MATH 401Probability and Statistics

合集下载

概率论与数理统计(第3章)

概率论与数理统计(第3章)

F(x ,y) P{(X 剟x) I (Y y)} P{X 剟x ,Y y}
(3-1)
为二维随机变量 (X ,Y) 的联合分布函数,简称分布函数.
如果将二维随机变量 (X ,Y) 视为 xOy 平面上随机点的坐标,那
么分布函数 F(x ,y) 在点 (x ,y) 处的函数值 二维随机变量函数的分布
第3章 多维随机变量及其分布
在第2章,我们主要讨论了一维随机 变量及其分布问题.但在实际问题中,有 许多随机试验的结果,仅用一个随机变量 是无法表示出来的.研究这些随机试验, 需要引入多维随机变量的概念.因此,本 章将重点讨论二维随机变量及其分布,对 于三维及更多维的随机变量可依此类推.
arctan
y

因此,两个边缘分布函数分别为
FX
(x)
F(x

)
lim
y
F(x
,y)
1 π
π 2
arctan
x

FY
( y)
F( ,y)
lim
x
F(x ,y)
1 π
π 2
arctan
y

第3章 多维随机变量及其分布
3.2 二维离散型随机变量
3.2.1 二维离散型随机变量的概念与分布律
定义 1 若二维随机变量 (X ,Y) 所有可能取的值为有限对或可列无限 多对,则称 (X ,Y) 为二维离散型随机 变量.
解 由二维随机变量的分布函数的性质得
lim
x
y
F(x
,y)
lim
x y
A(B
arctan
x)(C
arctan
y)
A
B
π 2

《概率论与数理统计》(46学时)课程教学大纲

《概率论与数理统计》(46学时)课程教学大纲

《概率论与数理统计》(46学时)课程教学大纲一、课程的基本情况课程中文名称:概率论与数理统计课程英文名称:Probability Theory and Mathematical Statistics课程编码:0702003课程类别:学科基础课课程性质:必修总学时:46 讲课学时:46 实验学时:0学分:2.5授课对象:本科相关专业前导课程:《高等数学》《线性代数》二、教学目的概率论与数理统计是研究随机现象统计规律性的数学学科,是理工科各专业的一门重要的学科基础课。

通过本课程的学习,使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。

同时,也为一些后续课程的学习提供必要的基础。

三、教学基本要求第一章概率论的基本概念1.1 随机试验1.2 样本空间、随机事件1.3 频率与概率1.4 等可能概型(古典概型)1.5 条件概率1.6 独立性基本要求:1. 理解随机试验、样本空间、随机事件的概念并掌握事件的关系与运算2. 掌握概率的定义与基本性质3. 理解古典概型的概念,掌握古典概率的计算方法4. 理解条件概率的定义,熟练掌握乘法定理、全概率公式与贝叶斯公式并会灵活应用5. 理解事件独立性的概念,熟练掌握相互独立事件的性质及有关概率的计算重点与难点:1. 重点:随机事件;概率的基本性质及其应用;乘法定理、全概率公式与贝叶斯公式事件的独立性2. 难点:概率的公理化定义、条件概率概念的建立、全概率公式与贝叶斯公式的应用第二章随机变量及其分布2.1 随机变量2.2 离散型随机变量及其分布律2.3 随机变量的分布函数2.4 连续型随机变量及其概率密度2.5 随机变量的函数的分布 基本要求:1. 理解随机变量的概念;掌握离散型随机变量和连续型随机变量的描述方法2. 掌握分布律、分布函数、概率密度函数的概念及性质;掌握由概率分布计算相关事件的概率的方法3. 熟练掌握二项分布、泊松(Poisson )分布、正态分布、指数分布和均匀分布,特别是正态分布的性质并能灵活运用;熟练掌握伯努利概型概率的计算方法4. 熟练掌握一些简单的随机变量函数的概率分布的求法 重点与难点:1. 重点:随机变量、分布律、密度函数和分布函数的概念;二项分布、均匀分布的概念和性质2. 难点:二项分布的推导及应用;随机变量函数的概率分布第三章 多维随机变量及其分布 3.1 二维随机变量 3.2 边缘分布 3.3 条件分布3.4 相互独立的随机变量3.5 两个随机变量的函数的分布 基本要求:1. 正确理解二维随机变量的定义,掌握二维随机变量的联合分布律、联合分布函数、联合概率密度函数及条件分布的概念2. 熟练掌握由联合分布求事件的概率,求边缘分布及条件分布的基本方法3. 理解随机变量独立性的概念,掌握随机变量独立性的判别方法4. 了解求二维随机变量函数分布的基本思路,会求,max{,},min{,}X Y X Y X Y 的分布 重点与难点:1. 重点:由联合分布求概率,求边缘分布及条件分布的方法2. 难点:求离散型随机变量联合分布律的方法,条件密度的导出,随机变量函数的分布第四章 随机变量的数字特征 4.1 数学期望 4.2 方差4.3 协方差及相关系数 4.4 矩、协方差矩阵 基本要求:1. 掌握随机变量及随机变量函数的数学期望的计算公式,熟悉数学期望的性质并能灵活运用2. 掌握方差的概念和性质;熟悉二项分布、泊松分布、正态分布、指数分布和均匀分布的数学期望和方差;了解切比雪夫(Chebyshev )不等式3. 掌握协方差和相关系数的定义和性质,并会灵活应用4. 掌握矩、协方差矩阵的定义 重点与难点:1. 重点:数学期望、方差、相关系数与协方差的计算公式及性质2. 难点:随机变量函数的数学期望的计算,利用数学期望的性质计算数学期望,相关系数的含义第五章大数定律及中心极限定理5.1 大数定律5.2 中心极限定理基本要求:1. 掌握依概率收敛的概念及贝努利大数定律和契比雪夫大数定律2. 掌握独立同分布的中心极限定理和德莫佛-拉普拉斯(De Moivre-Laplace)极限定理3. 掌握应用中心极限定理计算有关事件的概率近似值的方法重点与难点:1. 重点:用中心极限定理计算概率的近似值的方法2. 难点:依概率收敛的概念第六章样本及抽样分布6.1 随机样本6.2 抽样分布基本要求:1. 理解总体、个体、样本容量、简单随机样本以及样本观察值的概念2. 理解统计量的概念;熟悉数理统计中最常用的统计量(如样本均值、样本方差)的计算方法及其分布χ-分布,t-分布,F-分布的定义并会查表计算3. 掌握24. 熟悉正态总体的某些常用统计量的分布并能运用这些统计量进行计算重点与难点:χ-分布, t-分布, F-分布的定义与分位点的查表;正态总体常用统计量的分布1. 重点:2χ-分布, t-分布, F-分布的定义与分位点的查表2. 难点:2第七章参数估计7.1 点估计7.3 估计量的评选标准7.4 区间估计7.5 正态总体均值与方差的区间估计7.7 单侧置信区间基本要求:1. 理解参数的点估计(矩估计、最大似然估计)的计算方法2. 掌握参数点估计的评选标准:无偏性,有效性和相合性3. 理解参数的区间估计的概念,熟悉对单个正态总体和两个正态总体的均值与方差进行区间估计的方法及步骤重点与难点:1. 重点:点估计的矩法、最大似然估计法;正态总体参数的区间估计2. 难点:最大似然估计法,两个正态总体的参数的区间估计四、课程内容与学时分配五、教材参考书教材:盛骤谢式千潘承毅《概率论与数理统计》(第三版)高等教育出版社2001. 参考书:[1] 茆诗松《概率论与数理统计教程》(第一版)高教出版社2004.[2] 王展青李寿贵《概率论与数理统计》(第一版)科学出版社2000.六、教学方式和考核方式1.教学方式:以课堂讲授为主,辅以答疑、课后作业。

概率论与数理统计英语

概率论与数理统计英语

概率论与数理统计英语English: Probability theory and mathematical statistics are two branches of mathematics that deal with the concepts and tools used to understand randomness and uncertainty in various phenomena. Probability theory is concerned with quantifying uncertainty and making predictions about the likelihood of certain events occurring, while mathematical statistics uses probability theory to draw conclusions about populations based on sample data. These two fields are closely related and often used together in applications such as insurance, finance, engineering, and social sciences. Probability theory involves concepts such as random variables, probability distributions, and the laws of large numbers, while mathematical statistics covers topics such as estimation, hypothesis testing, and regression analysis. Together, they provide a framework for understanding uncertainty and making informed decisions in the face of incomplete information.中文翻译: 概率论和数理统计是数学的两个分支,涉及用于理解各种现象中的随机性和不确定性的概念和工具。

(完整word版)英文版概率论与数理统计重点单词

(完整word版)英文版概率论与数理统计重点单词
贝叶斯公式、逆概率公式
Bayes formula
后验概率
posterior probability
先验概率
prior probability
独立事件
independent event
独立随机事件
independent random event
独立实验
independent experiment
两两独立
classical probabilistic model
几何概率
geometric probability
乘法定理
product theorem
概率乘法
multiplication of probabilities
条件概率
conditional probability
全概率公式、全概率定理
formula of total probability
基本事件
elementary event
必然事件
certain event
不可能事件
impossible event
等可能事件
equally likely event
事件运算律
operational rules of events
事件的包含
implication of events
并事件
union events
似然方程
likelihood equation
似然函数
likelihood function
区间估计
interval estimation
置信区间
confidence interval
置信水平
confidence level

概率论与数理统计 外国教材

概率论与数理统计 外国教材

概率论与数理统计外国教材
以下是几本外国教材推荐:
1. "Probability and Statistics" by Morris H. DeGroot and Mark J. Schervish - 这是一本经典的概率论和数理统计教材,涵盖了概率、随机变量、统计推断等内容。

它注重理论和实践的结合,适合初学者和高级学生。

2. "All of Statistics: A Concise Course in Statistical Inference" by Larry Wasserman - 这本教材适合具有一定数学背景的学生。

它深入讲解了统计推断的理论和实践,并提供了大量的例子和习题。

3. "A First Course in Probability" by Sheldon M. Ross - 这本教材适合对概率论感兴趣的学生。

它以易理解和直观的方式介绍了概率理论的基本概念和技巧,并包含了很多例子和习题。

4. "Mathematical Statistics with Applications" by Dennis D. Wackerly, William Mendenhall, and Richard L. Scheaffer - 这本教材注重统计学的应用。

它介绍了概率、统计推断和假设检验等内容,并提供了大量实际应用的例子和习题。

这些教材都是经过广泛使用和认可的,可以根据个人的学习需求和背景选择合适的教材进行学习和参考。

概率论与数理统计参考书目

概率论与数理统计参考书目

概率论与数理统计参考书目一. 概率论参考书目1. 《概率论基础》(第二版),李贤平编著,高等教育出版社,1997.2. 《概率论》,苏淳编著,科学出版社,2004.3. 《概率论引论》,汪仁官编著,北京大学出版社,1994.4. 《概率论》,何书元,北京大学出版社,20065.《概率论》,林正炎,苏中根编,浙江大学出版社,2003(第二版).6.《概率论》应坚刚何萍编著,复旦大学出版社,20057.《Probability : The Science of Uncertainty with Application to Investments,Insurance,andEngineering》(影印版),Michael A.Bean编著,机械工业出版社,2003.8. 《A First Course in Probability》(影印版,6th Ed),Sheldon Ross编著,中国统计出版社,2003.9.《概率论基础教程》(A First Course in Probability (6th Edition))Sheldon Ross编著,赵选民等翻译,机械工业出版社,200610 《概率论及其应用(第3版)》(An Introduction to Probability Theory and Its Applications)威廉·费勒编著,胡迪鹤翻译,人民邮电出版社,2006二. 数理统计参考书目1、《数理统计》,茆诗松、王静龙编著,华东师范大学出版社,1990.2、《数理统计学讲义》,陈家鼎、孙山泽、李东风编著,高等教育出版社,1993.3、《数理统计——基本概念及专题》,Peter J.Bickel编著、李泽慧等译,兰州大学出版社,1991.4、《数理统计讲义》,郑明陈子毅汪嘉冈编著,复旦大学出版社,20065. 《A Course in Probability and Statistics》(影印版),Charles J.Stone编著,机械工业出版社,2003.6. 《Mathematical Statistics and Data Analysis》(影印版,2th Ed),John A.Rice编著, 机械工业出版社,2003.7. 《统计推断》(Statistical Inference)(美)George Casella,Roger L.Berger 编著,机械工业出版社,20058. 《数理统计学导论(第5版)》(影印版),Robert V.Hogg,Allen T.Craig 编著,高等教育出版社,20049. 《数理统计与应用》(第7版-影印版)(John E. Freund's Mathematical Statistics with Applications, Seventh Edition),IRWIN MILLER,MARYLEES MILLER编著,清华大学出版社,2005三. 概率论与数理统计参考书目1. 《概率论与数理统计教程》,茆诗松、程依明、濮晓龙编著,高等教育出版社,2004.2.《概率论与数理统计教程》,魏宗舒等编,高等教育出版社19833. 《概率论与数理统计》,陈希孺编著,科学出版社,2002.4. 《概率论与数理统计》,李贤平编著,复旦大学出版社,2003.5. 《应用概率统计》,王学民编著,上海财经大学出版社,2005.6. 《概率论与数理统计三十三讲》(第2版),魏振军编著,中国统计出版社,2005.7. 《概率论与数理统计》(第2版),王松桂张忠占程维虎高旅端编著,科学出版社,2004 8.《概率论与数理统》,浙江大学盛骤等编,高等教育出版社2001(第三版)。

第四章 随机变量的数字特征

第四章 随机变量的数字特征




g ( x) f ( x)dx 绝对收敛,则有
E (Y ) E[ g ( X )]



g ( x) f ( x)dx .
x
k 1

k
pk
x 收敛而
k 1

k
pk
发散的例子:
k
2k 随机变量 X 的取值为 x k (1) k (k 1, 2, ) ,分布律为 1 P{ X x k } p k k (k 1, 2, ) , 2
2012年6月20日星期三
8 / 69
§4.1 数学期望
k
到最小值.此时得到最好的分组方法.
若 N 1000 , 此时以 k 4 分组, 则按第二种方案平均只 需化验
1 4 1000 1 0.9 594 (次 ), 4 这样平均来说,可以减少 40%的工作量.
2012年6月20日星期三
15 / 69
§4.1 数学期望
dt

t 2

e
t2 2
dt

19 / 69
2012年6月20日星期三
§4.1 数学期望
[ 例 1-9] 设 随 机 变 量 X 服 从 柯 西 分 布, 其密度函数为 1 f ( x) (1 x 2 ) ( x ) ,求 E ( X ) .
则 N 个人平均需化验次数 N .当 p 固定时,我们选择 k 使得
1 k, 小于 1 且取到最小值,这时就得到最好的分组方法. L 1 qk
2012年6月20日星期三
14 / 69
§4.1 数学期望
1 L 1 q p 0 . 1 q 0 . 9 k 4 例如, ,则 ,当 时, k取

《概率论与数理统计》(全英语)教学大纲课程名称概率

《概率论与数理统计》(全英语)教学大纲课程名称概率

《概率论与数理统计》(全英语)教学大纲课程名称:概率论与数理统计学时:48学时学分:2.5分先修课程:高等数学,线性代数开课院系:上海交通大学理学院数学系教材:华章统计学原版精品系列:概率统计(英文版·第4版), [美]德格鲁特(Morris H.DeGroot),[美]舍维什(Mark J.Schervish)著Morris H.DeGroot ,Mark J.Schervish 编, 机械工业出版社, 2012教学参考:[1] M.N. DeGroot, M.J. Schervish, Probability and Statistics, 3rd ed. Boston, MA; London:Addison-Wesley, 2002[2] Jay.L. Devore, Probability and Statistics, 5th ed. Higher Education Press, 2010[3] H. Jeffreys, Theory of Probability, 3rd ed. Oxford: Oxford University Press, 1998[4] J.T. McClave, T. Sincich, A First Course in Statistics, 7th ed. Upper Saddle River, NJ: PrenticeHall; London: Prentice-Hall International, 2000[5] S.M. Ross, Introduction to Probability and Statistics for Engineers and Scientists,2nd ed. SanDiego, CA; London: Harcourt/Academic, 2000[6] V.K. Rothagi, S.M. Ehsanes, An Introduction to Probability and Statistics, 2nd ed.New York, Chichester: Wiley, 2001Probability and Statistics (English)Curriculum IntroductionCourse Title: Probability and Statistics (English)Total Hours: 48Credit: 2.5Pre-Course:Calculus, Linear AlgebraDepartment of giving course: Department of mathematics in Shanghai Jiaotong UniveristyTextbook:Probability and Statistics ( fourth edition), [美]德格鲁特(Morris H.DeGroot),[美]舍维什(Mark J.Schervish)著Morris H.DeGroot ,MarkJ.Schervish 编, 机械工业出版社, 2012Reference:[1] M.N. DeGroot, M.J. Schervish, Probability and Statistics, 3rd ed. Boston, MA; London: Addison-Wesley, 2002[2] Jay.L. Devore, Probability and Statistics, 5th ed. Higher Education Press, 2010[3] H. Jeffreys, Theory of Probability, 3rd ed. Oxford: Oxford University Press, 1998[4] J.T. McClave, T. Sincich, A First Course in Statistics, 7th ed. Upper Saddle River, NJ: Prentice Hall; London: Prentice-Hall International, 2000[5] S.M. Ross, Introduction to Probability and Statistics for Engineers and Scientists,2nd ed. San Diego, CA; London: Harcourt/Academic, 2000[6] V.K. Rothagi, S.M. Ehsanes, An Introduction to Probability and Statistics, 2nd ed. New York, Chichester: Wiley, 2001<<概率论与数理统计>>是一门从数量方面研究随机现象规律性的数学学科,它已广泛地应用于工农业生产和科学技术之中,并与其它数学分支互相渗透与结合。

概率论与数理统计公式(Probability theory and mathematical statistics formula)

概率论与数理统计公式(Probability theory and mathematical statistics formula)

概率论与数理统计公式(Probability theory and mathematicalstatistics formula)The first chapter stochastic events and their probability(1) permutations and combinations formulas are used to pick out the possible number of permutations of n individuals from m individuals.The number of possible combinations of n individuals selected from m individuals. (2) addition and multiplication principle addition principle (two methods can complete the matter): m+nThe two method can be used to complete a certain subject. The first method can be completed by M methods, and the second method can be completed by n methods. Then, this method can be completed by m+n methods.Multiplication principle (two steps can not do this separately): m x nThe first step can be completed by M methods, and the second step can be completed by n methods, and this can be accomplished by m * n methods in two ways.(3) some common permutations are repetitive and non repetitive (ordered)Opposite events (at least one)Order problem(4) random test and random events if a test is repeated in the same conditions, and each time the test results may be more than one, but before a test is not to assert that it appears which results, said the study was a randomized trial.The possible outcome of the experiment is called a random event.(5) basic events, sample spaces and events in a test, regardless of the number of events, can always find such a group of events, it has the following properties:Each trial must occur and only one event in this group occurs;Any event is made up of some of the events in this group.Each event in such a group of events is called a basic event, which is used to represent the event.The whole of the basic event is called the sample space of the test.An event is a collection of parts (basic events) in it. Capital letters A, B, C are usually used,... Representing events, they are subsets.Is it an inevitable event, an impossible one?.The probability of an impossible event is zero, and the event with zero probability is not necessarily an impossible event; similarly, the probability of the inevitable event (omega) is1, and the event with probability 1 is not necessarily an inevitable event.(6) the relationship between events and operations:If the component of the event A is also a part of the event B, (A happens, there must be an event B):If there is a simultaneous event, the event A is equivalent to the event B, or A equals B:A=B.There is at least one event in A and B: A B, or A+B.An event that is part of A rather than B is called the difference between A and B, denoted as A-B, and can also be denoted as A-AB, or it represents the event that B does not happen when A occurs.A andB occur simultaneously: A, B, or AB. A B=?, which means that A and B cannot happen at the same time, called event A incompatible with event B or mutually exclusive. Basic events are incompatible.-A is called the inverse event of event A, or the opposite event of A. It represents an event that does not occur in A. Mutual exclusion is not necessarily opposite.Operations:Binding rate: A (BC) = (AB) C, A (B, C) = (A, B), CThe distribution rate (AB), C= (A, C) a (B, C) (A, B) C= (AC),(BC)The rate of probability: (7) the axiomatic definition of probability is set as a sample space. For events, there is a real number P (A) for each event, if the following three conditions are satisfied:1 ~ 0 = P (A = 1),2 degree P (omega) =13 degrees for 22 incompatible events,,... YesIt is often called countable (complete) additivity.P (A) is called the probability of events.(8) the classical probability model is 1 degrees,2 degree.Set any event, it is made up of, there isP (A) = =(9) geometric probability if the random test results for infinite uncountable and each results the possibility of uniform, and every basic event in the sample space can be used to describe a bounded region, said the test for random geometric probability. A for any event,. L is geometric measure (length, area, volume). (10) additive formula P (A+B) =P (A) +P (B) -P (AB)When P (AB) = 0, P (A+B) =P (A) +P (B)(11) subtraction formula P (A-B) =P (A) -P (AB)When B A, P (A-B) =P (A) -P (B)When A=, P () =1- P (B) (12) conditional probability defines A and B are two events, and P (A) >0 is called the conditional probability of event B occurring in event A.Conditional probability is a kind of probability, and all probability properties are suitable for conditional probability.For example, P (omega /B) =1 P (/A) =1-P (B/A) (13) multiplication formula multiplication formula:More generally, for event A1, A2,... An, if P (A1A2... An-1) >0, but there is… …… … 。

概率论与数理统计国外教材

概率论与数理统计国外教材

概率论与数理统计国外教材
概率论与数理统计是一门重要的数学学科,涉及到人们日常生活、科学研究和社会发展中的各个方面。

在国外,概率论与数理统计的教学和研究已经形成了相对成熟的体系,并且有着丰富的教材资源。

在美国,一些著名的概率论与数理统计教材包括《概率论与统计》(Probability and Statistics)、《数理统计学》(Mathematical Statistics)、《概率与随机过程》(Probability and Stochastic Processes)等。

这些教材不仅在内容上涵盖了概率论和数理统计的基础知识和高级理论,而且在教学方法和应用实例方面也做出了很多创新和改进,使得学生在学习过程中能够更好地理解和应用这门学科。

另外,在英国、加拿大、澳大利亚等国家也有着很多优秀的概率论与数理统计教材,如《概率、随机过程和统计》(Probability, Random Processes, and Statistical Analysis)、《统计推断》(Statistical Inference)、《数理统计导论》(An Introduction to Mathematical Statistics)等。

这些教材不仅受到本国学生和研究者的欢迎,而且在全球范围内都具有较高的影响力和学术地位。

总之,国外的概率论与数理统计教材不仅具有丰富的知识内容和教学资源,而且在课程设置、教学方法、应用实例等方面也具有很多创新和改进,为我们学习和研究这门学科提供了重要的参考和借鉴。

- 1 -。

数学小报内容摘抄八年级下册

数学小报内容摘抄八年级下册

数学小报内容摘抄八年级下册I used to enjoy reading the math newsletters in eighth grade. The content was always interesting and engaging. 那时候我喜欢看八年级的数学小报,内容总是有趣又引人入胜。

There were various topics covered in the math newsletters. From algebra to geometry, and even probability and statistics. 数学小报涵盖了各种各样的主题,从代数到几何,甚至包括概率和统计学。

One of my favorite sections was the real-life applications of math. It was fascinating to see how math could be used in everyday situations. 我最喜欢的部分之一是数学在现实生活中的应用。

看到数学如何在日常生活中被运用是非常迷人的。

I remember there was an article about using proportions to scale down architectural blueprints. It was amazing to see how math could be so practical and useful. 我记得有一篇文章是关于如何使用比例来缩小建筑蓝图的。

看到数学如此实用和有用真是令人惊叹。

The math newsletters also had fun quizzes and brain teasers that challenged the readers. It was a great way to test our problem-solving skills and mathematical knowledge. 数学小报还有有趣的测验和脑筋急转弯,挑战读者们的智力。

概率论与数理统计(第4章)

概率论与数理统计(第4章)
通过以上分析,我们可以给出离散型随机变量 的数学期望的一般定义.
第4章 随机变量的数字特征
4.1 数学期望
4.1.1 数学期望的概念
1.离散型随机变量的数学期望
定义 1 设 X 是一个离散型随机变量,其分布律为
P{X xk } pk (k 1,2, ) ,若级数 xk pk 绝对收敛, k 1
联合分布律为 则其数学期望为
P( X xi ,Y y j ) pij (i ,j 1,2 , ) ,
E( X ) xi pi
xi pij ,
i 1
i1 j1
E(Y ) y j p j
yi pij .
j 1
j1 i1
(4-2) (4-3)
第4章 随机变量的数字特征
4.1 数学期望
np[ p (1 p)]n1 np .
第4章 随机变量的数字特征
4.1 数学期望
4.1.1 数学期望的概念
例 4 设随机变量 X ~ P() ,求 E(X ) .
解 所以
因为 X ~ P() ,有 P{X k} ke (k 0 ,1,2, ) , k!
E( X ) k k e e k1 ee .
第4章 随机变量的数字特征
4.1 数学期望
4.1.1 数学期望的概念
例 1 某服装公司生产两种套装,一种是大众装,每套 200 元,生产 900 套,另一种 是高档装,每套 1 800 元,生产 100 套,问该公司生产套装的平均价格是多少?
解 显然套装的平均价格绝对不是两种套装 200 元和 1 800 元的算术平均,而是以每
性质 3 E(X Y) E(X ) E(Y) .
这一性质可推广到有限个随机变量的情况,即

概率与统计英文版课程设计

概率与统计英文版课程设计

Probability and Statistics Course - English Version IntroductionProbability and statistics are important fields of studyin mathematics that deal with the analysis of data and the likelihood of certn events. This course is designed toprovide a solid foundation in both probability and statistics, with an emphasis on understanding the concepts and their applications in real-world situations.Course ObjectivesThe objectives of this course are as follows:1.To understand the basic principles of probabilityand statistics2.To learn how to use probability distributions tomake predictions and analyze data3.To develop an understanding of statisticalinference and hypothesis testing4.To become familiar with various statisticalsoftware tools and their applicationsCourse OutlineThe course is divided into several modules, each covering a different aspect of probability and statistics. The following is an overview of the modules:Module 1: Introduction to ProbabilityThis module introduces the fundamental principles of probability, including the definitions of probability, independence, conditional probability, Bayes’ rule, and random variables. Topics covered in this module include: •Basic Probability Concepts•Random Variables and Probability Distributions•Expected Value and Variance•Joint Probability Distributions•Conditional Probability and Bayes’ Rule•IndependenceModule 2: Discrete Probability DistributionsThis module focuses on the different types of discrete probability distributions, including the binomial distribution, the Poisson distribution, and the geometric distribution. Topics covered in this module include:•Discrete Probability Distributions•Binomial Distribution•Poisson Distribution•Geometric Distribution•Hypergeometric Distribution•Negative Binomial DistributionModule 3: Continuous Probability DistributionsThis module covers the different types of continuous probability distributions, including the normal distribution, the exponential distribution, and the Weibull distribution. Topics covered in this module include:•Continuous Probability Distributions•Normal Distribution•Standard Normal Distribution•Exponential Distribution•Weibull DistributionModule 4: Sampling and Statistical InferenceThis module covers statistical inference and hypothesis testing, including the central limit theorem, confidence intervals, and hypothesis testing for means and proportions. Topics covered in this module include:•Sampling and Sampling Distributions•Central Limit Theorem•Confidence Intervals•Hypothesis Testing for Means and Proportions•Type I and Type II Errors•Power and Sample SizeModule 5: Regression and Correlation AnalysisThis module covers the basics of regression andcorrelation analysis, including simple linear regression, multiple linear regression, and correlation analysis. Topics covered in this module include:•Simple Linear Regression•Multiple Linear Regression•Correlation Analysis•Nonlinear Regression•Model SelectionCourse RequirementsTo successfully complete this course, you will need access to the following:• A computer with internet access•Access to statistical software packages such as R, SPSS, or SAS (or similar software)• A basic understanding of algebra and calculus EvaluationEvaluation will be based on the following components: •Class participation and attendance•Homework assignments•Quizzes and examinationsConclusionBy the end of this course, you should have a thorough understanding of probability and statistics and their applications in real-world situations. Whether you plan to pursue further studies in mathematics, or use this knowledge in your career, this course will provide you with a solid foundation in this important field.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

We distinguish between qualitative (blood types, colours of cars sold, letter grades in an exam etc.) and quantitative (i.e. numerical) data. Throughout this course we are mostly concerned with quantitative data. Basically, little can be done mathematically if the data are not numerical.

MATH 401 Final Exam Grades (2006).

A total of 297 exam grades (out of 50) are as follows.
2.5 7.5 22.5 23 28 16.5 27 31 … … 41 … … 32.5 41.5 … …
10.5 1
112 110
122 114 117 118
107 112 116
128 106 110 111 112 104 111 114 114
108 110
125 113
120 119 118
120 113
120 117
102 110
Inferential Statistics



Involves drawing conclusions from data. The point is to make inferences about a certain situation represented by a particular data set. The main tools for making such inferences are provided by the Probability Theory.
Types of statistical studies
Dependent on why the study is conducted, two types of statistical studies are distinguished: 1. Descriptive statistics. 2. Inferential statistics.
6 5 4 5 4 4 6 5 5 6 3 5 7 8 5 2 5 4 5 4 0 4 7 5 7 4 6 6 3 1
Large-range Numerical Data

ห้องสมุดไป่ตู้
The following data represent the life-times (in months, rounded to the nearest month) of 50 electronic color tubes for TV.

Math 401 exam results.
Device Life-time

The following data represent the life-time (in months) of 50 electronic color tubes for TV.
100 130 120 136 118 118 117 114 116 115 118 118 102 110 114 109 112 102 109


A major problem is to ensure that a selected sample is representative of the population.
Inferential Statistics (revisited)


So the major task of the inferential statistics is to make conclusions about the whole population on the basis of [analyzing] a sample taken from this population. We stress, again, that the Probability Theory is absolutely crucial for making such conclusions.
Populations


Statistical studies examine certain attributes/characteristics of a set of individuals: the population. Populations are normally so large that it is logistically impossible to examine all the individuals. So…
1.
2.
Categorical for qualitative and small quantitative data sets. Grouped for large quantitative data sets.
Populations and Samples
One takes a subgroup of a population and examines the desired characteristic for the subgroup. Such subgroups are called samples.
102 110 114
109 112 102 109
122 114 117 118
107 112 116
128 106 110 111 112 104 111 114 114
108 110
125 113
120 119 118
120 113
120 117
102 110
Types of Data



Data Organization.
Qualitative Data

The colors of 25 Toyota Corollas sold by a dealer in Maadi were recorded as follows (W = white, B = black, S = silver, R = red).
125 113
120 119 118
120 113
120 117
102 110
Frequency Distribution

A frequency distribution for a data set is a table listing groups into which the data are divided - classes, with a row for each class, the number of occurrences for each class – class frequency, sometimes the class relative frequency, i.e. the class frequency divided by the total number of values in the data set.
W Blue B S R
Quantitative Data
Data represent the number of requests per minute placed to a server, recorded during 30 consecutive minutes.
6 5 4 5 4 4 6 5 5 6 3 5 7 8 5 2 5 4 5 4 0 4 7 5 7 4 6 6 3 1
Relative Frequency
Relative frequency of a class is the frequency of the class divided by the total number of data. Relative frequencies are useful for comparing distributions of different sizes.
Frequency Distribution
Class Frequency (# of occurrences)
F1 F2 … Fn
Relative Frequency
Class 1 Class 2 ……… Class n
RF1 = F1/N RF2 = F2/N …………… RFn = Fn/N
Qualitative Data

The colors of 25 Toyota Corollas sold by a dealer in Maadi were recorded as follows (W = white, B = black, S = silver, R = red).
B S B W Blue B S W W W R R Blue W B Blue B W R B
39.5 34.5 45.5 26.5 37.5 38.5 40 … … … … … … … … … … … … … …
48.5 45.5 17
5
26
12
39.5 14
32
40
Descriptive Statistics


Involves only the collection, as well as organization, presentation and summarization of data. The point is to describe a certain situation as represented by a particular data set.
相关文档
最新文档