水文时间序列的混沌特性及预测研究副本-PPT文档资料
混沌理论 综述 很全ppt课件
Content
1. 混沌与分岔的起源与发展 2. 混沌的概念 3. 混沌的特点 4. 混沌现象举例 5. 分岔的概念 6. 混沌的研究方法 7. 分岔的研究方法 8. 混沌在现代科技领域的应用
.
混沌与分岔的起源与发展
❖ 公认的最早发现混沌的是伟大的法国数学家,物理学 家—庞加莱,他是在研究天体力学,特别是在研究三体 问题时发现混沌的。他发现三体引力相互作用能产生惊 人的复杂行为,确定性动力学方程的某些解有不可预见 性。
.
分岔的概念
❖ 分岔(bifurcation)是非线性领域的重要理论。分岔是指动力学 系统中,控制参量改变时,其各自的拓扑结构发生突然变化。
❖ 混沌的定性描述,“混沌是确定性非线性系统的有界的敏 感初始条件的非周期行为”。
.
混沌的概念
❖ n周期点的定义:如果对于某x0 ,有f (n)(x0)=x0,但对于小于n的自然 数k,有f (k)(x0)≠ x0 ,则称x0为f 的一个n周期点。
❖ n周 期 轨道的定义:当 x0为f 的一个n 周期点时, 称{x0, f (1)(x0), f (2)(x0),…, f (n-1)(x0)}为f 的n周期轨道。
.
混沌现象举例--昆虫繁衍
下面取λ为不同值对虫口方程进行迭代求解: 1. 取λ:0—1迭代 ❖ 容易验证,λ在0—1之间时,无认初始值取多少,对方程Xn+1=λXn (1—Xn)迭代
归宿均为确定值零。这是一个最平凡的1周期解,对应系统的稳定态。 2. 取λ:1—3迭代 ❖ 迭代也是收敛的,迭代结果总是趋向于一个稳定的不动点,这是一个非零的1周
混沌的特点
2. 内在随机性
❖ 确定性行为一定产生于确定性方程,而随机行为却产生 于两类方程:一类是随机微分方程,一类是确定性方程。 随机微分方程表现出来的随机性是由随机参数、随机初 始条件或随机外界强迫所产生,常称为外在随机性。确 定性方程本身不包含任何随机因素,但在一定的参数范 围却能产生出看起来很混乱的结果,把这种由确定性方 程产生的随机性称之为内在随机性。
2024版水文地质学基础ppt课件
水文地质学基础ppt课件CONTENTS•水文地质学概述•岩石中水存在形式与性质•地下水流动系统与补给排泄条件•孔隙裂隙岩溶发育规律及其对渗透性影响•不同类型含水层特征及其富水性评价水文地质学概述01水文地质学定义与研究对象水文地质学定义研究地下水分布、运动、形成、变化及其与周围环境相互关系的科学。
研究对象以地下水为主要研究对象,同时涉及地表水与地下水的相互作用。
水文地质学发展历史及现状发展历史从19世纪中叶开始形成,经历了描述性、定量化和系统性三个阶段。
现状当前水文地质学已发展为一门综合性学科,广泛应用于水资源评价、环境保护、工程建设等领域。
水文地质学与其他学科关系与地质学的关系地质学为水文地质学提供基础理论和研究方法,水文地质学则是地质学的一个分支,专注于研究水与岩石圈的相互作用。
与水文学的关系水文学与水文地质学都研究水的循环和分布,但水文学更侧重于地表水的研究,而水文地质学则更关注地下水。
与环境科学的关系环境科学为水文地质学提供了宏观的研究视角和综合分析方法,水文地质学则为环境科学提供关于地下水环境的基础数据和理论支撑。
岩石中水存在形式与性质02岩石中水存在形式吸附水附着在岩石颗粒表面或矿物晶体内部的水分子,受固体表面吸附力作用。
毛细水存在于岩石毛细孔隙中的地下水,受毛细力作用上升。
重力水在岩石大孔隙或裂隙中,受重力作用自由运动的水。
岩石中水物理化学性质溶解性水能溶解多种物质,形成水溶液,改变水的化学性质。
密度与温度水的密度随温度变化,4°C时密度最大,具有热传导性。
粘滞性水的粘滞性随温度降低而增大,影响地下水的流动。
表面张力水的表面张力使水滴呈球形,影响毛细水的上升高度。
岩石中水运动规律达西定律描述水在孔隙介质中的渗流速度与水力梯度成正比的关系。
渗流基本方程描述非饱和带与饱和带地下水流运动的偏微分方程。
地下水流系统由补给区、径流区和排泄区组成的统一整体,具有层次性。
地下水资源评价根据水文地质条件、开采技术经济条件等,对地下水资源数量和质量进行评价。
混沌时间序列分析理论与方法讲解共35页文档
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
混沌时间序列分析理论与方法讲解
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。—
混沌系统理论 ppt课件
非周期定态
在奇怪吸引子上的运动是系统的一种稳 定定态行为。 在奇怪吸引子上的运动具有回归性,但 混沌的回归性是不严格的,是非周期的。 非周期运动也可能是定态行为,非周期 定态未必都是混沌。
{ { 回归性
严格的周期性 周期性
准周期性
{混沌式非周期
非周期性
非混沌式非周期
非线性回归 完备分类
对初始条件的敏感依赖性
dz d
bz
xy
x -对流的翻动速率 y -比例于上流与下流液体之间的温差 z-是垂直方向的温度梯度
无量纲因子
b-速度阻尼常数
r -相对瑞利数 r = R/RC。
这是一个三维系统,x、y、z为状态变量,σ、r、b为控 制参量。
洛伦兹方程
在r 较小的情况下,系统是稳定的,随着的r 增加,系统 趋于复杂,出现不稳定的极限环,在r =28时达到混沌 状态。所以, σ = 10 ,b = 8/3 ,r = 28 时利用 Matlab编程,得到下图:
“上帝的指纹”
混沌理论的特征
分形几何理论诞生于20世纪70年代中期,创始人是美国数学家--曼德布罗特(B.B.Mandelbrot),他1982年出 版的《大自然的分形 几何学》 (The Fractal Geometry of Nature)是这一学科经典之作。
康托尔三分集
谢尔宾斯基地毯
分 形 项 链
在离散系统中,通常取逻辑斯蒂方程为典型系 统。
Logistic Equation:
x n 1 a x n (1 x n ) 或
xn1 1 x 2
虫口模型
逻辑斯蒂方程在生态学中的应用是无世代交叠的 虫口系统,x为状态变量,a或λ为控制变量。方程 给出第n代虫口数与第n+1代虫口数的确定性关系。 0<x<1, 0<a<4
混沌时间序列分析方法研究及其应用
混沌时间序列分析方法研究及其应用一、综述近年来,随着大数据时代的到来,时间序列数据在各个领域的应用越来越广泛,如金融、气象、环境监测、生物技术等。
对于时间序列数据,由于其具有不确定性、复杂性和模糊性等特点,传统的数据分析方法已经难以满足需求。
针对时间序列数据的混沌时间序列分析方法逐渐受到关注。
本文将对混沌时间序列分析方法进行综述,包括其基本原理、特点、应用以及最新研究成果。
旨在为相关领域的研究和应用提供参考与借鉴。
混沌时间序列分析方法是一种针对具有混沌特性的时间序列数据进行预测和分析的方法。
自从20世纪80年代以来,混沌理论的发展为时间序列分析提供了新的思路。
与其他数据分析方法相比,混沌时间序列分析方法具有对初始条件敏感、普适性、可预测性等特点,使其在许多领域得到广泛应用。
相空间重构:通过对时间序列进行相空间重构,将高维的时间序列数据投影到低维的相空间中,以揭示其内在的混沌动力学规律。
常用的重构方法有CohenSteel算法、拉普拉斯矩阵和马尔可夫矩阵等。
李雅普诺夫指数计算:李雅普诺夫指数是衡量系统混沌程度的一个指标。
通过对时间序列进行分析,可以计算出其李雅普诺夫指数,从而了解系统的混沌特性。
常用的计算方法有奇异值分解法(SVD)和非线性最小二乘法等。
分布熵分析:分布熵是一种衡量时间序列复杂性的度量。
通过对时间序列进行分布熵分析,可以了解其混乱程度。
常用的分布熵计算方法有基于Shannon熵的算法和基于小波嫡的算法等。
神经网络预测:基于神经网络的混沌时间序列预测方法被认为是具有潜力的预测手段。
通过训练神经网络模型,可以实现对混沌时间序列的有效预测。
主要包括循环神经网络(RNN)、长短时记忆网络(LSTM)和门控循环单元(GRU)等模型。
集成学习方法:集成学习方法是将多个单一模型的预测结果进行融合以提高预测精度的策略。
通过对不同算法和模型的预测结果进行集成,可以提高混沌时间序列分析的稳定性和准确性。
水文学第三章PPT课件
水文系列的概率分布时,用x≥xi的概率。累 积频率是指等量值和超量值累计出现的次数与 总观测次数之比。在实际应用中用样本系列频 率分布代替整体系列的频率分布。当样本容量 相当的大,而组距很小时,可以绘出频率分布 曲线。
第36页/共122页
F( x) P( X x) x f ( x)dx
表示随机变量X大于或等于值x的概率,其
几何曲线称作随机变量的概率分布曲线(水文学 上通常称累计频率曲线,简称频率曲线)。
第30页/共122页
f(x) f(xi) F(x)
密度曲线
dx xi
F( x) x f ( x)dx
x
分布曲线
x
第31页/共122页
第10页/共122页
4) 资料的随机性审查(Random Examination) 5)资料的独立性审查(Independence examination)
第11页/共122页
4.概率和频率
Probability & Frequency
4.1 概率和频率的基本概念 1)概率(Probability)
第26页/共122页
一般将这种对应关系称作随机变量的概率分 布规律,简称为分布律。可以用以下的分布图形表 示:
P
X
x1 x2 x3 x4 … … xn
离散型随机变量概率分布图
第27页/共122页
对于连续型随机变量:
变量的取值充满整个数值区间,无法一一列 出其每一个可能值,只能以区间的概率来分析其 分布规律。
第13页/共122页
有利于A的试验结果数m为介于0 ~ n之间的
数, 0 m n 随机事件A的概率 0 P( A) 1
《水文地质学》ppt课件(2024)
01
02
03
04
水均衡法
通过计算区域水均衡要素,评 估地下水资源量。
解析法
利用数学物理方程描述地下水 运动,通过解析解计算资源量
。
数值法
建立地下水数值模型,模拟地 下水运动过程,评估资源量。
综合法
结合多种方法,综合考虑地质 、水文、气象等因素,进行综
合评价。
2024/1/29
16
地下水资源开发利用现状及问题
定义
研究地下水的分布、形成、运动 、化学和物理性质及其与周围环 境的相互关系的科学。
特点
综合性、区域性、实践性、预测 性。
4
水文地质学研究意义
水资源评价与合理开发
为水资源评价提供科学依据,指导水资源的合 理开发和利用。
工程地质问题
研究地下水对工程建筑物的影响,预测和防治 工程地质问题。
环境地质问题
物探
2024/1/29
应用地球物理勘探方法,如电法、磁 法、重力法等,间接推断地下水的分
布和埋藏条件。
钻探
利用钻探设备向地下钻进,获取岩芯 、水样等资料,揭示地下水的赋存状 态。
化探
通过采集和分析地下水、地表水、土 壤和岩石等样品中的化学元素和化合 物,了解水文地球化学特征。
21
水文地质图编制和成果表达
2024/1/29
8
地下水循环过程
01
02
03
地下水的补给
大气降水、地表水、凝结 水等通过包气带下渗,成 为地下水的补给来源。
2024/1/29
地下水的径流
在重力作用下,地下水由 高处向低处流动,形成地 下径流。
地下水的排泄
通过泉、人工开采、蒸发 等方式排泄到地表或大气 中。
时间序列ppt课件
气象领域应用
总结词
时间序列分析在气象领域的应用主要涉及气 候变化研究、气象预报和气象数据管理等。
详细描述
通过对长时间序列的气象数据进行研究,科 学家可以了解气候变化的规律和趋势。此外 ,时间序列分析在气象预报中发挥着重要作 用,通过对实时气象数据的分析,可以预测 未来的天气状况。气象数据管理方面,时间 序列分析有助于组织和管理大量的气象数据 ,提高数据的质量和可用性。
交通领域应用
总结词
时间序列分析在交通领域的应用主要涉及交 通流量预测、交通拥堵分析和交通安全研究 等。
详细描述
通过对历史交通数据的分析,可以了解交通 流量的变化规律和趋势,预测未来的交通流 量。此外,时间序列分析还可以用于交通拥 堵分析,探究拥堵产生的原因和规律,为交 通管理部门提供决策依据。在交通安全研究 方面,时间序列分析有助于了解交通事故的 发生规律和趋势,为制定安全措施提供支持
时间序列ppt课件
目录
CONTENTS
• 时间序列基础 • 时间序列分析方法 • 时间序列预测 • 时间序列在各领域的应用 • 时间序列研究前沿与展望
01 时间序列基础
CHAPTER
时间序列的定义
总结词
时间序列是一种数据结构,它按照时间顺序排列了一系列的 数据点。
详细描述
时间序列数据通常以时间为横轴,以相应的数值或观测值为 纵轴,记录了某一指标在不同时间点的数值。这些数据点通 常具有时间先后顺序,能够反映事物随时间变化的发展过程 。
详细描述
统计特征分析法能够深入挖掘数据的 内在规律和性质,通过计算各种统计 特征,可以了解数据的稳定性、周期 性、趋势性等特点,从而为进一步分 析提供依据。
模型分析法
总结词
混沌时间序列建模及预测
2001年5月系统工程理论与实践第5期 文章编号:100026788(2001)0520106204混沌时间序列建模及预测孙海云,曹庆杰(山东大学数理与系统科学学院,山东济南250061)摘要: 讨论了混沌时间序列的建模及预测方法,给出了各重要参数的选取算法,并应用于实例,与传统的时间序列预测方法相比较,取得了精度更高的预测结果,从而为一类非线性时间序列提供了从数据采集识别到建模预测的完整技术Λ关键词: 混沌;时间序列;相空间重构中图分类号: O322 文献标识码: AαT he M odeling and Fo recasting of Chao tic T i m e SeriesSU N H ai2yun,CAO Q ing2jie(Schoo l of M athem atics and System Science,Shandong U n iversity of T echno logy,J i’nan250061,Ch ina) Abstract: W e p resen t a fo recasting techn ique fo r a k ind of non linear ti m e series.Inthe analysis of chao tic ti m e series,a good techn ique is to recon struct an i m age of theo riginal dynam ical system u sing delay coo rdinate.It can get better fo recasting resu ltthan conven ti onal m ethods.Keywords: chao tic;ti m e series;phase space recon structi on1 前言人们对时间序列的分析研究已有数十年的历史了,但主要集中在线性方法的研究上Λ近年来,对非线性系统尤其是混沌背景下产生的时间序列的分析越来越受到人们的重视Λ混沌现象介于确定关系和随机关系之间,是对现有确定模式的推广,是自然界客观存在的一类重要的形式Λ一方面,在一个确定性系统中,混沌现象使得对初始条件非常敏感,一个小小的扰动变化就会被放大,产生意想不到的结果,这使混沌运动产生了长期不可预测的特性;另一方面,混沌蕴含着有序,它不同于无从控制的随机运动,轨迹发散但逃逸不出奇异吸引子的约束,这使得做短期预测是可行的,且比利用传统的线性预测模型所获得的结果要好Λ对于如太阳黑子数目,股票行情等一些看似随机的现象的建模及预测有着重要的理论和实际意义Λ混沌时间序列预测的基础是状态空间的重构理论,即把具有混沌特性的时间序列重建为一种低阶非线性动力学系统Λ通过相空间重构,可以找出隐藏区在混沌吸引子的演化规律,使现有的数据纳入某种可描述的框架之下,从而为时间序列的研究提供了一种崭新的方法和思路Λ相空间重构是非线性时间序列分析的重要步骤,重构的质量直接影响到模型的建立和预测Λ2 相空间重构的理论基础及方法T aken s指出,系统中的任一分量的演化都是由与之相互作用着的其它分量所决定,因此,这些相关分量的信息就隐含在任一分量的发展过程之中ΛPackard[1]等人提出的时间延迟的思想,可重构出观测到的动力学系统的相空间Λ我们以L o renz吸引子为例,看一下他的原图与x分量重构图(图1)Λα收稿日期:1999209208资助项目:国家自然科学基金(19872041);山东省自然科学基金(Y98A73016)图1 L o renz吸引子图2 重构的L o renz 吸引子 由图1在已知L o renz 数学模型的基础上可知该系统的动力特性:吸引子有两个焦点,轨道绕两个焦点随机旋转,轨道具有稳定的动力特性Λ图2为Σ=0.2sec 的重构图,尽管嵌入变换使得吸引子形状、大小发生了变化,但吸引子许多根本的动力特性并没有改变Λ所以,这种方法确实可以从系统的一个变量恢复和研究整个系统的动力特性Λ这对于不能直接测量深层的自变量而仅仅知道一组数据序列的研究人员来说,也有了研究系统的动力行为的可能Λ我们选择一组在实验室测得的由远红外线激光器在混沌状态下产生的单变量激光数据,选择这组数据的原因是:其物理背景已知,是由低自由度的简单动力系统产生的类似随机的复杂动力行为,而且噪声低,不需再经降噪处理Λ假设我们事先和不知道产生这组数据的动力系统特征,而仅仅想从获得的一列数据中分析、重构和预报原来的动力系统模型Λ在具体实施相空间重构过程中,如何正确确定延迟时间Σ和嵌入维数d 是相空间重构成功的关键所在Λ211 选择延迟时间Σ当Σ选择过小时,x (t )和x (t +Σ)在数值上彼此接近,因此不能相互独立Ζ而当Σ过大时,就混沌吸引子而言,由于蝴蝶效应的影响,x (t )和x (t +Σ)相互之间的关系就变成随机的了Ζ因此我们需要一种方法来选择恰当的Σ,使得x (t )和x (t +Σ)之间既可相互独立,又不至于在统计意义上完全无关Ζ通常取使x (t )和x (t +Σ)的自关联函数首次通过零点的Σ为延迟时间,因为此时是使x (t )和x (t +Σ)线性无关的最小值Ζ自关联函数的优点是计算简单,但它只是描述变量间线性相关程度的一种方法,并不适用于所用情况[2]Ζ而互信息函数可将非线性关系也考虑在内,这种方法的根据是我们可从事件b j 在B 中发生的概率中得到多少关于a i 在A 集中发生概率的信息Ζ由采农信息理论,事件a i ,b j 之间的关系可用互信息熵I A B 来表示I A B =6ij P A B (a i ,b j )log 2P A B (a i ,b j )P A (a i )P B (b j )把A 看作是由x (t 0+i Σs )组成的集合,B 是由x (t 0+i Σs +Σ)组成的集合,则上式变为:I (Σ)=6iP [x (t 0+i Σs ),x (t 0+i Σs +Σ)]×log 2P [x (t 0+it s ),x (t 0+i Σs +Σ)]P [x (t 0+i Σs )]P [x (t 0+i Σs +Σ)] 在实际计算中,通常采用划分网格的方法,将变量a i 和b j 组成的样本空间划分为若干‘网格’或‘盒子’,然后通过统计各盒中的点数来求出其概率值Ζ一般选取互信息函数第一极小值点时的Σ为延迟时间Ζ对所选激光数据,计算的延迟时间Σ=1Ζ互信息函数的计算方法过于复杂,无法避开大量的计算和复杂的空间划分要求Ζ通过大量计算和对已知系统的数值实验,我们认为,当取Σ=T 4为延迟时间时,可接近最佳重构Ζ时间域采样定理表明,若701第5期混沌时间序列建模及预测x (t )为单值、频带宽度有限的时间函数,则当采用间隔ΣΦT 2时,即可精确的复现x (t ).混沌吸引子虽无周期而言,但其具有半稳定的周期轨道[3],寻找合适的相点x i (t ),依次计算它与x i +1(t ),x i +2(t ),…的距离,直到找到一个x k (t ),使得x i (t )与x k (t )的距离Θ(x k (t )-x j (t ))<Ε,从x i (t )到x k (t )的轨道就是一个周期轨道,我们可以将从x i (t )到x k (t )所用的平均时间当作周期T Ζ取延迟时间Σ=T 4是在不过分减少信息损失和不过分增加数据量之间做出的合理选择Ζ图3 激光数据互信息函数图2.2 嵌入维数的选择设原始系统的吸引子维数为d 0,嵌入维数为d Ζ在T aken s的嵌入定理中,d Ε2d 0仅仅只是充分条件Ζ在实际应用中,d并非越大越好,如果嵌入维数过大,就需要更多的观测值,更大的计算量Ζ在有噪声存在的非线性系统中,维数大了,就要花费不必要的时间来观测充满噪声的信息Ζ寻找一个嵌入维数为d 的相空间,由于投影到低维空间内,所以会出现一些轨道的交叉点;另外,当d 不是很大时,在原始相空间中离的较远的点在重构的相空间中有可能离的很近,因而产生了‘伪邻近点’Ζ为了确定这些邻近点,需要鉴别两个邻近的状态是因为动力系统行为还是因为投影到低维空间中产生的Ζ当逐步增加嵌入维数d 时,就可消除伪邻近点,从而确定出嵌入维数Ζ假定嵌入维数为d ,延迟时间为k Σ,则重构向量y n =[x n ,x n +k ,x n +2k ,…,x n +(d -1)k ]T 的邻近点由向量y δn =[x δn ,x δn +k ,x δn +2k ,…,x δn +(d -1)k T ]确定Ζ根据欧氏空间理论,y n 与y δn 之间的距离为:R 2n (d )=6d i =1(x δn +(i -1)k -x n +(i -1)k )2 如果R n (d +1)与R n (d )相比大很多,则可推断出y n 与yδn 为伪邻近点Ζ在计算时,根据实际情况选择临界值R T (一般10ΦR T Φ50),看其是否满足下列不等式:x δn +kd -x n +kd R n (d )>R T 由此来确定y n 与y δn 是否伪邻近点Ζ图4 激光数据原始序列图图5 激光数据重构图 通过上述方法,计算激光数据的重构参数可得:Σ=1,d =3,重构图如图5所示Ζ3 由最大L yapunov 指数判断时间序列的类型 轨道的收敛率或发散率称为L yapunov 指数,它是研究混沌的一个重要参数Λ最大L yapunov 指数大801系统工程理论与实践2001年5月于0,就可判定该系统为混沌的,存在混沌吸引Λ利用相空间重构技术可从离散时间序列中得到与原系统吸引子相同的L yapunov 指数谱Λ对重构的三维相空间利用W o lf [4]提出的方法计算所采集的1000年激光数据的最大L yapunov 指数,可得Κ≈0.15(>0),因此可判定该时间序列为混沌时间序列Λ4 预测对于平稳的时间序列来讲,利用传统的A R 、M A 、A RM A 等模型通常可获得较好的预报结果Λ而对混沌时间序列而言,即使模型对数据匹配的很好,有时也无法做出准确的预测,未来趋势会在性质上与原有时间序列趋势发生根本不同的变化Λ因此,对混沌时间序列的预测研究我们需另找出路Λ混沌时间序列预测的基础是状态空间的重构理论[5]Λ首先按上述方法重构d 维空间,然后建立当前值X t 与预测值X ′t 的关系式,我们希望找到合适的预测算子f T ,使得X ′t =f (X t ),其中X t 为d 维向量Ζ对混沌时间序列,通常采用基于邻近点状态的局部预测法Ζ局域预测方法就是要在X t 的k 个邻近似和一个线性映射Ζ假设任何邻近点X [t ]与它的未来状态点X ′[t ]有下面的线性关系:X ′[t ]=f (X [i ])≈A X [i ]+b i =1,2,…,k(1)式中:A 为元素a ij (i ,j =1,2,…,d )的常量矩阵;b 为元素b j (j =1,2,…,d )的常向量,再确定矩阵A 和元素b 以后,可以把关系式X ′t≈A X t +b 作为预测函数,要预测的值为x ′t +d -1≈a d 1x t +a d 2x t +1+…a d d x t +d -1+b d 为了得到X ′t +d -1,只要确定系数a d i (i =1,2,…,d )和b d 即可Ζ建立局部预测算子,还有一种更为简单直接的方法即零阶预测,是利用相空间中当前状态的邻近状态点的后续值作为当前状态的预测值Ζ零阶近似虽然可以很容易的提高到上述线性近似,但除非f 的第一次预测就是非常精确的,否则预测精度还不如直接法好Ζ在预测过程中,我们发现X t 的邻近点即满足‖X (t )-X (t ′)‖ΦΕ条件的点会有很多个,但并非每个点都可作为邻近状态点进行预测,最近的点也不一定是最好的预测点Ζ我们还应计算所选的邻近状态点的变化趋势是否与当前点的变化趋势相一致,即是否满足:((X (t -1),X (t )),(X (t ′-1),X (t ′))}ΦΑ图6 预测图 利用直接法我们对已有的第800-810激光数据进行预测,并将其与采用最小最终预报误差准则[6]而建立的自回归模型得到的预测值及真实值进行比较,结果见图6Ζ由图可知,对于混沌时间序列,采用上述的分析建模方法比传统的自归模型所得到的预测值误差小、精度高,且能更好的反映出时间序列的变化趋势Ζ5 结束语不论时间序列是线性还是非线性,我们研究它的目的是相同的,即:利用得到的数据探究有用的模型,使之可以分析、重构和预测原来的模型Ζ对非线性时间序列的分析步骤如下:1)区分混沌与噪声,降噪Ζ2)进行相空间重构,其中{x (t i )}为观测到的单变量数据,Σ为延迟时间,d 为嵌入维数X (t )=(x (t ),x (t -Σ),…,x (t -(d -1)Σ))T 3)通过对重构后相空间的L yapunov 指数及分形维数等的计算判断原系统的类型Ζ4)建立模型,预测(下转第113页)901第5期混沌时间序列建模及预测xδ(0)(k )=-0.5011e -0.1893(k -1)+2.6177,k =1,2,…,n .x (0)的预测值为 x δ(0)=(4.48,4.835,5.189,5.4248,5.653,5.8462).表2 精度检验序号(k )123456原始值x (0)4.484.855.25.4465.6715.889预测值xδ(0)4.484.8435.1895.4255.6535.846参差百分比◊00.150.230.390.320.89 而传统建模方法得到的预测值为x θ(0)=(4.48,4.578,5.1783,5.4062,5.667,5.999)我们从平均误差百分比,误差平方和两个方面对两种方法进行比较,见表3.表3 两种建模方法精度比较模 型比较内容平均误差(%)误差平方和中心逼近G M (1,1)模型0.330.00372453传统G M (1,1)模型1.4850.8605493 显然中心逼近式灰色G M (1,1)模型的精度远远高于传统灰色G M (1,1)模型,且可调整m 值,使新模型更加提高精度Λ参考文献:[1] 邓聚龙1灰色系统理论教程[M ]1武汉:华中理工大学出版社,19901[2] 熊岗,陈章潮1灰色预测模型的缺陷及改进方法[J ]1系统工程,1992(6):32-261[3] 刘希强,王树泽,宋中民1灰色关联空间引论[M ]1贵阳:贵州人民出版社,19931(上接第109页)延迟时间Σ和嵌入维数d 的选择是相空间重构的两个重要参数Ζ利用采样定理选择的延迟时间Σ,方法简单易行Ζ重构效果较佳Ζ当经相空间重构而判定{y i }存在混沌吸引子后,传统A R 模型的预测值可信度不高,而采用基于混沌吸引子的时间序列局部预测方法,可获得较好的预测结果Ζ通过本文的方法对各种时间序列进行分析能有效地描述和预测混沌现象Ζ参考文献:[1] Packard N H ,C ru tchfield J P ,Farm er J D ,Shaw ,R S .Geom etry from a ti m e series [J ].Phys R evL ett ,1989,45(9):712-716.[2] A barbanel H D I .A nalysis of O b served Chao tic D ata [M ].Sp ringer ,N ew Yo rk ,1996.[3] 钟晓旭1混沌吸引子中周期轨道的仿真研究[J ]1暨南大学学报,1998,19(1):88-92Λ[4] W o lf A ,Sw ift J B ,Sw inney H ,V astano J .D eterm in ing L yapunov exponen ts from a ti m e series [J ].Physica D ,1985,16:285-317.[5] CasdagliM .N on linear p redicti on of chao tic ti m e series [J ].Physica D 35,1989,335.[6] 杨位钦,顾岚1时间序列分析与动态数据建模[M ]1北京:北京工业学院出版社,(1986)1311第5期中心逼近式灰色G M (1,1)模型。
在水文水资源中混沌优化算法的应用研究
在水文水资源中混沌优化算法的应用研究随着我国经济发展水平的不断提高,解决非线性问题的方法日趋多样,混沌优化方法是一种最新的非线性问题的解决方法,本文将对混沌优化方法的理论与优化特点进行介绍,提出优化过程中存在的一些问题,对该方法未来发展潜力与方向进行展望。
标签:混沌优化;水文资源;理论与原理优化原理从客观事物中产生,是事物发展的普遍原理,通常为事物结构、组织以及功能自我优化或者演化,从中加入了很多人为因素,这种优化方法以数学为根基,通过求解与计算将实际问题解决,是一种集分析与应用的综合手段。
在计算机技术不断发展与广泛应用下,如何对某项事物进行优化,使优化范围变广成为人们思考的问题。
1、混沌优化算法的理论基础混沌优化算法显著特征为随机性,从不确定的系统中产生的不具有规则性的现象,还具有无序统一、随机性统一等特征。
早在上个世纪60年代,混沌学研究开始产生与发展,涉及到化学、生态学、经济学、社会学等人文、自然领域,不断演化为一种新型学科。
可以将特征归纳为:伪随机性,是随机变量无序分布的结果,使变量变得更加杂乱;遍历性,可以不发生重复与交叠的在固定范围内表现出诸多状态;规律性,混沌由不确定性迭代产生,介于随机与确定性之间的状态,具有较为丰富的时空变化,演化过程中会使引子出现转移。
随着混沌动力学的产生与发展,非线性多峰优化中开始引入并应用混沌学,这种解决问题的方式引起人们关注。
为了将算法中的不足弥补,很多学者在解决复杂问题时应用混沌动力学,将这种优化算法成为混沌优化算法。
鉴于混沌存在的遍历性特征,优化搜索将随机搜索的不足弥补了,弥补了随机搜索范围小的问题,相比随机搜索更加具有优势。
此外,混沌优化不需要过多的系统知识的辅助,对目标函数无连续性要求,非线性特点显著。
由此,使用混沌优化搜索是一种优化技术。
2、混沌优化算法原理混沌优化算法理论与思想为将混沌引入到优化变量内,随着遍历范围的扩大可达到优化变量的取值范围,再应用混沌变量搜索。
水文水资源水环境分形混沌分析PPT文档64页
ቤተ መጻሕፍቲ ባይዱ
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
谢谢!
水文水资源水环境分形混沌 分析
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
混沌理论及其在水文时间序列中的应用研究的开题报告
混沌理论及其在水文时间序列中的应用研究的开题报告一、研究背景与意义混沌理论于二十世纪六十年代诞生,它描述的是一种无序、复杂并且不可预测的现象。
混沌理论已经在许多领域内得到应用,如气象学、生物学、社会科学、经济学等等。
在水文领域中,把混沌理论应用于时间序列数据中,能够帮助我们深入了解水文数据中的随机性和复杂性,提高灾害预测和水资源利用效率。
二、研究目的与内容本研究旨在探讨混沌理论在水文时间序列中的应用,并且发现水文时间序列数据集中的特点。
研究内容包括以下几个方面:1、水文时间序列数据的采集及预处理2、混沌理论背景知识的学习与掌握3、应用混沌理论对水文时间序列数据进行分析,并比较其与传统时间序列分析方法的差异4、探究混沌理论对水文时间序列数据中随机性和复杂性的解释力三、研究方法与技术路线本研究将采用以下研究方法和技术路线:1、为了确保样本数据的可靠性,本文将选取多个具有代表性的水文站点的数据来进行分析。
通过对数据进行预处理,如检查异常值、填补缺失值等,保证数据的质量;2、研究过程中需要使用混沌理论相关的数学工具进行分析。
具体来说,包括李雅普诺夫指数、分形维数、重构吸引子等;3、对比分析混沌理论与传统时间序列分析方法的异同。
传统方法包括平稳性检验、自回归(AR)模型、移动平均(MA)模型等;4、本研究需要采用数据可视化技术,如时间序列图、散点图、吸引子图等,来呈现分析结果。
四、预期研究结果本研究预期可以通过混沌理论的应用,发现水文时间序列中隐含的混沌现象,并解释其复杂性和随机性。
同时,可以比较混沌理论与传统时间序列分析方法的优劣,并提出改进的建议。
通过研究结果,水文研究者、水文工程师可以更从容地面对复杂的水文系统,并针对性地制定实施预防和应对策略。
五、研究进度计划本研究拟于xxxx年x月开始,分为以下四个环节:1、文献阅读与背景知识学习,于xxxx.x-xxxx.x进行。
2、数据预处理及混沌理论分析方法的学习,于xxxx.x-xxxx.x进行。