【六年级上.期末必考知识点梳理.数学】六年级上册数学知识点(沪教版)
沪教版六年级数学上册知识点
沪教版六年级数学上册知识点
以下是沪教版六年级数学上册的知识点:
1.整数的意义及表示法:正整数、负整数、0,绝对值,数轴。
2.四则运算:整数间的加法、减法、乘法和除法,加减法的交换律和结合律。
3.小数的初步认识:小数的定义、读法和写法,小数在数轴上的位置,小数和分数的关系。
4.小数的运算:小数的加法、减法和乘法,小数与整数的运算。
5.小数的比较:小数的大小比较,加零不变的比较法,小数的大小与小数点位置的关系。
6.分数的初步认识:分数的定义和表示法,分数和整数的关系,分数在数轴上的位置。
7.分数的运算:分数的加法、减法和乘法,带分数的四则运算,分数的化简和约分。
8.分数的比较:分数的大小比较,同分母比较法,同分子比较法。
9.倍数与约数:倍数和最小公倍数,约数和最大公约数。
10.面积的初步认识:面积的定义和单位,计算矩形面积的公式,面积的性质和简单应用。
11.尺度:尺度的意义和应用,求实物和图纸的比例尺。
12.长、宽和高:直角坐标系,矩形的长、宽和高的认识和测量。
13.长方体和正方体:长方体和正方体的定义,计算体积的公式,体积的性质和简单应用。
14.长方形和正方形:长方形的性质,正方形的性质,计算周长的公式。
15.面积和周长:计算矩形和正方形的周长和面积,解决与面积和周长有关的问题。
16.鲁迅故居:阅读鲁迅故居的图纸,计算房间面积和旅馆用地面积。
请注意,以上只是列举了一部分知识点,具体的内容可能还有其他的知识点未包含在内。
六年级上册数学知识点(沪教版五四学制)
第一章数的整除1.1整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数3.零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1.2因数和倍数1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数2.倍数和因数是相互依存的3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3.在正整数中(除1外),与奇数相邻的两个数是偶数4.在正整数中,与偶数相邻的两个数是奇数5.个位数字是0,5的数都能被5整除6.0是偶数1.4素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数,这样的数叫做合数3.1既不是素数也不是合数4.奇数和偶数统称为正整数,素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.分解素因数方法:树枝分解法,短除法1.5公因数与最大公因数1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数2.如果两个整数只有公因数1,那么称这两个数互素数3.把两个数公有的素因数连乘,所得的积就是这两个数的最大公因数4.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5.如果两个数是互素数,那么这两个数的最大公因数是11.6公倍数与最小公倍数1.几个数公有的倍数,叫做这几个数的公倍数2.几个数中最小的公因数,叫做这几个数的最小公倍数3.求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,所得的积就是他们的最小公倍数4.如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数5.如果两个数是互素数,那么这两个数的最小公倍数是两个数的乘积.第二章分数2.1分数与除法被除数除数p q1.一般地,两个正整数相除的商可用分数表示,即被除数÷除数= 用字母表示为p÷q=(p、q为正整数)2.2分数的基本性质1.分数的分子和分母同时乘以一个不为零的整数,分数的值不变2.分子\分母只有公因数1的分数叫做最简分数3.把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分2.3分数的比较大小1.同分母分数的大小只需要比较分子的大小,分子大的比较大,分子小的比较小2.通分的一般步骤是:(1)求公分母——求分母的最小公倍数;(2)根据分数的基本性质,将每个分数化成分母相同的分数。
沪教版六年级数学知识点汇总
沪教版六年级数学第一章数的整除1.1整数和整除的意义零和正整数统称为自然数。
正整数、零、负整数统称为整数。
整数a除以整数b,如果除得的商是整数而余数为零,我们就说a能被b整除;或者说b能整除a。
注意整除的条件:1、除数、被除数都是整数2、被除数除以除数,商是整数而余数为零。
1.2因数和倍数整数a能被整数b整除,a就叫做b的倍数,b就叫a的因数(也称为约数)倍数和因数是相互依存的注意:1、一个数的因数的个数是有限的,其中最小的因数是 1,最大的因数是它本身2、一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,3,5整除的数个位上是0,2,4,6,8的整数都能被2整除。
能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
个位上是0或5的整数都能被5整除。
将一个整数的各位数字相加,如果得到的和能被3整除,那么这个数就能被3整除。
注意:1、在正整数中(除 1 外),与奇数相邻的两个数是偶数2、在正整数中,与偶数相邻的两个数是奇数3、0 是偶数1.4素数、合数与分解素因数一个正整数,如果只有1和它本身两个因数,这样的数叫做素数,也叫做质数;如果除了1和它本身以外还有别的因数,这样的数叫做合数。
1既不是素数,也不是合数。
这样,正整数又可以分为1、素数、合数三类。
(依据:因数的个数)每个合数都可以写成几个素数相乘的形式,其中每个素数都是这个合数的素因数。
把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
用短除法分解素因数的步骤如下:1、先用一个能整除这个合数的素数(通常从最小的开始)去除2、得出的商如果是合数,再按照上面的方法继续除下去,知道得出的商是素数为止。
3、然后把各个除数和最后的商按从小到大的顺序写成连乘的形式。
1.5公因数和最大公因数几个数公有的因数,叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数。
如果两个整数只有公因数1,那么称为这两个数互素。
两个整数中,如果某个数是另一个数的因数,那么这个数就是这两个数的最大公因数。
【6上-期末必考知识点梳理.数学】上海六年级数学第一学期复习提纲
零和正整数统称为自然数;正整数、零、负整数都称为整数整数a除以整数b,如果除得的商是整数而余数为零,我们就说a能被b整除,或者说b能整除a。
整数a能被整数b整除,a就叫b的倍数,b就叫a的因数。
能被2整除的叫偶数,不能被2整除的叫奇数个位上是0、2、4、6、8的整数都能被2整除个位个是0、5的整数都能被5整除一个正整数如果只有1和它本身两个因数,这样的数叫素数,也叫质数;如果还有其它别的因数,这样的数叫合数1既不是素数,也不是合数,所以正整数又可以分为1、素数、合数三类每个合数都可以写成几个合数相乘的形式,其中每个素都是这个合数的因数,也叫这个合数的素因数,把一个合数用素因数相乘的形式表现出来,叫做分解素因数几个数公有的因数,叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数如果两个整数只有公因数1,那么说这两个数互素两个整数中,如果一个数是另外一个数的因数,那么这个数字就是这两个数的最大公因数;如果这两个数互素,那么它们的最大公因数就是1几个数公有的倍数叫做它们的公倍数,其中最小的一个叫做它们的最小公倍数用短除法求几个数字的最大公因数就是左边分解数字的乘积用短除法求几个数字的最小公倍数就是L型分解数字的乘积分数乘法分数的分子和分母都乘以或除以同一个不为0的数,所得的分数与原分数大小相等 分数乘整数,分母不变,分子与整数相乘。
(能约分的可以先约分,再计算) 例:215 ×4=815 6×38 =94分数乘分数,应该分子乘分子,分母乘分母。
(能约分的可以先约分再乘) 例:89 × 310 =15分子和分母互素的分数叫做最简分数把一个分数的分子与分母的公因数约去的过程叫约分把异分母的分数分别化成与原分数大小相同的同分母的分数,这个过程叫通分,然后再加减运算分子比分母小的分数叫做真分数,分子大于或者等于分母的分数叫做假分数,一个正整数与一个真分数相加的结果叫带分数互为倒数的两个数的乘积是1一个最简分数,如果分母中只含有素因数2和5,再无其它素因数,那么这个分数可以化成有限小数,否则就不能化成有限小数无限循环小数与分数的互化:把循环部分设成X ,则100X=A+X 或者1000X=A+X ,A 为常数,从而转换成分数乘法定律:乘法交换律 a ×b =b ×a乘法结合律 (a ×b )×c =a ×(b ×c)乘法分配律(a + b)×c=a×c + b×c计算除法的方法:除以一个不等于0的数,等于乘这个数的倒数。
沪教版六年级上数学知识点梳理
六年级上册数学知识点梳理:1.多位数的认识:-多位数由数位和数值组成,数位包括:个位、十位、百位、千位等。
-多位数的数值是由数位上数字的数值相加得到。
2.进位与退位:-进位:数字从个位进位到十位、百位等。
-退位:数字从十位、百位退位到个位。
3.数的读法和写法:-数的读法:可以根据数的位数,将数字分解开来,分别读出每一位的数值并加上对应的数位名词。
-数的写法:可以根据数位和数值,将数字进行组合。
4.数的比较和数的序:-数的比较:可以通过数的大小来判断大小关系。
如果两个数的数值不同,则数值大的数较大;如果两个数的数值相同,则比较数位,数位多的数较大。
-数的序:数的序就是将一组数按照大小从小到大进行排列。
5.数的加减法:-加法:可以通过竖式计算,将相同数位的数字从右到左逐位相加,并将进位加在相邻的高位上。
-减法:可以通过竖式计算,从被减数的个位开始,逐位相减,不够减时向高位借位。
6.数据的整理和统计:-数据整理:可以将一组数据按照其中一种规则进行整理,如从小到大排列等。
-数据统计:可以根据数据的特点和需求,选取不同的统计指标进行分析和统计。
7.分数的认识和大小比较:-分数由分子和分母组成,分子表示分数的份数,分母表示每份的等分数。
-分数的大小比较:可以将分数转化为相同分母后再进行比较,分子小的分数较小。
8.分数的加减法:-分数的加法:可以将两个分数转化为相同分母的分数后再进行相加,结果的分母保持不变,分子相加。
-分数的减法:可以将两个分数转化为相同分母的分数后再进行相减,结果的分母保持不变,分子相减。
9.小数的认识和读法:-小数是由整数与小数点组成的数。
-小数的读法:小数点后面的数字依次读出,可以用“点”或“句点”表示小数点。
10.小数的位置与大小比较:-小数点的位置决定了小数的大小,小数点左边的部分增大,小数变大;小数点右边的部分增大,小数变小。
沪教版数学六年级上册知识点
沪教版数学六年级上册知识点沪教版数学六年级上册知识点(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数〞指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数〞指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b 1时,ca。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b 1时,ca(b≠0)。
p=一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
沪教版六年级上册数学知识点
1.1 整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数3. 零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1.2 因数和倍数1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数2.倍数和因数是相互依存的3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3.在正整数中(除1外),与奇数相邻的两个数是偶数4.在正整数中,与偶数相邻的两个数是奇数5.个位数字是0,5的数都能被5整除6. 0是偶数1.4 素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数,这样的数叫做合数3. 1既不是素数也不是合数4.奇数和偶数统称为正整数,素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.通常用什么方法分解素因数: 树枝分解法,短除法1.5 公因数与最大公因数1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数2.如果两个整数只有公因数1,那么称这两个数互素数3.把两个数公有的素因数连乘,所得的积就是这两个数的最大公因数4.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5.如果两个数是互素数,那么这两个数的最大公因数是11.6公倍数与最小公倍数1.几个数公有的倍数,叫做这几个数的公倍数2.几个数中最小的公因数,叫做这几个数的最小公倍数3.求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,所得的积就是他们的最小公倍数4.如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数5.如果两个数是互素数,那么这两个数的最小公倍数是;两个数的乘积第二章分数2.1分数与除法1.一般地,两个正整数相除的商可用分数表示,即被除数÷除数= 被除数除数用字母表示为p÷q=pq(p、q为正整数)2.2分数的基本性质1.分数的分子和分母同时乘以一个不为零的整数,分数的值不变2.分子分母只有公因数1的分数叫做最简分数3.把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分2.3分数的比较大小1.同分母分数的大小只需要比较分子的大小,分子大的比较大,分子小的比较小2.通分的一般步骤是:(1)求公分母——求分母的最小公倍数;(2)根据分数的基本性质,将每个分数化成分母相同的分数。
六年级上册数学知识点沪教版(供参考)
1.1 整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数3. 零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1.2 因数和倍数1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数2.倍数和因数是相互依存的3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3.在正整数中(除1外),与奇数相邻的两个数是偶数4.在正整数中,与偶数相邻的两个数是奇数5.个位数字是0,5的数都能被5整除6. 0是偶数1.4 素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数,这样的数叫做合数3. 1既不是素数也不是合数4.奇数和偶数统称为正整数,素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.分解素因数方法: 树枝分解法,短除法1.5 公因数与最大公因数1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数2.如果两个整数只有公因数1,那么称这两个数互素数3.把两个数公有的素因数连乘,所得的积就是这两个数的最大公因数4.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5.如果两个数是互素数,那么这两个数的最大公因数是11.6公倍数与最小公倍数1.几个数公有的倍数,叫做这几个数的公倍数2.几个数中最小的公因数,叫做这几个数的最小公倍数3.求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,所得的积就是他们的最小公倍数4.如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数5.如果两个数是互素数,那么这两个数的最小公倍数是两个数的乘积.第二章分数2.1分数与除法1.一般地,两个正整数相除的商可用分数表示,即被除数÷除数= 被除数除数用字母表示为p÷q=pq(p、q为正整数)2.2分数的基本性质1.分数的分子和分母同时乘以一个不为零的整数,分数的值不变2.分子\分母只有公因数1的分数叫做最简分数3.把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分2.3分数的比较大小1.同分母分数的大小只需要比较分子的大小,分子大的比较大,分子小的比较小2.通分的一般步骤是:(1)求公分母——求分母的最小公倍数;(2)根据分数的基本性质,将每个分数化成分母相同的分数。
沪教版六年级上册知识点详细梳理
上册上海数学知识点梳理版本——沪教版(6)年级上一、数得整除1.内容要目数得整除性、因数与倍数、奇数与偶数、素数与合数、公因数与最大公因数、公倍数与最小公倍数、分解素因数;能被2与5整除得正整数得特征。
2.教学目标(1)知道数得整除性、因数与倍数,奇数与偶数、素数与合数、公因数与公倍数等得意义;知道能被2、5整除得正整数得特征。
(2)会用短除法分解素因数;会求两个正整数得最大公因数与最小公倍数。
3.重点、难点及易错点重点:正确得分解素因数,并会求两个正整数得最大公因数与最小公倍数。
难点:会求两个正整数得最小公倍数。
易错点:1既不就是素数也不就是合数,概念易混淆。
4.中考必考题型及分数占比结合概率考察素数合数等问题一道填空题4分5.知识结构二、分数1.内容要目(1)分数得概念,分数得加减乘除运算法则,分数与小数得互划与运算;(2)异分母分数得运算,通分、约分得技巧。
2.教学目标(1)知道分数得意义,学会分数得运算法则;(2)通过对分数得学习,提高运算能力与解决实际问题得能力,初步掌握转化得思维方法; (3)能够比较分数与小数得关系及混合运算。
3.重点、难点及易错点重点:分数得乘除混合运算以及通分与约分;难点:通分与约分易错点:乘除法则得运算4.中考必考题型及分数占比分数得混合运算,一道选择题或者一道填空题,占4分5.知识结构三、比与比例1.内容要目(1)必与比例得概念,比得基本性质,比与比例得有关性质;(2)百分比得概念及应用,百分比与小数、分数得关系。
(3)等可能事件2.教学目标(1)理解比与比例得有关概念及意义,根据比例得概念与基本性质,会解决简单得比例问题;(2)了解百分比在生活中得简单应用,会解决有关比与百分比得简单问题,从中体会数学与现实生活得联系;(3)了解等可能事件,学习用数量来描述一个事件发生得可能性得大小,初步体会概率思想。
3.重点、难点、易错点重点:比例内项、比例中项难点:百分比结合实际生活问题易错点:百分比得运用及比例中项4.中考题型及分数占比线段得比例关系,结合生活得实际应用问题,占4分,一题填空题5.知识结构四、圆与扇形1.内容要目(1)圆得周长与面积、弧长与扇形得面积等有关概念与计算公式;(2)运用所学结合实际生活问题。
六年级数学上册知识汇总(沪教版)
六年级数学教材目录(沪教版)六年级上册第一章数的整除第一节整数和整除1.1整数和整除的意义1.2因数和倍数1.3能被2、5整除的数第二节分解质因数1.4素数、合数与分解质因数1.5公因数与最大公因数1.6公倍数与最小公倍数第二章分数第一节分数的意义和性质2.1分数与除法2.2分数的基本性质2.3分数的大小比较第二节分数的运算2.4分数的加减法2.5分数的乘法2.6分数的除法2.7分数与小数的互化第三章比和比例第一节比和比例3.1比的意义3.2比的基本性质3.3比例第二节百分比3.4百分比的意义3.5百分比的应用3.6等可能事件第四章圆和扇形第一节圆的周长和弧长4.1圆的周长4.2弧长第二节圆和扇形的面积4.3圆的面积4.4扇形的面积第一章整数1.1 整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数3. 零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1.2 因数和倍数1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数2.倍数和因数是相互依存的3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3.在正整数中(除1外),与奇数相邻的两个数是偶数4.在正整数中,与偶数相邻的两个数是奇数3.求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,所得的积就是他们的最小公倍数4.如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数5.如果两个数是互素数,那么这两个数的最小公倍数是;两个数的乘积第二章分数2.1分数与除法1.一般地,两个正整数相除的商可用分数表示,即被除数÷除数= 用字母表示为p÷q= (p、q为正整数)2.2 分数的基本性质1.分数的分子和分母同时乘以一个不为零的整数,分数的值不变2.分子分母只有公因数1的分数叫做最简分数3.把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分2.3 分数的比较大小1.同分母分数的大小只需要比较分子的大小,分子大的比较大,分子小的比较小2.通分的一般步骤是:(1)求公分母——求分母的最小公倍数;(2)根据分数的基本性质,将每个分数化成分母相同的分数。
沪教版六年级上册数学知识点
1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数3. 零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
因数和倍数1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数2.倍数和因数是相互依存的3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3.在正整数中(除1外),与奇数相邻的两个数是偶数4.在正整数中,与偶数相邻的两个数是奇数5.个位数字是0,5的数都能被5整除6. 0是偶数素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数,这样的数叫做合数3. 1既不是素数也不是合数4.奇数和偶数统称为正整数,素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.通常用什么方法分解素因数: 树枝分解法,短除法公因数与最大公因数1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数2.如果两个整数只有公因数1,那么称这两个数互素数3.把两个数公有的素因数连乘,所得的积就是这两个数的最大公因数4.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5.如果两个数是互素数,那么这两个数的最大公因数是1公倍数与最小公倍数1.几个数公有的倍数,叫做这几个数的公倍数2.几个数中最小的公因数,叫做这几个数的最小公倍数3.求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,所得的积就是他们的最小公倍数4.如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数5.如果两个数是互素数,那么这两个数的最小公倍数是;两个数的乘积第二章分数分数与除法1.一般地,两个正整数相除的商可用分数表示,即被除数÷除数= 被除数除数用字母表示为p÷q=pq(p、q为正整数)2.2分数的基本性质1.分数的分子和分母同时乘以一个不为零的整数,分数的值不变2.分子分母只有公因数1的分数叫做最简分数3.把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分2.3分数的比较大小1.同分母分数的大小只需要比较分子的大小,分子大的比较大,分子小的比较小2.通分的一般步骤是:(1)求公分母——求分母的最小公倍数;(2)根据分数的基本性质,将每个分数化成分母相同的分数。
【沪教】六上数学知识点总结
【沪教版】六年级(上册)数学:知识点总结第一章数的整除1.1整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数。
2.在正整数1,2,3,4,5,……,的前面添上“-”号,得到的数-1,-2,-3,-4,-5,……,叫做负整数。
3.零和正整数统称为自然数。
4.正整数、负整数和零统称为整数。
5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a 能被b整除,或者说b能整除a。
6.注意整除的条件:(1)除数、被除数都是整数;(2)被除数除以除数,商是整数而且余数为零。
1.2因数和倍数1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数。
2.倍数和因数是相互依存的。
3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
4.一个数的倍数的个数是无限的,其中最小的倍数是它本身。
1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除。
2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
3.在正整数中(除1外),与奇数相邻的两个数是偶数。
4.在正整数中,与偶数相邻的两个数是奇数。
5.个位数字是0,5的数都能被5整除。
6.0是偶数。
7.能被一个数整除的特征:(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a,0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)能被2整除的数的特征:若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
(3)能被3整除的数的特征:若一个整数的数字和能被3整除,则这个整数能被3整除。
(4)能被4整除的数的特征:若一个整数的末尾两位数能被4整除,则这个数能被4整除。
(5)能被5整除的数的特征:若一个整数的末位是0或5,则这个数能被5整除。
(6)能被6整除的数的特征:若一个整数能被2和3整除,则这个数能被6整除。
(7)能被7整除的数的特征:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
沪教版六年级上册--数学知识点梳理
沪教版六年级上册--数学知识点梳理(共5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--沪教版六年级上册数学知识点梳理一、数的整除1.内容要目数的整除性、因数和倍数、奇数和偶数、素数和合数、公因数和最大公因数、公倍数和最小公倍数、分解素因数;能被2和5整除的正整数的特征。
2.教学目标(1)知道数的整除性、因数和倍数,奇数和偶数、素数和合数、公因数和公倍数等的意义;知道能被2、5整除的正整数的特征。
(2)会用短除法分解素因数;会求两个正整数的最大公因数和最小公倍数。
3.重点、难点及易错点重点:正确的分解素因数,并会求两个正整数的最大公因数和最小公倍数。
难点:会求两个正整数的最小公倍数。
易错点:1既不是素数也不是合数,概念易混淆。
4.中考必考题型及分数占比结合概率考察素数合数等问题一道填空题4分5.知识结构二、分数1.内容要目(1)分数的概念,分数的加减乘除运算法则,分数与小数的互划与运算;(2)异分母分数的运算,通分、约分的技巧。
2.教学目标(1)知道分数的意义,学会分数的运算法则;(2)通过对分数的学习,提高运算能力和解决实际问题的能力,初步掌握转化的思维方法;(3)能够比较分数与小数的关系及混合运算。
3.重点、难点及易错点重点:分数的乘除混合运算以及通分和约分;易错点:乘除法则的运算4.中考必考题型及分数占比分数的混合运算,一道选择题或者一道填空题,占4分5.知识结构三、比和比例1.内容要目(1)必和比例的概念,比的基本性质,比和比例的有关性质;(2)百分比的概念及应用,百分比与小数、分数的关系。
(3)等可能事件2.教学目标(1)理解比和比例的有关概念及意义,根据比例的概念和基本性质,会解决简单的比例问题;(2)了解百分比在生活中的简单应用,会解决有关比和百分比的简单问题,从中体会数学与现实生活的联系;(3)了解等可能事件,学习用数量来描述一个事件发生的可能性的大小,初步体会概率思想。
六年级数学上册期末知识点综合复习专项重点知识沪教版
六年级数学上册期末知识点综合复习专项重点知识沪教版班级:_____________ 姓名:_____________一、计算题。
1. 求出下列X的值。
(1)X+30%X=65 (2)8.9 -24%X=6. 5(3)125%X-X =28 (4)34X-40% X=782. 简便计算。
(1)34×219÷75% (2)16×25+35÷6(3)6.02×8×12.5%(4)67×(79-712)3. 简便计算。
(要求写出简算过程)(1)3.68﹣79+6.32﹣29(2)3.2×1.25×2.5(3)920×617+1117÷2094. 用合理的方法计算下列各题。
9.085-(7.085-659) (1318+512-19)×36320×0.4×21105 9×0.875+49×78+78117×149+517×19(89+611)÷ (311+49)5. 脱式计算。
0.65×101-65%3 4-(35%+14)÷1.262.5×(8.3-2.5×0.12)二、根据题意填空。
1. 通常我们规定海平面的海拔高度为0米,高于海平面的为正,则海拔高度为﹢700米表示(_____),海拔高度为﹣240米表示(_____)。
2. 吨的80%是(_____)吨,30是25的(____)%,(_____)的30%是120.3. 王师傅小时加工20个零件,他1小时加工(_____)个零件,加工1个零件,需要(_____)小时。
4. 1厘米=(_____)米1平方厘米=(_____)平方分米1平方分米=(_____)平方米1立方厘米=(_____)立方分米1立方分米=(_____)立方米5. 如图,正方形的边长是10厘米,图中阴影部分的面积和是(_____)平方厘米。
沪教版六年级数学上学期期末知识点综合复习专项完整版
沪教版六年级数学上学期期末知识点综合复习专项完整版班级:_____________ 姓名:_____________一、计算题。
1. 解方程。
(1)17.8+14x =26.2 (2)3(x+5)=24(3)x ﹣0.36x =20×0.8 (4)3x+2.4×3=11.42. 解方程。
x-49x=180 2.2x+0.3x=325(1-80%)x=200x-18%=65.6 x -30%x =280 1-25x =143. 直接写出得数。
2578⨯= 1384÷= 125×1.6= 12.56÷6.28= 7×17÷7×17= 4153-= 3.14×5 = 3.14×40= 75×10%= 13÷3-19=4. 解方程。
1132x ÷= 75 1.2x x += 13344x -=0.8X-60%X=2.6910X +35X=52 56X-14=0.755. 解方程。
425÷x=112×29 x-28%x=21.6 1235⎛⎫+ ⎪⎝⎭x=221984285x -= 1.760%9.2x x += 925%8x x -=二、根据题意填空。
1. 填表。
2. A ×B =C (C ≠0),那么A 一定时,B 和C 成(_____)比例;B 一定时,A 和C 成(_____)比例;C 一定时,A 和B 成(_____)比例。
3. 六(1)班今天实到49人,有1人没来,出勤率为(_____)%。
4. 一个长方体的长是a 分米,宽是b 分米,高是h 分米,如果高增加3分米,新的长方体的体积比原来长方体的体积增加(_____)立方分米,表面积增加(_____)平方分米。
5. 一个百分数,把百分号去掉,就比原数增加49.5,这个百分数是(_____)。
沪教版小学六年级数学上学期期末知识点综合复习专项综合知识
沪教版小学六年级数学上学期期末知识点综合复习专项综合知识班级:_____________ 姓名:_____________一、计算题。
1. 解方程。
(1)34x=10 (2)x-45=23(3)310÷x=4 (4)x÷715=572. 解比例或解方程。
(1)39∶3=x∶13 (2)10x-6.2=3.83. 解方程。
(1)17.8+14x=26.2 (2)3(x+5)=24 (3)x﹣0.36x=20×0.8 (4)3x+2.4×3=11.44. 解方程或比例。
5x-16=84 x÷16=4.25÷5 8.4x-6x=0.61 8x+12x=58x+14x=2019∶13=112∶x5. 脱式计算(能简算的要简算)。
6302251516-÷⨯ 18.699⨯77181216433⎡⎤⎛⎫÷+⨯ ⎪⎢⎥⎝⎭⎣⎦()3.06 1.70.29 1.5--⨯⎡⎤⎣⎦二、根据题意填空。
1. 有一块长方形草坪,长500米,宽28米,画在一张图纸上,量得长是25厘米这幅图的比例尺是(_____),图中的宽是(_____)厘米。
2. 图上距离3厘米表示实际距离60千米,这幅图的比例尺是(_____)。
3. 工地要运一批水泥,每天运的吨数和运的天数如下表。
(1)表中相关联的两种量是(_____)和(_____)(2)每天运的吨数增加,运的天数就会(_____);每天运的吨数减少,运的天数就会(_____)。
(3)表中表示的几种量的关系是(_____)一定,(_____)与(_____)成(_____)比例4. 一个精密零件的长是3毫米,画到一幅图上长1.5厘米,这幅图的比例尺是(_____)。
5. 用直线上的点表示数(规定向右的方向为正方向),从表示0的点出发,每个单位长度表示1,向右移动4.5个长度单位到A 点,A 点表示的数是(_____);从表示0的点出发,向左移动5个单位长度到B 点,B 点表示的数是(_____)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 整数和整除的意义
1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数
2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数
3. 零和正整数统称为自然数
4.正整数、负整数和零统称为整数
5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1.2 因数和倍数
1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数
2.倍数和因数是相互依存的
3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身
4.一个数的倍数的个数是无限的,其中最小的倍数是它本身
1.3能被2,5整除的数
1.个位数字是0,2,4,6,8的数都能被2整除
2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数
3.在正整数中(除1外),与奇数相邻的两个数是偶数
4.在正整数中,与偶数相邻的两个数是奇数
5.个位数字是0,5的数都能被5整除
6. 0是偶数
1.4 素数、合数与分解素因数
1.只含有因数1及本身的整数叫做素数或质数
2.除了1及本身还有别的因数,这样的数叫做合数
3. 1既不是素数也不是合数
4.奇数和偶数统称为正整数,素数、合数和1统称为正整数
5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数
6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.分解素因数方法: 树枝分解法,短除法
1.5 公因数与最大公因数
1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数
2.如果两个整数只有公因数1,那么称这两个数互素数
3.把两个数公有的素因数连乘,所得的积就是这两个数的最大公因数
4.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数
5.如果两个数是互素数,那么这两个数的最大公因数是1
1.6公倍数与最小公倍数
1.几个数公有的倍数,叫做这几个数的公倍数
2.几个数中最小的公因数,叫做这几个数的最小公倍数
3.求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,所得的积就是他们的最小公倍数
4.如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数
5.如果两个数是互素数,那么这两个数的最小公倍数是两个数的乘积.
第二章分数2.1分数与除法
1.一般地,两个正整数相除的商可用分数表示,即被除数÷除数= 被除数
除数
用字母表示为p÷q=
p
q
(p、q为正整数)
2.2分数的基本性质
1.分数的分子和分母同时乘以一个不为零的整数,分数的值不变
2.分子\分母只有公因数1的分数叫做最简分数
3.把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分
2.3分数的比较大小
1.同分母分数的大小只需要比较分子的大小,分子大的比较大,分子小的比较小
2.通分的一般步骤是:(1)求公分母——求分母的最小公倍数;
(2)根据分数的基本性质,将每个分数化成分母相同的分数。
3.异分母分数比较大小需要先通分成同分母分数再按照同分母分数比较大小
2.4分数的加减法
1.同分母分数相加减,分母不变,分子相加减
2.异分母分数相加减,先通分成同分母分数,再按照同分母分数相加减
3.分子比分母小的分数,叫做真分数
4.分子大于或者等于分母的分数叫假分数
5.整数与真分数相加所成的分数叫做带分数
6.假分数化为带分数:分母不变,整数部分为原分子除以分母的商,分子则为原分子除以分母的余数7.列方程求未知数的一般书写步骤:(1)设未知数为x;
(2)根据题意列出方程:
(3)根据加减互为逆运算,表示出x等于那些数相加减;
(4)计算出x的值,并写出上结论
2.5 分数的乘法
1.两个分数相乘,分子相乘作为分子,分母相乘作为分母
2.如果乘数是带分数,先化成假分数,再进行运算
2.6 分数的除法
1.一个数与其相乘的积为1的数为这个数的倒数;0没有倒数
2.除以一个分数等于乘以这个分数的倒数
3.被除数或除数中有带分数的先化成假分数再进行运算
2.7分数与小数的互化
1.一个最简分数能不能化为有限小数和分数的分母有关,分母的素因数只含2或5时可以化为有限小数。
2.从后某一位开始不断地重复出现前一个或一节数字的无限小数叫做循环小数
3.被重复的一个或一节数码称为循环小数的循环节
4.一个分数总可以化为有限小数或无线循环小数
3.1比的意义
1.将a与b相除叫a与b的比,记作a:b,读作a比b
2.求a与b的比,b不能为零
3.a叫做比例前项,b叫做比例后项,前项a除以后项b的商叫做比值
4.求两个同类量的比值时,如果单位不同,先统一单位再做比
5.比值可以用整数、分数或小数表示
3.2 比的基本性质
1.比的基本性质是比的前项和后项同时乘以或除以相同的数(0除外),比值不变2.利用比的基本性质,可以把比化为最简整数比
3.两个数的比,可以用比号的形式表示,也可以用分数的形式表示
4.三项连比性质是:如果a:b=m:n,b:c=n:k,那么a:b:c=m:n:k
如果k≠0,那么a:b:c=ak:bk:ck=a
k
:
b
k
:
c
k
5.将三个整数比化为最简整数比,就是给每项除以最大公约数;
将三个分数化为最简整数比:先求分母的最小公倍数,再给各项乘以分母的最小公倍数;
将三个小数比化为最简整数比:先给各项同乘以10,100,1000等,化为整数比,再化为最简整数比
6.求三项连比的一般步骤是:(1)寻找关联量,求关联量对应的两个数的最小公倍数
(2)根据比的基本性质,把两个比中关联量化成相同的数
(3)对应写出三项连比
3.3 比例
1.a(第一比例项):b(第二比例项)=c(第三比例项):d(第四比例项);其中a、d叫做比例外项,b、c叫做比例内项
2.如果两个比例内项(外项)相同,即a:b=b:c,那么b叫做a、c的比例中项
3.利用比例的基本性质,可以把比例方程转化化为我们常见的形式ad=bc,简单的说,就是内项之积等于外项之积4.列方程解应用题的一般书写步骤分四步:(1)设未知数(2)列方程(3)解方程(4)答
5.列比例方程时,一定要注意对应关系,一定要注意同类量的单位要对应统一
3.5 百分比的应用
3.盈利问题的俩个基本公式:售价-成本=盈利,盈利率=盈利/成本×100%;
打折问题的一个基本公式:原(售)价×折数=现(售)价;
亏损是与盈利意义相对的量:盈利=售价-成本,亏损=成本-售价
4.银行利息的结算
利息=本金×利率×期数;本息和=本金+利息;
利息税=利息×利息税率;
税后本息和=本金+税后利息=本金+利息-利息税=本金+利息×(1-利息税率)
增长率=增长的量/原来的量×100%
3.6等可能事件
1.从实际生活中感悟那些事件是可能事件,哪些事件是不可能事件
2.可能性的大小可以用一个真分数或百分数表示
4.1圆的周长
1.周长公式 C=πd=2πr ,其中π是一个无限不循环小数,通常取π=3.14
2.会根据题意,有其中2个量求第三个量的值
4.2弧长
1.如图,圆上A 、B 两点间的部分就是弧,记作AB 读作弧AB ,∠AOB 称为圆心角
2.n 圆心角所对的弧长是圆周长的360
n 3.设圆的半径为r ,n 圆心角所对的弧长是l ,弧长公式:l =
180n πr
4.3圆的面积
1. 圆的面积 S=π2r
2.环形的面积=大圆的面积-小圆的面积 S=π(2R -2r )
4.4 扇形的面积
1. 扇形面积公式S 扇=360n π2r =12
lr 2.要求阴影部分面积,要善于抓住图形间的位置关系和数量关系进行适当的割补.。