=⋅⋅
-=
=⎰⎰
方向:垂直纸面向里。