波利亚_数学解题表(精) 2

合集下载

例谈波利亚“怎样解题”表在初中数学解题中的应用

例谈波利亚“怎样解题”表在初中数学解题中的应用
题 表” 助 学生 解题 . 帮
体 会 : 过 将 已知 条 件具 体 化 , 学 生清 楚 地 看 到题 目 中涉 通 使
援羁§ i al E 籀 穗∞

数学教学通讯 【 教师版 )
教学 研究 > 课参 备 考
及 的各 种 量 以及 他 们 之 问 的初 步 联 系.这 为 如 何 解 决 问 题 做 好
的数 学 知 识 ; 是 提 高分 析 问题 、 决 问题 的 能力 , 中后 者 是 二 解 其 数 学 教 学 的根 本 目标 , 是 素 质教 育 下 专家 、 师 们 关 注 的热 点 也 教
做 憾

话 题 之一.但 是 , 要有 效地 提 高 学生 分 析 和解 决 问题 的能 力却 并 非易 事 , 们 往往 会 发 现 即使 学 生 已经 掌 握 了解 决 某 道 题 目所 我 必 需 的基 本 定 义 、 念 或 定 理 , 面 对这 道 题 仍 然 如 同 “ 虎 吃 概 他 老
使 我 们更 好地 理 解题 目.
例 如 初 二 学 习 分式 方 程 的应 用 时 有 这 样 一 道 题 : 商 场 销 某
仿, 不会 举 一 反 三.面 对 这些 问题 , 不 是 每 一位 教 师 都 有 自 己 并
的灵 丹 妙 药 , 而波 利 亚 的“ 怎样 解 题 ” 为 我们 提 供 了一 套 完 整 表
进 价 减少 了1 % ; 润率 提高 了2 % 0 利 5 上述 两个 条 件 可 以叙 述得 更详 细 , 清楚 吗 ? 更 现在 的进 价 比原 来 的进 价 减少 了1 % ; 0 现在 的 利润 率 比原 来 的利 润 率提 高 了2 % 5
下 面笔 者结 合 自己的 实 践 和 体会 来 谈 谈 如 何 应 用 “ 怎样 解

波利亚怎样解题表

波利亚怎样解题表

波利亚的怎样解题表1乔治·波利亚乔治·波利亚(George Polya,1887~1985)是美籍匈牙利数学家、数学教育家.在解题方面,是数学启发法(指关于发现和发明的方法和规律,亦译为探索法)现代研究的先驱.由于他在数学教育方面取得的成就和对世界数学教育所产生的影响,在他93岁高龄时,还被ICME(国际数学教育大会)聘为名誉主席.作为一个数学家,波利亚在函数论、变分法、概率、数论、组合数学、计算和应用数学等众多领域,都做出了开创性的贡献,留下了以“波利亚”命名的定理或术语;他与其他数学家合著的《数学分析中的问题和定理》、《不等式》、《数学物理中的等周问题》、《复变量》等书堪称经典;而以200多篇论文构成的四大卷文集,在未来的许多年里,将是研究生攻读的内容.作为一个数学教育家,波利亚的主要贡献集中体现在《怎样解题》(1945年)、《数学与似真推理》(1954年)、《数学的发现》(1962年)三部世界名著上,涉及“解题理论”、“解题教学”、“教师培训”三个领域.波利亚对数学解题理论的建设主要是通过“怎样解题”表来实现的,而在尔后的著作中有所发展,也在“解题讲习班”中对教师现身说法.他的著作把传统的单纯解题发展为通过解题获得新知识和新技能的学习过程,他的目标不是找出可以机械地用于解决一切问题的“万能方法”,而是希望通过对于解题过程的深入分析,特别是由已有的成功实践,总结出一般的方法或模式,使得在以后的解题中可以起到启发的作用.他所总结的模式和方法,包括笛卡儿模式、递归模式、叠加模式、分解与组合方法、一般化与特殊化方法、从后往前推、设立次目标、归纳与类比、考虑相关辅助问题、对问题进行变形等,都在解题中行之有效.尤其有特色的是,他将上述的模式与方法设计在一张解题表中,并通过一系列的问句或建议表达出来,使得更有启发意义.著名数学家互尔登在瑞士苏黎世大学的会议致词中说过:“每个大学生、每个学者、特别是每个教师都应该读这本引人入胜的书”(1952年2月2日).2怎样解题表波利亚是围绕“怎样解题”、“怎样学会解题”来开展数学启发法研究的,这首先表明其对“问题解决”重要性的突出强调,同时也表明其对“问题解决”研究兴趣集中在启发法上.波利亚在风靡世界的《怎样解题》(被译成14种文字)一书中给出的“怎样解题表”,正是一部“启发法小词典”.2.1“怎样解题”表的呈现弄清问题第一,你必须弄清问题未知是什么?已知是什么?条件是什么?满足条件是否可能?要确定未知,条件是否充分?或者它是否不充分?或者是多余的?或者是矛盾的?画张图,引入适当的符号.把条件的各个部分分开.你能否把它们写下来?拟定计划第二,找出已知数与未知数之间的联系.如果找不出直接的联系,你可能不得不考虑辅助问题.你应该最终得出一个求解的计划你以前见过它吗?你是否见过相同的问题而形式稍有不同?你是否知道与此有关的问题?你是否知道一个可能用得上的定理?看着未知数,试想出一个具有相同未知数或相似未知数的熟悉的问题.这里有一个与你现在的问题有关,且早已解决的问题.你能不能利用它?你能利用它的结果吗?你能利用它的方法吗?为了能利用它,你是否应该引入某些辅助元素?你能不能重新叙述这个问题?你能不能用不同的方法重新叙述它?回到定义去.如果你不能解决所提出的问题,可先解决一个与此有关的问题.你能不能想出一个更容易着手的有关问题?一个更普遍的问题?一个更特殊的问题?一个类比的问题?你能否解决这个问题的一部分?仅仅保持条件的一部分而舍去其余部分.这样对于未知数能确定到什么程度?它会怎样变化?你能不能从已知数据导出某些有用的东西?你能不能想出适合于确定未知数的其他数据?如果需要的话,你能不能改变未知数或数据,或者二者都改变,以使新未知数和新数据彼此更接近?你是否利用了所有的已知数据?你是否利用了整个条件?你是否考虑了包含在问题中的必要的概念?实现计划第三,实行你的计划实现你的求解计划,检验每一步骤.你能否清楚地看出这一步骤是正确的?你能否证明这一步骤是正确的?回顾第四,验算所得到的解.你能否检验这个论证?你能否用别的方法导出这个结果?你能不能一下子看出它来?你能不能把这一结果或方法用于其他的问题?3波利亚的解题观对于波利亚的怎样解题表及有关著作,人们从不同的角度阐发了对波利亚解题思想的认识(见参考文献),我们将其归结为5个要点.3.1程序化的解题系统怎样解题表,就“怎样解题”、“教师应教学生做些什么”等问题,把“解题中典型有用的智力活动”,按照正常人解决问题时思维的自然过程分成四个阶段——弄清问题、拟定计划、实现计划、回顾,从而描绘出解题理论的一个总体轮廓,也组成了一个完整的解题教学系统.既体现常识性,又体现由常识上升为理论(普遍性)的自觉努力.这四个阶段首先是一个四步骤的宏观解题程序,其中“实现计划”虽为主体工作,但较为容易完成,是思路打通之后具体实施信息资源的逻辑配置,“我们所需要的只是耐心”;其次,“弄清问题”是认识问题、并对问题进行表征的过程,应成为成功解决问题的一个必要前提;与前两者相比,“回顾”是最容易被忽视的阶段,波利亚将其作为解题的必要环节而固定下来,是一个有远见的做法,在整个解题表中“拟定计划”是关键环节和核心内容.“拟定计划”的过程是在“过去的经验和已有的知识”基础上,探索解题思路的发现过程,波利亚的建议是分两步走:第一,努力在已知与未知之间找出直接的联系(模式识别等);第二,如果找不出直接的联系,就对原来的问题做出某些必要的变更或修改,引进辅助问题,为此,波利亚又进一步建议:看着未知数,回到定义去,重新表述问题,考虑相关问题,分解或重新组合,特殊化,一般化,类比等,积极诱发念头,努力变化问题.这实际上是阐述和应用解题策略并进行资源的提取与分配.于是,这个系统就集解题程序、解题基础、解题策略、解题方法等于一身,融理论与实践于一体.3.2启发式的过程分析(1)还在当学生的时候,波利亚就有一个问题一再使他感到困惑:“是的,这个解答好像还行,它看起来是正确的,但怎样才能想出这样的解答呢?是的,这个实验好像还行,它看起来是个事实,但别人是怎样发现这样的事实?而且我自己怎样才能想出或发现它们呢?”从解题论的观点看,这实际上是既提出了“怎样解题”又提出了“怎样学会解题”的问题,波利亚说,这“终于导致他写出本书”(指《怎样解题》).波利亚认为“数学有两个侧面”,“用欧几里得方式提出来的数学看来像是一门系统的演绎科学;但在创造过程中的数学看来却像是一门实验性的归纳科学.这两个侧面都像数学本身一样古老.但从某一点说来,第二个侧面则是新的,因为以前从来就没有‘照本宣科’地把处于发现过程中的数学照原样提供给学生,或教师自己,或公众.”他以数十年的时间悉心研究数学启发法,其“怎样解题”的基本思想就可以概括为“知识+启发法”.在解题表中,波利亚给出了“启发法小词典”,让读者通过阅读词典来开阔思路、指导实践,自己学会怎样解题.这些看法来源于波利亚对数学教育宗旨的认识,波利亚认为,数学教育应“教会年轻人去思考”,培养学生的“独立性、能动性和创新精神”;他认为一个人在学校所受的教育应该受益终生,他赞成,良好的教育应该“系统地给学生自己发现事物的机会”,“应该帮助学生自己再发现所教的内容”,“学东西的最好途径是亲自去发现它”;他特别重视发展学生的数学思维能力,强调数学教学要加强思维训练,要发展学生运用所学知识的能力,发展技能、技巧、有益的思考方式和科学的思维习惯,他反复指出,数学教育的目的不仅仅是传授知识,还要“发展学生本身的内蕴能力”.教师要“教学生证明问题”,也要“教他们猜想问题”.波利亚提出“合情推理”的概念,号召:“让我们教猜想吧!”(2)在解题表的展开中,波利亚则通过剖析典型例题的思维过程来研究“发现和发明的方法和规律”.波利亚不断地提问、不断地建议,“怎样才能想出这样的解答呢?”“我自己怎样才能想出或发现它们呢?”既驱使人们去分析解题过程,又要求人们去总结发现的规律.波利亚在《数学的发现》序言中提出:“领会方法的最佳时机,可能是读者解出一道题的时候,或是阅读它的解法的时候,也可能是阅读解法形成过程的时候”.波利亚书中的例题,其实就是对典型例题进行解题过程的分析,就是暴露数学解题的思维过程,也就是教人“怎样学会解题”.在例1中,数学操作与思维开展相结合的图解或阐释,使我们既领会到了这样的意图,也见到了这样的行动.波利亚对解题过程淋漓尽致的剖析,实质上已接触到心理层面,但没有用到多少教育学或思维学的相关名词,基本上都是其数学前沿研究中切身体验的自然流露,数学功底和过程体验发挥了重要作用.这正是数学家研究数学教育的优势,处处有数学的“真刀真枪”,绝非“纸上谈兵”.波利亚说“货源充足和组织良好的知识仓库是一个解题者的重要资本”,在“知识”与“组织良好”之间,波利亚更强调后者,他说“良好的组织使得所提供的知识易于用上,这甚至可能比知识的广泛更为重要.”用现在的话来说,波利亚在这里强调了“原有的知识经验”和“优化的认知结构”对问题解决的基础作用.3.3开放型的念头诱发.波利亚解释说:“我们表中的问题和建议并不直接提到念头;但实际上,所有的问题和建议都与它有关(可以说解题表中的每一个问句,都是从认知或元认知的角度向读者启发解题念头.),弄清问题是为好念头的出现做准备;拟订计划是试图引发它;在引发之后,我们实现它;回顾此过程和求解的结果,我们试图更好地利用它.”他强调指出:“老师为学生所能做的最大的好事是通过比较自然的帮助,促使他自己想出一个好念头.”在《怎样解题》一书里,出现“念头”这个词不下四五十次.念头有什么用?波利亚说:“它会给你指出整个或部分解题途径”.“也许有些念头会把你引入歧途”,但这并不可怕,“在明显失败的尝试和一度犹豫不决之后”会“突然闪出一个‘好念头’”,最糟糕的是没有任何念头,还“笨头呆脑地干等着某个念头的降临,而不会做任何事情去加速其来到.”这里说的念头不仅在字面上比“问题表征”更为浅白,而且在内涵上更为丰富,其实质是开展积极活跃的思维活动,产生念头与找出解题途径完全可以理解为同义语.那么产生念头的基础是什么呢?波利亚的回答是:“过去的经验和已有的知识”.(解题力量)“如果我们对该论题知识贫乏,是不容易产生好念头的.如果我们完全没有知识,则根本不可能产生好念头.”波利亚一再提到“好念头”,其实这就是直觉、顿悟或灵感,“想出一个好念头是一种‘灵感运动’”,“想像力有了一个突然的跳跃,产生了一个好念头,这是天才的一次闪烁”,“是我们观点上的重大突变,我们看问题方式的一个骤然变动,在解题步骤方面的一个刚刚露头的有信心的预感”.波利亚关于念头的种种议论,正是开展积极思维活动的激发与激活.3.4探索性的问题转换这里说的“问题转换”,在《怎样解题》一书中亦叫“变化问题”、“题目变更”,它揭示了探索解题思路的数学途径,也体现了解题策略的实际运用.波利亚强调:“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒,为了找出哪个方面是正确的方面,哪一侧是好接近的一侧,我们从各个方面、各个侧面去试验,我们变更问题.”“变化问题使我们引进了新的内容,从而产生了新的接触,产生了和我们有关的元素接触的新可能性.”“新问题展现了接触我们以前知识的新可能性,它使我们做出有用接触的希望死而复苏.通过变化问题,显露它的某个新方面,新问题使我们的兴趣油然而生”.在“怎样解题”表中,波利亚拟出了启引我们不断转换问题的30多个问句或建议:把问题转化为一个等价的问题,把原问题化归为一个已解决的问题,去考虑一个可能相关的问题,先解决一个更特殊的问题、或更一般的问题、或类似的问题……那些启发新念头的问句,也往往与问题转换有关.“如果我们不用‘题目变更’,几乎是不能有什么进展的”——这就是波利亚的结论.3.5朴素的数学解题元认知观念.元认知是对认知的再认知,包括元认知知识,元认知体验和元认知监控.虽然元认知概念提出较晚,但元认知思想早就存在,在波利亚的解题思想中存在着朴素的元认知观念.波利亚解题表的大量问句或建议,都不是问别人,而是自己给自己提问题、提建议,这是解题者的自我诘问、自我反思.问题中的一部分,其对象针对具体的数学内容,属于认知性的;另一部分则以解题者自身为对象,属于元认知性的.比如,“你以前见过它吗?”“你是否知道一个与此有关的问题?”“这里有一个与你现在的问题有关,且早已解决的问题.你能不能利用它?”等等,都不涉及问题的具体内容,都是针对解题主体、对其解题思维活动的反思,都属于元认知提问,而不完全是认知提问.波利亚解题表中的“回顾”也并不完全是常规解题中的“检验”,主要是有分析地领会所得的解法(参见例1的回顾),它包含着把“问题及其解法”(认知)作为对象进行自觉反思的元认知意图.至于解题表本身所给出的解题程序(一种程序性知识),所体现的解题策略(一种策略性知识)及所进行的元认知提问,都属于元认知知识.波利亚对具体范例的分析,基本上是对“问题及其解法”的再认知,已反映出开发元认知的朴素意图.波利亚的另一些问句,如“你能不能重新叙述这个问题?你能不能用不同的方法重新叙述它?”“你能不能改变未知数或数据,或者二者都改变,以使新未知数和新数据彼此更接近?”(接近度),“你能不能一下子看出它来?”(题感)等,则属于朴素的元认知体验.至于解题表本身,则自始至终体现着元认知调控.综上所述,“解题系统”是波利亚解题思想的整体框架,“分析解题过程”是波利亚解题思想的思维实质,“念头诱发”是波利亚解题思想的外在表现,“问题转换”是波利亚解题思想的具体实现,朴素的元认知观念是波利亚解题思想的心理学基础.而这一切的背后,丰富的数学前沿研究经历和发现体验是波利亚解题思想的物质基础,现代启发法是波利亚解题思想的灵魂,揭示“发现和发明的方法和规律”是波利亚解题思想的目标.4波利亚解题研究的发展4.1反思数学上存在证明的方法与发现的方法,在逻辑实证主义占主导地位的历史时期,关于数学发现方法的研究一度陷于停顿,波利亚的贡献就在于自觉承担起复兴数学启发法的重任,并提出合情推理,为数学启发法的现代研究提供了必要基础.20世纪80年代初期,美国数学教育界兴起的“问题解决”研究是对波利亚现代启发法的直接继承,曾经有“对波利亚的重新发现”、“数学启发法…几乎成了问题解决的同义词”等提法.但是,已有数学实践却未能获得预期的成功,尽管学生已经具备了必要的数学知识,也已经了解了相关的方法原则,或者说已执行了解题表的建议,却仍不能有效地解决问题,这不能不引起数学教育界的反思.(1)波利亚构建的“四阶段”解题系统具有开创性的意义,但局限于“四阶段”对学会“数学地思维”而言是不是有点简单化了?对数学问题解决全过程的探索可能比解题表所简洁描述的复杂得多.(2)数学启发法的现代复兴及其所取得的成功,无论怎样评价都不算过分,但启发法能不能看成影响问题解决能力的惟一要素?“知识+启发法”之外可能还有更多的因素需要重视(如“元认知调节”、“观念”等),“好念头”的出现可能也需要从方法论的角度做出更为自觉的分析.(3)波利亚从数学内部研究数学问题解决并强调解题实践是一个值得继承的研究方向(与那些连数学题都没有出现的解题研究形成鲜明对照,也与那些对中学教材作业题都不那么过关的研究者形成鲜明对照),但局限于“解题”、专注于技能技巧是不是狭窄了点?至少“问题发现(提出)”、“实际应用”都与解决问题有同样的重要性.4.2发展近十几年来,通过反思和对解题实践活动的深入考察,数学教育界已经在“问题解决”的全过程和“高级数学思维”的内外部机制等研究方面取得了新的进展,中国式的“问题解决”也初成特色,这些都构成了对波利亚的超越.(1)美国学者舍费尔德在名著《数学解题》一书中,提出了一个新的理论框架,描述了复杂的智力活动的四个不同性质的方面.①认识的资源.即解题者所已掌握的事实和算法;②启发法.即在困难的情况下借以取得进展的“常识性的法则”;③调节.它所涉及的是解题者运用已有知识的有效性(即现代认知心理学中所说的元认知);④信息系统.即解题者对于学科的性质和应当如何去从事工作的看法.(2)中国的数学教学历来重视解题训练、中国的数学教师历来重视解题研究,20世纪80年代,随着美国“问题解决”口号传入中国,波利亚的解题理论受到了重视也得到了发展.早在20世纪40年代,波利亚的《怎样解题》就曾有过中译本(周佐严译,中华书局出版),到60年代曾有人翻译《数学的发现》但由于种种原因未能完成(见江泽涵.关于波利亚的《怎样解题》和《数学的发现》的一些往事.中学数学教学(皖),1983,2,P.4).80年代以来,波利亚的三部著作都已翻译发行,其中的解题观点已成为许多同行研究解题的指导思想,国内一些学者多次召开了波利亚数学思想的讨论会,徐利治教授还提出研究波利亚的两项重要任务:一是培养和造就一批波利亚型的数学工作者,二是按照波利亚的思想改革数学教材和教学方法(后来有“MM教育方式”的理论与实践,见文[8]).20世纪90年代,张奠宙教授组织“数学教育高级研讨班”,提出“提倡问题解决”作为进一步改革中国数学教育“突破口”的设计(数学素质教育设计.数学教学,1993,3).这一切,促进了中国特色的解题研究(参见文[6]、[7]等),并初步形成了“中国的数学问题解决”特色.主要表现有:①注重研究数学解题的思维过程:②强调数学方法论研究;③提倡数学解题策略研究;④应用问题、数学建模教学研究;⑤开放题、情景题的教学研究及其在考试中的大规模运用;⑥提倡探究性学习,进行“问题教学”、“情景教学”、“开放性教学”.与此相关的是两个举世瞩目的事实:①1992年,“国际教育成就评价”IAEP发表报告,在21个参加数学测试和科学测试的国家和地区中,中国内地以总平均80分的成绩名列第一,领先于第二名的中国台湾省和韩国7分之多.②在参加国际数学奥林匹克竞赛的19年中(1985~2003),中国中学生参赛104人次,得奖102人次(得奖率达98%),其中金牌77个(占得奖牌数的75%)、银牌20个(占得奖牌数的20%)、铜牌5个(占得奖牌数的5%);团体总分10次获第1名,4次获第二名,成为公认的竞赛强国.。

解题表——波利亚

解题表——波利亚

怎样解题表——波利亚波利亚的解题表第一步:你必须弄清问题。

1.已知是什么?未知是什么?要确定未知数,条件是否充分?2.画张图,将已知标上。

3.引入适当的符号。

4.把条件的各个部分分开。

第二步:找出已知与未知的联系。

1.你能否转化成一个相似的、熟悉的问题?2.你能否用自己的语言重新叙述这个问题?3.回到定义去。

4.你能否解决问题的一部分?5.你是否利用了所有的条件?第三步:写出你的想法。

1.勇敢地写出你的方法。

2.你能否说出你所写的每一步的理由?第四步:回顾。

1.你能否一眼就看出结论?2.你能否用别的方法导出这个结论?3.你能否把这个题目或这种方法用于解决其他的问题?波利亚和他的解题表乔治·波利亚(G.Polya,1887-1985年)出生于匈牙利布达佩斯。

上中学时,他就是一个很有上进心的学生。

但每当遇到较难的数学题时,他也时常感到困惑:“这个解答好像还行,它看起来是正确的,但怎样才能想到这样的解答呢?这个结论好像还行,它看起来是个事实,但别人是怎样发现这个事实的?我自己怎样才能想出或发现他们呢?”波利亚带着一连串的困惑与1905年走进了布达佩斯大学,并在那里获得博士学位。

之后,波利亚先后到哥廷根大学、巴黎大学、瑞士联邦工学院进行数学研究或任教。

1940年移居美国,并在斯坦福大学任教,直到退休。

无论在学习期间或任教期间,波利亚始终不忘研究少年时学数学所遇到的困惑。

1944年8月,波利亚终于将他的研究成果公布于世,这就是名著《怎样解题表》。

该书出版后,不胫而走,迅速传遍全世界。

直到今天,该书仍被各国数学教育界奉为经典。

“怎样解题表”就是《怎样解题》一书的精华,该表被波利亚排在该书的正文之前,并且在书中再三提到该表。

实际上,该书就是“怎样解题表”的详细解释。

波利亚的“怎样解题表”将解题过程分成了四个步骤,只要解题时按这四个步骤去做,必能成功。

同学们如果能在平时的做题中不断实践和体会该表,必能很快就会发出和波利亚一样的感叹:“学数学是一种乐趣!”怎样解题表第一步:你必须弄清问题。

波利亚怎样解题表

波利亚怎样解题表

波利亚的怎样解题表1 乔治波利亚乔治 波利亚(George Polya , 1887〜1985)是美籍匈牙利数学家、数学教育家.在解题方 面,是数学启发法(指关于发现和发明的方法和规律,亦译为探索法)现代研究的先驱•由于 他在数学教育方面取得的成就和对世界数学教育所产生的影响,在他 93岁高龄时,还被I CME (国际数学教育大会)聘为名誉主席.作为一个数学家,波利亚在函数论、变分法、概率、数论、组合数学、计算和应用数学 等众多领域,都做出了开创性的贡献,留下了以 波利亚”命名的定理或术语; 他与其他数学家合著的《数学分析中的问题和定理》、《不等式》、《数学物理中的等周问题》、《复变 量》等书堪称经典;而以200多篇论文构成的四大卷文集,在未来的许多年里,将是研究生 攻读的内容.作为一个数学教育家,波利亚的主要贡献集中体现在《怎样解题》 (1945年卜《数学与 似真推理》(1954年)、《数学的发现》(1962年)三部世界名著上,涉及 解题理论”、解题 教学”教师培训”三个领域•波利亚对数学解题理论的建设主要是通过 怎样解题”表来实现的,而在尔后的著作中有所发展,也在解题讲习班”中对教师现身说法•他的著作把传统 的单纯解题发展为通过解题获得新知识和新技能的学习过程, 他的目标不是找出可以机械地用于解决一切问题的 万能方法”而是希望通过对于解题过程的深入分析, 特别是由已有的成功实践,总结出一般的方法或模式, 使得在以后的解题中可以起到启发的作用.他所总结 的模式和方法,包括笛卡儿模式、递归模式、叠加模式、分解与组合方法、一般化与特殊化 方法、从后往前推、设立次目标、归纳与类比、考虑相关辅助问题、对问题进行变形等,都 在解题中行之有效.尤其有特色的是,他将上述的模式与方法设计在一张解题表中,并通过 一系列的问句或建议表达出来,使得更有启发意义.著名数学家互尔登在瑞士苏黎世大学的 会议致词中说过: 每个大学生、每个学者、特别是每个教师都应该读这本引人入胜的书”(195年 2 月 2 日).2 怎样解题表波利亚是围绕 怎样解题”、怎样学会解题”来开展数学启发法研究的,这首先表明其对问题解决”重要性的突出强调,同时也表明其对 问题解决”研究兴趣集中在启发法上•波利 亚在风靡世界的《怎样解题》(被译成14种文字)一书中给出的怎样解题表”正是一部启 发法小词典”2.1怎样解题”表的呈现弄清问题拟定计划第一,你必须弄清问题3波利亚的解题观对于波利亚的怎样解题表及有关著作,人们从不同的角度阐发了对波利亚解题思想的认识(见参考文献),我们将其归结为5个要点.3.1程序化的解题系统怎样解题表,就“怎样解题”、“教师应教学生做些什么”等问题,把“解题中典型有用的智力活动”,按照正常人解决问题时思维的自然过程分成四个阶段一一弄清问题、拟定计划、实现计划、回顾,从而描绘出解题理论的一个总体轮廓,也组成了一个完整的解题教学系统•既体现常识性,又体现由常识上升为理论(普遍性)的自觉努力.这四个阶段首先是一个四步骤的宏观解题程序,其中“实现计划”虽为主体工作,但较为容易完成,是思路打通之后具体实施信息资源的逻辑配置,“我们所需要的只是耐心”;其次,“弄清问题”是认识问题、并对问题进行表征的过程,应成为成功解决问题的一个必要前提;与前两者相比,“回顾”是最容易被忽视的阶段,波利亚将其作为解题的必要环节而固定下来,是一个有远见的做法,在整个解题表中“拟定计划”是关键环节和核心内容.“拟定计划”的过程是在“过去的经验和已有的知识”基础上,探索解题思路的发现过程,波利亚的建议是分两步走:第一,努力在已知与未知之间找出直接的联系(模式识别等);第二,如果找不出直接的联系,就对原来的问题做出某些必要的变更或修改,引进辅助问题,为此,波利亚又进一步建议:看着未知数,回到定义去,重新表述问题,考虑相关问题,分解或重新组合,特殊化,一般化,类比等,积极诱发念头,努力变化问题•这实际上是阐述和应用解题策略并进行资源的提取与分配.于是,这个系统就集解题程序、解题基础、解题策略、解题方法等于一身,融理论与实践于一体.3.2启发式的过程分析(1)还在当学生的时候,波利亚就有一个问题一再使他感到困惑:“是的,这个解答好像还行,它看起来是正确的,但怎样才能想出这样的解答呢?是的,这个实验好像还行,它看起来是个事实,但别人是怎样发现这样的事实?而且我自己怎样才能想出或发现它们呢从解题论的观点看,这实际上是既提出了“怎样解题”又提出了“怎样学会解题”的问题,波利亚说,这“终于导致他写出本书”(指《怎样解题》波利亚认为“数学有两个侧面”,“用欧几里得方式提出来的数学看来像是一门系统的演绎科学;但在创造过程中的数学看来却像是一门实验性的归纳科学. 这两个侧面都像数学本身一样古老.但从某一点说来,第二个侧面则是新的,因为以前从来就没有’照本宣科’ 地把处于发现过程中的数学照原样提供给学生,或教师自己,或公众.”他以数十年的时间悉心研究数学启发法,其“怎样解题”的基本思想就可以概括为“知识+启发法”.在解题表中,波利亚给出了“启发法小词典”,让读者通过阅读词典来开阔思路、指导实践,自己学会怎样解题.这些看法来源于波利亚对数学教育宗旨的认识,波利亚认为,数学教育应“教会年轻人去思考”,培养学生的“独立性、能动性和创新精神”;他认为一个人在学校所受的教育应该受益终生,他赞成,良好的教育应该“系统地给学生自己发现事物的机会”,“应该帮助学生自己再发现所教的内容”,“学东西的最好途径是亲自去发现它”;他特别重视发展学生的数学思维能力,强调数学教学要加强思维训练,要发展学生运用所学知识的能力,发展技能、技巧、有益的思考方式和科学的思维习惯,他反复指出,数学教育的目的不仅仅是传授知识,还要“发展学生本身的内蕴能力”.教师要“教学生证明问题”,也要“教他们猜想问题”.波利亚提出“合情推理”的概念,号召:“让我们教猜想吧!”(2)在解题表的展开中,波利亚则通过剖析典型例题的思维过程来研究“发现和发明的方法和规律”.波利亚不断地提问、不断地建议,“怎样才能想出这样的解答呢“我自己怎样才能想出或发现它们呢?”既驱使人们去分析解题过程,又要求人们去总结发现的规律.波利亚在《数学的发现》序言中提出:“领会方法的最佳时机,可能是读者解出一道题的时候,或是阅读它的解法的时候,也可能是阅读解法形成过程的时候”.波利亚书中的例题,其实就是对典型例题进行解题过程的分析,就是暴露数学解题的思维过程,也就是教人“怎样学会解题”.在例1中,数学操作与思维开展相结合的图解或阐释,使我们既领会到了这样的意图,也见到了这样的行动.波利亚对解题过程淋漓尽致的剖析,实质上已接触到心理层面,但没有用到多少教育学或思维学的相关名词,基本上都是其数学前沿研究中切身体验的自然流露,数学功底和过程体验发挥了重要作用. 这正是数学家研究数学教育的优势,处处有数学的“真刀真枪”,绝非“纸上谈兵”.波利亚说“货源充足和组织良好的知识仓库是一个解题者的重要资本”,在“知识”与“组织良好”之间,波利亚更强调后者,他说“良好的组织使得所提供的知识易于用上,这甚至可能比知识的广泛更为重要. ”用现在的话来说,波利亚在这里强调了“原有的知识经验”和“优化的认知结构”对问题解决的基础作用.3.3开放型的念头诱发.波利亚解释说:“我们表中的问题和建议并不直接提到念头;但实际上,所有的问题和建议都与它有关(可以说解题表中的每一个问句,都是从认知或元认知的角度向读者启发解题念头.),弄清问题是为好念头的出现做准备;拟订计划是试图引发它;在引发之后,我们实现它;回顾此过程和求解的结果,我们试图更好地利用它.”他强调指出:“老师为学生所能做的最大的好事是通过比较自然的帮助,促使他自己想出一个好念头.”在《怎样解题》一书里,出现“念头”这个词不下四五十次.念头有什么用皴利亚说:“它会给你指出整个或部分解题途径” •“也许有些念头会把你引入歧途”,但这并不可怕,“在明显失败的尝试和一度犹豫不决之后”会“突然闪出一个’好念头’”,最糟糕的是没有任何念头,还“笨头呆脑地干等着某个念头的降临,而不会做任何事情去加速其来到.”这里说的念头不仅在字面上比“问题表征”更为浅白,而且在内涵上更为丰富,其实质是开展积极活跃的思维活动,产生念头与找出解题途径完全可以理解为同义语. 那么产生念头的基础是什么呢皴利亚的回答是:“过去的经验和已有的知识”.(解题力量)“如果我们对该论题知识贫乏,是不容易产生好念头的. 如果我们完全没有知识,则根本不可能产生好念头.”波利亚一再提到“好念头”,其实这就是直觉、顿悟或灵感,“想出一个好念头是一种'灵感运动’”,“想像力有了一个突然的跳跃,产生了一个好念头,这是天才的一次闪烁”,“是我们观点上的重大突变,我们看问题方式的一个骤然变动,在解题步骤方面的一个刚刚露头的有信心的预感”.波利亚关于念头的种种议论,正是开展积极思维活动的激发与激活.3.4探索性的问题转换这里说的“问题转换”,在《怎样解题》一书中亦叫“变化问题”、“题目变更”,它揭示了探索解题思路的数学途径,也体现了解题策略的实际运用. 波利亚强调:“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒,为了找出哪个方面是正确的方面,哪一侧是好接近的一侧,我们从各个方面、各个侧面去试验,我们变更问题.” “变化问题使我们引进了新的内容,从而产生了新的接触,产生了和我们有关的元素接触的新可能性.” “新问题展现了接触我们以前知识的新可能性,它使我们做出有用接触的希望死而复苏•通过变化问题,显露它的某个新方面,新问题使我们的兴趣油然而生”.在“怎样解题”表中,波利亚拟出了启引我们不断转换问题的30多个问句或建议:把问题转化为一个等价的问题,把原问题化归为一个已解决的问题,去考虑一个可能相关的问题,先解决一个更特殊的问题、或更一般的问题、或类似的问题……那些启发新念头的问句,也往往与问题转换有关. “如果我们不用’题目变更’,几乎是不能有什么进展的”一一这就是波利亚的结论.3.5朴素的数学解题元认知观念.元认知是对认知的再认知,包括元认知知识,元认知体验和元认知监控. 虽然元认知概念提出较晚,但元认知思想早就存在,在波利亚的解题思想中存在着朴素的元认知观念.波利亚解题表的大量问句或建议,都不是问别人,而是自己给自己提问题、提建议,这是解题者的自我诘问、自我反思.问题中的一部分,其对象针对具体的数学内容,属于认知性的;另一部分则以解题者自身为对象,属于元认知性的.比如,“你以前见过它吗?”“你是否知道一个与此有关的问题?”“这里有一个与你现在的问题有关,且早已解决的问题.你能不能利用它?”等等,都不涉及问题的具体内容,都是针对解题主体、对其解题思维活动的反思,都属于元认知提问,而不完全是认知提问.波利亚解题表中的“回顾”也并不完全是常规解题中的“检验”,主要是有分析地领会所得的解法(参见例1的回顾),它包含着把“问题及其解法”()认为对象进行自觉反思的元认知意图.至于解题表本身所给出的解题程序(一种程序性知识),所体现的解题策略(一种策略性知识)及所进行的元认知提问,都属于元认知知识•波利亚对具体范例的分析,基本上是对“问题及其解法”的再认知,已反映出开发元认知的朴素意图.波利亚的另一些问句,如“你能不能重新叙述这个问题?你能不能用不同的方法重新叙述它?”“你能不能改变未知数或数据,或者二者都改变,以使新未知数和新数据彼此更接近?”(接近度,“你能不能一下子看出它来?” o题感则属于朴素的元认知体验.至于解题表本身,则自始至终体现着元认知调控.综上所述,“解题系统”是波利亚解题思想的整体框架,“分析解题过程”是波利亚解题思想的思维实质,“念头诱发”是波利亚解题思想的外在表现,“问题转换”是波利亚解题思想的具体实现,朴素的元认知观念是波利亚解题思想的心理学基础•而这一切的背后,丰富的数学前沿研究经历和发现体验是波利亚解题思想的物质基础,现代启发法是波利亚解题思想的灵魂,揭示“发现和发明的方法和规律”是波利亚解题思想的目标.4波利亚解题研究的发展4.1反思数学上存在证明的方法与发现的方法,在逻辑实证主义占主导地位的历史时期,关于数学发现方法的研究一度陷于停顿,波利亚的贡献就在于自觉承担起复兴数学启发法的重任,并提出合情推理,为数学启发法的现代研究提供了必要基础. 20世纪80年代初期,美国数学教育界兴起的“问题解决”研究是对波利亚现代启发法的直接继承,曾经有“对波利亚的重新发现”、“数学启发法…几乎成了问题解决的同义词”等提法. 但是,已有数学实践却未能获得预期的成功,尽管学生已经具备了必要的数学知识,也已经了解了相关的方法原则,或者说已执行了解题表的建议,却仍不能有效地解决问题,这不能不引起数学教育界的反思.⑴波利亚构建的“四阶段”解题系统具有开创性的意义,但局限于“四阶段”对学会“数学地思维”而言是不是有点简单化了?对数学问题解决全过程的探索可能比解题表所简洁描述的复杂得多.(2)数学启发法的现代复兴及其所取得的成功,无论怎样评价都不算过分,但启发法能不能看成影响问题解决能力的惟一要素? +知发法”之外可能还有更多的因素需要重视(如“元认知调节”、“观念”等),“好念头”的出现可能也需要从方法论的角度做出更为自觉的分析.(3)波利亚从数学内部研究数学问题解决并强调解题实践是一个值得继承的研究方向(与那些连数学题都没有出现的解题研究形成鲜明对照,也与那些对中学教材作业题都不那么过关的研究者形成鲜明对照),但局限于“解题”、专注于技能技巧是不是狭窄了点?至少“问题发现(提出)”、“实际应用”都与解决问题有同样的重要性.4.2发展近十几年来,通过反思和对解题实践活动的深入考察,数学教育界已经在“问题解决”的全过程和“高级数学思维”的内外部机制等研究方面取得了新的进展,中国式的“问题解决”也初成特色,这些都构成了对波利亚的超越.(1)美国学者舍费尔德在名著《数学解题》一书中,提出了一个新的理论框架,描述了复杂的智力活动的四个不同性质的方面.①认识的资源.即解题者所已掌握的事实和算法;②启发法.即在困难的情况下借以取得进展的“常识性的法则”;③调节.它所涉及的是解题者运用已有知识的有效性(即现代认知心理学中所说的元认知);④信息系统.即解题者对于学科的性质和应当如何去从事工作的看法.(2)中国的数学教学历来重视解题训练、中国的数学教师历来重视解题研究,20世纪80年代,随着美国“问题解决” 口号传入中国,波利亚的解题理论受到了重视也得到了发展.早在20世纪40年代,波利亚的《怎样解题》就曾有过中译本(周佐严译,中华书局出版),到60年代曾有人翻译《数学的发现》但由于种种原因未能完成(见江泽涵•关于波利亚的《怎样解题》和《数学的发现》的一些往事.中学数学教学(皖),1983, 2,P.4).80年代以来,波利亚的三部著作都已翻译发行,其中的解题观点已成为许多同行研究解题的指导思想,国内一些学者多次召开了波利亚数学思想的讨论会,徐利治教授还提出研究波利亚的两项重要任务:一是培养和造就一批波利亚型的数学工作者,二是按照波利亚的思想改革数学教材和教学方法(后来有“ MM教育方式”的理论与实践,见文[8]). 20世纪90年代,张奠宙教授组织“数学教育高级研讨班”,提出“提倡问题解决”作为进一步改革中国数学教育“突破口”的设计(数学素质教育设计.数学教学,1993, 3).这一切,促进了中国特色的解题研究(参见文[6]、[7 ]等),并初步形成了“中国的数学问题解决”特色. 主要表现有:①注重研究数学解题的思维过程:②强调数学方法论研究;③提倡数学解题策略研究;④应用问题、数学建模教学研究;⑤开放题、情景题的教学研究及其在考试中的大规模运用;⑥提倡探究性学习,进行“问题教学”、“情景教学”、“开放性教学”.与此相关的是两个举世瞩目的事实:①1992年,“国际教育成就评价”IAEP表报告,在21个参加数学测试和科学测试的国家和地区中,中国内地以总平均80分的成绩名列第一,领先于第二名的中国台湾省和韩国7分之多.②在参加国际数学奥林匹克竞赛的19年中(1985〜2003),中国中学生参赛104人次,得奖102人次(得奖率达98%),其中金牌77个(占得奖牌数的75%)、银牌20个(占得奖牌数的20%)、铜牌5个(占得奖牌数的5%);团体总分10次获第1名,4次获第二名,成为公认的竞赛强国.。

波利亚的《怎样解题》[word版]

波利亚的《怎样解题》[word版]

波利亚的《怎样解题》[word版]乔治·波利亚是20世纪举世公认的数学家,著名的数学教育家,享有国际盛誉的数学方法论大师.波利亚在数学教育领域最突出的贡献是开辟了数学启发法研究的新领域,为数学方法论研究的现代复兴奠定了必要的理论基础。

波利亚致力于解题的研究,为了回答“一个好的解法是如何想出来的”这个令人困惑的问题,他专门研究了解题的思维过程,并把研究所得写成《怎样解题》一书。

这本书的核心是他分解解题的思维过程得到的一张《怎样解题表》。

波利亚的四步解题法:
1.彻底理解问题
2.形成解决思路
3.执行
4.总结
1、彻底理解问题:为了确保真正理解问题,你最好把问题用自已的话换成各种形式反复重新表达,但另忘了指出问题的主干:要求解的是什么?已知什么?要满足哪些条件?但凡能画图,一定要画出来。

2、形成解题思路:要专注,用过往经验,已撑握的知识,并调整适用性来形成思路。

如果不行,就改变这个问题的各个组件:已知、未知、条件,先构造简单一点的,引入辅助,条件是否用足,甚至改变求解的未知数,看能否找到解题线索?直到找到与之相似而你又解决过的问题。

3、执行:一要有耐心,二需要及时的检查每一步,可
凭直觉或证明(两个都有用,但是两回事),要问自已每一步都检查了吗?能看出来这一步是对的吗?能证明这一步是对的吗?
4、总结:巩固与提升的关键,多想想,再论证,尝试另外的解法,找更明快简捷的方法,还要问,这次的解法还能用在什么地方?总结是最好的启法时刻。

波利亚的怎样解题表(修改版)

波利亚的怎样解题表(修改版)

波利亚的怎样解题表陕西师范大学罗增儒罗新兵1乔治·波利亚乔治·波利亚(George Polya,1887~1985)是美籍匈牙利数学家、数学教育家.在解题方面,是数学启发法(指关于发现和发明的方法和规律,亦译为探索法)现代研究的先驱.由于他在数学教育方面取得的成就和对世界数学教育所产生的影响,在他93岁高龄时,还被ICME(国际数学教育大会)聘为名誉主席.作为一个数学家,波利亚在函数论、变分法、概率、数论、组合数学、计算和应用数学等众多领域,都做出了开创性的贡献,留下了以“波利亚”命名的定理或术语;他与其他数学家合著的《数学分析中的问题和定理》、《不等式》、《数学物理中的等周问题》、《复变量》等书堪称经典;而以200多篇论文构成的四大卷文集,在未来的许多年里,将是研究生攻读的内容.作为一个数学教育家,波利亚的主要贡献集中体现在《怎样解题》(1945年)、《数学与似真推理》(1954年)、《数学的发现》(1962年)三部世界名著上,涉及“解题理论”、“解题教学”、“教师培训”三个领域.波利亚对数学解题理论的建设主要是通过“怎样解题”表来实现的,而在尔后的著作中有所发展,也在“解题讲习班”中对教师现身说法.他的著作把传统的单纯解题发展为通过解题获得新知识和新技能的学习过程,他的目标不是找出可以机械地用于解决一切问题的“万能方法”,而是希望通过对于解题过程的深入分析,特别是由已有的成功实践,总结出一般的方法或模式,使得在以后的解题中可以起到启发的作用.他所总结的模式和方法,包括笛卡儿模式、递归模式、叠加模式、分解与组合方法、一般化与特殊化方法、从后往前推、设立次目标、归纳与类比、考虑相关辅助问题、对问题进行变形等,都在解题中行之有效.尤其有特色的是,他将上述的模式与方法设计在一张解题表中,并通过一系列的问句或建议表达出来,使得更有启发意义.著名数学家互尔登在瑞士苏黎世大学的会议致词中说过:“每个大学生、每个学者、特别是每个教师都应该读这本引人入胜的书”(1952年2月2日).2怎样解题表波利亚是围绕“怎样解题”、“怎样学会解题”来开展数学启发法研究的,这首先表明其对“问题解决”重要性的突出强调,同时也表明其对“问题解决”研究兴趣集中在启发法上.波利亚在风靡世界的《怎样解题》(被译成14种文字)一书中给出的“怎样解题表”,正是一部“启发法小词典”.2.1“怎样解题”表的呈现弄清问题第一,你必须弄清问题未知是什么?已知是什么?条件是什么?满足条件是否可能?要确定未知,条件是否充分?或者它是否不充分?或者是多余的?或者是矛盾的?画张图,引入适当的符号.把条件的各个部分分开.你能否把它们写下来?拟定计划第二,找出已知数与未知数之间的联系.如果找不出直接的联系,你可能不得不考虑辅助问题.你应该最终得出一个求解的你以前见过它吗?你是否见过相同的问题而形式稍有不同?你是否知道与此有关的问题?你是否知道一个可能用得上的定理?看着未知数,试想出一个具有相同未知数或相似未知数的熟悉的问题.这里有一个与你现在的问题有关,且早已解决的问题.你能不能利用它?你能利用它的结果吗?你能利用它的方法吗?为了能利用它,你是否应该引入某些辅助元素?你能不能重新叙述这个问题?你能不能用不同的方法重新叙述它?回到定义去.如果你不能解决所提出的问题,可先解决一个与此有关的问题.你能不能想出一个更容易着手的有关问题?一个更普遍的问题?一个更特殊的问题?一个类比的问题?你能否解决这个问题的一部分?仅仅保持条件的一部分而舍去其余部分.这样对于未知数能确定到什么程度?它会怎样变化?你能不能从已知数据导出某些有用的东西?你能不能想出适合于确定未知数的其他数据?如果需要的话,你能不能改变未知数或数据,或者二者都改变,以使新未知数和新计划数据彼此更接近?你是否利用了所有的已知数据?你是否利用了整个条件?你是否考虑了包含在问题中的必要的概念?实现计划第三,实行你的计划实现你的求解计划,检验每一步骤.你能否清楚地看出这一步骤是正确的?你能否证明这一步骤是正确的?回顾第四,验算所得到的解.你能否检验这个论证?你能否用别的方法导出这个结果?你能不能一下子看出它来?你能不能把这一结果或方法用于其他的问题?下面是实践波利亚解题表的一个示例,能够展示波利亚解题风格的心路历程,娓娓道来,栩栩如生.2.2“怎样解题”表的实践例1给定正四棱台的高h,上底的一条边长a和下底的一条边长b,求正四棱台的体积F.(学生已学过棱柱、棱锥的体积)【讲解】第一,弄清问题.问题1.你要求解的是什么?要求解的是几何体的体积,在思维中的位置用一个单点F象征性地表示出来(图1).问题2.你有些什么?一方面是题目条件中给出的3个已知量a、b、h;另一方面是已学过棱柱、棱锥的体积公式,并积累有求体积公式的初步经验.把已知的三个量添到图示处(图2),就得到新添的三个点a、b、h;它们与F之间有一条鸿沟,象征问题尚未解决,我们的任务就是将未知量与已知量联系起来.第二,拟定计划.问题3.怎样才能求得F?由于我们已经知道棱柱、棱锥的体积公式,而棱台的几何结构(棱台的定义)告诉我们,棱台是“用一个平行于底面的平面去截棱锥”,从一个大棱锥中截去一个小棱锥所生成的.如果知道了相应两棱锥的体积B和A,我们就能求出棱台的体积F=B-A.①我们在图示上引进两个新的点A和B,用斜线把它们与F联结起来,以此表示这三个量之间的联系(图3,即①式的几何图示).这就把求F转化为求A、B.问题4.怎样才能求得A与B?依据棱锥的体积公式(V=Sh),底面积可由已知条件直接求得,关键是如何求出两个棱锥的高.并且,一旦求出小棱锥的高x,大棱锥的高也就求出,为x+h.我们在图示上引进一个新的点x,用斜线把A与x、a连结起来,表示A能由a、x得出,A=a2x;类似地,用斜线把B与b、h、x连结起来,表示B可由b、h、x得出,B=b2(x+h)(图4),这就把求A、B转化为求x.问题5.怎样才能求得x?为了使未知数x与已知数a、b、h联系起来,建立起一个等量关系.我们调动处理立体几何问题的基本经验,进行“平面化”的思考.用一个通过高线以及底面一边上中点(图5中,点Q)的平面去截两个棱锥,在这个截面上有两个相似三角形能把a、b、h、x联系起来(转化为平面几何问题),由△VPO1∽△VQO2得这就将一个几何问题最终转化为代数方程的求解.解方程②,便可由a、b、h表示x,在图示中便可用斜线将x与a、b、h连结起来.至此,我们已在F与已知数a、b、h之间建立起了一个不中断的联络网,解题思路全部沟通.第三,实现计划.作辅助线(过程略)如图5,由相似三角形的性质,得,解得x= .进而得两锥体的体积为A=a2x=·,B=b2(x+h)=·,得棱台体积为F=B-A=·=(a2+ab+b2)h.③第四,回顾.(1)正面检验每一步,推理是有效的,演算是准确的.再作特殊性检验,令a→0,由③可得正四棱锥体的体积公式;令a→b,由③可得正四棱柱体的体积公式.这既反映了新知识与原有知识的相容性,又显示出棱台体积公式的一般性;这既沟通了三类几何体极限状态间的知识联系,又可增进三个体积公式的联系记忆.(2)回顾这个解题过程可以看到,解题首先要弄清题意,从中捕捉有用的信息(如图1所示,有棱台,a、b、h、F共5条信息),同时又要及时提取记忆网络中的有关信息(如回想:棱台的定义、棱锥的体积公式、相似三角形的性质定理、反映几何结构的运算、调动求解立体几何问题的经验积累等不下6条信息),并相应将两组信息资源作合乎逻辑的有效组合.这当中,起调控作用的关键是如何去构思出一个成功的计划(包括解题策略).由这一案例,每一个解题者还可以根据自己的知识经验各自进一步领悟关于如何制定计划的普遍建议或模式.(3)在解题方法上,这个案例是分析法的一次成功应用,从结论出发由后往前找成立的充分条件.为了求F,我们只需求A、B(由棱台体积到棱锥体积的转化——由未知到已知,化归);为了求A、B,我们只需求x(由体积计算到线段计算的转化——由复杂到简单,降维);为了求x,我们只需建立关于x的方程(由几何到代数的转化——数形结合);最后,解方程求x,解题的思路就畅通了,在当初各自孤立而空旷的画面上(图1),形成了一个联接未知与已知间的不中断网络(图5),书写只不过是循相反次序将网络图作一叙述.这个过程显示了分析与综合的关系,“分析自然先行,综合后继;分析是创造,综合是执行;分析是制定一个计划,综合是执行这个计划”.(4)在思维策略上,这个案例是“三层次解决”的一次成功应用.首先是一般性解决(策略水平上的解决),把F转化为A,B的求解(F=A-B),就明确了解题的总体方向;其次是功能性解决(方法水平的解决),发挥组合与分解、相似形、解方程等方法的解题功能;最后是特殊性解决(技能水平的解决),比如按照棱台的几何结构作图、添辅助线找出相似三角形、求出方程的解、具体演算体积公式等,是对推理步骤和运算细节作实际完成.(5)在心理机制上,这个案例呈现出“激活——扩散”的基本过程.首先在正四棱台(条件)求体积(结论)的启引下,激活了记忆网络中棱台的几何结构和棱锥的体积公式,然后,沿着体积计算的接线向外扩散,依次激活截面知识、相似三角形知识、解方程知识(参见图1~图5),……直到条件与结论之间的网络沟通.这种“扩散——激活”的观点,正是数学证明思维中心理过程的一种解释.(6)在立体几何学科方法上,这是“组合与分解”的一次成功应用.首先把棱台补充(组合)为棱锥,然后再把棱锥截成(分解)棱台并作出截面,这种做法在求棱锥体积时曾经用过(先组合成一个棱柱、再分解为三个棱锥),它又一次向我们展示“能割善补”是解决立体几何问题的一个诀窍,而“平面化”的思考则是沟通立体几何与平面几何联系的一座重要桥梁.这些都可以用于求解其他立体几何问题,并且作为一般化的思想(化归、降维)还可以用于其他学科.(7)“你能否用别的方法导出这个结果?”在信念上我们应该永远而坚定地做出肯定的回答,操作上未实现只是能力问题或暂时现象.对于本例,按照化棱台为棱锥的同样想法,可以有下面的解法.如图6,正四棱台ABCD-A1B1C1D1中,连结DA1,DB1,DC1,DB,将其分成三个四棱锥D-A1B1C1D1,D-AA1B1B,D-BB1C1C,其中=b2h,=.(等底等高)为了求,我们连结AB1,将其分为两个三棱锥D-ABB1与D-AA1B1(图7),因=,故=,但==·a2·h=a2h,故=+=a2h+· a2h=(a2+ab)h.从而=++=(a2+ab)h+(a2+ab)h+b2h=(a2+ab+b2)h.(8)“你能不能把这一结果或方法用于其他问题?”能,至少我们可以由正四棱台体积公式一般化为棱台体积公式(方法是一样的).注意到a2=S1,b2=S2,ab=,可一般化猜想棱台的体积公式为V台=(S1++S2)h.3波利亚的解题观对于波利亚的怎样解题表及有关著作,人们从不同的角度阐发了对波利亚解题思想的认识(见参考文献),我们将其归结为5个要点.3.1程序化的解题系统怎样解题表,就“怎样解题”、“教师应教学生做些什么”等问题,把“解题中典型有用的智力活动”,按照正常人解决问题时思维的自然过程分成四个阶段——弄清问题、拟定计划、实现计划、回顾,从而描绘出解题理论的一个总体轮廓,也组成了一个完整的解题教学系统.既体现常识性,又体现由常识上升为理论(普遍性)的自觉努力.这四个阶段首先是一个四步骤的宏观解题程序,其中“实现计划”虽为主体工作,但较为容易完成,是思路打通之后具体实施信息资源的逻辑配置,“我们所需要的只是耐心”;其次,“弄清问题”是认识问题、并对问题进行表征的过程,应成为成功解决问题的一个必要前提;与前两者相比,“回顾”是最容易被忽视的阶段,波利亚将其作为解题的必要环节而固定下来,是一个有远见的做法,在整个解题表中“拟定计划”是关键环节和核心内容.“拟定计划”的过程是在“过去的经验和已有的知识”基础上,探索解题思路的发现过程,波利亚的建议是分两步走:第一,努力在已知与未知之间找出直接的联系(模式识别等);第二,如果找不出直接的联系,就对原来的问题做出某些必要的变更或修改,引进辅助问题,为此,波利亚又进一步建议:看着未知数,回到定义去,重新表述问题,考虑相关问题,分解或重新组合,特殊化,一般化,类比等,积极诱发念头,努力变化问题.这实际上是阐述和应用解题策略并进行资源的提取与分配.于是,这个系统就集解题程序、解题基础、解题策略、解题方法等于一身,融理论与实践于一体.3.2启发式的过程分析(1)还在当学生的时候,波利亚就有一个问题一再使他感到困惑:“是的,这个解答好像还行,它看起来是正确的,但怎样才能想出这样的解答呢?是的,这个实验好像还行,它看起来是个事实,但别人是怎样发现这样的事实?而且我自己怎样才能想出或发现它们呢?”从解题论的观点看,这实际上是既提出了“怎样解题”又提出了“怎样学会解题”的问题,波利亚说,这“终于导致他写出本书”(指《怎样解题》).波利亚认为“数学有两个侧面”,“用欧几里得方式提出来的数学看来像是一门系统的演绎科学;但在创造过程中的数学看来却像是一门实验性的归纳科学.这两个侧面都像数学本身一样古老.但从某一点说来,第二个侧面则是新的,因为以前从来就没有‘照本宣科’地把处于发现过程中的数学照原样提供给学生,或教师自己,或公众.”他以数十年的时间悉心研究数学启发法,其“怎样解题”的基本思想就可以概括为“知识+启发法”.在解题表中,波利亚给出了“启发法小词典”,让读者通过阅读词典来开阔思路、指导实践,自己学会怎样解题.这些看法来源于波利亚对数学教育宗旨的认识,波利亚认为,数学教育应“教会年轻人去思考”,培养学生的“独立性、能动性和创新精神”;他认为一个人在学校所受的教育应该受益终生,他赞成,良好的教育应该“系统地给学生自己发现事物的机会”,“应该帮助学生自己再发现所教的内容”,“学东西的最好途径是亲自去发现它”;他特别重视发展学生的数学思维能力,强调数学教学要加强思维训练,要发展学生运用所学知识的能力,发展技能、技巧、有益的思考方式和科学的思维习惯,他反复指出,数学教育的目的不仅仅是传授知识,还要“发展学生本身的内蕴能力”.教师要“教学生证明问题”,也要“教他们猜想问题”.波利亚提出“合情推理”的概念,号召:“让我们教猜想吧!”(2)在解题表的展开中,波利亚则通过剖析典型例题的思维过程来研究“发现和发明的方法和规律”.波利亚不断地提问、不断地建议,“怎样才能想出这样的解答呢?”“我自己怎样才能想出或发现它们呢?”既驱使人们去分析解题过程,又要求人们去总结发现的规律.波利亚在《数学的发现》序言中提出:“领会方法的最佳时机,可能是读者解出一道题的时候,或是阅读它的解法的时候,也可能是阅读解法形成过程的时候”.波利亚书中的例题,其实就是对典型例题进行解题过程的分析,就是暴露数学解题的思维过程,也就是教人“怎样学会解题”.在例1中,数学操作与思维开展相结合的图解或阐释,使我们既领会到了这样的意图,也见到了这样的行动.波利亚对解题过程淋漓尽致的剖析,实质上已接触到心理层面,但没有用到多少教育学或思维学的相关名词,基本上都是其数学前沿研究中切身体验的自然流露,数学功底和过程体验发挥了重要作用.这正是数学家研究数学教育的优势,处处有数学的“真刀真枪”,绝非“纸上谈兵”.波利亚说“货源充足和组织良好的知识仓库是一个解题者的重要资本”,在“知识”与“组织良好”之间,波利亚更强调后者,他说“良好的组织使得所提供的知识易于用上,这甚至可能比知识的广泛更为重要.”用现在的话来说,波利亚在这里强调了“原有的知识经验”和“优化的认知结构”对问题解决的基础作用.3.3开放型的念头诱发.波利亚解释说:“我们表中的问题和建议并不直接提到念头;但实际上,所有的问题和建议都与它有关(可以说解题表中的每一个问句,都是从认知或元认知的角度向读者启发解题念头.),弄清问题是为好念头的出现做准备;拟订计划是试图引发它;在引发之后,我们实现它;回顾此过程和求解的结果,我们试图更好地利用它.”他强调指出:“老师为学生所能做的最大的好事是通过比较自然的帮助,促使他自己想出一个好念头.”在《怎样解题》一书里,出现“念头”这个词不下四五十次.念头有什么用?波利亚说:“它会给你指出整个或部分解题途径”.“也许有些念头会把你引入歧途”,但这并不可怕,“在明显失败的尝试和一度犹豫不决之后”会“突然闪出一个‘好念头’”,最糟糕的是没有任何念头,还“笨头呆脑地干等着某个念头的降临,而不会做任何事情去加速其来到.”这里说的念头不仅在字面上比“问题表征”更为浅白,而且在内涵上更为丰富,其实质是开展积极活跃的思维活动,产生念头与找出解题途径完全可以理解为同义语.那么产生念头的基础是什么呢?波利亚的回答是:“过去的经验和已有的知识”.(解题力量)“如果我们对该论题知识贫乏,是不容易产生好念头的.如果我们完全没有知识,则根本不可能产生好念头.”波利亚一再提到“好念头”,其实这就是直觉、顿悟或灵感,“想出一个好念头是一种‘灵感运动’”,“想像力有了一个突然的跳跃,产生了一个好念头,这是天才的一次闪烁”,“是我们观点上的重大突变,我们看问题方式的一个骤然变动,在解题步骤方面的一个刚刚露头的有信心的预感”.波利亚关于念头的种种议论,正是开展积极思维活动的激发与激活.3.4探索性的问题转换这里说的“问题转换”,在《怎样解题》一书中亦叫“变化问题”、“题目变更”,它揭示了探索解题思路的数学途径,也体现了解题策略的实际运用.波利亚强调:“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒,为了找出哪个方面是正确的方面,哪一侧是好接近的一侧,我们从各个方面、各个侧面去试验,我们变更问题.”“变化问题使我们引进了新的内容,从而产生了新的接触,产生了和我们有关的元素接触的新可能性.”“新问题展现了接触我们以前知识的新可能性,它使我们做出有用接触的希望死而复苏.通过变化问题,显露它的某个新方面,新问题使我们的兴趣油然而生”.在“怎样解题”表中,波利亚拟出了启引我们不断转换问题的30多个问句或建议:把问题转化为一个等价的问题,把原问题化归为一个已解决的问题,去考虑一个可能相关的问题,先解决一个更特殊的问题、或更一般的问题、或类似的问题……那些启发新念头的问句,也往往与问题转换有关.“如果我们不用‘题目变更’,几乎是不能有什么进展的”——这就是波利亚的结论.3.5朴素的数学解题元认知观念.元认知是对认知的再认知,包括元认知知识,元认知体验和元认知监控.虽然元认知概念提出较晚,但元认知思想早就存在,在波利亚的解题思想中存在着朴素的元认知观念.波利亚解题表的大量问句或建议,都不是问别人,而是自己给自己提问题、提建议,这是解题者的自我诘问、自我反思.问题中的一部分,其对象针对具体的数学内容,属于认知性的;另一部分则以解题者自身为对象,属于元认知性的.比如,“你以前见过它吗?”“你是否知道一个与此有关的问题?”“这里有一个与你现在的问题有关,且早已解决的问题.你能不能利用它?”等等,都不涉及问题的具体内容,都是针对解题主体、对其解题思维活动的反思,都属于元认知提问,而不完全是认知提问.波利亚解题表中的“回顾”也并不完全是常规解题中的“检验”,主要是有分析地领会所得的解法(参见例1的回顾),它包含着把“问题及其解法”(认知)作为对象进行自觉反思的元认知意图.至于解题表本身所给出的解题程序(一种程序性知识),所体现的解题策略(一种策略性知识)及所进行的元认知提问,都属于元认知知识.波利亚对具体范例的分析,基本上是对“问题及其解法”的再认知,已反映出开发元认知的朴素意图.波利亚的另一些问句,如“你能不能重新叙述这个问题?你能不能用不同的方法重新叙述它?”“你能不能改变未知数或数据,或者二者都改变,以使新未知数和新数据彼此更接近?”(接近度),“你能不能一下子看出它来?”(题感)等,则属于朴素的元认知体验.至于解题表本身,则自始至终体现着元认知调控.综上所述,“解题系统”是波利亚解题思想的整体框架,“分析解题过程”是波利亚解题思想的思维实质,“念头诱发”是波利亚解题思想的外在表现,“问题转换”是波利亚解题思想的具体实现,朴素的元认知观念是波利亚解题思想的心理学基础.而这一切的背后,丰富的数学前沿研究经历和发现体验是波利亚解题思想的物质基础,现代启发法是波利亚解题思想的灵魂,揭示“发现和发明的方法和规律”是波利亚解题思想的目标.4波利亚解题研究的发展4.1反思数学上存在证明的方法与发现的方法,在逻辑实证主义占主导地位的历史时期,关于数学发现方法的研究一度陷于停顿,波利亚的贡献就在于自觉承担起复兴数学启发法的重任,并提出合情推理,为数学启发法的现代研究提供了必要基础.20世纪80年代初期,美国数学教育界兴起的“问题解决”研究是对波利亚现代启发法的直接继承,曾经有“对波利亚的重新发现”、“数学启发法…几乎成了问题解决的同义词”等提法.但是,已有数学实践却未能获得预期的成功,尽管学生已经具备了必要的数学知识,也已经了解了相关的方法原则,或者说已执行了解题表的建议,却仍不能有效地解决问题,这不能不引起数学教育界的反思.(1)波利亚构建的“四阶段”解题系统具有开创性的意义,但局限于“四阶段”对学会“数学地思维”而言是不是有点简单化了?对数学问题解决全过程的探索可能比解题表所简洁描述的复杂得多.(2)数学启发法的现代复兴及其所取得的成功,无论怎样评价都不算过分,但启发法能不能看成影响问题解决能力的惟一要素?“知识+启发法”之外可能还有更多的因素需要重视(如“元认知调节”、“观念”等),“好念头”的出现可能也需要从方法论的角度做出更为自觉的分析.(3)波利亚从数学内部研究数学问题解决并强调解题实践是一个值得继承的研究方向(与那些连数学题都没有出现的解题研究形成鲜明对照,也与那些对中学教材作业题都不那么过关的研究者形成鲜明对照),但局限于“解题”、专注于技能技巧是不是狭窄了点?至少“问题发现(提出)”、“实际应用”都与解决问题有同样的重要性.。

波利亚及其解题理论 (2)

波利亚及其解题理论 (2)

波利亚(1887-1985)的生平
• 波利亚的重要数学著作有: 《怎样解题》、《数学的发现》多卷、《数 学与猜想》多卷等。
《怎样解题》
内容简介: • ‚怎样解题表‛是一书的精华 • 它讨论的是数学中发现和发明的方法 和规律,但同时对在其他任何领域中怎样 进行正确思维都有明显的指导作用。 • 在本书的指导下,学会了怎样摒弃 不相干的东西,直捣问题的心脏。
a
a
a
与已知矛盾。
• 这就从反面告诉我们,要考虑当 a1 a2 an 时, 求证式能取等号的条件,因而,基本不等式的应用,应 使 ai 1时取等号。 • 8、重新回到课本习题,再考虑你能利用它吗?你能利 用它的方 法吗?如果你不能直接利用它,那么你能不 能作适当的变通?为了出现特征常数‚3‛ ,为了使等 1 ,思维受到广 挑战,拆项的念头迟早会 号成立时 a i 产生 2 1 1 33
a
i
a
i
a
i
• 从而
(2 ai) 3
i 1
n
n
3
a1 a2 an 3
n
• 第三,实现计划(略)
• 第四、回顾 • 9.你能否用别的方法导出这些结论? • 可以.因为这里是一个与自然数有关的命题, 所以我们会想到用 数学归纳法(此外,还有 其他办法,如柯西不等式、磨光变换等). • (1),n = l时,命题显然成立(取等号), • (2)假设n=k时,命题成立.即 ai 0 ,且当 • ⑤ a1 a2 ak 1
• 波利亚还是杰出的数学教育家,他对数学思 维一般规律的研究,堪称是对人类思想宝库 的特殊贡献。他的数学教育思想的核心问题: 数学教育的目的是什么? --波利亚主张数 学教育的目的应当是提高学生的一般素养; 首先和主要的目标应当是教会青年思考。

波利亚数学解题表精完整版

波利亚数学解题表精完整版

波利亚数学解题表精 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】乔治.波利亚的数学"解题表"学习法G.波利亚,是美籍匈牙利数学家,教育家.他十分重视解题在数学学习中的重要作用,数十年如一日对解题方法进行研究,凝聚成一张"解题表"(如有条件,参见乔治.波利亚的原着).这张表提供了一套解决数学问题的一般方法与模式,为解决问题指明了方向,并揭示了解题中的思维过程和思维方法.悉心体会这张表中层层递进的各个问题,相信会对我们的数学学习有所启迪.一.弄清问题.1,已知是什么未知是什么2,条件是什么结论是什么3,画个草图,引入适当的符号.二,拟定计划.1,见过这道题或与之类似的题吗2,能联想起有关的定理或公式吗3,再看看未知条件!4,换一个方式来叙述这道题.5,回到定义看看!!6,先解决一个特例试试.7,这个问题的一般形式是什么8,你能解决问题的一部分吗9,你用了全部条件吗三,实行计划.1,实现你的解题计划并检验每一步.2,证明你的每一步都是正确的.四,回顾.1,检查结果并检验其正确性.2,换一个方法做做这道题.3,尝试把你的结果和方法用到其他问题上去.这张解题表看似简单,实际上它给出了一套解决数学问题的一般方法与模式,同时还揭示了解题中的思维方法和思维过程。

你的解题习惯和这个“解题表”一样吗?如果你觉得自己常常不会思考——“不知道怎么想”,请你参考“一.3.”和“二.3.4如果你常常做错题——“会做,但未做对”,请你参考“三.四.”。

悉心体会并把握表中各层的要领,相信对同学们的数学学习会起到很大的帮助作用。

在这里提醒两点,一是一定要画图,并标上符号和数字,二是一定要重视回顾这一步,只有这一步才能从题海中解放出来,才能做到:虽然只做了有限的题目,但能够解无限的问题.用华罗庚教授描写"数形结合"的诗做为结尾,希望大家重视数形结合的数学思想.数形本是相倚依,焉能分做两边飞.数缺形时少直觉,形缺数时难入微.数形结合百般好,隔裂分家万事休.几何代数统一体,永远联系莫分离.波利亚·数学解题表波利亚对数学解题的过程进行了深入的研究,认为整个解题过程分为四个阶段,即:弄清问题、拟定计划、实现计划、反思回顾,并给出了具有启发性的“怎样解题”表。

波利亚的怎样解题表(修改版)

波利亚的怎样解题表(修改版)

波利亚的怎样解题表1乔治·波利亚乔治·波利亚(George Polya,1887~1985)是美籍匈牙利数学家、数学教育家.在解题方面,是数学启发法(指关于发现和发明的方法和规律,亦译为探索法)现代研究的先驱.由于他在数学教育方面取得的成就和对世界数学教育所产生的影响,在他93岁高龄时,还被ICME(国际数学教育大会)聘为名誉主席.作为一个数学家,波利亚在函数论、变分法、概率、数论、组合数学、计算和应用数学等众多领域,都做出了开创性的贡献,留下了以“波利亚”命名的定理或术语;他与其他数学家合著的《数学分析中的问题和定理》、《不等式》、《数学物理中的等周问题》、《复变量》等书堪称经典;而以200多篇论文构成的四大卷文集,在未来的许多年里,将是研究生攻读的内容.作为一个数学教育家,波利亚的主要贡献集中体现在《怎样解题》(1945年)、《数学与似真推理》(1954年)、《数学的发现》(1962年)三部世界名著上,涉及“解题理论”、“解题教学”、“教师培训”三个领域.波利亚对数学解题理论的建设主要是通过“怎样解题”表来实现的,而在尔后的著作中有所发展,也在“解题讲习班”中对教师现身说法.他的著作把传统的单纯解题发展为通过解题获得新知识和新技能的学习过程,他的目标不是找出可以机械地用于解决一切问题的“万能方法”,而是希望通过对于解题过程的深入分析,特别是由已有的成功实践,总结出一般的方法或模式,使得在以后的解题中可以起到启发的作用.他所总结的模式和方法,包括笛卡儿模式、递归模式、叠加模式、分解与组合方法、一般化与特殊化方法、从后往前推、设立次目标、归纳与类比、考虑相关辅助问题、对问题进行变形等,都在解题中行之有效.尤其有特色的是,他将上述的模式与方法设计在一张解题表中,并通过一系列的问句或建议表达出来,使得更有启发意义.著名数学家互尔登在瑞士苏黎世大学的会议致词中说过:“每个大学生、每个学者、特别是每个教师都应该读这本引人入胜的书”(1952年2月2日).2怎样解题表波利亚是围绕“怎样解题”、“怎样学会解题”来开展数学启发法研究的,这首先表明其对“问题解决”重要性的突出强调,同时也表明其对“问题解决”研究兴趣集中在启发法上.波利亚在风靡世界的《怎样解题》(被译成14种文字)一书中给出的“怎样解题表”,正是一部“启发法小词典”.2.1“怎样解题”表的呈现弄清问题第一,你必须弄清问题未知是什么?已知是什么?条件是什么?满足条件是否可能?要确定未知,条件是否充分?或者它是否不充分?或者是多余的?或者是矛盾的?画张图,引入适当的符号.把条件的各个部分分开.你能否把它们写下来?拟定计划第二,找出已知数与未知数之间的联系.如果找不出直接的联系,你可能不得不考虑辅助问题.你应该最终得出一个求解的计划你以前见过它吗?你是否见过相同的问题而形式稍有不同?你是否知道与此有关的问题?你是否知道一个可能用得上的定理?看着未知数,试想出一个具有相同未知数或相似未知数的熟悉的问题.这里有一个与你现在的问题有关,且早已解决的问题.你能不能利用它?你能利用它的结果吗?你能利用它的方法吗?为了能利用它,你是否应该引入某些辅助元素?你能不能重新叙述这个问题?你能不能用不同的方法重新叙述它?回到定义去.如果你不能解决所提出的问题,可先解决一个与此有关的问题.你能不能想出一个更容易着手的有关问题?一个更普遍的问题?一个更特殊的问题?一个类比的问题?你能否解决这个问题的一部分?仅仅保持条件的一部分而舍去其余部分.这样对于未知数能确定到什么程度?它会怎样变化?你能不能从已知数据导出某些有用的东西?你能不能想出适合于确定未知数的其他数据?如果需要的话,你能不能改变未知数或数据,或者二者都改变,以使新未知数和新数据彼此更接近?你是否利用了所有的已知数据?你是否利用了整个条件?你是否考虑了包含在问题中的必要的概念?实现计划第三,实行你的计划实现你的求解计划,检验每一步骤.你能否清楚地看出这一步骤是正确的?你能否证明这一步骤是正确的?回顾第四,验算所得到的解.你能否检验这个论证?你能否用别的方法导出这个结果?你能不能一下子看出它来?你能不能把这一结果或方法用于其他的问题?下面是实践波利亚解题表的一个示例,能够展示波利亚解题风格的心路历程,娓娓道来,栩栩如生.2.2“怎样解题”表的实践例1给定正四棱台的高h,上底的一条边长a和下底的一条边长b,求正四棱台的体积F.(学生已学过棱柱、棱锥的体积)【讲解】第一,弄清问题.问题1.你要求解的是什么?要求解的是几何体的体积,在思维中的位置用一个单点F象征性地表示出来(图1).问题2.你有些什么?一方面是题目条件中给出的3个已知量a、b、h;另一方面是已学过棱柱、棱锥的体积公式,并积累有求体积公式的初步经验.把已知的三个量添到图示处(图2),就得到新添的三个点a、b、h;它们与F之间有一条鸿沟,象征问题尚未解决,我们的任务就是将未知量与已知量联系起来.第二,拟定计划.问题3.怎样才能求得F?由于我们已经知道棱柱、棱锥的体积公式,而棱台的几何结构(棱台的定义)告诉我们,棱台是“用一个平行于底面的平面去截棱锥”,从一个大棱锥中截去一个小棱锥所生成的.如果知道了相应两棱锥的体积B和A,我们就能求出棱台的体积F=B-A.①我们在图示上引进两个新的点A和B,用斜线把它们与F联结起来,以此表示这三个量之间的联系(图3,即①式的几何图示).这就把求F转化为求A、B.问题4.怎样才能求得A与B?依据棱锥的体积公式(V=Sh),底面积可由已知条件直接求得,关键是如何求出两个棱锥的高.并且,一旦求出小棱锥的高x,大棱锥的高也就求出,为x+h.我们在图示上引进一个新的点x,用斜线把A与x、a连结起来,表示A能由a、x得出,A=a2x;类似地,用斜线把B与b、h、x连结起来,表示B可由b、h、x得出,B=b2(x+h)(图4),这就把求A、B转化为求x.问题5.怎样才能求得x?为了使未知数x与已知数a、b、h联系起来,建立起一个等量关系.我们调动处理立体几何问题的基本经验,进行“平面化”的思考.用一个通过高线以及底面一边上中点(图5中,点Q)的平面去截两个棱锥,在这个截面上有两个相似三角形能把a、b、h、x联系起来(转化为平面几何问题),由△VPO1∽△VQO2得这就将一个几何问题最终转化为代数方程的求解.解方程②,便可由a、b、h表示x,在图示中便可用斜线将x与a、b、h连结起来.至此,我们已在F与已知数a、b、h之间建立起了一个不中断的联络网,解题思路全部沟通.第三,实现计划.作辅助线(过程略)如图5,由相似三角形的性质,得,解得x= .进而得两锥体的体积为A=a2x=·,B=b2(x+h)=·,得棱台体积为F=B-A=·=(a2+ab+b2)h.③第四,回顾.(1)正面检验每一步,推理是有效的,演算是准确的.再作特殊性检验,令a→0,由③可得正四棱锥体的体积公式;令a→b,由③可得正四棱柱体的体积公式.这既反映了新知识与原有知识的相容性,又显示出棱台体积公式的一般性;这既沟通了三类几何体极限状态间的知识联系,又可增进三个体积公式的联系记忆.(2)回顾这个解题过程可以看到,解题首先要弄清题意,从中捕捉有用的信息(如图1所示,有棱台,a、b、h、F共5条信息),同时又要及时提取记忆网络中的有关信息(如回想:棱台的定义、棱锥的体积公式、相似三角形的性质定理、反映几何结构的运算、调动求解立体几何问题的经验积累等不下6条信息),并相应将两组信息资源作合乎逻辑的有效组合.这当中,起调控作用的关键是如何去构思出一个成功的计划(包括解题策略).由这一案例,每一个解题者还可以根据自己的知识经验各自进一步领悟关于如何制定计划的普遍建议或模式.(3)在解题方法上,这个案例是分析法的一次成功应用,从结论出发由后往前找成立的充分条件.为了求F,我们只需求A、B(由棱台体积到棱锥体积的转化——由未知到已知,化归);为了求A、B,我们只需求x(由体积计算到线段计算的转化——由复杂到简单,降维);为了求x,我们只需建立关于x的方程(由几何到代数的转化——数形结合);最后,解方程求x,解题的思路就畅通了,在当初各自孤立而空旷的画面上(图1),形成了一个联接未知与已知间的不中断网络(图5),书写只不过是循相反次序将网络图作一叙述.这个过程显示了分析与综合的关系,“分析自然先行,综合后继;分析是创造,综合是执行;分析是制定一个计划,综合是执行这个计划”.(4)在思维策略上,这个案例是“三层次解决”的一次成功应用.首先是一般性解决(策略水平上的解决),把F转化为A,B的求解(F=A-B),就明确了解题的总体方向;其次是功能性解决(方法水平的解决),发挥组合与分解、相似形、解方程等方法的解题功能;最后是特殊性解决(技能水平的解决),比如按照棱台的几何结构作图、添辅助线找出相似三角形、求出方程的解、具体演算体积公式等,是对推理步骤和运算细节作实际完成.(5)在心理机制上,这个案例呈现出“激活——扩散”的基本过程.首先在正四棱台(条件)求体积(结论)的启引下,激活了记忆网络中棱台的几何结构和棱锥的体积公式,然后,沿着体积计算的接线向外扩散,依次激活截面知识、相似三角形知识、解方程知识(参见图1~图5),……直到条件与结论之间的网络沟通.这种“扩散——激活”的观点,正是数学证明思维中心理过程的一种解释.(6)在立体几何学科方法上,这是“组合与分解”的一次成功应用.首先把棱台补充(组合)为棱锥,然后再把棱锥截成(分解)棱台并作出截面,这种做法在求棱锥体积时曾经用过(先组合成一个棱柱、再分解为三个棱锥),它又一次向我们展示“能割善补”是解决立体几何问题的一个诀窍,而“平面化”的思考则是沟通立体几何与平面几何联系的一座重要桥梁.这些都可以用于求解其他立体几何问题,并且作为一般化的思想(化归、降维)还可以用于其他学科.(7)“你能否用别的方法导出这个结果?”在信念上我们应该永远而坚定地做出肯定的回答,操作上未实现只是能力问题或暂时现象.对于本例,按照化棱台为棱锥的同样想法,可以有下面的解法.如图6,正四棱台ABCD-A1B1C1D1中,连结DA1,DB1,DC1,DB,将其分成三个四棱锥D-A1B1C1D1,D-AA1B1B,D-BB1C1C,其中=b2h,=.(等底等高)为了求,我们连结AB1,将其分为两个三棱锥D-ABB1与D-AA1B1(图7),因=,故=,但==·a2·h=a2h,故=+=a2h+· a2h=(a2+ab)h.从而=++=(a2+ab)h+(a2+ab)h+b2h=(a2+ab+b2)h.(8)“你能不能把这一结果或方法用于其他问题?”能,至少我们可以由正四棱台体积公式一般化为棱台体积公式(方法是一样的).注意到a2=S1,b2=S2,ab=,可一般化猜想棱台的体积公式为V台=(S1++S2)h.3波利亚的解题观对于波利亚的怎样解题表及有关著作,人们从不同的角度阐发了对波利亚解题思想的认识(见参考文献),我们将其归结为5个要点.3.1程序化的解题系统怎样解题表,就“怎样解题”、“教师应教学生做些什么”等问题,把“解题中典型有用的智力活动”,按照正常人解决问题时思维的自然过程分成四个阶段——弄清问题、拟定计划、实现计划、回顾,从而描绘出解题理论的一个总体轮廓,也组成了一个完整的解题教学系统.既体现常识性,又体现由常识上升为理论(普遍性)的自觉努力.这四个阶段首先是一个四步骤的宏观解题程序,其中“实现计划”虽为主体工作,但较为容易完成,是思路打通之后具体实施信息资源的逻辑配置,“我们所需要的只是耐心”;其次,“弄清问题”是认识问题、并对问题进行表征的过程,应成为成功解决问题的一个必要前提;与前两者相比,“回顾”是最容易被忽视的阶段,波利亚将其作为解题的必要环节而固定下来,是一个有远见的做法,在整个解题表中“拟定计划”是关键环节和核心内容.“拟定计划”的过程是在“过去的经验和已有的知识”基础上,探索解题思路的发现过程,波利亚的建议是分两步走:第一,努力在已知与未知之间找出直接的联系(模式识别等);第二,如果找不出直接的联系,就对原来的问题做出某些必要的变更或修改,引进辅助问题,为此,波利亚又进一步建议:看着未知数,回到定义去,重新表述问题,考虑相关问题,分解或重新组合,特殊化,一般化,类比等,积极诱发念头,努力变化问题.这实际上是阐述和应用解题策略并进行资源的提取与分配.于是,这个系统就集解题程序、解题基础、解题策略、解题方法等于一身,融理论与实践于一体.3.2启发式的过程分析(1)还在当学生的时候,波利亚就有一个问题一再使他感到困惑:“是的,这个解答好像还行,它看起来是正确的,但怎样才能想出这样的解答呢?是的,这个实验好像还行,它看起来是个事实,但别人是怎样发现这样的事实?而且我自己怎样才能想出或发现它们呢?”从解题论的观点看,这实际上是既提出了“怎样解题”又提出了“怎样学会解题”的问题,波利亚说,这“终于导致他写出本书”(指《怎样解题》).波利亚认为“数学有两个侧面”,“用欧几里得方式提出来的数学看来像是一门系统的演绎科学;但在创造过程中的数学看来却像是一门实验性的归纳科学.这两个侧面都像数学本身一样古老.但从某一点说来,第二个侧面则是新的,因为以前从来就没有‘照本宣科’地把处于发现过程中的数学照原样提供给学生,或教师自己,或公众.”他以数十年的时间悉心研究数学启发法,其“怎样解题”的基本思想就可以概括为“知识+启发法”.在解题表中,波利亚给出了“启发法小词典”,让读者通过阅读词典来开阔思路、指导实践,自己学会怎样解题.这些看法来源于波利亚对数学教育宗旨的认识,波利亚认为,数学教育应“教会年轻人去思考”,培养学生的“独立性、能动性和创新精神”;他认为一个人在学校所受的教育应该受益终生,他赞成,良好的教育应该“系统地给学生自己发现事物的机会”,“应该帮助学生自己再发现所教的内容”,“学东西的最好途径是亲自去发现它”;他特别重视发展学生的数学思维能力,强调数学教学要加强思维训练,要发展学生运用所学知识的能力,发展技能、技巧、有益的思考方式和科学的思维习惯,他反复指出,数学教育的目的不仅仅是传授知识,还要“发展学生本身的内蕴能力”.教师要“教学生证明问题”,也要“教他们猜想问题”.波利亚提出“合情推理”的概念,号召:“让我们教猜想吧!”(2)在解题表的展开中,波利亚则通过剖析典型例题的思维过程来研究“发现和发明的方法和规律”.波利亚不断地提问、不断地建议,“怎样才能想出这样的解答呢?”“我自己怎样才能想出或发现它们呢?”既驱使人们去分析解题过程,又要求人们去总结发现的规律.波利亚在《数学的发现》序言中提出:“领会方法的最佳时机,可能是读者解出一道题的时候,或是阅读它的解法的时候,也可能是阅读解法形成过程的时候”.波利亚书中的例题,其实就是对典型例题进行解题过程的分析,就是暴露数学解题的思维过程,也就是教人“怎样学会解题”.在例1中,数学操作与思维开展相结合的图解或阐释,使我们既领会到了这样的意图,也见到了这样的行动.波利亚对解题过程淋漓尽致的剖析,实质上已接触到心理层面,但没有用到多少教育学或思维学的相关名词,基本上都是其数学前沿研究中切身体验的自然流露,数学功底和过程体验发挥了重要作用.这正是数学家研究数学教育的优势,处处有数学的“真刀真枪”,绝非“纸上谈兵”.波利亚说“货源充足和组织良好的知识仓库是一个解题者的重要资本”,在“知识”与“组织良好”之间,波利亚更强调后者,他说“良好的组织使得所提供的知识易于用上,这甚至可能比知识的广泛更为重要.”用现在的话来说,波利亚在这里强调了“原有的知识经验”和“优化的认知结构”对问题解决的基础作用.3.3开放型的念头诱发.波利亚解释说:“我们表中的问题和建议并不直接提到念头;但实际上,所有的问题和建议都与它有关(可以说解题表中的每一个问句,都是从认知或元认知的角度向读者启发解题念头.),弄清问题是为好念头的出现做准备;拟订计划是试图引发它;在引发之后,我们实现它;回顾此过程和求解的结果,我们试图更好地利用它.”他强调指出:“老师为学生所能做的最大的好事是通过比较自然的帮助,促使他自己想出一个好念头.”在《怎样解题》一书里,出现“念头”这个词不下四五十次.念头有什么用?波利亚说:“它会给你指出整个或部分解题途径”.“也许有些念头会把你引入歧途”,但这并不可怕,“在明显失败的尝试和一度犹豫不决之后”会“突然闪出一个‘好念头’”,最糟糕的是没有任何念头,还“笨头呆脑地干等着某个念头的降临,而不会做任何事情去加速其来到.”这里说的念头不仅在字面上比“问题表征”更为浅白,而且在内涵上更为丰富,其实质是开展积极活跃的思维活动,产生念头与找出解题途径完全可以理解为同义语.那么产生念头的基础是什么呢?波利亚的回答是:“过去的经验和已有的知识”.(解题力量)“如果我们对该论题知识贫乏,是不容易产生好念头的.如果我们完全没有知识,则根本不可能产生好念头.”波利亚一再提到“好念头”,其实这就是直觉、顿悟或灵感,“想出一个好念头是一种‘灵感运动’”,“想像力有了一个突然的跳跃,产生了一个好念头,这是天才的一次闪烁”,“是我们观点上的重大突变,我们看问题方式的一个骤然变动,在解题步骤方面的一个刚刚露头的有信心的预感”.波利亚关于念头的种种议论,正是开展积极思维活动的激发与激活.3.4探索性的问题转换这里说的“问题转换”,在《怎样解题》一书中亦叫“变化问题”、“题目变更”,它揭示了探索解题思路的数学途径,也体现了解题策略的实际运用.波利亚强调:“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒,为了找出哪个方面是正确的方面,哪一侧是好接近的一侧,我们从各个方面、各个侧面去试验,我们变更问题.”“变化问题使我们引进了新的内容,从而产生了新的接触,产生了和我们有关的元素接触的新可能性.”“新问题展现了接触我们以前知识的新可能性,它使我们做出有用接触的希望死而复苏.通过变化问题,显露它的某个新方面,新问题使我们的兴趣油然而生”.在“怎样解题”表中,波利亚拟出了启引我们不断转换问题的30多个问句或建议:把问题转化为一个等价的问题,把原问题化归为一个已解决的问题,去考虑一个可能相关的问题,先解决一个更特殊的问题、或更一般的问题、或类似的问题……那些启发新念头的问句,也往往与问题转换有关.“如果我们不用‘题目变更’,几乎是不能有什么进展的”——这就是波利亚的结论.3.5朴素的数学解题元认知观念.元认知是对认知的再认知,包括元认知知识,元认知体验和元认知监控.虽然元认知概念提出较晚,但元认知思想早就存在,在波利亚的解题思想中存在着朴素的元认知观念.波利亚解题表的大量问句或建议,都不是问别人,而是自己给自己提问题、提建议,这是解题者的自我诘问、自我反思.问题中的一部分,其对象针对具体的数学内容,属于认知性的;另一部分则以解题者自身为对象,属于元认知性的.比如,“你以前见过它吗?”“你是否知道一个与此有关的问题?”“这里有一个与你现在的问题有关,且早已解决的问题.你能不能利用它?”等等,都不涉及问题的具体内容,都是针对解题主体、对其解题思维活动的反思,都属于元认知提问,而不完全是认知提问.波利亚解题表中的“回顾”也并不完全是常规解题中的“检验”,主要是有分析地领会所得的解法(参见例1的回顾),它包含着把“问题及其解法”(认知)作为对象进行自觉反思的元认知意图.至于解题表本身所给出的解题程序(一种程序性知识),所体现的解题策略(一种策略性知识)及所进行的元认知提问,都属于元认知知识.波利亚对具体范例的分析,基本上是对“问题及其解法”的再认知,已反映出开发元认知的朴素意图.波利亚的另一些问句,如“你能不能重新叙述这个问题?你能不能用不同的方法重新叙述它?”“你能不能改变未知数或数据,或者二者都改变,以使新未知数和新数据彼此更接近?”(接近度),“你能不能一下子看出它来?”(题感)等,则属于朴素的元认知体验.至于解题表本身,则自始至终体现着元认知调控.综上所述,“解题系统”是波利亚解题思想的整体框架,“分析解题过程”是波利亚解题思想的思维实质,“念头诱发”是波利亚解题思想的外在表现,“问题转换”是波利亚解题思想的具体实现,朴素的元认知观念是波利亚解题思想的心理学基础.而这一切的背后,丰富的数学前沿研究经历和发现体验是波利亚解题思想的物质基础,现代启发法是波利亚解题思想的灵魂,揭示“发现和发明的方法和规律”是波利亚解题思想的目标.4波利亚解题研究的发展4.1反思数学上存在证明的方法与发现的方法,在逻辑实证主义占主导地位的历史时期,关于数学发现方法的研究一度陷于停顿,波利亚的贡献就在于自觉承担起复兴数学启发法的重任,并提出合情推理,为数学启发法的现代研究提供了必要基础.20世纪80年代初期,美国数学教育界兴起的“问题解决”研究是对波利亚现代启发法的直接继承,曾经有“对波利亚的重新发现”、“数学启发法…几乎成了问题解决的同义词”等提法.但是,已有数学实践却未能获得预期的成功,尽管学生已经具备了必要的数学知识,也已经了解了相关的方法原则,或者说已执行了解题表的建议,却仍不能有效地解决问题,这不能不引起数学教育界的反思.(1)波利亚构建的“四阶段”解题系统具有开创性的意义,但局限于“四阶段”对学会“数学地思维”而言是不是有点简单化了?对数学问题解决全过程的探索可能比解题表所简洁描述的复杂得多.(2)数学启发法的现代复兴及其所取得的成功,无论怎样评价都不算过分,但启发法能不能看成影响问题解决能力的惟一要素?“知识+启发法”之外可能还有更多的因素需要重视(如“元认知调节”、“观念”等),“好念头”的出现可能也需要从方法论的角度做出更为自觉的分析.(3)波利亚从数学内部研究数学问题解决并强调解题实践是一个值得继承的研究方向(与那些连数学题都没有出现的解题研究形成鲜明对照,也与那些对中学教材作业题都不那么过关的研究者形成鲜明对照),但局限于“解题”、专注于技能技巧是不是狭窄了点?至少“问题发现(提出)”、“实际应用”都与解决问题有同样的重要性.4.2发展近十几年来,通过反思和对解题实践活动的深入考察,数学教育界已经在“问题解决”的全过程和“高级数学思维”的内外部机制等研究方面取得了新的进展,中国式的“问题解决”也初成特色,这些都构成了对波利亚。

波利亚的数学解题思想在求解一元一次方程实际问题中的应用-教育文档

波利亚的数学解题思想在求解一元一次方程实际问题中的应用-教育文档

波利亚的数学解题思想在求解一元一次方程实际问题中的应用一、波利亚的数学解题思想简介波利亚认为:“学校的目的应该是发展学生本身的内蕴能力,而不仅仅是传授知识。

”在数学学科中,波利亚认为能力就是指学生解决问题的才智,这里所指的问题,不仅仅是寻常的,它还要求人们具有某种程度的独立见解、判断力、能动性的创造精神。

他发现,在数学上要想获得重大的成就或发现,就应该注重平时的解题。

因此,波利亚曾指出:“中学数学教学的首要任务就是要加强解题的训练。

”而这种“解题”并不同于“题海战术”,波利亚主张在解题教学中要善于选择一道有意义但又不太复杂的题目去帮助学生深入挖掘题目的各个侧面,使学生通过这一道题,就如同通过一道大门进入一个暂新的天地。

他所提出的“怎样解题”表只是“题海游泳术”的纲领,他认为解题应该作为培养学生的数学才能和教会他们思考的一种手段和途径。

、二、波利亚解题表简介波利亚的解题思想集中体现在解题表上,该解题表主要分为四个部分,分别为理解题目、拟定方案、执行方案、回顾反思。

具体的步骤及问题如下表:三、一元一次方程实际问题教学的重要性方程是贯穿中学数学教学的一条重要纽带,而一元一次方程作为最基础的方程,是教学的重点,也是教学的难点。

掌握一元一次方程应用题解题方法是中学生学好方程的关键,也是学好数学的一个关键环节,能使学生在更深层次上理解数学,进而学好数学。

刚刚从小学升入初中的学生,通过对应用题的学习,对数学概念的形成,数学命题的掌握,数学方法和技能的获得都将起到重大的作用。

一元一次方程的应用是让学生通过审题,根据应用题的现实意义,找出等量关系,列出有关方程。

一元一次方程的应用题,为学生初中阶段学好必备的代数、几何的基础知识与基本技能,解决实际问题起到启蒙作用,对其他学科的学习也将起到积极的促进作用。

在提高学生解决问题能力,培养学生对数学的兴趣等方面有独特的意义。

如何能让学生对一元一次方程实际问题形成一种规范的解题思路,培养学生良好的解题习惯,拓展学生的解题思维呢本文以实例为载体,以波利亚的解题思想为理论基础对该问题进行了研究。

波利亚“怎样解题表”在初中数学几何解题中的应用——以一道中考题为例

波利亚“怎样解题表”在初中数学几何解题中的应用——以一道中考题为例

波利亚 怎样解题表 在初中数学几何解题中的应用以一道中考题为例杨㊀娟㊀钟文雯(成都市新都一中实验学校ꎬ四川成都610500)摘㊀要:为弥补初中学生因为思考的不完整性而导致的做题难的问题ꎬ文章借助波利亚 怎样解题表 ꎬ以2020年成都中考第25题为例ꎬ还原具体的解题教学过程ꎬ反思存在的问题ꎬ促进教师教学ꎬ提高学生数学思维品质和数学科学素养.关键词: 怎样解题表 ꎻ解题教学ꎻ回顾反思中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)11-0008-03收稿日期:2023-01-15作者简介:杨小娟ꎬ女ꎬ四川省成都人ꎬ中学一级教师ꎬ从事初中数学教学研究ꎻ钟文雯ꎬ女ꎬ四川省成都人ꎬ中学二级教师ꎬ从事初中数学教学研究.1问题提出通过对中考中难题的完成情况以及解题方法㊁策略的了解ꎬ学生发现他们在平时的解题中存在思路不清晰㊁思维过程不完整㊁没有对问题进行及时的回顾反思和深入思考等现象ꎬ导致在时间有限的中考中ꎬ很难在短时间内找到解决问题的方法并得出最终的正确答案.因此笔者希望能够通过利用经过长期实践验证的对学生解题有切实帮助的解题方法 波利亚 怎样解题表 ꎬ弥补学生思考的不完整性ꎬ帮助学生在日常的解题学习中ꎬ形成完整的解题思路ꎬ从而培养他们的数学思维ꎬ从根本上提高他们的数学素养.2波利亚 怎样解题表首先ꎬ理解题目.理解题目是解题的首要前提.从题目的叙述开始ꎬ熟悉题目ꎬ找出 未知量 ꎬ深入理解题目ꎬ将题目的主要部分分离出来ꎬ 已知数据是什么?条件是什么?[1]其次ꎬ拟定方案.拟定方案是解题的关键步骤.首先通过观察未知量ꎬ并尽量想出一道你所熟悉的具有相同或相似未知量的题目[1].通过对比两者的共同点和区别ꎬ总结出类似题目的解决方法和策略ꎬ并尝试应用到待解题目中ꎬ找出已知数据与未知量之间的直接或间接联系ꎬ必要时考虑辅助题目ꎬ最终得出一个解题方案.这个过程需要联系旧知ꎬ符合学生最近发展区.再次ꎬ执行方案.执行方案是解题的具体实施过程.执行之前拟定的方案是对解题方案的合理性和正确性的检验ꎬ培养学生整理零散思路ꎬ形成条理性思维.最后ꎬ回顾.回顾是对解题过程的检验和完善ꎬ是对数学思维和素养培养的提升.通过检验解题中所得到的结果和论证㊁用不同的方法推导结果实现一题多解并进行方法优劣的比较从中择优择简㊁考虑所得结果和方法在其它题目中的适用性最终实现对知识的迁移.但这个步骤在实际解题往往是最容易被忽略的. 怎样解题表 的四个环节是在完整解答一道题目时必定会涉及到的ꎬ是思维的层层递进ꎬ且更多的是教师启发性的提问ꎬ而不是一种解题的固定模式ꎬ所以教师在启发学生解答题目时ꎬ并非要涉及到8表中的所有问题ꎬ而应根据不同题目灵活运用ꎬ创造性地使用 怎样解题表 [2].3波利亚 怎样解题表 在初中数学解题及教学中的具体应用㊀㊀例1㊀面积为6的▱ABCD纸片中ꎬAB=3ꎬøBAD=45ʎꎬ按下列步骤进行剪裁和拼图.图1㊀▱ABCD剪开图㊀㊀㊀图2㊀平行四边形剪开图㊀㊀㊀图3㊀三角形DCF翻转图第一步:如图1ꎬ将▱ABCD纸片沿对角线BD剪开ꎬ得到әABD和әBCD纸片ꎬ再将әABD纸片沿AE剪开(E为BD上任意一点)ꎬ得到әABE和әADE纸片ꎻ第二步:如图2ꎬ将әABE纸片平移至әDCF处ꎬ将әADE纸片平移至әBCG处ꎻ第三步:如图3ꎬ将әDCF纸片翻转过来使其背面朝上置于әPQM处(边PQ与DC重合ꎬәPQM与әDCF在CD同侧)ꎬ将әBCG纸片翻转过来使其背面朝上置于әPRN处(边PR与BC重合ꎬәPRN与әBCG在BC同侧).则由纸片拼成的五边形PMQRN中ꎬ对角线MN长度的最小值为.3.1第一步:耐心审题ꎬ理解题目首先要明确目标: 该题的未知量是什么? 五边形的一条对角线的最小值.已知数据是什么?▱的面积㊁一条边和一个角.条件是什么?对▱ABCD纸片进行裁剪ꎬ并将某些部分进行平移㊁翻转变换得到五边形PMQRN.未知量和条件之间的联系是什么?或者说通过现有的条件是否能够确定未知量?3.2第二步:探索思路ꎬ拟定方案我们已经知道了未知量是五边形的一条对角线的最小值ꎬ那你们能想到一道和该题未知量相同的题吗?没有吧ꎬ我们没有学过怎样求五边形的对角线. 那能想到一道和该题未知量相似的题吗?抛开 五边形 这个前提ꎬ把重点放到 对角线 上ꎬ请大家仔细想想ꎬ有没有学过求其它多边形的对角线?有的ꎬ我们学过求正方形㊁长方形㊁还有菱形的对角线.非常好!大家想到了以前学过的三个特殊的四边形ꎬ那还能想起它们的对角线是怎么求的吗? 如果我们已知正方形的边长为aꎬ那么正方形的对角线就可以表示为a2+a2=2aꎻ若已知长方形的长为aꎬ宽为bꎬ则长方形的对角线就可以表示为a2+b2ꎻ若已知菱形的边长为aꎬ较小的内角为60ʎꎬ则菱形的较短的那条对角线就可以表示为2ˑasin30ʎ=aꎬ较长的那条对角线就可以表示为2ˑacos30ʎ=23a.连接MN后得到әMNP(如图4)ꎬ但不知道它是否为直角三角形.图4㊀图3变式1图㊀㊀图5㊀图3变式2图㊀图6㊀图3变式3图 所以下一步需要去尝试判断它是否为直角三角形?如果әMNP是直角三角形ꎬ那此时未知量是什么呢?未知量是RtәMNP(如图5)的斜边MN.如果我们知道了直角边MP和直角边NP的值ꎬ那我们就可以用勾股定理求出MN啦!那直角边MP和直角边NP的值是否已知呢? 未知ꎬ但通过题目中的已知数据和条件应该是可以求出MP和NP的值ꎬ是等于AE.所以只要求出AE的最小值ꎬMN的最小值就求出来啦!非常棒!现在解决这道题的方案就拟订好了:先证明әMNP是直角三角形ꎬMP=NP=AEꎻ再求AE的最小值.3.3第三步:执行方案ꎬ细化推理待解决的问题一:证明әMNP是直角三角形ꎬMP=NP=AE.9回归定义:平移㊁翻折是全等变换ꎬ变换前后的全等图形中对应边㊁对应角相等.证明:由题意可知:әADEɸәBCGɸәPRNꎬәABEɸәDCFɸәPQMꎬ因为øMPQ=øEABꎬøRPN=øDAEꎬPM=PN=AEꎬ所以øMPQ+øRPN=øEAB+øDAE=45ʎꎬ又因为▱ABCDꎬ所以øDAB=øDP(C)B=45ʎꎬ所以øMPN=øMPQ+øRPN+øDPB=45ʎ+45ʎ=90ʎꎬ于是MN=PM2+PN2=AE2+AE2=2AEꎬ待解决的问题二:求AE的最小值回归定义:垂线段最短.解:过点D作DHʅAB于点Hꎬ根据垂线段最短ꎬ因为当AEʅDB时ꎬAE最小ꎬ此时MN有最小值ꎬS平行四边形纸片ABCD=AB DH=6ꎬ所以DH=6AB=2ꎬ在RtәADH中ꎬAH=DHtan45ʎ=DH=2ꎬBH=AB-AH=1ꎬ所以在RtәBDH中ꎬBD=DH2+BH2=22+12=5ꎬSәABD=12AB DH=12BD AEꎬAE=AB DHDB=3ˑ25=655ꎬMN的最小值=2AE=6105.3.4第四步:回顾反思ꎬ深化理解3.4.1转换角度ꎬ一题多解解法一(分析法):在上述解答过程中ꎬ我们的关注点是放在未知量上ꎬ此时解题的思维模式是找未知量解出未知量所需要的条件ң对比题目已知数据和条件是否符合.解法二(直接法):在学生自主思考解题时ꎬ他们可能会把更多关注点是放在已知量上ꎬ此时解题的思维模式是看已知量ң通过已知量能得出的可能结果ң在众多结果中找到该题的结果.两种解法的思维方式和立足点是截然不同的.解法一是从结果找条件ꎬ解法二则是由已知推未知ꎬ显然解法一能很好的避免学生在解题过程中偏题ꎬ但对学生的知识储备和思维能力要求较高ꎬ而解法二则降低了对学生的思维能力要求ꎬ但同时也容易使学生在解题过程中偏离ꎬ浪费时间.3.4.2原题目条件不变ꎬ只改问题将原问题 则由纸片拼成的五边形PMQRN中ꎬ对角线MN长度的最小值为. 改为:则由纸片拼成的五边形PMQRN中ꎬ当对角线MN长度取最小值时ꎬ求阴影部分的面积?通过这样的改编ꎬ是在能够解决原问题的基础上ꎬ进一步加强了对三角形相似知识点的考查ꎬ拓宽了考查面ꎬ从不同角度探析其解题思路ꎬ并通过变式探究这一类问题的通解[3].通过利用波利亚 怎样解题表 解决上述问题ꎬ很好地展现了波利亚 怎样解题表 在初中数学解题中的具体应用ꎬ同时也反映出波利亚 怎样解题表 中所提供的完整的解题步骤.理解题目ꎬ弄清已知未知ꎻ联系旧知ꎬ以旧法解新题ꎬ已知未知建立联系ꎬ细化目标ꎬ逐一求解ꎻ回顾反思ꎬ深化结果迁移解题方法ꎬ为学生的数学解题提供了清晰的思路ꎬ能够帮助学生找到明确的解题方向最终得出正确答案.同时波利亚 怎样解题表 中所提到的 回顾 的环节ꎬ指导学生学习深入思考问题㊁发现问题㊁提出新问题ꎬ使学生的思维不仅仅局限于解这一道题上ꎬ对于提高学生的数学思维的培养也有很大帮助.因此ꎬ在日常解题教学中ꎬ教师应该起到积极引导的作用ꎬ有目的性地引导学生ꎬ灵活利用波利亚 怎样解题表 的解题思维进行解题ꎬ启发学生思考ꎬ从而有效提升解题效率.参考文献:[1]G.波利亚.怎样解题[M].涂泓ꎬ译.上海:上海教育科技出版社ꎬ2011.[2]徐彦辉. 怎样解题表 应用两例[J].高等数学研究ꎬ2014ꎬ17(04):67-70.[3]杨虎.解法赏析思变式变式探究寻通解[J].河北理科教学研究ꎬ2017(04):12-15.[责任编辑:李㊀璟]01。

波利亚的解题理论_2022年学习资料

波利亚的解题理论_2022年学习资料

解题过程:-·第1弄清问题-·条件(已知):-■1c-10:-2CosA/cosB-b/a=4/3-·③点 为△ABC内切圆上的动点、-口问题(未知):-·求点P到项点A、B、C的距离的平方和的-最小值和最大值。6
第2拟订计划-回忆原来有没有见过同类问题(没有),但见-过相关的问题:-o-1已知三角形的某些边角关系,判 三角形-的形状、解三角形等(知三求一,已知的三个-边角元素中至少有一个是边,题目基本符-合-·②如果三角形 以确定,那么此题就是求这-个三角形的某个特征曲线上的动点到三个顶-点的距离的平方和的最值问题。-17
如何解题-1.积累认识的资源-2.掌握转化的方法-3。及时调控的能力-4.良好信念系统的支持
波利亚的怎样解题表-解题过程分为以下四个阶段:-1.弄清问题-2.拟订计划-3.实现计划-4.回顾
波利亚的怎样解题表-1弄清问题-1未知数是什么?已知数据是什么?条件是什么?-满足条件是否可能?要确定未知 ,条件是否充分?或-者它是否不充分?或者是多余的?或者是矛盾的?-2画张图,并引入适当的符号.-3把条件的 部分分开,并把它们写下来。
波利亚《怎样解题表》简介-波利亚的数学教育思想概述-波利亚George Polya数学教育思想的核心问题数 学教育的目的是什么?-1波利亚主张数学教学的目的应当是提高学生的一般素-养:首先和主要的目标应当是教会青年 考、-2教什么样的思考?数学是什么?数学有什么特点?对数-学及其意义的认识的教学观起着决定性的作用。
我国数学解题研究的代表人物和代表作-罗增儒-戴再平-单蹲-朱华伟-·中学数学解题的-理论与实践M.-数学习 理论-南宁:广西教育-[M上海:上-出版社,2008-解题研究M.-海教育出版社,-年9:前言-南京:南京 -•数学解题策略-范大学出版社,-1991.3:-·数学解题学引论-2002.6-1996.10.-[M西 .陕西-•北京:科学出-师范大学出版社,-版社,2009.8.-1997.6-4

波利亚“怎样解题表”在最值问题中的应用

波利亚“怎样解题表”在最值问题中的应用

2013-10课堂内外乔治·波利亚是美籍匈牙利数学家、数学教育家,在解题方面,是数学启发法(指关于发现和发明的方法和规律)现代研究的先驱。

他在《怎样解题》一书中给出“怎样解题表”通过弄清问题—拟定计划—实现计划—回顾,四步呈现解题思维的全过程。

下面通过武汉市2013年中考数学第16题的解题过程来体会和展现波利亚解题风格。

一、例题如图1,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE =DF 。

连接CF 交BD 于点G ,连接BE 交AG 于点H 。

若正方形的边长为2,则线段DH 长度的最小值是。

A图1图2二、解题实践1.弄清问题问题1:你要求解的是什么?(要求解的是线段的最小值)问题2:你有些什么?一方面是题目条件中给出正方形边长是2;另一方面(如图2)由∠ABE =∠DCF=∠DAG 可得∠AHB =90°。

2.拟定计划问题3:怎样才能求得DH 的取值范围?(根据三角形中任意两边之和大于第三边,任意两边之差小于第三边,能否构造出如图3所示的△DHM ,并使DM 、HM 可求出,则DM-HM <DH <DM+HM)D图4问题4:怎样才能求得DH 的最小值?(如图4当D 、H 、M 三点共线,且点H 在点D 、点M 之间时,DH 最小;此时DH=DM -HM)BB图5图63.实现计划(如图5,取AB 中点M ,连HM 、DM ,由直角三角形斜边上的中线等于斜边的一半,可求出HM =12AB =1,由勾股定理可求出DM =AD 2+AM 2√=5√,则5√-1<DH <5√+1。

当D 、H 、M 三点共线时,DH 最小值为5√-1)4.回顾正确检验每一步,看推理是否有效,演算是否准确,再作特殊性检验。

如图6,取AB 中点M ,连DM ,在MD 上取HM =12AB =2,则可得DH 取最小值为5√-1的特殊图形。

三、解题方法和思维策略反思解题方法主要是从结论出发由后往前推成立的充分条件。

波利亚的解题表

波利亚的解题表
波利亚的解题表(总2页)
★学生除必须掌握逻辑分析方法外法还必须掌握探索性思维方法——乔治.波利亚
美国的数学家乔治?波利亚致力于探索解题过一般规律,将他自己数十年的教学与科研经验集中具体地表现在如下的解题表上:
☆“怎样解题”表☆
仔细审题
第一你必须弄清问题
弄清问题要做的工作:
1.未知数是什么?已知数据是什么?条件是什么满足条件是否可能要确定未知数,条件是否充分或者它是否不充分或者是多余的或者是矛盾的
2.画张图,引入适当的符号.
3.把条件的各个部分分开,你是否能把它们写出来?
第二找出巳知数与未知数之间的关系(很直接)
拟定计划
1.如果找不出直接的联系,你可能不得不考虑辅助问题!你应该最终得出一个求解的计划.
2.你以前见过它吗?你是否见过形式相同或形式稍有不同的问题
3.你是否知道与此有关的问题?是否知道可能用得上的定理?
5.你是否利用了所有的已知数据?你是否利用了整个条件你是否考虑了包含在题中的所有必要的概念?
实现你的计划
1.实现你的解题计划,检验每一步骤;
2.你能否清楚地看出这一步骤是正确的?你能否证明这一步骤是正确的?
检验回顾
1.你能否检验这个论证?2.能否用别的方法导出这个结论?3.你能不能一下子看出它来?
4.你能不能把这结果或方法用于其它的问题?
5.你能不能改变问题的条件成结论,得出另外的更一般或更特殊的问题?
看着木知数!试想出一个具有相同未知数或相似未知数的熟悉的问题.这里有一个与你现在的问题有关,且早已解决的问题,你能不能利用它
你能否利用他的的结果为了能利用它,你是否应该引人某些辅助元素
你能不能重新叙述这个问题?能不能用不同的方法的重新叙述它回到定义去。

波利亚的解题理论

波利亚的解题理论

波利亚的解题理论一、波利亚的生平及主要著作对于我们数学学习者而言,大多都有过这样的经历:一道题,自己怎么想也想不出解法,而老师却给出了一个绝妙的解法。

这时候,我们最想知道“老师是怎么想出这个解法的”,如果这个解法不是很难,我们也许会问“自己完全可以想出,但为什么我没有想到呢?”要回答这个问题,实际上牵涉到对揭发数学问题解决规律的深入研究。

综观历史来看,美籍匈牙利数学家乔治。

波利亚(George Polya,1887-1985)不仅对上述问题特别感兴趣,而且在该领域做出了许多奠基性的工作。

波利亚是法国科学院,美国科学院和匈牙利科学院的院士,1887年出生在匈牙利,青年时期曾在布达佩斯、维也纳、哥廷根、巴黎等地攻读数学、物理和哲学,获博士学位。

1914年在苏黎世著名的瑞士联邦理工学院任教。

1940年移居美国,1942年起任美国斯坦福大学教授。

他一生发表200多篇论文和许多专著。

他在数学的广阔领域内有精深的造诣,对实变函数、复变函数、组合论、概率论、数论、几何等若干分支领域都做出了开创性的贡献,一些术语和定理都以他的命名。

由于他在数学教育方面所取得的成就和对世界数学教育所产生的影响,在他93岁高龄时,还被ICME(国际数学教育大会)聘为名誉主席。

《怎样解题》(1944),《数学的发展》(1945)和《数学与猜想》(1961)这三本书就是他智慧的结晶。

这些书被译成很多国家的文字出版,其中《怎样解题》一书被译成17种文字,仅平装本就销售了100万册以上。

著名数学家范。

德。

瓦尔登1952年2月2日在瑞士苏黎世大学的会议致辞中说:“每个大学生,每个学者,特别是每个老师都应该都读读这本引人入胜的书”。

这些书成了世界范围内的数学教育名著,对数学教育产生了深刻的影响。

二、波利亚对数学教育的基本看法波利亚对于数学教育的目的、价值、方法非常关注。

他认为,“中小学生到底为什么要学习数学?要学什么样的数学?通过什么途径学好数学?”具体一点就是,在中小学阶段,是以“学数学”为主呢,还是以学如何“用数学”为主呢?这一点必须弄清楚。

波利亚的解题过程

波利亚的解题过程

波利亚解题“怎样解题”思路剖析例题例题:如图11所示,AB是⊙O的直径,AD是弦,∠DBC=∠A.(1)求证:BC与⊙O相切.(2)若OC是BD的垂直平分线,垂足为E,BD=6,CE=4,求AD的长.(一)通过审题, 弄清问题, 培养学生分析已知条件的习惯审题过程就是要审清题目数量关系,知道该道题讲的是什么,并能找出已知条件,使题目的条件、问题及其关系在学生头脑中建立起完整的印象,为正确分析数量关系和解答问题创造良好的前提条件。

对题中揭示数量关系的关键句要反复推敲,理解它的真实含义,对题中揭示数量关系的关键句要反复推敲,理解它的真实含义。

讲解第一步、弄清问题:1.(1)问中求证的是什么?(2)中未知数是什么?你能复述它吗?答:(1)中求证BC与⊙O相切,(2)中要求我们求AD的长。

2.已知数据是什么?你能复述它吗?可以用数学语言来叙述题意吗? 可以画张图吗? 答:已知:AB是⊙O的直径(如上图11),AD是弦,∠DBC=∠A.则我们由图可知∠ADB是⊙O的圆周角,等于90°,那么∠A+∠ABD=90°。

(2)中已知OC是BD的垂直平分线,垂足为E,BD=6,CE=43.条件是什么?答:AB是⊙O的直径(如上图11),AD是弦,∠DBC=∠A4.满足上述条件(1)是否可能成立?能否求出AD的长?答:满足上述条件(1)能成立。

但不能求出AD的长,如果要求出AD的长那么我们还有加上一下条件即可:OC是BD的垂直平分线,垂足为E,BD=6,CE=45.要确定未知数,条件是否充分?答:要确定未知数,如上所述是充分的。

6.是否需要引入适当的符号?如果需要,分别有哪些?有什么含义?答:一般情况下做这些几何类型的题目为了方便书写和理解我们都会适当引入符号,但这题相对比较简单易懂,就不需要引入了,如果在很多线,很复杂的图形中就必须得引入。

7.把条件的各个部分分开,你能否把它们写下来?答:能。

AB是⊙O的直径AD是弦,∠DBC=∠AOC是BD的垂直平分线,垂足为E,BD=6,CE=4(1)已知:AB是⊙O的直径,AD是弦,∠DBC=∠A.求证:BC与⊙O相切.(2)已知:AB是⊙O的直径,AD是弦,∠DBC=∠A.BC与⊙O相切,OC是BD的垂直平分线,垂足为E,BD=6,CE=4求解:AD的长效果:通过以上的审题和分析已知条件,使学生弄清了题意并数学化,同时大脑中有了一个平面模型,更清晰地了解题目。

简述波利亚解题表的四个步骤

简述波利亚解题表的四个步骤

简述波利亚解题表的四个步骤
波利亚解题表的四个步骤分别是:弄清问题、拟定计划、实现计划和反思。

这四个步骤可以帮助学生更好地理解和解决数学问题。

弄清问题是解决数学问题的第一步。

在这个阶段,学生需要仔细阅读题目,理解题目的要求和条件。

此外,学生还应该尝试将问题转化为更容易解决的形式,这可以通过观察、画图、列举例子等方法来实现。

接下来是拟定计划阶段。

在这个阶段,学生需要根据自己对问题的理解,制定一个解决问题的策略。

这包括选择合适的数学方法、公式或定理,以及确定解题的步骤。

在这个阶段,学生可以参考课本、笔记或老师的讲解,寻找解决问题的线索。

在实现计划阶段,学生需要按照拟定的策略,逐步解决问题。

这需要学生熟练掌握相关的数学知识和技能。

在这个阶段,学生可能会遇到一些困难,需要调整策略或寻求帮助。

最后是反思阶段。

在这个阶段,学生需要对解题过程进行总结和反思。

这包括检查解题过程的准确性,分析解题方法的可行性和效率,以及思考如何改进解题策略。

反思可以帮助学生巩固所学知识,提高解题能力。

总之,波利亚解题表的四个步骤为学生在解决数学问题提供了有力的指导。

通过弄清问题、拟定计划、实现计划和反思,学生可以更好地理解问题,提高解题效率,并培养自己的数学素养。

在日常学习
中,学生可以多加练习,熟练掌握这四个步骤,从而在解决数学问题时更加游刃有余。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乔治.波利亚的数学"解题表"学习法
G.波利亚,是美籍匈牙利数学家,教育家.他十分重视解题在数学学习中的重要作用,数十年如一日对解题方法进行研究,凝聚成一张"解题表"(如有条件,参见乔治.波利亚的原著).这张表提供了一套解决数学问题的一般方法与模式,为解决问题指明了方向,并揭示了解题中的思维过程和思维方法.悉心体会这张表中层层递进的各个问题,相信会对我们的数学学习有所启迪.一.弄清问题.1,已知是什么?未知是什么?
2,条件是什么?结论是什么?
3,画个草图,引入适当的符号.
二,拟定计划.1,见过这道题或与之类似的题吗?
2,能联想起有关的定理或公式吗?
3,再看看未知条件!
4,换一个方式来叙述这道题.
5,回到定义看看!!
6,先解决一个特例试试.
7,这个问题的一般形式是什么?
8,你能解决问题的一部分吗?
9,你用了全部条件吗?
三,实行计划.1,实现你的解题计划并检验每一步.
2,证明你的每一步都是正确的.
四,回顾反思.1,检查结果并检验其正确性.
2,换一个方法做做这道题.
3,尝试把你的结果和方法用到其他问题上去.
这张解题表看似简单,实际上它给出了一套解决数学问题的一般方法与模式,同时还揭示了解题中的思维方法和思维过程。

你的解题习惯和这个“解题表”一样吗?
如果你觉得自己常常不会思考——“不知道怎么想”,请你参考“一.3.”和“二.3.4.5.6.8.9.”;
如果你常常做错题——“会做,但未做对”,请你参考“三.四.”。

悉心体会并把握表中各层的要领,相信对你的数学学习会起到很大的帮助作用。

在这里提醒两点,一是一定要画图,并标上符号和数字,二是一定要重视回顾反思这一步,只有这一步才能从题海中解放出来,才能做到:虽然只做了有限的题目,但能够解无限的问题.
波利亚·数学解题表
波利亚对数学解题的过程进行了深入的研究,认为整个解题过程分为四个阶段,即:弄清问题、拟定计划、实现计划、反思回顾,并给出了具有启发性的“怎样解题”表。

弄清问题
未知是什么?已知是什么?条件是什么?满足条件是否可能?要确定未知,条件是否充分?或者它是否不充分?或者是多余的?或者是矛盾的?画张图,引入适当的符号,把条件的各个部分分开,你能否把它写下来?
拟定计划
你以前见过它吗?你是否见过相同的问题而形式稍有不同?你是否知道与此有关的问题?你是否知道一个可能用得上的定理?看着未知数,试想出一个具有相同未知数或者相似未知数的熟悉的问题。

这是有一个与你现在的问题相关,且早已解决的问题。

你能不能利用它们?你能利用它的结果吗?你能利用它的方法吗?为了能够利用它,你是否应该引入某些辅助元素?你能不能够重新叙述这个问题?你能不能用不同的方法重新叙述它?如果你不能解决提出的问题,可先解决一些有关的问题,你能否想出一个更容易着手的有关的问题?一个更普遍的问题?一个更特殊的问题?一个类比的问题?你能否解决这个问题的一部分?仅仅保持条件的一部分而舍去其余部分,这样对于未知数能确定到什么程度?它会怎样变化?你能不能从已知数据导出某些有用的东西?你能不能想出适合于确定未知数的其它数据?如果需要的话,你能不能改变未知数或者数据,或者都改变,以使新未知数和新数据彼此更接近?你是否利用了所有已知数据?你是否利用了整个条件?你是否考虑了包含在问题中的必要概念?
实现计划
实现你的求解计划,检验每一步骤。

你能否清楚看出这一步骤的正确性?你能否证明这一步骤的正确性?
回顾反思
你能否检验这个论证?你能否用别的方法导出这个结果?你能不能一下子看出它来?你能不能将这一结果或方法用于其他问题?
在这四个阶段中“实现计划”较为容易的,需要的只是解题者的耐心和认真;“弄清问题”则是成功解决问题的前提;“回顾”是最容易忽视的一个环节,通过回顾所完成的解答,通过重新考虑和重新检查这个结果和得出这一结果的思路,解题者,可以巩固他们的知识和发展他们的解题能力,进一步形成认知能力。

“拟定计划”才是解决问题的关键所在。

波利亚指出“最糟糕的情况是:没有理解问题就进行演算或作图,一般来说,在尚未看到主要联系或者尚未作出某种计划的情况下,去处理细节是毫无用处的。


从思维的角度上分析,在解题过程中思维活动主动表现为动员和组织,即从记忆中把有关条款抽出来或者把有关条款有目的地联系起来,进行丰富的联想,这依赖于解题者完善的认知结构和优良的思维品质。

资源充足和组织良好的知识仓库是解题者的重要资本,形成良好的知识结
构成为数学学习者的落脚点。

解题思考步骤、程序表。

相关文档
最新文档