上海交通大学2018年自主招生考试数学试题(含答案)
2018年上海中学自主招数学试卷-含答案详解
2018年上海中学自主招数学试卷一、选择题(本大题共4小题,共12.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知x2+ax−12能分解成两个整数系数的一次因式的积,则整数a的个数有( )A. 0B. 2C. 4D. 62. 如图,D、E分别为△ABC的底边所在直线上的两点,BD=EC,过A作直线l,作DM//BA 交l于M,作EN//CA交l于N.设△ABM面积为S1,△ACN面积为S2,则( )A. S1>S2B. S1=S2C. S1<S2D. S1与S2的大小与过点A的直线位置有关3. 设p1、p2、q1、q2为实数,则p1p2=2(q1+q2),若方程甲:x2+p1x+q1=0,乙:x2+ p2x+q2=0,则( )A. 甲必有实根,乙也必有实根B. 甲没有实根,乙也没有实根C. 甲、乙至少有一个有实根D. 甲、乙是否总有一个有实根不能确定4. 设a=121+223+325+⋯+100722013,b=123+225+327+⋯+100722015,则以下四个选项中最接近a−b的整数为( )A. 252B. 504C. 1007D. 2013二、填空题(本大题共8小题,共24.0分)5. 已知1a +1b=1a+b,则ba+ab的值等于______ .6. 有______个实数x,可以使得√120−√x为整数.7. 如图,△ABC中,AB=AC,CD=BF,BD=CE,用含∠A的式子表示∠EDF,则∠EDF=______.8. 在直角坐标系中,抛物线y=x2+mx−34m2(m>0)与x轴交于A,B两点.若A,B两点到原点的距离分别为OA,OB,且满足1OB −1OA=23,则m的值等于_______.9. 定圆A的半径为72,动圆B的半径为r,r<72且r是一个整数,动圆B保持内切于圆A且沿着圆A的圆周滚动一圈,若动圆B开始滚动时的切点与结束时的切点是同一点,则r共有______个可能的值.10. 学生若干人租游船若干只,如果每船坐4人,就余下20人,如果每船坐8人,那么就有一船不空也不满,则学生共有______人.11. 对于各数互不相等的正整数组(a1,a2,…a n)(n是不小于2的正整数),如果在i<j时有a i>a j,则称a i与a j是该数组的一个“逆序”,例如数组(2,4,3,1)中有逆序“2,1”、“4,3”、“4,1”、“3,1”,其逆序数为4,现若各数互不相同的正整数组(a1,a2,a3,a4,a5,a6)的逆序数为2,则(a6,a5,a4,a3,a2,a1)的逆序数为______.12. 若n为正整数,则使得关于x的不等式1121<nx+n<1019有唯一的整数解的n的最大值为______.三、解答题(本大题共2小题,共16.0分。
上交2018年自主招生试题
2018年上海交通大学自主招生考试 1.设点0)P,已知曲线y x =≤≤上存在n 个点12,,,n A A A ,使得12,,,n PA PA PA构成公差为1(5d ∈的等差数列,求n 的最大值;2.已知△ABC 的面积为14,外接圆半径R=1111a b c++的大小3.已知等差数列{}n a ,满足2211n a a a ++≤,试求1221n n n a a a ++++++的最大值4.记6的小数部分为t,求t 6)的值 5.已知2113,12n n n a a a a +==-+,求122017111a a a +++的整数部份6.设X 为全集,A X ⊂,定义1,0,S A S Af S A ∈⎧=⎨∉⎩,对X 的真子集A 和B ,下列错误的是( )A . S SB A B A f f ⊆⇒≤ B .若B A ⋂≠φ,则S S S B S B A f f f ⋂≤≤C .忘记D . S S S B S B A f f f ⋃=≤7.在四面体中不同长度的棱长至少有______条8.在一个平面内,一条抛物线把平面最多分成2部分,两条抛物线把平面最多分成7部分,问四条抛物线把平面最多分成几部分?9.已知22(,)(53cos )(2sin )g a b a b a b =+-+-,求(,)g a b 的最小值 10.已知133a =,12n n a a n +-=,则当na n取最小值时,n =________ 11.已知动点A 在椭圆2212516x y +=上,动点B 在圆22(6)1x y -+=上,求AB 的最大值12.若100!12(*)n M M Z =∈,则当n 取最大值时,M 是否能被2,3整数13.设光线从点A (1,1)出发,经过y 轴反射到圆22(5)(7)1x y -+-=上一点P ,若光线从点A 到点P 经过的路程为R ,求R 的最小值14.正整数列1,2,3……,将其中的完全平方数和完全立方数都划去,求将剩下的数按照从小到大排列的第500个数是多少?。
历年自主招生考试数学试题大全2018年上海交通大学自主招生数学试题Word版
2018年上海交通大学自主招生考试数学试题一、填空题(每题5分,共50分)1.已知方程2212x px p--=0(p R ∈)的两根12,x x 满足441222x x +≤,则p= . 2.设8841sin cos ,0,1282x x x π⎛⎫+=∈ ⎪⎝⎭,则x = . 3.已知,n Z ∈且1200411112004n n +⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,则n= .4.如图,将3个12cm×12cm 的正方形沿邻边的中点剪开,分成两部分,将这6部分接在一个边长为2的正六边形上,若拼接后的图形是一个多面体的表面展开图.则该多面体的体积为 . 第4题图523333,,,x y x y Q -=∈则(x ,y )= .6.化简:()()122222246812n n +-+-++-= . 7.若3z =1,且z ∈C ,则3z +22z +2z +20= .8.一只蚂蚁沿l×2×3立方体表面爬,从一条对角线一端爬到另一端所爬过的最短距离为 .9.4封不同的信放人4个写好地址的信封中,全装错的概率为 ,恰好只有一封信装错的率为 .10.已知等差数列{a n }中,a 3+a 7+a 11+a 19=44,则a 5+a 9+a 16= .二、解答题(本大题共50分)1.已知方程x 3+ax 2+b x +c =0的三根分别为a 、b 、c ,且a 、b 、c 是不全为零的有理数,求a 、b 、c 的值.2.是否存在三边为连续自然数的三角形,使得(l )最大角是最小角的两倍?(2)最大角是最小角的三倍?若存在,分别求出该三角形;若不存在,请说明理由. 3.已知函数y =2281ax x b x +++的最大值为9,最小值为1.求实数a 、b 的值。
4.已知月利率为y ,采用等额还款方式,若本金为1万元,试推导每月等额还款金额m 关于y 的函数关系式(假设贷款时间为2年).5.对于数列{}n a :1,3,3,3,5,5,5,5,5,⋯, 即正奇数k 有k 个·是否存在整数r ,s ,t ,使得对于任意正整数n , 都有n a r t =+恒成立([x ]表示不超过x 的最大整数)?。
历年名牌大学自主招生数学考试试题及答案
上海交通大学2007年冬令营选拔测试数学试题一、填空题(每小题5分,共50分)1.设函数满足,则.2.设均为实数,且,则.3.设且,则方程的解的个数为.4.设扇形的周长为6,则其面积的最大值为.5..6.设不等式与的解集分别为M和N.若,则k的最小值为.7.设函数,则.8.设,且函数的最大值为,则.9.6名考生坐在两侧各有通道的同一排座位上应考,考生答完试卷的先后次序不定,且每人答完后立即交卷离开座位,则其中一人交卷时为到达通道而打扰其余尚在考试的考生的概率为.10.已知函数,对于,定义,若,则.二、计算与证明题(每小题10分,共50分)11.工件内圆弧半径测量问题.为测量一工件的内圆弧半径,工人用三个半径均为的圆柱形量棒放在如图与工件圆弧相切的位置上,通过深度卡尺测出卡尺水平面到中间量棒顶侧面的垂直深度,试写出用表示的函数关系式,并计算当时,的值.12.设函数,试讨论的性态(有界性、奇偶性、单调性和周期性),求其极值,并作出其在内的图像.13.已知线段长度为,两端均在抛物线上,试求的中点到轴的最短距离和此时点的坐标.参考答案:1. 2。
3。
2 4. 5. 6。
27. 8。
9. 10.11.,12.;偶函数;;;周期为 13。
;14。
略;反证法 15. 2;3;2008年交大冬令营数学试题参考答案2008。
1.1 一.填空题1.若,,则.22.函数的最大值为__________.3.等差数列中,,则前项和取最大值时,的值为__________.20 4.复数,若存在负数使得,则.5.若,则.6.数列的通项公式为,则这个数列的前99项之和.7.……中的系数为.39212258.数列中,,,,,,,,,,此数列的通项公式为.9.甲、乙两厂生产同一种商品.甲厂生产的此商品占市场上的80%,乙厂生产的占20%;甲厂商品的合格率为95%,乙厂商品的合格率为90%.若某人购买了此商品发现为次品,则此次品为甲厂生产的概率为.10.若曲线与错误!未定义书签。
2018上海交通大学自主招生试题
上海交通大学化学注意事项:本试卷共有19道试题,总分100分。
一、填空题(共11小题) 1.【真题】将等物质的量的A 和B ,混合于2L 的密闭容器中,发生如下反应:()()()()3A g B g C g 2D g x ++═,经过5min 后测得D 的浓度为0.5mol /L ,()()A :B 3:5c c =,C 的反应速率是()0.1mol /L min ⋅,A 在5min 末的浓度是___________,B 的平均反应速率是___________,D 的平均反应速率是___________.x 的值是___________ 3.【真题】一定温度下,在2L 的密闭容器中,X 、Y 、Z 三种气体的物质的量随时间变化的曲线如图所示:(1)从反应开始到10s 时,用Y 表示的反应速率为______________________________。
(2)该反应的化学方程式为______________________________。
(3)若上述反应分别在甲、乙、丙三个相同的密闭容器中进行,经同一段时间后,测得三个容器中的反应速率分别为甲:()11X 0.3mol L s v --=⋅⋅;乙:()11Y 0.12mol L s v --=⋅⋅ 丙:()11Z 9.6mol L min v --=⋅⋅;则甲、乙、丙三个容器中反应速率由慢到快的顺序为______________________________。
5.【真题】叶绿素在光的作用下可将2CO 和2H O 转化为葡萄糖()6126C H O 和2O 。
????22612626CO 6H O C H O 6O −+−→+,葡萄糖可进一步合成淀粉()6105C H O n ⎡⎤⎣⎦。
科学家预言,在不久的将来,人类将模拟生物体内的这一变化过程,从工厂中由2CO 和2H O 直接生产出淀粉。
这样,合成优质叶绿素将十分重要。
叶绿素有a 、b 两种,已知某种叶绿素中仅含有C 、H 、O 、N 、Mg 五种元素,且知该叶绿素中各元素的质量分数分别是()C 73.99%w =,()H 8.072%w =,()O 8.969%w = ()N 6.278%w =,()Mg 2.691%w =经测定该叶绿素的相对分子质量小于1000,试确定该叶绿素的分子式。
2018年普通高等学校招生全国统一考试数学试题(上海卷,含答案)
(B)2
(C)2
(D)4
14.已知 a R ,则“ a﹥1”是“ 1 ﹤1”的( ) a
(A)充分非必要条件 (B)必要非充分条件 (C)充要条件 (D)既非充分又非必要条件 15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设 AA₁是正 六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以 AA₁为底面矩形的一边, 则这样的阳马的个数是( )
。
4
【答案】 y 1 x 2
【解析】【解答】
x2 4
y2
1,a=2,b=1。故渐近线方程为
y
1 2
x
6
【分析】渐近线方程公式。注意易错点焦点在
x
x2 轴上,渐近线直线方程为 a2
y2 b2
1时,
y b x。 a
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海 【试题来源】2018 年高考数学真题试卷(上海卷)
住:考前休息很重要。好好休息并不意味着很早就要上 床睡觉,根据以往考生的经验,太早上床反而容易失眠。考 前按照你平时习惯的时间上床休息就可以了,但最迟不要超 过十点半。
用:出门考试之前,一定要检查文具包。看看答题的工 具是否准备齐全,应该带的证件是否都在,不要到了考场才 想起来有什么工具没带,或者什么工具用着不顺手。
a=- 1 时, f
x
=
x
1 2
非奇非偶函数,错误
2
a= 1 时, f
1
x = x 2 非奇非偶函数,错误
2
a=1 时, f x =x 在(0, )上递增,错误
a=2 时, f x =x2 在(0, )上递增,错误
a=3 时, f x =x3 在(0, )上递增,错误
2018年普通高等学校招生上海市数学真题卷(含答案)
(C) 3 3
(D)0【答案】 B
【知识点】函数的概念【考查能力】空间想象能力
【解析】点 (1, f (1)) 在直线 x = 1 上,把直线进行旋转可得旋转后的直线,这样进
行下去直到回到 (1, f (1)) 点可知 f (1) = 3 2
17. 已知圆锥的顶点为 P ,底面圆心为 O ,半径为 2,
2
2
【知识点】直线的交点坐标与距离公式
【解析】数形结合,转化单位圆上圆心角为 60o的两点到直线 x + y -1 = 0 的距离
之和,可求得最大值为 2 + 3 。
13. 设 P 是椭圆 x2 + y2 = 1 上的动点,则 P 到该椭圆的两个焦点的距离之和为(
).
53
(A) 2 2
(B) 2 3
O
B
A
M
(2)若
f
æ çè
p 4
ö ÷ø
=
3 +1,求方程 f ( x) = 1-
2 在区间[-p ,p ] 上的解.
1)、由偶函数可知 f (-x) = f (x) 得 a = 0 。
(2)、 f (p ) = 3 +1Þ a = 3 , f (x) = 2sin(2x + p ) +1, \sin(2x + p ) = - 2 ,在
(C) 2 5
(D) 4 2 【答案】 C
14. 已知 a Î R ,则“ a > 1”是“ 1 < 1 ”的(
).
a
(A)充分非必要条件 (B)必要非充分条件
(C)充要条件 (D)既非充分又非必要条件【答案】 A
15. 《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设 AA1 是正六 棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以 AA1 为底面矩形的一边,
2018上海市上海交通大学附属中学自招真题及答案
3. AB∥CD , AB = 15 , CD = 10 , AD = 3 , CB = 4 ,求 SABCD __________. 【答案】 【解析】解:设 AE = x , BC∥FD , 则:: AF = AB − CD = 5 , GF =AF − AE =5 − x ,
A= D2 A= E2 FD2 − EF 2 即: 9 − x2 = 16 − (5 − x)2 ,
= 1 + 1 2 4k +
2
(k
= 1, ,50)
,
故 a≤ 51 , 101
故
1 2
<
a≤ 51 101
,故
amax
=
51 101
.
10. G 为重心, DE 过重心,求 S△ADE max 以及 S△ADE min ,并证明结论.
A
D
E
B
C
【答案】 【解析】假设△ABC 面积为 S1 ,△ADE 面积为 S2 , 设 AD = mAB , AE = nAC ,由于 G 为△ABC 重心,易知: 1 + 1 =3 ,
A
D
G
D
E
B
C
E
7.在直角坐标系中,正 △ABC
,
B(2, 0)
,C
9 2
,
0
,过点 O
作直线
OMN
, OM
=
MN
,求
M 的横坐标__________.
y A
MN
OB
Cx
17 【答案】
8 【解析】作 MH∥AC , MG ⊥ BH , 设 BH = x ,
OH = HC ⇒ 2 + x = 5 − x , 2
2018年普通高等学校招生全国统一考试(上海卷) 数学试题及答案(学生版)
2018年普通高等学校招生全国统一考试(上海卷)数学试题一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1.行列式4125的值为_________.2.双曲线2214x y -=的渐近线方程为_________.3.在7(1)x +的二项展开式中,2x 项的系数为_________.(结果用数值表示)4.设常数a R ∈,函数2()log ()f x x a =+。
若()f x 的反函数的图像经过点(3,1),则a =______.5.已知复数z 满足(1)17i z i +=-(i 是虚数单位),则z =_________.6.记等差数列{}n a 的前n 项和为n S ,若30a =,6714a a +=,则7S =_________.7.已知12,1,,1,2,32α⎧⎫∈---⎨⎬⎩⎭。
若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则α=____.8.在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF =,则AE BF •的最小值为_________.9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个。
从中随机选取三个,则这三个砝码的总质量为9克的概率是_________.(结果用最简分数表示) 10.设等比数列{}n a 的通项公式为1n n a q -=(*n ∈N ),前n 项和为n S 。
若11lim 2n n n S a →+∞+=,则q =________.11.已知常数0a >,函数2()2x x f x ax =+的图像经过点6,5P p ⎛⎫ ⎪⎝⎭、1,5Q q ⎛⎫- ⎪⎝⎭。
若236p q pq +=,则a =_________.12.已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,则+的最大值为_________.二、选择题(本大题共有4题,满分20分,每题5分)13.设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( )A.14.已知a ∈R ,则“1a >”是“11a<”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。
2018年___自主招生数学试卷(含答案解析)
2018年___自主招生数学试卷(含答案解析)2018年___自主招生数学试卷一、选择题(本大题共6小题,共24.0分)1.√16的平方根是()A.4B.±4C.22.若√(1−x)2=x−1成立,则x满足()A.x≥1B.x≥C.x≤1D.±23.已知x=√5−1,则x2+2x的值是()A.2B.3C.4D.54.如图所示的四条直线a、b、c、d,直线a、b与水平线平行,以其中一条为x轴,d与水平线垂直,取向右为正方向;直线c、以其中一条为y轴,取向上为正方向.某同学在此坐标平面上画了二次函数x=xx2+2xx+2(x≠0)的图象如图,则下面结论正确的是()A.a为x轴,c为y轴B.a为x轴,d为y轴C.b为x轴,c 为y轴D.b为x轴,d为y轴5.如图,已知AB为圆的直径,C为半圆上一点,D为半圆的中点,xx⊥xx,垂足为H,HM平分∠xxx,HM交AB于x.若xx=3,xx=1,则MH长为()A.1B.1.5C.0.5D.0.76.如图,△xxx中,∠x=90°,D是BC边上一点,∠xxx=3∠xxx,xx=8,xx=7.则AB的值为()A.15B.20C.2√2+7D.2√2+√7二、填空题(本大题共10小题,共40.0分)7.已知实数x、y满足x+2x=5,则x−x=3.8.分解因式:x2+4xx+4x2+x+2x−2=(x+2x+1)2−3.9.在平面直角坐标系中,点A,B的坐标分别为(x,3),(3x−1,3),若线段AB与直线x=2x+1相交,则m的取值范围为(0,1)。
10.若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是9cm。
11.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D、N处,B在同一直线上,分别落在M、F与BE交于点G.设AB=√3,那么△xxx的周长为4+4√3.12.如图,已知点x1,x2,…,xx均在直线x=x−1上,点x1,x2,…,xx均在双曲线x=−x上,x1x1⊥x并且满足:x1x2⊥x轴,x2x2⊥x轴,…,xx−1xx⊥x轴,xxxx⊥x轴,且x1x2=x2x3=…=xx−1xx,则n的最小值为2.1.由题意可知,点B在x轴负半轴,点A在x轴正半轴,且AB垂直于x轴,因此AB的斜率为0,即AB为x轴,所以B的纵坐标为0.又因为B在x轴负半轴,所以其横坐标为负数,设为-a。
2018年高中自主招生必做试卷习题数学含答案
长方形的每条边都与大长方形的一边平行,并且每个小长方形的长与宽之比也都为3:1,尔后把它们
剪下,这时,所剪得的两张小长方形纸片的周长之和有最大值.求这个最大值.
18、(15分)如图,在以O为圆心的圆中,弦CD垂直于直径AB,垂足为H,弦BE与半径OC订交于点
2x + y≤5,
A、
3x + 4y≥9,
、
3x + 4y≥9,
C、3x + 4y≥9,
D、3x + 4y≤9,
B
y≥0
x≥0
x≥0
y≥0
订
D
C
G
F
装
A
E
B
第3题图
第6题图
第7题图
S四边形AGCD
第9题图
等于
(
)
校
7、如图,点E、F分别是矩形ABCD的边AB、BC的中点,连AF、CE交于点G,则
S矩形ABCD
4
:
(1)如 (
1),其周 和= 2
(2
1
2
1)
51.
⋯⋯⋯⋯3 分
3
3
(2)如 (
2),其周 和=2( x
3x)
2
(1
x) 3(1
x)
8.
⋯⋯⋯⋯6 分
(3)如 (
3),其周 和= 8.
⋯⋯⋯⋯9 分
(4)如 (
4),其周 和= 2(3x
x)
2
(3
3
x
16
8.
x)
x
3
3
∵0 3x
XXX2018-2019年自招真题数学试卷(含答案)
XXX2018-2019年自招真题数学试卷(含答案)1.已知$a$、$b$、$c$是一个三角形的三边,则$a+b+c-2ab-2bc-2ca$的值是()。
A。
恒正 B。
恒负 C。
可正可负 D。
非负答案:选B根据三角形两边之和大于第三边的性质,可得$a+b-c>0$,$a-b+c>0$,$a+b+c>0$,$-a+b+c>0$。
将其代入原式,得$(a-b+c)(a+b-c)(-a+b+c)(a+b+c-2ab-2bc-2ca)<0$,因此原式恒为负数,选B。
2.设$m$,$n$是正整数,满足$m+n>mn$,给出以下四个结论:①$m$,$n$都不等于1;②$m$,$n$都不等于2;③$m$,$n$都大于1;④$m$,$n$至少有一个等于1,其中正确的结论是()。
A。
① B。
② C。
③ D。
④答案:选D将$m+n-mn>0$移项得$(m-1)(n-1)<1$。
因为$m$,$n$是正整数,所以只有$m=1$,$n=1$或$m=1$,$n=2$或$m=2$,$n=1$不满足条件,而$m=1$,$n$任意或$m$任意,$n=1$都满足条件,因此选D。
3.已知关于$x$的方程$2x+a=x+a$有一个根为1,则实数$a$的值为()。
A。
$\frac{-1\pm\sqrt{5}}{2}$ B。
$0$ C。
$1$ D。
以上答案都不正确答案:选A将$x=1$代入方程,得$2+a=1+a$,解得$a= \frac{-1\pm\sqrt{5}}{2}$。
当$a=\frac{-1-\sqrt{5}}{2}$时,方程化简后为$2x^2+2x+(1+\sqrt{5})=0$,无实根,舍去;当$a=\frac{-1+\sqrt{5}}{2}$时,方程化简后为$x^2-x-(1+\sqrt{5})=0$,有一个根为1,因此选A。
4.已知$a$,$b$,$c$是不完全相等的任意实数,若$x=a-2b+c$,$y=a+b-2c$,$z=-2a+b+c$,则关于$x$,$y$,$z$的值,下列说法正确的是()。
2018上海交通大学高等代数
Q1AQ2 = λ1 . . .
,
λn
其中,λn ≥ λn−1 ≥ · · · ≥ λ1 ≥ 0, 且 λ12, · · · , λn2 都是 AT A 的特征值.
Tjujystsll
证明 B 可逆, 并求出 B 的逆.
3. A 是 n 阶矩阵,rank(A) = n − 1, 证明 A∗ 可以表示成 A 的多项式.
4. f (x) 与 g(x) 互素,
f (M ) g (M ) X = 0, f (M ) X = 0, g (M ) X = 0,
的解空间分别是 W , W1, W2, 证明:W = W1 ⊕ W2.
编号 828
第1页 共 1 页
Байду номын сангаас
上海交通大学
二〇一八年攻读硕士学位研究生入学考试试题
考试科目 高等代数 编号
828
注意: 答案必须写在答题纸上,写在试卷或草稿纸上均无效。
1.
证明
x2
xn
f (x) = 1 + x + + · · · +
在有理数域上不可约.
2!
n!
2. A = ααT , 其中 α 是一个 n 维列向量, 且 αT α = 1, B = E + A + A2 + · · · + An,
5. A = (ai j)n×n 是一个 n 阶可逆矩阵,B = (ai j)r×n (r ≤ n) , 求 BX = 0 的基础解系.
6. (1) 证明在复数域上, 有 A2 = −E ⇐⇒ rank (A + iE) + rank (A − iE) = n;
(2) 证明复数域上的矩阵 A 若满足 A2 = −E, 则 A 可对角化, 并求出与它相似的对角矩阵.
2018-2020年上海四校自招数学试卷汇编版(含答案)--共9套
2018-2020年上海四校自招数学试卷汇编版(含答案)--共9套目录2018交附自招数学答案2018上中自招数学2018上中自招数学答案2019复附自招数学答案2019交附自招数学2020上中、交附、七宝自招上海中学自招试题上海中学自招真题解析2018上海市上海中学自招部分真题1、因式分解:6x3-11x2+x+4=【答案】(x-1)(3x-4)(2x+1)【解析】试根法易得x=1时,上式值为0.利用长除法可得原式=(x-1)(6x2-5x-4)=(x-1)(3x-4)(2x+1)2、设a>b>0,a2+b2=4ab,则a+b=a-b【答案】3【解析】令a+b=x,a-b=y则x>y>0a2+b2=4aba2+b2-2ab=2aby2=1(x2-y2)2x2=3y2xa+b=3=3即y a-b3、若x2+x-1=0,则x3+2x2+3=【答案】4【解析】降次法x2=1-x所以原式=x(1-x)+2(1-x)+3=x-x2+2-2x+3=-x-(1-x)+5=4(,34、已知1(b -c )2=(a -b )(c -a ),且a ≠0,则b +c =4a【答案】2【解析】1(b -c )2=(a -b )(c -a )4(c -b )2=4(a -b )(c -a )⎡⎣(c -a )+(a -b )⎤⎦2=4(c -a )(a -b )⎡⎣(c -a )-(a -b )⎤⎦2=0所以c -a =a -bb +c =2a 即b +c=2a5、一个袋子里装有两个红球和一个白球(仅颜色不同),第一次从中取出一个球,记下颜色后放回,摇匀,第二次从中取出一个球,则两次都是红球的概率是【答案】49【解析】P =2⨯2=43396,、直线l :y =-3x +与x 、y 轴交于点A 、B ,△AOB 关于直线AB 对称得到△ACB ,则点C 的坐标是【答案】33)22【解析】如右图所示易得∠CAD =∠BAO =60︒过C 作CD ⊥x 轴于点D 在△ACD 中AC =1易解得AD =1,CD =3223C (,)223即7、一张矩形纸片ABCD,AD=9,AB=12,将纸片折叠,使A、C两点重合,折痕的长是【答案】45 4【解析】如右图所示易得AC=所以OC=152=15△C△OF∽ABC所以OF=OC解得OF=45即EF=45 AB BC848、任给一个正整数n,如果n是偶数,就将它减半(即n),如果n是奇2数,则将它乘以3再加1(即3n+1),不断重复这样的运算,现在请你研究:如果对于正整数n(首项)按照上述规则实施变换(注:1可以多次出现)后的第八项为1,则n所有可能取值为【答案】128/2/16/20/3/21【解析】92+12212418 12451081632642 163 20 21 1289、正六边形ABCDEF 的面积是6平方厘米,联结AC 、CE 、EA 、BD 、DF 、FB ,求阴影部分小正六边形的面积【答案】2【解析】将小六边形的相对顶点联结后易得:小正六边形的面积是大正六边形面积的13即面积为210、已知y 1=2x 2+(4-m )x +(4-m )与y =mx 在x 取任意实数时,至少有一个是正数,则m 的取值范围为【答案】m <4【解析】(1)当0<m 时,0<x ,y 2=mx >0,且x ≤0时,y 2≤0∴x ≤0时y 1>0∴y 1x =0>0故4-m >0∴m -4<04则∆<0解得-4<m <4∴0<m <4(2)当m <0时,同理解得m <0(3)当m =0时,y 1>0恒成立综上所述,m <411、已知a 、b 、c 是互不相等的实数,x 是任意实数,(x -a )2(x -b )2(x -c )2化简:++=(a -b )(a -c )(c -b )(a -b )(c -a )(c -b )【答案】1-(x -a )2(b -c )-(x -b )2(c -a )-(x -c )2(a -b )=(a -b )(b -c )(c -a )【解析】原式=(a -b )(b -c )(c -a )(a -b )(b -c )(c -a )=1212、已知实数a 、b 满足a 2+ab +b 2=1,t =ab -a 2-b 2,-⎩1则t 的取值范围是【答案】-3≤t ≤-13【解析】由a 2+b 2≥2ab ,a 2+b 2≥-2ab得⎧1-ab ≥2ab 解得-1≤ab ≤1⎨ab ≥-2ab 3t =ab -(1-ab )=2ab -1所以-3≤t ≤-1313、(1)求边长是1的正五边形的对角线长(2)求sin18︒【答案】(1)5+1(2)5-122【解析】(1)正五边形的一个内角大小为:(5-2)⨯180︒÷5=108︒所以△ABE 和△ACD 是黄金三角形在△ABE 中AE =BE 5-1其中AE =1解得BE =25+12(2)在△ACD 中过A 作AF 垂直CD 于点F易得∠FAD =18︒1所以sin18︒=FD =2=5-1AD5+122x y -1⎩14、(1)f (x )=x 3+ax 2+bx +c ,0<f (-1)=f (-2)=f (-3)<3,求c 的取值范围(2)f (x )=x 4+ax 3+bx 2+cx +d ,f (1)=10,f (2)=20,f (3)=30,求f (10)+f (-6)【答案】(1)6<c ≤9(2)8104【解析】(1)令f (-1)=f (-2)=f (-3)=k ,g (x )=f (x )=k ,0<k ≤3则g (x )=(x +1)(x +2)(x +3)所以f (x )=g (x )+k =x 3+6x 2+11x +6+k 故c =6+k ,又0<k <3所以6<c ≤9(2)f (1)=10,f (2)=20,f (3)=30令g (x )=f (x )-10x =x 4+ax 3+bx 2+(c -10)x +d则有g (1)=g (2)=g (3)=0令g (x )=0的第四个根是m 则g (x )=(x -1)(x -2)(x -3)(x -m )所以g (10)+g (-6)=9⨯8⨯7⨯(10-m )+(-7)⨯(-8)⨯(-9)(-6-m )=8064即f (10)+f (-6)=g (10)+g (-6)+40=810415、我们学过直线与圆的位置关系,根据材料完成问题(1)(2)背景知识:平面α:Ax +By +Cz +d =0;球:(x -a )2+(y -b )2+(z -c )2=R 2;点(a ,b ,c )到平面α的距离公式:d =球心到平面的距离为d ,当d <R 时,球与平面相交,当d =R 时,球与平面相切,当d >R 时,球与平面相离;问题(1):若实数m 、n 、k 满足m +n +k =1,求m 2+n 2+k 2的最小值;问题(2):解方程++=1(x +y +z )2⎧x =1【答案】(1)1(2)⎪y =2⎨3⎪z =3【解析】(1)设点(m ,n ,k )则该点在平面x +y +z =1上而所求m 2+n 2+k 2即为该点到原点距离的平方Aa +Bb +Cc +D A 2+B 2+C 2z -212+12+12y -1z -2x y -1x ⎨⎨原点到平面x +y +z =1的距离为:d =1=33⎛3⎫21所以(m 2+n 2+k 2)= ⎪=(2)配方法min⎝3⎭3++=1(x +y +z )2x +y +z -(2+2+2z -2)=0(-1)2+(⎧x =1-1)2+(⎧x =1-1)2=0⎪y -1=1解得⎪y =2⎪⎪z =3⎪z -2=1⎩x y -1z -2则交大附中自主招生试卷2018.03第一部分 1. 已知13x x +=-,求3311000x x++. 2. 11(1)x x x tx x x x +++=++有增根,求所有可能的t 之和.3. AB ∥CD ,15AB =,10CD =,3AD =,4CB =,求ABCD S .4. 346y x x =-+,若a x b ≤≤时,其中x 的最小值为a ,最大值为b ,求a b +.5. 22(2)y x m =-+,若抛物线与x 轴交点与顶点组成正三角形,求m 的值.6. DE 为»BC的切线,正方形ABCD 边长为200,»BC 以BC 为直径的半圆,求DE 的长.7. 在直角坐标系中,正ABC ∆,(2,0)B ,9(,0)2C 过点O 作直线DMN ,OM MN =, 求M 的横坐标.8. 四圆相切⊙B 与⊙C 半径相同,⊙A 过⊙D 圆心,⊙A 的半径为9,求⊙B 的半径.9. 横纵坐标均为整数的点为整点,(12m a <<),y mx a =+(1100x ≤≤),不经过整 点,求a 可取到的最大值.10. G 为重心,DE 过重心,1ABC S ∆=,求ADE S ∆的最值,并证明结论.第二部分(科学素养)1. 已知直角三角形三边长为整数,有一条边长为85,求另两边长(写出10组).2. 阅读材料,根据凸函数的定义和性质解三道小题,其中第(3)小题为不等式证明 1212[(1)]()1()f bx b x bf x bf x ++<+-(1)14b =;(2)13b =.(注:选(1)做对得10分,选(2)做对得20分)3. 请用最优美的语言赞美仰晖班(80字左右)(17分)4. 附加题(25分) (2 points ) solve the following system of equations for 2122.2221w x y z w x y z w w x y z w x y z +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩(4 points )Compute 98∞(6 points )Solve the equation 1=.Express your answer as a reduced fraction with the numerator written in their prime factorization.The gauss function []x denotes the greatest less than or equal to xA )(3 points )Compute 2018!2015!2017!2016!+⎡⎤⎢⎥+⎣⎦B )(4points )Let real numbers 12,,,n x x x ⋅⋅⋅ be the solutions of the equation 23[]40x x --=,find the value of 22212n x x x ++⋅⋅⋅+ C )(6 points )Find all ordered triples (,,)a b c of positive real that satisfy :[]3a bc =,[]4a b c =,and []5ab c =上海中学自主招生试卷2018.031.因式分解:326114x x x -++=2.设0a b >>,224a b ab +=,则a b a b+=-3.若210x x +-=,则3223x x ++=4.已知21()()()4b c a b c a -=--,且0a ≠,则b c a +=5.一个袋子里装有两个红球和一个白球(仅颜色不同),第一次从中取出一个球,记下颜色后放回,摇匀,第二次从中取出一个球,则两次都是红球的概率是6.直线:l y =+x 、y 轴交于点A 、B ,AOB ∆关于直线AB 对称得到ACB ∆,则点C 的坐标是7.一张矩形纸片ABCD ,9AD =,12AB =,将纸片折叠,使A 、C 两点重合,折痕长是8.任给一个正整数n ,如果n 是偶数,就将它减半(即2n ),如果n 是奇数,则将它乘以3加1(即31n +),不断重复这样的运算,现在请你研究:如果对正整数n (首项)按照上述规则施行变换(注:1可以多次出现)后的第八项为1,则n 所有可能取值为9.正六边形ABCDEF 的面积是6平方厘米,联结AC 、CE 、EA 、BD 、DF 、FB ,求阴影部分小正六边形的面积为10.已知212(4)(4)y x m x m =+-+-与2y mx =在x 取任意实数时,至少有一个是正数,则m 的取值范围为11.已知a 、b 、c 是互不相等的实数,x 是任意实数,化简:222()()()()()()()()()x a x b x c a b a c c b a b c a c b ---++=------12.已知实数a 、b 满足221a ab b ++=,22t ab a b =--,则t 的取值范围是13.(1)求边长为1的正五边形对角线长;(2)求sin18︒.14.(1)32()f x x ax bx c =+++,0(1)(2)(3)3f f f <-=-=-≤,求c 的取值范围;(2)432()f x x ax bx cx d =++++,(1)10f =,(2)20f =,(3)30f =,求(10)(6)f f +-.15.我们学过直线与圆的位置关系,根据材料完成问题(1)(2)类似给出背景知识:平面:0Ax By Cz d α+++=;球:2222()()()x a y b z c R -+-+-=;点(,,)a b c 到平面:0Ax By Cz d α+++=的距离公式:d =;球心到平面的距离为d ,当d R <时,球与平面相交,当d R =时,球与平面相切,当d R >时,球与平面相离;问题(1):若实数m 、n 、k 满足1m n k ++=,求222m n k ++的最小值;问题(21()2x y z +=++.参考答案1.(1)(34)(21)x x x --+2. 3.4 4.2 5.49 6.33(,227.4548.128、2、16、20、3、219.22cm 10.4m <11.112.133t -≤≤-13.(112+;(2)14-14.(1)69c <≤;(2)810415.(1)13;(2)123x y z =⎧⎪=⎨⎪=⎩上海中学自主招生试题1、因式分解:326114x x x -++= .【答案】()()()13421x x x --+.【解析】容易发现1x =是方程3261140x x x -++=的解,因此原式可以提出因式(1)x -,得到2(1)(654)x x x ---,对2(654)x x --用十字相乘可以得到原式等于(1)(34)(21)x x x --+.2、设0a b >>,224a b ab +=,则a b a b +=- .【解析】由条件可得2()6a b ab +=,2()2a b ab -=.因此22()63()2a b ab a b ab +==-.由于0a b +>,0a b ->,所以a b a b+=- 3、若210x x +-=,则3223x x ++=. 【答案】4.【解析】对多项式用带余除法可得32223(1)(1)4x x x x x ++=+-++,而由条件2(1)(1)0x x x +-+=,因此原式的值等于4.4、已知()()()24b c a b c a -=--,且0a ≠,则b c a+=_________. 【答案】2.【解析】令a b m -=,c a n -=,则c b m n -=+,代入()()()24b c a b c a -=--中得()24m n mn +=,()20m n ∴-=,m n ∴=, 即a b c a -=-,即2a b c =+,2b c a+∴=. 5、一个袋子里装有两个红球和一个白球(仅颜色不同),第一次从中取出一个球,记下颜色后放回,摇匀,第二次从中取出一个球,则两次都是红球的概率是. 【答案】49.【解析】第一次取出红球的概率为23,且无论第一次取出什么球,第二次取出红球的概率仍为23,因此两次都是红球的概率是224339⨯=. 6、直线:l y =与x 、y 轴交于点A 、B ,AOB ∆关于直线AB 对称得到ACB ∆,则点C 的坐标是 .【答案】32⎛ ⎝⎭.【解析】根据函数解析式可以算出A 、B 的坐标分别为(1,0)A,B .由于ACB 是AOB 关于直线AB 对称得到的,所以AC AO =,BC BO =.设(,)C m n,则可列方程组2222(1)1(3m n m n ⎧-+=⎪⎨+=⎪⎩,解得32m n ⎧=⎪⎪⎨⎪=⎪⎩O重合,舍去.因此3(2C .7、一张矩形纸片ABCD ,9AD =,12AB =,将纸片折叠,使A 、C 两点重合,折痕长是. 【答案】454. 【解析】由题意知折痕是线段AC 的中垂线,设它与AB ,CD 分别交于,M N .设MB x =,则由MC MA =可列方程2229(12)x x +=-,解得218x =.同理有218DN =.作ME CD ⊥,垂足为E ,则四边形MECB 是矩形,因此9ME BC ==,218CE BM ==.可知274NE CD DN CE =--=.而454MN ==.因此折痕长为454. 8、任给一个正整数n ,如果n 是偶数,就将它减半——得到2n ,如果n 是奇数,则将它乘以3加1——得到31n +,不断重复这样的运算,如果对正整数n (视为首项)按照上述规则实施变换后(有些书可能多次出现)的第8项为1,则n 的所有可能取值为________.【答案】128,21,20,3,16,2.【解析】设某一项为k ,则它的前一项应该为2k 或者13k -. 其中13k -必为奇数,即()4mod 6k ≡, 按照上述方法从1开始反向操作7次即可.9、正六边形ABCDED 的面积是6平方厘米,联结AC 、CE 、EA 、BD 、DF 、FB ,求阴影部分小正六边形的面积为. 【答案】22cm .【解析】右图中,阴影部分是正六边形,且与正六边形 ABCDEF的相似比为1:3.因为 ABCDEF 的面积是26cm ,所以阴影部分的面积为2632()cm ÷=.10、已知()()21244y x m x m =+-+-与2y mx =在x 取任意实数时,1y ,2y 至少有一个是正数,m 的取值范围是________.【答案】4m <.【解析】取0x =,则14y m =-,20y =,40m ∴->,4m <,此时函数1y 的对称轴404m x -=-<, 则对任意0x ≥总有10y >,只需考虑0x <;若04m ≤<,此时20y ≤,则对任意0x <,有10y >,()()24840m m ∴∆=---<,解得04m ≤<; 若0m <,此时20y >对0x <恒成立;综上,4m <.11、已知a ,b ,c 是互不相等的实数,x 是任意实数,化简:()()()()()()()()()222x a x b x c a b a c c b a b c a c b ---++=------________. 【答案】1.【解析】令()()()()()()()()()()2222x a x b x c f x mx nx k a b a c c b a b c a c b ---=++=++------, ()()()1f a f b f c ∴===,即222111ma na k mb nb k mc nc k ⎧++=⎪++=⎨⎪++=⎩,01m n k ==⎧∴⎨=⎩ ,即()1f x ≡.12、已知实数a ,b 满足221a ab b ++=,22t ab a b =--,则t 的取值范围是________. 【答案】133t -≤≤-. 【解析】方法一:考虑基本不等式222a b ab +≥. 则2212a b ab ab +=-≥,则113ab -≤≤, 又2221t ab a b ab =--=-,133t ∴-≤≤-,其中1a =,1b =-时,3t =-成立;a b ==时,13t =-成立. 方法二:逆用韦达定理.12t ab +=,()2302t a b ++=≥,3t ∴≥-,a b +=,故a ,b 是方程2102t x ++=的两个根, 314022t t ++∴∆=-⨯≥,解得13t ≤-, 133t ∴-≤≤-.13、(1)求边长为1的正五边形对角线长;(2)求sin18︒.【答案】(1(2. 【解析】(1)设正五边形ABCDE ,联结,AC BE ,且设它们交于点M .可以计算得到36ABM ABC ∠=∠=︒,因此ABM ACB ,可得2AB AM AC =⋅.同时,72BMC CBM ∠=∠=︒,所以BC MC =.若正五边形边长为1,则1AB BC CM ===,设AC x =,则由2AB AM AC =⋅可列方程21(1)x x =-,解得x去). (2)根据诱导公式,sin18cos72︒=︒.在(1)的五边形中,BM AM AC CM ==-=.作CH BM ⊥,垂足为H ,则等腰三角形BMC 中12BH HM BM ===72CBM ∠=︒,所以sin18cos72BH BC ︒=︒==.14、(1)()32f x x ax bx c =+++,()()()01233f f f <-=-=-≤,求c 的取值范围;(2)()432f x x ax bx cx d =++++,()110f =,()220f =,()330f =,求()()106f f +-.【答案】(1)69c <≤ ;(2)8104.【解析】(1)()()()01233f f f <-=-=-≤, ()0f x k ∴-=有三个实根1,2,3x =---,()()()()123f x k x x x ∴-=+++,展开得6c k =+,69c ∴<≤;(2)方程()100f x x -=有三个实根1,2,3x =,记第4个根为x p =,则()()()()()10123f x x x p x x x -=----,()()()()()12310f x x p x x x x ∴=----+,()()()()()()()106109871006789608104f f p p ∴+-=-⨯⨯⨯++--⨯-⨯-⨯--=.15、我们学过直线与圆的位置关系,根据材料完成问题(1)(2)类似给出背景知识:平面:0Ax By Cz D α+++=;球:()()()2222x a y b z c R -+-+-=;点(),,a b c 到平面:0Ax By Cz D α+++=的距离公式:d =;球心到平面的距离为d ,当d R <时,球与平面相交,当d R =时,球与平面相切,当d R>时,球与平面相离;问题(1):若实数m 、n 、k 满足1m n k ++=,求222m n k ++的最小值;问题(2)()12x y z =++. 【答案】(1)13;(2)123x y z =⎧⎪=⎨⎪=⎩. 【解析】(1)条件可转化为点(,,)m n k 在平面10x y z ++-=上,而222m n k ++的最小值即该点到原点距离平方的最小值.这个距离最小为原点到平面10x y z ++-=的距离,而原点到平面的距离可由材料公式计算得到:3d ==,因此222m n k ++的最小值为213d =,等号在13m n k ===时取到.(2)移项后配方可以得到2221111)1)1)0222-+-+=,因此必有101010-==-=,于是解得123xyz=⎧⎪=⎨⎪=⎩.上海中学自招试题1、因式分解:326114x x x -++=.2、设0a b >>,224a b ab +=,则a b a b +=- .3、若210x x +-=,则3223x x ++=.4、已知()()()24b c a b c a -=--,且0a ≠,则b c a +=_________.5、一个袋子里装有两个红球和一个白球(仅颜色不同),第一次从中取出一个球,记下颜色后放回,摇匀,第二次从中取出一个球,则两次都是红球的概率是.6、直线:l y =+与x 、y 轴交于点A 、B ,AOB ∆关于直线AB 对称得到ACB ∆,则点C 的坐标是.7、一张矩形纸片ABCD ,9AD =,12AB =,将纸片折叠,使A 、C 两点重合,折痕长是.8、任给一个正整数n ,如果n 是偶数,就将它减半——得到2n ,如果n 是奇数,则将它乘以3加1——得到31n +,不断重复这样的运算,如果对正整数n (视为首项)按照上述规则实施变换后(有些书可能多次出现)的第8项为1,则n 的所有可能取值为________.9、正六边形ABCDED 的面积是6平方厘米,联结AC 、CE 、EA 、BD 、DF 、FB ,求阴影部分小正六边形的面积为.10、已知()()21244y x m x m =+-+-与2y mx =在x 1y ,2y 至少有一个是正数,m 的取值范围是________.11、已知a ,b ,c 是互不相等的实数,x 是任意实数,化简:()()()()()()()()()222x a x b x c a b a c c b a b c a c b ---++=------________.12、已知实数a ,b 满足221a ab b ++=,22t ab a b =--,则t 的取值范围是________.13、(1)求边长为1的正五边形对角线长;(2)求sin18︒.14、(1)()32f x x ax bx c =+++,()()()01233f f f <-=-=-≤,求c 的取值范围;(2)()432f x x ax bx cx d =++++,()110f =,()220f =,()330f =,求()()106f f +-.15、我们学过直线与圆的位置关系,根据材料完成问题(1)(2)类似给出背景知识:平面:0Ax By Cz D α+++=;球:()()()2222x a y b z c R -+-+-=;点(),,a b c 到平面:0Ax By Cz D α+++=的距离公式:d =;球心到平面的距离为d ,当d R <时,球与平面相交,当d R =时,球与平面相切,当d R>时,球与平面相离;问题(1):若实数m 、n 、k 满足1m n k ++=,求222m n k ++的最小值;问题(2)()12x y z =++.2019年交大附中自招数学试卷一、填空题1、求值:cos30sin 45tan 60⋅⋅=.2、反比例函数1y x =与二次函数243y x x =-+-的图像的交点个数为.3、已知210x x --=,则3223x x -+=.4、设方程()()()()()()11111211210x x x x x x ++++++++=的两根为1x ,2x ,则()()1211x x ++=.5、直线y x k =+(0k <)上依次有,,,A B C D 四点,它们分别是直线与x 轴、双曲线k y x=、y 轴的交点,若AB BC CD ==,则k =.6、交大附中文化体行设施齐全,学生既能在教室专心学习,也能在操场开心运动,德智体美劳全面发展,某次体育课,英才班部分学生参加篮球小组、其余学生参加排球小组。
2019年上海交通大学自主招生数学试题(部分)及其详解
A. m = 0ꎬM > 0 B. m < 0ꎬM > 0
C. m < 0ꎬM = 0
的最大值.
14. 在△ABC 中ꎬ设角 AꎬBꎬC 的对边分别为 aꎬbꎬcꎬ且
满足 a + c = 3bꎬ则 tan
A.
A
C
tan 的值为( ) .
2
2
2
13. 已知实数 aꎬb 满足 4a2 - 5ab + 4b2 = 19ꎬ求 a2 + b2
若 mꎬM 分别为( a i + a j + a k ) ( d r + d s + d t ) 的最小值与
最 大 值ꎬ 其 中 { iꎬjꎬk } ⊆ { 1ꎬ2ꎬ3ꎬ4ꎬ5 }ꎬ { rꎬsꎬt } ⊆
基金项目:本文系北京市教育学会“ 十三五” 教育科研滚动立项课题“ 数学文化与高考研究” ( 课题编号 FT2017GD003ꎬ课题负责
人:甘志国) 阶段性研究成果.
— 50 —
A. f( x) = 2 x B. f( x) = x3
C. f( x) = log2 x
D. f( x) =
本文中的题目是笔者综合多位考生的回忆得到的ꎬ
题目不全. 解答由笔者独立完成.
3
1. 已 知 f ( x ) = asinx + b x + 4 ( aꎬ b ∈ R ) ꎬ 且
3
7. 已 知 数 列 { x n }满 足 x1 = 3 ꎬ x n + 1 = ( x n ) 3 ( n ∈
N ∗ ) . 若 x n ∈Zꎬ求 n 的最小值.
AD
AE
= xꎬ
= yꎬ
AB
AC
DF
= zꎬ 且 y + z - x = 1ꎬ 则
2019年上海交通大学自主招生数学试题解析
年上海交通大学自主招生试题解析福建省厦门市叶超杰1.已知解:因为,则2.已知,试解:易知当时则3.已知方程各个实根为,同侧,求的取值范围解:因为,则与两点,则易知4.已知复数满足,求负实数的值解:,因为,则情形一:当时,则解得情形二:当时,则,所以此时无解综上所述:5.若方程的三个根可以作为三角形的三边长,求的范围解:因为,则,令且,解得情形一:当,满足题意,则此时情形二:当即解得6.对于的最小值解:,所以时,又则所以时,即,此时7.已知数列,若,求的最小值解:因为所以的最小值为8.展开式中奇次幂的项的和为解:由题意可知则9.解:而所以,当且仅当时,等号成立10.,在线段上,在线段上,在线段上,且满足,若解:设,则而此时由三元均值不等式可知当且仅当时,等号成立11.对定义域内任意的,,则称为凸函数,下列函数是凸函数的是()解:易知选12.已知复数所对应的点为,,且满足的面积解:设,因为,则情形一:当而情形二:当13.实数解:解得当且仅当时,等号成立14.15.数列是的末两位数,求解:易知数列的周期为,而所以16.,则()解:因为则所以同理可得17.定义平面上两点,若平面上一点到,的折线距离之和最小,则点坐标为解:设点,则折线距离之和由绝对值的几何意义可知此时点坐标为18.已知的充要条件是()解:由题意可知当抛物线与圆相切时整理可得而,解得故选。
2018年普通高等学校招生全国统一考试数学试题(上海卷,含答案)
高考提醒一轮看功夫,二轮看水平,三轮看士气梳理考纲,进一步明确高考考什么!梳理高考题,进一步明确怎么考!梳理教材和笔记,进一步明确重难点!梳理错题本,进一步明确薄弱点!抓住中低档试题。
既可以突出重点又可以提高复习信心,效率和效益也会双丰收。
少做、不做难题,努力避免“心理饱和”现象的加剧。
保持平常心,顺其自然2018年普通高等学校招生全国统一考试数学试题(上海卷)一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1.行列式4125的值为 。
2.双曲线2214x y -=的渐近线方程为 。
3.在(1+x )7的二项展开式中,x ²项的系数为 。
(结果用数值表示) 4.设常数a R ∈,函数f x x a =+()㏒₂(),若f x ()的反函数的图像经过点31(,),则a= 。
5.已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。
6.记等差数列{} n a 的前几项和为S n ,若87014a a a =+=₃,,则S 7= 。
7.已知21123α∈---{,,,,,,},若幂函数()nf x x =为奇函数,且在0+∞(,)上速减,则α=_____8.在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且|EF u u v |=2,则AE u u u v ·BF u uu v 的最小值为______9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)10.设等比数列{}的通项公式为a n =q ⁿ+1(n ∈N*),前n 项和为S n 。
若1Sn 1lim2n n a →∞+=,则q=____________11.已知常数a >0,函数222()(2)f x ax =+的图像经过点65p p ⎛⎫ ⎪⎝⎭,、15Q q ⎛⎫- ⎪⎝⎭,,若236p q pq +=,则a =__________12.已知实数x ₁、x ₂、y ₁、y ₂满足:²²1x y +=₁₁,²²1x y +=₂₂,212x x y y +=₁₂₁,则12x y +-∣₁₁∣+12x y +-∣₂₂∣的最大值为__________二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设P 是椭圆²5x +²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) (A )2(B )2(C )2(D )414.已知a R ∈,则“1a ﹥”是“1a1﹤”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件(D )既非充分又非必要条件15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA ₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA ₁为底面矩形的一边,则这样的阳马的个数是( )(A )4 (B )8 (C )12 (D )1616.设D 是含数1的有限实数集,f x ()是定义在D 上的函数,若f x ()的图像绕原点逆时针旋转π6后与原图像重合,则在以下各项中,1f ()的可能取值只能是( ) (A )3(B )32 (C )3 (D )0三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分) 已知圆锥的顶点为P ,底面圆心为O ,半径为2 (1)设圆锥的母线长为4,求圆锥的体积;(2)设PO =4,OA ,OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.18.(本题满分14分,第1小题满分6分,第2小题满分8分) 设常数a R ∈,函数f x ()22?asin x cos x =+ (1)若f x ()为偶函数,求a 的值; (2)若4f π〔〕31=+,求方程12f x =-()在区间ππ-[,]上的解。