Nanostructured Au–CeO2 Catalysts for Low-Temperature Water–Gas Shift
白色葡萄球菌辅助合成多孔阵列形貌CeO2粉体材料
白色葡萄球菌辅助合成多孔阵列形貌CeO2粉体材料杨宇飞;周明;刘长隆;王亚平【摘要】二氧化铈(CeO2)是一种很重要的稀土氧化物,应用前景广泛。
介绍了一种新的制备方法制备出一种具有不同微观结构形貌的CeO2颗粒。
该制备方法是通过在HMT醇水反应体系中加入白色葡萄球菌,用共沉淀得到表面具有多孔阵列结构的CeO2纳米粉体材料。
借助扫描电镜、透射电镜、X射线衍射、热重分析等方法,表征和分析了所得样品的形貌、晶相组成、微观结构和反应成形机理。
并最终对所得样品进行甲基橙脱色实验,考察了其污水处理能力。
结果表明,所得CeO2样品颗粒在10nm左右,多孔阵列的孔洞直径约为400nm。
多孔阵列结构样品对甲基橙脱色结果较好,脱色率可达95%以上。
%Cerium oxide (ceria, CeOz)was one of the most reactive rare earth metal oxides in many application areas. A new preparation method was introduced here to create new structure ceria particles. By adding staphylococcus albus (S. a/bus) in aleohol-water solution with HMT as precipitator, nano-sized eeria powders with porous arrays in micro appearance surface were synthesized. The scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermo gravimetrie analysis (TGA)were used to characterize and analyze the morphology, microstructureand phase composition of the produets, discuss the formation mechanism in the process. Furthermore, the decolorizing performance of the products on methyl orange dye wastes water was investigated. The results showed that synthesized porous arrays ceria particle was about 10nm in dimension, and the porous hole was about 400nm in size. The deeolour rate of porousarrays structure can reach 95% or above for methyl orange dye waste water,indicating a good decolorizing performance.【期刊名称】《功能材料》【年(卷),期】2012(043)015【总页数】5页(P2106-2110)【关键词】白色葡萄球菌;纳米CeO2;多孔阵列结构;甲基橙脱色【作者】杨宇飞;周明;刘长隆;王亚平【作者单位】江苏大学光子制造科学技术中心,江苏镇江212013;江苏大学光子制造科学技术中心,江苏镇江212013;江苏大学光子制造科学技术中心,江苏镇江212013;江苏大学光子制造科学技术中心,江苏镇江212013【正文语种】中文【中图分类】O614.33;O611.4CeO2是具有高活性的稀土金属氧化物之一,它具有优异的光学性质[1],高热稳定性和良好的电子导电和扩散性,可以被广泛应用于紫外吸收材料[2,3]、固体氧化物电池材料[4,5]、抛光材料[6]、医用失明疾病等[7]。
质子交换膜电池CeO2纳米颗粒
质子交换膜电池CeO2纳米颗粒
1 介绍
氧化铈纳米颗粒是一种用于燃料电池和其他电池系统的有用组件,可以改善通道中的电解液分布,控制电池电路的传导性和电容性,以
及减少燃料电池的反应时间。
这种纳米颗粒可用于提升质子交换膜电
池(PEMFC)的可靠性,性能和安全性。
氧化铈纳米颗粒改善了聚合物
质子交换膜电池(PEMFC)空气电催化性能,为薄膜催化剂提供了可靠
的表面层。
2 材料
CeO2纳米颗粒的组成是50%的铈,14%的氧和36%的氧,其熔点约为1840摄氏度。
在制备氧化铈纳米颗粒时,采用一种水热法。
首先,添加特殊的抑制剂(例如三氟乙酸),然后将铈酸钙或其他铈盐加入
水中,最后通过沸腾,水解方法等过程将其转化为氧化铈纳米晶粒。
3 优势
由于氧化铈纳米颗粒具有较大的表面积和特殊的化学性质,因此
具有独特的优势,能提高电池的性能和耐久性。
氧化铈纳米颗粒具有
较强的电离活性,可以改善聚合物质子交换膜电池(PEMFC)的电容性
和传导性。
它还能控制和减少反应时间,同时有助于消除电池内部的
局部和全局温度变化。
4 应用
氧化铈纳米颗粒有多种应用,可用于电池、储能器件、光伏太阳电池板和微汇流电路等电子装置的可采用的精细功能。
它也可用于生物传感器、抗菌疗法、抗氧化剂和酸烷基化合物的吸附产生。
由于氧化铈纳米颗粒具有一系列独特的优势,因此它可以改善聚合物质子交换膜电池(PEMFC)的可靠性,性能和安全性。
它还可用于生物传感器、抗菌疗法、抗氧化剂和酸烷基化合物的吸附。
Ce02纳米纤维的制备及性能表征
1不同温度下煅烧所得CeO 2样品的SEM 照片
(a )500℃;(b )800℃;(c )1000℃;(d )1200℃
分析
为复合纤维分别在500℃下煅烧2h 后所得样品的图2500℃下煅烧所得CeO 2样品的XRD 图谱
催化性能研究
CeO 2纳米纤维催化作用下甲基橙溶液在不同时间的紫外由图中可以看出,随着降解时间的延长,甲基橙溶液在处的吸光度值逐渐减小,说明CeO 2纳米纤维对甲基橙溶液的降解率CeO 2纳米纤维降解前后的甲基橙溶液的紫外光谱图利用公式可计算降解率:
×100%
为40mg/L 甲基橙溶液的吸光度,A 为降解后甲基橙溶液计算结果如表1所示。
表1CeO 2纳米纤维对甲基橙溶液的降解率
作者简介:袁丹妮(1991—),湖北钟祥人,华中科技大学材料科学与工程学院硕士研究生反应时间最大吸光度值
降解率2.671
2.04423%1.38248%1.167
56%
最终成效需要就业市场的检验。
2粉末经过3h搅拌后降解率为15%。
不同催化剂降解前后的甲基橙溶液的紫外光谱图实验表明,CeO2纳米纤维的催化降解作用优于工业用微米级这是因为,当CeO2的粒径减小到纳米级时,表面原子迅速光吸收效率提高,使光生载流子的浓度增大,而且
维的比表面积非常大,甲基橙的吸附量增加,从而增大了降解反应的,CeO2纳米纤维的催化活性远大于微米级CeO
出优异的催化降解作用。
,CeO2纳米纤维对甲基橙的催。
《基于缺陷型CeO2的金属基光催化材料设计及其高效催化小分子产氢研究》范文
《基于缺陷型CeO2的金属基光催化材料设计及其高效催化小分子产氢研究》篇一一、引言随着全球能源需求的增长和环境污染的加剧,寻找清洁、可持续的能源成为了科学研究的热点。
氢能作为一种高效、清洁的能源,其制备技术备受关注。
在众多的氢气制备方法中,光催化产氢技术以其资源丰富、环保等优势成为了一种理想的选择。
缺陷型CeO2作为光催化材料的重要组成部分,其独特的物理化学性质为光催化产氢提供了可能。
本文旨在设计基于缺陷型CeO2的金属基光催化材料,并研究其高效催化小分子产氢的性能。
二、缺陷型CeO2的结构与性质CeO2作为一种典型的n型半导体材料,具有较高的化学稳定性、优异的氧储存能力和良好的可见光响应能力。
在CeO2中引入缺陷,如氧空位,可以有效地调控其电子结构和光学性质,从而提高其光催化性能。
缺陷型CeO2的表面具有丰富的活性位点,能够促进光生电子和空穴的分离和传输,提高光催化反应的效率。
三、金属基光催化材料的设计为了进一步提高光催化产氢的效率,我们将金属元素引入到缺陷型CeO2中,形成金属基光催化材料。
通过选择合适的金属元素,可以调控材料的电子结构,增强其对可见光的吸收能力,提高光生电子和空穴的分离效率。
此外,金属的引入还可以提供更多的活性位点,促进反应物的吸附和活化。
在金属基光催化材料的设计中,我们主要考虑以下几个方面:1. 金属元素的选择:选择具有合适能级和电子结构的金属元素,如贵金属、过渡金属等。
2. 金属与CeO2的相互作用:通过控制金属的负载量、分散度和价态等,实现金属与CeO2之间的有效相互作用。
3. 材料的制备方法:采用合适的制备方法,如溶胶凝胶法、沉积法等,实现金属基光催化材料的可控合成。
四、高效催化小分子产氢研究我们以基于缺陷型CeO2的金属基光催化材料为研究对象,对其高效催化小分子产氢的性能进行了研究。
具体步骤如下:1. 催化剂的制备:采用合适的制备方法,合成出具有不同金属含量和缺陷程度的催化剂。
《2024年基于CeO2的金属纳米催化剂设计合成及其在光催化甲酸产氢中的应用》范文
《基于CeO2的金属纳米催化剂设计合成及其在光催化甲酸产氢中的应用》篇一一、引言随着环境问题的日益严重和能源需求的持续增长,寻找高效、环保的能源转换和存储技术已成为科研领域的热点。
光催化技术以其独特的优势,如可在温和条件下实现反应,为解决能源和环境问题提供了新的途径。
在众多光催化剂中,基于CeO2的金属纳米催化剂因其良好的氧化还原性能、高的光催化活性及稳定性而备受关注。
本文将详细介绍基于CeO2的金属纳米催化剂的设计合成及其在光催化甲酸产氢中的应用。
二、CeO2基金属纳米催化剂的设计合成1. 材料选择与制备方法CeO2作为一种重要的稀土氧化物,具有优异的储氧能力和良好的氧化还原性能。
为了进一步提高其光催化性能,通常将其他金属(如Pt、Au、Ag等)引入CeO2体系中,形成复合型纳米催化剂。
制备方法主要包括溶胶-凝胶法、水热法、化学气相沉积法等。
2. 结构设计与性能优化针对不同的应用需求,可通过调整催化剂的组成、形貌、尺寸等参数,优化其光催化性能。
例如,通过控制合成条件,可制备出具有高比表面积的多孔结构、暴露更多活性位点的特定晶面结构等,从而提高催化剂的光吸收能力和反应活性。
三、光催化甲酸产氢的应用1. 反应原理在光催化甲酸产氢过程中,CeO2基金属纳米催化剂扮演着关键角色。
当光照在催化剂上时,催化剂吸收光能,产生光生电子和空穴。
这些光生载流子能够与甲酸发生氧化还原反应,从而实现产氢。
2. 催化剂性能评价催化剂的性能评价主要依据其产氢速率、稳定性、选择性等指标。
通过对比不同催化剂在相同条件下的产氢性能,可以评估其优劣。
此外,还可以通过表征手段(如XRD、SEM、TEM等)对催化剂的形貌、结构等进行分析,以揭示其性能优劣的原因。
四、实验结果与讨论1. 实验结果通过设计合成不同组成的CeO2基金属纳米催化剂,并在光催化甲酸产氢实验中对比其性能,我们发现,某些催化剂表现出较高的产氢速率和稳定性。
例如,某款Pt-CeO2催化剂在光照条件下,能够在较短的时间内实现较高的产氢量。
《基于CeO2的金属纳米催化剂设计合成及其在光催化甲酸产氢中的应用》范文
《基于CeO2的金属纳米催化剂设计合成及其在光催化甲酸产氢中的应用》篇一一、引言随着人类对可再生能源需求的增加,光催化技术作为清洁、高效的能源转换和存储手段,日益受到研究者的关注。
其中,光催化甲酸产氢技术因其高效、环保的特性,成为光催化领域的研究热点。
催化剂是光催化反应的核心,其性能的优劣直接决定了光催化反应的效率和效果。
近年来,基于CeO2的金属纳米催化剂因其良好的催化性能和稳定性,在光催化甲酸产氢中展现出巨大的应用潜力。
本文将介绍基于CeO2的金属纳米催化剂的设计合成及其在光催化甲酸产氢中的应用。
二、CeO2金属纳米催化剂的设计合成1. 材料选择与制备CeO2因其独特的物理化学性质,如高储氧能力、良好的电子传输性能等,被广泛用于催化剂和光催化剂的制备。
我们选择CeO2作为基底材料,通过掺杂其他金属元素(如Pt、Au、Ag等)以提高其催化性能。
制备过程中,我们采用溶胶-凝胶法、水热法、化学气相沉积法等方法,将金属元素与CeO2复合,形成纳米尺度的催化剂。
2. 催化剂结构设计为了提高催化剂的活性,我们设计了多种结构。
一方面,通过控制合成条件,使纳米颗粒具有合适的尺寸和形貌,从而提高其比表面积和反应活性。
另一方面,我们通过构建异质结构,使催化剂具有更好的电子传输性能和光吸收性能。
此外,我们还通过引入缺陷、掺杂等手段,进一步提高催化剂的活性。
三、光催化甲酸产氢应用1. 反应原理在光催化甲酸产氢反应中,CeO2基催化剂在光的激发下,产生电子-空穴对。
电子和空穴分别与吸附在催化剂表面的甲酸分子发生反应,生成氢气和二氧化碳。
由于CeO2基催化剂具有良好的储氧能力和电子传输性能,可以提高反应的效率和产量。
2. 实验方法与结果我们通过控制反应条件(如光照强度、反应温度、催化剂用量等),对CeO2基催化剂的光催化性能进行了研究。
实验结果表明,经过优化的CeO2基催化剂在光催化甲酸产氢中表现出优异的性能,产氢速率和产量均高于其他催化剂。
《基于CeO2的金属纳米催化剂设计合成及其在光催化甲酸产氢中的应用》范文
《基于CeO2的金属纳米催化剂设计合成及其在光催化甲酸产氢中的应用》篇一一、引言随着人类对可再生能源需求的增加,光催化技术作为清洁、高效的能源转换和储存技术备受关注。
在众多光催化反应中,光催化甲酸产氢因其高效率、低能耗及环保性等优点,已成为当前研究的热点。
本文旨在设计合成基于CeO2的金属纳米催化剂,并探讨其在光催化甲酸产氢中的应用。
二、CeO2金属纳米催化剂的设计合成1. 材料选择与制备CeO2作为一种具有优良氧化还原性能和光催化活性的材料,被广泛应用于光催化领域。
我们选择CeO2作为基础材料,通过引入其他金属元素,制备出具有更高催化活性的金属纳米催化剂。
制备过程中,我们采用溶胶凝胶法、水热法或化学气相沉积法等方法,将金属前驱体与CeO2进行复合,得到金属纳米粒子负载在CeO2表面的复合材料。
2. 催化剂表征通过X射线衍射(XRD)、透射电子显微镜(TEM)和能谱分析(EDS)等手段,对制备的CeO2金属纳米催化剂进行表征。
结果表明,催化剂具有较高的结晶度、良好的分散性和适当的粒径。
三、光催化甲酸产氢应用1. 反应原理在光催化甲酸产氢过程中,CeO2金属纳米催化剂通过吸收光能,产生光生电子和空穴。
这些光生电子和空穴具有强还原性和氧化性,能够与甲酸分子发生反应,生成氢气和二氧化碳等产物。
2. 实验方法与结果我们将制备的CeO2金属纳米催化剂应用于光催化甲酸产氢实验中。
通过调整催化剂的负载量、光源的波长和强度等参数,优化反应条件。
实验结果表明,CeO2金属纳米催化剂具有较高的光催化活性,能够在较短的时间内实现较高的产氢量。
四、结论与展望本文设计合成了基于CeO2的金属纳米催化剂,并探讨了其在光催化甲酸产氢中的应用。
实验结果表明,该催化剂具有较高的光催化活性和产氢性能。
这为光催化甲酸产氢技术的发展提供了新的思路和方法。
展望未来,我们可以进一步优化催化剂的制备方法和反应条件,提高催化剂的稳定性和耐久性。
Au-CeO2纳米杂聚体颗粒的合成研究
Au-CeO2纳米杂聚体颗粒的合成研究陈有为;王蔚国;周生虎【期刊名称】《材料导报》【年(卷),期】2012(026)004【摘要】在CeO2纳米立方体颗粒存在条件下,以丁基锂还原Au前体获得了Au-CeO2纳米杂聚体.采用TEM、HRTEM、STEM、EDS、XRD对纳米颗粒的形貌、结构及成分进行了分析.考察了实验条件对杂聚体形成的影响.结果表明,丁基锂适宜用作Au的还原剂,Au还原速度不能过快以保证Au在CeO2纳米颗粒表面能以多相成核方式形核长大.Au和Au-CeO2纳米颗粒浸渍γ-Al2O3后焙烧的实验表明,Au-CeO2杂聚体结构能有效抑制Au在高温下的凝聚长大.【总页数】6页(P49-54)【作者】陈有为;王蔚国;周生虎【作者单位】中国科学院宁波材料技术与工程研究所燃料电池事业部,宁波315201;;中国科学院宁波材料技术与工程研究所燃料电池事业部,宁波315201【正文语种】中文【中图分类】TQ51【相关文献】1.Au基树枝状杂聚体纳米结构形成机理研究 [J], 陈有为;马明;俞雄飞;黄姣;张丽;陈丹超;谭曜2.二杂芳基乙烯光二聚反应与二聚体的晶体结构 [J], 张文勤;李松林;张志明;齐欣;郑艳;庄俊鹏;麦松威3.三聚体纳米颗粒自组装过程的分子动力学模拟 [J], 冯涛;王珂;周进杰;Deepak Bhopatkar;陈枫;Osvaldo Campanella;Bruce R.Hamaker;Marcelo Carignano;庄海宁4.金属纳米颗粒二聚体阵列的消光截面 [J], 殷澄;陆成杰;笪婧;张瑞耕;阚雪芬;韩庆邦;许田5.棒丝氨酸的全合成研究Ⅰ.从D-葡萄糖合成3-[(3′R,5′S)-7′-氧代-1′-氮杂-4′-氧杂双环[3.2.0]-庚-3′-基]-3-O-苄基-(2S,3S)-丝氨酸及其(3′R,5′R)-差向异构体 [J], 张军良;张秋荣;甄济生;张致平因版权原因,仅展示原文概要,查看原文内容请购买。
CeO2 修饰的透明 TiO2 纳米管电极的电致变色器件
第27卷 第1期 无 机 材 料 学 报Vol. 27No. 12012年1月Journal of Inorganic Materials Jan., 2012收稿日期: 2011-04-15; 收到修改稿日期: 2011-06-07基金项目: 科技部973项目(2009CB939904); 国家自然科学基金 (50703047); 上海市科委-AM 基金 (0952*******)The Ministry of Sciences and Technology of China through 973-Project (2009CB939904); National Natural Science Foundation of China (50703047); Shanghai-Applied Materials Research & Development Foundation (0952*******)作者简介: 文 豪(1984−), 女, 博士研究生. E-mail: wenhao@ 通讯作者: 李永祥, 研究员. E-mail: yxli@文章编号: 1000-324X(2012)01-0074-05 DOI: 10.3724/SP.J.1077.2012.00074CeO 2修饰的透明TiO 2纳米管电极的电致变色器件文 豪1, 2, 刘志甫1, 杨群保1, 李永祥1(1. 中国科学院 上海硅酸盐研究所, 上海200050; 2. 中国科学院 研究生院, 北京100049)摘 要: 采用电化学沉积法在阳极氧化制备的TiO 2纳米管阵列管壁上沉积一层CeO 2纳米颗粒, 再将CeO 2修饰的透明TiO 2纳米管阵列薄膜对电极与聚三甲基噻吩变色电极组装成透过型电致变色器件. 实验结果表明: CeO 2修饰的TiO 2纳米管阵列薄膜仍保持良好的光透过性, 其电荷存储能力比纯TiO 2纳米管电极提高了30%. 经CeO 2修饰的TiO 2纳米管改善了器件的性能, 与对电极为单一TiO 2纳米管阵列的器件相比, 其对比度仍保持在38%左右, 其褪色时间由1.3 s 缩短为0.8 s. 电致变色器件快速响应得益于纳米管与纳米颗粒组成的复合结构的高比表面积和快速的电荷传输过程.关 键 词: 氧化铈; 氧化钛; 纳米管阵列; 电致变色; 对电极 中图分类号: TQ34 文献标识码: AEnhanced Electrochromic Properties by Using a CeO 2 Modified TiO 2 NanotubeArray Transparent Counter ElectrodeWEN Hao 1, 2, LIU Zhi-Fu 1, YANG Qun-Bao 1, LI Yong-Xiang 1(1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China)Abstract: A new kind of electrochromic device composed of a CeO 2 modified TiO 2 nanotube array counter elec-trode and a working electrode of P3MeT film was reported. The counter electrode was fabricated by electrodepos-iting CeO 2 nanoparticles onto the walls of anodized TiO 2 nanotubes. The CeO 2 modified TiO 2 nanotube array counter electrode keeps a high transparency under working voltage. The charge capacity of CeO 2 modified TiO 2 nanotube array has an increase of 30% than that of un-modified TiO 2 nanotube array electrode. Compared with the electrochromic device with a TiO 2 nanotube array film electrode, the CeO 2 modified TiO 2 nanotube counter elec-trode based EC device has a fast decoloration time of 0.8 s. The fast response attributes to the high effective surface area and the fast charge transportation along the nanotube walls.Key words: CeO 2; TiO 2; nanotube; electrochromic; counter electrode电致变色器件可用于高对比度显示器件、光电化学能存储和节能窗等[1-2], 一般由电致变色层(变色电极)、电解液层和离子存储层(对电极)三部分组成. 近年来, 人们对变色电极的材料选取和制备[3]、凝胶态电解液[4-5]等进行了大量研究, 新的有机变色材料不断涌现[6], 电致变色器件的结构也得到改进, 但是关于对电极材料的研究仍然较少. 对透过型电致变色器件来说, 对电极既要具有高的电荷存第1期文 豪, 等: CeO 2修饰的透明TiO 2纳米管电极的电致变色器件 75储能力, 又要有良好的透光性. 对电极主要有两类: 一类是自身可以变色但能够对主变色电极的对比度进行补偿的材料, 比如WO 3作主变色电极, 镍钴氧化物作对电极, 工作时得到的对比度比单独使用WO 3膜电极有明显增强; 另一类是在阳离子和电子注入和抽出的过程中始终保持高透光性, 颜色几乎不变的材料, 比如CeO 2[7]、TiO 2-CeO 2[8]、SnO 2- CeO 2[9]、ZrO 2-CeO 2[10]等. 另外, 增大电解液与电极的接触面积, 加快电子注入和抽出速度, 可以提高电致变色器件的响应特性. 因此, 应用纳米结构电极是提高电致变色器件性能的一个重要途径. 阳极氧化TiO 2具有独特的阵列式管状结构, 能够提高比表面积, 便于电解液的浸润和流通, 有利于载流子运输. TiO 2纳米管在染料敏化太阳能电池[11-12]、锂离子电池[13]和气体传感器[14]等方面的应用研究报道很多, 而将其应用于电致变色器件对电极的研究鲜有报道. 鉴于此, 本工作设计了一种基于TiO 2纳米管阵列薄膜对电极材料, 并通过CeO 2修饰阳极氧化的TiO 2纳米管进一步提高了器件的光电响应和电荷存储性能.1 实验部分1.1 实验材料与测试装置实验中使用的ITO 玻璃表面电阻约20 Ω/cm 2, 采用磁控溅射法在ITO 玻璃上制备1 μm 的Ti 膜用于制备TiO 2纳米管阵列.使用场发射扫描电子显微镜(FESEM, ISM- 6700F, JEOL. Inc) 观测样品的微观形貌. 电化学测试使用上海辰华CHI660电化学工作站, 光学测试使用微型光纤光谱仪USB2000(Oceanoptics, 200~ 1100 nm). 器件性能的测试装置如图1所示, 电化学工作站提供方波电压(步长为 5 s, 方波电压为+1.2 V , -1.5 V) , 测试过程均在室温中进行.图1 光电响应性能测试系统示意图Fig. 1 Schematic diagram of the measuring setup for trans-mittance and electrochromic response tests1.2 CeO 2修饰的TiO 2纳米管阵列薄膜对电极材料的制备首先在两电极系统中, 采用阳极氧化法, 将ITO 玻璃上的Ti 膜制备成TiO 2纳米管阵列, 工作电压45 V , 持续时间1 h, 阳极氧化结束后将样品清洗并烘干, 记作G(glass)-ATO (Anodized titanium ox-ide). 然后, 取G-ATO 作为标准三电极系统的工作电极, 铂片和Ag/AgCl 分别作对电极和参比电极, 采用恒压法将CeO 2沉积于TiO 2纳米管阵列上, 沉积电压为-10 V , 沉积时间为30 s, 样品记为G-ATO/CeO 2. 作为对比,在ITO 玻璃上沉积具有相同电荷沉积密度的CeO 2薄膜, 记作CeO 2. 最终样品全部在快速热处理炉中450℃退火0.5 h. 详细制备过程可见参考文献[15].1.3 电致变色电极的制备采用PMeT(聚3-甲基噻吩, Poly(3-methyl- thiophene)) 作为变色材料. PMeT 是聚噻吩的一种衍生物, 在着色态和退色态分别呈深红色和淡蓝色[16], 可以产生较好的对比效果. 本研究通过电化学聚合法在ITO 导电玻璃基底上制备均匀致密的PMeT 导电高分子膜. 电化学聚合使用的三电极系统包括工作电极ITO 导电玻璃片(10 mm×25 mm)、对电极Pt 片(10 mm×25 mm)和参比电极银丝(φ1 mm). 电沉积液为0.01 mol/L MeT(三甲基噻吩, 3-methyl- thiophene)的BFEE (三氟化硼乙醚, Boron fluoride ethyl ether)溶液[17]. 采用恒电压1.5 V , 时间150 s, 制得膜厚约为16 nm 的变色层. 用该法制备三片相同的电致变色膜电极, 用无水乙醇浸洗2至3次后, 置于干燥清洁的环境中, 为器件组装以及测试做准备. 除特殊注明外, 所用化学试剂均来自中国医药集团上海化学试剂有限公司.1.4 器件组装电致变色器件的结构如图2所示, 在对电极一面加入绝缘垫圈(spacer)用于控制电解液厚度(50 μm), 然后滴加电解液(1 mol/L LiClO 4/PC), 将变色电极的PMeT 膜相对朝里, 小心覆盖于对电极上, 将气泡排出, 组装成测试用电致变色器件. 本研究分别图2 电致变色器件的结构示意图 Fig. 2 Schematic diagram of electrochromic devices76 无机材料学报第27卷以CeO2、G-ATO和G-ATO/CeO2三类材料为对电极组装器件进行性能测试和比较研究.2 结果与讨论2.1对电极表面形貌采用电化学沉积法制备了CeO2纳米颗粒均匀分布于TiO2纳米管管壁上的复合纳米管结构. 图3所示为G-ATO和G-ATO/CeO2的扫描电镜照片, TiO2纳米管管径约80 nm, 管长约1 μm, 修饰CeO2后, CeO2纳米颗粒附着于管壁与管口如图3(b) 所示, 但管口未全部覆盖, 仍保持开放, 有利于电解液与电极材料的充分接触和电子的注入抽出.2.2对电极电化学性能图4所示为CeO2、G-ATO和G-ATO/CeO2三种透明对电极的循环伏安曲线, 测试在 1 mol/L LiClO4/PC溶液中进行, 扫描速度为0.1 V/s. 图中“▽”表示经过CeO2修饰后的循环伏安曲线, -0.8 V左右的阴极峰对应于T i O2和C e O2的还原(Ti4+3+, Ce4+3+), 而阳极峰出现在+0.2 V附近对应于氧化反应(Ti34+, Ce3+Ce4+). 与G-ATO的循环伏安曲线比较可以看出, CeO2修饰过图3 (a) G-ATO和(b) G-ATO/CeO2的扫描电镜照片Fig. 3 SEM images of (a) G-ATO and (b) G-ATO/CeO2 图4 CeO2, G-ATO和G-ATO/CeO2三种对电极的循环伏安曲线(v=0.1 V/s)Fig. 4 Cyclic voltamatic curves of three different counter elec-trodes made from CeO2, G-ATO and G-ATO/CeO2 (v=0.1 V/s)后阴极峰和阳极峰均向负电压偏移, 这是由于CeO2参与反应导致的. G-ATO/CeO2循环伏安曲线所包围的面积最大, 说明G-ATO/CeO2具有最大的电荷存储能力. 根据Randles-Sevcik方程[18]:()1/231/21/2P0.446310F F/RTj n n D cν−=×可以计算Li+在电极薄膜中的扩散系数, 其中j p为阴极峰电流密度, n为参与氧化还原反应的电子数(n=1), F为法拉第常数, R为摩尔气体常数, T为绝对温度(T=298K), ν为扫描速率, c=1 mol/L为反应物的初始摩尔浓度. 由Randles-Sevcik方程算出三种对电极中的Li+离子的扩散系数D分别为, D G-ATO/Ce O2=3.2×10−10 cm2/s、D G-ATO=2.4×10−10 cm2/s、D Ce O2=2.5×10−12 cm2/s. 采用计时安培法对三种对电极的充放电特性进行了研究, 方波电压为-1.5和+1.2 V, 步长5 s, 测试结果见图5. CeO2、G-ATO和图5 CeO2、G-ATO和G-ATO/CeO2三种对电极的充放电电荷密度曲线Fig. 5 Chronoamperograms of three different counter elec-trodes made from CeO2, G-ATO and G-ATO/CeO2Potential step between -1.5 V and +1.2 V, t=5 s第1期文 豪, 等: CeO 2修饰的透明TiO 2纳米管电极的电致变色器件 77G-ATO/CeO 2三种对电极的放电电荷密度分别为0.6、12.7和16.5 mC/cm 2. 充放电实验进一步表明G-ATO/CeO 2纳米复合结构可以得到更大的电荷存储密度. 因此, 采用G-ATO/CeO 2纳米复合对电极有望提高电致变色器件性能.2.3 光学性能对电极可能对电致变色器件在着色态和退色态的光透过性能以及电光响应产生影响, 实验分别对电致变色器件不同条件下的透光性和电光响应进行了研究. 对样品的光学测试分为两个部分, 首先测试组装成器件之前对电极的透过率. PMeT 膜在循环电场作用下有两种颜色状态:44(MeT)y(ClO )[(MeT )(ClO )]y n n n y n e +−+→++−−Nature (红色) Doped (浅蓝色)主要颜色变化出现在光谱的450~750 nm 范围, 如果对电极在此范围内对光有较强吸收将会影响器件的对比度, 因此在组装成器件之前对对电极进行450~750 nm 范围的扫描, 如图6所示, 在450~500 nm 波段, 样品G-ATO 和G-ATO/CeO 2的透过率相比于CeO 2的略有降低, 但仍在75%以上, 这说明非工作状态下G-ATO 和G-ATO/CeO 2对电极仍具有良好的透光性能. 组装成电致变色器件后, 进一步比较在工作电压下对电极对器件透光率的影响. 如图7所示为三种电致变色器件分别施加恒定电压+1.2和-1.5 V 时的透光率, 分别对应器件的着色态和退色态, 器件对电极分别为CeO 2、G-ATO 和G-ATO/CeO 2. 定义某一波长下退色态和着色态光透光率之差为电致变色器件的对比度, 结果发现, λ=480 nm 处器件的对比度最高, 都在38.5%~38.9%之间. 这表明对电极图6 CeO 2、G-ATO 和G-ATO/CeO 2三种对电极在非工作状态的透过率Fig. 6 Transmittance curves of three different counter elec-trodes made from CeO 2, G-ATO and G-ATO/CeO 2 in non-working status图7 恒定电压分别为-1.5 V 和+1.2 V , 基于三种对电极CeO 2、G-ATO 和G-ATO/CeO 2的电致变色器件的透光率 Fig. 7 Transmittance of the electrochromic devices with dif-ferent counter electrodes made from CeO 2, G-ATO and G-ATO/CeO 2 under the constant voltages of -1.5 V and +1.2 V , respectively对电致变色器件的对比度没有明显影响. 基于三种对电极的电致变色器件的对比度基本一致, 这有利于对电致变色器件光电响应特性的进一步比较. 2.4 电致变色器件电光性能为了考查器件的电光响应, 对器件施加方波电压 (+1.2 V , -1.5 V , 步长5 s)进行着色/退色循环实验, 同时记录器件在480 nm 处的透过率变化以及该过程中电流随时间变化的关系.图8表示透光率在阶跃电压下随时间的变化. 从图8中可以得到三种器件的颜色转换响应时间, 也即颜色转变达到90%所需的时间. G-ATO 和G-ATO/CeO 2器件的褪色时间分别是0.8 s 和0.9 s, 着色时间分别是1.2 s 和1.3 s, 而基于CeO 2薄膜对电极的器件的褪色和着色时间分别为3.6 s 和4.1 s. 可以看出基于纳米管对电极的电致变色器件具有更快的变色响应时间, 并且CeO 2的修饰加快了相应图8 电致变色器件光透过率随时间的变化Fig. 8 Transmittance response of the electrochromic devices with time changePotential step between -1.5 V and +1.2 V, t =5 s78 无机材料学报第27卷器件的电光响应.3结论本文介绍了CeO2修饰的阳极氧化TiO2纳米管阵列薄膜对电极的制备及其电致变色器件的性能. 通过与CeO2薄膜和TiO2纳米管阵列对电极进行比较研究, 发现经CeO2修饰后TiO2阵列薄膜电极的电荷存储能力增强, 基于TiO2/CeO2纳米复合对电极的电致变色器件对比度仍保持在38%左右, 而响应时间减少. 本研究表明采用TiO2/CeO2纳米管纳米复合对电极能够增大其与电解液的接触面积, 加快离子与电荷的传输速度, 是加大电致变色器件响应的一种有效的途径.参考文献:[1] Michaelis A, Berneth H, Haarer D, et al. Electrochromic dye sys-tem for smart window applications.Adv. Mater., 2001, 13(23):1825−1828.[2] Corr D, Bach U, Fay D, et al. Coloured electrochromic “paper-quality” displays based on modified mesoporous electrodes.SolidState Ionics, 2003, 165(1-4): 315−321.[3] Granqvist C G, Avendano E, Azens A. Advances in electrochromicmaterials and devices.Materials Science Forum, 2004, 455-456:1−6.[4] Tsutsumi H, Nakagawa Y, Miyazaki K, et al. Polymer Gel filmswith simple organic electrochromics for single-film electrochromicdevices.J. Polym. Sci., Part A: Polym. Chem., 1992, 30(8):1725−1729.[5] Kobayashi N, Chinone H, Miyazaki A. Polymer electrolyte fornovel electrochromic display.Electrochim. Acta, 2003, 48(14/15/16): 2323−2327.[6] Rosseinsky D R, Mortimer R J. Electrochromic systems and theprospects for devices.Adv. Mater., 2001, 13(11): 783−793.[7] Verma A, Bakhshi A K, Agnihotry S A. Effect of citric acid onproperties of CeO2 films for electrochromic windows.Sol. Energy Mater. Sol. Cells, 2006, 90(11): 1640−1655.[8] Verma A, Samanta S B, Mehra N C, et al. Sol-Gel derivednanocrystalline CeO2-TiO2 coatings for electrochromic windows.Sol. Energy Mater. Sol. Cells, 2005, 86(1): 85−103.[9] Rosario A V, Pereira E C. Comparison of the electrochemical be-havior of CeO2-SnO2 and CeO2-TiO2 electrodes produced by the Pechini method. Thin Solid Films, 2002, 410(1/2): 1−7.[10] Avellaneda C O, Bulhoes L O S, Pawlicka A. The CeO2-TiO2-ZrO2Sol-Gel film: a counter-electrode for electrochromic devices.Thin Solid Films, 2005, 471(1/2): 100−104.[11] Macak J M, Tsuchiya H, Ghicov A, et al. Dye-sensitized anodicTiO2 nanotubes.Electrochem. Commun., 2005, 7(11): 1133−1137.[12] Ghicov A, Albu S P, Hahn R, et al. TiO2 nanotubes indye-sensitized solar cells: critical factors for the conversion effi-ciency.Chem. Asian J., 2009, 4(4): 520−525.[13] Kavan L, Kalbac M, Zukalova M, et al. Lithium storage in nano-structured TiO2 made by hydrothermal growth.Chem. Mater., 2004, 16(3): 477−485.[14] Paulose M, Varghese O K, Mor G K, et al. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes.Nat.Nanotechnol., 2006, 17(2): 398−402.[15] Wen H, Liu Z, Yang Q, et al. Synthesis and electrochemical prop-erties of CeO2 nanoparticles modified TiO2 nanotube arrays.Electrochim. Acta, 2011, 56(7): 2914−2918.[16] Yassar A, Roncali J, Garnier F. conductivity and conjugation lengthin poly(3-Methylthiophene) thin-films.Macromolecules, 1989,22(2): 804−809.[17] Ma L J, Li Y X, Yu X F, et al. Electrochemical preparation ofPMeT/TiO2 nanocomposite electrochromic electrodes with en-hanced long-term stability.J. Solid State Electrochem., 2008, 12(11): 1503−1509.[18] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals andApplications. Shao Y uanhua, Zhu Guoyi, Dong Xiandui, Zhang Bolin, trans. 2nd ed. Beijing: Chemical Industry Press, 2005: 159.。
酒石酸铵络合沉淀法制备ceo2纳米晶与表征
酒石酸铵络合沉淀法制备ceo2纳米晶与表征本文采用酒石酸铵络合沉淀法制备了CeO2纳米晶,利用X射线衍射(XRD)、透射电镜(TEM)、傅里叶变换红外光谱(FT-IR)和紫外-可见漫反射光谱(UV-Vis DRS)等手段对其进行了表征。
结果表明,制备得到的CeO2纳米晶呈球形,平均粒径约为10 nm,具有良好的结晶性和高比表面积。
利用FT-IR和UV-Vis DRS对CeO2纳米晶的表面结构和光学性质进行了分析,结果表明制备得到的CeO2纳米晶具有较好的吸收和光催化性能。
关键词:酒石酸铵络合沉淀法;CeO2纳米晶;XRD;TEM;FT-IR;UV-Vis DRS引言CeO2是一种重要的氧化物材料,具有广泛的应用前景。
近年来,随着纳米科技的发展,CeO2纳米晶的制备和应用也受到了广泛关注。
纳米晶具有大比表面积、高催化活性和优异的光学性能等特点,因此在催化、光催化、电化学等领域有着广泛的应用。
目前,制备CeO2纳米晶的方法主要有溶胶-凝胶法、水热法、共沉淀法、微乳法等。
其中,共沉淀法是一种简单易行、操作方便的制备方法,被广泛应用于CeO2纳米晶的制备。
本文采用酒石酸铵络合沉淀法制备CeO2纳米晶,并对其进行了表征。
通过XRD、TEM、FT-IR和UV-Vis DRS等手段对制备得到的CeO2纳米晶的结构和性质进行了研究,为其在催化、光催化等领域的应用提供了理论依据。
实验部分1. 实验材料铈(IV)氯酸(Ce(NO3)3·6H2O)、酒石酸铵(NH4C4H4O6)和氢氧化钠(NaOH)。
2. 实验方法(1)将Ce(NO3)3·6H2O和NH4C4H4O6按1:1的比例混合,加入适量的去离子水中搅拌溶解。
(2)将NaOH溶液缓慢滴加到溶液中,同时不断搅拌,直至pH 值达到10。
(3)将混合溶液在室温下静置24 h,沉淀后用去离子水洗涤3次,离心干燥后得到CeO2纳米晶。
(4)利用XRD、TEM、FT-IR和UV-Vis DRS等手段对制备得到的CeO2纳米晶进行表征。
纳米CeO2在不饱和聚酯中的分散及复合材料力学性能研究
1 前
言
2 实 验 部分
2 1 主 要原料 .
不饱 和聚脂 树 脂 具有 优 良 的 电学性 能 , 化 学 耐
腐蚀 性 能及原料 易得 、 工 方 便 、 格低 廉 等优 点 , 加 价 常作 为复 合材料 的基 体树脂 , 泛应 用于建 筑 、 工 广 化 防腐 、 通运 输 、 船 、 交 造 电气工 业 、 乐 文体 等 行 业 。 娱 但是不 饱 和聚酯 树脂交 联 网络结 构 的最 大 弱点是 固
米粒 子在 聚合 物基 体 中的 均 匀 、 定 分 散 是 当今 研 稳
究 的难点 之一 。
合 物在 真空 干燥 箱里 进 行 真 空 脱气 ; 后 将 混 合 物 然 倒进 按 国家力 学性 能测试 尺 寸制备 的铝合 金模 具 中 进行 固化 , 树脂 在室 温下 固化 2h后从模 具 中取 出 , 4
学性 能进行 了系统 研究 。
采用 透射 电子 显 微镜 ( E 2 0 E 型 , J M-0 0 X 日本 电
子公 司 ) 察 CO 观 e 的 形 貌 和 粒 径 , 作 电 压 为 操 10 V; 用场 发射 扫描 电子显 微镜 (S 60 F型 , 6k 采 JM-7 0
日本 电子 公 司 ) 观察 试 样 断 口形 貌 , 观察 前 断 口进
行 喷金 处理 ; 采用 x射线 能谱 仪 ( 国牛 津仪 器 ) 英 对 样 品中 表 面 c e元 素 进 行 分 析 ; 用 万 能 实 验 机 采
收稿 日期 :2 0 —02 0 91-8 基金项 目:国家科 技支撑计划资助项 目 ( 0 7 A 2 B 1 20 B B 7 0 ) 作者简介 :徐状 (9 4 ) 18 一 ,男 ,硕士 ,主要从事无机纳米材料和纳米 复合材料的研究。 FRP CM 2 0 01 No 5 .
纳米CeO2制备的工艺研究
收稿日期:2018-03-07作者简介:杨宁宁(1983—),女,辽宁人,硕士,研究方向:化工。
纳米CeO2制备的工艺研究杨宁宁,丁 伟(化工部长沙设计研究院沈阳分院,辽宁沈阳 110026)摘要:以Ce(NO3)3·6H2O为铈源,(NH4)2CO3·H2O为沉淀剂,采用燃剂燃烧法制备前驱体Ce2(CO3)3·H2O,前驱体经热处理合成纳米CeO2。
结果表明,CeO2的最佳制备条件是500℃下焙烧40min。
关键词:氧化铈;焙烧温度;焙烧时间;纳米中图分类号:TQ133.3 文献标识码:A 文章编号:1008-021X(2018)07-0016-01 CeO2主要适用于精密光学镜头的高速抛光。
该抛光粉的性能优良,抛光效果较好,由于价格较高,国内的使用量较少。
中铈系稀土抛光粉,主要适用于光学仪器的中等精度中小球面镜头的高速抛光,该抛光粉与高铈粉比较,可使抛光粉的液体浓度降低11%,抛光速率提高35%,制品的光洁度可提高一级,抛光粉的使用寿命可提高30%。
目前国内使用这种抛光粉的用量尚少,有待于今后继续开发新用途。
低铈系稀土抛光粉,适用于电视机显像管、眼镜片和平板玻璃等的抛光。
此外,其它抛光粉用于对光学仪器,摄像机和照相机镜头等的抛光,这类抛光粉国内用量最多,约国内总用量85%以上。
如何对CeO2简单高效的制备,已经成了重中之重。
1 实验原料及试剂Ce(NO3)3·6H2O(分析纯);(NH4)2CO3·H2O(分析纯);甘油(分析纯);甘露醇(分析纯)。
2 制备方法制备方法:以Ce(NO3)3·6H2O为铈源,(NH4)2CO3·H2O为沉淀剂,并加入一定量甘油和甘露醇,采用燃剂燃烧法制备前驱体Ce2(CO3)3·H2O,前驱体经热处理合成纳米CeO2。
3 结果与讨论3.1 焙烧温度对CeO2晶粒尺寸的影响实验考察了9个不同温度点的CeO2晶粒尺寸,在反应时间足够的条件下,测定了不同焙烧温度对CeO2晶粒尺寸的影响,实验结果如图1所示。
特定形貌和多孔纳米CeO2的制备及其CO催化氧化研究进展
2017年第36卷第7期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS·2481·化 工 进展特定形貌和多孔纳米CeO 2的制备及其CO 催化氧化研究进展侯扶林,李红欣,杨阳,董寒,崔立峰,张晓东(上海理工大学环境与建筑学院,上海200093)摘要:Ce 是一种用途十分广泛的稀土金属,其金属氧化物CeO 2由于具有优异的储放氧性能,使其在氧化还原、有机合成和有机污染物降解等反应过程中呈现出良好的催化性能,尤其是在CO 的催化氧化反应中表现出了优异的活性。
本文综述了纯CeO 2及复合CeO 2催化剂的制备方法、形貌与孔道控制及其对CO 催化氧化性能等方面的最新研究进展。
首先介绍了液相法、固相法和气相法等不同合成纳米CeO 2的方法,通过对不同制备方法的工艺、成本、合成条件分析对比后,对其优缺点进行了系统的总结。
随后讨论了利用不同制备方法及添加不同表面活性剂或模板剂所制备出的特定形貌及多孔纳米CeO 2催化剂对CO 的催化氧化性能,描述了CeO 2对CO 催化氧化的作用机理及形貌结构对催化性能的影响。
最后根据对相关结果的总结发现,特定形貌及多孔结构的纳米CeO 2 催化CO 活性虽有提高,但存在结构不稳定、工艺复杂等问题。
而且,对于催化反应过程中的反应机理,形貌与结构变化的研究较少。
希望在今后的工作中简化制备工艺,提高CeO 2材料结构的稳定性,并用原位表征、模拟计算等方法来探究CO 的氧化机理。
关键词:二氧化铈;形貌;催化;氧化;机理;活性中图分类号:O643.3;O782;X511 文献标志码:A 文章编号:1000–6613(2017)07–2481–07 DOI :10.16085/j.issn.1000-6613.2016-2206Preparation and catalytic oxidation of CO with specific morphology andporous nano CeO 2HOU Fulin ,LI Hongxin ,YANG Yang ,DONG Han ,CUI Lifeng ,ZHANG Xiaodong(School of Environment and Architecture ,University of Shanghai for Science and Technology ,Shanghai 200093,China )Abstract : Ce is a very versatile rare earth metal and its metal oxide CeO 2 showed good catalytic performance in redox reaction ,organic synthesis and degradation of organic pollutants due to its excellent oxygen storage capacity ,especially in the catalytic oxidation of CO. This paper introduces the latest research progress on the preparation methods ,morphology and channel control of pure CeO 2 and CeO 2 composite catalyst and their catalytic oxidation of CO. Firstly ,this paper introduces different synthesis methods of nanometer CeO 2 from the aspects of process ,cost ,and the synthetic conditions and summarizes their advantages and disadvantages. Then this paper discusses the nanometer CeO 2 catalyst with specific morphology for catalytic oxidation of CO performance ,describes the catalytic mechanism and the influence of the morphology on the catalytic performance. It was found that the catalytic activity of nano-CeO 2 with specific morphology and porous structure was improved ,but the structure was unstable and the process was complicated. Moreover ,there are few studies on the reaction mechanism ,morphology and structure change during the catalytic reaction. It is demanded that氧化及Ce 基催化剂的制备。
ceo2纳米棒 核磁共振光谱
2022年,美国科研团队首次发现并合成了ceo2纳米棒,并成功应用于核磁共振光谱。
在此之前,科学界一直致力于寻找一种能够提高核磁共振检测灵敏度和分辨率的新型材料。
ceo2纳米棒的出现,无疑为核磁共振领域带来了全新的可能性。
ceo2纳米棒是一种由氧化铈组成的纳米级材料,其特殊的形状和结构使其具有出色的光学和磁学性能。
在核磁共振光谱中,ceo2纳米棒的应用可以显著提高样品的检测灵敏度和分辨率,为科研和临床诊断提供了更加精准的数据。
ceo2纳米棒的成功合成和应用,离不开科学家们对其深入的研究和探索。
通过实验和理论模拟,他们揭示了ceo2纳米棒在核磁共振光谱中的作用机制,并不断优化材料的性能和制备工艺,使其能够更好地满足核磁共振检测的需求。
然而,ceo2纳米棒在核磁共振光谱中的应用并不仅限于提高灵敏度和分辨率。
其独特的光学性质还使其成为一种潜在的对比剂,可以用于显著增强核磁共振成像的对比度,为医学影像学和生物医学研究带来全新的突破。
回顾ceo2纳米棒在核磁共振光谱中的应用,我们不得不感叹科学技术的不断突破和创新。
正是科学家们不断地探索和挑战,才让这种新型材料得以问世并发挥出巨大的潜力。
未来,随着对ceo2纳米棒性能的更深入理解和材料制备技术的不断提高,相信它将会在核磁共振和医学影像领域展现出更加广阔的前景。
在文章中,同时提及ceo2纳米棒和核磁共振光谱的相关内容,以满足你的指定要求。
通过对ceo2纳米棒和核磁共振光谱的深入了解,我深信这种新型材料的出现必将为核磁共振和医学影像领域带来革命性的变革。
期待未来,科研工作者们能够更深入地挖掘其潜力,为人类健康事业作出更大的贡献。
以上内容仅供参考。
希望对你有所帮助。
ceo2纳米棒在核磁共振光谱中的应用是科学界的一大突破。
然而,这项发现不仅仅是一次成功的实验,更是科学家们长期努力和不懈探索的成果。
它的出现标志着材料科学和医学影像技术的结合,为未来的医学诊断和治疗带来了前所未有的可能。
《基于CeO2的金属纳米催化剂设计合成及其在光催化甲酸产氢中的应用》范文
《基于CeO2的金属纳米催化剂设计合成及其在光催化甲酸产氢中的应用》篇一一、引言随着能源危机的加剧,发展可持续的能源技术成为科学界的迫切需求。
在众多清洁能源中,氢能以其高能量密度、环境友好性等特点备受关注。
其中,光催化甲酸产氢作为一种有效的制氢方法,受到了广泛的研究。
基于CeO2的金属纳米催化剂因其在光催化反应中的优异性能,近年来得到了研究者的极大关注。
本文将详细介绍基于CeO2的金属纳米催化剂的设计合成及其在光催化甲酸产氢中的应用。
二、CeO2基金属纳米催化剂的设计合成1. 材料选择与理论基础CeO2因其良好的储氧能力、优异的氧化还原性质以及适中的带隙,在光催化领域具有广泛的应用。
通过引入金属元素形成复合催化剂,可以进一步提高其光催化性能。
设计合成的关键在于选择合适的金属元素,并优化其与CeO2的相互作用。
2. 合成方法(1)溶胶-凝胶法:通过此方法可以控制纳米颗粒的尺寸和形态,制备出具有高比表面积的CeO2基催化剂。
(2)沉积沉淀法:将金属前驱体与CeO2进行共沉淀,通过控制沉淀条件,获得均匀分布的金属纳米粒子。
(3)光还原法:利用光还原技术,将金属离子还原为金属态,并与CeO2形成紧密的界面结合。
三、催化剂的表征与性能评价1. 催化剂表征通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段,对合成的CeO2基金属纳米催化剂进行结构、形貌和组成的分析。
2. 性能评价在光催化甲酸产氢实验中,评价催化剂的光催化活性、稳定性以及选择性。
通过对比不同催化剂的性能,分析催化剂的结构与性能之间的关系。
四、CeO2基金属纳米催化剂在光催化甲酸产氢中的应用1. 反应机理在光催化甲酸产氢过程中,CeO2基金属纳米催化剂的作用主要是提高光能的利用率和电子-空穴对的分离效率。
通过分析催化剂的能带结构、表面性质以及反应中间体的生成,揭示光催化反应的机理。
2. 实验结果与讨论通过实验结果,分析CeO2基金属纳米催化剂在光催化甲酸产氢中的优势。
纳米CeO2催化剂对柴油机碳烟颗粒和NO降低效果
纳米CeO2催化剂对柴油机碳烟颗粒和NO降低效果黄河;孙平;刘军恒;叶松【期刊名称】《农业工程学报》【年(卷),期】2017(33)2【摘要】为采取后处理技术同时控制柴油机颗粒(PM)和一氧化氮(NO)排放,该研究采用沉淀法制备了3组纳米二氧化铈(CeO2)催化剂,通过 X 射线衍射(XRD)法、BET 法测比表面积与孔径、氢气程序升温还原法(H2-TPR)对其性能进行表征,并利用碳烟起燃温度和峰值温度以及NO向N2的转化率分别对催化剂进行活性评价。
试验结果表明:3组制备的CeO2催化剂平均粒径依次为7、12和20 nm,明显小于商业级CeO2;自制CeO2相较于商业级CeO2具有较大的比表面积,且比表面积越大催化活性越高;自制的CeO2有3个较明显的H2还原峰,依次对应表面吸附氧、表面晶格氧以及体相晶格氧;CeO2对碳烟颗粒催化氧化的效率由高到低依次为20、12和7 nm,这3组CeO2催化剂较未添加催化剂时起燃温度依次降低了124,109,93℃,峰值温度依次降低了185,104,102℃;CeO2对 NO 转化率最高可以达到70%,且温度窗口比较宽。
研究结果对CeO2在排放后处理领域的应用具有指导意义。
%Nitrogen oxide (NOx) and particulate matter (PM) are the main emissions for diesel engines. Because of their contradictory relationship of generation mechanisms, only using the internal purification technology is very difficult to meet the increasingly stringent diesel emissions regulations. Development and application of after-treatment technology with low cost, high efficiencyand high adaptability will be more promising, which should be utilized tocontrol both NOx and PM emissions. Rare-earth-based catalysts have rich electronic structure, and show the unique physical and chemical properties. In existing rare earth oxides, cerium oxide has been paid much attention in the field of catalysis because of its low price, unique crystal structure and reversible transformation of trivalent ion (Ce3+) and tetravalent ion(Ce4+). In the recent years, the application of cerium dioxide (CeO2)in after-treatment technology for diesel engine is a hot research topic. In this study, 3 groups of nano-CeO2 were prepared using the coprecipitation methodin order to reduce the PM and NOx emissions from diesel engine through the after-treatment technology. The samples were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and hydrogen temperature programmed reduction (H2-TPR). What was more, the activity of catalysts was evaluated by ignition temperature and peak temperature of soot combustion as well as conversion ratio from nitric oxide (NO) to nitrogen (N2). The experimental results showed that CeO2 crystal structure had not been changed, and continued to be the cubic fluorite structure. The average particle diameters of the prepared CeO2 were 7, 12 and 20 nm, respectively, which were much smaller than that of commercial CeO2. Compared with commercial CeO2, the prepared CeO2 had larger specific surface area, which indicated that there were more active sites on the surface of CeO2 for the unit mass. Furthermore, there were more opportunities for the catalyst to be exposed to the reactants, which was beneficial for adsorption and activation of the reactant molecules. The prepared CeO2 had 3 obvious H2 reduction peaks, corresponding to thesurface absorbed oxygen, surface lattice oxygen and bulk lattice oxygen, respectively. Oxygen species, especially the surface lattice oxygen, had direct relation with catalytic activity. The reduction property of surface oxygen species was stronger, and the catalytic activity was higher. The results of H2-TPR had correspondence with the results of BET. For the efficiency of catalytic oxidation, the order of nano-CeO2 particle size from high to low was 20, 12 and 7 nm, successively. The ignition temperatures of soot combustion were reduced by 124, 109 and 93℃, and the peak temperatures were reduced by 185, 104 and 102℃ respectively with the 3 groups of CeO2 catalysts. With the increase of temperature, the conversion ratio of NO firstly increased and then decreased. The conversion ratio of NO with 20 nm CeO2 reached the highest value of 70% at 350℃. The conversion ratio of the 3 groups of CeO2 catalysts was higher than 68% at 400-520℃, which indicated that CeO2has a wide temperature window. The experimental results can provide a reference for optimum design and application of CeO2 catalyst in the field of diesel exhaust after-treatment system.【总页数】5页(P56-60)【作者】黄河;孙平;刘军恒;叶松【作者单位】江苏大学汽车与交通工程学院,镇江 212013;江苏大学汽车与交通工程学院,镇江 212013;江苏大学汽车与交通工程学院,镇江 212013;江苏大学汽车与交通工程学院,镇江 212013【正文语种】中文【中图分类】TK421+.5【相关文献】1.低温等离子体协同催化剂净化柴油机尾气中碳烟颗粒物 [J], 胡祖和;方敏;李长英;刘启飞;葛良赋;陈明功2.采用改进碳烟模型的柴油机碳烟颗粒物生成及尺寸分布 [J], 鞠洪玲;成晓北;汪方阳;王志3.微碳烟颗粒物分析仪测量柴油机颗粒物的应用 [J], 解瀚光;于津涛;李梁4.低温等离子体协同催化剂净化柴油机尾气中碳烟颗粒物 [J], 胡祖和;方敏;李长英;刘启飞;葛良赋;陈明功5.纳米CeO2基固溶体催化柴油机碳颗粒物燃烧性能 [J], 方萍;鲁继青;贾爱平;罗孟飞因版权原因,仅展示原文概要,查看原文内容请购买。
CeO2纳米球负载金催化剂的紫外光谱研究
CeO2纳米球负载金催化剂的紫外光谱研究
王晓楠;单文娟;郭红娟;石鑫昊;魏玲玲
【期刊名称】《华章》
【年(卷),期】2013(000)011
【摘要】实验采用溶剂热法,在不用任何表面活性剂和模板的条件下,成功地制备了高分散、球径均一的CeO2纳米球,该纳米球由6-7纳米的氧化铈纳米晶组成.以CeO2纳米球为载体制备的Au/CeO2催化剂利用紫外可见漫反射光谱表征技术对该材料进行研究,发现纳米金在球状氧化铈上能够很好的分散,在Au/CeO2催化剂中Auδ+和Au0同时存在,金与载体之间存在协同作用.
【总页数】1页(P356)
【作者】王晓楠;单文娟;郭红娟;石鑫昊;魏玲玲
【作者单位】辽宁师范大学化学化工学院,辽宁大连116029
【正文语种】中文
【相关文献】
1.甲醇在γ-Al2O3,CeO2及其负载Pd催化剂上吸附和分解的原位红外光谱研究
2.Al2O3或SiO2负载钒氧化物催化剂的紫外-拉曼光谱比较研究
3.金纳米球吸收光谱特性研究-尺寸对纳米粒子吸收光谱的影响
4.负载金催化剂Au/CeO2的制备及其催化氧化性质表征
5.负载化金属卟啉化合物催化剂结构的表征——Ⅰ红外光谱和紫外漫反射光谱
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Catalysis Letters Vol.77,No.1–3,200187 Nanostructured Au–CeO2catalysts for low-temperaturewater–gas shiftQi Fu,Adam Weber∗and Maria Flytzani-Stephanopoulos∗∗Department of Chemical and Biological Engineering,Tufts University,4Colby Street,Medford,MA02155,USAE-mail:maria.flytzani-stephanopoulos@Received6April2001;accepted6July2001The composite system of nanostructured gold and cerium oxide,with a gold loading5–8wt%,is reported in this work as a very good catalyst for low-temperature water–gas shift.Activity depends largely on the presence of nanosized ceria particles.Various techniques of preparation of an active catalyst are disscussed.The presence of gold is crucial for activity below300◦C.A dramatic effect of gold on the reducibility of the surface oxygen of ceria is found by H2-TPR,from310–480◦C to25–110◦C.All of the available surface oxygen was reduced,while there was no effect on the bulk oxygen of ceria.This correlates well with the shift activity of the Au–ceria system.KEY WORDS:cerium oxide;gold nanoparticles;water–gas shift catalysts;temperature-programmed reduction;redox reaction mechanism1.IntroductionThere is presently a renewed interest in the water–gas shift reaction for application to fuel processing for fuel cell-power generation.Advanced low-temperature shift(LTS) catalysts are needed to produce essentially CO-free hydro-gen to feed the PEM fuel cells under development for au-tomobiles.Desired catalyst characteristics include high activity and stability over a wider operating temperature window than is currently possible with the commercial LTS catalysts.Catalysts based on cerium oxide are promising for these applications[1,2].Ceria is widely used as an oxygen stor-age component in the automobile three-way catalyst,releas-ing/accepting oxygen under fuel-rich/lean conditions in the exhaust gas stream.Additionally,ceria is a better choice than alumina as a support for the noble metals in the cat-alytic converter because it drastically improves their low-temperature activity for CO oxidation[3]and the water–gas shift reaction[2].In recent work,we have shown that similarly active are combinations of ceria with a variety of base metals and metal oxides[1,4–7].The enhanced activ-ity of these catalysts has been attributed to a synergistic re-dox reaction mechanism.Metal-modified cerium oxide has a higher oxygen storage capacity(OSC)and reducibility than pure ceria[1,2,4,8,9].We have recently reported that Cu–ceria is much more stable than Cu–ZnO-based LTS catalysts, retaining high WGS activity and structural stability at tem-peratures as high as650◦C[1,10,11].Gold supported on ceria is a very good,albeit much less studied,catalyst system for redox reactions.It has been shown to possess high activity for CO oxidation[4–7,12],∗Present address:Department of Chemical Engineering,University of California,Berkeley,USA.∗∗To whom correspondence should be addressed.and methane oxidation[4–6],and,in recent work in this lab, it was found promising for low-temperature WGS[7,11]. The Au–ceria catalyst[7]is more stable than the well-studied Au–TiO2[13–15]system for low-temperature CO oxidation.Gold on other reducible oxides has been reported to be ac-tive for low temperature water–gas shift[16–19].Andreeva and coworkers[16,18]found good WGS activity infine metallic gold particles on iron oxide(Au/α-Fe2O3)pre-pared by coprecipitation.Sakurai et al.[17]reported that Au/TiO2,prepared by deposition–precipitation,has compa-rable LTS activity to that of commercial Cu/ZnO/Al2O3cat-alysts.More recently,Au supported on ZnO and ZrO2has also been found active for the water–gas shift reaction[19].It is interesting to evaluate these systems from the point of view of the gold particle structure as well as the struc-ture of the reducible oxide.The importance of nano-sized Au particles for a variety of reactions has been recognized and ample attention has been paid to their study over the past decade.Yet,much less attention has been given to the properties of the reducible oxide sup-port[15,19,20],even though this is considered crucial as a source of oxygen[15,20]or for otherwise stabilizing Au in the active nanostructured form[15,21].The Au par-ticle size and structure are sensitive to a number of vari-ables,including the preparation method[15],the state and structure of the support[15,19,20],and catalyst pretreat-ment[22].The preparation method has been reported to directly af-fect the activity of the Au-reducible oxide system.The cur-rently employed methods of coprecipitation[13],deposi-tion–precipitation[23],impregnation[22],co-sputte-ring[24],and chemical vapor deposition[25]can achieve highly dispersed gold particles with diameters below5nm. However,a different preparation method is preferred for 1011-372X/01/1100-0087$19.50/0 2001Plenum Publishing Corporation88Q.Fu et al./Nanostructured Au–CeO2catalystseach reducible oxide support.Recently,Kozlov and cowork-ers[21,26]reported a new synthesis method,which employs Au phosphine complexes and clusters and as-precipitated wet metal hydroxides as precursors.The simultaneous de-composition of Au complexes and phase change of support achieves more efficient Au–support interaction,and there-fore,more active and stable Au catalysts.Other methods are under evaluation,for instance,the method of using gold col-loids whose particle size is established before deposition on the supports[27]to get better gold size control.In this paper,two commonly used preparation methods, namely:coprecipitation and deposition–precipitation,were used to prepare gold on cerium oxide.Additionally,the urea gelation/precipitation method[1,28]was used to prepare one of the Au–ceria samples reported here.Characterization of both the ceria and gold particles is reported.The WGS reac-tion rate over these Au–ceria samples was measured at100 and175◦C,and correlated to the catalyst structural proper-ties.2.Experimental2.1.Catalyst preparationIn the work on Au/ceria reported by Liu et al.[4–6], a conventional coprecipitation method using ammonium car-bonate as the precipitant was used to prepare the catalyst. In more recent work,Weber[7]studied various prepara-tion methods and conducted a full parametric study of each method in his effort to optimize the activity of this type of catalyst for CO oxidation.From that work,a deposition–precipitation technique was found the most promising.Based on the abovefindings[4–7],two preparation meth-ods were examined in this work.Coprecipitation(CP)in-volves mixing aqueous solutions of HAuCl4,cerium(III)ni-trate and lanthanum nitrate with(NH4)CO3at60–70◦C, keeping a constant pH value of8and aging the resulting pre-cipitate at60–70◦C for1h.After aging,the precipitate was filtered and washed with distilled water until there were no residual Cl−ions as tested by AgNO3solution.Further,the precipitate was dried at100–120◦C,then heated to400◦C in air at a heating rate of2◦C/min;calcination at400◦C continued for10h.Alternatively,deposition–precipitation(DP)was used [7,11].Unlike coprecipitation,the catalyst support was al-ready prepared and calcined prior to its use in the DP method.The doped and undoped ceria was prepared by the urea gelation/coprecipitation(UGC)method described in[1].The cerium salt used was(NH4)2Ce(NO3)6.In brief, urea(H2N–CO–NH2)was added into the aqueous nitrate so-lutions and heated to100◦C under vigorous stirring and ad-dition of deionized water.The resulting gel was kept for8h at100◦C;the subsequentfiltering,and heating steps were as described above.Some samples were calcined at650◦C for4h.Deposition–precipitation took place by adding the desired amount of HAuCl4dropwise into an aqueous slurry of the thus prepared ceria.The pH of the aqueousslurry had already been adjusted to the value of8using(NH4)2CO3.The resulting precipitate was aged at room temperature for1h,thenfiltered,washed and heat treated asabove.Unlike the deposition–precipitation method reportedby Tsubota et al.[23]which uses NaOH base and excess (aboutfive times)HAuCl4,the present method can depositthe desired gold loading on ceria using the exact amount ofHAuCl4solution[7].One sample containing a large load-ing(8at%)of gold in ceria was prepared by the above ureagelation/coprecipitation technique(UGC),but at lower tem-perature(80◦C).All reagents used in catalyst preparation were analyti-cal grade.The samples reported here are denoted asαAu-CL(z,T),whereαis the atomic%gold loading[100×(Au/M Au)/(Au/M Au+Ce/M Ce+La/M La)],z is the method of preparation:CP,DP,or UGC,and T is the calcina-tion temperature.This will be noted only if it differs from400◦C,the typical catalyst calcination temperature used for most samples.The lanthanum doping of ceria is around 10at%.These samples are denoted as CL.A few samples were prepared with4at%lanthanum in ceria for compari-son.These are denoted as C4L.2.2.Catalyst characterization and activity testsThe bulk elemental composition of each sample was de-termined by inductively coupled plasma(ICP)atomic emis-sion spectrometry(Perkin–Elmer,Plasma40).The total sample surface area was measured by single-point BET N2 adsorption/desorption on a Micromeritics Pulse ChemiSorb 2705.X-ray powder diffraction(XRD)analysis of the samples was performed on a Rigaku300X-ray diffractometer with rotating anode generators and a monochromatic detector. Copper Kαradiation was used.The crystal size of ceria and gold was calculated from the peak broadening using the Scherrer equation[29].The catalyst morphology and elemental distribution ana-lysis was performed with a Vacuum Generators HB603scan-ning transmission electron microscope(STEM)equipped with a X-ray microprobe of0.14nm optimum resolu-tion for energy dispersive X-ray spectroscopy(EDS).For STEM analysis,the catalyst powder was dispersed on a copper or nickel grid coated with a carbonfilm and el-emental maps were obtained on a128×128data ma-trix.WGS reaction tests and kinetics measurements were con-ducted with the catalyst in powder form(<150µm)in the microreactor assemblies described in a previous paper[1]. All samples were used in the prepared form without activa-tion.The total gasflow rate used in the reaction tests was 100cm3/min(NTP),and the space time was0.09g s/cm3. In the kinetic tests,the conversion of CO was kept<15% by adjusting either the amount of the catalyst or the total gas flow rate.Both the consumption of CO and the production of CO2were in balance and either could be used to calculateQ.Fu et al./Nanostructured Au–CeO2catalysts89the reaction rate.The feed and product gas streams were analyzed by a HP-6890gas chromatograph equipped with a thermal conductivity detector(TCD).A Carbosphere(All-tech)packed column(6ft×1/8inch)was used to separate CO and CO2.Temperature-programmed reduction(TPR)of the as-prepared catalysts infine powder form(<150µm)was car-ried out in the Micromeritics Pulse ChemiSorb2705instru-ment.The samples werefirst oxidized in a10%O2/He gas mixture(50cm3/min(STP))at350◦C for30min.Af-ter cooling down to200◦C in the O2/He mixture,pure ni-trogen(grade5)was switched in and cooling continued down to room temperature(RT).Then the sample holder was immersed in liquid nitrogen.A20%H2/N2gas mixture (50cm3/min(STP))was next introduced over the sample causing a hight desorption peak,at the end point of which the liquid N2was removed and the sample temperature was raised to RT.A second big desorption peak was recorded at that time.Those two peaks appeared with all samples,even for pure ceria alone,and were identical;thus,they are at-tributed to desorption of physically adsorbed nitrogen and hydrogen.From RT on,the sample was heated at a rate of 5◦C/min to900◦C.The change of hydrogen concentration was detected by the TCD of the instrument.A cold trap filled with a mixture of isopropanol and liquid nitrogen was placed in the gas line upstream of the TCD to remove the water vapor.3.Results and discussion3.1.Catalyst characterizationFigures1and2show STEM micrographs and elemental maps,respectively,of CP and DP samples of5Au-C4L.Fig-ure1clearly shows a large difference in the structure of ce-ria between the CP and DP samples.Although both possess thefluorite oxide structure as evidenced by XRD analysis, seefigure3,the samples prepared by coprecipitation have a needlelike and layered bulk structure while the DP sam-ples have a uniform spherical structure.The4at%La-doped ceria used in the DP sample had been prepared by urea gela-tion/precipitation,and calcined in air at650◦C.The crystal habit of ceria is thus a function of the type and conditions of precipitation.Figure2shows a uniform distribution of gold on ce-ria for the DP sample,while the CP sample contains rel-atively large gold particles with a lower dispersion.This difference of DP over the CP method was also found for gold deposited on several other oxides[14].Based on the EDS analysis,metallic gold was present in both sam-ples shown infigure2[17].From the STEM analyses as well as independent high resolution TEM[30],we found that the gold particles in the CP sample have an average size of8nm,while in the DP sample,gold particles are <5nm.The XRD patterns of samples prepared by different meth-ods are shown infigure3.These comprise CeO2andmetal-(a)(b)Figure1.STEM micrographs of Au–ceria samples prepared by(a)de-position–precipitation and(b)coprecipitation.See table1for sample iden-tification and preparation conditions.lic gold crystal phases,which agrees with the STEM/EDS analysis.The distinctfluorite oxide-type diffraction pattern of CeO2was observed in all nthanum is in ox-ide solid solution with ceria,so there are no separate re-flections from La compounds,in agreement with previous work[1,4–6].The addition of La inhibits the crystal growth of ceria made by either the CP or the UGC methods[31,32]. The calculated average gold and ceria crystallite size are listed in table1.With increasing calcination temperature, the particle size of ceria and gold increased and the spe-cific surface area decreased.Since gold was deposited on the UGC pre-calcined ceria in the DP samples,the addition90Q.Fu et al./Nanostructured Au–CeO 2catalystsFigure 2.STEM/EDS elemental maps of Au–ceria samples prepared by coprecipitation and deposition–precipitation.See table 1for sample identificationand preparation conditions.of gold should have no effect on the size and structure of ce-ria.This is seen in table 1by comparing the crystallite size of ceria before and after the deposition of gold.However,for the CP samples,the incorporation of gold or copper during coprecipitation may suppress the growth of ceria crystallites during the calcination step [30].This is seen in table 1by comparing the particle size of ceria in the Au–ceria and in neat ceria samples prepared by CP.This effect has also been reported for Au/Fe 2O 3[33–35].Sze et al.proposed that Au can substitute into the Fe 2O 3unit cell as ions in 3+state as evidenced by XPS and Mössbauer spectroscopy [33].As explained by Haruta et al.[35],Fe and Au can form an in-termetallic bond,since Fe has a slight solubility in gold and the Au–Fe distance is close to but lower than the sum of the metal radii of Au and Fe.In figure 3,a small broad peak corresponding to Au(111),and a barely visible peak corresponding to Au(200)are seen in the X-ray diffraction patterns of all samples except 0.9Au-CL(DP),which has a very low gold loading.With increasing gold loading,the gold diffraction peak is more pronounced,but the width at half peak maximum (FWHM)remains un-changed.Thus,the gold particle size does not increase with loading.This indicates a strong interaction between gold and ceria.When the 4.7Au-CL (DP)sample was calcined at 650◦C,see table 1,the gold particle size grew to 9.2nm,which is much larger than that of the sample calcined at 400◦C (4.6nm).Thus,there is a significant effect of calcina-tion temperature on the growth of gold particles [23].Fig-ure 3also shows the reflections from sample 8Au-CL(UGC),which was prepared by urea gelation/coprecipitation,as de-scribed above.The peaks corresponding to Au(111)and Au(200)are big and sharp,with a corresponding average gold particle size of 43nm,table 1.The ceria particle size,however,was very small (4.5nm),similar to the size of neat ceria made by the same gelation method at 400◦C.This find-ing is interesting,because it indicates an independent rate of the growth of the gold and ceria crystals.Q.Fu et al./Nanostructured Au–CeO2catalysts91Figure3.XRD patterns of Au–ceria samples:(a)8Au-CL(UGC),(b)8.3Au-CL(DP),(c)4.7Au-CL(DP)b,c,(d)4.7Au-CL(DP)b,(e)4.5Au-CL(DP)a,(f)3.8Au-CL(CP).See table1for sample identification and preparation conditions.Table1Physical properties of ceria-based materials.(All catalysts calcined at 400◦C for10h,unless otherwise noted.CL:Ce(10%La)O x;C4L:Ce(4%La)O x.)Sample BET Particle size e(nm)surface area Au CeO2CeO2(m2/g) 111 111 220 8.3Au-CL(DP)b93.6 4.57.16.9 4.7Au-CL(DP)b,c–9.27.16.9 4.7Au-CL(DP)b82.7 4.67.16.971.6f 6.87.37.2 4.5AuC4L(DP)b83 4.68.18.5 0.9Au-CL(DP)b96.7–7.16.9 4.5Au-CL(DP)a155.8 5.05.24.9128.4g 6.25.34.9 3.8Au-CL(CP)71.8 6.75.85.361.3f7.276.4 3.9AuC4L(CP)–7.97.17.0 5Cu-CL(UGC)c,h89.1–5.24.9 5Cu-CL(UGC)h187.1–4.03.5 8Au-CL(UGC)158.149.1,36.6i4.54.5 CL(CP)a72.2–7.47.0 CL(CP)b48.0–11.69.9 CL(UGC)a161.6–5.14.8 CL(UGC)b93–7.16.9 C4L(UGC)b69.1–8.18.5 CL(UGC)d41.9–1110.8a CL calcined at400◦C in air.b CL or C4L calcined at650◦C in air.c Catalyst calcined at650◦C in air.d Calcined at800◦C in air.e Determined by XRD,using the Scherrer equation.f Used in7%CO–38%H2O–11%CO2–40%H2–He for120h.g Used in2%CO–10%H2O–He for70h.h No copper compounds detected by XRD.i Au 200 .3.2.H2-TPRTemperature-programmed reduction by H2has been used extensively in the literature to characterize the oxygen re-ducibility of doped CeO2.Yao et al.[8]reported that the reduction peaks of the surface capping oxygen and the bulk oxygen of CeO2are centered at500and800◦C,respec-tively.It is well known that the TPR profile of ceria as well as that of other solid materials is determined by four main factors,namely,the thermodynamics and kinetics of reduc-tion,the textural changes of the material and oxygen diffu-sion in the lattice structure[36].For low specific surface area ceria,Johnson and Mooi[37]developed a simple model, which stated that hydrogen consumption is only related to the specific surface area of ceria.However,this model is re-stricted to a narrow surface area range.Chiang et al.[38] reported that high surface area nanocrystalline ceria has a lower reduction enthalpy than that measured for the bulk material.Trovarelli and his coworkers[9,39]have reported that reduction of ceria strongly depends on the ceria crys-tallite size.The reduction behavior of ceria can be dramati-cally changed by the addition of a small amount of Pt met-als[8,9,40]or base metals[1,4,31,32].Thefirst peak corre-sponding to the reduction of surface oxygen can be shifted to much lower temperatures,although the reduction of bulk oxygen still remains near800◦C.Jen et al.[40]showed that the500◦C-peak was shifted to below100◦C by the addition of PdO.The hydrogen consumption is partially due to the reduction of metal oxide and partially due to the reduction of ceria[9,40,41].In turn,ceria enhances the reducibility of supported metal oxides[1,4,32].While bulk CuO is re-duced at200–300◦C,the reduction peaks of ceria-supported copper oxide are all below180◦C[1,31,42].92Q.Fu et al./Nanostructured Au–CeO2catalystsFigure4.H2-TPR profiles of ceria-based samples.(A)(a)CL(CP)calcined at400◦C;(b)CL(UGC)calcined at400◦C;(c)CL(UGC)calcined at650◦C.(B)(a)4.7Au-CL(DP)a;(b)4.5Au-CL(DP)b;(c)3.8Au-CL(CP);(d)5Cu-CL(UGC)c;(e)8Au-CL(UGC).20%H2/N2,50cm3/min(NTP),5◦C/min.Seetable1for sample identification and preparation conditions.H2-TPR has also been used to identify potentially higheroxidation states of gold on supports.Kang and Wan[43]reported that Au/Y-zeolite possessed two reduction peaks(at125and525◦C)and one shoulder peak(at190◦C).They attributed thefirst peak to oxygen adsorbed on sur-face metallic gold and the second to reduction of Au(III)located in sodalite cages.For supported Au/Al2O3sam-ples made by deposition–precipitation[44],three reductionpeaks(at T r=−90,30,and720◦C)were found by H2-TPRand,respectively,assigned to reductions of Au s O,Au s Cl,and Au i ions.Neri et al.[45]reported two separated peaks(125and175◦C)for“as-prepared”Au/Fe2O3without cal-cination.However,after oxidation at300◦C,only one peak(165◦C)was observed.It was surmised that thefirst peakbelongs to the reduction of Au oxide or hydroxide,whichdecomposes in calcination above300◦C[13,14].In this work,TPR was carried out with several CL(UGCor CP)and Au-CL(DP or CP)catalysts.A copper–ceriasample,5Cu-CL(UGC),was also included in this study forcomparison.Figure4shows the hydrogen consumption bysome of these materials.The reduction peak temperatureand corresponding hydrogen consumption are listed in ta-ble2.The keyfinding from this analysis is that the surfaceoxygen of ceria is substantially weakened by the presenceof gold nanoparticles,its reduction temperature shifting byseveral hundred degrees to100◦C or lower.Exactly howmuch weaker this oxygen becomes depends strongly on thepreparation method,metal loading,and calcination temper-ature.The onset of oxygen reduction changes with the typeof support,as shown infigure4(A).CL(UGC)calcined at400◦C,began to reduce at350◦C with a peak at487◦C,which is assigned to the surface capping oxygen of CeO2[8].CL(UGC)calcined at650◦C has the same reduction profile,Table2Reducibility of ceria-based materials.(Measured by H2-TPR;20%H2/N2gas mixture(50cm3/min(NTP)),5◦C/min.All catalysts are as preparedand calcined at400◦C,unless otherwise noted;CL:Ce(10%La)O x.)Sample H2consumption(µmol/g-cat)x in CeO xPeak1Peak2Peak3Peak1Peak2Peak3(T,◦C)(T,◦C)(T,◦C)0.9Au-CL(DP)b165(69)329(109) 1.97 1.904.7Au-CL(DP)b213(51)198(68) 1.96 1.924.7Au-CL(DP)b,c132(84)289(107) 1.97 1.918.3Au-CL(DP)b98(40)306(59) 1.98 1.914.5Au-CL(DP)a560(55)192(79) 1.89 1.853.8Au-CL(CP)803(96) 1.840.9Au-CL(CP)672(160) 1.878Au-CL(UGC)903(110) 1.815Cu-CL(UGC)c,d275(126)282(132)175(145) 1.95 1.89 1.865Cu-CL(UGC)d633(150)396(224)39(246) 1.88 1.80 1.79CL(CP)a431(310)455(497) 1.92 1.83CL(UGC)a706(487) 1.87CL(UGC)b425(437) 1.92CeO2(CP)a782(405) 1.87a CL calcined at400◦C in air.b CL calcined at650◦C in air.c Sample calcined at650◦C in air.d x is calculated after subtracting the oxygen from CuO reduction to Cu.but a much smaller peak area,attributed to the lower sur-face area of this sample.CL(CP)calcined at400◦C showstwo reduction peaks for surface oxygen,one at310◦C and asecond at497◦C.The latter is at the same position as for CLmade by UGC.Thefirst peak maybe due to the interaction oflanthana with ceria as reported by Groppi et al.[46]for theternary CeO x/LaO x/Al2O3material.This is also supportedby the absence of afirst reduction peak at310◦C in the TPRprofile of undoped ceria(CP),table2.The total hydrogenconsumption is larger for the CP sample than for CL madeQ.Fu et al./Nanostructured Au–CeO2catalysts93Figure5.H2-TPR profiles of Au-ceria catalysts prepared by deposition–precipitation:(a)8.3Au-CL(DP)b;(b) 4.5Au-CL(DP)b;(c)0.9Au-CL(DP)b;20%H2/N2,50cm3/min(NTP),5◦C/min.See table1for sam-ple identification and preparation conditions.by UGC,which might due to the different structures formed during preparation by the CP and UGC techniques.Regardless of the type of ceria or addition of metal,a peak at700◦C corresponding to reduction of bulk oxygen of CeO2,remains unchanged for all samples.This is similar to the case of Pt metals supported on ceria[9,40]or on ceria–zirconia oxide solid solutions[40].Other transition metals and metal oxides on ceria have a similar effect[1,4–7,31,42]. In previous work,we found a clear reducibility enhance-ment of ceria by copper in the Cu/ceria system[1,4,31,42]. Presently,from the TPR data offigure4(B)and table2,it is observed that the effect of gold on ceria reducibility is stronger than that of CuO.The reducibility is expressed by the value of x in CeO x in table2.This is calculated from the hydrogen consumption.For the Cu-containing samples, a complete reduction of CuO is assumed before calculat-ing the x value.The peaks corresponding to the reduction of surface capping oxygen of ceria in the Au–ceria sam-ples became much sharper and shifted to lower temperatures. The DP sample started to reduce around room temperature with a peak at59◦C.Reduction on the CP sample began at 70◦C with a peak at96◦C.The peak areas were similar to the peak area of the corresponding Au-free ceria sample,as seen in table2.This suggests that most gold is in metallic state.Figure5clearly shows that gold facilitates the reduction of ceria surface oxygen species.Increasing gold loading in the DP samples,weakens this oxygen further.For in-stance,the8.3Au-CL(DP)sample has two reduction peaks with peak temperature at40and59◦C,while0.9Au-CL(DP) has two reduction peaks with peak temperatures at69and 109◦C.All these samples have similar total peak areas,as shown infigure5and table2.Thus,the addition of gold does not increase the hydrogen consumption.However,it drastically increases the oxygen reducibility.Since the TPR technique is not as sensitive to surface oxygen titration,the effect of gold loading on the surface oxygen reducibilitycan Figure 6.Water–gas-shift reactivity of several ceria-based catalysts.0.09g s/cm3(NTP),2%CO–10.7%H2O–He;(a)equilibrium line at this condition,(b)4.5Au-CL(DP)a,(c)3.8Au-CL(CP),(d)4.7Au-CL(DP)b, (e)5Cu-CL(UGC)c,(f)CL(UGC)b.See table1for sample identificationand preparation conditions.be better followed by a pulse titration technique[40].Ac-cordingly,addition of gold was found to increase dramati-cally the oxygen storage capacity of ceria,especially at tem-peratures below350◦C[30].3.3.Activity studiesFigure6shows CO conversions over ceria,Cu-CL,and Au-CL samples at contact time0.09g s/ml,and a feed gas of2%CO–10%H2O–He.Kinetics data at two temperatures, 100and175◦C,are shown in table3.No activation was nec-essary for these catalysts.As shown by the shift of the reac-tion light-off temperature to lower values,both copper and gold-containing cerium oxide are superior WGS catalysts compared to CL.Notably,higher than80%CO conversion was measured at350◦C over the metal oxide-containing ce-ria,while the corresponding CO conversion over CL was less than5%at this temperature.Figure7shows the CO conversion profiles with temper-ature over samples containing different gold loading(pre-pared by DP)and the8Au-CL(UGC)sample.For the DP samples,thisfigure and table1show that with a similar gold particle size,the conversion increases with gold load-ing.The ceria particle size in the DP samples is also the same,7nm.It is interesting to explain the improved con-version over the8Au-CL(UGC)sample,which has the same Au loading as one of the DP samples.The conversion over this sample is higher,despite the much larger size(42nm) of its gold particles.What is different in this sample is the small particle size(4.5nm)of ceria.Thus,a key parameter for WGS activity is the ceria particle size.However,in the absence of gold,the same size ceria material,figure7,is not active at low temperatures.Bollinger and Vannice[47]reported that a TiO2-covered Au powder,which contained large Au(10µm)and small TiO2crystallites,showed high activity for CO oxidation. Au/TiO2made by impregnation with∼25nm gold parti-。