Mathematica第2章 符号运算

合集下载

Mathematica教程-2常用的数学函数

Mathematica教程-2常用的数学函数


Round[x]: 最接近x的整数 Floor[x]: 不大于x的最大整数 Ceiling[x]: 不小于x的最小整数 Abs[x]: x的绝对值或复数的摸 x+Iy : 复数x+iy;Re[z]: 复数z的实部 Im[z]: 复数z的虚部;Arg[z]: 复数z的幅角 Divisors[n]: 能整除n的所有整数组成的表 Mod[m,n]: m被n除的正余数 Quotient[m,n]: m/n的整数部分 GCD[n1,n2……]: 求n1,n1,……的最大公因数 LCM[n1,n2……]: 求n1,n2,……的最小公倍数
函数的立即定义
立即定义函数的语法如下f[x_]=expr函数名为f, 自变量为x,expr是表达式。在执行时会把expr 中的x都换为f的自变量x(不是x_)。函数的自变 量具有局部性,只对所在的函数起作用。函数 执行结束后也就没有了,不会改变其它全局定 义的同名变量的值。例: 定义函数f(x)=x*Sinx+x2, 对定义的函数求函数 值,并绘制它的图形。
当然使用If命令也可以定义上面的函数

将一些相互关联的元素放在一起,使它们成 为一个整体。既可以对整体操作,也可以对 整体中的一个元素单独进行操作。在 Mathematica中这样的数据结构就称作表 (List)。表主要有三个用法:表{a,b,c} 可以表示一个向量;表{{a,b},{c,d}}可表示一 个矩阵。
常用函数的命令格式
三角函数 :Sin[x],Cos[x] ,Tan[x] ,Cot[x] 等
反三角函数 :ArcSin[x] ,ArcCos[x] ,ArcTan[x]等 双曲函数与反双曲函数 :Sinh[x] ,Cosh[x] ,Tanh[x], ArcSinh[x],ArcCosh[x],ArcTanh[x] 指数函数E^x(或Exp[x]),指数函数a^x

mathematica 运算符及特殊符号

mathematica 运算符及特殊符号

mathematica 运算符及特殊符号一、运算符及特殊符号Line1; 执行Line,不显示结果Line1,line2 顺次执行Line1,2,并显示结果name 关于系统变量name 的信息name 关于系统变量name 的全部信息在c 语言中使用math 的函数(*Note*) 程序的注释#n 第n 个参数## 所有参数rule& 把rule 作用于后面的式子% 前一次的输出%% 倒数第二次的输出%n 第n 个输出a+b 加a-b 减a*b 或a b 乘a/b 除a^b 乘方base^^num 以base 为进位的数lhs&&rhs 且lhs||rhs 或!lha 非++,-- 自加1,自减1+=,-=,*=,/= 同C 语言二、系统常数Pi 3.1415....的无限精度数值E 2.17828...的无限精度数值Catalan 0.915966..卡塔兰常数EulerGamma 0.5772....高斯常数GoldenRatio 1.61803...黄金分割数Degree Pi/180 角度弧度换算I 复数单位Infinity 无穷大-Infinity 负无穷大ComplexInfinity 复无穷大Indeterminate 不定式三、代数计算Expand[expr] 展开表达式Factor[expr] 展开表达式Simplify[expr] 化简表达式FullSimplify[expr] 将特殊函数等也进行化简PowerExpand[expr] 展开所有的幂次形式ComplexExpand[expr,{x1,x2...}] 按复数实部虚部展开FunctionExpand[expr] 化简expr 中的特殊函数Collect[expr, x] 合并同次项Collect[expr, {x1,x2,...}] 合并x1,x2,...的同次项Together[expr] 通分Apart[expr] 部分分式展开Apart[expr, var] 对var 的部分分式展开Cancel[expr] 约分ExpandAll[expr] 展开表达式ExpandAll[expr, patt] 展开表达式FactorTerms[poly] 提出共有的数字因子FactorTerms[poly, x] 提出与x 无关的数字因子FactorTerms[poly, {x1,x2...}] 提出与xi 无关的数字因子Coefficient[expr, form] 多项式expr 中form 的系数Coefficient[expr, form, n] 多项式expr 中form^n 的系数Exponent[expr, form] 表达式expr 中form 的最高指数Numerator[expr] 表达式expr 的分子Denominator[expr] 表达式expr 的分母ExpandNumerator[expr] 展开expr 的分子部分ExpandDenominator[expr] 展开expr 的分母部分TrigExpand[expr] 展开表达式中的三角函数TrigFactor[expr] 给出表达式中的三角函数因子TrigFactorList[expr] 给出表达式中的三角函数因子的表TrigReduce[expr] 对表达式中的三角函数化简TrigToExp[expr] 三角到指数的转化ExpToTrig[expr] 指数到三角的转化四、解方程Solve[eqns, vars] 从方程组eqns 中解出varsSolve[eqns, vars, elims] 从方程组eqns 中削去变量elims,解出varsDSolve[eqn, y, x] 解微分方程,其中y 是x 的函数DSolve[{eqn1,eqn2,...},{y1,y2...},x]解微分方程组,其中yi 是x 的函数DSolve[eqn, y, {x1,x2...}] 解偏微分方程Eliminate[eqns, vars] 把方程组eqns 中变量vars 约去SolveAlways[eqns, vars] 给出等式成立的所有参数满足的条件Reduce[eqns, vars] 化简并给出所有可能解的条件LogicalExpand[expr] 用&&和||将逻辑表达式展开InverseFunction[f] 求函数f 的逆函数Root[f, k] 求多项式函数的第k 个根Roots[lhs==rhs, var] 得到多项式方程的所有根五、微积分函数D[f, x] 求f[x]的微分D[f, {x, n}] 求f[x]的n 阶微分D[f,x1,x2..] 求f[x]对x1,x2...偏微分Dt[f, x] 求f[x]的全微分df/dxDt[f] 求f[x]的全微分dfDt[f, {x, n}] n 阶全微分df^n/dx^nDt[f,x1,x2..] 对x1,x2..的偏微分Integrate[f, x] f[x]对x 在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x 在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x 趋近于x0 时expr 的极限Residue[expr, {x,x0}] expr 在x0 处的留数Series[f, {x, x0, n}] 给出f[x]在x0 处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}]先对y 幂级数展开,再对x Normal[expr] 化简并给出最常见的表达式O[x]^n n 阶小量x^nO[x, x0]^n n 阶小量(x-x0)^nDt[f, x] 求f[x]的全微分df/dxDt[f] 求f[x]的全微分dfDt[f, {x, n}] n 阶全微分df^n/dx^nDt[f,x1,x2..] 对x1,x2..的偏微分Integrate[f, x] f[x]对x 在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x 在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x 趋近于x0 时expr 的极限Normal[expr] 化简并给出最常见的表达式六、绘图函数二维作图Plot[f,{x,xmin,xmax}] 一维函数f[x]在区间[xmin,xmax]上的函数曲Plot[{f1,f2..},{x,xmin,xmax}] 在一张图上画几条曲线ListPlot[{y1,y2,..}] 绘出由离散点对(n,yn)组成的图ListPlot[{{x1,y1},{x2,y2},..}] 绘出由离散点对(xn,yn)组成的图。

mathematic使用指南

mathematic使用指南

第一章Mathematica的启动的运行Mathematica是美国Wolfram公司生产的一种数学分析型的软件,以符号计算见长,也具有高精度的数值计算功能和强大的图形功能。

目前最新版本是Mathematica4.0,本附录仅介绍Mathematica4.0的一些常用功能,须深入掌握Mathematica的读者可查阅相关书籍。

在Windows环境下安装好Mathematica4.0,用鼠标双击Mathematica图标(刺球状),在显示器上显示如图1-1的工作窗口,这时可以键入你想计算的东西,比如键入1+1,然后同时按下Shift键和Enter键(数字键盘上只要按Enter键),这时Mathematica开始工作,计算出结果后,窗口变为图1-2。

图1-1 Mathematica的工作窗口Mathematica第一次计算时因为要启动核(kernel),所需时间要长一些,也可以在Mathematica 启动后第一次计算之前,手工启动核,方法是用鼠标点击:Kernel->Start Kernel->Local.这样第一次计算就很快了。

图1-2 完成运算后的Mathematica的窗口图1-2中的“In[1]:=”表示第一个输入;“Out[1]=”表示第一个输出结果。

接下来可键入第二个输入,按这样的方式可利用Mathematica进行“会话式”计算。

要注意的是:“In[1]:= ”和“Out[1]=”是系统自动添加的,不需用户键入。

Mathematica还提供“批处理”运行方式,即可以将Mathematica作为一种算法语言,编写程序,让计算机执行,这在第七章将会作简要介绍。

第二章 Mathematica的基本运算功能2.1 算术运算Mathematica最基本的功能是进行算术运算,包括加(+),减(-),乘(*),除(/),乘方(^),阶乘(!)等。

注意:1 在Mathematica中,也可用空格代表乘号;数字和字母相乘,乘号可以省去,例如:3*2可写成3 2,2*x可写成2x,但字母和字母相乘,乘号不能省去。

Mathematica教程2

Mathematica教程2

Mathematica教程2常用的符号(term) 圆括号用于组合运算f[x] 方括号用于函数{ } 花括号用于列表[[i]] 双括号用于排序% 代表最后产生的结果%% 倒数第二次的算结果%%%(k) 倒数第k次的计算结果%n 例出行Out[n])的结果(用时要小心)3.1 多项式的表示形式可认为多项式是表达式的一种特殊的形式,所以多项式的运算与表达式的运算基本一样,表达式中的各种输出形式也可用于多项式的输出。

Mathematica提供一组按不同形式表示代数式的函数。

Expand[ploy] 按幂次展开多项式ployExpand[ploy] 全部展开多项式ployExpandAll[ploy] 全部展开多项式ployFactor[ploy] 对多项式poly 进行因式分解FactorTerms[ploy,按变量x,y,…进行分解{x,y,…}]Simplify[poly] 把多项式化为最简形式FullSimplify[ploy] 把多项式展开并化简Collect[ploy,x] 把多项式poly按x幂展开把多项式poly按x,y….的幂次展Collect[poly,{x,y…}]开1.下面是一些例子8-1 进行分解 (1)(对x(2)(展开多项式(1+x)^5(3)(展开多项式(1+x+3y)4(4).化简(2+x)^4(1+x)^4(3+x)^32.多项式的代数运算多项式的运算有加、减、乘、除运算:+,-,*,/ 下面通过例子说明。

1)a2+3a+2a+1相加(后面例子中也使用这两个多项式运算 ((多项式的加运算与(多项式相减(2)3(多项式相乘()4(多项式相除()5(另外使用Cancel函数可以约去公因式()两个多项式相除,总能写成一个多项式和一个有理式相加Mathematic中提供两个函数PolynomialQuotient和PolynomialRemainder分别返商式和余式。

例如:3(2方程及其根的表示因为Mathematica把方程看作逻辑语句。

Mathematica强大的数值计算和符号运算数学专用软件

Mathematica强大的数值计算和符号运算数学专用软件

Mathematica强大的数值计算和符号运算数学专用软件Mathematica是由美国物理学家Stephen Wolfram领导的Wolfram Research开发的数学系统软件。

它拥有强大的数值计算和符号计算能力,在这一方面与Maple类似,但它的符号计算不是基于Maple上的,而是自己开发的。

Mathematica系统介绍Mathematica的基本系统主要是用C语言开发的,因而可以比较容易地移植到各种平台上,Mathematica是一个交互式的计算系统,计算是在用户和Mathematica互相交换、传递信息数据的过程中完成的。

Mathematica系统所接受的命令都被称作表达式,系统在接受了一个表达式之后就对它进行处理,然后再把计算结果返回。

Mathematica对于输入形式有比较严格的规定,用户必须按照系统规定的数学格式输入,系统才能正确地处理,不过由于3.0版本(及以后版本)引入输入面板,并且可以修改、重组输入面板,因此以前版本输入指令时需要不断切换大小写字符的繁琐方式得到很好的改善。

3.0版本可以用各种格式保存文件和剪贴内容,包括RTF、HTML、BMP等格式。

Mathematica是一个功能强大的数学软件,也是目前国内外最常用的数学软件之一。

该软件不但可以解决数学中的数值计算问题,还可以解决符号演算问题,并且能够方便地绘出各种函数图形。

不管是一个正在学习的学生,还是教师或科研人员,当在学习或科学研究中遇到棘手的数学问题时,Mathematica会提供的各种命令,可以避免做繁琐的数学推导和计算,帮助方便地解决所遇到的很多数学问题,使能省出更多的时间和精力做进一步的学习和探索。

目前,我们在国内外的科研论文、教材等很多地方都能看到Mathematica的身影。

此外,Mathematica 具有简单、易学、界面友好和使用方便等特点,只要你有一定的数学知识并了解计算机的基本操作方法,就能快速掌握Mathematica大部分主要功能,并能用Mathematica解决在学习、教学和科学研究中遇到的数学求解问题。

Mathematica使用教程

Mathematica使用教程

Mathematica 使用教程一、要点●Mathematica 是一个敏感的软件. 所有的Mathematica 函数都以大写字母开头; ●圆括号( ),花括号{ },方括号[ ]都有特殊用途, 应特别注意; ●句号“.”,分号“;”,逗号“,”感叹号“!”等都有特殊用途, 应特别注意; ●用主键盘区的组合键Shfit+Enter 或数字键盘中的Enter 键执行命令.二、介绍案例1. 输入与输出例1 计算 1+1:在打开的命令窗口中输入1+2+3并按组合键Shfit+Enter 执行上述命令,则屏幕上将显示:In[1] : =1+2+3Out[1] =6这里In[1] : = 表示第一个输入,Out[1]= 表示第一个输出,即计算结果.2. 数学常数Pi 表示圆周率π; E 表示无理数e; I 表示虚数单位i ;Degree 表示π/180; Infinity 表示无穷大.注:Pi,Degree,Infinity 的第一个字母必须大写,其后面的字母必须小写.3. 算术运算Mathematica 中用“+”、“-”、“*”、“/” 和“^”分别表示算术运算中的加、减、乘、除和乘方.例2 计算 π⋅⎪⎭⎫ ⎝⎛⋅+⎪⎭⎫ ⎝⎛⋅--213121494891100. 输入 100^(1/4)*(1/9)^(-1/2)+8^(-1/3)*(4/9)^(1/2)*Pi则输出 3103π+ 这是准确值. 如果要求近似值,再输入N[%]则输出 10.543这里%表示上一次输出的结果,命令N[%]表示对上一次的结果取近似值. 还用 %% 表示上上次输出的结果,用 %6表示Out[6]的输出结果.注:关于乘号*,Mathematica 常用空格来代替. 例如,x y z 则表示x*y*z,而xyz 表示字符串,Mathematica 将它理解为一个变量名. 常数与字符之间的乘号或空格可以省略.4. 代数运算例3 分解因式 232++x x输入 Factor[x^2+3x+2]输出 )x 2)(x 1(++例4 展开因式 )2)(1(x x ++输入 Expand[(1+x)(2+x)]输出 2x x 32++例5 通分 3122+++x x 输入 Together[1/(x+3)+2/(x+2)]输出 )x 3)(x 2(x 38+++ 例6 将表达式 )3)(2(38x x x +++ 展开成部分分式 输入 Apart[(8+3x)/((2+x)(3+x))]输出 3x 12x 2+++ 例7 化简表达式 )3)(1()2)(1(x x x x +++++输入 Simplify[(1+x)(2+x)+(1+x)(3+x)]输出 2x 2x 75++三、部分函数1. 内部函数Mathematica 系统内部定义了许多函数,并且常用英文全名作为函数名,所有函数名的第一个字母都必须大写,后面的字母必须小写. 当函数名是由两个单词组成时,每个单词的第一个字母都必须大写,其余的字母必须小写. Mathematica 函数(命令)的基本格式为函数名[表达式,选项]下面列举了一些常用函数: 算术平方根x Sqrt[x]指数函数x e Exp[x]对数函数x a logLog[a,x]对数函数x lnLog[x] 三角函数Sin[x], Cos[x], Tan[x], Cot[x], Sec[x], Csc[x] 反三角函数ArcSin[x], ArcCos[x], ArcT an[x], ArcCot[x], AsrcSec[x], ArcCsc[x] 双曲函数Sinh[x], Cosh[x], T anh[x], 反双曲函数ArcSinh[x], ArcCosh[x], ArcT anh[x] 四舍五入函数Round[x] (*取最接近x 的整数*) 取整函数Floor[x] (*取不超过x 的最大整数*) 取模Mod[m,n] (*求m/n 的模*) 取绝对值函数Abs[x] n 的阶乘n! 符号函数Sign[x] 取近似值N[x,n] (*取x 的有n 位有效数字的近似值,当n 缺省时,n 的默认值 为6*)例8 求π的有6位和20位有效数字的近似值.输入 N[Pi] 输出 3.14159输入 N[Pi, 20] 输出 3.1415926535897932285注:第一个输入语句也常用另一种形式:输入 Pi//N 输出 3.14159例9 计算函数值(1) 输入 Sin[Pi/3] 输出 23 (2) 输入 ArcSin[.45] 输出 0.466765(3) 输入 Round[-1.52] 输出 -2例10 计算表达式 )6.0arctan(226sin 2ln 1132+-+-e π 的值 输入 1/(1+Log[2])*Sin[Pi/6]-Exp[-2]/(2+2^(2/3))*ArcT an[.6]输出 0.2749212. 自定义函数在Mathematica 系统内,由字母开头的字母数字串都可用作变量名,但要注意其中不能包含空格或标点符号.变量的赋值有两种方式. 立即赋值运算符是“=”,延迟赋值运算符是“: =”. 定义函数使用的符号是延迟赋值运算符“: =”.例11 定义函数 12)(23++=x x x f ,并计算)2(f ,)4(f ,)6(f .输入Clear[f,x]; (*清除对变量f 原先的赋值*)f[x_]:=x^3+2*x^2+1; (*定义函数的表达式*)f[2] (*求)2(f 的值*)f[x]/.{x->4} (*求)4(f 的值,另一种方法*)x=6; (*给变量x 立即赋值6*)f[x] (*求)6(f 的值,又一种方法*)输出1797289注:本例1、2、5行的结尾有“;”,它表示这些语句的输出结果不在屏幕上显示.四、解方程在Mathematica 系统内,方程中的等号用符号“==”表示. 最基本的求解方程的命令为Solve[eqns, vars]它表示对系数按常规约定求出方程(组)的全部解,其中eqns 表示方程(组),vars 表示所求未知变量.例12 解方程0232=++x x输入 Solve[x^2+3x+2==0, x]输出 }}1x {},2x {{-→-→例13 解方程组 ⎩⎨⎧=+=+10dy cx by ax 输入 Solve[{a x + b y == 0,c x + d y ==1}, {x,y}]输出 ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+-→-→ad bc a y ,ad bc b x 例14 解无理方程a x x =++-11输入 Solve[Sqrt[x-1]+ Sqrt[x+1] == a, x]输出 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+→24a 4a 4x 很多方程是根本不能求出准确解的,此时应转而求其近似解. 求方程的近似解的方法有两种,一种是在方程组的系数中使用小数,这样所求的解即为方程的近似解;另一种是利用下列专门用于求方程(组)数值解的命令:NSolve[eqns, vars] (*求代数方程(组)的全部数值解*)FindRoot[eqns, {x, x0}, {y, y0}Λ,]后一个命令表示从点),,(00Λy x 出发找方程(组)的一个近似解,这时常常需要利用图像法先大致确定所求根的范围,是大致在什么点的附近.例15 求方程013=-x 的近似解输入 NSolve[x^3-1== 0, x]输出 {{→x -0.5-0.866025ii},{→x -0.5+0.866025ii},{→x 1.}}输入 FindRoot[x^3-1==0,{x, .5}]输出 {→x 1.}下面再介绍一个很有用的命令:Eliminate[eqns, elims] (*从一组等式中消去变量(组)elims*)例16从方程组 ⎪⎩⎪⎨⎧=+=-+-+=++11)1()1(1222222y x z y x z y x 消去未知数y 、z . 输入Eliminate[{x^2+y^2+z^2 ==1,x^2+(y-1)^2 + (z-1)^2 ==1, x + y== 1},{y, z}]输出 0x 3x 22==+-注:上面这个输入语句为多行语句,它可以像上面例子中那样在行尾处有逗号的地方将行与行隔开, 来迫使Mathematica 从前一行继续到下一行在执行该语句. 有时候多行语句的意义不太明确,通常发生在其中有一行本身就是可执行的语句的情形,此时可在该行尾放一个继续的记号“\”,来迫使Mathematica 继续到下一行再执行该语句.五、保存与退出Mathematica 很容易保存Notebook 中显示的内容,打开位于窗口第一行的File 菜单,点击Save后得到保存文件时的对话框,按要求操作后即可把所要的内容存为 *.nb 文件. 如果只想保存全部输入的命令,而不想保存全部输出结果,则可以打开下拉式菜单Kernel,选中Delete All Output,然后 再执行保存命令. 而退出Mathematica 与退出Word 的操作是一样的.六、查询与帮助查询某个函数(命令)的基本功能,键入“?函数名”,想要了解更多一些,键入“??函数名”,例如,输入?Plot则输出Plot[f,{x,xmin,xmax}] generates a plot of f as a functionof x from xmin to xmax. Plot[{f1,f2,…},{x,xmin,xmax}] plots several functions fi 它告诉了我们关于绘图命令“Plot”的基本使用方法.例17 在区间]1,1[-上作出抛物线2xy=的图形.输入Plot[x^2,{x,-1,1}]则输出例18 .输入Plot[{Sin[x],Cos[x]},{x,0,2Pi}]则输出??Plot则Mathematica会输出关于这个命令的选项的详细说明,请读者试之.此外,Mathematica的Help菜单中提供了大量的帮助信息,其中Help菜单中的第一项Help Browser(帮助游览器)是常用的查询工具,读者若想了解更多的使用信息,则应自己通过Help菜单去学习.编辑本段Mathematica 基本运算a+mathematica数学实验(第2版) b+c 加a-b 减a b c 或a*b*c 乘a/b 除-a 负号a^b 次方Mathematica 数字的形式256 整数2.56 实数11/35 分数2+6I 复数常用的数学常数Pi 圆周率,π=3.141592654…E 尤拉常数,e=2.71828182…Degree 角度转换弧度的常数,Pi/180 I 虚数,其值为√-1Infinity 无限大指定之前计算结果的方法% 前一个运算结果%% 前二个运算结果%%…%(n个%) 前n个运算结果%n 或Out[n] 前n个运算结果复数的运算指令a+bI 复数Conjugate[a+bI] 共轭复数Re[z], Im[z] 复数z的实数/虚数部分Abs[z] 复数z的大小或模数(Modulus)Arg[z] 复数z的幅角(Argument)Mathematica 输出的控制指令expr1; expr2; expr3 做数个运算,但只印出最後一个运算的结果expr1; expr2; expr3; 做数个运算,但都不印出结果expr; 做运算,但不印出结果Sin[x],Cos[x],Tan[x],Cot[x],Sec[x],Csc[x] 三角函数,其引数的单位为弪度Sinh[x],Cosh[x],Tanh[x],…双曲函数ArcSin[x],ArcCos[x],ArcTan[x] 反三角函数ArcCot[x],ArcSec[x],ArcCsc[x]ArcSinh[x],ArcCosh[x],ArcTanh[x],…反双曲函数Sqrt[x] 根号Exp[x] 指数Log[x] 自然对数Log[a,x] 以a为底的对数Abs[x] 绝对值Round[x] 最接近x的整数Floor[x] 小於或等於x的最大整数Ceiling[x] 大於或等於x的最小整数Mod[a,b] a/b所得的馀数n! 阶乘Random[] 0至1之间的随机数(最新版本已经不用这个函数,改为使用RandomReal[])Max[a,b,c,...],Min[a,b,c,…] a,b,c,…的极大/极小值x=a 将变数x的值设为ax=y=b 将变数x和y的值均设为bx=. 或Clear[x] 除去变数x所存的值变数使用的一些法则xy 中间没有空格,视为变数xyx y x乘上y3x 3乘上xx3 变数x3x^2y 为x^2 y次方运算子比乘法的运算子有较高的处理顺序Expand[expr] 将expr展开Factor[expr] 将expr因式分解Simplify[expr] 将expr化简成精简的式子FullSimplify[expr] Mathematica 会尝试更多的化简公式,将expr化成更精简的式子ExpandAll[expr] 把算是全部展开Together[expr] 将expr各项通分在并成一项Apart[expr] 把分式拆开成数项分式的和Apart[expr,var] 视var以外的变数为常数,将expr拆成数项的和Cancel[expr] 把分子和分母共同的因子消去Denominator[expr] 取出expr的分母Numerator[expr] 取出expr的分子ExpandDenominator[expr] 展开expr的分母ExpandNumerator[expr] 展开expr的分子Collect[expr,x] 将expr表示成x的多项式,如Collect[expr,{x,y,…}] 将expr分别表示成x,y,…的多项式FactorTerms[expr] 将expr的数值因子提出,如4x+2=2(2x+1)FactorTerms[expr,x] 将expr中把所有不包含x项的因子提出FactorTerms[expr,{x,y,…}] 将expr中把所有不包含{x,y,...}项的因子提出TrigExpand[expr] 将三角函数展开TrigFactor[expr] 将三角函数所组成的数学式因式分解TrigReduce[expr] 将相乘或次方的三角函数化成一次方的基本三角函数之组合ExpToTrig[expr] 将指数函数化成三角函数或双曲函数TrigToExp[expr] 将三角函数或双曲函数化成指数函数复数、次方乘积之展开ComplexExpand[expr] 假设所有的变数都是实数来对expr展开ComplexExpand[expr,{x,y,…}] 假设x,y,..等变数均为复数来对expr展开PowerExpand[expr] 将多项式项次、系数与最高次方之取得Coefficient[expr,form] 於expr中form的系数Exponent[expr,form] 於expr中form的最高次方Part[expr,n] 或expr[[n]] 在expr项中第n个项代换运算子expr/.x->value 将expr里所有的x均代换成valueexpr/.{x->value1,y->value2,…} 执行数个不同变数的代换expr/.{{x->value1},{x->value2},…} 将expr代入不同的x值expr//.{x->value1,y->value2,…} 重复代换到expr不再改变为止求解方程式的根Solve[lhs==rhs,x] 解方程式lhs==rhs,求xNsolve[lhs==rhs,x] 解方程式lhs==rhs的数值解Solve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}] 解联立方程式,求x,y,…NSolve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}] 解联立方程式的数值解FindRoot[lhs==rhs,{x,x0}] 由初始点x0求lhs==rhs的根Mathematica 的四种括号(term) 圆括号,括号内的term先计算f[x] 方括号,内放函数的引数{x,y,z} 大括号或串列括号,内放串列的元素p[[i ]] 或Part[p,i] 双方括号,p的第i项元素p[[i,j]] 或Part[p,i,j] p的第i项第j个元素缩短Mathematica输出的指令expr//Short 显示一行的计算结果Short[expr,n] 显示n行的计算结果Command; 执行command,但不列出结果查询Mathematica的物件?Command 查询Command的语法及说明??Command 查询Command的语法和属性及选择项?Aaaa* 查询所有开头为Aaaa的物件函数的定义、查询与清除f[x_]= expr 立即定义函数f[x]f[x_]:= expr 延迟定义函数f[x]f[x_,y_,…] 函数f有两个以上的引数?f 查询函数f的定义Clear[f] 或f=. 清除f的定义Remove[f] 将f自系统中清除掉含有预设值的Patterna_+b_. b的预设值为0,即若b从缺,则b以0代替x_ y_ y的预设值为1x_^y_ y的预设值为1条件式的自订函数lhs:=rhs/;condition 当condition成立时,lhs才会定义成rhsIf指令If[test,then,else] 若test为真,则回应then,否则回应elseIf[test,then,else,unknow] 同上,若test无法判定真或假时,则回应unknow 极限Limit[expr,x->c] 当x趋近c时,求expr的极限Limit[expr,x->c,Direction->1]Limit[expr,x->c,Direction->-1]微分D[f,x] 函数f对x作微分D[f,x1,x2,…] 函数f对x1,x2,…作微分D[f,{x,n}] 函数f对x微分n次D[f,x,NonConstants->{y,z,…}] 函数f对x作微分,将y,z,…视为x的函数全微分Dt[f] 全微分dfDt[f,x] 全微分Dt[f,x1,x2,…] 全微分Dt[f,x,Constants->{c1,c2,…}] 全微分,视c1,c2,…为常数不定积分Integrate[f,x] 不定积分∫f dx定积分Integrate[f,{x,xmin,xmax}] 定积分Integrate[f,{x,xmin,xmax},{y,ymin,ymax}] 定积分数列之和与积Sum[f,{i,imin,imax}] 求和Sum[f,{i,imin,imax,di}] 求数列和,引数i以di递增Sum[f,{i,imin,imax},{j,jmin,jmax}]Product[f,{i,imin,imax}] 求积Product[f,{i,imin,imax,di}] 求数列之积,引数i以di递增Product[f,{i,imin,imax},{j,jmin,jmax}]函数之泰勒展开式Series[expr,{x,x0,n}] 对expr於x0点作泰勒级数展开至(x-x0)n项Series[expr,{x,x0,m},{y,y0,n}] 对x0和y0展开关系运算子a==b 等於a>b 大於a>=b 大於等於a<b 小於a<=b 小於等於a!=b 不等於逻辑运算子!p notp||q||… orp&&q&&… andXor[p,q,…] exclusive orLogicalExpand[expr] 将逻辑表示式展开基本二维绘图指令Plot[f,{x,xmin,xmax}]画出f在xmin到xmax之间的图形Plot[{f1,f2,…},{x,xmin,xmax}]同时画出数个函数图形Plot[f,{x,xmin,xmax},option->value]指定特殊的绘图选项,画出函数f的图形Plot[]几种常用选项的指令选项预设值说明AspectRatio 1/GoldenRatio 图形高和宽之比例,高/宽Axes True 是否把坐标轴画出AxesLabel Automatic 为坐标轴贴上标记,若设定为AxesLabel->{?ylabel?},则为y轴之标记。

mathmatica符号运算

mathmatica符号运算

Mathematica是一种强大的数学符号计算系统,它可以进行符号运算、数值计算、绘图和数据分析等多种数学操作。

作为一种专业的数学软件,Mathematica在科学研究、工程设计和教育教学中被广泛应用,它为用户提供了丰富的功能和简洁的操作界面。

本文将介绍Mathematica中的符号运算功能,包括基本运算、方程求解、微积分计算、矩阵运算等内容,帮助读者更好地了解和使用这一强大的数学工具。

一、基本运算在Mathematica中,可以使用基本的运算符号进行加减乘除等计算。

输入表达式"a + b",Mathematica会自动进行加法运算并给出结果。

除了基本的四则运算外,Mathematica还支持幂运算、取余运算等操作,可以满足用户在数学计算中的各种需求。

二、方程求解Mathematica能够对各种类型的方程进行求解,包括线性方程、二次方程、多项式方程、常微分方程等。

用户可以通过输入方程表达式,使用Solve或NSolve等函数进行求解,得到方程的解析解或数值解。

Mathematica还支持对方程组进行求解,可以解决多元方程的求解问题。

三、微积分计算微积分是数学中重要的内容,Mathematica提供了丰富的微积分计算功能,包括求导、积分、极限、级数等操作。

用户可以通过输入函数表达式,使用D、Integrate、Limit等函数进行微积分计算,得到函数的导数、不定积分、定积分等结果。

这些功能在科学研究和工程设计中具有重要的应用价值。

四、矩阵运算矩阵运算是数学中常见的运算方式,Mathematica为用户提供了丰富的矩阵运算功能,包括矩阵乘法、转置、逆矩阵、特征值等操作。

用户可以通过输入矩阵表达式,使用Dot、Transpose、Inverse、Eigenvalues等函数进行矩阵运算,得到矩阵的乘积、转置矩阵、逆矩阵、特征值等结果。

这些功能上线性代数和数值分析中具有重要的应用价值。

《Mathematica》使用手册

《Mathematica》使用手册

《Mathematica》使用手册Mathematica使用手册=========================第一章:介绍Mathematica-------------------------------------1.1 Mathematica的概述Mathematica是一种强大的数学计算和数据处理软件,广泛应用于科学、工程、计算机科学等领域。

1.2 安装和启动本节介绍如何安装Mathematica软件并启动它。

1.3 界面和基本操作介绍Mathematica的界面和基本操作,包括工具栏、菜单、笔记本等。

第二章:基本语法和数据类型-------------------------------------2.1 表达式和运算符讲解Mathematica的表达式和运算符,包括数值运算、符号运算、逻辑运算等。

2.2 变量和函数介绍Mathematica中的变量和函数的定义和使用方法。

2.3 数据类型讲解Mathematica中的基本数据类型,包括数值类型、字符串类型、列表类型等。

第三章:图形绘制-------------------------------------3.1 绘制函数图像介绍使用Mathematica绘制函数图像的方法和技巧。

3.2 绘制二维图形讲解Mathematica中绘制二维图形的常用函数和参数设置。

3.3 绘制三维图形介绍Mathematica中绘制三维图形的方法,包括绘制曲面、绘制立体图形等。

第四章:方程求解和数值计算4.1 方程求解讲解Mathematica中方程求解的方法和技巧。

4.2 数值计算介绍Mathematica中数值计算的函数和用法。

4.3 微分方程求解讲解Mathematica中求解微分方程的方法和技巧。

第五章:数据分析和统计-------------------------------------5.1 数据导入和导出介绍Mathematica中的数据导入和导出方法。

Mathematica使用入门数学软件Mathematica课件

Mathematica使用入门数学软件Mathematica课件

16
内置函数
Mathematica 具有超过 3000 个内置函数,具体见 “帮助” “参考资料中心” 的左下角处的 “函数索引”
Mathematica 函数命名规则 ① 第一个字母大写,后面跟小写字母,如 Sin[x], Log[x] ② 大多数函数名与数学中的名称相同 ③ 当函数名分为几段时,每一段的头一个字母大写,后面 的用小写字母,如:ArcSin[x]
In[1]:= Clear[x,y]; In[2]:= f=2*x+y; In[3]:= f./{x->2,y->3} (* f(2,3) 的值 *) In[3]:= f./{2->5} (*把 2 替换成 5*)
14
数的基本运算
Mathematica 中的实数分精确数和双精度数
N[x,n] N[x] IntegerPart[x]
可以运行单个命令或语句 也可以运行多个语句:输入全部语句后再按执行键 命令(语句)分隔符:回车或分号 如果不需要显示运行结果:在语句后面加分号
输入和输出标识符:In[n]: 和 Out[n]
In[1]:= Sin[Pi/4]+Cos[Pi/4]
Out[1]= 2
8
数学公式的输入
数学公式的输入
lim(1 1
n
2
黄金分割数:1 1 5 2
虚部单位
1 ln n) 0.577215 n
无穷大
圆周率
11
基本运算符
基本运算:
算术运算 +-*/ ^ !
加减乘除 幂 阶乘(运算级别比加减乘除和幂运算高)
比较运算与逻辑运算 == > < >= <= != && || ! Xor

mathematica 符号计算

mathematica 符号计算

Mathematica 是一款强大的数学软件,它可以进行符号计算,也就是处理数学公式和表达式,而不仅仅是数字。

以下是一些在 Mathematica 中进行符号计算的基本操作:1. **定义符号变量**:在Mathematica 中,你可以使用`Symbol` 函数定义符号变量。

例如,`Symbol[x]` 会创建一个名为 x 的符号。

2. **基本运算**:Mathematica 支持基本的数学运算,如加法、减法、乘法、除法、指数等。

例如,`x + y`、`x - y`、`x * y`、`x / y` 和 `x^n` 分别表示加法、减法、乘法、除法和指数运算。

3. **函数和表达式**:你可以定义自己的函数,并使用这些函数进行计算。

例如,`f[x_] := x^2 + 3x` 定义了一个函数f(x),这个函数返回 x 的平方加上 3x。

4. **积分和微分**:Mathematica 可以进行符号积分和微分。

例如,`Integrate[x^2, x]` 会计算 x^2 的积分,而 `D[x^2, x]` 会计算 x^2 的导数。

5. **简化表达式**:你可以使用 `Simplify` 函数来简化表达式。

例如,`Simplify[x^2 + 2x]` 会简化表达式为 `x(x + 2)`。

6. **求解方程**:你可以使用 `Solve` 函数来求解方程。

例如,`Solve[x^2 - 4 == 0, x]` 会求解方程 x^2 - 4 = 0 并返回解x = ±2。

7. **替换和替换规则**:你可以使用 `ReplaceAll` 或 `/.` 操作符来替换表达式中的一部分。

例如,`expr /. x -> y` 会将表达式 expr 中的所有 x 替换为 y。

以上是 Mathematica 进行符号计算的一些基本操作。

要深入了解 Mathematica 的符号计算功能,建议查阅 Mathematica 的官方文档或相关教程。

Mathematica简易教程

Mathematica简易教程
4. 使用条件运算符定义和IF命名定义函数 如定义:
Page 21
使用条件运算符,基本格式为:f[x_]:=expr/;condition,当condition条件满足 时才把expr赋给f(x)。
Page 22
当然,使用If命令也可以定义上面的函数,If语句的格式为If[条件,值1,值 2],如果条件成立取“值1”,否则取“值2”,用If语句定义如下:
mathematicapage目录第一章mathematica简介第二章mathematica的基本量第三章mathematica的基本运算第四章函数作图第五章微积分的基本操作page第一章mathematica简介mathematica由美国物理学家stephenwolfram领导开发的他们组建wolfram研究公司mathematica是一个计算机代数系统把符号运算数值计算与图形显示集一体可以完成上述三项功能更重要的是它把这些功能融合在一个系统里使它们成为一个整体
3.2.4 解条件方程
在作方程计算时,可以把一个方程看做你要处理的主要方程,而把其 他方程作为必须满足的辅助条件,你就会发现这样处理很方便。 在Mathematica中,我们通常是首先命名辅助条件组,然后用名字把辅 助条件包含在你要用函数Solve[]求解的方程组中。
Page 40
3.3 求和与求积
Mathematica简介与入门
目录
第一章 Mathematica简介 第二章 Mathematica的基本量
第三章 Mathematica的基本运算
第四章 函数作图 第五章 微积分的基本操作
Page 2
第一章 Mathematica简介
Mathematica由美国物理学家Stephen Wolfram领导开发的,他们组建Wolfram 研究公司 Mathematica是一个计算机代数系统,把 符号运算、数值计算与图形显示集一体, 可以完成上述三项功能,更重要的是它把 这些功能融合在一个系统里,使它们成为 一个整体.此外,Mathematica还是一个 易于扩充的系统,即实际上提供了功能强 大的程序设计语言,可以定义用户需要的 各种函数,完成用户需要的各种工作,系 统本身还提供了一大批用这个语言写出的 专门程序或软件包 Mathematica的发布标志着现代科技计算 的开始。Mathematica是世界上通用计算 系统中最强大的系统。自从1988发布以来, 它已经对如何在科技和其它领域运用计算 机产生了深刻的影响

Mathematica函数大全--运算符及特殊符号解读

Mathematica函数大全--运算符及特殊符号解读

Mathematica函数大全--运算符及特殊符号一、运算符及特殊符号Line1; 执行Line,不显示结果Line1,line2 顺次执行Line1,2,并显示结果?name 关于系统变量name的信息??name 关于系统变量name的全部信息!command 执行Dos命令n! N的阶乘!!filename 显示文件内容<Expr>> filename 打开文件写Expr>>>filename 打开文件从文件末写() 结合率[] 函数{} 一个表<*Math Fun*> 在c语言中使用math的函数(*Note*) 程序的注释#n 第n个参数## 所有参数rule& 把rule作用于后面的式子% 前一次的输出%% 倒数第二次的输出%n 第n个输出var::note 变量var的注释"Astring " 字符串Context ` 上下文a+b 加a-b 减a*b或a b 乘a/b 除a^b 乘方base^^num 以base为进位的数lhs&&rhs 且lhs||rhs 或!lha 非++,-- 自加1,自减1+=,-=,*=,/= 同C语言>,<,>=,<=,==,!= 逻辑判断(同c)lhs=rhs 立即赋值lhs:=rhs 建立动态赋值lhs:>rhs 建立替换规则lhs->rhs 建立替换规则expr//funname 相当于filename[expr]expr/.rule 将规则rule应用于exprexpr//.rule 将规则rule不断应用于expr知道不变为止param_ 名为param的一个任意表达式(形式变量)param__ 名为param的任意多个任意表达式(形式变量)Mathematica函数及使用方法—————————————————————————————————————二、系统常数Pi 3.1415....的无限精度数值E 2.17828...的无限精度数值Catalan 0.915966..卡塔兰常数EulerGamma 0.5772....高斯常数GoldenRatio 1.61803...黄金分割数Degree Pi/180角度弧度换算I 复数单位Infinity 无穷大-Infinity 负无穷大ComplexInfinity 复无穷大Indeterminate 不定式三、代数计算Expand[expr] 展开表达式Factor[expr] 展开表达式Simplify[expr] 化简表达式FullSimplify[expr] 将特殊函数等也进行化简PowerExpand[expr] 展开所有的幂次形式ComplexExpand[expr,{x1,x2...}] 按复数实部虚部展开FunctionExpand[expr] 化简expr中的特殊函数Collect[expr, x] 合并同次项Collect[expr, {x1,x2,...}] 合并x1,x2,...的同次项Together[expr] 通分Apart[expr] 部分分式展开Apart[expr, var] 对var的部分分式展开Cancel[expr] 约分ExpandAll[expr] 展开表达式ExpandAll[expr, patt] 展开表达式FactorTerms[poly] 提出共有的数字因子FactorTerms[poly, x] 提出与x无关的数字因子FactorTerms[poly, {x1,x2...}] 提出与xi无关的数字因子Coefficient[expr, form] 多项式expr中form的系数Coefficient[expr, form, n] 多项式expr中form^n的系数Exponent[expr, form] 表达式expr中form的最高指数Numerator[expr] 表达式expr的分子Denominator[expr] 表达式expr的分母ExpandNumerator[expr] 展开expr的分子部分ExpandDenominator[expr] 展开expr的分母部分ExpandDenominator[expr] 展开expr的分母部分TrigExpand[expr] 展开表达式中的三角函数TrigFactor[expr] 给出表达式中的三角函数因子TrigFactorList[expr] 给出表达式中的三角函数因子的表TrigReduce[expr] 对表达式中的三角函数化简TrigToExp[expr] 三角到指数的转化ExpToTrig[expr] 指数到三角的转化RootReduce[expr]ToRadicals[expr]四、解方程Solve[eqns, vars] 从方程组eqns中解出varsSolve[eqns, vars, elims] 从方程组eqns中削去变量elims,解出varsDSolve[eqn, y, x] 解微分方程,其中y是x的函数DSolve[{eqn1,eqn2,...},{y1,y2...},x]解微分方程组,其中yi是x的函数DSolve[eqn, y, {x1,x2...}] 解偏微分方程Eliminate[eqns, vars] 把方程组eqns中变量vars约去SolveAlways[eqns, vars] 给出等式成立的所有参数满足的条件Reduce[eqns, vars] 化简并给出所有可能解的条件LogicalExpand[expr] 用&&和||将逻辑表达式展开InverseFunction[f] 求函数f的逆函数Root[f, k] 求多项式函数的第k个根Roots[lhs==rhs, var] 得到多项式方程的所有根五、微积分函数D[f, x] 求f[x]的微分D[f, {x, n}] 求f[x]的n阶微分D[f,x1,x2..] 求f[x]对x1,x2...偏微分Dt[f, x] 求f[x]的全微分df/dxDt[f] 求f[x]的全微分dfDt[f, {x, n}] n阶全微分df^n/dx^nDt[f,x1,x2..] 对x1,x2..的偏微分Integrate[f, x] f[x]对x在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x趋近于x0时expr的极限Residue[expr, {x,x0}] expr在x0处的留数Series[f, {x, x0, n}] 给出f[x]在x0处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}]先对y幂级数展开,再对xNormal[expr] 化简并给出最常见的表达式SeriesCoefficient[series, n] 给出级数中第n次项的系数SeriesCoefficient[series, {n1,n2...}]'或Derivative[n1,n2...][f] 一阶导数InverseSeries[s, x] 给出逆函数的级数ComposeSeries[serie1,serie2...] 给出两个基数的组合SeriesData[x,x0,{a0,a1,..},nmin,nmax,den]表示一个在x0处x的幂级数,其中aii为系数O[x]^n n阶小量x^nO[x, x0]^n n阶小量(x-x0)^nDt[f, x] 求f[x]的全微分df/dxDt[f] 求f[x]的全微分dfDt[f, {x, n}] n阶全微分df^n/dx^nDt[f,x1,x2..] 对x1,x2..的偏微分Integrate[f, x] f[x]对x在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x趋近于x0时expr的极限Residue[expr, {x,x0}] expr在x0处的留数Series[f, {x, x0, n}] 给出f[x]在x0处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}]先对y幂级数展开,再对xNormal[expr] 化简并给出最常见的表达式SeriesCoefficient[series, n] 给出级数中第n次项的系数SeriesCoefficient[series, {n1,n2...}]'或Derivative[n1,n2...][f] 一阶导数InverseSeries[s, x] 给出逆函数的级数ComposeSeries[serie1,serie2...] 给出两个基数的组合SeriesData[x,x0,{a0,a1,..},nmin,nmax,den]表示一个在x0处x的幂级数,其中ai O[x]^n n阶小量x^nO[x, x0]^n n阶小量(x-x0)^n六、多项式函数Variables[poly] 给出多项式poly中独立变量的列表CoefficientList[poly, var] 给出多项式poly中变量var的系数CoefficientList[poly, {var1,var2...}]给出多项式poly中变量var(i)的系数列? PolynomialMod[poly, m] poly中各系数mod m同余后得到的多项式,m可为整式PolynomialQuotient[p, q, x] 以x为自变量的两个多项式之商式p/q PolynomialRemainder[p, q, x] 以x为自变量的两个多项式之余式PolynomialGCD[poly1,poly2,...] poly(i)的最大公因式PolynomialLCM[poly1,poly2,...] poly(i)的最小公倍式PolynomialReduce[poly, {poly1,poly2,...},{x1,x2...}]得到一个表{{a1,a2,...},b}其中Sum[ai*polyi]+b=polyResultant[poly1,poly2,var] 约去poly1,poly2中的varFactor[poly] 因式分解(在整式范围内)FactorTerms[poly] 提出poly中的数字公因子FactorTerms[poly, {x1,x2...}] 提出poly中与xi无关项的数字公因子FactorList[poly]给出poly各个因子及其指数{{poly1,exp1},{...}...}FactorSquareFreeList[poly]FactorTermsList[poly,{x1,x2...}] 给出各个因式列表,第一项是数字公因子,第二项是与xi无关的因式,其后是与xi有关的因式按升幂的排排? Cyclotomic[n, x] n阶柱函数Decompose[poly, x] 迭代分解,给出{p1,p2,...},其中p1(p2(...))=poly InterpolatingPolynomial[data, var] 在数据data上的插值多项式data可以写为{f1,f2..}相当于{{x1=1,y1=f1}..}data可以写为{{x1,f1,df11,df12,..},{x2,f2,df21..}可以指定数据点上的n阶导数值RootSum[f, form] 得到f[x]=0的所有根,并求得Sum[form[xi]]七、随机函数Random[type,range] 产生type类型且在range范围内的均匀分布随机数type可以为Integer,Real,Complex,不写默认为Realrange为{min,max},不写默认为{0,1}Random[] 0~1上的随机实数SeedRandom[n] 以n为seed产生伪随机数如果采用了 <在2.0版本为 <<"D:\\Math\\PACKAGES\\STATISTI\\Continuo.m"Random[distribution]可以产生各种分布如Random[BetaDistribution[alpha, beta]]stribution[alpha, beta]]Random[NormalDistribution[miu,sigma]]等常用的分布如BetaDistribution,CauchyDistribution,ChiDistribution, NoncentralChiSquareDistribution,ExponentialDistribution, ExtremeValueDistribution,NoncentralFRatioDistribution, GammaDistribution,HalfNormalDistribution, LaplaceDistribution, LogNormalDistribution,LogisticDistribution,RayleighDistribution,NoncentralStudentTDistribution, UniformDistribution, WeibullDistribution八、数值函数N[expr] 表达式的机器精度近似值N[expr, n] 表达式的n位近似值,n为任意正整数NSolve[lhs==rhs, var] 求方程数值解NSolve[eqn, var, n] 求方程数值解,结果精度到n位NDSolve[eqns, y, {x, xmin, xmax}]微分方程数值解NDSolve[eqns, {y1,y2,...}, {x, xmin, xmax}]微分方程组数值解FindRoot[lhs==rhs, {x,x0}] 以x0为初值,寻找方程数值解FindRoot[lhs==rhs, {x, xstart, xmin, xmax}]NSum[f, {i,imin,imax,di}] 数值求和,di为步长NSum[f, {i,imin,imax,di}, {j,..},..] 多维函数求和NProduct[f, {i, imin, imax, di}]函数求积NIntegrate[f, {x, xmin, xmax}] 函数数值积分优化函数:FindMinimum[f, {x,x0}] 以x0为初值,寻找函数最小值FindMinimum[f, {x, xstart, xmin, xmax}]ConstrainedMin[f,{inequ},{x,y,..}]inequ为线性不等式组,f为x,y..之线性函数,得到最小值及此时的x,y..取值ConstrainedMax[f, {inequ}, {x, y,..}]同上LinearProgramming[c,m,b] 解线性组合c.x在m.x>=b&&x>=0约束下的最小值,x,b,c为向量,m为矩阵LatticeReduce[{v1,v2...}] 向量组vi的极小无关组数据处理:Fit[data,funs,vars]用指定函数组对数据进行最小二乘拟和data可以为{{x1,y1,..f1},{x2,y2,..f2}..}多维的情况emp: Fit[{10.22,12,3.2,9.9}, {1, x, x^2,Sin[x]}, x]Interpolation[data]对数据进行差值,data同上,另外还可以为{{x1,{f1,df11,df12}},{x2,{f2,.}..}指定各阶导数InterpolationOrder默认为3次,可修改ListInterpolation[array]对离散数据插值,array可为n维ListInterpolation[array,{{xmin,xmax},{ymin,ymax},..}] FunctionInterpolation[expr,{x,xmin,xmax}, {y,ymin,ymax},..]以对应expr[xi,yi]的为数据进行插值Fourier[list] 对复数数据进行付氏变换InverseFourier[list] 对复数数据进行付氏逆变换Min[{x1,x2...},{y1,y2,...}]得到每个表中的最小值Max[{x1,x2...},{y1,y2,...}]得到每个表中的最大值Select[list, crit] 将表中使得crit为True的元素选择出来Count[list, pattern] 将表中匹配模式pattern的元素的个数Sort[list] 将表中元素按升序排列Sort[list,p] 将表中元素按p[e1,e2]为True的顺序比较list的任两个元素e1,e2,实际上Sort[list]中默认p=Greater集合论:Union[list1,list2..] 表listi的并集并排序Intersection[list1,list2..] 表listi的交集并排序Complement[listall,list1,list2...]从全集listall中对listi的差集九、虚数函数Re[expr] 复数表达式的实部Im[expr] 复数表达式的虚部Abs[expr] 复数表达式的模Arg[expr] 复数表达式的辐角Conjugate[expr] 复数表达式的共轭十、数的头及模式及其他操作Integer _Integer 整数Real _Real 实数Complex _Complex 复数Rational_Rational 有理数(*注:模式用在函数参数传递中,如MyFun[Para1_Integer,Para2_Real]规定传入参数的类型,另外也可用来判断If[Head[a]==Real,...]*)IntegerDigits[n,b,len] 数字n以b近制的前len个码元RealDigits[x,b,len] 类上FromDigits[list] IntegerDigits的反函数Rationalize[x,dx] 把实数x有理化成有理数,误差小于dxChop[expr, delta] 将expr中小于delta的部分去掉,dx默认为10^-10Accuracy[x] 给出x小数部分位数,对于Pi,E等为无限大Precision[x] 给出x有效数字位数,对于Pi,E等为无限大SetAccuracy[expr, n] 设置expr显示时的小数部分位数[expr, n] 设置expr显示时的有效数字位数十一、区间函数Interval[{min, max}] 区间[min, max](* Solve[3 x+2==Interval[{-2,5}],xx]*) IntervalMemberQ[interval, x] x在区间内吗?IntervalMemberQ[interval1,interval2] 区间2在区间1内吗?IntervalUnion[intv1,intv2...] 区间的并IntervalIntersection[intv1,intv2...] 区间的交十二、矩阵操作a.b.c 或 Dot[a, b, c] 矩阵、向量、张量的点积Inverse[m] 矩阵的逆Transpose[list] 矩阵的转置Transpose[list,{n1,n2..}]将矩阵list 第k行与第nk列交换Det[m] 矩阵的行列式Eigenvalues[m] 特征值Eigenvectors[m] 特征向量特征值Eigenvectors[m] 特征向量Eigensystem[m] 特征系统,返回{eigvalues,eigvectors}LinearSolve[m, b] 解线性方程组m.x==bNullSpace[m] 矩阵m的零空间,即m.NullSpace[m]==零向量RowReduce[m] m化简为阶梯矩阵Minors[m, k] m的所有k*k阶子矩阵的行列式的值(伴随阵,好像是)MatrixPower[mat, n] 阵mat自乘n次Outer[f,list1,list2..] listi中各个元之间相互组合,并作为f的参数的到的矩矩? Outer[Times,list1,list2]给出矩阵的外积SingularValues[m] m的奇异值,结果为{u,w,v},m=Conjugate[Transpose[u]].DiagonalMatrix[w].vPseudoInverse[m] m的广义逆QRDecomposition[m] QR分解SchurDecomposition[m] Schur分解LUDecomposition[m] LU分解十三、表函数(*“表”,我认为是Mathematica中最灵活的一种数据类型 *)(*实际上表就是表达式,表达式也就是表,所以下面list==expr *)(*一个表中元素的位置可以用于一个表来表示 *)表的生成{e1,e2,...} 一个表,元素可以为任意表达式,无穷嵌套Table[expr,{imax}] 生成一个表,共imax个元素Table[expr,{i, imax}] 生成一个表,共imax个元素expr[i]Table[expr,{i,imin,imax},{j,jmin,jmax},..] 多维表Range[imax] 简单数表{1,2,..,imax}Range[imin, imax, di] 以di为步长的数表Array[f, n] 一维表,元素为f[i] (i从1到n)Array[f,{n1,n2..}] 多维表,元素为f[i,j..] (各自从1到ni)IdentityMatrix[n] n阶单位阵DiagonalMatrix[list] 对角阵元素操作Part[expr, i]或expr[[i]]第i个元expr[[-i]] 倒数第i个元expr[[i,j,..]] 多维表的元expr[[{i1,i2,..}] 返回由第i(n)的元素组成的子表First[expr] 第一个元Last[expr] 最后一个元Head[expr] 函数头,等于expr[[0]]Extract[expr, list] 取出由表list制定位置上expr的元素值Take[list, n] 取出表list前n个元组成的表Take[list,{m,n}] 取出表list从m到n的元素组成的表Drop[list, n] 去掉表list前n个元剩下的表,其他参数同上Rest[expr] 去掉表list第一个元剩下的表Select[list, crit] 把crit作用到每一个list的元上,为True的所有元组成的表表的属性Length[expr] expr第一曾元素的个数Dimensions[expr] 表的维数返回{n1,n2..},expr为一个n1*n2...的阵TensorRank[expr] 秩Depth[expr] expr最大深度Level[expr,n] 给出expr中第n层子表达式的列表Count[list, pattern] 满足模式的list中元的个数MemberQ[list, form] list中是否有匹配form的元FreeQ[expr, form] MemberQ的反函数Position[expr, pattern] 表中匹配模式pattern的元素的位置列表Cases[{e1,e2...},pattern]匹配模式pattern的所有元素ei的表表的操作Append[expr, elem] 返回在表expr的最后追加elem元后的表Prepend[expr, elem] 返回在表expr的最前添加elem元后的表Insert[list, elem, n] 在第n元前插入elemInsert[expr,elem,{i,j,..}]在元素expr[[{i,j,..}]]前插入elemDelete[expr, {i, j,..}] 删除元素expr[[{i,j,..}]]后剩下的表DeleteCases[expr,pattern]删除匹配pattern的所有元后剩下的表ReplacePart[expr,new,n] 将expr的第n元替换为newSort[list] 返回list按顺序排列的表Reverse[expr] 把表expr倒过来RotateLeft[expr, n] 把表expr循环左移n次RotateRight[expr, n] 把表expr循环右移n次Partition[list, n] 把list按每n各元为一个子表分割后再组成的大表Flatten[list] 抹平所有子表后得到的一维大表Flatten[list,n] 抹平到第n层Split[list] 把相同的元组成一个子表,再合成的大表FlattenAt[list, n] 把list[[n]]处的子表抹平FlattenAt[list, n] 把list[[n]]处的子表抹平Permutations[list] 由list的元素组成的所有全排列的列表Order[expr1,expr2] 如果expr1在expr2之前返回1,如果expr1在expr2之后返回-1,如果expr1与expr2全等返回0Signature[list] 把list通过两两交换得到标准顺序所需的交换次数(排列数)以上函数均为仅返回所需表而不改变原表AppendTo[list,elem] 相当于list=Append[list,elem];PrependTo[list,elem] 相当于list=Prepend[list,elem];十四、绘图函数二维作图Plot[f,{x,xmin,xmax}] 一维函数f[x]在区间[xmin,xmax]上的函数曲?Plot[{f1,f2..},{x,xmin,xmax}] 在一张图上画几条曲线ListPlot[{y1,y2,..}] 绘出由离散点对(n,yn)组成的图ListPlot[{{x1,y1},{x2,y2},..}] 绘出由离散点对(xn,yn)组成的图ParametricPlot[{fx,fy},{t,tmin,tmax}] 由参数方程在参数变化范围内的曲线ParametricPlot[{{fx,fy},{gx,gy},...},{t,tmin,tmax}]在一张图上画多条参数曲线选项:PlotRange->{0,1} 作图显示的值域范围AspectRatio->1/GoldenRatio生成图形的纵横比PlotLabel ->label 标题文字Axes ->{False,True} 分别制定是否画x,y轴AxesLabel->{xlabel,ylabel}x,y轴上的说明文字Ticks->None,Automatic,fun用什么方式画轴的刻度AxesOrigin ->{x,y} 坐标轴原点位置AxesStyle->{{xstyle}, {ystyle}}设置轴线的线性颜色等属性Frame ->True,False 是否画边框FrameLabel ->{xmlabel,ymlabel,xplabel,yplabel}边框四边上的文字FrameTicks同Ticks 边框上是否画刻度GridLines 同Ticks 图上是否画栅格线FrameStyle ->{{xmstyle},{ymstyle}设置边框线的线性颜色等属性ListPlot[data,PlotJoined->True] 把离散点按顺序连线PlotSytle->{{style1},{style2},..}曲线的线性颜色等属性PlotPoints->15 曲线取样点,越大越细致三维作图Plot3D[f,{x,xmin,xmax}, {y,ymin,ymax}]二维函数f[x,y]的空间曲面Plot3D[{f,s}, {x,xmin,xmax}, {y,ymin,ymax}]同上,曲面的染色由s[x,y]值决定ListPlot3D[array] 二维数据阵array的立体高度图ListPlot3D[array,shades]同上,曲面的染色由shades[数据]值决定ParametricPlot3D[{fx,fy,fz},{t,tmin,tmax}]二元数方程在参数变化范围内的曲线二元数方程在参数变化范围内的曲线ParametricPlot3D[{{fx,fy,fz},{gx,gy,gz},...},{t,tmin,tmax}] 多条空间参数曲线选项:ViewPoint ->{x,y,z} 三维视点,默认为{1.3,-2.4,2}Boxed -> True,False 是否画三维长方体边框BoxRatios->{sx,sy,sz} 三轴比例BoxStyle 三维长方体边框线性颜色等属性Lighting ->True 是否染色LightSources->{s1,s2..} si为某一个光源si={{dx,dy,dz},color} color为灯色,向dx,dy,dz方向照射AmbientLight->颜色函数慢散射光的光源Mesh->True,False 是否画曲面上与x,y轴平行的截面的截线MeshStyle 截线线性颜色等属性MeshRange->{{xmin,xmax}, {ymin,ymax}}网格范围ClipFill->Automatic,None,color,{bottom,top}指定图形顶部、底部超界后所画的颜色Shading ->False,True 是否染色HiddenSurface->True,False 略去被遮住不显示部分的信息等高线ContourPlot[f,{x,xmin,xmax},{y,ymin,ymax}]二维函数f[x,y]在指定区间上的等高线图ListContourPlot[array] 根据二维数组array数值画等高线选项:Contours->n 画n条等高线Contours->{z1,z2,..} 在zi处画等高线ContourShading -> False 是否用深浅染色ContourLines -> True 是否画等高线ContourStyle -> {{style1},{style2},..}等高线线性颜色等属性FrameTicks 同上密度图DensityPlot[f,{x,xmin,xmax},{y,ymin,ymax}]二维函数f[x,y]在指定区间上的密度图ListDensityPlot[array] 同上图形显示Show[graphics,options] 显示一组图形对象,options为选项设置Show[g1,g2...] 在一个图上叠加显示一组图形对象GraphicsArray[{g1,g2,...}]在一个图上分块显示一组图形对象SelectionAnimate[notebook,t]把选中的notebook中的图画循环放映选项:(此处选项适用于全部图形函数)Background->颜色函数指定绘图的背景颜色RotateLabel -> True 竖着写文字TextStyle 此后输出文字的字体,颜色大小等ColorFunction->Hue等把其作用于某点的函数值上决定某点的颜色RenderAll->False 是否对遮挡部分也染色MaxBend 曲线、曲面最大弯曲度图元函数Graphics[prim, options]prim为下面各种函数组成的表,表示一个二维图形对象Graphics3D[prim, options]prim为下面各种函数组成的表,表示一个三维图形对象SurfaceGraphics[array, shades]表示一个由array和shade决定的曲面对象ContourGraphics[array]表示一个由array决定的等高线图对象DensityGraphics[array]表示一个由array决定的密度图对象以上定义图形对象,可以进行对变量赋值,合并显示等操作,也可以存盘Point[p] p={x,y}或{x,y,z},在指定位置画点Line[{p1,p2,..}]经由pi点连线Rectangle[{xmin, ymin}, {xmax, ymax}] 画矩形Cuboid[{xmin,ymin,zmin},{xmax,ymax,zmax}]由对角线指定的长方体Polygon[{p1,p2,..}] 封闭多边形Circle[{x,y},r] 画圆Circle[{x,y},{rx,ry}] 画椭圆,rx,ry为半长短轴Circle[{x,y},r,{a1,a2}] 从角度a1~a2的圆弧Disk[{x, y}, r] 填充的园、衷病⒃弧等参数同上Raster[array,ColorFunction->f] 颜色栅格Text[expr,coords] 在坐标coords上输出表达式PostScript["string"] 直接用PostScript图元语言写Scaled[{x,y,..}] 返回点的坐标,且均大于0小于1颜色函数(指定其后绘图的颜色)GrayLevel[level] 灰度level为0~1间的实数RGBColor[red, green, blue] RGB颜色,均为0~1间的实数Hue[h, s, b] 亮度,饱和度等,均为0~1间的实数CMYKColor[cyan, magenta, yellow, black] CMYK颜色其他函数(指定其后绘图的方式)Thickness[r] 设置线宽为rPointSize[d] 设置绘点的大小Dashing[{r1,r2,..}] 虚线一个单元的间隔长度ImageSize->{x, y} 显示图形大小(像素为单位)ImageResolution->r 图形解析度r个dpi小(像素为单位)ImageResolution->r 图形解析度r个dpiImageMargins->{{left,right},{bottom,top}}四边的空白ImageRotated->False 是否旋转90度显示十五、流程控制分支If[condition, t, f] 如果condition为True,执行t段,否则f段If[condition, t, f, u] 同上,即非True又非False,则执行u段Which[test1,block1,test2,block2..] 执行第一为True的testi对应的blocki Switch[expr,form1,block1,form2,block2..]执行第一个expr所匹配的formi所对应的blocki段循环Do[expr,{imax}] 重复执行expr imax次Do[expr,{i,imin,imax}, {j,jmin,jmax},...]多重循环While[test, body] 循环执行body直到test为FalseFor[start,test,incr,body]类似于C语言中的for,注意","与";"的用法相反examp: For[i=1;t =x,i^2<10,i++,t =t+i;Print[t]]异常控制Throw[value] 停止计算,把value返回给最近一个Catch处理Throw[value, tag] 同上,Catch[expr] 计算expr,遇到Throw返回的值则停止Catch[expr, form] 当Throw[value, tag]中Tag匹配form时停止其他控制Return[expr] 从函数返回,返回值为exprReturn[ ] 返回值NullBreak[ ] 结束最近的一重循环Continue[ ] 停止本次循环,进行下一次循环Goto[tag] 无条件转向Label[Tag]处Label[tag] 设置一个断点Check[expr,failexpr] 计算expr,如果有出错信息产生,则返回failexpr的值Check[expr,failexpr,s1::t1,s2::t2,...]当特定信息产生时则返回failexpr CheckAbort[expr,failexpr]当产生abort信息时放回failexprInterrupt[ ] 中断运行Abort[ ] 中断运行TimeConstrained[expr,t] 计算expr,当耗时超过t秒时终止MemoryConstrained[expr,b]计算expr,当耗用内存超过b字节时终止运算交互式控制Print[expr1,expr2,...] 顺次输出expri的值examp: Print[ "X=" , X//N , " " ,f[x+1]];Input[ ] 产生一个输入对话框,返回所输入任意表达式Input["prompt"] 同上,prompt为对话框的提示Pause[n] 运行暂停n秒十六、函数编程(*函数编程是Mathematica中很有特色也是最灵活的一部分,它充分体现了 *)(*Mathematica的“一切都是表达式”的特点,如果你想使你的Mathematica程 *) (*序快于高级语言,建议你把本部分搞通*)纯函数Function[body]或body& 一个纯函数,建立了一组对应法则,作用到后面的表达达式? Function[x, body] 单自变量纯函数Function[{x1,x2,...},body]多自变量纯函数#,#n 纯函数的第一、第n个自变量## 纯函数的所有自变量的序列examp: #1^#2& [2,3] 返回第一个参数的第二个参数次方映射Map[f,expr]或f/@expr 将f分别作用到expr第一层的每一个元上得到的列表Map[f,expr,level] 将f分别作用到expr第level层的每一个元上Apply[f,expr]或f@@expr 将expr的“头”换为fApply[f,expr,level] 将expr第level层的“头”换为fMapAll[f,expr]或f//@expr把f作用到expr的每一层的每一个元上MapAt[f,expr,n] 把f作用到expr的第n个元上MapAt[f,expr,{i,j,...}] 把f作用到expr[[{i,j,...}]]元上MapIndexed[f,expr] 类似MapAll,但都附加其映射元素的位置列表Scan[f, expr] 按顺序分别将f作用于expr的每一个元Scan[f,expr,levelspec] 同上,仅作用第level层的元素复合映射Nest[f,expr,n] 返回n重复合函数f[f[...f[expr]...]]NestList[f,expr,n] 返回0重到n重复合函数的列表{expr,f[expr],f[f[exprr]]..} FixedPoint[f, expr] 将f复合作用于expr直到结果不再改变,即找到其不定点FixedPoint[f, expr, n] 最多复合n次,如果不收敛则停止FixedPointList[f, expr] 返回各次复合的结果列表FoldList[f,x,{a,b,..}] 返回{x,f[x,a],f[f[x,a],b],..}Fold[f, x, list] 返回FoldList[f,x,{a,b,..}]的最后一个元ComposeList[{f1,f2,..},x]返回{x,f1[x],f2[f1[x]],..}的复合函数列表Distribute[f[x1,x2,..]] f对加法的分配率Distribute[expr, g] 对g的分配率Identity[expr] expr的全等变换Composition[f1,f2,..] 组成复合纯函数f1[f2[..fn[ ]..]Operate[p,f[x,y]] 返回p[f][x, y]br> Operate[p,f[x,y]] 返回p[f][x, y]Through[p[f1,f2][x]] 返回p[f1[x],f2[x]]Compile[{x1,x2,..},expr]编译一个函数,编译后运行速度可以大大加快Compile[{{x1,t1},{x2,t2}..},expr] 同上,可以制定函数参数类型十七、替换规则lhs->rhs 建立了一个规则,把lhs换为rhs,并求rhs的值lhs:>rhs 同上,只是不立即求rhs的值,知道使用该规则时才求值Replace[expr,rules] 把一组规则应用到expr上,只作用一次expr /. rules 同上expr //.rules 将规则rules不断作用到expr上,直到无法作用为止Dispatch[{lhs1->rhs1,lhs2->rhs2,...}]综合各个规则,产生一组优化的规则组十八、查询函数(*查询函数一般是检验表达式是否满足某些特殊形式,并返回True或False*) (*可以在Mathematica中用“?*Q”查询到 *)十九、字符串函数"text" 一个串,头为_String"s1"<>"s2"<>..或StringJoin["s1","s2",..] 串的连接StringLength["string"] 串长度StringReverse["string"] 串反转StringTake["string", n] 取串的前n个字符的子串,参数同Take[] StringDrop["string", n] 参见Drop,串也就是一个表StringInsert["string","snew",n] 插入,参见Insert[]StringPosition["string", "sub"] 返回子串sub在string中起止字母位置StringReplace["string",{"s1"->"p1",..}] 子串替换StringReplacePart["string", "snew", {m, n}]把string第m~n个字母之间的替换为snew把string第m~n个字母之间的替换为snewStringToStream["string"] 把串当作一个输入流赋予一个变量Characters["string"] 把串"string"分解为每一个字符的表ToCharacterCode["string"] 把串"string"分解为每一个字符ASCII值的表FromCharacterCode[n] ToCharacterCode的逆函数FromCharacterCode[{n1,n2,..}]ToCharacterCode的逆函数ToUpperCase[string] 把串的大写形式ToLowerCase[string] 把串的小写形式CharacterRange["c1","c2"] 给出ASCII吗在c1到c2之间的字符列表ToString[expr] 把表达式变为串的形式ToExpression[input] 把一个串变为表达式Names["string"] 与?string同,返回与string同名的变量列表--。

mathematica 符号运算

mathematica 符号运算

Mathematica是一款强大的数学软件,主要用于符号运算、数值计算、数据可视化等。

以下是一些基本的Mathematica符号运算操作:1. **基本操作**:* 定义变量:例如,`a = 5`* 代数运算:例如,`2 + 3` 返回 `5`,`2 - 3` 返回 `-1`,`2 * 3` 返回 `6`,`2 / 3` 返回 `2/3`* 幂运算:例如,`a^2` 返回 `25`2. **函数操作**:* 内置函数:例如,`Sin[x]`、`Cos[x]`、`Sqrt[x]` 等。

* 自定义函数:例如,`f[x_] := x^2 + 3x + 2`3. **代数方程求解**:* 一元方程:例如,`Solve[x^2 - 4 = 0, x]` 返回 `{x: -2, x: 2}`* 二元方程组:例如,`Solve[{x + y == 3, x - y == 1}, {x, y}]` 返回 `{x: 2, y: 1}`4. **微积分运算**:* 求导数:例如,`D[f[x], x]` 对于函数 `f[x] = x^2` 返回`2x`* 求积分:例如,`Integrate[f[x], x]` 对于函数 `f[x] = x^2` 返回 `x^3/3`5. **极限和连续性**:* 求极限:例如,`Limit[f[x], x -> a]` 对于函数 `f[x] = x^2` 当 `x -> a` 时返回 `a^2`(注意,这仅在 `a = -∞, +∞, 或 a 是某函数的可去间断点时才有意义)6. **级数和序列**:* 级数求和:例如,对于级数 `1 + 1/2 + 1/3 + ...`,使用`Sum[1/n, {n, 1, Infinity}]` 可得结果为`π^2/6`。

7. **符号表达式的简化**:* 化简表达式:例如,使用 `Simplify[expr]` 可以化简符号表达式。

Mathematica完美教程-从入门到精通

Mathematica完美教程-从入门到精通

一个表达式只有准确无误,方能得出正确 结果。学会看系统出错信息能帮助我们较 快找出错误,提高工作效率。
1.1.2 表达式的输入
Mathematica 提供了多种输入数学表达式的 方法。除了用键盘输入外, 还可以使用工 具栏或者快捷方式健入运算符、矩阵或数 学表达式。
1.数学表达式二维格式的输入
假设在Windows环境下已安装好Mathematica4.0,
启动Windows后,在“开始”菜单的“程序”中
单击
,就启动了Mathematica4.0,在
屏幕上显示如图的Notebook窗口,系统暂时取名
Untitled-1,直到用户保存时重新命名为止。
输入1+1,然后按下Shift+Enter键,这时系统开始 计算并输出计算结果,并给输入和输出附上次序 标识In[1]和Out[1],注意In[1]是计算后才出现的; 再输入第二个表达式,要求系统将一个二项式展 开,按Shift+Enter输出计算结果后,系统分别将 其标识为In[2]和Out[2]。如图
2. Help菜单:任何时候都可以通过按F1键或点击 帮助菜单项Help Browser, 调出帮助菜单, 如下图所 示
其中的各按钮用途如下表所示
Built-in Function
Add-ons
The Mathematica Book Getting Started/ Demos Other Information
如果输入了不合语法规则的表达式,系统会 显示出错信息,并且不给出计算结果。
例如:要画正弦函数在区间[-10,10]上的图 形,输入plot[Sin[x],{x,-10,10}],则系统提示 “可能有拼写错误, 新符号‘plot’ 很像已经 存在的符号‘Plot’”,实际上,系统作图命令 “Plot”第一个字母必须大写,一般地,系统 内建函数首写字母都要大写。再输入 Plot[Sin[x],{x,-10,10} ,系统又提示缺少右 方括号,并且将不配对的括号用蓝色显示, 如图

mathematica 矩阵 符号运算

mathematica 矩阵 符号运算

mathematica 矩阵符号运算
在Mathematica 中进行矩阵的符号运算是一个相对直接的过程。

以下是一些基本的示例:
创建矩阵:
在Mathematica 中,可以使用大括号{} 来创建矩阵。

例如,创建一个3x3 的矩阵A:
, a2, a3}, {b1, b2, b3}, {c1, c2, c3}}
a1, a2, ...` 是元素。

矩阵乘法:
使用* 运算符进行矩阵乘法。

例如,将矩阵A 和B 相乘:
, e2, e3}, {f1, f2, f3}}
A * B
法。

矩阵加法:
使用+ 运算符进行矩阵加法。

两个矩阵必须有相同的维度才能相加。

例如:
这将执行矩阵加法。

4. 元素级别的运算:
使用 .* 和/.* 运算符进行元素级别的乘法和除法。

例如:
B (点乘)
A/B (逐元素除法)
的逆**:
使用Inverse 函数计算矩阵的逆。

注意,不是所有的矩阵都有逆矩阵,只有可逆的矩阵才有。

例如:
]
使用Det 函数计算矩阵的行列式。

不是所有的矩阵都有行列式,只有方阵才有。

例如:
行列式。

7. 求矩阵的特征值和特征向量:
使用Eigenvalues 和Eigenvectors 函数分别计算矩阵的特征值和特征向量。

注意,不是所有的矩阵都有特征值或特征向量,只有方阵才可能有。

例如:
Eigenvalues[A]
Eigenvectors[A]
特征向量。

Mathematica--运算符及特殊符号

Mathematica--运算符及特殊符号

Mathematica--运算符及特殊符号一、运算符及特殊符号Line1; 执行 Line,不显示结果Line1,line2 顺次执行 Line1,2,并显示结果name 关于系统变量 name 的信息name 关于系统变量 name 的全部信息在 c 语言中使用 math 的函数(*Note*) 程序的注释#n 第 n 个参数## 所有参数rule& 把 rule 作用于后面的式子% 前一次的输出%% 倒数第二次的输出%n 第 n 个输出a+b 加a-b 减a*b 或 a b 乘a/b 除a^b 乘方base^^num 以 base 为进位的数lhs&&rhs 且lhs||rhs 或!lha 非++,-- 自加 1,自减 1+=,-=,*=,/= 同 C 语言二、系统常数Pi 3.1415....的无限精度数值E 2.17828...的无限精度数值Catalan 0.915966..卡塔兰常数EulerGamma 0.5772....高斯常数GoldenRatio 1.61803...黄金分割数Degree Pi/180 角度弧度换算I 复数单位Infinity 无穷大-Infinity 负无穷大ComplexInfinity 复无穷大Indeterminate 不定式三、代数计算Expand[expr] 展开表达式Factor[expr] 展开表达式Simplify[expr] 化简表达式FullSimplify[expr] 将特殊函数等也进行化简PowerExpand[expr] 展开所有的幂次形式ComplexExpand[expr,{x1,x2...}] 按复数实部虚部展开FunctionExpand[expr] 化简 expr 中的特殊函数Collect[expr, x] 合并同次项Collect[expr, {x1,x2,...}] 合并 x1,x2,...的同次项Together[expr] 通分Apart[expr] 部分分式展开Apart[expr, var] 对 var 的部分分式展开Cancel[expr] 约分ExpandAll[expr] 展开表达式ExpandAll[expr, patt] 展开表达式FactorTerms[poly] 提出共有的数字因子FactorTerms[poly, x] 提出与 x 无关的数字因子FactorTerms[poly, {x1,x2...}] 提出与 xi 无关的数字因子Coefficient[expr, form] 多项式 expr 中 form 的系数Coefficient[expr, form, n] 多项式 expr 中 form^n 的系数Exponent[expr, form] 表达式 expr 中 form 的最高指数Numerator[expr] 表达式 expr 的分子Denominator[expr] 表达式 expr 的分母ExpandNumerator[expr] 展开 expr 的分子部分ExpandDenominator[expr] 展开 expr 的分母部分TrigExpand[expr] 展开表达式中的三角函数TrigFactor[expr] 给出表达式中的三角函数因子TrigFactorList[expr] 给出表达式中的三角函数因子的表TrigReduce[expr] 对表达式中的三角函数化简TrigToExp[expr] 三角到指数的转化ExpToTrig[expr] 指数到三角的转化四、解方程Solve[eqns, vars] 从方程组 eqns 中解出 varsSolve[eqns, vars, elims] 从方程组 eqns 中削去变量 elims,解出 vars DSolve[eqn, y, x] 解微分方程,其中 y 是 x 的函数DSolve[{eqn1,eqn2,...},{y1,y2...},x]解微分方程组,其中 yi 是 x 的函数DSolve[eqn, y, {x1,x2...}] 解偏微分方程Eliminate[eqns, vars] 把方程组 eqns 中变量 vars 约去SolveAlways[eqns, vars] 给出等式成立的所有参数满足的条件Reduce[eqns, vars] 化简并给出所有可能解的条件LogicalExpand[expr] 用&&和||将逻辑表达式展开InverseFunction[f] 求函数 f 的逆函数Root[f, k] 求多项式函数的第 k 个根Roots[lhs==rhs, var] 得到多项式方程的所有根五、微积分函数D[f, x] 求 f[x]的微分D[f, {x, n}] 求 f[x]的 n 阶微分D[f,x1,x2..] 求 f[x]对 x1,x2...偏微分Dt[f, x] 求 f[x]的全微分 df/dxDt[f] 求 f[x]的全微分 dfDt[f, {x, n}] n 阶全微分 df^n/dx^nDt[f,x1,x2..] 对 x1,x2..的偏微分Integrate[f, x] f[x]对 x 在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对 x 在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x 趋近于 x0 时 expr 的极限Residue[expr, {x,x0}] expr 在 x0 处的留数Series[f, {x, x0, n}] 给出 f[x]在 x0 处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}]先对 y 幂级数展开,再对 xNormal[expr] 化简并给出最常见的表达式O[x]^n n 阶小量 x^nO[x, x0]^n n 阶小量(x-x0)^nDt[f, x] 求 f[x]的全微分 df/dxDt[f] 求 f[x]的全微分 dfDt[f, {x, n}] n 阶全微分 df^n/dx^nDt[f,x1,x2..] 对 x1,x2..的偏微分Integrate[f, x] f[x]对 x 在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对 x 在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x 趋近于 x0 时 expr 的极限Normal[expr] 化简并给出最常见的表达式六、绘图函数二维作图Plot[f,{x,xmin,xmax}] 一维函数 f[x]在区间[xmin,xmax]上的函数曲Plot[{f1,f2..},{x,xmin,xmax}] 在一张图上画几条曲线ListPlot[{y1,y2,..}] 绘出由离散点对(n,yn)组成的图ListPlot[{{x1,y1},{x2,y2},..}] 绘出由离散点对(xn,yn)组成的图。

mathematica符号运算

mathematica符号运算

mathematica符号运算Mathematica符号运算符号运算是一种利用抽象符号表示数学定义、定理及其证明过程的数学思想。

由于Mathematica自身是一个完整的逻辑框架,因此,Mathematica非常适合用来处理符号运算。

在这里,我们将主要介绍Mathematica内置函数如何处理符号运算,以及如何使用符号运算处理复杂的数学问题。

1 了解Mathematica符号运算的基础Mathematica是一款适合进行符号运算的软件,它拥有丰富的符号运算功能,包括求解方程、解析数学计算、数值积分、数值求导等等。

首先,我们需要了解Mathematica符号运算的基础操作,比如定义变量、定义函数、用于数值求解的调用函数、用于解析结果的调用函数等等。

定义变量:在Mathematica中,利用“=”来定义变量,例如: x = 1定义函数:函数是Mathematica符号运算的基础,在Mathematica 中,定义函数有两种方法,例如:f(x) = x^2也可以用以下形式来定义函数f[x_] := x^2用于数值求解的调用函数:利用N函数可以用来计算出数值求解结果:N[f[2]]用于解析结果的调用函数:利用Solve函数可以用来求出解析结果:Solve[x^2 - 4 == 0]2 Mathematica实现符号运算符号运算在Mathematica中可以用两种方式实现:一是用内置函数;二是用自定义函数。

Mathematica的内置函数可以用来快速解决符号运算问题,其中最常用的是Integrate, Solve, D, DSolve等函数。

Integrate函数用来求积分,例如:Integrate[x^2, x]Solve函数用来求解方程组,例如:Solve[{x^2+y^2==1,x+y==0},{x,y}]D函数用来求导数,例如:D[x^2,x]DSolve函数用来求解微分方程,例如:DSolve[y'[x] == x, y[x], x]另外,用户也可以自定义函数来实现符号运算,例如,我们可以定义一个函数求两个函数的和:Add[f_,g_]:=f+g这样,我们就可以用以下命令求出两个函数f和g的和:Add[f[x],g[x]]3 符号运算的应用Mathematica符号运算可以用来处理一些复杂的数学问题。

Mathematica符号计算

Mathematica符号计算
可视化
绘图光变定位Plot F(+F1)
Plot[Sin[x],{x,0,Pi}]
改色Plotstyle->{Red}
合并图像Show[a,b] (dim a ,b first)
动态展示Manipulate[Plot[Sin[omega x],{x,0,10}],{omega,1,5}]
slider拖动条
plot(x,y,’.’)点o x +
mesh(x,y,z)网格
surf(x,y,z)曲面
shading interp美化
逻辑运算
非~与&或|
If<逻辑表达式>
<命令语句集>
End
扩展
<<Units' (单位相关工具)
Convert[1 Meter/Second,Inch/Hour]
PS:
科学计算,数据处理、可视化ORIGIN
Wolfram Alpha知识网站
Matlab
Kernel+numerous toolboxes
入门
Workspace : processed data
Command History: copy & script
常量Pii&j eps(小量)inf(无穷大) nan(Not A Number)
符号[]数组、矩阵
a=2 b=3 a+b*sin(x)
矩阵输入
A=[1 2 3;4,5i,6
7 8i 9]
输出Variable Editor
B=A(:,[1,3])
作图
y=sin(x)
x=-10:0.1:10
y=sin(x)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
演示2.5.nb
2.6、求和与求积
1、求和 Sum[expr,{n,nmin,nmax}]: 在n从nmin到 nmax范围内,求表达式 expr的和。 如:Sum[x^n/n!,{n,0,Infinity}] 2、求积 Product[expr,{n,nmin,nmax}]:
演示2.5.nb
练习: 1、求Sin[x]在x=0处展开至x5的幂级数。 2、求ex在x=0处展开至x4的幂级数。 3、对第1、2题的结果进行加、减、乘、除 操作。 4、求x^k/k!的和,其中k从0到10。
2.4 不定积分与定积分
1.Integrate[f[x],x]--------------求不定积分 2.Integrat[f[x],{x,a,b}]--------求定积分
演示2.3.nb
2.5 将函数展开为幂级数
2.5.1 幂级数展开
对于有些表达式,因其形式较复杂或为了近 似计算其结果,我们常常需要把它们展开成 级数的形式。可用Series[]来展开幂级数。 Series[expr,{x,x0,n}] Series[Sin[x],{x,0,7}] 如:函数Log(x+1)在x=0处展开至5次幂。 Series[Log[x+1],{x,0,5}]
Roots[lhs==rhs,vars]
演示2.7.nb
演示2.5.nb
2.5.2 幂级数的运算
1、可以进行加、减、乘、除和幂的运算 2、可以寻找反函数的幂级数,如: InverseSeries[,x] 3、幂级数转变为一般表达式(即除掉余项)。可 用下面的函数: Normal[%] 4、可用SeriesCoefficient[ ,n]得到展开式第n项 的系数
演示2.5.nb
2.7方程求根(代数方程和超越方程)
1、方程及根的表示 方程的表示(为一逻辑表达式)
x^2+2x-3= =0
根的表示
x= =1 x= =0||x= =1 {{x->0},{x->1}} {{x->0,y->1}}
方程求解函数
函数 Solve[lhs==rhs,vars] Reduce[lhs==rhs,vars] 意义 对系数按常规约定求 出方程的全部解 对系数分情况求解, 可求出所有解 求表达式的根
6.Together[ ]-----通分 7.Cancel[ ]--------约分 8.Apart[ ]---------将有理式分解为一些简单分 式之和 9.Collect[ , ]-----将表达式按某个或几个变量 的幂次进行集项
演示2.1.nb
2.2 求极限 1、Limit[expr,x->x0]: x逼近x0时expr的极限。 2、Limit[expr,x->x0,Direction->1]: 求x趋向x0时expr的左极限值。 3、Limit[expr,x->x0,Direction->-1]: 求x趋向x0时expr的右极限值。
在(-1,1)之间 摆动
逼近方 向不同, 结果不 一样
练习
1、求(x^2+1)/x^3,当x->0时的极限。 2、求பைடு நூலகம்沿不同方向时ArcTan[1/x]在x->0时 的值。
演示2.2.nb
2.3导函数与偏导数
1.D[f[x],x]-----------------------求导数 2.D[f[x],{x,n}]-------------------求n阶导数 3.D[f[x,y],x,y]--------------------求偏导数 4.D[f[x,y],{x,m},{y,n}]--------- 先对x求m阶 导数,再对y求n阶导数。
第2章 符号运算
2.1 表达式的变换 1.Simplify[…]------ ---化简 2.FullSimplify[…]-----完全化简 3.Expand[…]-------展开分子,每项除分母
4.ExpandAll[…]-------分子与分母完全展开
5.Factor[…]---------分解因式,使之为最 简 因式乘积
相关文档
最新文档