多元统计分析实验报告

合集下载

【Selected】 多元统计分析-实验三.doc

【Selected】 多元统计分析-实验三.doc

实验三一、实验内容1、实验背景近几年,中国房地产业得到了长足的发展,但房地产价格的上涨一直饱受争议,甚至有逃离“北、上、广”的言论,这也从侧面反映了房地产价格的区域性特征。

2、实验目的根据20BB年中国31个省、市、自治区房地市场的房屋平均销售价格、住宅平均销售价格、别墅与高档公寓平均销售价格、经济适用房平均销售价格等九项指标的统计数据(见下表3),对各省市进行区域性分类。

3、实验要求试根据这些数据分别进行R型和Q型聚类分析。

二、实验报告1、实验数据选取全国31个省市地区的房屋平均销售价格、住宅平均销售价格、别墅与高档公寓平均销售价格、经济适用房平均销售价格、办公楼平均销售价格、商业营业用房平均销售价格、其他平均销售价格、商品房销售面积、住宅销售面积等9项指标作为观测量进行分析。

数据见下表3。

表3注:X1:房屋平均销售价格;X2:住宅平均销售价格;X3:别墅、高档公寓平均销售价格;X4:经济适用房平均销售价格;X5:办公楼平均销售价格;X6:商业营业用房平均销售价格;X7:其他平均销售价格;X8:商品房销售面积;X9:住宅销售面积。

2、数据处理数据中无异常值或缺失值,因此不需要进行处理。

3、数据分析1)、Q型聚类分析操作步骤如下:(1)打开SPSS统计软件,将数据输入数据文件中。

(2)在菜单的选项中选择Analyze→Classify命令,在Classify命令下选择Hierarchicalcluster(系统聚类法)。

(3)Cluster下选择Cases单选框。

将9个变量移入Variables框中,将省份变量移入LabelCasesby框中作为标识变量。

(4)选择Statistics选项,选中Agglomerationschedule复选框;ClusterMembership栏中选择Rangeofsolution并在其后两个小矩形框中分别填入2和8。

单击Continue继续。

(5)选择Plots选项,选中Dendrogram复选框,其他默认,单击Continue 继续。

多元统计数据分析报告(3篇)

多元统计数据分析报告(3篇)

第1篇一、引言随着大数据时代的到来,数据量急剧增加,传统的统计分析方法已无法满足复杂数据关系的挖掘需求。

多元统计分析作为一种处理多个变量之间关系的方法,在社会科学、自然科学、工程技术等领域得到了广泛应用。

本报告旨在通过对某研究项目的多元统计分析,揭示变量之间的关系,为决策提供科学依据。

二、研究背景与目的本研究以某企业员工绩效评估数据为研究对象,旨在通过多元统计分析方法,探究员工绩效与个人特质、工作环境等因素之间的关系,为企业人力资源管理部门提供决策支持。

三、数据与方法1. 数据来源本研究数据来源于某企业员工绩效评估系统,包括员工的基本信息、个人特质、工作环境、绩效评分等。

2. 研究方法本研究采用以下多元统计分析方法:(1)描述性统计分析:对员工绩效、个人特质、工作环境等变量进行描述性统计分析,了解数据的分布情况。

(2)相关分析:分析变量之间的线性关系,找出相关系数较大的变量对。

(3)因子分析:将多个变量归纳为少数几个因子,揭示变量之间的内在关系。

(4)聚类分析:将员工根据绩效、个人特质、工作环境等因素进行分类,分析不同类别员工的特点。

(5)回归分析:建立员工绩效与个人特质、工作环境等因素之间的回归模型,分析各因素对绩效的影响程度。

四、数据分析结果1. 描述性统计分析通过对员工绩效、个人特质、工作环境等变量的描述性统计分析,得出以下结论:(1)员工绩效评分呈正态分布,平均绩效评分为75分。

(2)个人特质得分集中在中等水平,其中创新能力得分最高,稳定性得分最低。

(3)工作环境得分普遍较高,其中工作压力得分最低。

2. 相关分析通过对员工绩效、个人特质、工作环境等变量进行相关分析,得出以下结论:(1)绩效与创新能力、稳定性、工作环境等因素呈正相关。

(2)创新能力与稳定性呈负相关。

3. 因子分析通过对员工绩效、个人特质、工作环境等变量进行因子分析,得出以下结论:(1)提取了3个因子,分别对应创新能力、稳定性、工作环境。

多元统计分析 实验报告

多元统计分析 实验报告

多元统计分析实验报告1. 引言多元统计分析是一种用于研究多个变量之间关系的统计方法。

在实验中,我们使用了多元统计分析方法来探索一组数据中的变量之间的关系。

本报告将介绍我们的实验设计、数据收集和分析方法以及结果和讨论。

2. 实验设计为了进行多元统计分析,我们设计了一个实验,收集了一组相关变量的数据。

我们选择了X、Y和Z这三个变量作为我们的研究对象。

为了获得准确的结果,我们采用了以下实验设计:1.确定研究目的:我们的目标是探索X、Y和Z之间的关系,并确定它们之间是否存在任何相关性。

2.数据收集:我们通过调查问卷的方式收集了一组数据。

我们请参与者回答与X、Y和Z相关的问题,以获得关于这些变量的定量数据。

3.数据整理:在收集完数据后,我们将数据进行整理,将其转化为适合多元统计分析的格式。

我们使用Excel等工具进行数据整理和清洗。

4.数据验证:为了确保数据的准确性,我们对数据进行验证。

我们检查数据的有效性,比较数据之间的一致性,并排除任何异常值。

3. 数据分析在数据收集和整理完毕后,我们使用了一些常见的多元统计分析方法来分析我们的数据。

以下是我们使用的方法和步骤:1.描述统计分析:我们首先对数据进行了描述性统计分析。

我们计算了X、Y和Z的均值、标准差、最大值和最小值等。

这些统计量帮助我们了解数据的基本特征。

2.相关性分析:接下来,我们进行了相关性分析,以确定X、Y和Z之间是否存在相关关系。

我们计算了变量之间的相关系数,并绘制了相关系数矩阵。

这帮助我们确定变量之间的线性关系。

3.回归分析:为了更进一步地研究X、Y和Z之间的关系,我们进行了回归分析。

我们建立了一个多元回归模型,通过回归方程来预测因变量。

同时,我们还计算了回归系数和R方值,以评估模型的拟合度和预测能力。

4. 结果和讨论根据我们的实验设计和数据分析,我们得出了以下结果和讨论:1.描述统计分析结果显示,X的平均值为x,标准差为s;Y的平均值为y,标准差为s;Z的平均值为z,标准差为s。

多元统计实验报告

多元统计实验报告

多元统计实验报告一、实验目的多元统计分析是统计学的一个重要分支,它能够处理多个变量之间的复杂关系。

本次实验的主要目的是通过实际操作和数据分析,深入理解多元统计分析的基本原理和方法,并掌握其在实际问题中的应用。

二、实验数据本次实验使用了一组来自某市场调研公司的数据集,包含了消费者的年龄、性别、收入、消费习惯等多个变量,共计_____个样本。

三、实验方法1、主成分分析(PCA)主成分分析是一种降维方法,它通过将多个相关变量转换为一组较少的不相关变量(即主成分),来简化数据结构并提取主要信息。

2、因子分析因子分析用于发现潜在的公共因子,这些因子能够解释多个观测变量之间的相关性。

3、聚类分析聚类分析将数据对象分组,使得同一组内的对象具有较高的相似性,而不同组之间的对象具有较大的差异性。

四、实验过程1、数据预处理首先,对原始数据进行了清洗和预处理,包括处理缺失值、异常值和数据标准化等操作,以确保数据的质量和可用性。

2、主成分分析使用统计软件进行主成分分析,计算出特征值、贡献率和累计贡献率。

根据特征值大于 1 的原则,确定了保留的主成分个数。

通过主成分载荷矩阵,解释了主成分的实际意义。

3、因子分析运用因子分析方法,提取公共因子,并通过旋转因子载荷矩阵,使得因子的解释更加清晰和具有实际意义。

计算因子得分,用于进一步的分析和应用。

4、聚类分析采用 KMeans 聚类算法,根据选定的变量对样本进行聚类。

通过不断调整聚类中心和重新分配样本,最终得到了较为合理的聚类结果。

五、实验结果与分析1、主成分分析结果提取了_____个主成分,它们累计解释了_____%的方差。

第一个主成分主要反映了_____,第二个主成分主要与_____相关,以此类推。

这为我们理解数据的主要结构提供了重要的线索。

2、因子分析结果成功提取了_____个公共因子,它们能够较好地解释原始变量之间的相关性。

每个因子所代表的潜在因素也得到了清晰的解释,有助于深入了解消费者的行为特征和市场结构。

计量经济实验报告多元(3篇)

计量经济实验报告多元(3篇)

第1篇一、实验目的本次实验旨在通过多元线性回归模型,分析多个自变量与因变量之间的关系,掌握多元线性回归模型的基本原理、建模方法、参数估计以及模型检验等技能,提高运用计量经济学方法解决实际问题的能力。

二、实验背景随着经济的发展和社会的进步,影响一个变量的因素越来越多。

在经济学、管理学等领域,多元线性回归模型被广泛应用于分析多个变量之间的关系。

本实验以某地区居民消费支出为例,探讨影响居民消费支出的因素。

三、实验数据本实验数据来源于某地区统计局,包括以下变量:1. 消费支出(Y):表示居民年消费支出,单位为元;2. 家庭收入(X1):表示居民家庭年收入,单位为元;3. 房产价值(X2):表示居民家庭房产价值,单位为万元;4. 教育水平(X3):表示居民受教育程度,分为小学、初中、高中、大专及以上四个等级;5. 通货膨胀率(X4):表示居民消费价格指数,单位为百分比。

四、实验步骤1. 数据预处理:对数据进行清洗、缺失值处理和异常值处理,确保数据质量。

2. 模型设定:根据理论知识和实际情况,建立多元线性回归模型:Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε其中,Y为因变量,X1、X2、X3、X4为自变量,β0为截距项,β1、β2、β3、β4为回归系数,ε为误差项。

3. 模型估计:利用统计软件(如SPSS、R等)对模型进行参数估计,得到回归系数的估计值。

4. 模型检验:对估计得到的模型进行检验,包括以下内容:(1)拟合优度检验:通过计算R²、F统计量等指标,判断模型的整体拟合效果;(2)t检验:对回归系数进行显著性检验,判断各变量对因变量的影响是否显著;(3)方差膨胀因子(VIF)检验:检验模型是否存在多重共线性问题。

5. 结果分析:根据模型检验结果,分析各变量对因变量的影响程度和显著性,得出结论。

五、实验结果与分析1. 拟合优度检验:根据计算结果,R²为0.812,F统计量为30.456,P值为0.000,说明模型整体拟合效果较好。

多元统计分析实验2

多元统计分析实验2
Dendrogram using Average Linkage (Between Groups)
Rescaled Distance Cluster Combine
C A S E 0 5 10 15 20 25
Label Num +---------+---------+---------+---------+---------+
908
郑州
16674
14023
10709
7847
66
373
12.7
13538
1048
武汉
21278
17083
11882
16610
80
623
17.4
13730
1286
长沙
15446
8873
10609
10631
60
434
10.0
16987
705
广州
48220
55404
29751
28859
275
1089
25.1
0
20
17
26
29
85140723.490
0
0
21
18
11
12
102010991.105
0
5
27
19
3
5
104201363.845
12
14
21
20
4
6
104836373.605
0
16
24
21
3
26
149260032.574
19
17
22
22

多元统计课程实验报告

多元统计课程实验报告

一、实验背景随着社会经济的发展和科学技术的进步,数据量日益庞大,如何从大量数据中提取有价值的信息,成为统计学研究的热点问题。

多元统计分析作为统计学的一个重要分支,通过对多个变量之间的关系进行分析,为决策者提供有力的数据支持。

本实验旨在通过实际操作,让学生熟练掌握多元统计分析方法,提高数据分析能力。

二、实验目的1. 掌握多元统计分析的基本概念和方法;2. 学会运用多元统计分析方法解决实际问题;3. 提高数据分析能力,为后续课程打下坚实基础。

三、实验内容本次实验以某城市居民消费数据为例,运用多元统计分析方法对其进行分析。

四、实验步骤1. 数据导入首先,将实验数据导入统计软件(如SPSS、R等)。

本实验采用SPSS软件,数据集包含以下变量:(1)收入(y):居民年收入;(2)教育程度(x1):居民最高学历;(3)年龄(x2):居民年龄;(4)家庭人口(x3):家庭人口数量;(5)住房面积(x4):家庭住房面积。

2. 描述性统计分析对数据集进行描述性统计分析,包括各变量的均值、标准差、最大值、最小值等。

3. 相关性分析运用皮尔逊相关系数、斯皮尔曼等级相关系数等方法,分析变量之间的相关关系。

4. 主成分分析运用主成分分析方法,提取主要成分,降低数据维度。

5. 聚类分析运用K-means聚类分析方法,将居民划分为不同的消费群体。

6. 随机森林回归分析运用随机森林回归分析方法,预测居民收入。

五、实验结果与分析1. 描述性统计分析根据描述性统计分析结果,可知居民年收入、教育程度、年龄、家庭人口、住房面积的平均值、标准差、最大值、最小值等。

2. 相关性分析通过相关性分析,发现收入与教育程度、年龄、家庭人口、住房面积之间存在显著的正相关关系。

3. 主成分分析根据主成分分析结果,提取出两个主成分,累计方差贡献率为84.95%,可以解释大部分的变量信息。

4. 聚类分析通过K-means聚类分析,将居民划分为3个消费群体。

多元统计分析实验报告计算协方差矩阵相关矩阵SAS

多元统计分析实验报告计算协方差矩阵相关矩阵SAS

多元统计分析实验报告计算协方差矩阵相关矩阵SAS实验目的:通过对多元统计分析中的协方差矩阵和相关矩阵的计算,探究变量之间的相关性,并使用SAS进行实际操作。

实验步骤:1.数据准备:选择一个数据集,例如学生的成绩数据,包括数学成绩、语文成绩和英语成绩。

2.数据整理:将数据转化为矩阵形式,每一行代表一个学生,每一列代表一个变量(即成绩),记为X。

3. 计算协方差矩阵:根据公式计算协方差矩阵C,其中元素Cij表示变量Xi和Xj之间的协方差。

计算公式为Cij = cov(Xi, Xj) = E((Xi - u_i)(Xj - u_j)),其中E为期望值,u_i和u_j分别是变量Xi和Xj的均值。

4. 计算相关矩阵:根据协方差矩阵计算相关矩阵R,其中元素Rij表示变量Xi和Xj之间的相关性。

计算公式为Rij = cov(Xi, Xj) / (sigma_i * sigma_j),其中sigma_i和sigma_j分别是变量Xi和Xj的标准差。

5.使用SAS进行实际操作:使用SAS软件导入数据集,并使用PROCCORR和PROCPRINT命令进行协方差矩阵和相关矩阵的计算和输出。

实验结果:通过计算协方差矩阵和相关矩阵,可以得到变量之间的相关性信息。

协方差矩阵的对角线上的元素表示每个变量的方差,非对角线上的元素表示不同变量之间的协方差。

相关矩阵的对角线上的元素都是1,表示每个变量与自身的相关性为1,非对角线上的元素表示不同变量之间的相关性。

使用SAS进行实际操作后,我们可以得到一个包含协方差矩阵和相关矩阵的输出表格。

该表格可以帮助我们更直观地理解变量之间的相关性情况,从而为后续的统计分析提供参考。

实验总结:通过本次多元统计分析实验,我们了解了协方差矩阵和相关矩阵的计算方法,并使用SAS软件进行实际操作。

这些矩阵可以帮助我们评估变量之间的相关性,为后续的统计分析提供重要的基础信息。

在实际应用中,我们可以根据协方差矩阵和相关矩阵的结果,选择合适的统计方法和模型,并做出恰当的推断和决策。

实验报告-判别分析(多元统计)

实验报告-判别分析(多元统计)

实验报告5判别分析(设计性实验)(Discriminant analysis)实验原理:判别分析是判别样品所属类型的一种统计方法。

判别分析是在已知研究对象分成若干类型(或组别)并已取得各种类型的一批已知样品的观测数目,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分类。

本实验要求学生应用距离判别准则(即,对任给的一次观测,若它与第i类的重心距离最近,就认为它来自第i类),对两总体和多总体情形下分别进行判别分析。

实验中需注意协方差矩阵相等时,选取线性判别函数;协方差矩阵不相等时,应选取二次判别函数。

实验题目一:为了检测潜在的血友病A携带者,下表中给出了两组数据:(t11a8)其中x1=log10(AHF activity),x2=log10(AHF antigen)。

下表给出了五个新的观测,试对这些观测判别归类;(t11b8)实验要求:(1)分别检验两组数据是否大致满足二元正态性;(2)分别计算两组数据的协方差矩阵,是否可以认为两者近似相等?(3)对训练样本和新观测合并作散点图,不同的类用不同颜色标识;(4)用lda函数做判别分析,即在协方差矩阵相等的情形下作判别分析;(5)用qda函数做判别分析,即在协方差矩阵不相等的情形下作判别分析;(6)比较方法(4)和方法(5)的误判率。

实验题目二:某商学研究生院的招生官员利用指标――大学期间平均成绩GPA和研究生管理能力考试GMAT的成绩,将申请者分为三类:接受,不接受,待定。

下表中给出了三类申请者的GPA与GMAT成绩:(t11a6)GPA (x1)GMAT(x2)接受GPA(x1)GMAT(x2)不接受GPA(x1)GMAT(x2)待定2.96 596 1 2.54 446 2 2.86 494 33.14 473 1 2.43 425 2 2.85 496 3 3.22 482 1 2.2 474 2 3.14 419 3 3.29 527 1 2.36 531 2 3.28 371 3 3.69 505 1 2.57 542 2 2.89 447 3 3.46 693 1 2.35 406 2 3.15 313 3 3.03 626 1 2.51 412 2 3.5 402 3 3.19 663 1 2.51 458 2 2.89 485 3 3.63 447 1 2.36 399 2 2.8 444 3 3.59 588 1 2.36 482 2 3.13 416 33.3 563 1 2.66 420 2 3.01 471 33.4 553 1 2.68 414 2 2.79 490 33.5 572 1 2.48 533 2 2.89 431 33.78 591 1 2.46 509 2 2.91 446 33.44 692 1 2.63 504 2 2.75 546 33.48 528 1 2.44 336 2 2.73 467 33.47 552 1 2.13 408 2 3.12 463 33.35 520 1 2.41 469 2 3.08 440 33.39 543 1 2.55 538 2 3.03 419 33.28 523 1 2.31 505 2 3 509 33.21 530 1 2.41 489 2 3.03 438 33.58 564 1 2.19 411 2 3.05 399 33.33 565 1 2.35 321 2 2.85 483 33.4 431 1 2.6 394 2 3.01 453 33.38 605 1 2.55 528 2 3.03 414 33.26 664 1 2.72 399 2 3.04 446 33.6 609 1 2.85 381 23.37 559 1 2.9 384 23.8 521 13.76 646 13.24 467 1实验要求:(1)对上表中的数据作散点图,不同的类用不同的颜色标识;(2)用lda函数做判别分析,即在协方差矩阵相等的情形下作判别分析;(3)用qda函数做判别分析,即在协方差矩阵不相等的情形下作判别分析;(4)比较方法(2)和方法(3)的误判率;(5)现有一新申请者的GPA为3.21,GMAT成绩为497。

《多元统计实验》因子分析实验报告一

《多元统计实验》因子分析实验报告一

《多元统计实验》因子分析实验报告newscore2 #显示以第二因子得分排序结果newscore3<-newscore[order(newscore[,4],decreasing=T),] #按第三因子得分排序newscore3 #显示以第三因子得分排序结果newscore4<-newscore[order(newscore[,5],decreasing=T),] #按因子综合得分排序newscore4 #显示以因子综合得分排序结果三、实验结果分析下图为数据标准化后相关系数矩阵图,可以看出x3、x8、x4之间的存在较大的相关性,这些消费指标之间存在较强的线性相关关系,适合用因子分析模型进行分析,下面用极大似然估计法进行因子分析。

将公共因子设置为3个,从下运行结果可以看出,累计方差贡献率达到了83.36%,说明选择3个是合适的,从初始载荷阵可以看出消费指标无法准确的解释因子的含义,故我们在进行基于极大似然法的正交旋转。

由下图旋转得到的因子载荷估计,居住(x3)、生活用品及服务(x4)、交通通信(x5)、教育文化娱乐(x6)、医疗保健(x7)和其他用品及服务(x8)在因子f1上的载荷分别为0.772、0.679、0.663、0.858、0.733、0.692,这六个消费指标反映了日常消费,因此f1命名为日常消费因子;x1在f2上反映了食品烟酒的消费,因此f2命名为食品烟酒因子;x2在f3上反映了衣着的消费,因此命名为衣着因子。

也由此可得到因子分析模型:x*1≈0.208f1+0.975f2+ε1x*2≈0.220f1+0.972f3+ε2x*3≈0.772f1+0.510f2+ε3x*4≈0.679 f1+0.361 f2+0.405f3+ε4x*5≈0.663 f1+0.440 f2+0.271 f3+ε5x*6≈0.858 f1+0.262 f2+ε6x*7≈0.733 f1+0.350 f3+ε7x*8≈0.692 f1+0.522 f2+0.391+ε8从下图的各因子得分结果,可以看出,在第一因子上得分多的为上海、北京、天津;第二因子上得分多的为北京、上海、云南;第三因子得分多的为海南、广东、上海;但是这样得到的结果,较难找,因此我们对得分分别按第一因子和第二因子以及第三因子进行排序可直观看出。

实验报告-因子分析(多元统计)精选全文

实验报告-因子分析(多元统计)精选全文

精选全文完整版可编辑修改实验报告主成分分析(综合性实验)(Principal component analysis)实验原理:主成分分析利用指标之间的相关性,将多个指标转化为少数几个综合指标,从而达到降维和数据结构简化的目的。

这些综合指标反映了原始指标的绝大部分信息,通常表示为原始指标的某种线性组合,且综合指标间不相关。

利用矩阵代数的知识可求解主成分。

实验题目一:将彩色胶卷在显影液下处理后在不同情形下曝光,然后通过红、绿、蓝三种滤色片并在高、中、低三种密度下进行测量,每个胶卷有高红、高绿、高蓝、中红、…、低蓝等九个指标(分别记为X1-X9九个变量)。

试验了108个胶卷,由数据已算得如下协差阵:(S2a1)177 179 95 96 53 32 -7 -4 -3419 245 131 181 127 -2 1 4302 60 109 142 4 4 11158 102 42 4 3 2137 96 4 5 6128 2 2 834 31 3339 3948实验要求:(1)试从协差阵出发进行主成分分析;(2)计算方差累积贡献率;(3)作Scree图,并结合(2)的结果确定主成分的个数;(4)试对结果进行解释。

实验题目二:下表中给出了不同国家及地区的男子径赛记录:(t8a6)Country 100m(s) 200m(s)400m(s)800m(min)1500m(min)5000m(min)10,000m(min)Marathon(mins)Argentina 10.39 20.81 46.84 1.81 3.7 14.04 29.36 137.72 Australia 10.31 20.06 44.84 1.74 3.57 13.28 27.66 128.3 Austria 10.44 20.81 46.82 1.79 3.6 13.26 27.72 135.9 Belgium 10.34 20.68 45.04 1.73 3.6 13.22 27.45 129.95 Bermuda 10.28 20.58 45.91 1.8 3.75 14.68 30.55 146.62 Brazil 10.22 20.43 45.21 1.73 3.66 13.62 28.62 133.13 Burma 10.64 21.52 48.3 1.8 3.85 14.45 30.28 139.95 Canada 10.17 20.22 45.68 1.76 3.63 13.55 28.09 130.15 Chile 10.34 20.8 46.2 1.79 3.71 13.61 29.3 134.03 China 10.51 21.04 47.3 1.81 3.73 13.9 29.13 133.53 Columbia 10.43 21.05 46.1 1.82 3.74 13.49 27.88 131.35 Cook Islands 12.18 23.2 52.94 2.02 4.24 16.7 35.38 164.7 Costa Rica 10.94 21.9 48.66 1.87 3.84 14.03 28.81 136.58 Czechoslovakia 10.35 20.65 45.64 1.76 3.58 13.42 28.19 134.32 Denmark 10.56 20.52 45.89 1.78 3.61 13.5 28.11 130.78 Dominican Republic 10.14 20.65 46.8 1.82 3.82 14.91 31.45 154.12 Finland 10.43 20.69 45.49 1.74 3.61 13.27 27.52 130.87 France 10.11 20.38 45.28 1.73 3.57 13.34 27.97 132.3 German (D.R.) 10.12 20.33 44.87 1.73 3.56 13.17 27.42 129.92 German (F.R.) 10.16 20.37 44.5 1.73 3.53 13.21 27.61 132.23 Great Brit.& N. Ireland 10.11 20.21 44.93 1.7 3.51 13.01 27.51 129.13 Greece 10.22 20.71 46.56 1.78 3.64 14.59 28.45 134.6 Guatemala 10.98 21.82 48.4 1.89 3.8 14.16 30.11 139.33 Hungary 10.26 20.62 46.02 1.77 3.62 13.49 28.44 132.58 India 10.6 21.42 45.73 1.76 3.73 13.77 28.81 131.98Indonesia 10.59 21.49 47.8 1.84 3.92 14.73 30.79 148.83 Ireland 10.61 20.96 46.3 1.79 3.56 13.32 27.81 132.35 Israel 10.71 21 47.8 1.77 3.72 13.66 28.93 137.55 Italy 10.01 19.72 45.26 1.73 3.6 13.23 27.52 131.08 Japan 10.34 20.81 45.86 1.79 3.64 13.41 27.72 128.63 Kenya 10.46 20.66 44.92 1.73 3.55 13.1 27.38 129.75 Korea 10.34 20.89 46.9 1.79 3.77 13.96 29.23 136.25 D.P.R Korea 10.91 21.94 47.3 1.85 3.77 14.13 29.67 130.87 Luxembourg 10.35 20.77 47.4 1.82 3.67 13.64 29.08 141.27 Malaysia 10.4 20.92 46.3 1.82 3.8 14.64 31.01 154.1 Mauritius 11.19 22.45 47.7 1.88 3.83 15.06 31.77 152.23 Mexico 10.42 21.3 46.1 1.8 3.65 13.46 27.95 129.2 Netherlands 10.52 20.95 45.1 1.74 3.62 13.36 27.61 129.02 New Zealand 10.51 20.88 46.1 1.74 3.54 13.21 27.7 128.98 Norway 10.55 21.16 46.71 1.76 3.62 13.34 27.69 131.48 Papua New Guinea 10.96 21.78 47.9 1.9 4.01 14.72 31.36 148.22 Philippines 10.78 21.64 46.24 1.81 3.83 14.74 30.64 145.27 Poland 10.16 20.24 45.36 1.76 3.6 13.29 27.89 131.58 Portugal 10.53 21.17 46.7 1.79 3.62 13.13 27.38 128.65 Rumania 10.41 20.98 45.87 1.76 3.64 13.25 27.67 132.5 Singapore 10.38 21.28 47.4 1.88 3.89 15.11 31.32 157.77 Spain 10.42 20.77 45.98 1.76 3.55 13.31 27.73 131.57 Sweden 10.25 20.61 45.63 1.77 3.61 13.29 27.94 130.63 Switzerland 10.37 20.46 45.78 1.78 3.55 13.22 27.91 131.2 Taipei 10.59 21.29 46.8 1.79 3.77 14.07 30.07 139.27 Thailand 10.39 21.09 47.91 1.83 3.84 15.23 32.56 149.9 Turkey 10.71 21.43 47.6 1.79 3.67 13.56 28.58 131.5 USA 9.93 19.75 43.86 1.73 3.53 13.2 27.43 128.22 USSR 10.07 20 44.6 1.75 3.59 13.2 27.53 130.55Western Samoa 10.82 21.86 49 2.02 4.24 16.28 34.71 161.83 (数据来源:1984年洛杉机奥运会IAAF/AFT径赛与田赛统计手册)实验要求:(1)试求主成分,并对结果进行解释;(2)试用方差累积贡献率和Scree图确定主成分的个数;(3)计算各国第一主成分的得分并排名。

多元统计分析实验报告(精选多篇)

多元统计分析实验报告(精选多篇)

多元统计分析实验报告(精选多篇)第一篇:多元统计分析实验报告多元统计分析得实验报告院系:数学系班级:13级 B 班姓名:陈翔学号:20131611233 实验目得:比较三大行业得优劣性实验过程有如下得内容:(1)正态性检验;(2)主体间因子,多变量检验a;(3)主体间效应得检验;(4)对比结果(K 矩阵);(5)多变量检验结果;(6)单变量检验结果;(7)协方差矩阵等同性得Box 检验a,误差方差等同性得Levene 检验 a;(8)估计;(9)成对比较,多变量检验;(10)单变量检验。

实验结果:综上所述,我们对三个行业得运营能力进行了具体得比较分析,所得数据表明,从总体来瞧,信息技术业要稍好于电力、煤气及水得生产与供应业以及房地产业。

1。

正态性检验Kolmogorov-SmirnovaShapir o—Wilk 统计量 df Sig.统计量df Sig、净资产收益率。

113 35、200*。

978 35。

677 总资产报酬率。

121 35、200*。

964 35、298 资产负债率。

086 35。

200*.962 35、265 总资产周转率.180 35、006。

864 35。

000流动资产周转率、164 35、018.88535、002 已获利息倍数、28135.000。

55135、000 销售增长率.103 35、200*。

949 35、104 资本积累率。

251 35。

000、655 35。

000 *。

这就是真实显著水平得下限。

a。

Lilliefors显著水平修正此表给出了对每一个变量进行正态性检验得结果,因为该例中样本中n=35<2000,所以此处选用 Shapiro—W ilk 统计量。

由 Sig。

值可以瞧到,总资产周转率、流动资产周转率、已获利息倍数及资本积累率均明显不遵从正态分布,因此,在下面得分析中,我们只对净资产收益率、总资产报酬率、资产负债率及销售增长率这四个指标进行比较,并认为这四个变量组成得向量遵从正态分布(尽管事实上并非如此)。

《多元统计分析分析》实验报告

《多元统计分析分析》实验报告

《多元统计分析分析》实验报告2012 年月日学院经贸学院姓名学号实验实验成绩名称一、实验目的(一)利用SPSS对主成分回归进行计算机实现.(二)要求熟练软件操作步骤,重点掌握对软件处理结果的解释.二、实验内容以教材例题7.2为实验对象,应用软件对例题进行操作练习,以掌握多元统计分析方法的应用三、实验步骤(以文字列出软件操作过程并附上操作截图)1、数据文件的输入或建立:(文件名以学号或姓名命名)将表7.2数据输入spss:点击“文件”下“新建”——“数据”见图1:图1点击左下角“变量视图”首先定义变量名称及类型:见图2:图2:然后点击“数据视图”进行数据输入(图3):图3完成数据输入2、具体操作分析过程:(1)首先做因变量Y与自变量X1-X3的普通线性回归:在变量视图下点击“分析”菜单,选择“回归”-“线性”(图4):图4将因变量Y调入“因变量”栏,将x1-x3调入“自变量”栏(图5):然后选择相关要输出的结果:①点击右上角“统计量(s)”:“回归系数”下选择“估计”;“残差”下选择“D.W”;在右上角选择输出“模型拟合度”、“部分相关和偏相关”“共线性诊断”(后两项是做多重共线性检验)。

选完后点击“继续”(见图6)②如果需要对因变量与残差进行图形分析则需要在“绘制”下选择相关项目(图7),一般不需要则继续③如果需要将相关结果如因变量预测值、残差等保存则点击“保存”(图8),选择要保存的项目④如果是逐步回归法或者设置不带常数项的回归模型则点击“选项”(图9)其他选项按软件默认。

最后点击“确定”,运行线性回归,输出相关结果(见表1-3)图5 图6图7图8图9回归分析输出结果:的协差阵也就是相关阵进行分解做因子分析或主成分分析),如果不需要对变量做标准化处理就选“协方差矩阵”;“输出”中的两项都选,要求输出没有旋转的因子解(主成分分析必选项)和碎石图(用图形决定提取的主成分或因子的个数);“抽取“下,默认的是基于特征值(大于1表示提取的因子或主成分至少代表1个单位标准差的变量信息,因为标准化后的变量方差为1,因子或者主成分作为提取的综合变量应该至少代表1个变量的信息),也可以自选提取的因子个数(即第二项),本例中做主成分回归,选择提取全部可能的3个主成分,所以自选个数填3。

多元统计分析 实验报告

多元统计分析 实验报告

多元统计分析实验报告多元统计分析实验报告一、引言多元统计分析是一种研究多个变量之间关系的统计方法,可以帮助我们更全面地了解数据集中的信息。

本实验旨在通过多元统计分析方法,探索不同变量之间的关系,并分析其对研究结果的影响。

二、数据收集与处理在本实验中,我们收集了一份关于学生学业成绩的数据集。

数据集包括学生的性别、年龄、家庭背景、学习时间、考试成绩等多个变量。

为了方便分析,我们对数据进行了清洗和预处理,包括删除缺失值、标准化处理等。

三、描述性统计分析在进行多元统计分析之前,我们首先对数据进行了描述性统计分析。

通过计算各变量的均值、标准差、最小值、最大值等统计量,我们对数据的整体情况有了初步的了解。

例如,我们发现男生和女生的平均成绩存在差异,家庭背景与学习时间之间存在一定的相关性等。

四、相关性分析为了探索不同变量之间的关系,我们进行了相关性分析。

通过计算各个变量之间的相关系数,我们可以了解它们之间的线性关系强弱。

通过绘制相关系数矩阵的热力图,我们可以直观地观察到各个变量之间的相关性。

例如,我们发现学习时间与考试成绩之间存在较强的正相关关系,而年龄与考试成绩之间的相关性较弱。

五、主成分分析主成分分析是一种常用的降维方法,可以将多个相关变量转化为少数几个无关的主成分。

在本实验中,我们应用主成分分析方法对数据进行了降维处理。

通过计算各个主成分的解释方差比例,我们可以确定保留的主成分个数。

通过绘制主成分得分图,我们可以观察到不同变量在主成分上的贡献程度。

例如,我们发现第一主成分主要与学习时间和考试成绩相关,而第二主成分主要与家庭背景和性别相关。

六、聚类分析聚类分析是一种将样本按照相似性进行分类的方法,可以帮助我们发现数据集中的潜在模式和群体。

在本实验中,我们应用聚类分析方法对学生进行了分类。

通过选择适当的聚类算法和距离度量,我们可以将学生分为不同的群体。

通过绘制聚类结果的散点图,我们可以观察到不同群体之间的差异。

应用多元统计分析实验报告

应用多元统计分析实验报告

应用多元统计分析实验报告一、引言多元统计分析是一种通过同时考虑多个自变量对因变量的影响来进行数据分析的方法。

它可以帮助研究人员了解不同自变量之间的关系,并预测因变量的表现。

本实验旨在应用多元统计分析方法,探索自变量对于因变量的影响。

二、实验设计在本次实验中,我们选择了一个具体的研究问题:探究学生的学习成绩在不同自变量下的表现。

我们收集了100名学生的数据,包括他们的性别(自变量1)、年龄(自变量2)、家庭背景(自变量3)以及他们的数学和语文成绩(因变量)。

三、数据收集与处理我们使用问卷调查的方式收集了学生的性别、年龄和家庭背景的数据,并从学校的成绩数据库中获取了他们的数学和语文成绩。

在处理数据之前,我们进行了数据清洗和缺失值处理。

四、数据分析步骤1.描述统计分析:首先,我们对数据进行了描述性统计分析,包括计算平均值、标准差、最小值、最大值等指标,以了解数据的基本情况。

2.相关性分析:接下来,我们进行了相关性分析,探索自变量与因变量之间的关系。

我们使用皮尔逊相关系数来衡量两个变量之间的线性相关性,并进行了显著性检验。

3.多元线性回归分析:为了探究多个自变量对因变量的综合影响,我们进行了多元线性回归分析。

我们选择了逐步回归的方法,逐步将自变量加入模型,并根据显著性检验的结果决定是否保留自变量。

4.方差分析:最后,我们进行了方差分析,检验不同自变量水平下因变量均值之间的差异是否显著。

我们使用了单因素方差分析和多重比较方法。

五、结果与讨论1.描述统计分析结果显示,学生平均年龄为18岁,数学平均成绩为80分,语文平均成绩为85分。

标准差较小,表明数据的波动较小。

2.相关性分析结果显示,学生的性别和家庭背景与他们的数学和语文成绩之间存在显著相关性(p < 0.05)。

而年龄与成绩之间的相关性不显著。

3.多元线性回归分析结果显示,性别和家庭背景对学生的成绩有显著影响(p < 0.05),而年龄的影响不显著。

《多元统计》课程实验报告-回归分析

《多元统计》课程实验报告-回归分析

《多元统计与程序设计》课程实验报告1 实验内容(1)掌握回归分析和逐步回归分析的思想和计算步骤;(2)用Matlab实现回归分析和逐步回归分析;2 模型建立与求解2.1回归分析2.1.1模型的建立设随机变量y与m个自变量存在线性关系:y= (2.1.1)式(2.1.1)称为回归方程,其中称为回归系数,为随机变量,称为随机误差,它可理解为y无法用表示的是其他各种随机因素造成的误差。

要用来估计随机变量y的均值E(y),即E(y)=此处假定,y。

其中,,是与无关的待定系数。

设有n组样本观测值数据:其中表示第i次试验或第i个样本关于变量的观测值。

于是有:==………(2.1.2)其中,为m+1个待定系数,为n 个相互独立的且服从同一正态分布的随机变量,式(2.1.2)称为多元(m 元)线性回归数学模型。

式(2.1.2)也可写成矩阵形式,设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nm n n m m x x x x x xx x x X 212222111211111则式(2.1.2)可表示为(2.1.3)式(2.1.3)称为多元线性回归模型的矩阵形式。

2.1.2回归模型中参数的确定采用最小二乘法来对回归模型式(2.3)中的作最小二乘估计。

设m 3210,b,,b ,b ,b b 分别是的最小二乘估计值,于是有 m m 22110x b x b x b b yˆ++++=(2.1.4)式(2.1.4)中:yˆ是y 中的一个最小二乘估计。

对于每一个试验数据。

由式(2.1.4),可得一个i ˆy,即:n i x b x b b yim m i i ,,2,1ˆ110 =+++=,。

这里称i ˆy 为实际值i y 的回归值。

显然,回归值i yˆ与实际值i y 有误差,即 i y -i ˆy=n i x b x b b y im m i i ,,2,1110 =+++-, 当然我们希望i ˆy与i y 值偏离程度越小越好,这样才能使回归值i ˆy 与实际值i y 拟合得最好。

多元统计分析(最终版)

多元统计分析(最终版)

题目:研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表。

分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。

(注:要对方差齐性进行检验)不同温度与不同湿度粘虫发育历期表根据上述题目,分析结果如下。

一、相关理论概述F 检验与方差齐性检验在方差分析的F 检验中,是以各个实验组内总体方差齐性为前提的,因此,按理应该在方差分析之前,要对各个实验组内的总体方差先进行齐性检验。

如果各个实验组内总体方差为齐性,而且经过F 检验所得多个样本所属总体平均数差异显著,这时才可以将多个样本所属总体平均数的差异归因于各种实验处理的不同所致;如果各个总体方差不齐,那么经过F 检验所得多个样本所属总体平均数差异显著的结果,可能有一部分归因于各个实验组内总体方差不同所致。

但是,方差齐性检验也可以在F 检验结果为多个样本所属总体平均数差异显著的情况下进行,因为F 检验之后,如果多个样本所属总体平均数差异不显著,就不必再进行方差齐性检验。

本文分析数据采用后一种方法,即先F 检验再方差齐次性检验。

相对湿度(%) 温度℃ 重复1 2 3 4 10025 91.2 95.0 93.8 93.0 2787.6 84.7 81.2 82.4 29 79.2 67.0 75.7 70.6 31 65.2 63.3 63.6 63.3 8025 93.2 89.3 95.1 95.5 2785.8 81.6 81.0 84.4 29 79.0 70.8 67.7 78.8 31 70.7 86.5 66.9 64.9 4025 100.2 103.3 98.3 103.8 2790.6 91.7 94.5 92.2 29 77.2 85.8 81.7 79.7 3173.673.276.472.5二、从单因子方差角度分析(一)在假定相对湿度不变的情况下分析1、假定相对湿度恒为40%,分析不同温度对粘虫发育历期的影响。

如下表: 温度℃重复252729311100.2 90.6 77.2 73.6 2 103.3 91.7 85.8 73.2 3 98.3 94.5 81.7 76.4 4 103.8 92.2 79.7 72.5 Ti 405.6 369324.4295.7T 2i164511.36136161105235.36 87438.49在本例中,r=4,m=4, n=16 ,=1394.7,= 123413.4696T 2/n=(1394.7)2/16=121574.2556 (式1)( 式2)(式3)S E =S T -S A =1839.214-1762.297=76.917 (式4)数据的方差分析表见表1.表1 粘虫发育历期方差分析表粘虫发育历期 (相对湿度40%)来源平方和 df 均方 F 显著性 组间 1762.297 3 587.432 91.646.000组内 76.917 12 6.410总数1839.21415分析表1可知,F 0.05(3,12)=3.49,F 值=,91.646,F>F 0.05,P=0.000<0.05,说明在相对湿度为40%时,不同温度对粘虫发育历期有显著影响。

多元统计实验报告二

多元统计实验报告二

实验报告2班级学号姓名开课学院商学院任课教师马艳梅成绩实验报告:实验2.1(1)选用Employee data.sav 文件中的变量,Analyze 中选择Compare Means再选择One---Sample T Test。

将salary作为Test因变量,test值分别取34000、35000、34419、24000,作均值检Test 取34000实验结果如下图所示:Test取35000时,实验结果如下图所示:Test 取34419时,实验结果如下图所示:Test 取24000时,实验结果如下图所示:可知,p=0.000<0.05,故原假设不成立。

说明样本salary均值与假设的24000有显著性差别。

(2)仍选用Employee data.sav 文件中的变量,先作10%的随机抽样,然后将salary作为Test因变量,test值取34419,作均值检验。

首先做随机抽样:data 选项中选择select cases,再选random sample of cases,单击sample,approximately 10%,点击确定。

运行完成后,发现原始数据序号前面有些被划掉。

再进行均值检验过程:Analyze 中选择Compare Means再选择One---Sample T Test。

将salary作为Test因变量,test值取34419,所得实验数据结果如下图所示:可知,P=0.284>0.05,故接受原假设。

说明随机抽样的样本均值salary与假设的34419没有显著性差异。

实验2.2 熟悉Independent--Samples T Test 功能Analyze 选择Compare Means选择Independent--Samples T test,选用Employee data.sav 文件中的变量,将Current Salary作为Test Variables, gender作Grouping Variable,作两样本比较T检验,选择define groups,两个group分别定义为0、1实验结果如下:实验2.3熟悉Paired--Samples T Test 功能录入数据Analyze 选择Compare Means再选择Paired--Samples T test,Paired-variables里面将before 与after 选入其中,单击ok实验结果如下图所示:可以看出,P>0.05,说明消费者购买前与购买后的物品购买意愿均值没有显著性差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二部分:实验过程记录(可加页) (包括实验原始数据记录,实验现象记录,实验过程发现的问题
等) 操作步骤: 1、 执行“分析”—“比较均值”—“单因素方差分析” ; 2、 在弹出的单因素方差分析对话框中,将时期选为因子,将 X1、X2、X3、X4 选为因变量; 3、 单击“对比” ,选择“多项式” ,在后面的下拉菜单中选择“线性” ,然后继续; 4、 单击“两两比较” ,选择“LSD”和“S-N-K” ,显著性水平默认为 0.05,然后继续; 5、 单击“选项” ,选择“方差同质性检验”和“均值图” ,然后继续,点击“确定”后即可输出结果。
12
题目:研究者提出,随着时间的推移头骨尺寸会发生变化,这是外来移民与原住民人口民族融合的证据。表 6.13 是古埃及三个时期的男性头骨的四个观测值得观测数据,这是个观测变量是: X1=头骨最大的最大宽度 X2=头骨高度 X3=头骨底穴至齿槽的长度 X4=头骨鼻梁高度 对古埃及头骨数据构造单因子 MANOVA 表, a=0.05.并构造 95%联合置信区间来判断在三个时期中哪个分 令 量的均值发生了改变。同常的 MANOVA 假设对这些数据是不是合理的?请解释。 部分数据如下:
实验课程名称:多元统计分析-均值向量检验
实验项目名称 实 验 者 同 组 者
均值向量检验习题 均值向量检验习题 6.24
专业班级
实验成绩 实验成绩 组 别 年 月 日
实验日期
一部分:实验预习报告(包括实验目的、意义,实验基本原理与方法,主要仪器设备及耗材,实验
方案与技术路线等) 实验目的:深入了解方差分析及方差分析的概念,掌握方差分析的基本原理;掌握方差分析的过程;增强实 践能力,能够动手用统计软件解决实际问题,熟练掌握方差分析的基本操作。 实验原理:多个正态总体均值向量检验(多元方差分析) 设 有 k 个 p 元 正 态 总 体 N p ( µ1 , Σ), L , N p ( µ k , Σ) , 从 每 个 总 体 抽 取 独 立 样 品 个 数 分 别 为
均值图
教师签字__________
第三部分 结果与讨论(可加页)
一、实验结果分析(包括数据处理、实验现象分析、影响因素讨论、综合分析和结论等) 二、小结、建议及体会 三、思考题 1、方差分析结果: 从该结果可以看到:对于分量 X1,方差检验的 F 值为 3.660,相伴概率为 0.030<显著性水平 0.05,因此 X1 在三个时期的三组有显著性差异;对于分量 X2,方差检验的 F 值为 0.466,相伴概率为 0.629>显著性水平 0.05,因此 X2 在三个时期的三组没有显著性差异或其中一个组与其他两个组没有明显区别;对于分量 X3, 方差检验的 F 值为 3.845,相伴概率为 0.025<显著性水平 0.05,因此 X3 在三个时期的三组有显著性差异; 对于分量 X4,方差检验的 F 值为 0.105,相伴概率为 0.901>显著性水平 0.05,因此 X4 在三个时期的三组 没有显著性差异或其中一个组与其他两个组没有明显区别。 因为 F 值均大于 Sig,拒绝院假设:所有的均值相等。这与均值图所反映的结果一致。而随着时间的 推移,头骨尺寸的变化只要是由于头骨最大宽度 X1 以及头骨底穴至齿槽的长度 X3 的变化引起的。 2、LSD 法多重比较的结果 95%置信区间
1
令 V = −(n + m − ( p + m + 1) 2) ln Λ
1 − Λ L tL − 2λ ⋅ R= 1 pm ΛL
式中
t = n + m − ( p + m ห้องสมุดไป่ตู้ 1) 2
p2m2 − 4 L= 2 p + m2 − 5 pm − 2 λ= 4 2 则 V 近似服从 χ ( pm) ,R 近似服从 F ( pm, tL − 2λ ) ,这里 tL − 2λ 不一定为整数,可用与它最近的整数来作 为 F 的自由度,且 min ( p, m) > 2 。
1 1 (1 此处 X i(1) = ( X i(1 ) , X i(2) , L , X ip ) ), i = 1, L , n 1
(2 X 11 ) ( 2) X 21 第二个总体: M ( 2) X n1 2 (2) (2 2 X 12 ) L X 1(p ) X 1 (2 ( ( X 22 ) L X 22) X 22 ) p ∆ M M M ( ( X n2 ) L X n 2 ) X ( 2 ) 2 p 2 2 n2
多重比较 95% 置信区间 因变量 头骨的最大宽度 X1 (I) 时期 (J) 时期 下限 LSD 1 2 3 2 1 3 3 1 2 头骨的高度 X2 LSD 1 2 3 2 1 3 3 1 2 头骨底穴至齿槽的长度 X3 LSD 1 2 3 -3.32 -5.42 -1.32 -4.42 .78 -.22 -1.51 -2.61 -3.31 -3.51 -2.21 -1.31 -2.45 .58 上限 1.32 -.78 3.32 .22 5.42 4.42 3.31 2.21 1.51 1.31 2.61 3.51 2.65 5.69
k ( 此处 X i( k ) = ( X i(1k ) , X i(2 ) , L , X ipk ) ), i = 1, L , n k
全部样品的总均值向量: X =
1× p
1 n
∑∑ X
a =1 i =1 na
k
na
(a) i ∆( X 1 ,
X 2 ,L, X p )
各总体样品的均值向量: X
此之后检验
多重比较 95% 置信区间 因变量 头骨的最大宽度 X1 LSD (I) 时期 (J) 时期 1 2 3 2 1 3 3 1 2 头骨的高度 X2 LSD 1 2 3 2 1 3 3 1 2 头骨底穴至齿槽的长度 X3 LSD 1 2 3 2 1 3 3 1 2 头骨鼻梁高度 X4 LSD 1 2 3 2 1 3 3 1 2 下限 -3.32 -5.42 -1.32 -4.42 .78 -.22 -1.51 -2.61 -3.31 -3.51 -2.21 -1.31 -2.45 .58 -2.65 .48 -5.69 -5.59 -1.29 -1.63 -1.89 -1.93 -1.56 -1.26 上限 1.32 -.78 3.32 .22 5.42 4.42 3.31 2.21 1.51 1.31 2.61 3.51 2.65 5.69 2.45 5.59 -.58 -.48 1.89 1.56 1.29 1.26 1.63 1.93
(a )
1× p
=
1 na
∑X
i =1
(a) (a ) i ∆( X 1 ,
X 2 ,L, X
(a)
(a ) p ),
a = 1, L , k
此处 X
(a) j
=
1 na
∑X
i =1
na
(a ) ij
j = 1, L , p
类似一元方差分析办法,将诸平方和变成了离差阵有:
A=
∑n
a =1
k
a (X
2
1 3
-2.65 .48 -5.69 -5.59 -1.29 -1.63 -1.89 -1.93 -1.56 -1.26
2.45 5.59 -.58 -.48 1.89 1.56 1.29 1.26 1.63 1.93
3
1 2
头骨鼻梁高度 X4
LSD 1
2 3
2
1 3
3
1 2
所有的置信区间都包含 0 在内,所有头骨的变化只是在一些边缘上的变化,主体上并没有发生大变化。而这 些变化主要是三个时期头骨最大宽度和头骨底穴至齿槽的长度发生变化了,其他两项保持了较好的稳定性。 3、假设是否成立 从同质性方差分析可以看出,方差相等的假设条件成立。通常的方差分析有如下三个假设:(1)每个总体服 从正态分布。 (2)各个总体的方差必须相同。 (3)观察值是独立的。将其与本题比较,我们发现这些条件都 能较好的符合,所以通常的假设是成立的。
(a)
− X ) ′( X
(a)
− X ) LL
(a )
组间离差阵
E= T=
∑∑ ( X
a =1 i =1 k na
k
na
(a) i
−X
(a)
) ′( X i
(a)
−X
(a)
) LL
组内离差阵 总离差阵
∑∑ ( X
a =1 i =1
(a) i
− X )′( X i
− X ) LL
这里 T=A+E 欲检验假设 H 0 : µ1 = µ 2 = L = µ k
n1 , n 2 , L , n k , n1 + L + n k ∆n ,每个样品观测 p 个指标得观测数据如下:
(1 X 11) (1) X 21 第一个总体: M (1) X n11 (1 X 12) L X 1(1) X 1(1) p (1 ( ( X 22) L X 21p) ∆ X 21) = M M M ( (1 ( X n1) L X np)1 X n1) 2 1
H 1 : 至少存在i ≠ j , 使µ1 ≠ µ j
用似然比原则构成的检验统计量为: E E Λ= = ~ Λ ( p, n − k , k − 1) T A+ E 如下 χ 分布或 F 分布来近似。 设 Λ ~ Λ ( p , n, m )
2
给定检验水平 α ,查 Wilks 分布表,确定临界值,然后作出统计判断。当手头没有 Wilks 分布表时可用
方差齐性检验 Levene 统计量 头骨的最大宽度 X1 头骨的高度 X2 头骨底穴至齿槽的长度 X3 头骨鼻梁高度 X4 1.146 .215 1.339 .832 df1 2 2 2 2 df2 87 87 87 87 显著性 .323 .807 .267 .439
相关文档
最新文档