高中物理复习--连接体问题分析

合集下载

高中物理复习--连接体问题(2021年整理)

高中物理复习--连接体问题(2021年整理)

高中物理复习--连接体问题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中物理复习--连接体问题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中物理复习--连接体问题(word版可编辑修改)的全部内容。

连接体运动问题一、教法建议【解题指导】“连接体运动”是在生活和生产中常见的现象,也是运用牛顿运动定律解答的一种重要题型。

在“连接体运动”的教学中,需要给学生讲述两种解题方法──“整体法"和“隔离法”。

如图1—15所示:把质量为M 的的物体放在光滑..的水平..高台上,用一条可以忽略质量而且不变形的细绳绕过定滑轮把它与质量为m 的物体连接起来,求:物体M 和物体m 的运动加速度各是多大?⒈ “整体法”解题采用此法解题时,把物体M 和m 看作一个整体..,它们的总质量为(M+m )。

把通过细绳连接着的M 与m 之间的相互作用力看作是内力..,既然水平高台是光滑无阻力的,那么这个整体所受的外力..就只有mg 了。

又因细绳不发生形变,所以M 与m 应具有共同的加速度a 。

现将牛顿第二定律用于本题,则可写出下列关系式:mg=(M+m)a所以,物体M 和物体m 所共有的加速度为: g mM m a += ⒉ “隔离法”解题采用此法解题时,要把物体M 和m 作为两个物体隔离开分别进行受力分析,因此通过细绳连接着的M与m 之间的相互..作用力T 必须标出,而且对M 和m 单.独.来看都是外力..(如图1—16所示)。

根据牛顿第二定律对物体M 可列出下式:T=Ma ①根据牛顿第二定律对物体m 可列出下式:mg-T=ma ②将①式代入②式:mg —Ma=ma mg=(M+m)a所以物体M 和物体m 所共有的加速度为:g m M m a += 最后我们还有一个建议:请教师给学生讲完上述的例题后,让学生自己独立推导如图1-17所示的另一个例题:用细绳连接绕过定滑轮的物体M 和m ,已知M 〉m ,可忽略阻力,求物体M 和m 的共同加速度a 。

专题16 连接体问题 2022届高中物理常考点归纳

专题16  连接体问题  2022届高中物理常考点归纳

专题16 连接体问题常考点连接体问题分类及解题方法分析【典例1】如图所示,光滑水平桌面上的物体B质量为m2,系一细绳,细绳跨过桌沿的定滑轮后悬挂质量为m1的物体A,先用手使B静止(细绳质量及滑轮摩擦均不计)。

(1)求放手后A、B一起运动中绳上的张力F T。

(2)若在B上再叠放一个与B质量相等的物体C,绳上张力就增大到F T,求m1:m2。

解:(1)对A有:m1g﹣F T=m1a1对B有:F T=m2a1则F T=g(2)对A有:m1g﹣F T2=m1a2对B+C有:F T2=2m2a2则F T2=g由F T2=F T得:g=所以m1:m2=2:1答:(1)放手后A、B一起运动中绳上的张力为g(2)两物体的质量之比为2:1。

【典例2】(多选)如图,倾角为θ的斜面体固定在水平地面上,现有一带支架的滑块正沿斜面加速下滑。

支架上用细线悬挂质量为m的小球,当小球与滑块相对静止后,细线方向与竖直方向的夹角为α,重力加速度为g,则()A.若α=θ,小球受到的拉力为mgcosθB.若α=θ,滑块的加速度为gtanθC.若α>θ,则斜面粗糙D.若α=θ,则斜面光滑【解析】A、若α=θ,则细线与斜面垂直,小球受到的重力和细线拉力的合力沿斜面向下,如图所示,沿细线方向根据平衡条件可得小球受到的拉力为F=mgcosθ,故A正确;B、若α=θ,滑块的加速度与小球的加速度相同,对小球根据牛顿第二定律可得:mgsinθ=ma,解得:a=gsinθ,故B错误;CD、根据B选项可知,若α=θ,整体的加速度为a=gsinθ;以整体为研究对象,沿斜面方向根据牛顿第二定律可得:Mgsinθ﹣f=Ma,解得:f=0;若斜面粗糙,则整体的加速度减小,则α<θ。

【典例3】在光滑的水平地面上有两个A完全相同的滑块A、B,两滑块之间用原长为l0的轻质弹簧相连,在外力F1、F2的作用下运动,且F1>F.以A、B为一个系统,如图甲所示,F1、F向相反方向拉A、B两个滑块,当运动达到稳定时,弹簧的长度为(l0+△l1),系统的加速度大小为a1;如图乙所示,F1、F2相向推A、B两个滑块,当运动达到稳定时,弹簧的长度为(l0﹣△l2),系统的加速度大小为a2.则下列关系式正确的是()A.△l1=△l2,a1=a2B.△l1>△l2,a1=a2C.△l1=△l2,a1>a2D.△l1<△l2,a1<a2【解析】A、B完全相同,设它们的质量都是m,由牛顿第二定律得:对A、B系统:F1﹣F2=2ma1,F1﹣F2=2ma2,对A:F1﹣k△l1=ma1,F1﹣k△l2=ma2,解得:a1=a2,△l1=△l2。

高中物理 高考回归复习—力学解答题之连接体模型 含解析

高中物理 高考回归复习—力学解答题之连接体模型 含解析

高考回归复习—力学解答题之连接体模型1.如图所示,质量为2m 的物块A 与水平地面间的动摩擦因数为μ,质量为m 的物块B 与地面的摩擦不计,在大小为F 的水平推力作用下,A 、B 一起向右做加速运动,则A 和B 之间的作用力大小为( )A .3mgμB .23mgμ C .243F mg μ-D .23F mg μ-2.如图所示,A 、B 两滑块质量分别为2kg 和4kg ,用一轻绳将两滑块相连后分别置于两等高的光滑水平面上,并用手按着滑块不动,第一次是将一轻质动滑轮置于轻绳上,然后将一质量为4kg 的钩码C 挂于动滑轮上,只释放A 而按着B 不动;第二次是将钩码C 取走,换作竖直向下的40N 的恒力作用于动滑轮上,只释放B 而按着A 不动。

重力加速度g =10m/s 2,则两次操作中A 和B 获得的加速度之比为( )A .2:1B .5:3C .4:3D .2:33.如图所示,斜面光滑且固定在地面上,A 、B 两物体一起靠惯性沿光滑斜面下滑,下列判断正确的是( )A .图甲中A 、B 两物体之间的绳有弹力 B .图乙中A 、B 两物体之间没有弹力C .图丙中A 、B 两物体之间既有摩擦力,又有弹力D .图丁中A 、B 两物体之间既有摩擦力,又有弹力4.如图所示,质量m A =4kg 的物体A 放在倾角为θ=37°的斜面上时,恰好能匀速下滑.现用细线系住物体A ,并平行于斜面向上绕过光滑的定滑轮,另一端系住物体B ,释放后物体A 沿斜面以加速度a =2m/s 2匀加速上滑。

(g=10m/s 2,sin37°=0.6,cos37°=0.8)求:(1)物体A 与斜面间的动摩擦因数; (2)细线对物体A 的拉力; (3)物体B 的质量。

5.如图所示,一固定的楔形木块,其斜面的倾角为θ=30︒,另一边与水平地面垂直,顶端有一个定滑轮,跨过定滑轮的细线两端分别与物块A 和B 连接,A 的质量为3m ,B 的质量为m 开始时,将B 按在地面上不动,然后放开手,让A 沿斜面下滑而B 上升,所有摩擦均忽略不计.当A 沿斜面下滑距离s 后,细线突然断了.求物块B 上升的最大高度H .(设B 不会与定滑轮相碰)6.如图所示是一种升降电梯的模型示意图,A 为轿厢,B 为平衡重物,A 、B 的质量分别为1Kg 和0.5Kg .A 、B 由跨过轻质滑轮的足够长轻绳系住.在电动机牵引下使轿厢由静止开始向上运动,电动机输出功率10W 保持不变,轿厢上升1m 后恰好达到最大速度.不计空气阻力和摩擦阻力,g=10m/s 2.在轿厢向上运动过程中,求:(1)轿厢的最大速度v m :(2)轿厢向上的加速度为a=2m /s 2时,重物B 下端绳的拉力大小; (3)轿厢从开始运动到恰好达到最大速度过程中所用的时间.7.图a 所示为杂技“顶竿”表演,质量为150kg m =的甲站在地面上,肩上扛一质量为25kg m =的竖直竹竿,竿上有一质量为345kg m =的乙可视为质点,乙从竿的顶端A 恰好下滑到竿的末端B ,其速度-时间图象如图b 所示,g 取10m/s 2,求:(1)竿AB 的长度;(2)整个下滑过程中,竿对乙所做的功; (3)1~3s 内甲对地面的压力大小。

高中物理转盘连接体问题

高中物理转盘连接体问题

高中物理转盘连接体问题高中物理中的转盘连接体问题是指有两个或多个转盘通过轴连接在一起的物理问题。

这种问题一般涉及到力的传递、转动惯量和角加速度等概念。

下面将详细讨论该问题。

首先,我们来考虑两个转盘通过轴连接在一起的情况。

设转盘1的转动惯量为I₁,转盘2的转动惯量为I₂,通过轴连接的转动惯量为I₃。

假设外力作用在转盘1上,转盘2无外力作用。

根据动量守恒定律,外力对转盘1的扭矩τ₁等于转盘1的转动惯量I₁乘以角加速度α:τ₁ = I₁α₁根据转盘2的转动惯量和角加速度,可以得到转盘2的角加速度α₂:τ₂ = I₂α₂由于转盘1和转盘2通过轴连接在一起,因此它们的角加速度相等:α₁ = α₂ = α而两个转动物体的牵引力的作用点重合,所以τ₁ = τ₂,从而有:I₁α = I₂α由此得到:I₁α = I₂α(I₁ + I₂)α = 0当(I₁ + I₂) ≠ 0时,上式成立的唯一解是α = 0,即两个转盘的角加速度为0.这说明,当通过轴连接的转动惯量不为零时,两个转盘的角加速度相等且均为零,即它们将保持静止。

对于多个转盘通过轴连接在一起的情况,同样可以推导类似的结论。

假设第i个转盘的转动惯量为Iᵢ,通过轴连接的转动惯量为Iₙ,其中n为转盘的个数。

根据动量守恒定律和转动的叠加原理,可以得到:τ₁ + τ₂ + ... + τₙ = I₁α + I₂α + ... + Iₙα(I₁ + I₂ + ... + Iₙ)α = 0当(I₁ + I₂ + ... + Iₙ) ≠ 0时,上式成立的唯一解是α = 0,即所有转盘的角加速度为零。

这说明,当通过轴连接的转动惯量之和不为零时,所有转盘的角加速度均为零,它们将保持静止。

总结起来,转盘连接体问题中,通过轴连接的转动惯量之和为零时,转盘将保持静止;当转动惯量之和不为零时,转盘将保持静止。

这是由于转盘的转动惯量和角加速度之间存在一种固定的关系,通过轴连接的转动惯量之和可以看作是一个整体的转动惯量,在外力作用下,整体将保持静止。

高中物理学习细节(人教版)之机械能守恒定律:机械能守恒定律的应用之连接体问题(含解析)

高中物理学习细节(人教版)之机械能守恒定律:机械能守恒定律的应用之连接体问题(含解析)

一、机械能守恒定律在连接体问题中的应用
机械能守恒定律的研究对象是几个相互作用的物体组成的系统时,在应用机械能守恒定律解决系统的运动状态的变化及能量的变化时,经常出现下面三种情况:
1.系统内两个物体直接接触或通过弹簧连接。

这类连接体问题应注意各物体间不同能
量形式的转化关系。

2.系统内两个物体通过轻绳连接。

如果和外界不存在摩擦力做功等问题时,只有机械
能在两物体之间相互转移,两物体组成的系统机械能守恒。

解决此类问题的关键是在绳的方
向上两物体速度大小相等。

3.系统内两个物体通过轻杆连接。

轻杆连接的两物体绕固定转轴转动时,两物体的角
速度相等。

【典例1】如图所示,质量均为m的物体A和B,通过轻绳跨过定滑轮相连.斜面光滑,倾角为θ,不计绳子和滑轮之间的摩擦.开始时A物体离地的高度为h,B物体位于斜面的底端,用手托住A物体,使A、B两物体均静止。

现将手撤去。

(1) 求A 物体将要落地时的速度为多大?
(2) A 物体落地后, B 物体由于惯性将继续沿斜面向上运动,则 B 物体在斜面上到达的最高点离地的高度为多大?。

高中物理 必修一 专题 连接体问题

高中物理 必修一 专题 连接体问题

3.整体法与隔离法的选择 (1)整体法的研究对象少、受力少、方程少,所以连接体问题优先采用整体法。 (2)涉及物体间相互作用的内力时,必须采用隔离法。 (3)若连接体内各物体具有相同的加速度且需要求解物体间的相互作用力,就 可以先用整体法求出加速度,再用隔离法分析其中一个物体的受力,即“先 整体求加速度,后隔离求内力”。 (4)若已知某个物体的受力情况,可先隔离该物体求出加速度,再以整体为研 究对象求解外力。
第四章 牛顿运动定律
专题 连接体问题
[学习目标] 1.会用整体法与隔离法分析连接体问题。 2.掌握动力学临界问题的分析方法,掌握几种典型临界问题的临界条件。
提升1 连接体问题
1.连接体:两个或两个以上相互作用的物体组成的具有相同加速度的整体叫连 接体。例如,几个物体叠放在一起,或并排挤放在一起,或用绳子、弹簧、 细杆等连在一起。如:
F-(mA+mB)gsin θ-μ(mA+mB)gcos θ
=(mA+mB)a3
以B为研究对象 T3-mBgsin θ-μmBgcos θ=mBa3
答案 (1) mB F (2) mB F
联立解得 (3) mB
T3=mAm+BmBF。 F
mA+mB
mA+mB
mA+mB
【训练1】 (多选)如图所示,用水平力F推放在光滑水平面上的物体Ⅰ、Ⅱ、 Ⅲ,使其一起做匀加速直线运动,若Ⅰ对Ⅱ的弹力为6 N,Ⅱ对Ⅲ的弹力为
4 N,Ⅱ的质量是1 kg,则( AC)
A.Ⅲ物体的质量为2 kg B.Ⅲ物体的质量为4 kg C.Ⅲ物体的加速度为2 m/s2 D.Ⅲ物体的加速度为1 m/s2 解析 对Ⅱ受力分析,由牛顿第二定律可得F12-F32=m2a,代入数据解得a =2 m/s2,即整体的加速度为2 m/s2,选项C正确,D错误;对Ⅲ受力分析, 由牛顿第二定律可得F23=m3a,代入数据解得m3=2 kg,故A正确,B错误。

高中物理转盘连接体问题

高中物理转盘连接体问题

高中物理转盘连接体问题详解转盘连接体问题是一种常见的高中物理题型,这种问题涉及到多种物理概念,如受力分析、运动学与动力学、角速度与角动量、能量守恒与转化、动量守恒与转化、摩擦力与润滑,以及设备设计等。

以下是对这些概念的详细解析。

1. 受力分析在解决转盘连接体问题时,首先需要对物体进行受力分析。

物体受到的力可以分为静摩擦力、滑动摩擦力、重力、支持力、电场力、磁场力等。

根据物体的运动状态,可以判断出物体所受的力是哪种类型。

2. 运动学与动力学运动学主要研究物体的位置、速度和加速度等运动状态。

动力学则研究物体运动的原因,即物体所受到的力。

通过运动学与动力学的结合,可以研究物体的运动过程。

3. 角速度与角动量角速度是描述物体转动快慢的物理量,等于物体转动的弧度除以时间。

角动量是描述物体转动状态的物理量,等于物体的转动惯量乘以角速度。

当物体所受的合力矩不为零时,物体的角动量会发生变化。

4. 能量守恒与转化能量守恒是指能量不能被创造或消灭,只能从一种形式转化为另一种形式。

在转盘连接体问题中,通常涉及到机械能和其他形式的能量的转化,如热能、电能等。

根据能量守恒定律,可以研究物体运动过程中的能量转化和分布情况。

5. 动量守恒与转化动量守恒是指物体系统在不受外力作用时,动量保持不变。

在转盘连接体问题中,如果物体系统不受外力作用或所受的外力之和为零,则系统的动量守恒。

同时,在物体碰撞或摩擦过程中,动量会发生转化或转移。

6. 摩擦力与润滑摩擦力是阻碍物体相对运动的力,可以分为静摩擦力和滑动摩擦力。

在转盘连接体问题中,摩擦力的作用会导致物体之间的相对运动受到限制或产生热量。

润滑则是为了减小摩擦力而使两个接触面之间形成一层薄膜,从而减少摩擦力。

7. 设备设计在解决转盘连接体问题时,有时需要设计一些简单的机械设备,如转盘、滑轮等。

在设计时需要考虑设备的结构、材料、尺寸等因素,以确保设备能够满足使用要求和安全性能。

同时还需要考虑设备的维护和保养问题。

人教版高中物理必修第1册 第四章 专题1 连接体问题(整体法和隔离法)、临界问题

人教版高中物理必修第1册 第四章 专题1 连接体问题(整体法和隔离法)、临界问题
10.[河北衡水中学 2021 高一上月考]如图所示,质量 m=3 kg 的小球用细绳拴在倾角为 37°的光滑斜 面上,此时,细绳平行于斜面.g 取 10 m/s2,sin 37°=0.6,cos 37°=0.8,下列说法正确的是( AB )
A.当斜面以40 m/s2 的加速度向右加速运动时,细绳拉力为 40 N 3
解析
对五个物块整体受力分析有 F=5ma,物块 2 对物块 3 的作用力是物块 3、4、5 受到的合力,有 N=3ma, 解得 N=3F,A 错误;因为五个物块的加速度相等,质量相等,根据牛顿第二定律可知,每个物块受到的合
5 外力相等,B 错误;若把一块橡皮泥粘到物块 3 上,则整体的质量增加,其加速度减小,则物块 5 受到的合 外力减小,即物块 4 对 5 的作用力变小,C 正确;若撤走物块 5,物块 2 对 3 的作用力为 N′=12F,作用力变 小,D 错误.
A.从 0 到 t2 时刻,拉力 F 逐渐增大
B.t1 时刻,弹簧的形变量为 mgsin θ+ma k
C.t2 时刻,弹簧的形变量为
mgsin θ k
D.A、B 刚分开时的速度为 a(mgsin θ-ma) k
专题1 连接体问题(整体法和隔离法)、临界问题
刷题型
解析
从 0 到 t1 时刻,对 A、B 整体,根据牛顿第二定律得 F-2mgsin θ+kx=2ma,得 F=2mgsin θ-kx+2ma, 则知拉力 F 逐渐增大;从 t1 时刻 A、B 分离,t1~t2 时间内,对 B 分析,根据牛顿第二定律得 F-mgsin θ= ma,得 F=mgsin θ+ma,拉力 F 不变,故 A 错误.由题图乙可知,t1 时刻 A、B 分离,此时刻对 A 根据牛 顿第二定律有 kx1-mgsin θ=ma,解得 x1=mgsin θ+ma,开始时有 2mgsin θ=kx0,又 v12=2a(x0-x1),联

物理的连接体问题

物理的连接体问题

物理的连接体问题
物理的连接体问题是指在物理学中探讨物体之间如何相互连接、交互作用以及受力等问题。

在物理学中,物体之间的连接常常涉及到物体之间的接触、插入、固定等方式。

例如,一个简单的连接体问题可以是两个弹簧的连接方式,或者两个物体之间的摩擦力如何影响它们的运动。

连接体问题可以通过分析物体之间的接触面积、形状、材质等因素来研究。

例如,接触面积的大小决定了接触力的大小,形状的不匹配可能导致接触面不完全,从而影响连接体的稳定性。

此外,连接体问题还涉及到物体之间的受力情况。

通过分析连接体上的受力情况,可以研究物体之间的力的平衡和不平衡情况,以及力的传递和转化等问题。

为了解决连接体问题,物理学采用了多种分析方法和工具,如力学、力的平衡和受力分析、力矩分析、静力学、材料力学等。

总之,连接体问题是物理学中研究物体之间连接、交互作用和受力等问题的重要内容,对于理解物体之间的相互作用和力的传递具有重要意义。

高中物理:连接体问题中的整体法与隔离法

高中物理:连接体问题中的整体法与隔离法

在研究静力学问题或力和运动的关系问题时,常会涉及相互关联的物体间的相互作用问题,即“连接体问题”。

连接体问题一般是指由两个或两个以上物体所构成的有某种关联的系统。

研究此系统的受力或运动时,求解问题的关键是研究对象的选取和转换。

一般若讨论的问题不涉及系统内部的作用力时,可以以整个系统为研究对象列方程求解–“整体法”;若涉及系统中各物体间的相互作用,则应以系统某一部分为研究对象列方程求解–“隔离法”。

这样,便将物体间的内力转化为外力,从而体现其作用效果,使问题得以求解,在求解连接问题时,隔离法与整体法相互依存,交替使用,形成一个完整的统一体,分别列方程求解。

一、在静力学中的应用在用“共点力的平衡条件”求解问题时,大多数同学感到困难的就是研究对象的选取。

整体法与隔离法是最常用的方法,灵活、交替的使用这两种方法,就可化难为易,化繁为简,迅速准确地解决此类问题。

例1、在粗糙的水平面上有一个三角形木块,在它的两个粗糙的斜面上分别放置两个质量为m1和m2的木块,,如图1所示,已知三角形木块和两个物体都是静止的,则粗糙水平面对三角形木块()A.在摩擦力作用,方向水平向右;B.有摩擦力作用,方向水平向左;C.有摩擦力作用,但方向不确定;D.以上结论都不对。

图1解析:这个问题的一种求解方法是:分别隔离m1、m2和三角形木块进行受力分析,利用牛顿第三定律及平衡条件讨论确定三角形木块与粗糙水平面间的摩擦力。

采用整体法求解更为简捷:由于m1、m2和三角形木块相对静止,故可以看成一个不规则的整体,以这一整体为研究对象,显然在竖直平面上只受重力和支持力作用,很快选出答案为D。

例2、如图2所示,重为G的链条(均匀的),两端用等长的轻绳连接,挂在等高的地方,绳与水平方向成角,试求:(1)绳子的张力;(2)链条最低点的张力。

图2解析:(1)对整体(链条)分析,如图3所示,由平衡条件得①所以图3(2)如图4所示,隔离其中半段(左边的)链条,由平衡条件得②图4由①②得例3、有一个直角支架AOB,AO水平放置,表面粗糙,OB竖直向下,表面光滑,AO上套有小环P,OB上套有小环Q,两环质量均为m,两环间有一根质量可忽略,不可伸长的细绳相连,并在某一位置平衡,如图5所示,现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态相比较,AO杆对P环的支持力和细绳上的拉力的变化情况是()图5A.不变,变大;B.不变,变小;C.变大,变大;D.变大,变小。

高中物理复习:连接体问题、板块模型、传送带模型

高中物理复习:连接体问题、板块模型、传送带模型

高中物理复习:连接体问题、板块模型、传送带模型考点一连接体问题[知能必备]1.连接体问题模型弹力连接、摩擦力连接、轻绳连接、轻杆连接、弹簧连接.2.解题方略:要充分利用“加速度相等”这一条件或题中特定条件,交替使用整体法与隔离法解题.可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.[典例剖析](多选)如图,三个质量均为1 kg的物体A、B、C叠放在水平桌面上,B、C用不可伸长的轻绳跨过一光滑轻质定滑轮连接,A与B之间、B与C之间的接触面以及轻绳均与桌面平行,A与B之间、B与C之间以及C与桌面之间的动摩擦因数分别为0.4、0.2和0.1,重力加速度g取10 m/s2,设最大静摩擦力等于滑动摩擦力.用力F沿水平方向拉物体C,以下说法正确的是()A.拉力F小于11 N时,不能拉动CB.拉力F为17 N时,轻绳的拉力为4 NC.要使A、B保持相对静止,拉力F不能超过23 ND.A的加速度将随拉力F的增大而增大【思路点拨】解此题关键有两点:(1)利用整体法和隔离法选取研究对象,进行正确受力分析,注意摩擦因数的不同及摩擦力的大小和方向.(2)正确判断“相对滑动”的临界条件.解析:AC当C物体即将运动时,C物体水平方向受桌面给C的向右的摩擦力f桌,绳子向右的拉力T,B给C向右的摩擦力f BC,其中f桌=0.1(m A+m B+m C)g=3 N,f BC=0.2(m A +m B)=4 N,当即将滑动时应有F=f桌+f BC+T,T=f BC=4 N,可解得F=11 N,故A正确;因此B和C的加速度大小相等,在A和B即将发生相对滑动,对A受力分析可得,f AB=0.4m A g =m A a,对AB整体受力分析可得T-f BC=(m A+m B)a,对C物体受力分析可得F-T-f BC-f 桌=m C a ,联立解得F =23 N ,说明A 和B 发生相对滑动的临界力大小为F =23 N ,故C 正确;当F =17 N 时,A 和B 没有发生相对滑动,此时对AB 整体T -f BC =(m A +m B )a 1,对C 物体受力分析F -T -f BC -f 桌=m C a 1,联立解得T =8 N ,故B 错误;当拉力增大,A 和B 发生相对滑动时,则A 物体受到滑动摩擦力,加速度为a =0.4g =4 m/s 2,加速度不变,D 错误.[题组精练]1.如图所示,在倾角为30°的光滑斜面上,有质量相等的两物块用轻绳连接,用沿斜面的力F =40 N 使两物块一起向上加速运动.则轻绳的拉力为( )A .10 NB .20 NC .30 ND .40 N解析:B 以两物块为研究对象,利用牛顿第二定律,有F -2mg sin 30°=2ma ,以靠下的物块为研究对象,设轻绳的拉力为F T ,根据牛顿第二定律,有F T -mg sin 30°=ma ,代入数据,解得F T =20 N ,ACD 错误,B 正确.2.(2021·苏州一模)如图所示,光滑水平面上放置质量分别为m 、2m和3m 的三个木块,其中质量为2m 和3m 的木块间用一不可伸长的水平轻绳相连,轻绳能承受的最大拉力为F T .现用水平拉力F 拉质量为3m 的木块,使三个木块以同一加速度运动,则以下说法正确的是( )A .质量为2m 的木块受到四个力的作用B .当F 逐渐增大到F T 时,轻绳刚好被拉断C .当F 逐渐增大到1.5F T 时,轻绳还不会被拉断D .轻绳刚要被拉断时,质量为m 和2m 的木块间的摩擦力为23F T 解析:C 质量为2m 的木块受五个力的作用,A 项错误;当绳的拉力为F T 时,对m 和2m 有F T =3ma ,此时对整体有F =6ma ,可得F =2F T ,故B 项错误,C 项正确;轻绳刚要被拉断时,质量为m 和2m 的木块间的摩擦力为13F T ,故D 项错误. 3.如图所示,一根不可伸长的轻绳一端系住小球,另一端固定在光滑直角斜劈顶端O 点,轻绳与斜面平行,斜劈底面水平.使小球和斜劈做下列运动,下面5种运动中,小球对斜面的压力可能为零的是( )①一起水平向左加速; ②一起水平向右加速;③一起竖直向上加速; ④一起竖直向下加速;⑤绕过O点的竖直轴一起匀速转动.A.①②③B.②③⑤C.②④⑤D.①③④解析:C①若一起水平向左加速,小球受合外力水平向左,斜面对小球的支持力的水平分力与绳子拉力的水平分力的合力水平向左,因此支持力不可能为零,①错误;②一起水平向右加速,当绳子拉力的竖直分量恰好等于重力时,斜面的支持力为零,绳子拉力的水平分力就是合外力,②正确;③一起竖直向上加速,绳子拉力与支持力的合力竖直向上,大于重力,绳子拉力不可能为零,因此支持力不可能为零,③错误;④一起竖直向下加速,当加速度等于g时,绳子拉力减小为零时,此时斜面的支持力也为零,④正确;⑤绕过O点的竖直轴一起匀速转动,合力指向转轴,当角速度足够大时,绳子拉力的竖直分量恰好等于重力时,斜面的支持力为零,⑤正确.考点二板块模型[知能必备]1.审题建模:求解时应先仔细审题,弄清楚题目的含义、分析清楚每一个物体的受力情况、运动情况.2.求加速度:准确求出各物体在各运动过程的加速度(注意两过程的连接处加速度可能突变).3.做好两分析[典例剖析](经典高考题)如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐.A与B、B与地面间的动摩擦因数均为μ.先敲击A,A立即获得水平向右的初速度,在B 上滑动距离L后停下.接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下.最大静摩擦力等于滑动摩擦力,重力加速度为g.求:(1)A 被敲击后获得的初速度大小v A ;(2)在左边缘再次对齐的前、后,B 运动加速度的大小a B 、a B ′;(3)B 被敲击后获得的初速度大小v B .【解题策略】(1)读题审题:①A 与B 、B 与地面间的动摩擦因数均为μ――→想到地面与B 间的摩擦力是A 与B 间的摩擦力的2倍②左边缘再次对齐时恰好相对静止――→想到B 与A 的位移差等于第一次A 的位移(2)情境转化:①敲击A 后―→A 做匀减速直线运动②敲击B 后―→B 做匀减速直线运动、A 做匀加速直线运动③A 、B 相对静止后―→A 、B 整体做匀减速直线运动解析:(1)由牛顿运动定律知,A 加速度的大小a A =μg由匀变速直线运动得2a A L =v 2A 解得v A =2μgL (2)设A 、B 的质量均为m对齐前,B 所受合外力大小F =3μmg由牛顿运动定律F =ma B ,得a B =3μg对齐后,A 、B 整体所受合外力大小F ′=2μmg由牛顿运动定律F ′=2ma B ′,得a B ′=μg(3)经过时间t ,A 、B 达到共同速度v ,位移分别为x A 、x B ,A 加速度的大小等于a A 则v =a A t ,v =v B -a B tx A =12a A t 2,x B =v B t -12a B t 2 且x B -x A =L解得v B =22μgL答案:(1)2μgL (2)3μg μg (3)22μgL解答“板块”问题时要注意:“一个转折、两个关联”(1)一个转折:即滑块与长木板达到相同的速度时或滑块离开长木板时的受力情况以及运动状态的变化为转折点.(2)两个关联:即发生转折前后滑块和长木板的受力情况以及滑块与长木板的位移之间的关联,必要时要通过作草图把握关系.当有外力作用在木板上的物块或木板上时,一般用动力学观点借助牛顿运动定律和运动学公式就能求解,做好两物体的受力分析和运动过程分析是解决此类问题的关键点和突破口.[题组精练]1.如图所示,静止在水平地面上的木板(厚度不计)质量为m1=1 kg,与地面间的动摩擦因数μ1=0.2,质量为m2=2 kg 且可看成质点的小物块与木板和地面间的动摩擦因数均为μ2=0.4,以v0=4 m/s的水平速度从左端滑上木板,经过t=0.6 s滑离木板,g取10 m/s2,以下说法正确的是() A.木板的长度为1.68 mB.小物块离开木板时,木板的速度为1.6 m/sC.小物块离开木板后,木板的加速度大小为2 m/s2,方向水平向右D.小物块离开木板后,木板与小物块将发生碰撞解析:D由于μ2m2g>μ1(m1+m2)g,对木板由牛顿第二定律得μ2m2g-μ1(m1+m2)g=m1a1,解得a1=2 m/s2,即物块在木板上以a2=μ2g=4 m/s2向右减速滑行时,木板以a1=2 m/s2向右加速运动,在0.6 s时,物块的速度v2=1.6 m/s,木板的速度v1=1.2 m/s,B错误;物块滑离木板时,物块位移为x2=v0+v22t=1.68 m,木板位移x1=v12t=0.36 m,两者相对位移为x=x2-x1=1.32 m,即木板长度为1.32 m,A错误;物块离开木板后,木板做减速运动,加速度大小为a1′=2 m/s2,方向水平向左,C错误;分离后,在地面上物块会滑行x2′=v222a2=0.32m,木板会滑行x1′=v212a1′=0.36 m,所以两者会相碰,D正确.2.如图甲所示,一长方体木板B放在水平地面上,木板B的右端放置着一个小铁块A,在t=0时刻,同时突然给A、B初速度,其中A的初速度大小为v A=1 m/s,方向水平向左;B的初速度大小为v B=14 m/s,方向水平向右,木板B运动的v­t图像如图乙所示.已知A、B的质量相等,A与B及B与地面之间均有摩擦(动摩擦因数不等),A与B之间的最大静摩擦力等于滑动摩擦力,A始终没有滑出B,取重力加速度g=10 m/s2.(提示:t=3 s时刻,A、B达到共同速度v=2 m/s;3 s时刻至A停止运动前,A向右运动的速度始终大于B的速度)求:(1)小铁块A向左运动相对地面的最大位移;(2)B运动的时间及B运动的位移大小.解析:(1)由题图乙可知,0~3 s内A做匀变速运动,速度由v A=-1 m/s变为v=2 m/s则其加速度大小为a A =v -v A t 1=2-(-1)3m/s 2=1 m/s 2,方向水平向右. 当A 水平向左运动速度减为零时,向左运动的位移最大,则s =v 2A 2a A=0.5 m. (2)设A 与B 之间的动摩擦因数为μ1,由牛顿第二定律得μ1mg =ma A则μ1=a A g=0.1 由题图乙可知,0~3 s 内B 做匀减速运动,其速度由v B =14 m/s 变为v =2 m/s则其加速度大小为a B =v B -v t 1=14-23m/s 2=4 m/s 2 方向水平向左设B 与地面之间的动摩擦因数为μ2,由牛顿第二定律得μ1mg +2μ2mg =ma B则μ2=a B -μ1g 2g=0.15 3 s 之后,B 继续向右做匀减速运动,由牛顿第二定律得2μ2mg -μ1mg =ma B ′则B 的加速度大小为a B ′=2μ2g -μ1g =2 m/s 2方向水平向左3 s 之后运动的时间为t 2=v a B ′=22s =1 s 则B 运动的时间为t =t 1+t 2=4 s0~4 s 内B 的位移x B =v B +v 2t 1+v 2t 2=25 m ,方向水平向右. 答案:(1)0.5 m (2)4 s 25 m3.(2021·山东省泰安市高三检测)如图所示,水平面上有一长度为L 的平板B ,其左端放置一小物块A (可视为质点),A 和B 的质量均为m ,A 与B 之间、B 与水平面之间的动摩擦因数均为μ=0.50,开始时A 和B 都静止,用一个水平推力作用到平板B 上,使A 和B 恰好能保持相对静止一起向右匀加速运动.当位移为x 时,将原来的推力撤去并同时用另一水平推力作用到A 上,使A 保持原来的加速度继续匀加速运动,直到脱离平板.已知重力加速度为g .求:(1)平板B 的最大速度;(2)物块A 脱离平板时的速度大小v .解析:(1)设A 和B 一起做匀加速运动的加速度大小为a ,对A ,有μmg=ma解得a=0.5g将原推力撤去时平板B的速度最大,得v2m=2ax解得B的最大速度v m=gx(2)推力作用到A上之后,A保持匀加速运动,有x A=v m t+12at2v=v m+atv2-v2m=2ax A平板B做匀减速运动,有μ·2mg-μmg=ma′解得a′=0.5g讨论两种情况:(a)物块A脱离平板时平板未停下,则对B,有x B=v m t-12a′t2A、B的位移关系满足x A-x B=L联立可解得t=2L g代入数据可得A脱离平板时的速度v=gx+0.5gL此时B的速度满足v B=v m-a′t>0可解得相应的条件为L<2x(b)物块A脱离平板时平板停下,则对B,有v2m=2a′x BA、B的位移关系同样满足x A-x B=L解得A脱离平板时的速度v=2gx+gL相应的条件为L≥2x答案:(1)gx(2)见解析考点三传送带模型[知能必备]1.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上运动的力学系统可看作“传送带”模型,如图(a)(b)(c)所示.2.解题关键(1)关注两个时刻①初始时刻:物体相对于传送带的速度或滑动方向决定了该时刻的摩擦力方向.②物体与传送带速度相等的时刻:摩擦力的大小、方向或性质(滑动摩擦力或静摩擦力)可能会发生突变.(2)注意过程分解①摩擦力突变点是加速度突变点,也是物体运动规律的突变点,列方程时要注意不同过程中物理量莫混淆.②摩擦力突变点对应的状态是前一过程的末状态,也是后一过程的初状态,这是两个过程的连接点.(3)物体在倾斜传送带上运动,物体与传送带速度相同后需比较tan θ与μ的大小关系:μ>tan θ,速度相等后一起匀速;μ<tan θ,速度相等后物体的加速度向下,根据v与a的方向关系即可判定运动情况.[典例剖析]如图所示,一水平传送带以4 m/s的速度逆时针传送,水平部分长L=6 m,其左端与一倾角为θ=30°的光滑斜面平滑相连,斜面足够长,一个可视为质点的物块无初速度地放在传送带最右端,已知物块与传送带间的动摩擦因数μ=0.2,g取10 m/s2.求物块从放到传送带上到第一次滑回传送带最远端所用的时间.【解题指导】解析:物块在传送带上,根据牛顿第二定律得,μmg=ma解得a =μg =2 m/s 2设经过时间t 1物块的速度与传送带的速度相同,则有:v =at 1,解得t 1=v a =42 s =2 s ; 经过的位移x 1=v 22a=4 m<6 m , 在传送带上匀速运动的时间t 2=L -x 1v =0.5 s物块在斜面上的加速度a ′=mg sin 30°m=5 m/s 2, 在斜面上的运动时间t 3=2v a ′=85s =1.6 s , 返回传送带在传送带上减速到零(即第一次滑回传送带最远端)的时间t 4=v a =42s =2 s 则t =t 1+t 2+t 3+t 4=6.1 s.答案:6.1 s传送带问题的分析技巧(1)理清物体与传送带间的相对运动方向及摩擦力方向是解决传送带问题的关键.(2)传送带问题还常常涉及临界问题,即物体与传送带达到相同速度,这时会出现摩擦力改变的临界状态,对这一临界状态进行分析往往是解题的突破口.[题组精练]1.如图所示,绷紧的水平传送带始终以恒定速率v 1运行.初速度大小为v 2的小物块从与传送带等高的光滑水平地面上的A 处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v ­t 图像(以地面为参考系)如图乙所示.已知v 2>v 1,则( )A .t 2时刻,小物块离A 处的距离达到最大B .t 2时刻,小物块相对传送带滑动的距离达到最大C .0~t 2时间内,小物块受到的摩擦力方向先向右后向左D .0~t 3时间内,小物块始终受到大小不变的摩擦力作用解析:B 0~t 1时间内小物块向左做匀减速直线运动,t 1时刻小物块向左速度减为零,此时离A 处的距离达到最大,故A 错误;t 2时刻前小物块相对传送带向左运动,之后小物块相对传送带静止,t 2时刻小物块相对传送带滑动的距离达到最大,故B 正确;0~t 2时间内小物块先减速,后反向加速,小物块受到大小不变,方向始终向右的摩擦力作用,故C 错误;t 2时刻小物块向右速度增加到与传送带相等,t 2时刻之后小物块与传送带保持相对静止随水平传送带一起匀速运动,摩擦力消失,故D 错误.2.(2021·湖北荆州二模)如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB 足够长,传送皮带轮以大小为v =2 m/s 的恒定速率顺时针转动.一包货物以v 0=12 m/s 的初速度从A 端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.(g =10 m/s 2,已知sin 37°=0.6,cos 37°=0.8)(1)求货物刚滑上传送带时加速度为多大?(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远?(3)从货物滑上传送带开始计时,货物再次滑回A 端共用了多长时间?解析:(1)设货物刚滑上传送带时加速度为a 1,货物受力如图所示:根据牛顿第二定律得沿传送带方向:mg sin θ+F f =ma 1垂直传送带方向:mg cos θ=F N又F f =μF N由以上三式得:a 1=g (sin θ+μcos θ)=10×(0.6+0.5×0.8) m/s 2=10 m/s 2,方向沿传送带向下.(2)货物速度从v 0减至传送带速度v 所用时间设为t 1,位移设为x 1,则有:t 1=v -v 0-a 1=1 s ,x 1=v 0+v 2t 1=7 m. (3)当货物速度与传送带速度相等时,由于mg sin θ>μmg cos θ,此后货物所受摩擦力沿传送带向上,设货物加速度大小为a 2,则有mg sin θ-μmg cos θ=ma 2,得:a 2=g (sin θ-μcos θ)=2 m/s 2,方向沿传送带向下.设货物再经时间t 2,速度减为零,则t 2=0-v -a 2=1 s 货物沿传送带向上滑的位移x 2=v +02t 2=1 m 则货物上滑的总距离为x =x 1+x 2=8 m.货物到达最高点后将沿传送带匀加速下滑,下滑加速度大小等于a 2.设下滑时间为t 3,则x =12a 2t 23,代入解得t 3=2 2 s. 所以货物从A 端滑上传送带到再次滑回A 端的总时间为t =t 1+t 2+t 3=(2+22) s. 答案:(1)10 m/s 2,方向沿传送带向下 (2)1 s 7 m (3)(2+22) s3. (2021·安徽省马鞍山市高三下学期二模)有一水平足够长的传送带,以3 m/s 的速度沿顺时针方向匀速运转,传送带右端与倾角为37°的粗糙固定斜面底端B 平滑连接,一质量为1 kg 的小滑块从斜面上A 点由静止释放,经过一段时间后,最终停在传送带与斜面的连接处.小滑块与斜面、传送带之间的动摩擦因数均为0.5,A 、B 间距离为4 m .重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小滑块从释放到第一次到达B 点经历的时间;(2)小滑块第三次通过B 点的速度大小;(3)从释放到最终停止,小滑块运动的总路程.解析:(1)小滑块从A 点由静止释放向下运动mg sin θ-μmg cos θ=ma 1得a 1=2 m/s 2s AB =12a 1t 21得t 1=2 s(2)小滑块第一次滑上传送带的速度为v =a 1t 1=4 m/s此后先向左匀减速,而后向右匀加速,v =4 m/s>v 0=3 m/s ,当滑块和传送带速度相同时开始匀速,所以滑块返回B 点时速度为v 0=3 m/s滑块沿斜面向上运动的加速度为ma 2=mg sin θ+μmg cos θ解得a 2=10 m/s 2滑块第一次以初速度v 0冲上斜面后上升的最大距离x 1,滑块第三次到B 时速度为v 1,则v 20=2a 2x 1v 21=2a 1x 1联立得v 1=v 0 15=355m/s (3)滑块第一次以v 滑上传送带,向左运动的位移为s 1=v 22μg=1.6 m 滑块第二次以初速度v 1滑上传送带,由于v 1<v 0,滑块从传送带上返回B 点时速度大小仍为v 1,由第(2)问的分析知,此后滑块每次滑下斜面的速度大小是滑上斜面速度的 15 v 1=v 015 v 2=v 0⎝⎛⎭⎫152 v 3=v 0⎝⎛⎭⎫153 ……滑块第一次滑上斜面之后在斜面上的总路程s 2=2v 202a 2+2v 212a 2+2v 222a 2+… 联立可得s 2=1.125 m滑块第三次滑上传送带之后在传送带上的总路程s 3=2v 212μg +2v 222μg +2v 232μg+… 联立可得s 3=0.45 m小滑块运动的总路程s 总=s AB +2s 1+s 2+s 3=8.775 m答案:(1)2 s (2)355m/s (3)8.775 m 限时规范训练(三) 连接体问题、板块模型、传送带模型建议用时60分钟,实际用时________一、单项选择题 1.如图所示,质量分别为3 kg 、5 kg 的P 、Q 两滑块,用轻弹簧连接后置于光滑水平地面上.现用大小F =8 N 的水平拉力拉Q ,使P 、Q 一起向右做匀加速直线运动.则此过程中弹簧的弹力大小为( )A .3 NB .4 NC .5 ND .8 N解析:A 对PQ 的整体,由牛顿第二定律F =(m P +m Q )a ,对P ,T =m P a, 解得T =3 N ,故选项A 正确.2.(2021·山东省聊城市高三下学期模拟)车厢中用细线悬挂小球,通过细线的倾斜程度来检测车辆在行进过程中的加速度.如图所示,质量相同的两个光滑小球通过轻质细线分别系于车的顶部,左侧小球与车厢左侧壁接触,两细线与竖直方向的夹角相同,拉力大小分别为T 1和T 2.下列说法正确的是( )A .车可能正在向左做加速运动B .两细线的拉力T 1=T 2C .当汽车加速度增大时,T 1变小D .当汽车加速度减小时,T 2增大解析:B 对右边小球进行受力分析,沿细线方向斜右上方的拉力,和竖直向下的重力.设细线与竖直方向夹角为θ,根据牛顿第二定律有ma =mg tan θ,T 2=mg cos θ,加速度水平向右,可以判断小车可能向右加速,或者向左减速,故A 错误;同理,对左边小球受力分析,可得ma =F N -T 1sin θ,T 1=mg cos θ,联立可得T 1=T 2,故B 正确;根据上面选项的分析,可知当汽车加速度增大时, T 1不变,故C 错误;根据上面选项的分析,可知当汽车加速度减小时,小球2的细线的夹角变小,T 2变小.故D 错误.3.如图所示,在平直公路上行驶的厢式货车内,用轻绳AO 、BO 在O 点悬挂质量为5 kg 的重物,轻绳AO 、BO 与车顶部夹角分别为30°、60°.在汽车加速行驶过程中,为保持重物悬挂在O 点位置不动,重力加速度为g ,厢式货车的最大加速度( )A.g 2B .3g 3 C.3g 2 D .3g解析:B 对小球受力分析可得F A sin 30°+F B sin 60°=mg ,F B cos 60°-F A cos 30°=ma ,联立解得12·⎝⎛⎭⎫233mg -33F A -32F A =ma ,整理得33mg -233F A =ma ,当F A =0时,a 取得最大值a =33g .故选B 项. 4.如图所示,一水平方向足够长的传送带以恒定的速度v 1=2 m/s 沿顺时针方向转动,传送带右端有一与传送带等高的光滑水平面,一物体以恒定速度v 2=5 m/s 沿直线向左滑向传送带后,经过一段时间又返回光滑水平面,速率为v 2′,物体与传送带间的动摩擦因数为0.2,则下列说法正确的是( )A .返回光滑水平面时的速率为v 2′=2 m/sB .返回光滑水平面时的速率为v 2′=5 m/sC .返回光滑水平面的时间为t =3.5 sD .传送带对物体的摩擦力先向右再向左解析:A 因为传送带足够长,且顺时针转动,又因为v 1<v 2,则物体会先向左减速直到速度为0,再向右加速,最后匀速,则物体返回光滑水平面时的速率为v 2′=2 m/s ,故A 正确,B 错误;由牛顿第二定律得a =f m =μmg m =μg =2 m/s 2,则物体减速的时间为t 1=v 2a=2.5 s ,物体减速的位移为x 1=12at 21=6.25 m ,物体反向加速的时间为t 2=v 1a=1 s ,反向加速的位移为x 2=12at 22=1 m ,物体匀速的时间为t 3=x 1-x 2v 1=2.625 s ,故物体返回光滑水平面的时间为t =t 1+t 2+t 3=6.125 s ,故C 错误;由于物体是先向左减速,后反向加速,最后匀速返回,所以传送带对物体的摩擦力先向右后为0,故D 错误.5.质量为1 kg 的木板B 静止在水平面上,可视为质点的物块A 从木板的左侧沿木板上表面水平冲上木板,如图甲所示.A 和B 经过1 s 达到同一速度,之后共同减速直至静止,A 和B 运动的v ­t 图像如图乙所示,取g =10 m/s 2,则物块A 的质量为( )A .1 kgB .2 kgC .3 kgD .6 kg解析:C 由图像可知,物块在0~1 s 内的加速度大小为a 1=2 m/s 2,以物块为研究对象,由牛顿第二定律得μ1mg =ma 1,解得:μ1=0.2,木板在0~1 s 内的加速度大小为a 2=2 m/s 2,在1 s ~3 s 内物块与木板相对静止,一起做匀减速运动,加速度大小为a 3=1 m/s 2,AB 同速后整体为研究对象,由牛顿第二定律得:μ2(M +m )g =(M +m )a 3,解得:μ2=0.1,再以B 为研究对象,在0~1 s 内水平方向受到两个滑动摩擦力,由牛顿第二定律得:μ1mg -μ2(M +m )g =Ma 2代入数据解得A 的质量m =3 kg.6.用货车运输规格相同的两层水泥板,底层水泥板固定在车厢内,为防止货车在刹车时上层水泥板撞上驾驶室,上层水泥板按如图所示方式放置在底层水泥板上.货车以3 m/s 2的加速度启动,然后以12 m/s 匀速行驶,遇紧急情况后以8 m/s 2的加速度刹车至停止.已知每块水泥板的质量为250 kg ,水泥板间的动摩擦因数为0.75,最大静摩擦力等于滑动摩擦力,取g =10 m/s 2,则( )A .启动时上层水泥板所受摩擦力大小为1875 NB .刹车时上层水泥板所受摩擦力大小为2000 NC .货车在刹车过程中行驶的距离为9 mD .货车停止时上层水泥板相对底层水泥板滑动的距离为0.6 m解析:C 摩擦力提供给水泥板最大的加速度为a ′=μg =7.5 m/s 2启动时,加速度小于最大加速度,上层水泥板所受摩擦力为静摩擦力,大小为f =ma =250×3 N =750 N ,A 错误;刹车时,加速度大于最大加速度,上层水泥板所受摩擦力为滑动摩擦力,其大小为f =μmg=1875 N ,B 错误;货车在刹车过程中行驶的距离为s =v 22a=9 m ,C 正确;货车停止时间为t =v a =1.5 s ,该时间内,上层水泥板滑动的距离为s ′=v t -12μgt 2=18-8.4375=9.5625 m ,货车停止时上层水泥板相对底层水泥板滑动的距离为Δs =s ′-s =0.5625 m ,D 错误.7.(2021·山东济宁高三检测)如图所示,三个物体A 、B 和C 的质量分别为2m 、m 和m ,A 、B 叠放在水平桌面上,A 通过跨过光滑定滑轮的轻绳与C 相连,定滑轮左端的轻绳与桌面平行,A 、B 间的动摩擦因数为μ(μ<1),B 与桌面间的动摩擦因数为μ3,A 、B 、桌面之间的最大静摩擦力等于相对应的滑动摩擦力,重力加速度为g ,下列说法正确的是( )A .三个物体A 、B 、C 均保持静止B .轻绳对定滑轮的作用力大小为2mgC .若A 、B 之间发生相对滑动,则需满足μ<0.2D .若A 、B 之间未发生相对滑动,则A 受到的摩擦力大小为1+2μ3mg 解析:C 物块A 与B 之间的最大静摩擦力f 1=2μmg ,物块B 与桌面间的最大静摩擦力f 2=3mg ×μ3=μmg ,显然f 2<f 1,由于μ<1,即μmg <mg ,物块B 一定与桌面间发生相对滑动,A 错误;由于物块C 加速下降,绳子拉力T <mg ,因此轻绳对定滑轮的作用力大小F =2T <2mg ,B 错误;若A 与B 间恰好将发生相对滑动时,A 与B 的加速度恰好相等,此时对物块B :f 1-f 2=ma ,对A 、B 整体:T -f 2=3ma ,对物块C: mg -T =ma ,解得μ=0.2,因此若A 、B 之间发生相对滑动,则需满足μ<0.2,C 正确;若A 、B 之间未发生相对滑动,则对整体mg -f 2=4ma ,对物块B :f -f 2=ma ,可得A 受到的摩擦力大小f =1+3μ4mg ,D 错误. 8.(2021·湖北省八市高三下学期3月联考)如图所示,传送带以10 m/s 的速度逆时针匀速转动,两侧的传送带长都是16 m ,且与水平方向的夹角均为37°.现有两个滑块A 、B (可视为质点)从传送带顶端同时由静止滑下,已知滑块A 、B 的质量均为1 kg ,与传送带间动摩擦因数均为0.5,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.下列说法正确的是( )A .滑块A 先做匀加速运动后做匀速运动B .滑块A 、B 同时到达传送带底端C .滑块A 、B 到达传送带底端时的速度大小相等D .滑块A 在传送带上的划痕长度为5 m解析:D 两滑块都以10 m/s 的初速度沿传送带下滑,且mg sin 37°>μmg cos 37°,故传送带对两滑块的滑动摩擦力均沿斜面向上,大小也相等,故两滑块沿斜面向下的加速度大小相同,为a =g sin 37°+μg cos 37°=10 m/s 2,滑块A 先加速,加速到传送带速度所需位移为x 1=v 202a =5 m<16 m ,所需时间为t 1=v 0a=1 s ,加速到传送带速度后,由于mg sin 37°>μmg cos 37°,故不能和传送带保持相对静止,摩擦力反向,之后加速度为a ′=g sin 37°-μg cos 37°=2 m/s 2,加速到传送带底端L -x 1=v 0t 2+12a ′t 22,解得时间t 2=1 s ,到达底端共用时t =t 1+t 2=2 s ,B 滑块一直以加速度a ′加速至传送带底端L =12a ′t ′2,解得t ′=4 s ,AB 错误;A 到达底端时的速度为v A =v 0+a ′t 2=10 m/s +2×1 m/s =12 m/s ,B 到达底端时的速度为v B =a ′t ′=2×4 m/s =8 m/s ,C 错误;加速到传送带速度之时的相对位移为Δx 1=v 0t 1-x 1=10×1 m -5 m =5 m ,加速到传送带速度以后,相对位移为Δx 2=11-v 0t 2=1 m ,滑块比传送带速度快,会覆盖之前的划痕,滑块A 在传送带上的划痕长度为5 m ,D 正确.二、多项选择题9.如图甲所示,一水平传送带沿顺时针方向旋转,在传送带左端A 处轻放一可视为质点的小物块,小物块从A 端到B 端的速度—时间变化规律如图乙所示,t =6 s 时恰好到达B 点,重力加速度g 取10 m/s 2,则( )。

高中物理连接体问题解题技巧

高中物理连接体问题解题技巧

高中物理连接体问题解题技巧连接体问题是高中物理中常见的问题之一。

连接体是指两个物体通过一定的连接方式相互固定。

在解决连接体问题时,可以采用以下的解题技巧:
1.确定物体受力情况:首先,需要确定每个物体受到的力的大小、方向和作用点。

这个步骤是分析连接体问题的关键,需要综合运用牛顿第一定律、牛顿第二定律、牛顿第三定律等力学原理。

2.选取合适的参考系:选择合适的参考系可以简化计算。

一般来说,选择某个固定物体作为参考系比较方便。

3.运用平衡条件和动力学条件:对于连接体问题,有时候需要同时运用平衡条件和动力学条件。

平衡条件指物体处于静止状态时所满足的条件,动力学条件指物体在运动状态时所满足的条件。

4.解方程求解:将所有的受力情况、平衡条件和动力学条件用数学公式表示出来,然后解方程求解。

5.检查结果:检查结果是保证计算正确性的关键。

需要将结果代入原方程检查是否符合物理规律。

总之,连接体问题的解题技巧是需要综合运用多种力学原理和数学方法,需要多做练习才能够熟练掌握。

1/ 1。

高中物理专题:连接体

高中物理专题:连接体

专题:连接体问题一、考情链接:“连接体”问题一直是高中物理学习的一大难题,也是高考考察的重点内容。

二、知识对接:对接点一、牛顿运动定律牛顿第一定律(惯性定律):任何一个物体在不受外力或受平衡力的作用时,总是保持静止状态或匀速直线运动状态。

注意:各种状态的受力分析是解决连接体问题的前提。

牛顿第二定律:物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。

注意:①物体受力及加速度一定要一一对应,即相应的力除以相应的质量得到相应的加速度,切不可张冠李戴!②分析运动过程时要区分对地位移和相对位移。

牛顿第三定律:两个物体之间的作用力和反作用力,在同一直线上,大小相等,方向相反。

注意:不要忽视牛顿第三定律的应用,尤其是在求“小球对轨道压力”时经常用到牛顿第三定律,且均在评分标准中占1-2分,一定不要忘记。

对接点二、功能关系与能量守恒(什么力做功改变什么能)1、合力做功量度了物体的动能变化W合=ΔE K2、重力做功量度了物体的重力势能的变化:W G=ΔE PG3、弹簧的弹力做功量度了弹性势能的变化:W弹=ΔE P弹4、除重力和弹簧的弹力以外的其他力做功量度了系统的机械能的变化:W其他=ΔE机5、系统内相互作用的摩擦力做功:A、系统内的一对静摩擦力做功:一对静摩擦力对系统做功的代数和为零,其作用是在系统内各物体间传递机械能。

B、系统内的一对滑动摩擦力做功:其作用是使系统部分机械能转化为系统的内能,Q= fs相对。

6、电场力做功量度了电势能的变化:W E=ΔE PE7、安培力做功量度了电能的变化:安培力做正功,电能转化为其他形式能;克服安培力做功,其他形式能转化为电能。

三、规律方法突破突破点一、整体法与隔离法的运用①解答问题时,不能把整体法和隔离法对立起来,而应该把这两种方法结合起来,从具体问题的实际出发,灵活选取研究对象,恰当使用隔离法和整体法。

②在选用整体法和隔离法时,要根据所求的力进行选择,若所求为外力,则应用整体法;若所求为内力,则用隔离法。

高中物理连接体问题

高中物理连接体问题

⽜牛顿第⼆二定律律——连接体问题(整体法与隔离法)⼀一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在⼀一起的系统⼆二、处理理⽅方法——整体法与隔离法系统运动状态相同整体法问题不不涉及物体间的内⼒力力使⽤用原则系统各物体运动状态不不同隔离法问题涉及物体间的内⼒力力三、连接体题型:1、连接体整体运动状态相同:(这类问题可以采⽤用整体法求解)【例例1】A、B两物体靠在⼀一起,放在光滑⽔水平⾯面上,它们的质量量分别为,,今⽤用⽔水平⼒力力推A,⽤用⽔水平⼒力力拉B,A、B间的作⽤用⼒力力有多⼤大?【练1】如图所示,质量量为M的斜⾯面A置于粗糙⽔水平地⾯面上,动摩擦因数为,物体B与斜⾯面间⽆无摩擦。

在⽔水平向左的推⼒力力F作⽤用下,A与B⼀一起做匀加速直线运动,两者⽆无相对滑动。

已知斜⾯面的倾⻆角为,物体B的质量量为m,则它们的加速度a及推⼒力力F的⼤大⼩小为()A.B.C.D.【练2】如图所示,质量量为的物体2放在正沿平直轨道向右⾏行行驶的⻋车厢底板上,并⽤用竖直细绳通过光滑定滑轮连接质量量为的物体,与物体1相连接的绳与竖直⽅方向成⻆角,则()A.⻋车厢的加速度为B.绳对物体1的拉⼒力力为C.底板对物体2的⽀支持⼒力力为D.物体2所受底板的摩擦⼒力力为2、连接体整体内部各部分有不不同的加速度:(不不能⽤用整体法来定量量分析)【例例2】如图所示,⼀一个箱⼦子放在⽔水平地⾯面上,箱内有⼀一固定的竖直杆,在杆上套有⼀一个环,箱和杆的总质量量为M ,环的质量量为m 。

已知环沿着杆向下加速运动,当加速度⼤大⼩小为a 时(a <g ),则箱对地⾯面的压⼒力力为()A.Mg +mgB.Mg—maC.Mg +maD.Mg +mg –ma 【练3】如图所示,⼀一只质量量为m 的⼩小猴抓住⽤用绳吊在天花板上的⼀一根质量量为M 的竖直杆。

当悬绳突然断裂时,⼩小猴急速沿杆竖直上爬,以保持它离地⾯面的⾼高度不不变。

高中物理必修一 第四章 专题强化 动力学连接体问题

高中物理必修一 第四章 专题强化 动力学连接体问题

释放,求:
(1)物体的加速度大小;
答案
mg M+m
以m为研究对象:mg-T=ma

以M为研究对象:T=Ma

联立①②得:a=Mm+gm
T=MM+mgm.
(2)绳对M的拉力大小.
答案
Mmg M+m
以m为研究对象:mg-T=ma

以M为研究对象:T=Ma

联立①②得:a=Mm+gm
T=MM+mgm.
(2)若两木块与水平面间的动摩擦 因数均为μ,则A、B间绳的拉力 为多大? 答案 mAm+BmBF
若动摩擦因数均为μ,以A、B整体为研究对象,有F-μ(mA+mB)g= (mA+mB)a1,然后隔离出B为研究对象,有T2-μmBg=mBa1,联立解 得T2= mAm+BmBF .
(3)如图乙所示,若把两木块放在固定斜面上,两木块 与斜面间的动摩擦因数均为μ,在方向平行于斜面的拉 力F作用下沿斜面向上加速运动,A、B间绳的拉力为 多大? 答案 mAm+BmBF
针对训练2
如图所示,物体A重20 N,物体B重5 N,不计一切摩擦和
绳的重力,当两物体由静止释放后,物体A的加速度与绳
子上的张力分别为(重力加速度g=10 m/s2)
√A.6 m/s2,8 N
B.10 m/s2,8 N
C.8 m/s2,6 N
D.6 m/s2,9N
由静止释放后,物体A将加速下降,物体B将加速上 升,二者加速度大小相等,由牛顿第二定律,对A有 mAg-T=mAa,对B有T-mBg=mBa,代入数据解得a =6 m/s2,T=8 N,A正确.
C.底板对物体 2 的支持力为(m2-m1)g D.底板对物体 2 的摩擦力大小为tman2gθ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连接体运动问题一、教法建议【解题指导】“连接体运动”是在生活和生产中常见的现象,也是运用牛顿运动定律解答的一种重要题型。

在“连接体运动”的教学中,需要给学生讲述两种解题方法──“整体法”和“隔离法”。

如图1-15所示:把质量为M 的的物体放在光滑..的水平..高台上,用一条可以忽略质量而且不变形的细绳绕过定滑轮把它与质量为m 的物体连接起来,求:物体M和物体m 的运动加速度各是多大?⒈ “整体法”解题采用此法解题时,把物体M 和m 看作一个整体..,它们的总质量为(M+m )。

把通过细绳连接着的M 与m 之间的相互作用力看作是内力..,既然水平高台是光滑无阻力的,那么这个整体所受的外力..就只有mg 了。

又因细绳不发生形变,所以M 与m 应具有共同的加速度a 。

现将牛顿第二定律用于本题,则可写出下列关系式:mg=(M+m)a所以,物体M 和物体m 所共有的加速度为: g m M m a += ⒉ “隔离法”解题采用此法解题时,要把物体M 和m 作为两个物体隔离开分别进行受力分析,因此通过细绳连接着的M 与m 之间的相.互.作用力T 必须标出,而且对M 和m 单独..来看都是外力..(如图1-16所示)。

根据牛顿第二定律对物体M 可列出下式:T=Ma ①根据牛顿第二定律对物体m 可列出下式:mg-T=ma ②将①式代入②式:mg-Ma=ma mg=(M+m)a所以物体M 和物体m 所共有的加速度为:g m M m a += 最后我们还有一个建议:请教师给学生讲完上述的例题后,让学生自己独立推导如图1-17所示的另一个例题:用细绳连接绕过定滑轮的物体M 和m ,已知M>m ,可忽略阻力,求物体M 和m 的共同加速度a 。

如果学生能不在老师提示的情况下独立地导出:g mM m M a +-=,就表明学生已经初步地掌握了“连接体运动的解题方法了。

(如果教师是采用小测验的方式进行考察的,还可统计一下:采用“整体法”解题的学生有多少?采用“隔离法”解题的学生有多少?从而了解学生的思维习惯。

)”【思路整理】 ⒈ 既然采用“整体法”求连接体运动的加速度比较简便?为什么还要学习“隔离法”解题呢? 这有两方面的原因:①采用“整体法”解题只能求加速度a ,而不能直接....求出物体M 与m 之间的相互作用力T 。

采用“隔离法”解联立方程,可以同时解出a 与T 。

因此在解答比较复杂的连接体运动问题时,还是采用“隔离法”比较全面。

②通过“隔离法”的受力分析,可以复习巩固....作用力和反作用力的性质,能够使学生加深对“牛顿第三定律”的理解。

⒉ 在“连接体运动”的问题中,比较常见的连接方式....有哪几种? 比较常见的连接方式有三种:①用细绳将两个物体连接,物体间的相互作用是通过细绳的“张力”体现的。

在“抛砖引玉”中所举的两个例题就属于这种连接方式。

②两个物体通过“摩擦力”连接在一起。

③两个物体通互相接触推压连接在一起,它们间的相互作用力是“弹力”。

⒊ “连接体运动”问题是否只限于两个物体的连接?不是。

可以是三个或更多物体的连接。

在生活中我所见的一个火车牵引着十几节车厢就是实际的例子。

但是在中学物理解题中,我们比较常见的例题、习题和试题大多是两个物体构成的连接体。

只要学会解答两个物体构成的连接体运动问题,那么解答多个物体的连接体运动问题也不会感到困难,只不过列出的联立方程多一些,解题的过程麻烦一些。

二、解题范例例题1: 如图1-18所示:在光滑的水平桌面上放一物体A ,在A 上再放一物体B ,物体A 和B 间有摩擦。

施加一水平力F 于物体B ,使它相对于桌面向右运动。

这时物体A 相对于桌面A. 向左运B. 向右运C. 不动D. 运动,但运动方向不能判断。

【思维基础】解答本题重要掌握“隔离法”,进行受力分析....。

分析思路:物体A 、B 在竖直方向是受力平衡的,与本题所要判断的内容无直接关系,可不考虑。

物体B 在水平方向受两个力:向右的拉力F ,向左..的A 施于B 的摩擦力f ,在此二力作用下物体B 相对于桌面向右运动。

物体A 在水平方向只受一个力:B 施于A 的向右..的摩擦力f ,因此物体A 应当向右运动。

注1、水平桌面是光滑..的,所以对物体A 没有作用力。

注2、物体A 与物体B 间的相互摩擦力是作用力和反作用力,应当大小相等、方向相反、同生同灭,分别作用于A 和B 两个物体上。

答案:(B )例题2:如图1-19所示:两个质量相同的物体1和2紧靠在一起,放在光滑水平桌面上,如果它们分别受到水平推力F 1和F 2,且F 1>F 2,则物体1施于物体2的作用力的大小为:A. F 1B. F 2C. 21(F 1+F 2)D. 21(F 1-F 2) 【思维基础】:解答本题不应猜选....答案(这是目前在一些中学生里的不良倾向),而应列出联立方程解出答案,才能作出正确选择。

因此掌握“隔离法”解题是十分重要的。

分析思路:已知物体1和2的质量相同,设它们的质量都为m ;设物体1和2之间相互作用着的弹力为N ;设物体1和2运动的共同加速度为a 。

则运用“隔离法”可以列出下列两个方程:F 1-N =ma ①N -F 2=ma ②∵①、②两式右端相同 ∴F 1-N =N -F 2 2N =F 1+F 2 得出:N =21(F 1+F 2) 答案:(C ) 【模仿学习】为了提高学生的解题能力,我们还需要讲述综合性例题进行指导。

例题3:一条细绳(忽略质量)跨过定滑轮在绳子的两端各挂有物体A 和B (如图1-20所示),它们的质量分别是m A =0.50kg ,m B =0.10kg 。

开始运动时,物体A 距地面高度h A =0.75m ,物体B 距地面高度h B =0.25m ,求:物体A 落地后物体B 上升的最大高度距地面多少米?启发性问题:⒈ 在本题中细绳连接着物体A 和B 一块运动,这是一种什么类型的动力学问题?⒉ 在运动过程中物体A 和B 的加速度大小..相同吗?求它们的加速度有几种方法?⒊ 当物体A 落到地面时物体B 开始作什么性质的运动?⒋ 有人说物体B 上升的最大..高度H =h A +h B ,你认为是否正确?为什么? ⒌ 在求解过程中本题需要运用哪些关系式?(请你先把所需的关系式写在纸上,然后通过解题和对照后面答案看看是否写完全了。

)分析与说明:⒈ 本题属于“连接体运动问题”。

⒉ 物体A 和B 的加速度大小..是相同的。

求它们的加速度有两种方法──“整体法”和“隔离法”。

由于本题不需要求出细绳的张力,所以采用“整体法”求加速度比较简便。

⒊ 当物体A 落到地面时,因为物体B 有向上运动的速度,所以物体B不会..立即停止运动,而是..开始作竖直上抛运动直至升到最大高度。

物体A 落地时的末速度V At 与物体B 作竖直上抛运动的初速度V B0是大小..相等的(但方向相反)。

⒋ 认为物体B 上升的最大..高度H =h A +h B 是不.正确的。

这种错误是由于没有考虑到物体B 作竖直上抛运动继续上升的高度h 上。

所以物体B 距地面的最大高度H =h A +h B +h 上才是正确的。

⒌ 从下列“求解过程”中可以看到解答本题所需用的关系式。

求解过程:先用整体法求出物体A 和B 共同的加速度。

)/(5.68.910.050.010.050.0)(2S m g m m m m a am m g m g m B A B A B A B A =⨯+-=+-=+=-再求物体A 落到地面时的末速度:A At ah V 2= (可暂不求出数值)因为物体A 和B 是连接体运动,所以物体A 落地时的末速度与物体B 作竖直上抛运动的初速度大小..相等。

A At B ah V V 20==根据高一学过的匀变速运动规律V t 2-V 02=2aS ,当V t =0, V 0=V B0, a=g, S=h 上可导出下式:)(50.08.975.05.6222)2(2222020m g ah gah g ah g V h gh V O A A A B B =⨯======-上上 综上所述可知物体B 距地面的最大高度是由下列三部分合成的:物体B原来距地面的高度h B=0.25m 物体B被物体A通绳拉上的高度h A=0.75m物体作竖直上抛运动继续上升的高度h上=0.50m所以物体B距地面的最大高度为:H=h B+h A+h上=0.25m+0.75m+0.50m=1.5m解题后的思考:物体B所达到的最大高度是保持不住的,因为上抛至最高处时就会按自由落体的方式下落,因此物体B停止运动后,最终的距地面高度h=h A+h B=0.75m+0.25m=1m,但这不是物体B在运动过程中曾经..高度。

..达到的最大补充说明:“竖直上抛运动”是一种匀减速运动.....,它的初速度V0是竖直向上的;它的加速度是重力加速度g,方向是竖直向下的;当物体的运动速度减为零....。

有关这类问题我们还.....时也就达到了最大高度将在下章中进行深入的讨论。

【举一反三】上面所讲的例题虽然具有典型性和综合性,但是灵活性还不够。

为了进一步提高分析问题的能力,我们讲授下列例题,加强学生的思维锻炼。

例题4:如图1-21之(a),(b)所示:将m1=4kg的木块放在m2=5kg的木块上,m2放在光滑的水平面上。

若.用F1=12N的水平力拉m1时,正好..牛顿的水平力(F2)拉m2时,..使m1相对于m2开始发生滑动;则需用多少正好..使m1相对于m2开始滑动?“准备运动”(解题所需的知识与技能):解答本题的关键在于──“受力分析”和“运动分析”。

根据题意可分析出物体m1和m2之间必有相互作用着的摩擦力f。

因此图1-22之(c),(d)所示的就是(a),(b)两种状态的受力分析图。

又因m2是置于光滑..水平面上的,所以由m1和m2所构成的连接体在受到外力作用时一定会产生加速度。

由于(c),(d)图示的受力形式不同,所产生的加速度a'和a“也不同。

(还请读者注意题文中的“正好”二字,因此二物体相对滑动的瞬间仍可当作具有共同的加速度。

)解题的过程:根据前面的图(c)用隔离法可以列出下面两个方程:F1-f=m1a'① f=m2a'②由①、②两式相加可得:F1=(m1+m2)a'③根据前面图(d)用隔离法可以列出下面两个方程:F 2-f =m 2a “④ f =m 1a “ ⑤ 由④、⑤两式相加可得:F 2=(m 1+m 2)a “⑥ 由③、⑥两式相除可得:"'21a a F F = ⑦ 由②、⑤两式相除可得:"'112a m a m = 即:"'21a a m m = ⑧ 根据:⑦、⑧两式可以写出:2121m m F F = ⑨将已知量m 1=4kg ,m 2=5kg ,F 1=12N 代入⑨式:kg kg F N 54122= 解出答案:F 2=15N “整理运动”(解题后的思考):⒈ 你想到了物体m 1和m 2之间必存在着摩擦力吗?⒉ 你想到了在(a),(b)两种情况下物体m 1和m 2都作加速运动吗?为什么在(a),(b)两种情况下运动的加速度不相等?⒊ 在解题过程中你有什么体会?你还能想出其它的解法吗?三、解题步骤⒈ 若连结体内(即系统内)各物体具有相同的加速度时,首先应该把这个连接体当成一个整体(可看作一个质点),分析它受到的外力和运动情况,再根据牛顿第二定律求出加速度;若要求连接体内各物体相互作用的内力,这时可把某个物体隔离出来,对它单独进行受力和运动情况的分析,再根据牛顿第二定律列式求解。

相关文档
最新文档