2015届高考数学大一轮复习(2009-2013高考题库)第6章 第2节 一元二次不等式及其解法 理 新人教A版
2015高考数学优化指导第6章 第2节
第六章 第二节1.{a n }为等差数列,a 10=33,a 2=1,S n 为数列{a n }的前n 项和,则S 20-2S 10等于( ) A .40 B .200 C .400D .20解析:选C S 20-2S 10=20(a 1+a 20)2-2×10(a 1+a 10)2=10(a 20-a 10)=100d .又a 10=a 2+8d ,∴33=1+8d . ∴d =4.∴S 20-2S 10=400.故选C.2.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A.12 B .1 C .2D .3解析:选C 因为S n =n (a 1+a n )2,所以S n n =a 1+a n 2.由S 33-S 22=1,得a 32-a 22=1,即a 3-a 2=2,所以数列{a n }的公差为2.故选C.3.(2014·临川一中质检)已知数列{a n },{b n }都是公差为1的等差数列,其首项分别为a 1,b 1,且a 1+b 1=5,a 1,b 1∈N *.设c n =a b n (n ∈N *),则数列{c n }的前10项和等于( )A .55B .70C .85D .100解析:选C 由题知a 1+b 1=5,a 1,b 1∈N *.设c n =a b n (n ∈N *),则数列{c n }的前10项和等于a b 1+a b 2+…+a b 10=a b 1+a b 1+1+…+a b 1+9,a b 1=a 1+(b 1-1)=4,∴a b 1+a b 1+1+…+a b 1+9=4+5+6+…+13=85,选C.解析:选C 由题知a 1+b 1=5,a 1,b 1∈N *.设c n =ab n (n ∈N *),则数列{c n }的前10项和等于ab 1+ab 2+…+ab 10=ab 1+ab 1+1+…+ab 1+9,ab 1=a 1+(b 1-1)=4,∴ab 1+ab 1+1+…+ab 1+9=4+5+6+…+13=85,选C.4.(2014·广州三校联考)等差数列{a n }中,“a 1<a 3”是“a n <a n +1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选C 等差数列中,由a 1<a 3,可知公差d >0,所以a n +1=a n +d >a n ,即a n <a n +1.反过来,由a n <a n +1,可知公差d >0,所以a 3=a 1+2d >a 1,即a 1<a 3.等差数列{a n }中,“a 1<a 3”是“a n <a n +1”的充分必要条件.5.(2012·浙江高考)设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误的是( )A .若d <0,则数列{S n }有最大项B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0D .若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列解析:选C 设数列{a n }的首项为a 1,则S n =na 1+12n (n -1)d =d2n 2+⎝⎛⎭⎫a 1-d 2n .由二次函数性质知S n 有最大值时,则d <0,故A 、B 正确;因为{S n }为递增数列,但d >0,不妨设a 1=-1,d =2,显然{S n }是递增数列,但S 1=-1<0,故C 错误;对任意n ∈N *,S n 均大于0时,a 1>0,d >0,{S n }必是递增数列,D 正确.6.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n =2n 3n +1,则a nb n =( )A.23 B.2n -13n -1 C.2n +13n +1 D.2n -13n +4解析:选B a n b n =2a n 2b n =a 1+a 2n -1b 1+b 2n -1=2n -12(a 1+a 2n -1)2n -12(b 1+b 2n -1)=S 2n -1T 2n -1=2(2n -1)3(2n -1)+1=2n -13n -1,故选B.7.(2013·广东高考)在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 解析:20 因为数列{a n }是等差数列,所以由等差数列的性质得a 3+a 8=a 5+a 6=a 4+a 7=10. 所以3a 5+a 7=a 5+2a 5+a 7=a 5+a 4+a 6+a 7=2×10=20.8.(2014·阜宁中学调研)在等差数列{a n }中,a 2=6,a 5=15,b n =a 2n ,则数列{b n }的前5项和S 5=________.解析:90 在等差数列{a n }中,由a 2=6,a 5=15易知公差d =15-63=3,∴a n =a 2+(n -2)d =3n ,∴b n =a 2n =6n , 所以数列{b n }为公差为6的等差数列, 所以前5项和S 5=52(b 1+b 5),又易知b 1=6,b 5=30,所以S 5=90.9.(2014·江苏调研)对于数列{a n },定义数列{a n +1-a n }为数列{a n }的差数列.若a 1=2,{a n }的“差数列”的通项公式为2n ,则数列{a n }的前n 项和S n =________.解析:2n +1-2 由已知a n +1-a n =2n ,a 1=2得a 2-a 1=2,0=22,…,a n -a n -1=2n -1,由累加法得a n =2+2+22+…+2n -1=2n,从而S n =2(1-2n )1-2=2n +1-2.10.(2014·哈尔滨联考)已知各项为正数的等差数列{a n }的前20项和为100,那么a 7a 14的最大值为________.解析:25 因为{a n }为各项为正数的等差数列,且前20项和为100,所以20(a 1+a 20)2=100,即a 1+a 20=10,所以a 7+a 14=10.所以a 7·a 14≤⎝⎛⎭⎫a 7+a 1422=25,当且仅当a 7=a 14=5时等号成立.11.(2013·新课标全国高考Ⅱ)已知等差数列{a n }的公差不为零,a 1=25 ,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2. 解:(1)设{a n }的公差为d . 由题意得a 211=a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ). 于是d (2a 1+25d )=0.又a 1=25,所以d =-2或d =0(舍去). 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2. 由(1)知a 3n -2=-6n +31,所以数列{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .12.(2013·新课标全国高考Ⅰ)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1a2n -1a 2n +1的前n 项和.解:(1)设{a n }的公差为d ,则S n =na 1+n (n -1)2d .由已知可得⎩⎪⎨⎪⎧ 3a 1+3d =0,5a 1+10d =-5.解得⎩⎪⎨⎪⎧a 1=1,d =-1.故{a n }的通项公式为a n =2-n . (2)由(1)知1a 2n -1a 2n +1=1(3-2n )(1-2n )=12⎝⎛⎭⎫12n -3-12n -1, 从而数列⎩⎨⎧⎭⎬⎫1a2n -1a 2n +1的前n 项和为12⎝⎛⎭⎫1-1-11+11-13+…+12n -3-12n -1=n1-2n . 13.(2014·济宁模拟)已知数列{a n }的前n 项和S n =-a n -⎝⎛⎭⎫12n -1+2(n ∈N *),数列{b n }满足b n =2n ·a n .(1)求证:数列{b n }是等差数列,并求数列{a n }的通项公式; (2)设c n =log 2n a n ,数列⎩⎨⎧⎭⎬⎫2c n c n +2的前n 项和为T n ,求满足T n <2521(n ∈N *)的n 的最大值. (1)证明:在S n =-a n -⎝⎛⎭⎫12n -1+2中, 令n =1,可得S 1=-a 1-1+2=a 1,得a 1=12.当n ≥2时,S n -1=-a n -1-⎝⎛⎭⎫12n -2+2, ∴a n =S n -S n -1=-a n +a n -1+⎝⎛⎭⎫12n -1, 即2a n =a n -1+⎝⎛⎭⎫12n -1. ∴2n ·a n =2n -1·a n -1+1.∵b n =2n ·a n ,∴b n =b n -1+1. 又b 1=2a 1=1,∴{b n }是以1为首项,1为公差的等差数列. 于是b n =1+(n -1)·1=n ,∴a n =n 2n .(2)解∵c n =log 2na n =log 22n =n .∴2c n c n +2=2n (n +2)=1n -1n +2. ∴T n =⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+…+⎝⎛⎭⎫1n -1n +2 =1+12-1n +1-1n +2.由T n <2521,得1+12-1n +1-1n +2<2521,即1n +1+1n +2>1342,f (n )=1n +1+1n +2单调递减,∵f (3)=920,f (4)=1130,f (5)=1342,∴n 的最大值为4.1.(2014·石家庄模拟)已知数列{a n }(n ∈N *)中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *),则关于数列{b n }的判断正确的是( )A .数列{b n }一定是等差数列B .数列{b n }一定是等比数列C .数列{b n }可以是等差数列,也可以是等比数列D .数列{b n }既不是等差数列,也不是等比数列解析:选A 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1,所以当n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝⎛⎭⎫2-1an -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1,又b 1=1a 1-1=-52,所以数列{b n }是以-52为首项,1为公差的等差数列,选A.2.已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4 000,O 为坐标原点,点P (1,a n ),Q (2 011,a 2 011),则OP →·OQ →等于( )A .2 011B .-2 011C .0D .1解析:选A 方法一:由已知S 21=S 4 000,则a 22+a 23+…+a 4 000=0,设数列{a n }的公差为d ,则3 979(a 22+a 4 000)2=0,又a 22+a 4 000=2a 2 011,所以a 2 011=0,∴OP →·OQ →=2 011+a n ·a 2011=2 011.方法二:设等差数列{a n }的公差为d ,因为S 21=S 4 000,且等差数列前n 项和公式可看成二次函数,所以由对称性可得S 1=S 4 020,则有a 1=4 020a 1+4 020×4 0192d ,整理得a 2 011=0,所以OP →·OQ →=2 011+a n ·a 2 011=2 011.3.(2014·孝感高中调研)已知函数f (x )是R 上的单调递增函数且为奇函数,数列{a n }是等差数列,a 3>0,则f (a 1)+f (a 3)+f (a 5)的值( )A .恒为正数B .恒为负数C .恒为0D .可以为正数也可以为负数解析:选A 因为函数f (x )是R 上的奇函数,所以f (-0)=-f (0)得f (0)=0,又f (x )是R 上的单调递增函数,所以当x >0时有f (x )>f (0)=0,当x <0时有f (x )<f (0)=0,因为a 3>0,所以有f (a 3)>0.因为数列{a n }是等差数列,所以a 1+a 52=a 3>0从而a 1+a 5>0,所以a 1>-a 5,所以f (a 1)>f (-a 5).又f (-a 5)=-f (a 5),所以f (a 1)+f (a 5)>0,从而有f (a 1)+f (a 3)+f (a 5)=[f (a 1)+f (a 5)]+f (a 3)>0.故选A.4.(2014·西北工大附中月考)若有穷数列a 1,a 2,…,a n (n 是正整数)满足a 1=a n ,a 2=a n -1,…,a n =a 1,即a i =a n -i +1(i 是正整数,且1≤i ≤n ),就称该数列为“对称数列”.已知数列{b n }是项数为7的“对称数列”,且b 1,b 2,b 3,b 4成等差数列,b 1=2,b 4=11,则数列{b n }的项为________.解析:2,5,8,11,8,5,2 设数列b 1,b 2,b 3,b 4的公差为d ,则b 4=b 1+3d =2+3d =11,解得d =3,所以数列{b n }的项为2,5,8,11,8,5,2.5.(2014·湛江检测)已知各项为正数的数列{a n }的前n 项和为S n ,且对任意正整数n 有a 2a n =S 2+S n .(1)求a 1的值;(2)求数列{a n }的通项公式;(3)若数列⎩⎨⎧⎭⎬⎫log 88a 1a n的前n 项和为T n ,求T n 的最大值.解:(1)取n =1,a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,a 22=2a 1+2a 2,②②-①得,a 2(a 2-a 1)=a 2,a 2>0,∴a 2-a 1=1,③ 由①③组成方程组解得,a 1=1+2或a 1=1- 2. ∵a n >0,∴a 1=1-2不合题意,舍去. ∴a 1=1+ 2.(2)由(1)可得a 2=2+2,当n ≥2时,(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1, 两式相减,得(2+2)a n -(2+2)a n -1=a n , ∴(1+2)a n =(2+2)a n -1,∴a n =2a n -1(n ≥2).∴数列{a n }是以a 1=1+2为首项,公比q =2的等比数列. ∴a n =(1+2)(2)n -1.(3)设b n =log 88a 1a n=1-log 8(2)n -1=1-(n -1)log 8 2 =1-16(n -1).∴数列{b n }为单调递减的等差数列,公差为-16.由b n =1-16(n -1)≥0,解得n ≤7,∴b 1>b 2>…>b 6>b 7=0,0>b 8>b 9>…,∴当n =6或n =7时,T n 有最大值.且最大值为T 6=T 7=7(b 1+b 7)2=72.。
2013高考数学(理)一轮复习教案:第六篇_数列第2讲_等差数列及其前n项和
第2讲 等差数列及其前n 项和泊头一中韩俊华 【2013年高考会这样考】1.考查运用基本量法求解等差数列的基本量问题(知三求二问题,知三求一问题).2.考查等差数列的性质、前n 项和公式及综合应用. 【复习指导】1.掌握等差数列的定义与性质、通项公式、前n 项和公式等.2.掌握等差数列的判断方法,等差数列求和的方法.基础梳理1.等差数列的定义(1)文字定义:如果一个数列从第 项起,每一项与它的前一项的差都等于 ,那么这个数列就叫做等差数列,这个叫做 等差数列的 ,通常用字母d 表示(2)符号定义: ①. ② 2.等差数列的通项公式:n a = ,变式:d = ()1n ≠或n a = ,变式:d = ()n m ≠(其中*,m n N ∈)或n a = 。
(函数的一次式) 3.等差中项如果A =a +b2A 叫做a 与b 的等差中项.4 等差数列的判定方法 ①定义法:②等差中项法: ③通项公式法: 4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则 (m ,n ,p ,q ∈N *).特别的若:m +n =2p ,则(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为 的等差数列(4)在有穷等差数列中与首末两项等距离的任意两项的和相等:即: (5)等差数列的单调性:若d >0,则数列{a n }为 若d=0,则数列{a n }为 若d <0,则数列{a n }为(6)等差数列中公差d= = (7)等差数列中a n =m ,a m =n 则a m+n =(8)若数列{a n } {b n }均为等差数列,则若{c a n +kb n }仍为 ,另外数列 (9)若项数为2n ,则 ①S S -=奇偶; ②S S =偶奇; ③2n S =(用1,n n a a +表示,1,n n a a +为中间两项) (10)若项数为21n +,则 ①S S -=奇偶; ②S S =奇偶; ③21n S +=(用1n a +表示,1n a +为中间项)(11)若等差数列{n a },{n b }的前n 项和分别为n n S T ,,则2121n n nn a S b T --=(12).23243m m m m m m m S S S S S S S --- ,,,,为等差数列。
2015届高考数学(人教,理科)大一轮配套练透:第6章 不等式、推理与证明及不等式选讲 第6节
[课堂练通考点]1.(2014·合肥模拟)正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析:选C 因为f (x )=sin(x 2+1)不是正弦函数,所以小前提不正确.2.给出下列三个类比结论.①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β;③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2.其中结论正确的个数是( )A .0B .1C .2D .3解析:选B 只有③正确.3.(2012·江西高考)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .199 解析:选C 记a n +b n =f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.4.(2013·青岛期末)如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝⎛⎭⎫x 1+x 2+…+x n n .若y =sin x 在区间(0,π)上是凸函数,那么在△ABC 中,sin A +sin B +sin C 的最大值是________.解析:由题意知,凸函数满足f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝⎛⎭⎫x 1+x 2+…+x n n ,sin A +sin B +sin C ≤3sin A +B +C 3=3sin π3=332.答案:3325.设等差数列{b n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论.设等比数列{a n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列.解析:对于等比数列,通过类比等差数列,有等比数列{a n }的前n 项积为T n ,则T 4=a 1a 2a 3a 4,T 8=a 1a 2…a 8,T 12=a 1a 2…a 12,T 16=a 1a 2…a 16,所以T 8T 4=a 5a 6a 7a 8,T 12T 8=a 9a 10a 11a 12,T 16T 12=a 13a 14a 15a 16,所以T 4,T 8T 4,T 12T 8,T 16T 12的公比为q 16,因此T 4,T 8T 4,T 12T 8,T 16T 12成等比数列. 答案:T 8T 4 T 12T 86.(2014·山西四校联考)已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比得x +a xn ≥n +1(n ∈N *),则a =________. 解析:第一个式子是n =1的情况,此时a =11=1;第二个式子是n =2的情况,此时a =22=4;第三个式子是n =3的情况,此时a =33=27,归纳可知a =n n .答案:n n[课下提升考能]第Ⅰ组:全员必做题1.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是( )A .①B .②C .③D .①和②解析:选B 由演绎推理三段论可知,①是大前提;②是小前提;③是结论.故选B.2.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn =nm ”类比得到“a·b =b·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a·c +b·c ”;③“(m ·n )t =m (n ·t )”类比得到“(a·b )·c =a·(b·c )”;④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a·p =x·p ⇒a =x ”;⑤“|m ·n |=|m |·|n |”类比得到“|a·b|=|a|·|b|”;⑥“ac bc =a b ”类比得到“a·c b·c =a b”. 以上的式子中,类比得到的结论正确的个数是( )A .1B .2C .3D .4解析:选B ①②正确,③④⑤⑥错误.3.在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论;已知正四面体P -ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( ) A.18B.19C.164D.127解析:选D 正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127. 4.下列推理中属于归纳推理且结论正确的是( )A .设数列{a n }的前n 项和为S n .由a n =2n -1,求出S 1=12,S 2=22,S 3=32,…,推断:S n =n 2B .由f (x )=x cos x 满足f (-x )=-f (x )对∀x ∈R 都成立,推断:f (x )=x cos x 为奇函数C .由圆x 2+y 2=r 2的面积S =πr 2,推断:椭圆x 2a 2+y 2b 2=1(a >b >0)的面积S =πab D .由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n ∈N *,(n +1)2>2n 解析:选A 选项A 由一些特殊事例得出一般性结论,且注意到数列{a n }是等差数列,其前n 项和等于S n =n (1+2n -1)2=n 2,选项D 中的推理属于归纳推理,但结论不正确. 5.将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为( )13 5 79 11 13 15 1719 21 23 25 27 29 31… … …A .809B .852C .786D .893解析:选A 前20行共有正奇数1+3+5+…+39=202=400个,则第21行从左向右的第5个数是第405个正奇数,所以这个数是2×405-1=809.6.在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按下图所标边长,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么类比得到的结论是________.解析:将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S 21+S 22+S 23=S 24.答案:S 21+S 22+S 23=S 247.若{a n }是等差数列,m ,n ,p 是互不相等的正整数,则有:(m -n )a p +(n -p )a m +(p -m )a n =0,类比上述性质,相应地,对等比数列{b n },有__________________.解析:设{b n }的首项为b 1,公比为q ,则b m -n p ·b n -p m ·b p -m n =(b 1q p -1)m -n ·(b 1q m -1)n -p ·(b 1q n -1)p -m=b 01·q 0=1. 答案:b m -n p ·b n -p m ·b p -m n =18.(2013·湖北高考)在平面直角坐标系中,若点P (x ,y )的坐标x ,y 均为整数,则称点P 为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L .例如图中△ABC 是格点三角形,对应的S =1,N =0,L =4.(1)图中格点四边形DEFG 对应的S ,N ,L 分别是________;(2)已知格点多边形的面积可表示为S =aN +bL +c ,其中a ,b ,c 为常数.若某格点多边形对应的N =71,L =18,则S =________(用数值作答).解析:(1)由定义知,四边形DEFG 由一个等腰直角三角形和一个平行四边形构成,其内部格点有1个,边界上格点有6个,S 四边形DEFG =3.(2)由待定系数法可得,⎩⎪⎨⎪⎧ 12=a ·0+b ·3+c ,1=a ·0+b ·4+c ,3=a ·1+b ·6+c ,⇒⎩⎪⎨⎪⎧ a =1,b =12,c =-1,当N =71,L =18时,S =1×71+12×18-1=79. 答案:(1)3,1,6 (2)799.平面中的三角形和空间中的四面体有很多相类似的性质,例如在三角形中:(1)三角形两边之和大于第三边;(2)三角形的面积S =12×底×高;(3)三角形的中位线平行于第三边且等于第三边的12;…… 请类比上述性质,写出空间中四面体的相关结论.解:由三角形的性质,可类比得空间四面体的相关性质为:(1)四面体的任意三个面的面积之和大于第四个面的面积;(2)四面体的体积V =13×底面积×高; (3)四面体的中位面平行于第四个面且面积等于第四个面的面积的14. 10.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:(1)sin 213°+cos 217°-sin 13°cos 17°;(2)sin 215°+cos 215°-sin 15°cos 15°;(3)sin 218°+cos 212°-sin 18°cos 12°;(4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°;(5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解:(1)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34. 证明如下:法一:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°·cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α =34sin 2α+34cos 2α=34. 法二:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin 30°sin α) =12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.第Ⅱ组:重点选做题1.观察下列算式:13=1,23=3+5,33=7+9+11,43=13+15+17+19,……若某数m 3按上述规律展开后,发现等式右边含有“2 013”这个数,则m =________. 解析:某数m 3按上述规律展开后,等式右边为m 个连续奇数的和,观察可知每行的最后一个数为1=12+0,5=22+1,11=32+2,19=42+3,…,所以第m 行的最后一个数为m 2+(m -1).因为当m =44时,m 2+(m -1)=1 979,当m =45时,m 2+(m -1)=2 069,所以要使等式右边含有“2 013”这个数,则m =45.答案:452.(2014·东北三校联考)在数列{a n }中,a 1=1,a 2=2,a n =(-1)n ·2a n -2(n ≥3,n ∈N *),其前n 项和为S n .(1)a 2n +1关于n 的表达式为________;(2)观察S 1,S 2,S 3,S 4,…S n ,在数列{S n }的前100项中相等的项有________对.解析:(1)a 3a 1=a 5a 3=…=a 2n +1a 2n -1=-2,又a 1=1,从而a 2n +1=(-2)n . (2)由(1)及条件知,数列{a n }为1,2,-2,22,(-2)2,23,(-2)3,24,…,从而可知S 1=S 3,S 5=S 7,S 9=S 11,…,故在{S n }的前100项中相等的项有25对.答案:(1)a 2n +1=(-2)n (2)25。
2015届高考数学(人教,理科)大一轮配套练透:第6章 不等式、推理与证明及不等式选讲 第7节
[课堂练通考点]1.命题“如果数列{a n }的前n 项和S n =2n 2-3n ,那么数列{a n }一定是等差数列”是否成立( )A .不成立B .成立C .不能断定D .能断定 解析:选B ∵S n =2n 2-3n ,∴S n -1=2(n -1)2-3(n -1)(n ≥2),∴a n =S n -S n -1=4n -5(当n =1时,a 1=S 1=-1符合上式).∴a n +1-a n =4(n ≥1),∴{a n }是等差数列.2.要证:a 2+b 2-1-a 2b 2≤0,只要证明( )A .2ab -1-a 2 b 2≤0B .a 2+b 2-1-a 4+b 42≤0 C.(a +b )22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥0解析:选D 因为a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.3.不相等的三个正数a ,b ,c 成等差数列,并且x 是a ,b 的等比中项,y 是b ,c 的等比中项,则x 2,b 2,y 2三数( )A .成等比数列而非等差数列B .成等差数列而非等比数列C .既成等差数列又成等比数列D .既非等差数列又非等比数列解析:选B 由已知条件,可得⎩⎪⎨⎪⎧ a +c =2b , ①x 2=ab , ②y 2=bc . ③由②③得⎩⎨⎧ a =x 2b ,c =y 2b .代入①,得x 2b +y 2b=2b , 即x 2+y 2=2b 2.故x 2,b 2,y 2成等差数列.4.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是( )A .②③B .①②③C .③D .③④⑤解析:选C 若a =12,b =23,则a +b >1, 但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,即a +b >2,则a ,b 中至少有一个大于1,反证法:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,a ,b 中至少有一个大于1.5.(2013·新课标全国Ⅱ)设a ,b ,c 均为正数,且a +b +c =1.证明:(1) ab +bc +ac ≤13; (2) a 2b +b 2c +c 2a≥1. 证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.当且仅当a =b =c =13时,等号成立. (2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c , 故a 2b +b 2c +c 2a+(a +b +c )≥2(a +b +c ),即 a 2b +b 2c +c 2a≥a +b +c . 所以a 2b +b 2c +c 2a≥1. [课下提升考能]第Ⅰ组:全员必做题1.用反证法证明:若整系数一元二次方程ax 2+bx +c =0(a ≠0)有有理数根,那么a ,b ,c 中至少有一个是偶数.用反证法证明时,下列假设正确的是( )A .假设a ,b ,c 都是偶数B .假设a ,b ,c 都不是偶数C .假设a ,b ,c 至多有一个偶数D .假设a ,b ,c 至多有两个偶数解析:选B “至少有一个”的否定为“都不是”.故选B.2.(2014·银川模拟)设a ,b ,c 是不全相等的正数,给出下列判断:①(a -b )2+(b -c )2+(c -a )2≠0;②a >b ,a <b 及a =b 中至少有一个成立;③a ≠c ,b ≠c ,a ≠b 不能同时成立,其中正确判断的个数为( )A .0B .1C .2D .3解析:选C ①②正确;③中,a ≠b ,b ≠c ,a ≠c 可以同时成立,如a =1,b =2,c =3,故正确的判断有2个.3.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( )A .恒为负值B .恒等于零C .恒为正值D .无法确定正负解析:选A 由f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,可知f (x )是R 上的单调递减函数,由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0,故选A.4.(创新题)在R 上定义运算:⎪⎪⎪⎪⎪⎪a b c d =ad -bc .若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为( ) A .-12 B .-32C.12D.32 解析:选D 据已知定义可得不等式x 2-x -a 2+a +1≥0恒成立,故Δ=1-4(-a 2+a+1)≤0,解得-12≤a ≤32, 故a 的最大值为32. 5.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( )A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析:选D 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形.由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝⎛⎭⎫π2-A 1,sin B 2=cos B 1=sin ⎝⎛⎭⎫π2-B 1,sin C 2=cos C 1=sin ⎝⎛⎭⎫π2-C 1,得⎩⎪⎨⎪⎧ A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2,这与三角形内角和为180°相矛盾. 所以假设不成立,又显然△A 2B 2C 2不是直角三角形.所以△A 2B 2C 2是钝角三角形.6.设a =3+22,b =2+7,则a ,b 的大小关系为________.解析:a =3+22,b =2+7两式的两边分别平方,可得a 2=11+46,b 2=11+47,显然,6<7.∴a <b .答案:a <b7.某同学准备用反证法证明如下一个问题:函数f (x )在[0,1]上有意义,且f (0)=f (1),如果对于不同的x 1,x 2∈[0,1],都有|f (x 1)-f (x 2)|<|x 1-x 2|,求证:|f (x 1)-f (x 2)|<12.那么他的反设应该是________.答案:“∃x 1,x 2∈[0,1],使得|f (x 1)-f (x 2)|<|x 1-x 2|则|f (x 1)-f (x 2)|≥12” 8.已知点A n (n ,a n )为函数y =x 2+1图像上的点,B n (n ,b n )为函数y =x 图像上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为________.解析:由条件得c n =a n -b n =n 2+1-n =1n 2+1+n, ∴c n 随n 的增大而减小.∴c n +1<c n .答案:c n +1<c n9.若a >b >c >d >0且a +d =b +c , 求证:d +a <b +c .证明:要证d +a <b +c ,只需证(d +a )2<(b +c )2,即a +d +2ad <b +c +2bc ,因a +d =b +c ,只需证ad <bc ,即ad <bc ,设a +d =b +c =t ,则ad -bc =(t -d )d -(t -c )c =(c -d )(c +d -t )<0,故ad <bc 成立,从而d +a <b +c 成立.10.已知二次函数f (x )=ax 2+bx +c (a >0)的图像与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是f (x )=0的一个根; (2)试比较1a与c 的大小; (3)证明:-2<b <-1.解:(1)证明:∵f (x )的图像与x 轴有两个不同的交点,∴f (x )=0有两个不等实根x 1,x 2,∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a, ∴x 2=1a ⎝⎛⎭⎫1a ≠c , ∴1a是f (x )=0的一个根. (2)假设1a <c ,又1a>0, 由0<x <c 时,f (x )>0,知f ⎝⎛⎭⎫1a >0与f ⎝⎛⎭⎫1a =0矛盾, ∴1a ≥c ,又∵1a ≠c ,∴1a>c . (3)证明:由f (c )=0,得ac +b +1=0,∴b =-1-ac .又a >0,c >0,∴b <-1.二次函数f (x )的图像的对称轴方程为x =-b 2a =x 1+x 22<x 2+x 22=x 2=1a, 即-b 2a <1a. 又a >0,∴b >-2,∴-2<b <-1.第Ⅱ组:重点选做题1.设M =1210+1210+1+1210+2+…+1211-1,则( ) A .M =1B .M <1C .M >1D .M 与1大小关系不定解析:选B ∵210+1>210,210+2>210,…,211-1>210,∴M =1210+1210+1+1210+2+…+1211-1<1210+1210+…+1210=1. 210个2.已知函数y =f (x )的定义域为D ,若对于任意的x 1,x 2∈D (x 1≠x 2),都有f ⎝⎛⎭⎫x 1+x 22<f (x 1)+f (x 2)2,则称y =f (x )为D 上的凹函数.由此可得下列函数中的凹函数为( ) A .y =log 2xB .y =xC .y =x 2D .y =x 3解析:选C 可以根据图象直观观察;对于C 证明如下:欲证f ⎝⎛⎭⎫x 1+x 22<f (x 1)+f (x 2)2, 即证⎝⎛⎭⎫x 1+x 222<x 21+x 222.即证(x 1+x 2)2<2x 21+2x 22. 即证(x 1-x 2)2>0.显然成立.故原不等式得证.。
【2015步步高】2015届高考一轮复习(题组扣点+课堂探究+学科素养培养+):第六章 动量守恒定律 专题六
vE=tavnDyθ=
2gRcos θ tan θ
由 A 到 E 根据机械能守恒定律:mgh=12mv2E 解得 h=2vg2E=csoins23θθR
(2)由 A 到 C 根据机械能守恒定律:mg(h+R)=12mv2C 根据牛顿第二定律:FN-mg=mvR2C
课堂探究
学科素养培养
高考模拟
课堂探究
(1)释放点 A 距 B 点的高 h;
(2)物块在圆弧轨道最低点 C 受到的支持
力 FN 的大小;
图1
(3)物块与水平面间的动摩擦因数 μ.
课堂探究
学科素养培养
高考模拟
课堂探究
专题六 力学三大观点的应用
解析 (1)物块在 D 竖直方向上的分速度 vDy 满足
v2Dy=2gRcos θ
在 E 点的速度等于在 D 点的水平方向上的分速度
第六章 动量守恒定律
专题六 力学三大观点的应用
课堂探究
专题六 力学三大观点的应用
考点一 应用动量观点和能量观点处理多过程问题
综合应用动量和能量观点处理直线运动、曲线运动(或平抛运 动)和圆周运动相结合的多过程问题是我省高考的重点和热点 之一. 1.弄清有几个物体参与运动,并划分清楚物体的运动过程. 2.进行正确的受力分析,明确各过程的运动特点. 3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定 守恒;碰撞过程、子弹打击木块、不受其他外力作用的二物 体相互作用问题,一般考虑用动量守恒定律分析. 4.如含摩擦生热问题,则考虑用能量守恒定律分析.
课堂探究
学科素养培养
高考模拟
课堂探究
专题六 力学三大观点的应用
【例 2】 如图 3 所示为过山车简易模型,它由光滑水平轨道和竖直面内的光滑圆
2015届高三数学(文)湘教版一轮复习5年高考真题备考题库:第1章 第1节 集合]
2009~2013年高考真题备选题库第1章 集合与常用逻辑用语第1节 集合考点一 集合的含义与表示1.(2013福建,5分)若集合A ={1,2,3},B ={1,3,4},则A ∩B 的子集个数为( )A .2B .3C .4D .16解析:本题主要考查集合的交集及子集的个数等基础知识,意在考查考生对集合概念的准确理解及集合运算的熟练掌握.A ∩B ={1,3},故A ∩B 的子集有4个.答案:C2.(2013江西,5分)若集合A ={x ∈R |ax 2+ax +1=0}中只有一个元素,则a =( )A .4B .2C .0D .0或4解析:本题主要考查集合的表示方法(描述法)及其含义,考查化归与转化、分类讨论思想.由ax 2+ax +1=0只有一个实数解,可得当a =0时,方程无实数解;当a ≠0时,则Δ=a 2-4a =0,解得a =4(a =0不合题意舍去).答案:A3.(2013山东,5分)已知集合A ={0,1,2},则集合B ={x -y |x ∈A, y ∈A }中元素的个数是( )A .1B .3C .5D .9解析:本题考查集合的含义,考查分析问题、解决问题的能力.逐个列举可得.x =0,y =0,1,2时,x -y =0,-1,-2;x =1,y =0,1,2时,x -y =1,0,-1;x =2,y =0,1,2时,x -y =2,1,0.根据集合中元素的互异性可知集合B 的元素为-2,-1,0,1,2.共5个. 答案:C4.(2011广东,5分)已知集合A ={(x ,y )|x ,y 为实数,且x 2+y 2=1},B ={(x ,y )|x ,y 为实数,且x +y =1},则A ∩B 的元素个数为( )A .4B .3C .2D .1解析:由⎩⎪⎨⎪⎧x 2+y 2=1x +y =1消去y 得x 2-x =0,解得x =0或x =1,这时y =1或y =0,即A ∩B ={(0,1),(1,0)},有两个元素.答案:C5.(2010福建,5分)设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1;③若l =12,则-22≤m ≤0. 其中正确命题的个数是( )A .0B .1C .2D .3解析:若m =1,则x =x 2,可得x =1或x =0 (舍去),则S ={1},因此命题①正确;若m =-12,当x =-12时,x 2=14∈S ,故l min =14,当x =l 时,x 2=l 2∈S ,则l =l 2可得,可得l =1或l =0(舍去),故l max =1,∴14≤l ≤1,因此命题②正确;若l =12,则⎩⎨⎧ m ≤12m ≤m 2≤12,得-22≤m ≤0,因此命题③正确. 答案:D考点二 集合的基本关系1.(2013新课标全国Ⅰ,5分)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( )A .{1,4}B .{2,3}C .{9,16}D .{1,2}解析:本题主要考查集合的基本知识,要求认识集合,能进行简单的运算.n =1,2,3,4时,x =1,4,9,16,∴集合B ={1,4,9,16},∴A ∩B ={1,4}.答案:A2.(2013新课标全国Ⅱ,5分)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( )A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1}解析:本题主要考查集合的基本运算,意在考查考生对基本概念的理解.由交集的意义可知M ∩N ={-2,-1,0}.答案:C3.(2013山东,5分)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩∁U B =( )A .{3}B .{4}C.{3,4} D.∅解析:本题主要考查集合的交集、并集和补集运算,考查推理判断能力.由题意知A∪B ={1,2,3},又B={1,2},所以A中必有元素3,没有元素4,∁U B={3,4},故A∩∁U B={3}.答案:A4.(2013广东,5分)设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T =()A.{0}B.{0,2}C.{-2,0} D.{-2,0,2}解析:本题主要考查集合的运算知识,意在考查考生的运算求解能力.因为S={-2,0},T={0,2},所以S∩T={0}.答案:A5.(2013安徽,5分)已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B=() A.{-2,-1} B.{-2}C.{-1,0,1} D.{0,1}解析:本题主要考查集合的基本运算,意在考查考生的运算能力和对基本概念的理解能力.集合A={x|x>-1},所以∁R A={x|x≤-1},所以(∁R A)∩B={-2,-1}.答案:A6.(2013浙江,5分)设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T=()A.[-4,+∞)B.(-2, +∞)C.[-4,1] D.(-2,1]解析:本题主要考查集合、区间的意义和交集运算等基础知识,属于简单题目,意在考查考生对基础知识的掌握程度.由已知得S∩T={x|x>-2}∩{x|-4≤x≤1}={x|-2<x≤1}=(-2,1].答案:D7.(2013辽宁,5分)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0}B.{0,1}C.{0,2} D.{0,1,2}解析:本题主要考查集合的概念和运算,同时考查了绝对值不等式的解法,意在考查考生对集合运算的掌握情况,属于容易题.由已知,得B={x|-2<x<2},所以A∩B={0,1},选B.答案:B8.(2013天津,5分)已知集合A={x∈R| |x|≤2}, B={x∈R| x≤1},则A∩B=()A.(-∞,2]B.[1,2]C.[-2,2] D.[-2,1]解析:本题主要考查简单不等式的解法、集合的运算.意在考查考生对概念的理解能力.解不等式|x|≤2得,-2≤x≤2,所以A=[-2,2],又B=(-∞,1],所以A∩B=[-2,1].答案:D9.(2013北京,5分)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=()A.{0}B.{-1,0}C.{0,1} D. {-1,0,1}解析:集合A中共有三个元素-1,0,1,而其中符合集合B的只有-1和0,故选B.答案:B10.(2013陕西,5分)设全集为R,函数f(x)=1-x的定义域为M, 则∁R M为() A.(-∞,1)B.(1,+∞)C.(-∞,1] D.[1,+∞)解析:本题主要考查集合的概念和运算,函数的定义域与不等式的求解方法.从函数定义域切入,1-x≥0,∴x≤1,依据补集的运算知识得所求集合为(1,+∞).答案:B11.(2013湖北,5分)已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩∁U A =()A.{2}B.{3,4}C.{1,4,5} D.{2,3,4,5}解析:本题主要考查集合的补集和交集运算.由题得,∁U A={3,4,5},则B∩∁U A={3,4}.答案:B12. (2013四川,5分)设集合A={1,2,3},集合B={-2,2},则A∩B=()A.∅B.{2}C.{-2,2} D.{-2,1,2,3}解析:本题主要考查集合的运算,意在考查考生对基础知识的掌握.A,B两集合中只有一个公共元素2,∴A∩B={2},选B.答案:B13.(2013重庆,5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4}B.{3,4}C.{3} D.{4}解析:本题主要考查集合的并集与补集运算.因为A∪B={1,2,3},所以∁U(A∪B)={4},故选D.答案:D14.(2012新课标全国,5分)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则() A.A⊆B B.B⊆AC.A=B D.A∩B=∅解析:A={x|x2-x-2<0}={x|-1<x<2},B={x|-1<x<1},所以B⊆A.答案:B15.(2012湖北,5分)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1B.2C.3 D.4解析:因为集合A={1,2},B={1,2,3,4},所以当满足A⊆C⊆B时,集合C可以为{1,2}、{1,2,3}、{1,2,4}、{1,2,3,4},故集合C有4个.答案:D16.(2011浙江,5分)若P={x|x<1},Q={x|x>-1},则()A.P⊆Q B.Q⊆PC.∁R P⊆Q D.Q⊆∁R P解析:∵P={x|x<1},∴∁R P={x|x≥1},又Q={x|x>-1},∴∁R P⊆Q.答案:C考点三集合的基本运算1.(2012广东,5分)设集合U={1,2,3,4,5,6},M={1,3,5},则∁U M=()A.{2,4,6} B.{1,3,5}C.{1,2,4} D.U解析:因为集合U={1,2,3,4,5,6},M={1,3,5},所以2∈∁U M,4∈∁U M,6∈∁U M,所以∁U M ={2,4,6}.答案:A2.(2012安徽,5分)设集合A={x|-3≤2x-1≤3},集合B为函数y=lg(x-1)的定义域,则A∩B=()A.(1,2) B.[1,2]C.[1,2) D.(1,2]解析:由题可知A={x|-1≤x≤2},B={x|x>1},故A∩B=(1,2].答案:D3.(2012浙江,5分)设全集U ={1,2,3,4,5,6},集合P ={1,2,3,4},Q ={3,4,5},则P ∩(∁U Q )=( )A .{1,2,3,4,6}B .{1,2,3,4,5}C .{1,2,5}D .{1,2} 解析:∁U Q ={1,2,6},故P ∩(∁U Q )={1,2}.答案:D4.(2012湖南,5分)设集合M ={-1,0,1},N ={x |x 2=x },则M ∩N =( )A .{-1,0,1}B .{0,1}C .{1}D .{0}解析:N ={x |x 2=x }={0,1},所以M ∩N ={0,1}.答案:B5.(2012江西,5分)若全集U ={}x ∈R |x 2≤4,则集合A ={}x ∈R ||x +1|≤1的补集∁U A为( )A.{}x ∈R |0<x <2B.{}x ∈R |0≤x <2C.{}x ∈R |0<x ≤2D.{}x ∈R |0≤x ≤2解析:因为U ={x ∈R |x 2≤4}={x ∈R |-2≤x ≤2},A ={x ∈R |x +1|≤1}={x ∈R |-2≤x ≤0}.借助数轴易得∁U A ={x ∈R |0<x ≤2}.答案:C6.(2011新课标全国,5分)已知集合M ={0,1,2,3,4,},N ={1,3,5,},P =M ∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个解析:P =M ∩N ={1,3},故P 的子集有22=4个.答案:B7.(2011山东,5分)设集合M ={x |(x +3)(x -2)<0},N ={x |1≤x ≤3},则M ∩N =( )A .[1,2)B .[1,2]C .(2,3]D .[2,3]解析:集合M =(-3,2),M ∩N =(-3,2)∩[1,3]=[1,2).答案:A8.(2011北京,5分)已知全集U =R ,集合P ={x |x 2≤1},那么∁U P =( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)解析:集合P =[-1,1],所以∁U P =(-∞,-1)∪(1,+∞).答案:D9.(2010新课标全国,5分)已知集合A={x| |x|≤2,x∈R},B={x|x≤4,x∈Z},则A∩B=()A.(0,2)B.[0,2]C.{0,2} D.{0,1,2}解析:由题可知,集合A={x|-2≤x≤2},集合B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},所以集合A∩B={0,1,2}.答案:D10.(2009·山东,5分)集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为()A.0B.1C.2 D.4解析:∵A∪B={0,1,2,a,a2},又A∪B={0,1,2,4,16},∴{a,a2}={4,16},∴a=4,故选D.答案:D考点四抽象集合与新定义集合1.(2011福建,5分)在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2011∈[1],②-3∈[3],③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中,正确结论的个数是()A.1 B.2C.3 D.4解析:因为2011=402×5+1,又因为[1]={5n+k|n∈Z},所以2011∈[1],故命题①正确,又因为-3=5×(-1)+2,所以-3∈[2],故命题②不正确,又因为所有的整数Z除以5可得余数的结果为:0,1,2,3,4,所以命题③正确;若a-b属于同一类,则有a=5n1+k.b=5n2+k,所以a-b=5(n1-n2)∈[0],反过来如果a-b∈[0],也可以得到a-b属于同一类,故命题④正确,所以有3个命题正确.答案:C2.(2010湖南,5分)若规定E={a1,a2,…,a10}的子集{a i1,a i2,…,a in}为E的第k个子集,其中k=2i1-1+2i2-1+…+2i n-1,则(1){a1,a3}是E的第________个子集;(2)E的第211个子集为________.解析:此题是一个创新试题,定义了一个新的概念.(1)根据k的定义,可知k=21-1+23-1=5;(2)此时k=211,是个奇数,所以可以判断所求子集中必含元素a1,又28,29均大于211,故所求子集不含a9,a10.然后根据2j(j=1,2,…,7)的值易推导所求子集为{a1,a2,a5,a7,a8}.答案:5{a1,a2,a5,a7,a8}。
2015届高考数学(人教,理科)大一轮配套练透:第6章 不等式、推理与证明及不等式选讲 第2节
[课堂练通考点]1.不等式x -1x +2<0的解集为( )A .(1,+∞)B .(-∞,-2)C .(-2,1)D .(-∞,-2)∪(1,+∞)解析:选C 原不等式化为(x -1)(x +2)<0,解得-2<x <1,故原不等式的解集为(-2,1). 2.设a >0,不等式-c <ax +b <c 的解集是{x |-2<x <1},则a ∶b ∶c =( ) A .1∶2∶3 B .2∶1∶3 C .3∶1∶2D .3∶2∶1解析:选B ∵-c <ax +b <c ,又a >0, ∴-b +c a <x <c -b a.∵不等式的解集为{x |-2<x <1},∴⎩⎨⎧ -b +c a=-2,c -ba =1,∴⎩⎨⎧b =a 2,c =32a ,∴a ∶b ∶c =a ∶a 2∶3a2=2∶1∶3.3.(2013·重庆高考)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( )A.52B.72C.154D. 152解析:选A 由条件知x 1,x 2为方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2,故(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4×(-8a 2)=36a 2=152,得a =52.4.(2014·皖南八校第二次联考)不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( )A .[-1,4]B .(-∞,-2]∪[5,+∞)C .(-∞,-1]∪[4,+∞)D .[-2,5]解析:选A x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4.5.(2013·浙江调研)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,-x ,x ≤0,则不等式f (x )<4的解集是________.解析:不等式f (x )<4等价于⎩⎪⎨⎪⎧ x >0,x 2+1<4,或⎩⎪⎨⎪⎧x ≤0,-x <4,即0<x <3或-4<x ≤0.因此,不等式f (x )<4的解集是(-4,3). 答案:(-4,3)6.设[x ]表示不超过x 的最大整数,则不等式[x ]2-5[x ]+6≤0成立的x 的取值范围为______.解析:由不等式[x ]2-5[x ]+6≤0,得2≤[x ]≤3,故x 的取值范围为[2,4). 答案:[2,4)[课下提升考能]第Ⅰ组:全员必做题1.(2014·潍坊质检)不等式4x -2≤x -2的解集是( )A .(-∞,0]∪(2,4]B .[0,2)∪[4,+∞)C .[2,4)D .(-∞,2]∪(4,+∞)解析:选B 原不等式可化为-x 2+4xx -2≤0.即⎩⎪⎨⎪⎧x (x -4)(x -2)≥0,x -2≠0. 由标根法知,0≤x <2或x ≥4.2.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b 等于( )A .-3B .1C .-1D .3解析:选A 由题意得A ={x |-1<x <3},B ={x |-3<x <2},∴A ∩B ={x |-1<x <2},由根与系数的关系可知,a =-1,b =-2,则a +b =-3,故选A.3.(2014·湖北八校联考)“0<a <1”是“ax 2+2ax +1>0的解集是实数集R ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 当a =0时,1>0,显然成立;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ=4a 2-4a <0.故ax 2+2ax+1>0的解集是实数集R 等价于0≤a <1.因此,“0<a <1”是“ax 2+2ax +1>0的解集是实数集R ”的充分而不必要条件.4.关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则a 的取值范围是( ) A .(4,5) B .(-3,-2)∪(4,5) C .(4,5]D .[-3,-2)∪(4,5]解析:选D 原不等式可能为(x -1)(x -a )<0,当a >1时得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5,当a <1时得a <x <1,则-3≤a <-2,故a ∈[-3,-2)∪(4,5]5.(2013·洛阳诊断)若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( ) A.⎝⎛⎭⎫-235,+∞ B.⎣⎡⎦⎤-235,1 C .(1,+∞)D.⎝⎛⎦⎤-∞,-235 解析:选B 由Δ=a 2+8>0,知方程恒有两个不等实根,又知两根之积为负, 所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f (5)≥0,f (1)≤0,解得a ≥-235,且a ≤1,故a 的取值范围为⎣⎡⎦⎤-235,1. 6.不等式|x (x -2)|>x (x -2)的解集是________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2. 答案:{x |0<x <2}7.在R 上定义运算:x *y =x (1-y ).若不等式(x -y )*(x +y )<1对一切实数x 恒成立,则实数y 的取值范围是________.解析:由题意,知(x -y )*(x +y )=(x -y )·[1-(x +y )]<1对一切实数x 恒成立,所以-x 2+x +y 2-y -1<0对于x ∈R 恒成立.故Δ=12-4×(-1)×(y 2-y -1)<0,所以4y 2-4y -3<0,解得-12<y <32.答案:⎝⎛⎭⎫-12,32 8.(2013·广州调研)若关于x 的不等式4x -2x +1-a ≥0在[1,2]上恒成立,则实数a 的取值范围为________.解析:∵不等式4x -2x +1-a ≥0在[1,2]上恒成立,∴4x -2x +1≥a 在[1,2]上恒成立.令y =4x -2x +1=(2x )2-2×2x +1-1=(2x -1)2-1.∵1≤x ≤2,∴2≤2x ≤4.由二次函数的性质可知:当2x =2, 即x =1时,y 取得最小值0,∴实数a 的取值范围为(-∞,0]. 答案:(-∞,0]9.设函数f (x )=mx 2-mx -1.(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. 解:(1)要使mx 2-mx -1<0恒成立, 若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0⇒-4<m <0. 所以-4<m ≤0.(2)要使f (x )<-m +5在[1,3]上恒成立,即 m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:法一:令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0, 所以m <67,则0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)⇒m -6<0,所以m <6,所以m <0.综上所述:m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67. 法二:因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 所以,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67. 10.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ). (1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小.解:(1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ), 当m =-1,n =2时,不等式F (x )>0, 即a (x +1)(x -2)>0.那么当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2}; 当a <0时,不等式F (x )>0 的解集为{x |-1<x <2}. (2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), ∵a >0,且0<x <m <n <1a ,∴x -m <0,1-an +ax >0.∴f (x )-m <0,即f (x )<m . 第Ⅱ组:重点选做题1.若函数f (x )=(a 2+4a -5)x 2-4(a -1)x +3的图像恒在x 轴上方,则a 的取值范围是( )A .[1,19]B .(1,19)C .[1,19)D .(1,19]解析:选C 函数图像恒在x 轴上方,即不等式 (a 2+4a -5)x 2-4(a -1)x +3>0对于一切x ∈R 恒成立.(1)当a 2+4a -5=0时,有a =-5或a =1.若a =-5,不等式化为24x +3>0,不满足题意;若a =1,不等式化为3>0,满足题意.(2)当a 2+4a -5≠0时,应有⎩⎪⎨⎪⎧a 2+4a -5>0,16(a -1)2-12(a 2+4a -5)<0. 解得1<a <19.综上可知,a 的取值范围是1≤a <19.2.(2013·江苏高考)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.解析:由于f (x )为R 上的奇函数,所以当x =0时,f (0)=0;当x <0时,-x >0,所以f (-x )=x 2+4x =-f (x ),即f (x )=-x 2-4x ,所以f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.由f (x )>x ,可得⎩⎪⎨⎪⎧ x 2-4x >x ,x >0或⎩⎪⎨⎪⎧-x 2-4x >x ,x <0,解得x >5或-5<x <0,所以原不等式的解集为(-5,0)∪(5,+∞). 答案:(-5,0)∪(5,+∞)。
2009-2013年高考数学考点汇总
函数性质: 数形结合
函数性质: 数形结合、对数函 数
函数性质: 周期性、图象交 点、数形结合 向量运算: 垂直、求参数
数列: 已知递推关系求 和 导数的几何意 义: 切线方程
函数性质: 数形结合
13
导数的几何意 义: 切线方程
解析几何: 圆的方程
向量运算: 求参数
14
圆锥曲线: 抛物线
统计: 随机模拟、样本推 断总体
统计与概率: 分段函数、分布
立体几何: 线线垂直证明
-6-
反证法
线面角
二面角
列
线面角
19
统计与概率: 独立重复试验 概率、分布列
统计与概率: 卡方检验
统计与概率: 频数分布表、 分布 列
立体几何: 线线垂直证明 二面角
统计与概率: 独立重复试验 概率、分布列
20
解析几何: 椭圆方程 (待定 系数法) 、韦达定 理
求参数的值
求参数的取值范 围
-8-
解析几何: 椭圆、韦达定理
解析几何: 轨迹方程 (直接 法) 、基本不等式
解析几何: 抛物线、圆、基 本量计算;
解析几何: 轨迹方程 (定义 法) 、韦达定理
21
导数:
导数:
导数: 切线、求参数; 不等式、 分类讨论 求参数取值范围
导数: 单调区间 不等式、 综合转化
导数: 切线、求参数; 不等式、分类讨 论求参数取值范 围
8
三角函数: 图象、求参数
9
函数性质: 奇偶性、数形结 合
三角函数: 化简求值
定积分: 面积
三角函数: 单调性、 的范 围
二项式: 系数、求参数的 值
10
程序框图 补全判断框
【走向高考】2015一轮课后强化作业(北师大版):第六章 数列 6-2 Word版含解析
基础达标检测一、选择题1.(文)如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7=( )A .14B .21C .28D .35[答案] C[解析] 由a 3+a 4+a 5=12得,a 4=4, ∴a 1+a 2+…+a 7=a 1+a 72×7=7a 4=28.(理)若等差数列{a n }的前5项和为S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14 D .15 [答案] B[解析]由已知得 ⎩⎪⎨⎪⎧5a 1+5×42d =25,a 1+d =3∴⎩⎨⎧a 1=1d =2,∴a 7=a 1+6d =1+6×2=13.2.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( ) A .12 B .18 C .22D .44[答案] C[解析] S 11=11(a 1+a 11)2=11(a 2+a 10)2=11×42=22,故选C. 3.(文)在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=( ) A .12 B .16 C .20 D .24[答案] B[解析] 本题考查等差数列的性质.由等差数列的性质得,a 2+a 10=a 4+a 8=16,B 正确.(理)设{a n }为等差数列,公差d =-2,S n 为其前n 项和,若S 10=S 11,则a 1=( )A .18B .20C .22D .24[答案] B[解析] 本题主要考查等差数列的基本性质以及等差数列通项公式.S 11-S 10=a 11=0,a 11=a 1+10d =a 1+10×(-2)=0, 所以a 1=20.4.(2013·辽宁高考)下面是关于公差d >0的等差数列{a n }的四个命题:p 1:数列{a n }是递增数列; p 2:数列{na n }是递增数列; p 3:数列{a nn }是递增数列;p4:数列{a n+3nd}是递增数列.其中的真命题为()A.p1,p2B.p3,p4C.p2,p3D.p1,p4[答案] D[解析]对于p1,数列{a n}的公差d>0,所以数列是递增数列;对于p4,因为(a n+1+3(n+1)d)-(a n+3nd)=d+3d=4d>0,是递增数列.对于p2,因为(n+1)a n+1-na n=(n+1)a n+(n+1)d-na n=a1+2nd,a1不知道正负,不一定大于零,所以不一定是递增数列;同理,对于p3,也不一定是递增数列,选D.5.设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2-S k=24,则k=()A.8 B.7C.6 D.5[答案] D[解析]由a1=1,公差d=2得通项a n=2n-1,又S k+2-S k=a k +1+a k+2,所以2k+1+2k+3=24,得k=5.6.(2013·安徽高考)设S n为等差数列{a n}的前n项和,S3=4a3,a7=-2,则a9=()A.-6 B.-4C.-2 D.2[答案] A[解析]⎩⎨⎧S 3=4a 3a 7=-2⇒⎩⎨⎧3a 1+3d =4a 1+8d a 1+6d =-2⇒⎩⎨⎧a 1=10,d =-2.∴a 9=a 1+8d =-6. 二、填空题7.S n 为等差数列{a n }的前n 项和,S 2=S 6,a 4=1,则a 5=________. [答案] -1[解析] 本题考查了对等差数列前n 项和的理解和应用,同时还考查了等差数列的运算性质及考生灵活处理问题的能力.∵S 2=S 6,∴S 6-S 2=a 3+a 4+a 5+a 6=0, 又∵a 3+a 6=a 4+a 5, ∴S 6-S 2=2(a 4+a 5)=0, ∴a 4+a 5=0, 又∵a 4=1,∴a 5=-1.8.设S n 为等差数列{a n }的前n 项和,S 4=14,S 10-S 7=30,则S 9=________.[答案] 54[解析] 设首项为a 1,公差为d ,由S 4=14得 4a 1+4×32d =14.①由S 10-S 7=30得3a 1+24d =30, 即a 1+8d =10.②联立①②得a1=2,d=1,∴S9=54.9.在等差数列{a n}中,|a3|=|a9|,公差d<0,则使前n项和S n取得最大值的自然数n是________.[答案]5或6[解析]∵d<0,|a3|=|a9|,∴a3=-a9,∴a1+2d=-a1-8d,∴a1+5d=0,∴a6=0,∴a n>0(1≤n≤5),∴S n取得最大值时的自然数n是5或6.三、解答题10.(2013·新课标Ⅱ)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(1)求{a n}的通项公式;(2)求a1+a4+a7+…+a3n-2.[解析](1)设{a n}的公差为d,由题意,a211=a1a13,即(a1+10d)2=a1(a1+12d).于是d(2a1+25d)=0.又a1=25,所以d=0(舍去),d=-2.故a n=-2n+27.(2)令S n=a1+a4+a7+…+a3n-2.由(1)知a3n-2=-6n+31,故{a3n-2}是首项为25,公差为-6的等差数列.从而S n =n2(a 1+a 3n -2) =n2(-6n +56) =-3n 2+28n .能力强化训练一、选择题1.(2013·新课标Ⅰ)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6[答案] C[解析] S m -S m -1=a m =2,S m +1-S m =a m +1=3, ∴d =a m +1-a m =3-2=1, S m =a 1m +m (m -1)2·1=0,① a m =a 1+(m -1)·1=2, ∴a 1=3-m .②②代入①得3m -m 2+m 22-m2=0,∴m =0(舍去)或m =5,故选C.2.(文)若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A .13项B .12项C .11项D .10项[答案] A [解析]依题意⎩⎨⎧a 1+a 2+a 3=34a n -2+a n -1+a n =146,两式相加得(a 1+a n )+(a 2+a n -1)+(a 3+a n -2)=180. ∵a 1+a n =a 2+a n -1=a 3+a n -2,∴a 1+a n =60. ∵S n =n (a 1+a n )2=390,∴n =13. (理)等差数列{a n }中,S n 是其前n 项和,a 1=-2015,S 2 0142 014-S 2 0122 012=2,则S 2 015的值为( )A .-2 014B .2 015C .2 014D .-2 015[答案] D[解析] 设S n =An 2+Bn ,则S nn =An +B ,S 2 0142 014-S 2 0122 012=2A =2,故A =1.又a 1=S 1=A +B =-2 015,∴B =-2 016. ∴S 2 0152 015=2 015-2 016=-1.∴S 2015=-2 015. 二、填空题3.各项均不为零的等差数列{a n }中,若a 2n -a n -1-a n +1=0(n ∈N +,n ≥2),则S 2 015等于________.[答案] 4 030[解析] ∵a n -1+a n +1=2a n ,∴a 2n -a n -1-a n +1=a 2n -2a n =0,解得a n =2或a n =0(舍). ∴S 2 015=2×2 015=4 030.4.等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =________.[答案] 10[解析] 本题考查等差数列通项公式、前n 项和公式以及基本运算能力.设等差数列公差为d ,则a n =1+(n -1)d , ∵S 4=S 9,∴a 5+a 6+a 7+a 8+a 9=0,∴a 7=0, ∴1+6d =0,d =-16.又a 4=1+3×(-16)=12,a k =1+(k -1)(-16), ∴12+1+(k -1)(-16)=0,解得k =10. 三、解答题5.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知a 4=1,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .[解析]由a 4=1,S 15=75得⎩⎪⎨⎪⎧a 1+3d =115a 1+15×142d =75,解得a 1=-2,d =1.∴S n =-2n +n (n -1)2×1=12n 2-52n , ∴S n n =12n -52,而S n +1n +1-S n n =12,∴⎩⎨⎧⎭⎬⎫S n n 是公差为12的等差数列,首项S 11=-2. ∴T n =-2n +n (n -1)2×12=14n 2-94n .6.(2013·全国大纲)等差数列{a n }中,a 7=4,a 19=2a 9. (1)求{a n }的通项公式;(2)设b n =1na n ,求数列{b n }的前n 项和S n .[解析] (1)设等差数列{a n }的公差为d ,则 a n =a 1+(n -1)d .因为⎩⎨⎧a 7=4a 19=2a 9,所以⎩⎨⎧a 1+6d =4a 1+18d =2(a 1+8d ),解得a 1=1,d =12.所以{a n }的通项公式为a n =n +12.(2)因为b n =1na n =2n (n +1)=2n -2n +1,所以S n =(21-22)+(22-23)+…+(2n -2n +1)=2nn +1.。
【2015步步高】2015届高考一轮复习(题组扣点+课堂探究+学科素养培养+):第六章 动量守恒定律 第1课时
课堂探究
高考模拟
课堂探究
第1课时 动量 动量定理
考点一 对冲量的计算与理解
1.时间性:冲量是力在时间上的积累,讨论冲量时一定要明确 是哪个力在哪段时间上的冲量,即冲量是过程量.
2.矢量性:当力 F 为恒力时,I 的方向与力 F 的方向相同,当力 F 为变力时,I 的方向由动量的变化量的方向确定.
3.绝对性:只要有力的作用就存在冲量,恒力的冲量不会为零, 合力的冲量可能为零,变力的冲量也可能为零.
B.上升与下降过程中阻力的冲量相同
C.上升过程中重力的冲量小于下降过程中
重力的冲量
D.上升过程中阻力的冲量大于重力的冲量
第1课时 动量 动量定理
解析 上升时 F 合=mg+f= ma 上 下降时 F 合′=mg-f=ma 下
所以 a 上>a 下,由 h=12at2 知, t 上<t 下.重力的冲量 I 上=mgt 上<I 下=mgt 下,阻力的冲量为 If=ft,亦可知 If 上<If 下,选项 C 正确,D 项中无法比较.
题组扣点
课堂探究
高考模拟
课堂探究
【例 1】 如图 2 所示,光滑水平面上
有一质量为 m 的物体,在一与水平
方向成 θ 角的恒定拉力 F 作用下运
动,则在时间 t 内
(B )
第1课时 动量 动量定理
解析 一个恒力的冲量等 于这个力与力的作用时间 的乘积,与物体所受的其
他力及合力和运动的方向
图2
A.重力的冲量为 0 B.拉力 F 的冲量为 Ft C.拉力的冲量为 Ftcos θ
无关;D 项中,应是所有 外力的冲量等于动量的变 化量.
D.拉力 F 的冲量等于物体动量的
【2015步步高】2015届高考一轮复习(题组扣点+课堂探究+学科素养培养+):第六章 动量守恒定律 第2课时
度大小.
图5
题组扣点
课堂探究
学科素养培养 高考模拟
课堂探究
第2课时 动量守恒定律
1.应用动量守恒定律的解题步骤 (1)明确研究对象,确定系统的组成(系统包括哪几个物体及研 究的过程); (2)进行受力分析,判断系统动量是否守恒(或某一方向上是否 守恒); (3)规定正方向,确定初末状态动量; (4)由动量守恒定律列出方程; (5)代入数据,求出结果,必要时讨论说明.
【例 1】 (2013·山东理综)如图 5 所示,光 解析 因碰撞时间极短,A 与 C 滑水平轨道上放置着长木板 A(上表面 碰撞过程动量守恒,设碰后瞬
粗糙)和滑块 C,滑块 B 置于 A 的左端,
三者质量分别为 mA=2 kg、mB=1 kg、间 A 的速度为 vA,C 的速度为 mC=2 kg.开始时 C 静止,A、B 一起以 vC,以向右为正方向,由动量 v0=5 m/s 的速度匀速向右运动,A 与 C 守恒定律得
发生碰撞(时间极短)后 C 向右运动,经 mAv0=mAvA+mCvC
①
过一段时间,A、B 再次达到共同速度
一起向右运动,且恰好不再与 C 碰 A 与 B 在摩擦力作用下达到共
撞.求 A 与 C 发生碰撞后瞬间 A 的速 同速度,设共同速度为 vAB,由
度大小.
动量守恒定律得
mAvA+mBv0=(mA+mB)vAB ②
图6
(1)B 运动过程中的最大速度; (2)C 运动过程中的最大速度.
题组扣点
课堂探究
学科素养培养 高考模拟
课堂探究
第2课时 动量守恒定律
解析 (1)碰后瞬间 B 速度最大,选向右为正方向,由动量守恒定 律得
mAv0=mA(-vA′)+mBvB 所以 vB=mAv0m+BvA′=1×140+4 m/s=3.5 m/s,方向向右
【步步高】2015届高考数学第一轮大复习(基础+思想典型题+题组专练)6.4 数列求和文档专练 文
§6.4 数列求和1.求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式 (Ⅰ)当q =1时,S n =na 1;(Ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q .(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.常见的裂项公式 (1)1n (n +1)=1n -1n +1;(2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(3)1n +n +1=n +1-n .1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q .( √ )(2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( √ )(3)求S n =a +2a 2+3a 3+…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × )(4)数列{12n +2n -1}的前n 项和为n 2+12n .( × )(5)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( √ )(6)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )2.(2012·大纲全国)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( )A.100101B.99101C.99100D.101100 答案 A解析 利用裂项相消法求和.设等差数列{a n }的首项为a 1,公差为d . ∵a 5=5,S 5=15,∴⎩⎨⎧a 1+4d =5,5a 1+5×(5-1)2d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =a 1+(n -1)d =n . ∴1a n a n +1=1n (n +1)=1n -1n +1, ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前100项和为1-12+12-13+…+1100-1101=1-1101=100101.3.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和S n 为( ) A.2n +n 2-1B.2n +1+n 2-1 C.2n +1+n 2-2D.2n +n 2-2 答案 C解析 S n =(2+22+23+…+2n )+(1+3+5+…+(2n -1)) =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.4.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A.200B.-200C.400D.-400 答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.5.3·2-1+4·2-2+5·2-3+…+(n +2)·2-n =________. 答案 4-n +42n解析 设S =3×12+4×122+5×123+…+(n +2)×12n ,则12S =3×122+4×123+5×124+…+(n +2)×12n +1. 两式相减得12S =3×12+(122+123+…+12n )-n +22n +1.∴S =3+(12+122+…+12n -1)-n +22n=3+12[1-(12)n -1]1-12-n +22n =4-n +42n .题型一 分组转化求和例1 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项和S n .思维启迪 先写出通项,然后对通项变形,分组后利用等差数列、等比数列的求和公式求解.解 由已知得,数列{a n }的通项公式为 a n =3n +2n -1=3n -1+2n , ∴S n =a 1+a 2+…+a n=(2+5+…+3n -1)+(2+22+…+2n ) =n (2+3n -1)2+2(1-2n )1-2=12n (3n +1)+2n +1-2. 思维升华 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.求和S n =1+⎝⎛⎭⎫1+12+⎝⎛⎭⎫1+12+14+…+⎝⎛⎭⎫1+12+14+…+12n -1. 解 和式中第k 项为 a k =1+12+14+…+12k -1=1-⎝⎛⎭⎫12k1-12=2⎝⎛⎭⎫1-12k . ∴S n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-122+…+⎝⎛⎭⎫1-12n =2[(1+1+…+1)-(12+122+…+12n )]n 个=2⎝ ⎛⎭⎪⎫n -12⎝⎛⎭⎫1-12n1-12=12n -1+2n -2.题型二 错位相减法求和例2 已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式;(2)设b n =(4-a n )q n -1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n . 思维启迪 (1)列方程组求{a n }的首项、公差,然后写出通项a n . (2)q =1时,b n 为等差数列,直接求和;q ≠1时,用错位相减法求和. 解 (1)设等差数列{a n }的公差为d .由已知得⎩⎪⎨⎪⎧ 3a 1+3d =68a 1+28d =-4,解得⎩⎪⎨⎪⎧a 1=3d =-1.故a n =3+(n -1)·(-1)=4-n . (2)由(1)得,b n =n ·q n -1,于是 S n =1·q 0+2·q 1+3·q 2+…+n ·q n -1. 若q ≠1,将上式两边同乘以q 有 qS n =1·q 1+2·q 2+…+(n -1)·q n -1+n ·q n .两式相减得到(q -1)S n =nq n -1-q 1-q 2-…-q n -1 =nq n-q n -1q -1=nq n +1-(n +1)q n +1q -1.于是,S n =nq n +1-(n +1)q n +1(q -1)2.若q =1,则S n =1+2+3+…+n =n (n +1)2.所以S n=⎩⎪⎨⎪⎧n (n +1)2,q =1nq n +1-(n +1)q n +1(q -1)2,q ≠1.思维升华 (1)错位相减法是求解由等差数列{b n }和等比数列{}对应项之积组成的数列{a n },即a n =b n ×的前n 项和的方法.这种方法运算量较大,要重视解题过程的训练. (2)注意错位相减法中等比数列求和公式的应用X 围.已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1.故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和为S n ,即S n =a 1+a 22+…+a n2n -1,①故S 1=1,S n 2=a 12+a 24+…+a n2n .②所以,当n >1时,①-②得 S n2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-(12+14+…+12n -1)-2-n 2n=1-(1-12n -1)-2-n 2n =n 2n .所以S n =n2n -1.当n =1时也成立.综上,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和S n =n2n -1.题型三 裂项相消法求和例3在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .思维启迪 第(1)问利用a n =S n -S n -1 (n ≥2)后,再同除S n -1·S n 转化为⎩⎨⎧⎭⎬⎫1S n 的等差数列即可求S n .第(2)问求出{b n }的通项公式,用裂项相消法求和. 解 (1)∵S 2n =a n ⎝⎛⎭⎫S n -12, a n =S n -S n -1 (n ≥2), ∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n ,①由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1. 思维升华 利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2,n ∈N *.(1)求证:数列{a n }是等差数列;(2)设b n =12S n ,T n =b 1+b 2+…+b n ,求T n .(1)证明 ∵S n =a n (a n +1)2,n ∈N *,∴当n =1时,a 1=S 1=a 1(a 1+1)2(a n >0),∴a 1=1.当n ≥2时,由⎩⎪⎨⎪⎧2S n =a 2n +a n ,2S n -1=a 2n -1+a n -1得2a n =a 2n +a n -a 2n -1-a n -1.即(a n +a n -1)(a n -a n -1-1)=0, ∵a n +a n -1>0,∴a n -a n -1=1(n ≥2).所以数列{a n }是以1为首项,以1为公差的等差数列. (2)解 由(1)可得a n =n ,S n =n (n +1)2, b n =12S n =1n (n +1)=1n -1n +1.∴T n =b 1+b 2+b 3+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1.四审结构定方案典例:(12分)(2012·某某)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .S n =-12n 2+kn 及S n 最大值为8S n 是n 的二次函数 n =k 时(S n )max =S k =8(根据S n 的结构特征确定k 值) k =4,S n =-12n 2+4n利用a n 、S n 的关系 a n =92-n9-2a n 2n =n2n -1根据数列的结构特征,确定求和方法:错位相减法 T n =1+22+322+…+n -12n -2+n2n -1①①式两边同乘以22T n =2+2+32+…+n -12n -3+n2n -2②错位相减T n =2+1+12+…+12n -2-n2n -1=4-n +22n -1.规X 解答解 (1)当n =k ∈N *时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4.当n =1时,a 1=S 1=-12+4=72,[3分]当n ≥2时,a n =S n -S n -1=92-n .[6分]当n =1时,上式也成立,综上,a n =92-n .(2)因为9-2a n 2n =n2n -1,所以T n =1+22+322+…+n -12n -2+n2n -1,①[7分]所以2T n =2+2+32+…+n -12n -3+n2n -2②②-①:2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n2n -1=4-n +22n -1[11分]故T n =4-n +22n -1.[12分]温馨提醒 (1)根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据{9-2a n2n }的结构特征确定利用错位相减法求T n .在审题时,要审题目中数式的结构特征判定解题方案; (2)利用S n 求a n 时不要忽视n =1的情况;错位相减时不要漏项或算错项数.方法与技巧非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和. 失误与防X1.直接应用公式求和时,要注意公式的应用X 围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.A 组 专项基础训练 (时间:40分钟)一、选择题1.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,若b n =1a n a n +1,那么数列{b n }的前n 项和S n 为( ) A.n n +1B.4n n +1C.3n n +1D.5nn +1 答案 B解析 a n =1+2+3+…+n n +1=n2,∴b n =1a n a n +1=4n (n +1)=4(1n -1n +1), ∴S n =4[(1-12)+(12-13)+…+(1n -1n +1)] =4(1-1n +1)=4n n +1. 2.已知数列{a n }是等差数列,若a 9+3a 11<0,a 10·a 11<0,且数列{a n }的前n 项和S n 有最大值,那么当S n 取得最小正值时,n 等于( )A.20B.17C.19D.21答案 C解析 由a 9+3a 11<0,得2a 10+2a 11<0,即a 10+a 11<0,又a 10·a 11<0,则a 10与a 11异号,因为数列{a n }的前n 项和S n 有最大值,所以数列{a n }是一个递减数列,则a 10>0,a 11<0,所以S 19=19(a 1+a 19)2=19a 10>0, S 20=20(a 1+a 20)2=10(a 10+a 11)<0. 故使S n 取值最小正值的n 为19.3.已知函数f (n )=⎩⎪⎨⎪⎧n 2(当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于 ( )A.0B.100C.-100D.10 200答案 B解析 由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100.故选B.4.数列a 1+2,…,a k +2k ,…,a 10+20共有十项,且其和为240,则a 1+…+a k +…+a 10的值为( )A.31B.120C.130D.185答案 C解析 a 1+...+a k +...+a 10=240-(2+...+2k + (20)=240-(2+20)×102=240-110=130.5.数列a n =1n (n +1),其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为( )A.-10B.-9C.10D.9答案 B解析 数列的前n 项和为11×2+12×3+…+1n (n +1)=1-1n +1=n n +1=910, ∴n =9,∴直线方程为10x +y +9=0.令x =0,得y =-9,∴在y 轴上的截距为-9.二、填空题6.数列32,94,258,6516,…的前n 项和S n 为________. 答案 n (n +1)2+1-12n 解析 ∵32=1+12,94=2+14,258=3+18, 6516=4+116,… ∴S n =32+94+258+6516+…+(n +12n ) =(1+2+3+…+n )+(12+122+123+…+12n ) =n (n +1)2+12[1-(12)n ]1-12=n (n +1)2+1-12n . 7.设f (x )=4x 4x +2,若S =f (12 015)+f (22 015)+…+f (2 0142 015),则S =________. 答案 1 007解析 ∵f (x )=4x 4x +2,∴f (1-x )=41-x41-x +2=22+4x, ∴f (x )+f (1-x )=4x 4x +2+22+4x=1. S =f (12 015)+f (22 015)+…+f (2 0142 015),① S =f (2 0142 015)+f (2 0132 015)+…+f (12 015),② ①+②得,2S =[f (12 015)+f (2 0142 015)]+[f (22 015)+f (2 0132 015)]+…+[f (2 0142 015)+f (12 015)]=2 014, ∴S =2 0142=1 007. 8.(2012·课标全国)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为________. 答案 1 830解析 利用数列的递推式的意义结合等差数列求和公式求解.∵a n +1+(-1)n a n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+…+234=15×(10+234)2=1 830. 三、解答题9.已知数列{a n }是首项为a 1=14,公比为q =14的等比数列,设b n +2=3log 14a n (n ∈N *),数列{}满足=a n ·b n .(1)求数列{b n }的通项公式;(2)求数列{}的前n 项和S n .解 (1)由题意,知a n =(14)n (n ∈N *), 又b n =3log 14a n -2,故b n =3n -2(n ∈N *).(2)由(1),知a n =(14)n ,b n =3n -2(n ∈N *), 所以=(3n -2)×(14)n (n ∈N *). 所以S n =1×14+4×(14)2+7×(14)3+…+(3n -5)×(14)n -1+(3n -2)×(14)n , 于是14S n =1×(14)2+4×(14)3+7×(14)4+…+(3n -5)×(14)n +(3n -2)×(14)n +1. 两式相减,得34S n =14+3[(14)2+(14)3+…+(14)n ]-(3n -2)×(14)n +1=12-(3n +2)×(14)n +1. 所以S n =23-3n +23×(14)n (n ∈N *). 10.若S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列.(1)求等比数列S 1,S 2,S 4的公比;(2)若S 2=4,求数列{a n }的通项公式;(3)在(2)的条件下,设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m 20对所有n ∈N *都成立的最小正整数m .解 (1)因为{a n }为等差数列,设{a n }的公差为d (d ≠0),所以S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d .因为S 1,S 2,S 4成等比数列且设其公比为q ,所以S 1·S 4=S 22.所以a 1(4a 1+6d )=(2a 1+d )2.所以2a 1d =d 2.因为公差d ≠0.所以d =2a 1.所以q =S 2S 1=4a 1a 1=4. (2)因为S 2=4,所以2a 1+d =4.又d =2a 1,所以a 1=1,d =2.所以a n =2n -1.(3)因为b n =3(2n -1)(2n +1)=32(12n -1-12n +1), 所以T n =32[(1-13)+(13-15)+…+(12n -1-12n +1)]=32(1-12n +1)<32.要使T n <m 20对所有n ∈N *都成立, 则有m 20≥32,即m ≥30. 因为m ∈N *,所以m 的最小值为30.B 组 专项能力提升(时间:30分钟)1.已知数列2 008,2 009,1,-2 008,-2 009,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 014项之和S 2 014等于( )A.2 008B.2 010C.1D.0答案 B解析 由已知得a n =a n -1+a n +1(n ≥2),∴a n +1=a n -a n -1.故数列的前8项依次为2 008,2 009,1,-2 008,-2 009,-1,2 008,2 009.由此可知数列为周期数列,周期为6,且S 6=0.∵2 014=6×335+4,∴S 2 014=S 4=2 008+2 009+1+(-2 008)=2 010.2.(2013·课标全国Ⅰ)设△A n B n 的三边长分别为a n 、b n 、,△A n B n 的面积为S n ,n =1,2,3,…,若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=+a n 2,+1=b n +a n 2,则( ) A.{S n }为递减数列B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列答案 B解析 因为b 1>c 1,不妨设b 1=4a 13,c 1=2a 13; 故S 1= 3a 12·a 12·a 16·5a 16=1512a 21; a 2=a 1,b 2=23a 1+a 12=56a 1,c 2=43a 1+a 12=76a 1,S 2= 3a 12·a 12·2a 13·a 13=66a 21. 显然S 2>S 1;a 3=a 1,b 3=76a 1+a 12=1312a 1, c 3=56a 1+a 12=1112a 1, S 3= 3a 12·a 12·5a 112·7a 112=10524a 21,显然S 3>S 2. 3.(2013·某某)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则: (1)a 3=________;(2)S 1+S 2+…+S 100=________.答案 (1)-116(2)13⎝⎛⎭⎫12100-1 解析 ∵a n =S n -S n -1=(-1)n a n -12n -(-1)n -1a n -1+12n -1, ∴a n =(-1)n a n -(-1)n -1a n -1+12n . 当n 为偶数时,a n -1=-12n , 当n 为奇数时,2a n +a n -1=12n , ∴当n =4时,a 3=-124=-116. 根据以上{a n }的关系式及递推式可求. a 1=-122,a 3=-124,a 5=-126,a 7=-128, a 2=122,a 4=124,a 6=126,a 8=128. ∴a 2-a 1=12,a 4-a 3=123,a 6-a 5=125,…, ∴S 1+S 2+…+S 100=(a 2-a 1)+(a 4-a 3)+…+(a 100-a 99)-⎝⎛⎭⎫12+122+123+…+12100 =⎝⎛⎭⎫12+123+…+1299-⎝⎛⎭⎫12+122+…+12100 =13⎝⎛⎭⎫12100-1. 4.已知数列{a n }的前n 项和S n ,满足:S n =2a n -2n (n ∈N *).(1)求数列{a n }的通项a n ;(2)若数列{b n }满足b n =log 2(a n +2),T n 为数列{b n a n +2}的前n 项和,求证:T n ≥12. (1)解 当n ∈N *时,S n =2a n -2n ,则当n ≥2时,S n -1=2a n -1-2(n -1),两式相减得a n =2a n -2a n -1-2,即a n =2a n -1+2,∴a n +2=2(a n -1+2),∴a n +2a n -1+2=2, 当n =1时,S 1=2a 1-2,则a 1=2,∴{a n +2}是以a 1+2=4为首项,2为公比的等比数列,∴a n +2=4·2n -1,∴a n =2n +1-2;(2)证明 b n =log 2(a n +2)=log 22n +1=n +1,∴b n a n +2=n +12n +1,则T n =222+323+…+n +12n +1, 12T n =223+324+…+n 2n +1+n +12n +2, 两式相减得12T n =222+123+124+…+12n +1-n +12n +2 =14+14(1-12n )1-12-n +12n +2 =14+12-12n +1-n +12n +2=34-n +32n +2, ∴T n =32-n +32n +1, 当n ≥2时,T n -T n -1=-n +32n +1+n +22n =n +12n +1>0, ∴{T n }为递增数列,∴T n ≥T 1=12. 5.直线l n :y =x -2n 与圆:x 2+y 2=2a n +n 交于不同的两点A n ,B n ,n ∈N *.数列{a n }满足:a 1=1,a n +1=14|A n B n |2. (1)求数列{a n }的通项公式;(2)若b n =⎩⎪⎨⎪⎧2n -1(n 为奇数),a n (n 为偶数),求数列{b n }的前n 项和T n . 解 (1)由题意,知圆的圆心到直线l n 的距离d n =n , 半径r n =2a n +n ,所以a n +1=(12|A n B n |)2=r 2n -d 2n =(2a n +n )-n =2a n . 又a 1=1,所以a n =2n -1.(2)当n 为偶数时,T n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n ) =[1+5+…+(2n -3)]+(2+23+…+2n -1) =n (n -1)2+2(1-2n )1-4=n 2-n 2+23(2n -1). 当n 为奇数时,n +1为偶数,T n +1=(n +1)2-(n +1)2+23(2n +1-1) =n 2+n 2+23(2n +1-1). 而T n +1=T n +b n +1=T n +2n,所以T n =n 2+n 2+13(2n -2). 所以T n =⎩⎪⎨⎪⎧ n 2-n 2+23(2n -1)(n 为偶数),n 2+n 2+13(2n -2)(n 为奇数).。
2015高考数学一轮课件:第6章 常考题型强化练——数列
n=2,3,4,…,设 bn= a2n1 +1,n=1,2,3,…,则数列{bn}的通项
公式是________.
解析 由题意,得对于任意的正整数n,bn=a2n1 +1,
∴bn+1= a2n+1,
又 a2n +1=(
2a2n
2
+1)+1=2( a2n1 +1)=2bn,
∴bn+1=2bn,
第二十页,编辑于星期五:十三点 四十八分。
解析 当 n=1 时,2a1=S1+1,得 a1=1,
当 n≥2 时,2(an-an-1)=Sn-Sn-1=an, 所以aan-n 1=2,所以 an=2n-1,
又因为 a1=1 适合上式,所以 an=2n-1,所以 a2n=4n-1,
所以数列{a2n}是以 a21=1 为首项,以 4 为公比的等比数列, 所以 a21+a22+…+a2n=1×1-1-44n=13(4n-1),
所以Tn=b1+b2+…+bn
=12(4+42+…+4n)+2(1+2+…+n) =4n+61-4+n2+n=23×4n+n2+n-23.
第十四页,编辑于星期五:十三点 四十八分。
A组 专项基础训练
1
2
3
4
5
6
7
8
9
10
10.已知等差数列{an}的前三项为 a-1,4,2a,记前 n 项和为 Sn. (1)设 Sk=2 550,求 a 和 k 的值; (2)设 bn=Snn,求 b3+b7+b11+…+b4n-1 的值.
数学 粤(理)
常考题型强化练——数列
第一页,编辑于星期五:十三点 四十八分。
A组 专项基础训练
1
2
3
4
5
6
7
2015届高考数学大一轮复习(2009-2013高考题库)第1章 第2节 命题及其关系、充分条件与必要条件 理 新人教A版
2009~2013年高考真题备选题库第1章 集合与常用逻辑用语第2节 命题及其关系、充分条件与必要条件考点一 命题及其关系1.(2013陕西,5分)设z 是复数, 则下列命题中的假命题是( )A .若z 2≥0,则z 是实数B .若z 2<0,则z 是虚数C .若z 是虚数,则z 2≥0D .若z 是纯虚数,则z 2<0解析:本题主要考查复数的分类,复数代数形式的运算及命题真假的判断.实数可以比较大小,而虚数不能比较大小,设z =a +b i(a ,b ∈R ),则z 2=a 2-b 2+2ab i ,由z 2≥0,得⎩⎪⎨⎪⎧ab =0,a 2-b 2≥0,则b =0,故选项A 为真,同理选项B 为真;而选项C 为假,选项D 为真. 答案:C2.(2013天津,5分)已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x +y +1=0与圆x 2+y 2=12相切. 其中真命题的序号为( )A .①②③B .①②C .①③D .②③解析:本题考查命题真假的判断,意在考查考生的逻辑推理能力.若一个球的半径缩小到原来的12,则其体积缩小到原来的18,所以①是真命题;因为标准差除了与平均数有关,还与各数据有关,所以②是假命题;因为圆心(0,0)到直线x +y +1=0的距离等于12,等于圆的半径,所以③是真命题.故真命题的序号是①③.答案:C3.(2013四川,5分)设P 1,P 2,…,P n 为平面α内的n 个点.在平面α内的所有点中,若点P 到点P 1,P 2,…,P n 的距离之和最小,则称点P 为点P 1,P 2,…,P n 的一个“中位点”.例如,线段 AB 上的任意点都是端点A ,B 的中位点.现有下列命题: ①若三个点A ,B ,C 共线,C 在线段AB 上,则C 是A ,B ,C 的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A ,B ,C ,D 共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是________.(写出所有真命题的序号)解析:本题主要考查求函数最值,两点间的距离公式,建立坐标系,以及不等式的放缩等基础知识和基本技能,意在考查综合运用知识分析和解决问题的能力,推理论证和运算求解能力.对于①,不妨假设A ,C ,B 三点在平面直角坐标系xOy 中的x 轴上由左至右排列,A (0,0),C (c,0),B (b,0),0<c <b ,对于平面内任意一点M (x ,y ),|MA |+|MB |+|MC |=x 2+y 2+(x -b )2+y 2+(x -c )2+y 2≥|x |+|x -b |+|x -c |.因为0<c <b ,所以当x =c 时,(|MA |+|MB |+|MC |)min =b ,此时M (c,0),也就是M 点与C 点重合,故①正确;对于②,设△ABC 中∠C 为直角,以C 为原点,CA ,CB 分别为x ,y 轴建立平面直角坐标系xOy ,并设点A (a,0),B (0,b ),a >0,b >0,M (x ,y )为平面内任意一点,AB 中点坐标为⎝⎛⎭⎫a 2,b 2,则|MA |+|MB |+|MC |= (x -a )2+y 2+x 2+(y -b )2+ x 2+y 2,当x =a 2,y =b 2时,|MA |+|MB |+|MC |=32 a 2+b 2,而当x =0,y =0时,|MA |+|MB |+|MC |=a +b ,因为94(a 2+b 2)-(a +b )2=5a 2+5b 2-8ab 4≥12ab >0,所以斜边的中点不是该直角三角形三个顶点的中位点,故②错误;对于③,不妨假设A ,B ,C ,D 四点在平面直角坐标系xOy 中的x 轴上由左至右排列,A (0,0),B (b,0),C (c,0),D (d,0),0<b <c <d ,对于平面内任意一点M (x ,y ),|MA |+|MB |+|MC |+|MD |=x 2+y 2+(x -b )2+y 2+(x -c )2+y 2+(x -d )2+y 2≥|x |+|x -b |+|x -c |+|x -d |,因为0<b <c <d ,所以当x ∈[b ,c ]时,|MA |+|MB |+|MC |+|MD |取得最小值,此时M (x,0),x ∈[b ,c ],不唯一,故③错误;对于④,由①可知A ,C 的中位点为线段AC 之间的任意一点,B ,D 的中位点为线段BD 之间的任意一点,所以A ,B ,C ,D 的中位点为线段AC 与线段BD 的交点,也就是梯形对角线的交点,故④正确.答案为①④.答案:①④4.(2012湖南,5分)命题“若α=π4,则tan α=1”的逆否命题是( ) A .若α≠π4,则tan α≠1 B .若α=π4,则tan α≠1 C .若tan α≠1,则α≠π4 D .若tan α≠1,则α=π4解析:以否定的结论作条件、否定的条件作结论得出的命题为逆否命题,即“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”. 答案:C5.(2012江西,5分)下列命题中,假命题为( )A .存在四边相等的四边形不是正方形B .z 1,z 2∈C ,z 1+z 2为实数的充分必要条件是z 1,z 2互为共轭复数C .若x ,y ∈R ,且x +y >2,则x ,y 至少有一个大于1D .对于任意n ∈N +,C 0n +C 1n +…+C n n 都是偶数解析:空间四边形可能四边相等,但不是正方形,故A 为真命题;令z 1=1+b i ,z 2=3-b i(b ∈R ),显然z 1+z 2=4∈R ,但z 1,z 2不互为共轭复数,B 为假命题;假设x ,y 都不大于1,则x +y >2不成立,故与题设条件“x +y >2”矛盾,假设不成立,故C 为真命题;C 0n +C 1n +…+C n n =2n 为偶数,故D 为真命题.排除A ,C ,D ,选B.答案:B6.(2011新课标全国,5分)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题p 1:|a +b |>1⇔θ∈[0,2π3) p 2:|a +b |>1⇔θ∈(2π3,π] p 3:|a -b |>1⇔θ∈[0,π3) p 4:|a -b |>1⇔θ∈(π3,π] 其中的真命题是( )A .p 1,p 4B .p 1,p 3C .p 2,p 3D .p 2,p 4解析:由|a +b |>1可得:a 2+2a ·b +b 2>1,∵|a |=1,|b |=1,∴a ·b >-12.故θ∈[0,2π3).当θ∈[0,2π3)时,a ·b >-12,|a +b |2=a 2+2a ·b +b 2>1,即|a +b |>1;由|a -b |>1可得:a 2-2a ·b +b 2>1,∵|a |=1,|b |=1,∴a ·b <12.故θ∈(π3,π],反之也成立. 答案:A7.(2011陕西,5分)设a ,b 是向量,命题“若a =-b ,则|a|=|b|”的逆命题是( )A .若a ≠-b ,则|a |≠|b|B .若a =-b ,则|a|≠|b|C .若|a|≠|b|,则a ≠-bD .若|a|=|b |,则a =-b解析:只需将原命题的结论变为新命题的条件,同时将原命题的条件变成新命题的结论即可,即“若|a|=|b|,则a =-b .”答案:D8.(2010天津,5分)命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是( )A .若f (x )是偶函数,则f (-x )是偶函数B .若f (x )不是奇函数,则f (-x )不是奇函数C .若f (-x )是奇函数,则f (x )是奇函数D .若f (-x )不是奇函数,则f (x )不是奇函数解析:否命题是既否定题设又否定结论.因此否命题应为“若函数f (x )不是奇函数,则f (-x )不是奇函数”.答案:B考点二 充分条件与必要条件1.(2013山东,5分)给定两个命题p ,q .若綈 p 是q 的必要而不充分条件,则p 是綈 q的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:本题考查命题、逻辑联结词及充分、必要条件等基础知识,考查等价转化的数学思想,考查分析问题和解决问题的能力.q ⇒綈p 等价于p ⇒綈q ,綈p ⇒/ q 等价于綈q ⇒/ p ,故p 是綈q 的充分而不必要条件.答案: A2.(2013安徽,5分)“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:本题考查二次函数图象性质以及图象变换,意在考查转化与化归思想.根据二次函数的图象可知f (x )在(0,+∞)内单调递增等价于f (x )=0在区间(0,+∞)内无实根,本题不难求解.f (x )=|(ax -1)x |在(0,+∞)内单调递增等价于f (x )=0在区间(0,+∞)内无实根,即a =0或1a<0,也就是a ≤0,故“a ≤0”是“函数f (x )=|(ax -1)x |在(0,+∞)内单调递增”的充要条件,故选C.答案: C3.(2013福建,5分)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:本题考查集合与充分必要条件等基础知识,意在考查考生转化和化归能力、逻辑推理能力和运算求解能力.因为A ={1,a },B ={1,2,3},若a =3,则A ={1,3},所以A ⊆B ;若A ⊆B ,则a =2或a =3,所以A ⊆B ⇒/ a =3,所以“a =3”是“A ⊆B ”的充分而不必要条件.答案: A4.(2013浙江,5分)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:本题考查对必要条件、充分条件与充要条件的理解,考查三角函数的诱导公式、三角函数的奇偶性等,意在考查考生的推理能力以及三角函数性质的掌握等.若f (x )是奇函数,则φ=π2+k π(k ∈Z ),且当φ=π2时,f (x )为奇函数. 答案: B5.(2013北京,5分)“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:本题考查三角函数的诱导公式、三角函数的性质、充要条件的判断等基础知识和基本方法,意在考查考生分析问题、解决问题的能力.由sin φ=0可得φ=k π(k ∈Z ),此为曲线y =sin(2x +φ)过坐标原点的充要条件,故“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的充分而不必要条件.答案: A6.(2012陕西,5分)设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +b i为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:复数a +b i=a -b i 为纯虚数,则a =0,b ≠0;而ab =0表示a =0或者b =0,故“ab =0”是“复数a +b i为纯虚数”的必要不充分条件. 答案:B7.(2011福建,5分)若a ∈R ,则“a =2”是“(a -1)(a -2)=0”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件解析:若“a =2”,则“(a -1)(a -2)=0”,即a =2⇒(a -1)·(a -2)=0.若“(a -1)(a -2)=0”,则“a =2或a =1”;故(a -1)(a -2)=0不一定能推出a =2.答案:A8.(2011湖南,5分)设集合M ={1,2},N ={a 2},则“a =1”是“N ⊆M ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件解析:显然a =1时一定有N ⊆M ,反之则不一定成立,如a =-1.故是充分不必要条件. 答案:A9.(2010辽宁,5分)已知a >0,则x 0满足关于x 的方程ax =b 的充要条件是( )A .∃x ∈R ,12ax 2-bx ≥12ax 20-bx 0 B .∃x ∈R ,12ax 2-bx ≤12ax 20-bx 0 C .∀x ∈R ,12ax 2-bx ≥12ax 20-bx 0 D .∀x ∈R ,12ax 2-bx ≤12ax 20-bx 0 解析:设函数f (x )=12ax 2-bx , ∴f ′(x )=ax -b ,由已知可得f ′(x 0)=ax 0-b =0,又因为a >0,所以可知x 0是函数f (x )的极小值点,也是最小值点.由最小值定义可知选项C 正确.答案:C10.(2010陕西,5分)对于数列{a n },“a n +1>|a n |(n =1,2…)”是“{a n }为递增数列”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析:因为a n +1>|a n |⇒a n +1>a n ⇒{a n }为递增数列,但{a n }为递增数列⇒a n +1>a n 推不出a n +1>|a n |,故“a n +1>|a n |(n =1,2…)”是“{a n }为递增数列”的充分不必要条件.答案:B11.(2009·安徽,5分)下列选项中,p 是q 的必要不充分条件的是( )A .p :a +c >b +d , q :a >b 且c >dB .p :a >1,b >1,q :f (x )=a x -b (a >0,且a ≠1)的图象不过第二象限C .p :x =1, q :x 2=xD .p :a >1,q :f (x )=log a x (a >0,且a ≠1)在(0,+∞)上为增函数解析: ⎭⎬⎫a >bc >d ⇒a +c >b +d (不等式的性质),反之不成立,例如:8+2>6+3,a =8,b =2,c =6,d =3.a >b 但c <d ,∴p 是q 的必要不充分条件.答案:A12.(2009·浙江,5分)已知a ,b 是实数,则“a >0且b >0”是“a +b >0且ab >0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:a>0,b>0时显然有a+b>0且ab>0,充分性成立;反之,若a+b>0且ab>0,则a,b同号且同正,即a>0,b>0.必要性成立.答案:C13.(2011陕西,5分)设n∈N*,一元二次方程x2-4x+n=0有整数根的充要条件是n =________.解析:由于方程都是正整数解,由判别式Δ=16-4n≥0得“1≤n≤4”,逐个分析,当n=1、2时,方程没有整数解;而当n=3时,方程有正整数解1、3;当n=4时,方程有正整数解2.答案:3或4。
【高考考案】2015届高考数学第一轮复习 第六单元总结课件 文
0≤→ OA ·→ OP≤1, → → → → ∵OA· OP=y, OB· OP=x+y, 又 ∴ OB·→ OP≤2, 0≤→
0≤y≤1, 设点 0≤x+y≤2,
P(x+y,y)为 P(x0,y0),则 x0=x+y,
0≤y0≤1, y0=y,则可得 作出可行域,结合图形得其面积 0≤x0≤2,
x + ≥2+2 3y
3y x 3y x · =4,当且仅当 = ,且 x 3y x 3y
1 1 1 1 x+3y=1,即 x= ,y= 时取等号,∴ + 的最小值 2 6 x 3y 为 4. A 6.设向量→ OA=(0,1),→ OB=(1,1),O 为坐标原点,
0≤→ OA·→ OP≤1, 动点 P(x,y)满足 则点(x+y,y)构成的图 OB·→ OP≤2, 0≤→ 形的面积为( ). 1 A.至问题获得解决.本题 采用特值探路,通过有关函数、方程、不等式知识与方法的 相互转化,体现了特殊化方法和转化与化归思想的应用. 4 (2013 年浙江卷)设 a,b∈R,若 x≥0 时恒有 0≤x 3 2 2 -x +ax+b≤(x -1) ,则 ab=________. 取 x=0 得 0≤b≤1,取 x=1,得 0≤a+b≤0,所 以 b=-a, 所以 0≤x4-x3+ax-a≤(x2-1)2,0≤(x3+a)(x-1) ≤(x2-1)2. 当 0≤x≤1 时, x3+a≥(x2-1)(x+1), 即 a≥x2-x-1, 所以 a≥-1. 当 x≥1 时,x3+a≤(x2-1)(x+1),即 a≤x2-x-1.
1 1 b b+1 A.a+ >b+ B. > b a a a+1 1 1 2a+b a C.a- >b- D. > b a a+2b b 1 1 1 1 ∵a>b>0,∴ > ,∴a+ >b+ .
2015届高考数学(人教,理科)大一轮配套练透:第6章 不等式、推理与证明及不等式选讲 第1节
[课堂练通考点]1.“1≤x ≤4”是“1≤x 2≤16”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 由1≤x ≤4可得1≤x 2≤16,但由1≤x 2≤16可得1≤x ≤4或-4≤x ≤-1,所以“1≤x ≤4”是“1≤x 2≤16”的充分不必要条件.2.(2013·昆明质检)若a <b <0,则下列不等式一定成立的是( )A.1a -b >1bB .a 2<ab C.|b ||a |<|b |+1|a |+1 D .a n >b n解析:选C 取a =-2,b =-1,逐个检验选项可知,仅C 选项成立.3.在所给的四个条件:①b >0>a ;②0>a >b ;③a >0>b ;④a >b >0中,能推出1a <1b成立的有( )A .1个B .2个C .3个D .4个解析:选C 1a <1b 成立,即b -a ab<0成立,逐个验证可得,①②④满足题意. 4.设a ,b 是非零实数,若a <b ,则下列不等式成立的是( )A .a 2<b 2B .ab 2<a 2b C.1ab 2<1a 2b D.b a <a b解析:选C 当a <0时,a 2<b 2不一定成立,故A 错.因为ab 2-a 2b =ab (b -a ),b -a >0,ab 符号不确定,所以ab 2与a 2b 的大小不能确定,故B 错.因为1ab 2-1a 2b =a -b a 2b 2<0,所以1ab 2<1a 2b,故C 正确. D 项中b a 与a b的大小不能确定. 5.已知a ,b ,c ∈R ,有以下命题:①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ;③若a >b ,则a ·2c >b ·2c .其中正确的是__________(请把正确命题的序号都填上).解析:①若c =0则命题不成立.②正确.③中由2c >0知成立.答案:②③6.已知a +b >0,则a b 2+b a 2与1a +1b的大小关系是________. 解析:a b 2+b a 2-⎝⎛⎭⎫1a +1b =a -b b 2+b -a a 2=(a -b )·⎝⎛⎭⎫1b 2-1a 2=(a +b )(a -b )2a 2b 2. ∵a +b >0,(a -b )2≥0,∴(a +b )(a -b )2a 2b 2≥0. ∴a b 2+b a 2≥1a +1b. 答案:a b 2+b a 2≥1a +1b[课下提升考能]第Ⅰ组:全员必做题1.若m <0,n >0且m +n <0,则下列不等式中成立的是( )A .-n <m <n <-mB .-n <m <-m <nC .m <-n <-m <nD .m <-n <n <-m解析:选D 法一:(取特殊值法)令m =-3,n =2分别代入各选项检验即可.法二:m +n <0⇒m <-n ⇒n <-m ,又由于m <0<n ,故m <-n <n <-m 成立.2.(2014·黄冈质检)已知x >y >z ,x +y +z =0,则下列不等式中成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y |解析:选C 因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,3z <x +y +z =0,所以x >0,z <0.所以由⎩⎪⎨⎪⎧x >0,y >z ,可得xy >xz . 3.(2013·西安模拟)设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,那么2α-β3的取值范围是( ) A.⎝⎛⎭⎫0,5π6 B.⎝⎛⎭⎫-π6,5π6 C .(0,π) D.⎝⎛⎭⎫-π6,π 解析:选D 由题设得0<2α<π,0≤β3≤π6, ∴-π6≤-β3≤0, ∴-π6<2α-β3<π.4.若1a <1b<0,则下列结论不正确的是( ) A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |解析:选D ∵1a <1b<0,∴0>a >b . ∴a 2<b 2,ab <b 2,a +b <0,|a |+|b |=|a +b |.5.(2014·上海十三校联考)已知1a <1b<0,给出下面四个不等式:①|a |>|b |;②a <b ;③a +b <ab ;④a 3>b 3.其中不正确的不等式的个数是( )A .0B .1C .2D .3 解析:选C 由1a <1b<0可得b <a <0,从而|a |<|b |,①不正确;a >b ,②不正确;a +b <0,ab >0,则a +b <ab 成立,③正确;a 3>b 3,④正确.故不正确的不等式的个数为2.6.(2014·扬州期末)若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2与a 1b 2+a 2b 1的大小关系是________. 解析:作差可得(a 1b 1+a 2b 2)-(a 1b 2+a 2b 1)=(a 1-a 2)·(b 1-b 2),∵a 1<a 2,b 1<b 2,∴(a 1-a 2)(b 1-b 2)>0,即a 1b 1+a 2b 2>a 1b 2+a 2b 1.答案:a 1b 1+a 2b 2>a 1b 2+a 2b 17.若1<α<3,-4<β <2,则α-|β|的取值范围是________.解析:∵-4<β <2,∴0≤|β|<4.∴-4<-|β|≤0.∴-3<α-|β|<3.答案:(-3,3)8.已知存在实数a 满足ab 2>a >ab ,则实数b 的取值范围是________.解析:∵ab 2>a >ab ,∴a ≠0,当a >0,b 2>1>b ,即⎩⎪⎨⎪⎧b 2>1,b <1,解得b <-1; 当a <0时,b 2<1<b ,即⎩⎪⎨⎪⎧ b 2<1,b >1无解. 综上可得b <-1.答案:(-∞,-1)9.若a >b >0,c <d <0,e <0.求证:e (a -c )2>e (b -d )2. 证明:∵c <d <0,∴-c >-d >0.又∵a >b >0,∴a -c >b -d >0.∴(a -c )2>(b -d )2>0.∴0<1(a -c )2<1(b -d )2. 又∵e <0,∴e (a -c )2>e (b -d )2. 10.某企业去年年底给全部的800名员工共发放2 000万元年终奖,该企业计划从今年起,10年内每年发放的年终奖都比上一年增加60万元,企业员工每年净增a 人.(1)若a =10,在计划时间内,该企业的人均年终奖是否会超过3万元?(2)为使人均年终奖年年有增长,该企业每年员工的净增量不能超过多少人?解:(1)设从今年起的第x 年(今年为第1年)该企业人均发放年终奖为y 万元.则y =2 000+60x 800+ax(a ∈N *,1≤x ≤10). 假设会超过3万元,则2 000+60x 800+10x>3, 解得x >403>10. 所以,10年内该企业的人均年终奖不会超过3万元.(2)设1≤x 1<x 2≤10,则f (x 2)-f (x 1)=2 000+60x 2800+ax 2-2 000+60x 1800+ax 1=(60×800-2 000a )(x 2-x 1)(800+ax 2)(800+ax 1)>0, 所以60×800-2 000a >0,得a <24.所以,为使人均年终奖年年有增长,该企业每年员工的净增量不能超过23人.第Ⅱ组:重点选做题1.(2014·济南调研)设a >1,且m =log a (a 2+1),n =log a (a -1),p =log a (2a ),则m ,n ,p 的大小关系为( )A .n >m >pB .m >p >nC .m >n >pD .p >m >n解析:选B 因为a >1,所以a 2+1-2a =(a -1)2>0,即a 2+1>2a ,又2a >a -1,所以由对数函数的单调性可知log a (a 2+1)>log a (2a )>log a (a -1),即m >p >n .2.(2014·北京西城区期末)已知a >b >0,给出下列四个不等式:①a 2>b 2;②2a >2b -1;③a -b >a -b ;④a 3+b 3>2a 2b .其中一定成立的不等式为( )A.①②③B.①②④C.①③④D.②③④解析:选A由a>b>0可得a2>b2,①正确;由a>b>0可得a>b-1,而函数f(x)=2x在R上是增函数,∴2a>2b-1,②正确;∵a>b>0,∴a>b,∴(a-b)2-(a-b)2=2ab-2b=2b(a-b)>0,∴a-b>a-b,③正确;若a=3,b=2,则a3+b3=35,2a2b=36,a3+b3<2a2b,④错误.。
2015届高考数学(人教,理科)大一轮配套练透:第6章 不等式、推理与证明及不等式选讲 第3节
[课堂练通考点]1.不等式⎪⎪⎪⎪⎪⎪x +1x -1<1的解集为( )A{x |0<x <1}∪{x |x >1} B .{x |0<x <1} C .{x |-1<x <0} D .{x |x <0} 解析:选D ∵⎪⎪⎪⎪⎪⎪x +1x -1=|x +1||x -1|<1,∴|x +1|<|x -1|, ∴x 2+2x +1<x 2-2x +1, ∴x <0.2.若不等式⎪⎪⎪⎪x +1x >|a -2|+1对于一切非零实数x 均成立,则实数a 的取值范围是( ) A .1<a <3 B .a >1 C .a <3D .a <1解析:选A ∵⎪⎪⎪⎪x +1x ≥2,∴|a -2|+1<2,即|a -2|<1,解得1<a <3. 3.(2013·江西高考)在实数范围内,不等式||x -2|-1|≤1的解集为________. 解析:依题意得-1≤|x -2|-1≤1,即|x -2|≤2,解得0≤x ≤4. 答案:[0,4]4.(2013·重庆高考)若关于实数x 的不等式|x -5|+|x +3|<a 无解,则实数a 的取值范围是________.解析:|x -5|+|x +3|≥|(x -5)-(x +3)|=8,故a ≤8. 答案:(-∞,8]5.(2014·哈师大附中模拟)设函数f (x )=|x -a |+2x ,其中a >0. (1)当a =2时,求不等式f (x )≥2x +1的解集;(2)若x ∈(-2,+∞)时,恒有f (x )>0,求a 的取值范围. 解:(1)a =2时,|x -2|+2x ≥2x +1,∴|x -2|≥1,∴x ≥3或x ≤1. ∴不等式的解集为(-∞,1]∪[3,+∞).(2)依题意,f (x )=⎩⎪⎨⎪⎧3x -a ,x ≥a ,x +a ,x <a ,∵a >0,∴当x >-2时,f (x )≥x +a >-2+a ,要使f (x )>0,只需-2+a ≥0即可,∴a ≥2.故a 的取值范围为[2,+∞).[课下提升考能]第Ⅰ组:全员必做题1.如果|x -a |<ε2,|y -a |<ε2,则一定有( )A .|x -y |<εB .|x -y |>εC .|x -y |<ε2D .|x -y |>ε2解析:选A |x -y |=|(x -a )+(a -y )|≤|x -a |+|y -a |<ε,即|x -y |<ε. 2.不等式2<|x +1|<4的解集为( ) A .(1,3) B .(-5,-3)∪(0,3) C .(-5,0)D .(-5,-3)∪(1,3)解析:选D ∵2<|x +1|<4, ∴2<x +1<4或-4<x +1<-2, ∴1<x <3或-5<x <-3.3.(2014·哈尔滨模拟)不等式|x +1|>|2x -3|-2的解集为( ) A .(-∞,-6) B .(-6,0) C .(0,6)D .(6,+∞)解析:选C 原不等式等价于①⎩⎪⎨⎪⎧x ≤-1,-(x +1)>-(2x -3)-2 或②⎩⎪⎨⎪⎧ -1<x <32,x +1>-(2x -3)-2或③⎩⎪⎨⎪⎧x ≥32,x +1>2x -3-2.不等式组①的解集为∅,不等式组②的解集为⎝⎛⎭⎫0,32,不等式组③的解集为⎣⎡⎭⎫32,6,因此原不等式的解集为(0,6).4.不等式|x +3|+|x -1|≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( ) A .[-1,4]B .(-∞,-2]∪[5,+∞)C .(-∞,-1]∪[4,+∞)D .[-2,5]解析:选A 由绝对值的几何意义易知:|x +3|+|x -1|的最小值为4,所以不等式|x +3|+|x -1|≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4.5.已知不等式|a -2x |>x -1,对任意x ∈[0,2]恒成立,则a 的取值范围为( ) A .(-∞,1)∪(5,+∞) B .(-∞,2)∪(5,+∞) C .(1,5)D .(2,5)解析:选B 当0≤x <1时,不等式|a -2x |>x -1对a ∈R 恒成立;当1≤x ≤2时,不等式|a -2x |>x -1,即a -2x <1-x 或a -2x >x -1,x >a -1或3x <1+a ,由题意得1>a -1或6<1+a ,a <2或a >5;综上所述,则a 的取值范围为(-∞,2)∪(5,+∞).6.若关于x 的不等式|ax +2|<6的解集为(-1,2),则实数a 的值为________. 解析:由题意可知,-1和2都是|ax +2|=6的根,所以|-a +2|=6且|2a +2|=6,解得a =-4.答案:-47.(2014·青岛一模)不等式|2x +1|-|x -4|>2的解集是________. 解析:原不等式等价于⎩⎪⎨⎪⎧x ≤-12,-(2x +1)+(x -4)>2,或⎩⎪⎨⎪⎧-12<x ≤4,(2x +1)+(x -4)>2,或⎩⎪⎨⎪⎧x >4,(2x +1)-(x -4)>2,解得x ∈(-∞,-7)∪⎝⎛⎭⎫53,+∞. 答案:(-∞,-7)∪⎝⎛⎭⎫53,+∞8.(2014·西安检测)已知函数f (x )=|x -2|,g (x )=-|x +3|+m .若函数f (x )的图象恒在函数g (x )图象的上方,则m 的取值范围为________.解析:函数f (x )的图象恒在函数g (x )图象的上方,即为|x -2|>-|x +3|+m 对任意实数x 恒成立,即|x -2|+|x +3|>m 恒成立.因为对任意实数x 恒有|x -2|+|x +3|≥|(x -2)-(x +3)|=5,所以m <5,即m 的取值范围是(-∞,5).答案:(-∞,5)9.(2013·福建高考)设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A .(1)求a 的值;(2)求函数f (x )=|x +a |+|x -2|的最小值. 解:(1)因为32∈A ,且12∉A ,所以⎪⎪⎪⎪32-2<a , 且⎪⎪⎪⎪12-2≥a ,解得12<a ≤32.又因为a ∈N *,所以a =1.(2)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当(x +1)(x -2)≤0,即-1≤x ≤2时取到等号. 所以f (x )的最小值为3.10.(2013·郑州模拟)已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.解:(1)由f (x )≤3得,|x -a |≤3,解得a -3≤x ≤a +3.又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2.(2)当a =2时,f (x )=|x -2|,设g (x )=f (x )+f (x +5), 于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧-2x -1,x <-3,5,-3≤x ≤2,2x +1,x >2,所以当x <-3时,g (x )>5;当-3≤x ≤2时,g (x )=5;当x >2时,g (x )>5. 综上可得,g (x )的最小值为5.从而若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].第Ⅱ组:重点选做题1.(2013·广州一模)若关于x 的不等式|x -1|+|x +m |>3的解集为R ,则实数m 的取值范围是________.解析:由题意知,不等式|x -1|+|x +m |>3恒成立,即函数f (x )=|x -1|+|x +m |的最小值大于3,根据不等式的性质可得|x -1|+|x +m |≥|(x -1)-(x +m )|=|m +1|,故只要满足|m +1|>3即可,所以m +1>3或m +1<-3,解得m 的取值范围是(-∞,-4)∪(2,+∞).答案:(-∞,-4)∪(2,+∞)2.(2013·湖北八校联考)若不等式|x +1|-|x -4|≥a +4a ,对任意的x ∈R 恒成立,则实数a 的取值范围是________.解析:只要函数f (x )=|x +1|-|x -4|的最小值不小于a +4a 即可.由于||x +1|-|x -4||≤|(x+1)-(x -4)|=5,所以-5≤|x +1|-|x -4|≤5,故只要-5≥a +4a 即可.当a >0时,将不等式-5≥a +4a 整理,得a 2+5a +4≤0,无解;当a <0时,将不等式-5≥a +4a 整理,得a 2+5a +4≥0,则有a ≤-4或-1≤a <0.综上可知,实数a 的取值范围是(-∞,-4]∪[-1,0).答案:(-∞,-4]∪[-1,0)。
2015届高考数学一轮总复习 6-1数列的概念
2015届高考数学一轮总复习 6-1数列的概念基础巩固强化一、选择题1.给定数列1,2+3+4,5+6+7+8+9,10+11+12+13+14+15+16,…,则这个数列的一个通项公式是( )A .a n =2n 2+3n -1B .a n =n 2+5n -5C .a n =2n 3-3n 2+3n -1D .a n =2n 3-n 2+n -2 [答案] C[解析] 当n =1时,a 1=1,否定A 、D.当n =3时,a 3=35,否定B ,故选C. 2.数列{a n }的前n 项和S n =n 2+2n +1,则{a n }的通项公式为( ) A .a n =2n -1B .a n =2n +1C .a n =⎩⎪⎨⎪⎧ 4 n =1,2n -1 n ≥2.D .a n =⎩⎪⎨⎪⎧4 n =1,2n +1 n ≥2.[答案] D[解析] a 1=S 1=4,n ≥2时,a n =S n -S n -1=2n +1,∴a n =⎩⎪⎨⎪⎧4 n =1,2n +1 n ≥2.3.(文)(2013·北京海淀区期末)若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9 [答案] B[解析] ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n=19+(n -1)×(-3)=22-3n .设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1<0,∴⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)<0,∴193≤k <223,∵k ∈N *,∴k =7.∴满足条件的n 的值为7. (理)若数列{a n }的前n 项和S n =n 2-10n (n ∈N *),则数列{na n }中数值最小的项是( ) A .第2项 B .第3项 C .第4项 D .第5项[答案] B[解析] n ≥2时,a n =S n -S n -1=(n 2-10n )-[(n -1)2-10(n -1)]=2n -11, 令b n =na n ,则b n =n (2n -11)=2(n -114)2-1218,∵n ∈N *,∴n =3时,b n 取最小值.4.(文)(2012·西安模拟)在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N +),则a 3a 5的值是( )A.1516B.158C.34D.38[答案] C[解析] ∵a n a n -1=a n -1+(-1)n , ∴a 2a 1=a 1+1, a 3a 2=a 2-1, a 4a 3=a 3+1, a 5a 4=a 4-1,∵a 1=1,∴a 2=2,a 3=12,a 4=3,a 5=23,∴a 3a 5=34. (理)(2013·德州模拟)已知数列{a n }中,a 1=45,a n +1=⎩⎨⎧2a n ,0≤a n ≤12,2a n-1,12<a n≤1,则a 2012等于( )A.45B.35C.25D.15 [答案] C[解析] ∵a n +1=⎩⎨⎧2a n,0≤a n≤12,2a n-1,12<a n≤1,又a 1=45,∴a 2=2×45-1=35,a 3=2×35-1=15,a 4=2×15=25,a 5=2×25=45,∴数列{a n }以4为周期, ∵20124=503,∴a 2012=a 4=25.5.(文)(2012·佛山质检)数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )A .5B.72C.92D.132[答案] B[解析] ∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2,n 为偶数.∴S 21=11×(-32)+10×2=72.(理)(2013·池州一模)数列{a n }的通项公式a n =2n ·sin(n π2-π3)+3n cos n π2,前n 项和为S n ,则S 2013=( )A .1007B .-1007C .2013D .-2013[答案] B[解析] a n =2n sin(n π2-π3)+3n cos n π2=n sin n π2.由函数y =sin π2x 的周期是4,且a 1=1,a 2=2×0=0,a 3=3×(-1)=-3,a 4=4×0=0,归纳可知数列{a n }从第一项开始依次每相邻四项之和是一个常数-2,即a i +a i +1+a i +2+a i +3=-2(i =4k +1,k ∈N ),所以S 2013=2013-14×(-2)+2013=-1007,故选A.6.(文)已知x 与函数f (x )的对应关系如下表所示,数列{a n }满足:a 1=3,a n +1=f (a n ),则a 2014=( )A.3 B .2 C .[答案] A[解析] ∵a 1=3,∴a 2=f (a 1)=f (3)=1,∴a 3=f (a 2)=f (1)=2,a 4=f (a 3)=f (2)=3,∴数列{a n }为周期数列,周期T =3,∴a 2014=a 1=3,故选A.(理)若数列{a n }满足a 1=2,a 2=3,a n =a n -1a n -2(n ≥3且n ∈N *),则a 2014等于( )A .3B .2 C.12 D.23[答案] C[解析] a 1=2,a 2=3,a 3=a 2a 1=32,a 4=a 3a 2=12,依次可得a 5=13,a 6=23,a 7=2,a 8=3,a 9=32…,可见{a n }是周期为6的周期数列.∴a 2014=a 4=12,故选C.[点评] 数列是函数,故可用研究函数的方法加以讨论,由a n =a n -1a n -2(n ≥3,n ∈N *)知,a n +1=a na n -1=a n -1a n -2a n -1=1a n -2,∴a n +3=1a n (n ∈N *),∴a n +6=a n ,故{a n }周期为6.二、填空题7.(文)设数列{a n }的前n 项和为S n ,且a n =sin n π2,则S 2014=________.[答案] 1[解析] 依题意得,数列{a n }是以4为周期的周期数列,且a 1=1,a 2=0,a 3=-1,a 4=0,a 1+a 2+a 3+a 4=0,注意到2014=4×503+2,因此S 2014=0×503+a 1+a 2=1.(理)(2012·湖北文,17)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n }.可以推测:b 2012是数列{a n }中的第________项.[答案] 5030[解析] 由前四组可以推知a n =n (n +1)2,b 1=a 4=10,b 2=a 5=15,b 3=a 9=45,b 4=a 10=55,依次可知,当n =4,5,9,10,14,15,19,20,24,25,…时,a n 能被5整除,由此可得,b 2k =a 5k (k ∈N *),∴b 2012=a 5×1006=a 5030.8.(文)已知数列{a n }中,a 1=12,a n +1=1-1a n (n ≥2),则a 2014=________.[答案] 12[解析] 由题可知a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,∴此数列是以3为周期的周期数列,∴a 2014=a 1=12.(理)在数列{a n }中,若a 1=1,a n +1=2a n +3(n ∈N *),则数列{a n }的通项a n =________.[答案] 2n +1-3[解析] 依题意得,a n +1+3=2(a n +3),a 1+3=4,因此数列{a n +3}是以4为首项,2为公比的等比数列,于是有a n +3=4×2n -1=2n +1,则a n =2n +1-3.9.已知数列2008,2009,1,-2008,-2009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2014项之和S 2014等于________.[答案] 2010[解析] 由题意a n +1+a n -1=a n (n ≥2),a n +a n +2=a n +1,两式相加得a n +2=-a n -1, ∴a n +3=-a n ,∴a n +6=a n , 即{a n }是以6为周期的数列.∵2014=335×6+4,a 1+a 2+a 3+a 4+a 5+a 6=0,∴a 1+a 2+…+a 2014=335×0+a 2011+a 2012+a 2013+a 2014=a 1+a 2+a 3+a 4=2010. 三、解答题10.(文)(2013·江西)正项数列{a n }满足:a 2n -(2n -1)a n -2n =0. (1)求数列{a n }的通项公式a n ;(2)令b n =1(n +1)a n,求数列{b n }的前n 项和T n .[解析] (1)由a 2n -(2n -1)a n -2n =0,得(a n -2n )(a n +1)=0. 由于{a n }是正项数列,所以a n =2n .(2)a n =2n ,b n =1(n +1)a n ,则b n =12n (n +1)=12(1n -1n +1).T n =12(1-12+12-13+…+1n -1-1n +1n -1n +1)=12(1-1n +1)=n2(n +1).(理)(2013·广州调研)各项都为正数的数列{a n },满足a 1=1,a 2n +1-a 2n =2.(1)求数列{a n }的通项公式; (2)求数列{a 2n2n }的前n 项和S n .[解析] (1)因为a 2n +1-a 2n =2,a 21=1,所以数列{a 2n }是首项为1,公差为2的等差数列. 所以a 2n =1+(n -1)×2=2n -1, 因为a n >0,所以a n =2n -1(n ∈N *). (2)由(1)知,a n =2n -1,所以a 2n2n =2n -12n ,于是S n =12+322+523+…+2n -32n -1+2n -12n ,①12S n =122+323+524+…+2n -32n +2n -12n +1,② ①-②得,12S n =12+222+223+224+…+22n -2n -12n +1=12+2(122+123+124+…+12n )-2n -12n +1 =12+2×14×(1-12n -1)1-12-2n -12n +1 =32-2n +32n +1, 所以S n =3-2n +32n .能力拓展提升一、选择题11.下图是用同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第n 个图案中需用黑色瓷砖的块数为(用含n 的代数式表示)()A .4nB .4n +1C .4n -3D .4n +8[答案] D[解析] 第(1),(2),(3)个图案黑色瓷砖数依次为3×5-3=12;4×6-2×4=16;5×7-3×5=20,代入选项验证可得答案为D.12.(文)(2012·东城模拟)已知数列{a n }的通项公式为a n =log 3nn +1(n ∈N *),设其前n 项和为S n ,则使S n <-4成立的最小自然数n 等于( )A .83B .82C .81D .80[答案] C[解析] ∵a n =log 3nn +1=log 3n -log 3(n +1),∵S n =log 31-log 32+log 32-log 33+…+log 3n -log 3(n +1)=-log 3(n +1)<-4,解得n >34-1=80.(理)设数列{a n }满足a 1+2a 2=3,且对任意的n ∈N *,点列{P n (n ,a n )}恒满足P n P n +1=(1,2),则数列{a n }的前n 项和S n 为( )A .n (n -43)B .n (n -34)C .n (n -23)D .n (n -12)[答案] A[解析] 设P n +1(n +1,a n +1),则P n P n +1=(1,a n +1-a n )=(1,2),即a n +1-a n =2,所以数列{a n }是以2为公差的等差数列.又a 1+2a 2=3,所以a 1=-13,所以S n =n (n -43),选A.13.(文)由1开始的奇数列,按下列方法分组:(1),(3,5),(7,9,11),…,第n 组有n 个数,则第n 组的首项为( )A .n 2-nB .n 2-n +1C .n 2+nD .n 2+n +1[答案] B[解析] 前n -1组共有1+2+…+(n -1)=(n -1)(n -1+1)2=n (n -1)2个奇数,故第n 组的首项为2×n (n -1)2+1=n 2-n +1.[点评] 可直接验证,第2组的首项为3,将n =2代入可知A 、C 、D 都不对,故选B. (理)已知整数对按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),……则第2014个数对是( )A .(3,61)B .(3,60)C .(61,3)D .(61,2)[答案] C[解析] 根据题中规律知,(1,1)为第1项,(1,2)为第2项,(1,3)为第4项,…,整数对和为n +1的有n 项,由n (n +1)2≤2014得n ≤62,且n =63时,n (n +1)2=2016,故第2014个数对是和为64的倒数第3项,即(61,3).二、填空题14.(文)(2013·北京东城区综合练习)若数列{a n }满足1a n +1-1a n=d (n ∈N *,d 为常数),则称数列{a n }为调和数列.已知数列{1x n}为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=________.[答案] 20[解析] 由题意,若{a n }为调和数列,则{1a n }为等差数列,∵{1x n}为调和数列,∴数列{x n }为等差数列,由等差数列的性质可知,x 5+x 16=x 1+x 20=x 2+x 19=…=x 10+x 11=20010=20.(理)(2013·大连测试)数列{a n }满足:a 1+3a 2+5a 3+…+(2n -1)·a n =(n -1)·3n +1+3(n ∈N *),则数列{a n }的通项公式a n =________.[答案] 3n[解析] a 1+3a 2+5a 3+…+(2n -3)·a n -1+(2n -1)·a n =(n -1)·3n +1+3,把n 换成n -1得,a 1+3a 2+5a 3+…+(2n -3)·a n -1=(n -2)·3n +3,两式相减得a n =3n .15.(2013·江苏调研)对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项为2n ,则数列{a n }的前n 项和S n =________.[答案] 2n +1-2[解析] 由已知a n +1-a n =2n ,a 1=2得a 2-a 1=2,a 3-a 2=22,…,a n -a n -1=2n -1,由累加法得a n =2+2+22+…+2n -1=2n,从而S n =2(1-2n )1-2=2n +1-2.三、解答题16.(文)(2013·河北质检)已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)在数列{b n }中,b 1=5,b n +1=b n +a n ,求数列{b n }的通项公式. [解析] (1)当n =1时,S 1=a 1=32a 1-1,所以a 1=2.∵S n =32a n -1,①∴当n ≥2时,S n -1=32a n -1-1,②①-②,得a n =(32a n -1)-(32a n -1-1),所以a n =3a n -1,又a 1≠0,故a n -1≠0, 所以a na n -1=3,故数列{a n }是首项为2,公比为3的等比数列, 所以a n =2·3n -1.(2)由(1)知b n +1=b n +2·3n -1.当n ≥2时,b n =b n -1+2·3n -2,…b 3=b 2+2·31, b 2=b 1+2·30,将以上n -1个式子相加并整理,得b n =b 1+2×(3n -2+…+31+30)=5+2×1-3n -11-3=3n -1+4.当n =1时,31-1+4=5=b 1,所以b n =3n -1+4(n ∈N *).(理)已知数列{a n }的前n 项和为S n ,a 1=1,且3a n +1+2S n =3(n 为正整数). (1)求出数列{a n }的通项公式;(2)若对任意正整数n ,k ≤S n 恒成立,求实数k 的最大值. [解析] (1)∵3a n +1+2S n =3,① ∴当n ≥2时,3a n +2S n -1=3,② 由①-②得,3a n +1-3a n +2a n =0.∴a n +1a n =13(n ≥2). 又∵a 1=1,3a 2+2a 1=3,解得a 2=13.∴数列{a n }是首项为1,公比q =13的等比数列.∴a n =a 1q n -1=⎝⎛⎭⎫13n -1(n 为正整数). (2)由(1)知,∴S n =32⎣⎡⎦⎤1-⎝⎛⎭⎫13n , 由题意可知,对于任意的正整数n ,恒有 k ≤32⎣⎡⎦⎤1-⎝⎛⎭⎫13n , ∵数列⎩⎨⎧⎭⎬⎫1-⎝⎛⎭⎫13n 单调递增,当n =1时,数列取最小项为23,∴必有k ≤1,即实数k 的最大值为1.考纲要求了解数列的概念,了解数列是自变量为正整数的一类函数. 了解数列的几种简单表示方法(列表、图象、通项公式). 补充说明1.求数列的通项公式常见的有以下三种类型 (1)已知数列的前几项,写出一个通项公式.依据数列前几项的特点归纳出通项公式:方法是依据数列的排列规律,求出项与项数的关系.一般步骤是:①定符号,②定分子、分母,③观察前后项的数值特征找规律,④综合写出项与项数的关系.要特别注意以下数列特点: ①自然数列,自然数的平方列. ②奇数列,偶数列.③a n =(-1)n ,a n =12[1+(-1)n ].④a n =sin n π2,a n =cos n π2.⑤a n =k9(10n -1)(k =1,2,…,9).要注意理顺其大小规律如:2,-83,4,-325,…先变化为:42,-83,164,-325,….(2)已知数列的递推关系求其通项公式:一般是采用“归纳—猜想—证明”,有时也通过变形转化为等差、等比数列进行处理.(3)已知数列的前n 项和求通项公式,用a n =S n -S n -1(n ≥2)求解. 2.注意数列的两个性质(1)单调性——若a n +1>a n ,则{a n }为递增数列;若a n +1<a n ,则{a n }为递减数列.(2)周期性——若a n +k =a n (n ∈N *,k 为非零常数),则{a n }为周期数列,k 为{a n }的一个周期. 3.数列求和方法 (1)公式法①直接用等差、等比数列的求和公式求. ②了解一些常见的数列的前n 项和. 1+2+3+…+n =12n (n +1);1+3+5+…+(2n -1)=n 2;12+22+32+…+n 2=16n (n +1)(2n +1).(2)倒序相加法如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和可用“乘公比,错位相减”法进行,如等比数列的前n 项和就是用此法推导的,其一般步骤是:第一步,将数列{c n }写成c n =a n ·b n ,其中{a n }为等差数列,{b n }为等比数列,公比为q . 第二步,写出S n =a 1b 1+a 2b 2+…+a n b n .第三步,乘公比q 得,qS n =a 1b 2+a 2b 3+…+a n b n +1. 第四步,错位相减,用等比数列求和公式求和得(q -1)S n . 第五步,等式两边同除以q -1得S n .第六步,检查解题过程,看求和公式是否用错,符号是否正确,化简有无错误. (4)裂项相消法如果数列的通项可以表达成两项之差,各项随n 的变化而变化,前后项相加可以相互抵消就用裂项相加相消法.(5)分组求和法当一个数列的通项由几个项构成,各个项构成等差或等比数列时,可分为几个数列分别求和再相加.4.函数思想在数列中的应用(1)数列可以看作是一类特殊的函数,因此可用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数11 列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法.备选习题1.设数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a 3=( )A .8B .4C .2D .1[答案] A[解析] 由S 1=2(a 1-1)得a 1=2;由S 2=2(a 2-1)得a 2=4.由S 3=2(a 3-1)得,a 3=8.2.如果f (a +b )=f (a )·f (b )(a ,b ∈R )且f (1)=2,则f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2014)f (2013)等于( ) A .2011B .2012C .2013D .2014[答案] D[解析] 令a =n ,b =1,f (n +1)=f (n )·f (1),∴f (n +1)f (n )=f (1)=2, ∴f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2014)f (2013)=2×1007=2014.。
第6章---第2节
基 础 · 回 扣 · 检 验
随 堂 · 分 类 · 练 习
考 点 · 突 破 · 方 法
并据此认为“ 并据此认为“煤转化为水煤气再燃烧放出的热量与煤直接燃烧放 出的热量相等” 出的热量相等”。 请分析: 乙两同学观点正确的是________(填“甲”或“乙”) 请分析:甲、乙两同学观点正确的是 填 ;判断的理由是 ______________________________________________________。 。
221 kJ 解析】 【解析】 1 mol C 不完全燃烧生成 CO 放出热量 =110.5 2 kJ,1 mol C 完全燃烧生成 CO2 放出热量大于 110.5 kJ,即 C 的燃烧 ,即 ;反应①的反应热为-221 kJ·mol-1;稀硫酸与 热大于 110.5 kJ·mol-1;反应①的反应热为- =-57.3 kJ·mol-1;醋酸是弱酸,与 稀 NaOH 溶液反应的中和热 ∆H=- =- NaOH 溶液发生中和反应生成 1 mol 水时放出的热量小于 57.3 kJ。 。 答案】 【答案】 A
基 础 · 回 扣 · 检 验
(2)化学反应必然伴随着能量的变化 化学反应必然伴随着能量的变化( 化学反应必然伴随着能量的变化
(3)1 mol H2与0.5 mol O2 反应放出的热就是 2 的燃烧热 反应放出的热就是H 的燃烧热(
(4)动物体内葡萄糖被氧化成 2 是热能转变成化学能的过程 动物体内葡萄糖被氧化成CO 是热能转变成化学能的过程( 动物体内葡萄糖被氧化成
考 点 · 突 破 · 方 法
(5)(2010·南京一模 盖斯定律实质上就是能量守恒定律的体现 南京一模)盖斯定律实质上就是能量守恒定律的体现 南京一模 盖斯定律实质上就是能量守恒定律的体现( 【答案】 (1)× (2)√ (3)× (4)× (5)√ 答案】 × × ×
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009~2013年高考真题备选题库
第6章 不等式、推理与证明及不等式选讲(选修4-5)第2节 一
元二次不等式及其解法考点 一元二次不等式
1.(2013天津,5分)已知函数f (x )=x (1+a |x |). 设关于x 的不等式f (x +a )<f (x )的解集为A .若⎣⎡⎦
⎤-12,1
2⊆A, 则实数a 的取值范围是( ) A.⎝ ⎛⎭
⎪
⎫1-52,0
B.⎝
⎛⎭
⎪
⎫1-32,0
C.⎝
⎛⎭⎪⎫1-52,0∪⎝
⎛⎭
⎪⎫
0,1+
32
D.⎝
⎛⎭⎪⎫-∞,1-52 解析:本题考查函数与不等式的综合应用,意在考查考生的数形结合能力.由题意可得0∈A ,即f (a )<f (0)=0,所以a (1+a |a |)<0,当a >0时无解,所以a <0,此时1-a 2>0,所以-1<a <0.函数f (x )的图象(图略)中两抛物线的对称轴x =12a ,x =-1
2a 之间的距离大于1,而[x +a ,
x ]的区间长度小于1,所以不等式f (x +a )<f (x )的解集是⎝⎛⎭⎫12a -a 2,-12a -a 2,所以⎣⎡ -12,
⎦⎤12⊆⎝⎛⎭⎫12a -a 2
,-12a -a 2,所以
⎩⎨⎧
1
2a -a
2<-1
2,-12a -a 2>12,即⎩
⎪⎨⎪⎧
a 2-a -1<0,a 2+a +1>0,解得1-52<a <1+52,又-
1<a <0,所以实数a 的取值范围是⎝
⎛⎭
⎪
⎫1-52,0.
答案:A
2.(2013陕西,5分)在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( )
A .[15,20]
B .[12,25]
C .[10,30]
D .[20,30]
解析:本题考查三角形相似的性质,考查考生构建函数和不等式模
型,利用解不等式求解实际应用题的能力.如图,过A 作AH ⊥BC 于H ,交DE 于F ,易知DE BC =x 40=AD AB =AF AH =AF
40,则有AF =x ,FH =40-x ,
由题意知阴影部分的面积S =x (40-x )≥300,解得10≤x ≤30,即x ∈[10,30].
答案:C
3.(2013广东,5分)不等式x 2+x -2<0的解集为________.
解析:本题考查一元二次不等式的解集,考查考生的运算能力及数形结合思想的领悟能力.令f (x )=x 2+x -2=(x +2)·(x -1),画出函数图象可知,当-2<x <1时,f (x )<0,从而不等式x 2+x -2<0的解集为{x |-2<x <1}. 答案:{x |-2<x <1}
4.(2013江苏,5分)已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.
解析:本题考查奇函数的性质及一元二次不等式的解法,意在考查学生的化归能力及运算能力.
由于f (x )为R 上的奇函数,所以当x =0时,f (0)=0;当x <0时,-x >0,所以f (-x )=x 2
+4x =-f (x ),即f (x )=-x 2-4x ,所以f (x )=⎩⎪⎨⎪
⎧
x 2
-4x ,x >0,0,x =0,
-x 2-4x ,x <0.
由f (x )>x ,可得⎩⎪⎨⎪
⎧ x 2
-4x >x ,x >0或⎩⎪⎨⎪⎧
-x 2-4x >x ,x <0,
解得x >5或-5<x <0,
所以原不等式的解集为(-5,0)∪(5,+∞). 答案:(-5,0)∪(5,+∞)
5.(2013四川,5分)已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x ,那么,不等式f (x +2)<5的解集是________.
解析:本题考查二次函数、不等式、函数的奇偶性,意在考查考生的运算能力和化归的数学思想.当x ≥0时,f (x )=x 2-4x <5的解集为[0,5),又f (x )为偶函数,所以f (x )<5的解集为(-5,5).所以f (x +2)<5的解集为(-7,3).
答案:(-7,3)
6.(2011广东,5分)不等式2x 2-x -1>0的解集是( ) A .(-1
2
,1)
B .(1,+∞)
C .(-∞,1)∪(2,+∞)
D .(-∞,-1
2
)∪(1,+∞)
解析:由原不等式得(x -1)(2x +1)>0,∴x <-1
2或x >1.
答案:D
7.(2011湖南,5分)已知函数f (x )=e x -1,g (x )=-x 2+4x -3.若有f (a )=g (b ),则b 的取值范围为( )
A .[2-2,2+2]
B .(2-2,2+2)
C .[1,3]
D .(1,3)
解析:函数f (x )的值域是(-1,+∞),要使得f (a )=g (b ),必须使得-b 2+4b -3>-1.即b 2-4b +2<0,解得2-2<b <2+ 2.
答案:B
8.(2012江苏,5分)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为________.
解析:因为f (x )的值域为[0,+∞),所以Δ=0,即a 2
=4b ,所以x 2
+ax +a 2
4
-c <0的解
集为(m ,m +6),易得m ,m +6是方程x 2
+ax +a 2
4
-c =0的两根,由一元二次方程根与系数
的关系得⎩⎪⎨⎪
⎧
2m +6=-a ,m (m +6)=a 2
4-c ,
解得c =9. 答案:9
9.(2010江苏,5分)已知函数f (x )=⎩
⎪⎨⎪⎧
x 2
+1,x ≥0
1,x <0,则满足不等式f (1-x 2)>f (2x )的x
的取值范围是________.
解析:由题意有⎩⎪⎨⎪⎧ 1-x 2
>0
2x <0或⎩⎪⎨⎪⎧
1-x 2>2x 2x ≥0
,
解得-1<x <0或0≤x <2-1, ∴所求x 的取值范围为(-1,2-1). 答案:(-1,2-1)
10. (2009·江苏,16分)设a 为实数,函数f (x )=2x 2+(x -a )|x -a |. (1)若f (0)≥1,求a 的取值范围; (2)求f (x )的最小值;
(3)设函数h (x )=f (x ),x ∈(a ,+ ∞),直接写出(不需给出演算步骤)不等式h (x )≥1的解集.
解:(1)因为f (0)=-a |-a |≥1, 所以-a >0,即a <0. 由a 2≥1知a ≤-1.
因此,a 的取值范围为(-∞,-1]. (2)记f (x )的最小值为g (a ).我们有 f (x )=2x 2+(x -a )|x -a |
=⎩⎪⎨⎪⎧
3(x -a 3)2+2a 2
3,x >a , ①
(x +a )2-2a 2,x ≤a , ② (i)当a ≥0时,f (-a )=-2a 2,
由①②知f (x )≥-2a 2,此时g (a )=-2a 2. (ⅱ)当a <0时,f (a 3)=23a 2.
若x >a ,则由①知f (x )≥2
3
a 2;
若x ≤a ,则x +a ≤2a <0,由②知f (x )≥2a 2>2
3a 2.
此时g (a )=2
3
a 2.
综上得g (a )=⎩⎪⎨⎪⎧
-2a 2
, a ≥0,2a 2
3, a <0.
(3)①当a ∈(-∞,-62]∪[2
2
,+∞)时, 解集为(a ,+∞); ②当a ∈[-22,2
2)时,
解集为[a +3-2a 2
3,+∞);
③当a ∈(-
62,-2
2
)时, 解集为(a ,a -3-2a 23]∪[a +3-2a 23
,+∞).。