超声诊断仪

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5节 B型超声成像诊断仪

B型超声显示影像真实、直观,而且可以实现实时动态成像显示,具有很高的诊断价值,受到医学界的高度重视和普遍接受,因此,虽然B型超声波成像诊断仪临床应用历史不长,发展却非常迅速,目前在各级医院应用极为广泛。本节对几种应用较广又具代表性的B型超声成像诊断仪的工作原理作一扼要介绍。

一、机械扇形扫描B超仪

超声波束以扇形方式扫查,可以不受透声窗口窄小的限制而保持较大的探查范围。比如对心脏的探查,由于胸骨和肋骨的阻碍,就只宜用扇形扫描B型超声波诊断仪进行。由于心脏运动速度快,为了实现实时动态显示,要求用于心脏探查的扇形扫描B型诊断仪具有较高的成像速度,一般在每秒30帧以上,同时应具有足够的探查深度和适量的线密度。

产生高速机械扇形扫描通常采用的方法有2种,其一是单振元曲柄连杆摆动法,其二是风车式多振元(3个或4个晶体换能器)旋转法。

1.摆动式扇扫B超仪

摆动式扇扫B超仪探头利用直流电机或步进电机驱动,通过凸轮、曲柄、连杆机构将电机的旋转运动转换为往返摆动,从而带动单个晶体换能器在一定角度(30°~90°之间)范围内产生扇形超声扫描,由于用于收发超声的晶体换能器在工作过程中是往返摆动的,因此它不能像A超探头那样直接与人体接触,

而需通过某种声媒质来传递超声,通常这种声媒质为蓖麻油。这样既可以使换能器自由运动,又保证了探头发射超声能量能有效地传送。一种典型的高速机械扇形扫描B型超声诊断仪电原理方框图如图7-14所示。同步发生器控制整机的同步工作,同步信号频率通常为3~4kHz(即探头发射脉冲的重复频率),当帧频一定时,同步信号频率的高低决定了扫描的帧线数。例如,当同步信号频率取3kHz,帧扫描频率取每秒30帧,则每帧

图7-14 机械扇扫B超仪原理框图

扫描线为100根。适当加大同步信号的频率,在帧扫描频率不变的情况下,每帧的扫描线数可以做得更高,从而使扫描线密度加大,影像的清晰度提高。

理论上,信号的采集可以在探头中换能器往返摆动的过程中重复进行。对30Hz帧频而言,摆动速度只需每秒15次即可。但由于机械传动系统不可避免地存在间隙,往返摆动所获得的两幅影像对应像素会出现位置上的偏差,因而使重建影像的稳定性变差。因此,接收机往往仅在换能器摆动的正程采集信号,而对逆程的回波信号予以舍弃,这就需将摆动速度提高1倍,使之达每秒30次。虽然实现这种速度在技术上并不困难,但由于摆速高,加速度大,致使噪声和振动加剧。

图7-15 旋转式扇扫探头示意图

2.旋转式扇扫B超仪

摆动式探头噪声大而且机械结构相对复杂,其寿命和扫描均匀性都不尽如人意,因此便出现了针对性的改进型设计��旋转式。旋转式基本可以克服摆动式的缺点,它的探头是采用4个(或3个)性能相同的换能器,等角度安放在一个圆形转轮上,马达带动转轮旋转,每个换能器靠近收/发窗口时开始发射和接收超声波,各换能器交替工作,如图7-15所示。因此,对于4晶片探头,转轮每旋转1周,声束对人体作4次扇形扫查,在荧光屏上获得4帧影像。而对于3晶片探头,转轮每旋转1周,在荧光屏上可获得3帧影像。当要求帧扫描为每秒30次时,驱动马达的旋转速度仅需每秒7.5周或10周。

旋转式探头驱动马达只需单方向旋转,转速均匀,没有加速度,加之转速低,因此,扫描均匀,噪声和振动都很小,其寿命远较摆动式长。但旋转式探头对所用晶片的一致性要求很高。采用旋转式探头的扇扫B型超声诊断仪的电路原理与摆动式基本相同。

二、高速电子线形扫描B超仪

将多个声学上相互独立的压电晶体成一线排列称作线阵,用电子开关切换接入发射/接收电路的晶体,使之分时组合轮流工作,如果这种组合是从探头的一侧向另一侧顺序进行的,每次仅有接入电路的那一组被激励,产生合成超声波束发射并接收,即可实现电子控制下的超声波束线性扫描。

电子线扫B型超声波诊断仪的原理如图7-16所示。

图7-16 电子线扫B超仪原理框图

由n个振子(或称振元)组成线阵换能器,各振子中心间距为d。每次发射和接收,由相邻m个振子构成一个组合,并借助电子开关顺序改变这种组合。比如,第1次由组合m1(假定由振子1~4组合)进行发射和接收,此时发射声束中心位于振子2、3中间,并与探头垂直;第2次发射由组合m2(由振子2-5组成)进行,此时发射声束中心位于振子3、4之间。两次发收波束空间位移为d,按顺序经过(n-m+1)次发射和接收,即可完成声束横向扫描范围为(n-m+1)d的一帧完整影像的探查。

重建影像在垂直方向上采用平行光栅,这只要使形成光栅的x和y轴向上的锯齿波脉冲与控制信号严格同步即可。控制信号同时决定发射脉冲的重复频率和扫描光栅的行频,当发射脉冲重复频率为4kHz时,如果光栅扫描满幅线数取128线,则影像帧频约为每秒31帧。光栅扫描满幅线数的多少影响影像的质量,满幅线数愈多、即线密度愈高,则影像也愈清晰。但光栅满幅线数的多少并不是可以随意设定的,它受探头结构尺寸大小以及波束扫描方式的限制。当扫描方式确定后,在探头宽度一定的情况下,线数的多少只能依靠发射脉冲重复频率的改变来控制。当脉冲重复频率和扫描方式确定后,探头越宽,视野则越增大,但线密度必然降低。

在探头已选定的情况下,探头中各晶体投入工作的次序和方式,即波束扫描制式将直接影响到扫描

的线数,比如,将顺序扫描方式改为d/2间隔扫描方式,将可以使波束扫描的线密度提高1倍。

三、电子相控阵扇形扫描B超仪

应用相控技术,对施加于线阵探头的所有晶体振元的激励脉冲进行相控制,亦可以实现合成波束的扇形扫描,用此技术实现波束扫描的B型超声波诊断仪称为电子相控阵扇型扫描B超仪。

1.相控阵扫描原理

前已述及,对成线阵排列的多个声学上相互独立的压电晶体振元同时给予电激励,可以产生合成波束发射,且合成波束的方向与振元排列平面的法线方向一致,这种激励方式称为同相激励,其合成波束指向性如图7-17所示。

图7-17 同相激励指相性图

如果对线阵排列的各振元不同时给予电激励,而是使施加到各振元的激励脉冲有一个等值的时间差τ,如图7-18(a)所示,则合成波束的波前平面与振元排列平面之间,将有一相位差θ。因此,合成波束的方向与振元排列平面的法线方向就有一相位差θ。如果均匀地减少τ值,相位差θ也将随着减少。当合成波束方向移至θ=0后,使首末端的激励脉冲时差逆转并逐渐增大,则合成波束的方向将向-θ增大的方向变化,如图7-18(b)所示。从图7-18(a)、(b)可以看出,如果对超声振元的激励给予适当的时间控制,就可以在一定角度范围内实现超声波束的扇形扫描。这种通过控制激励时间而实现波束方

相关文档
最新文档