一元二次不等式与绝对值不等式(习题课)

合集下载

(完整版)一元二次不等式的经典例题及详解

(完整版)一元二次不等式的经典例题及详解

一元二次不等式专题练习例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .例2 解下列分式不等式: (1)22123+-≤-x x (2)12731422<+-+-x x x x例3 解不等式242+<-x x例4 解不等式04125622<-++-x x x x . 例5 解不等式x xx x x <-+-+222322. 例6 设R m ∈,解关于x 的不等式03222<-+mx x m .例7 解关于x 的不等式)0(122>->-a x a ax . 例8 解不等式331042<--x x .例9 解关于x 的不等式0)(322>++-a x a a x . 例10 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集.例11 若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,, ,求a 、b 的值. 例12不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值. 例13解关于x 的不等式01)1(2<++-x a ax . 例14 解不等式x x x ->--81032.例1解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或例2(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。

(完整版)一元二次不等式练习题(完)

(完整版)一元二次不等式练习题(完)

一、一元二次不等式及其解法1.形如0)的不等式称为关于x的一元二次不等式.ax2bx c0(或0)(其中a2.一元二次不等式ax2bxc0(a0)与相应的函数y ax2bxc(a0)、相应的方程ax2bxc0(a0)之间的关系:判别式b24ac0002二次函数y ax bx cax2bx c 0a 0ax2bx c 0(a 0)的解集ax2bx c 0(a 0)的解集3、解一元二次不等式步骤:1、把二次项的系数变为正的。

〔如果是负,那么在不等式两边都乘以-1,把系数变为正〕2、解对应的一元二次方程。

〔先看能否因式分解,假设不能,再看△,然后求根〕3、求解一元二次不等式。

〔根据一元二次方程的根及不等式的方向〕不等式的解法---穿根法一.方法:先因式分解,再使用穿根法.注意:因式分解后,整理成每个因式中未知数的系数为正.使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点 .②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿).③数轴上方曲线对应区域使“>〞成立, 下方曲线对应区域使“<〞成立.例1:解不等式(1)(x+4)(x+5)2(2-x)3<0x2-4x+1(2)3x2-7x+2≤1解:原不等式等价于(x+4)(x+5)2(x-2)3>0根据穿根法如图不等式解集为{x∣x>2或x<-4且x≠5}.-5-42(2x-1)(x-1)(2)变形为(3x-1)(x-2) ≥0根据穿根法如图不等式解集为1 11112 {xx<3或2≤x≤1或x>2}.32稳固练习一、解以下一元二次不等式:1、x25x 6 0 2 、x25x 6 0 3 、x27x 12 04、x27x 6 0 5 、x2x 12 0 6 、x2x 12 07、x28x 12 0 8 、x24x 12 0 9 、3x25x 12 010、3x216x 12 0 11 、3x237x 12 0 12 、2x215x 7 013、2x211x 12 0 14 、3x27x 10 15 、2x26x 5 016、10x233x 20 0 17 、x24x 5 0 18 、x24x 4 0 19、 x22x 3 0 20 、6x2x 2 0 21 、x2 3x 5 022、3x27x 2 0 23 、6x2x 1 0 24 、4x24x 3 025、2x211x 6 0 26 、3x211x 4 0 27 、x24 028、5x214x 3 0 29 、12x27x 12 0 30 、2x211x 21 031、8x22x 3 0 32 、8x210x 3 0 33 、4x215x 4 034、37、2x2x 21 0 35 、4x28x 21 0 36 、4x28x 5 05x217x 12 0 38 、10x211x 6 0 39 、16x28x 3 040、16x28x 3 0 41 、10x27x 12 0 42 、10x2x 2 043、4x229x 24 0 44 、4x221x 18 0 45 、9x26x 8 046、12x216x 3 0 47 、4x29 0 48 、12x220x 3 049、6x225x 14 0 50 、20x241x 9 0 51 、(x 2)(x 3) 6二填空题1、不等式(x1)(12x)0的解集是;2.不等式6x25x4的解集为____________.3、不等式3x2x10的解集是;4、不等式x22x10的解集是;5、不等式4x x25的解集是;9、集合M{x|x24},N{x|x22x30},那么集合MIN=;10、不等式mx2mx20的解集为R,那么实数m的取值范围为;11、不等式(2x1)29的解集为。

(完整版)一元二次不等式的经典例题及详解

(完整版)一元二次不等式的经典例题及详解

一元二次不等式专题练习例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .例2 解下列分式不等式: (1)22123+-≤-x x (2)12731422<+-+-x x x x例3 解不等式242+<-x x例4 解不等式04125622<-++-x x x x . 例5 解不等式x xx x x <-+-+222322. 例6 设R m ∈,解关于x 的不等式03222<-+mx x m .例7 解关于x 的不等式)0(122>->-a x a ax . 例8 解不等式331042<--x x .例9 解关于x 的不等式0)(322>++-a x a a x . 例10 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集.例11 若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,, ,求a 、b 的值. 例12不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值. 例13解关于x 的不等式01)1(2<++-x a ax . 例14 解不等式x x x ->--81032.例1解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或例2(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。

含绝对值不等式与一元二次不等式的解法

含绝对值不等式与一元二次不等式的解法

第三节 含绝对值的不等式及一元二次不等式的解法【目录】题型一 含绝对值不等式的解法 题型二 一元二次不等式的解法 题型三 含参数不等式解法的解法 题型四 不等式解法的综合题 题型五 不等式的综合应用三.解答题题型一 含绝对值不等式的解法1.解下列各不等式: (1)|2x-3|>5; (2)|3-5x|>-1.解:(1)把不等式化为2x-3>5或2x-3<-5,即x>4或x<-1.∴原不等式的解集为{x|x>4或x<-1}. (2)因为左边为非负值,而右边为负值,故不等式的解集为实数集R . 2.解不等式|x 2-2x+3|<|3x-1|.解:原不等式等价于(x 2-2x+3)2<(3x-1)2,即(x 2-2x+3)2-(3x-1)2<0,即[(x 2-2x+3)+(3x-1)][(x 2-2x+3)-(3x-1)]<0.整理得(x 2+x+2)(x 2-5x+4)<0. ①∵x 2+x+2>0,∴①式等价于x 2-5x+4<0.解得1<x<4. ∴原不等式解集为{x|1<x<4}.3.解不等式3<|2x-3|≤5.解:由于原不等式等价于|2x-3|>3且|2x-3|≤5,因此可先分别解出两个绝对值不等式的解集,然后求其交集.原不等式等价于不等式组⎩⎨⎧≤->-.5|32|,3|32|x x由①得2x-3>3,或2x-3<-3.解得x>3,或x<0.由②得-5≤2x-3≤5. 解得-1≤x ≤4. 原不等式的解集为{x|-1≤x<0,或3<x ≤4}.解法二:利用换元法令2x-3=y ,先解不等式3<|y|≤5,解出y 后再用换元法求解x.∵不等式 3<|y|≤5的解易求得是-5≤y<-3,或3<y ≤5.用2x-3替换y ,∴原不等式可化为:-5≤2x-3<-3, 或3<2x-3≤5.解得-1≤x<0,或3<x ≤4.∴原不等式的解集为{x|-1≤x<0,或3<x ≤4}.解法三:根据绝对值的含义|a|=⎩⎨⎧<-≥),0(),0(a a a a 利用分类讨论的方法去掉绝对值符号,进而求解.原不等式可化为不等式组⎩⎨⎧≤-<≥-,5323,032x x 或⎩⎨⎧≤--<<-.5)32(3,032x x 由①得⎪⎩⎪⎨⎧≤<≥.43,23x x 解得3<x ≤4. 由②得⎪⎩⎪⎨⎧<≤-<.01,23x x 解得-1≤x<0. ∴原不等式的解集为{x|-1≤x<0,或3<x ≤4}. 4.解不等式|2x+1|+|x-2|>4。

一元二次不等式及其解法(习题课)

一元二次不等式及其解法(习题课)

∴原不等式解集为x|x<-12或x>13. 答案:A
2.若集合 A={x|-1≤2x+1≤3},B=x|x-x 2≤0,则 A∩B=(
)
A.{x|-1≤x<0}
B.{x|0<x≤1}
C.{x|0≤x≤2}
D.{x|0≤x≤1}
解析:∵A={x|-1≤x≤1},B={x|0<x≤2},
∴A∩B={x|0<x≤1}.

m>-16. 3
- b =-2m>2 2a 2
m<-2
解得-16<m≤-4. 3
总结:
设关于 x 的一元二次方程 ax2+bx+c=0(a>0)对应的二次函数为: f(x)=ax2+bx+c(a>0),结合二次函数的图象的开口方向、对称轴位 置,以及区间端点函数值的正负,可以得到以下几类方程根的分布问 题(此时Δ=b2-4ac).
∴7m-6<0,解得 m<67. ∴0<m<6.
7
∴m<0.
综上所述,m
的取值范围为
-∞,6 7
.
探究二 不等式中的恒成立问题
[典例 2] 设函数 f(x)=mx2-mx-1.
(2)对于 x∈[1,3],f(x)<-m+5 恒成立,求 m 的取值范围.
法二:f(x)<-m+5 恒成立, 即 m(x2-x+1)-6<0 恒成立.
Δ≥0, (1)方程 f(x)=0 在区间(k,+∞)内有两个实根的条件是- fk2ba>>0k. ,
(2)方程 f(x)=0 有一根大于 k,另一根小于 k 的条件是 f(k)<0.
(3) 方 程 f(x) = 0 在 区 间 (k1 , k2) 内 有 两 个 实 根 的 条 件 是

第3讲 一元二次不等式与绝对值不等式的解法

第3讲 一元二次不等式与绝对值不等式的解法

第3讲 一元二次不等式与绝对值不等式的解法 教学设计:1、 一元二次方程:20ax bx c ++= (0)a ≠(1)解法:(根所在区间的讨论)(2)判别式(指定区间内根情况的判定)(3)根与系数的关系、根与函数的关系、根与不等式的关系2、 二次函数:2y ax bx c =++ (0)a ≠(1)开口方向(2)顶点与对称轴(3)图象与x 轴交点(4)y 的正、负号3、 一元二次不等式:(1)一般式:2200ax bx c ax bx c ++>++<或(0)a ≠(2)解法:(函数法)4、分式不等式的解集:(1) 一般式:()00()f x f x g x ><()或g(x)(2)解法:符号法则商化积⇒序轴标根法5、无理不等式的解集:(1)解题依据:0a b >>⇒n n a b >化为有理不等式组(2)常见题型及解法:22()0()0()()0()0()()()0()()0()()f x f xg x g x g x f x g x f x g x g x f x g x ⎧≥≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩⎧≥⎪<⇔≥⎨⎪<⎩或[说明]“式”化“组”是为了等价转化。

一元二次不等式与绝对值不等式的解法6、含绝对值的不等式解法(1)定义法:(2)公式法:)()()()()()()()()()()()0()0(x g x f x g x f x g x f x g x f x g x g x f a x a x a a x ax a a a x −<>⇔><<−⇔<−<>⇔>><<−⇔><或或例题分析:例1. 解不等式:(1)22320x x −−>(2)2362x x −+>(3)24410x x −+>(4)2230x x −+−>(5)(1)()0x x a −−< (6)(1)(1)0x ax −−>(7)(1)(1)0x x −+>(8)2(69)(1)0x x x +++> 例2. 解不等式:(1)37x x −<+(2)1204x x −≤+(3)28x x x −−≥(431>(5)7340x x +−−+>(6)42280x x −−>(7)2560x x −+<(8)500 5 x −≤(9)257x +>(10)x a b −<(11)2124x x ++−>例3. (1)求集合{013,}x x x Z <−<∈的真子集个数(2x 的集合(3)已知{}{}2,13A x x a B x x A B =−≤=−≥=Φ∩且,则实数a 的范围(4)若0a >,43x x a −+−<使不等式的解集不是空集的a 的范围例4. 已知:方程2(1)2(2)240m x m x m ++−++= ()m R ∈,求:m 为何值时,一根大于3 ,一根小于3.例5. 解关于x 的不等式(1)2220x ax a −−≤参考答案例1.解不等式:(1)解:()(21)0x x x −+> ∴解集为:122x x x ⎧⎫><−⎨⎬⎩⎭或(2)解:等价于23620x x −+<方程23620x x −+=的根为121 133x x =+=−解集为:1133x x ⎧⎪−<<+⎨⎪⎪⎩⎭(3)解:等价于2(21)0x −>解集为:12x x x ⎧⎫∈≠⎨⎬⎩⎭R 且 (4)解:等价于2230x x −+<解集为:∅(5)解:①当1a >时,解集为:{}1x x a <<②当1a =时,解集为:∅③当1a <时,解集为: {}1x a x <<(6)解:①当0a =时,解集为:{}1x x <②当01a <<时,11a >,解集为:11x x x a ⎧⎫><⎨⎬⎩⎭或③当1a =时,2(1)0x −>,解集为:{}1x x x ∈≠R 且④当1a >时,11a <,解集为:11x x x a ⎧⎫><⎨⎬⎩⎭或⑤当0a <时,解集为:11x x a ⎧⎫<<⎨⎬⎩⎭(7)解:200(1)(1)0(1)0x x x x x <≥⎧⎧⎨⎨+−<+>⎩⎩或∴解集为:{}11x x x <≠−且(8)解:2(3)(1)0x x ++>解集为:{}1x x >−例2.解不等式:(1)解:等价于(3)(7)0x x −+<解集为:{}73x x −<<(2)解:等价于(21)(4)040x x x −+≥⎧⎨+≠⎩∴解集为:142x x x ⎧⎫≥<−⎨⎬⎩⎭或(3)解:等价于28x x x −−≥或28x x x−−≤−即2280x x −−≥或280x −≤解集为:{}4x x x ≤≥(431>31−<−4>2<20 216x x −≥⎧∴⎨−>⎩或2024x x −≥⎧⎨−<⎩ ∴解集为:{}2618x x x ≤<>或(5)解:73410x x +−−+−>等价于①432100x x ⎧≥⎪⎨⎪−+>⎩②47420x x ⎧−≤<⎪⎨⎪++>⎩③72120x x <−⎧⎨−+>⎩解得:①的解集:4532x x ⎧⎪≤<+⎨⎪⎪⎩⎭②的解集:2443x x ⎧⎫+⎪⎪−<<⎨⎬⎪⎪⎩⎭③的解集:∅ ∴原式解集2542x x ⎧⎪−<<+⎨⎪⎪⎩⎭(6)x 4-2x 2-8>0,则(x 2-4)(x 2+2)>0,即x 2-4>0∴解集为(-∞,-2)∪(2,+∞)另解:设2x t =(t >0)则原不等式化为 t 2-2t -8>00)2)(4(>+−t t ,∴2−<t 或4>t∵t >0,∴4>t ,∴x 2 > 4∴解集为(-∞,-2)∪(2,+∞) (7)设t x =(0≥t )则原不等式为t 2-5t +6<0,即(t -2)(t -3)<0,∴2<t <3∴2<|x |<3,∴解集为(-3,-2)∪(2,3)(8)解:等价于55005x −≤−≤即495505x ≤≤∴解集为:{}495505x x ≤≤(9)解:等价于257x +>或257x +<− 即1x >或6x <− ∴解集为:{}16x x x ><−或(10)解:当0b ≤时,解集为∅;当0b >时,解集为{}x a b x a b −<<+(11)解:等价于121x x ⎧<−⎪⎨⎪<−⎩或1221x x ⎧−≤≤⎪⎨⎪>⎩或253x x >⎧⎪⎨>⎪⎩∴解集为:{}11x x x <−>或例3.(1)解:由013x <−<得{}241x x x −<<≠且 x Z ∈∵{}1, 0, 2, 3∴− ∴集合的真子集的个数为42115−=个(2)由题意得:302140x x ⎧−≥⎪⎨+−>⎪⎩即333522x x x −≤≤⎧⎪⎨><−⎪⎩或即533322x x x ⎧⎫−≤<−<≤⎨⎬⎩⎭或(3)解:{}22A x a x a =−≤≤+{}42B x x x =≥≤−或 A B =Φ∵∩22 24a a −>−⎧∴⎨+<⎩∴a 的取值范围是()0, 2a ∈(4)解:设()43f x x x =−+−min ()1f x =∵∵ 不等式43x x a −+−<有解1a ∴>a ∴取值范围是()1, a ∈+∞ 例4.方法一解:设2()(1)2(2)24f x m x m x m =++−++由题意可知1010(3)0(3)0m m f f +>+<⎧⎧⎨⎨<>⎩⎩或即1155m m m m >−<−⎧⎧⎨⎨<−>−⎩⎩或 m ∴的取值范围是()5, 1m ∈−−方法二解:设方程的两根分别为12, x x ,由题意可知21211004(2)4(1)(24)0(3)(3)0242(2)39011m m m m m x x m m m m ⎧⎪≠−+≠⎧⎪⎪Δ>⇔−−++>⎨⎨⎪⎪−−<+−⎩+×+<⎪++⎩解之得()5, 1m ∈−−例5.(1)解:2220x ax a −−≤即(2)()0x a x a −+≤∴12x a =,2x a =−当12x x > 即2a a >−, a >0时,解集为[-a ,2a ] 当12x x =即2a =-a , a =0时,原不等式为20x ≤,解集为{}0 当12x x <即2a a <−, a <0时,解集为[]2,a a −。

2.3二次函数与一元二次方程、不等式习题课课件(人教版)

2.3二次函数与一元二次方程、不等式习题课课件(人教版)
当a=3时,不等式解集为{x|x≠3}. 当a>3时,不等式解集为{x|x<3或x>a}.
思考:当a∈R时,变式1的解集又如何求解?
典例分析
变式1:求不等式(ax-2)(x-3)>0(a>0)的解集.
解:当
a
2 3
,即
2 a
3 时,不等式解集为
x
|
x
3或x
2
a

当a 2 ,即 2 3 时,不等式解集为x | x 3 .
4
目标检测
4 已知关于x的不等式 a2 4x2 a 2x 1≥ 0的解集为空集,则实数
a的取值范围是_________.
解析:②当a2-4≠0,即a≠±2. 因为关于x的不等式(a2-4)x2+(a-2)x-1≥0解集为空集,
所以
a2
4 0
0,
解得
5 6
<a<2.
综上可得:a的取值范围是
3a
当a
2 3
,即
2 a
3
时,不等式解集为 x
|
x
2 a
或x
3

典例分析
思考:当a∈R时,变式1的解集又如何求解?
解:当a=0时,不等式可化为x-3<0,解得x<3.
当a≠0时,方程(ax-2)(x-3)=0的根为 2 ,3. a
若a<0,则 2 3 ,不等式解为 2 x 3.
a
a
若a>0,则
之后与例2相同,略.
②对于x2-ax+1<0,Δ=a2-4, 所以当-2≤a≤2,
即Δ≤0时,不等式的解集为φ.
当a>2或a<-2,即Δ>0时,
不等式的解集为{x | a
a2 4 x a
a2 4 }

3.2.2_一元二次不等式及其解法习题课_课件(人教A版必修5)

3.2.2_一元二次不等式及其解法习题课_课件(人教A版必修5)
栏目 导引
第 三章 不等式
乙车的刹车距离略超过10 m,又知甲、乙两 种车型的刹车距离s(m)与车速x(km/h)之间 分别有如下关系:s甲=0.1x+0.01x2,s乙= 0.05x+0.005x2. 问:甲、乙两车有无超速现象? 解:由题意知,对于甲车,有0.1x+0.01x2 >12,即x2+10x-1200>0,解得x>30或x <-40(不合实际意义,舍去),
第 三章 不等式
3.某工厂生产商品M,若每件定价80元, 则每年可销售80万件,税务部门对市场销售 的商品要征收附加费,为了既增加国家收入, 又有利于市场活跃,必须合理确定征收的税 率.据市场调查,若政府对商品M征收的税 率为P%(即每百元征收P元)时,每年的销售 量减少10P万件,据此,问:
栏目 导引
集是全体实数(或恒成立)的条件是当 a=0 时,
b=0,c>0;

a≠0
时a>0 Δ<0
.
(2)不等式 ax2+bx+c<0 的解集是全体实数
(或恒成立)的条件是当 a=0 时,b=0,c<0;

a≠0
时,a<0 Δ<0
.
类似地有 f(x)≤a 恒成立⇔[f(x)]max≤a;f(x)≥a 恒成立⇔[f(x)]min≥a.
栏目 导引
第 三章 不等式
∵Δ=36>0,方程R2-10R+16=0的两个 实数根为R1=2,R2=8. 9分 然后画出二次函数y=R2-10R+16的图象, 由图象得不等式的解集为{R|2≤R≤8}. 10分 即当2≤R≤8时,每年在此项经营中所收附 加税金不少于112万元. 12分 名师微博 正确列出不等式是关键.
栏目 导引
第 三章 不等式
②若 a2-1≠0,即 a≠±1 时, 原不等式解集为 R 的条件是 a2-1<0, Δ=[-a-1]2+4a2-1<0, 解得-35<a<1. 综上所述,符合条件的实数 a 的取值范围是(- 35,1].

高中数学第二章一元二次函数方程和不等式3第二课时二次函数与一元二次方程不等式的应用习题课学案新人教A

高中数学第二章一元二次函数方程和不等式3第二课时二次函数与一元二次方程不等式的应用习题课学案新人教A

第二课时 二次函数与一元二次方程、不等式的应用(习题课) 简单的分式不等式的解法[例1] 解下列不等式: (1)x +12x -1<0;(2)1-x 3x +5≥0;(3)x -1x +2>1. [解] (1)原不等式可化为(x +1)(2x -1)<0,∴-1<x <12, 故原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1<x <12. (2)原不等式可化为x -13x +5≤0, ∴⎩⎪⎨⎪⎧(x -1)(3x +5)≤0,3x +5≠0, ∴⎩⎪⎨⎪⎧-53≤x ≤1,x ≠-53,即-53<x ≤1. 故原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-53<x ≤1. (3)原不等式可化为x -1x +2-1>0, ∴x -1-(x +2)x +2>0, ∴-3x +2>0,则x <-2. 故原不等式的解集为{x |x <-2}.简单分式不等式的解法(1)对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意分母不为零;(2)对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.[跟踪训练]解下列不等式:(1)2x -13x +1≥0;(2)2-x x +3>1. 解:(1)原不等式可化为⎩⎪⎨⎪⎧(2x -1)(3x +1)≥0,3x +1≠0. 解得⎩⎪⎨⎪⎧x ≤-13或x ≥12,x ≠-13.∴x <-13或x ≥12, ∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-13或x ≥12. (2)原不等式可化为(2-x )-(x +3)x +3>0, 化简得-2x -1x +3>0, 即2x +1x +3<0, ∴(2x +1)(x +3)<0,解得-3<x <-12. ∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-3<x <-12.不等式恒成立问题[例2] 已知函数y =mx 2-mx -1. (1)若对于一切实数x ,不等式y <0恒成立,求实数m 的取值范围;(2)若对于一切实数x ,不等式y ≥-2恒成立,求实数m 的取值范围.[解] (1)要使mx 2-mx -1<0恒成立,若m =0,显然-1<0恒成立.若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m ,m 的取值范围是-4<m ≤0. (2)不等式y ≥-2,即为mx 2-mxm =0,则不等式即为1≥0,显然恒成立;若m ≠0,则应有⎩⎪⎨⎪⎧m >0,m 2-4m ≤0,解得0<m ,实数m 的取值范围是0≤m ≤4.不等式ax 2+bx +c >0(<0)的解集为R(恒成立)的条件不等式 ax 2+bx +c >0ax 2+bx +c <0 a =0b =0,c >0 b =0,c <0a ≠0 ⎩⎪⎨⎪⎧a >0,Δ<0 ⎩⎪⎨⎪⎧a <0,Δ<0 [跟踪训练]已知不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( )A .{a |-1≤a ≤4}B .{a |a ≤-2或a ≥5}C .{a |a ≤-1或a ≥4}D .{a |-2≤a ≤5} 解析:选A 法一:x 2-2x +5=(x -1)2+4的最小值为4,所以要使x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4,故选A.法二:不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立等价于不等式x 2-2x +5-a 2+3a ≥0对任意实数x 恒成立,所以关于x 的方程x 2-2x +5-a 2+3a =0的判别式Δ=(-2)2-4×(5-a 2+3a )≤0,解得-1≤a ≤4,故选A.一元二次不等式的实际应用 [例3] (链接教科书第53页例4)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),x ,同时预计年销售量增加的比例为x .已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,问投入成本增加的比例x 应在什么范围内?[解] (1)由题意,得yx )-1×(1+xx )(0<x <1),整理得y =-60x 2+20x +200(0<x <1).(2)要保证本年度的利润比上年度有所增加,当且仅当⎩⎪⎨⎪⎧y -(1.2-1)×1 000>0,0<x <1, 即⎩⎪⎨⎪⎧-60x 2+20x >0,0<x <1, 解不等式组,得0<x <13, 所以为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 的范围为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x <13.解不等式应用题的步骤[跟踪训练]如图所示,某小区内有一个矩形花坛ABCD ,现将这一矩形花坛扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知AB =3 m ,AD =2 m .要使矩形AMPN 的面积大于32 m 2,则DN 的长应在什么范围内?解:设DN 的长为x (x >0)m ,则AN 的长为(x +2)m. 因为DN AN =DC AM , 所以AM =3(x +2)x ,所以S 矩形AMPN =AN ·AM =3(x +2)2x. 由S 矩形AMPN >32,得3(x +2)2x>32. 又x >0,得3x 2-20x +12>0,解得0<x <23或x >6. 即DN 的长的取值范围是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x <23或x >6.1.不等式2-x x≥0的解集为( ) A .{x |0≤x ≤2}B .{x |0<x ≤2}C .{x |x <0或x ≥2}D .{x |x <0或x >2}解析:选B 由原式得x (x -2)≤0且x ≠0,解得0<x ≤2,故选B.2.已知不等式x 2+ax +4<0的解集为空集,则实数a 的取值范围是( )A .{a |-4≤a ≤4}B .{a |-4<a <4}C .{a |a ≤-4或a ≥4}D .{a |a <-4或a >4} 解析:选A 欲使不等式x 2+ax +4<0的解集为空集,则Δ=a 2-16≤0,∴-4≤a ≤4.3.某施工单位在对一个长800 m ,宽600 m 的草坪进行绿化时,是这样想的:中间为矩形绿草坪,四周是等宽的花坛,如图所示,若要保证绿草坪的面积不小于总面积的二分之一,试确定花坛宽度的取值范围.解:设花坛的宽度为x m ,则草坪的长为(800-2x )m ,宽为(600-2x )m ,根据题意得(800-2x )·(600-2x )≥12×800×600, 整理得x 2-700x +60 000≥0,解不等式得x ≥600(舍去)或x ≤100,由题意知x >0,所以0<x ≤100.当x 在{x |0<x ≤100}取值时,绿草坪的面积不小于总面积的二分之一.。

一元二次不等式及其解法训练题(含详解)

一元二次不等式及其解法训练题(含详解)

一元二次不等式及其解法(含详解)题组一 一元二次不等式的解法x +5(x -1)2≥2的解集是 ( ) A .[-3,12] B .[-12,3] C .[12,1)∪(1,3] D .[-12,1)∪(1,3] 解析:法一:首先x ≠1,在这个条件下根据不等式的性质原不等式可以化为x +5≥2(x-1)2,即2x 2-5x -3≤0,即(2x +1)(x -3)≤0,解得-12≤x ≤3,故原不等式的解集是[-12,1)∪(1,3]. 法二:特殊值检验法.首先x ≠1,排除B ,显然x =0,x =2是不等式的解,排除A 、C.答案:D2.解关于x 的不等式12x 2-ax >a 2(a ∈R).解:由12x 2-ax -a 2>0⇔(4x +a )(3x -a )>0⇔(x +a 4)(x -a 3)>0, ①a >0时,-a 4<a 3, 解集为{x |x <-a 4或x >a 3}; ②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3, 解集为{x |x <a 3或x >-a 4}. 题组二 一元二次不等式的实际应用y (万元)与产量x (台,若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( )A .100台B .120台C .150台D .180台解析:依题意得25x ≥3 000+20xx 2,整理得x 2+50x -30 000≥0,解得x ≥150或x ≤-200,因为0<x <240,所以150≤x <240,即最低产量是150台.答案:C4.某摩托车厂上年度生产摩托车的投入成本为1万元辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x (0<xxx ,已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内?解:(1)由题意得y =×x )-1×(1+x )]×x )(0<x <1),整理得y =-60x 2+20x +200(0<x <1).(2)要保证本年度的年利润比上年度有所增加,必须有⎩⎪⎨⎪⎧ y -(1.2-1)×1000>0,0<x <1,即⎩⎪⎨⎪⎧-60x 2+20x >0,0<x <1. 解得0<x <13. ∴投入成本增加的比例应在(0,13)范围内.ax 2+4x +a >1-2x 2对任意实数x 均成立,则实数a 的取值范围是( )A .a ≥2或a ≤-3B .a >2或a ≤-3C .a >2D .-2<a <2解析:原不等式可化为(a +2)x 2+4x +a -1>0,显然a =-2时不等式不恒成立,所以要使不等式对于任意的x 均成立,必须有a +2>0,且Δ<0,即⎩⎪⎨⎪⎧ a +2>0,16-4(a +2)(a -1)<0, 解得a >2.答案:C6.(2010·宁波模拟)设奇函数f (x )在[-1,1]上是单调函数,且f (-1)=-1,若函数f (x )≤t 2-2at +1对所有的x ∈[-1,1]都成立,当a ∈[-1,1]时,则t 的取值范围是________. 解析:∵f (x )为奇函数,f (-1)=-1,∴f (1)=-f (-1)=1.又∵f (x )在[-1,1]上是单调函数,∴-1≤f (x )≤1,∴当a ∈[-1,1]时,t 2-2at +1≥1恒成立,即t 2-2at ≥0恒成立,令g (a )=t 2-2at ,a ∈[-1,1],∴⎩⎪⎨⎪⎧t 2-2t ≥0,t 2+2t ≥0, ∴⎩⎪⎨⎪⎧t ≥2或t ≤0,t ≤-2或t ≥0, ∴t ≥2或t =0或t ≤-2.答案:(-∞,-2]∪{0}∪[2,+∞)7.已知函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,求a 的范围.(2)当x ∈[-2,2]时,f (x )≥a 恒成立,求a 的范围.解:(1)f (x )≥a 恒成立,即x 2+ax +3-a ≥0恒成立,必须且只需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0,∴-6≤a ≤2.(2)f (x )=x 2+ax +3=(x +a 2)2+3-a 24. ①当-a 2<-2,即a >4时,f (x )min =f (-2)=-2a +7,由-2a +7≥a 得a ≤73,∴a ∈∅. ②当-2≤-a 2≤2,即-4≤a ≤4时,f (x )min =3-a 24, 由3-a 24≥a ,得-6≤a ≤2.∴-4≤a ≤2. ③当-a 2>2,即a <-4时,f (x )min =f (2)=2a +7, 由2a +7≥a ,得a ≥-7,∴-7≤a <-4.综上得a ∈[-7,2].x 2-|x |-2<0 ( )A .{x |-2<x <2}B .{x |x <-2或x >2}C .{x |-1<x <1}D .{x |x <-1或x >1}解析:原不等式⇔|x |2-|x |-2<0⇔(|x |-2)(|x |+1)<0⇔|x |-2<0⇔-2<x <2. 答案:A9.已知不等式组⎩⎪⎨⎪⎧x 2-4x +3<0,x 2-6x +8<0的解集是不等式2x 2-9x +a <0的解集的子集,则实数a 的取值范围是________.解析:因为不等式组⎩⎪⎨⎪⎧x 2-4x +3<0,x 2-6x +8<0的解集是{x |2<x <3},设f (x )=2x 2-9x +a ,则由题意得⎩⎪⎨⎪⎧f (2)≤0,f (3)≤0,解得a ≤9. 答案:a ≤910.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b },(1)求a ,b ;(2)解不等式ax 2-(ac +b )x +bc <0.解:(1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,且b >1.由根与系数的关系,得⎩⎨⎧ 1+b =3a ,1×b =2a .解得⎩⎪⎨⎪⎧ a =1,b =2.所以⎩⎪⎨⎪⎧a =1,b =2. (2)所以不等式ax 2-(ac +b )x +bc <0, 即x 2-(2+c )x +2c <0,即(x -2)(x -c )<0.①当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c }; ②当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2}; ③当c =2时,不等式(x -2)(x -c )<0的解集为∅. 综上所述:当c >2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |2<x <c }; 当c <2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |c <x <2}; 当c =2时,不等式ax 2-(ac +b )x +bc <0的解集为∅.。

高中数学《一元二次不等式及其解法习题课》课件

高中数学《一元二次不等式及其解法习题课》课件

(1)求矩形 ABCD 的面积 S 关于 x 的函数解析式;
(2)要使仓库占地 ABCD 的面积不少于 144 平方米,则
AB 的长度应在什么范围内?
30
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5

(1)根据题意,得△NDC
与△NAM
相似,所以DC= AM
ND,即 x =20-AD,解得 NA 30 20
∵x∈[-2,2],x-212+34max=7,
∴x2-6x+1min=67,∴m<67.
25
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
拓展提升
有关不等式恒成立问题的等价转化方式
(1)不等式 ax2+bx+c>0 的解集是全体实数(或恒成立)
的条件是当 a=0 时,b=0,c>0;
23
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
(2)将 f(x)<-m+5 变换成关于 m 的不等式:m(x2-x+ 1)-6<0.则命题等价于:m∈[-2,2]时,g(m)=m(x2-x+1) -6<0 恒成立.
∵x2-x+1>0,∴g(m)在[-2,2]上单调递增. ∴只要 g(2)=2(x2-x+1)-6<0,即 x2-x-2<0, ∴-1<x<2.∴x 的取值范围为-1<x<2.
①式的解集为 x≤-2 或 0≤x≤3.由②式知 x≠3, ∴原不等式的解集为{x|x≤-2 或 0≤x<3}.
18
课前自主预习
课堂互动探究

2020版人教A数学必修5 课件:第二课时 一元二次不等式及其解法习题课

2020版人教A数学必修5 课件:第二课时 一元二次不等式及其解法习题课

x2 x 1 (x 1)2 3
7
7
24
的取值范围为(-∞, 6 ). 7
方法技巧
(1)解决恒成立问题一定要搞清谁是自变量,谁是参数.一般地,知道 谁的范围,谁就是自变量,求谁的范围,谁就是参数.分离参数法是解 决不等式恒成立问题的一种行之有效的方法. a≥f(x)恒成立⇔a≥f(x)max(f(x)存在最大值); a≤f(x)恒成立⇔a≤f(x)min(f(x)存在最小值). (2)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的 图象在给定区间上全部在x轴上方,恒小于0就是相应的二次函数的图 象在给定区间上全部在x轴下方.
所以 m 的取值范围为(-4,0].
(2)对于x∈[1,3],f(x)<-m+5恒成立,求m的取值范围.
解:(2)法一 要使 f(x)<-m+5 在 x∈[1,3]上恒成立,就要使 m(x- 1 )2+ 3 m-6<0 24
在 x∈[1,3]上恒成立.令 g(x)=m(x- 1 )2+ 3 m-6,x∈[1,3].当 m>0 时,g(x)在 24
答案:(2)-10
[备用例1](1)关于x的不等式x2-2ax-8a2<0(a>0)的解集为(x1,x2),且x2x1=15,则a等于( )
(A) 5 2
(B) 7 2
(C) 15 4
(D) 15 2
(1)解析:由不等式 x2-2ax-8a2<0(a>0)的解集为(x1,x2),知 x1,x2 为方程 x2-2ax8a2=0 的两根,则 x1+x2=2a,x1x2=-8a2,由(x2-x1)2=(x1+x2)2-4x1x2,得(2a)2-4× (-8a2)=36a2=152,解得 a= 5 (负值舍去),故选 A.

高中数学第二章一元二次函数方程和不等式专项训练题(带答案)

高中数学第二章一元二次函数方程和不等式专项训练题(带答案)

高中数学第二章一元二次函数方程和不等式专项训练题单选题1、实数a,b 满足a >b ,则下列不等式成立的是( ) A .a +b <ab B .a 2>b 2C .a 3>b 3D .√a 2+b 2<a +b 答案:C分析:利用不等式的性质逐一判断即可. A ,若a =1,b =0,则a +b >ab ,故A 错误; B ,若a =1,b =−2,则a 2<b 2,故B 错误;C ,若a >b ,则a 3−b 3=(a −b )(a 2+ab +b 2)=(a −b )[(a +b 2)2+3b 24]>0,所以a 3>b 3,故C 正确;D ,若a =1,b =−2,则√a 2+b 2>a +b ,故D 错误. 故选:C2、若a,b,c ∈R ,则下列命题为假命题的是( ) A .若√a >√b ,则a >b B .若a >b ,则ac >bc C .若b >a >0,则1a >1b D .若ac 2>bc 2,则a >b 答案:B分析:根据不等式的性质逐一分析各选项即可得答案. 解:对A :因为√a >√b ,所以a >b ≥0,故选项A 正确;对B :因为a >b ,c ∈R ,所以当c >0时,ac >bc ;当c =0时,ac =bc ;当c <0时,ac <bc ,故选项B 错误;对C :因为b >a >0,所以由不等式的性质可得1a>1b >0,故选项C 正确;对D :因为ac 2>bc 2,所以c 2>0,所以a >b ,故选项D 正确. 故选:B.3、若x >53,则3x +43x−5的最小值为( )A .7B .4√3C .9D .2√3 答案:C分析:利用基本不等式即可求解. 解:∵x >53, ∴3x −5>0,则3x +43x−5=(3x −5)+43x−5+5≥2√(3x −5)⋅43x−5+5=9, 当且仅当3x −5=2时,等号成立, 故3x +43x−5的最小值为9,故选:C .4、已知2<a <3,−2<b <−1,则2a −b 的范围是( ) A .(6,7)B .(5,8)C .(2,5)D .(6,8) 答案:B分析:由不等式的性质求解即可.,故4<2a <6,1<−b <2,得5<2a −b <8 故选:B5、已知a,b >0,a +4b =ab ,则a +b 的最小值为( ) A .10B .9C .8D .4 答案:B分析:由题可得4a +1b =1,根据a +b =(a +b )(4a +1b )展开利用基本不等式可求.∵a,b >0,a +4b =ab ,∴4a +1b =1, ∴a +b =(a +b )(4a +1b )=4b a +a b +5≥2√4b a ⋅ab +5=9,当且仅当4ba =ab 时等号成立,故a +b 的最小值为9. 故选:B.23,21<<-<<-a b6、已知两个正实数x ,y 满足x +y =2,则1x+9y+1的最小值是( )A .163B .112C .8D .3 答案:A分析:根据题中条件,得到1x +9y+1=13(1x +9y+1)[x +(y +1)],展开后根据基本不等式,即可得出结果. 因为正实数x,y 满足x +y =2,则1x +9y+1=13(1x +9y+1)[x +(y +1)]=13(10+y+1x+9x y+1)≥13(10+2√y+1x⋅9x y+1)=163,当且仅当y+1x=9xy+1,即x =34,y =54时,等号成立.故选:A .小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.7、关于x 的方程x 2+2(m −1)x +m 2−m =0有两个实数根α,β,且α2+β2=12,那么m 的值为( ) A .−1B .−4C .−4或1D .−1或4 答案:A分析:α2+β2=(α+β)2−2α⋅β,利用韦达定理可得答案. ∵关于x 的方程x 2+2(m −1)x +m 2−m =0有两个实数根, ∴Δ=[2(m −1)]2−4×1×(m 2−m )=−4m +4⩾0, 解得:m ⩽1,∵关于x 的方程x 2+2(m −1)x +m 2−m =0有两个实数根α,β, ∴α+β=−2(m −1),α⋅β=m 2−m ,∴α2+β2=(α+β)2−2α⋅β=[−2(m −1)]2−2(m 2−m )=12,即m 2−3m −4=0,解得:m =−1或m =4(舍去). 故选:A.8、已知实数x ,y 满足x 2+y 2=2,那么xy 的最大值为( ) A .14B .12C .1D .2 答案:C分析:根据重要不等式x 2+y 2≥2xy 即可求最值,注意等号成立条件.由x 2+y 2=2≥2xy ,可得xy ≤1,当且仅当x =y =1或x =y =−1时等号成立. 故选:C. 多选题9、下面所给关于x 的不等式,其中一定为一元二次不等式的是( ) A .3x +4<0B .x 2+mx -1>0 C .ax 2+4x -7>0D .x 2<0 答案:BD分析:利用一元二次不等式的定义和特征对选项逐一判断即可.选项A 是一元一次不等式,故错误;选项B ,D ,不等式的最高次是二次,二次项系数不为0,故正确;当a =0时,选项C 是一元一次不等式,故不一定是一元二次不等式,即错误. 故选:BD.10、已知a >0,b >0,且a 2+b 2=2,则下列不等式中一定成立的是( ) A .ab ≥1B .a +b ≤2 C .lga +lgb ≤0D .1a +1b ≤2 答案:BC分析:对于AD ,举例判断,对于BC ,利用基本不等式判断 解:对于A ,令a =√22,b =√62满足a 2+b 2=2,则ab =√22×√62=√32<1,所以A 错误,对于B ,因为(a +b)2=a 2+b 2+2ab =2+2ab ≤2+a 2+b 2=4,所以a +b ≤2,当且仅当a =b =1时取等号,所以B 正确,对于C ,因为lga +lgb =lgab ≤lg a 2+b 22=lg1=0,当且仅当a =b =1时取等号,所以C 正确,对于D ,令a =√22,b =√62满足a 2+b 2=2,则1a +1b =√2+√63≈1.414+0.8165>2,所以D 错误,故选:BC11、已知a >0,b >0,且a +b =1,则( ) A .a 2+b 2≥12B .2a−b >12C .log 2a +log 2b ≥−2D .√a +√b ≤√2 答案:ABD分析:根据a +b =1,结合基本不等式及二次函数知识进行求解. 对于A ,a 2+b 2=a 2+(1−a )2=2a 2−2a +1=2(a −12)2+12≥12, 当且仅当a =b =12时,等号成立,故A 正确;对于B ,a −b =2a −1>−1,所以2a−b >2−1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log 2(a+b 2)2=log 214=−2,当且仅当a =b =12时,等号成立,故C 不正确; 对于D ,因为(√a +√b)2=1+2√ab ≤1+a +b =2,所以√a +√b ≤√2,当且仅当a =b =12时,等号成立,故D 正确; 故选:ABD小提示:本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养.12、下列选项中正确的是( ) A .不等式a +b ≥2√ab 恒成立B .存在实数a ,使得不等式a +1a ≤2成立 C .若a ,b 为正实数,则ba +ab ≥2D .若正实数x ,y 满足,则2x +1y ≥821x y +=答案:BCD分析:根据基本不等式的条件与“1”的用法等依次讨论各选项即可得答案. 解:对于A选项,当a<0,b<0时不成立,故错误;对于B选项,当a<0时,a+1a =−[(−a)+(−1a)]≤2,当且仅当a=−1等号成立,故正确;对于C选项,若a,b为正实数,则ba >0,ab>0,所以ba+ab≥2√ba⋅ab=2,当且仅当a=b时等号成立,故正确;对于D选项,由基本不等式“1”的用法得2x +1y=(2x+1y)(x+2y)=4+4yx+xy≥4+2√4yx⋅xy=8,当且仅当x=2y时等号成立,故正确.故选:BCD13、已知函数f(x)=x2−2(a−1)x+a,若对于区间[−1,2]上的任意两个不相等的实数x1,x2,都有f(x1)≠f(x2),则实数a的取值范围可以是()A.(−∞,0]B.[0,3]C.[−1,2]D.[3,+∞)答案:AD解析:对于区间[−1,2]上的任意两个不相等的实数x1,x2,都有f(x1)≠f(x2),分析即f(x)在区间[−1,2]上单调,利用二次函数的单调区间判断.二次函数f(x)=x2−2(a−1)x+a图象的对称轴为直线x=a−1,∵任意x1,x2∈[−1,2]且x1≠x2,都有f(x1)≠f(x2),即f(x)在区间[−1,2]上是单调函数,∴a−1≤−1或a−1≥2,∴a≤0或a≥3,即实数a的取值范围为(−∞,0]∪[3,+∞).故选:AD小提示:(1)多项选择题是2020年高考新题型,需要要对选项一一验证.(2)二次函数的单调性要看开口方向、对称轴与区间的关系.填空题14、已知三个不等式:①ab>0,②ca >db,③bc>ad,用其中两个作为条件,剩下的一个作为结论,则可组成______个真命题. 答案:3分析:根据题意,结合不等式性质分别判断①、②、③作为结论的命题的真假性即可. 由不等式性质,得{ab >0c a >d b ⇒{ab >0bc−ad ab>0⇒bc >ad ;{ab >0bc >ad ⇒c a >d b ;{ca>d bbc >ad⇒{bc−adab>0bc >ad⇒ab >0.故可组成3个真命题.所以答案是:3.15、命题p:∀x ∈R ,x 2+ax +a ≥0,若命题p 为真命题,则实数a 的取值范围为___________. 答案:[0,4]分析:根据二次函数的性质判别式解题即可.∀x ∈R ,要使得x 2+ax +a ≥0,则Δ=a 2−4a ≤0,解得0≤a ≤4. 若命题p 为真命题,则实数a 的取值范围为[0,4]. 所以答案是:[0,4]. 16、a >b >c ,n ∈N ∗,且1a−b+1b−c≥n a−c恒成立,则n 的最大值为__.答案:4分析:将不等式变形分离出n ,不等式恒成立即n 大于等于右边的最小值;由于a −c =a −b +b −c ,凑出两个正数的积是常数,利用基本不等式求最值. 解:由于1a−b+1b−c≥n a−c恒成立,且a >c即恒成立 只要的最小值即可∵a −c a −b +a −c b −c =a −b +b −c a −b +a −b +b −cb −c=2+b −c a −b +a −bb −c∵a >b >ca c a cn a b b c --≤+--a c a cn a b b c --≤+--∴a −b >0,b −c >0,故(a−c a−b +a−cb−c )≥4,因此n ≤4 所以答案是:4. 解答题17、(1)已知x >1,求4x +1+1x−1的最小值;(2)已知0<x <1,求x (4−3x )的最大值. 答案:(1)9;(2)43.分析:(1)由于x −1>0,则4x +1+1x−1=4(x −1)+1x−1+5,然后利用基本不等式求解即可, (2)由于0<x <1,变形得x (4−3x )=13⋅(3x )⋅(4−3x ),然后利用基本不等式求解即可. (1)因为x >1,所以x −1>0,所以4x +1+1x−1=4(x −1)+1x−1+5≥2√4(x −1)⋅1x−1+5=9, 当且仅当4(x −1)=1x−1,即x =32时取等号,所以4x +1+1x−1的最小值为9.(2)因为0<x <1,所以x (4−3x )=13⋅(3x )⋅(4−3x )≤13(3x+4−3x 2)2=43,当且仅当3x =4−3x ,即x =23时取等号,故x (4−3x )的最大值为43.18、在△ABC 中,内角A ,B ,C 对边分别为a ,b ,c ,已知2acosB =2c −b . (1)求角A 的值;(2)若b =5,AC⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =−5,求△ABC 的周长; (3)若2bsinB +2csinC =bc +√3a ,求△ABC 面积的最大值. 答案:(1)A =π3;(2)20;(3)3√34. 解析:(1)利用正弦定理及两角和的正弦公式展开,可得,可求得角A 的值;(2)根据向量的数量积及余弦定理分别求出a,c ,即可求得周长;1cos 2A(3)将利用正弦定理将角化成边,再利用余弦定理结合基本不等式可求得面积的最值; (1)∵2acosB =2c −b ⇒2sinA ⋅cosB =2sinC −sinB ,∴2sinA ⋅cosB =2⋅sin(A +B)−sinB =2(sinA ⋅cosB +cosA ⋅sinB)−sinB , ∴,∵0<A <π,∴A =π3;(2)∵AC⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ ⋅(AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )=AC ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ 2 =c ⋅5⋅cos π3−52=52c −25=−5⇒c =8,在△ABC 中利用余弦定理得:a 2=b 2+c 2−2b ⋅c ⋅cosA =52+82−2⋅5⋅8⋅12=49, ∴a =7,∴ΔABC 的周长为:5+8+7=20; (3)∵bsinB =csinC =asinA =√32=2√3a3,∴sinB =√32ba,sinC =√32ca, ∴2b ⋅√32⋅b a+2c ⋅√32⋅ca=bc +√3a ,∴√3(b 2+c 2−a 2)=abc ⇒√3⋅cosA =a2⇒√3⋅12=a2⇒a =√3, ∴√3(b 2+c 2−3)=√3bc ⇒b 2+c 2=3+bc , ∴3+bc ⩾2bc ⇒bc ⩽3,等号成立当且仅当, △ABC 面积的最大值为(12bcsinA)max=3√34. 小提示:本题考查三角恒等变换、正余弦定理在解三角形中的应用,求解时注意选择边化成角或者角化成边的思路.1cos 2A =b c =。

第2课时 一元二次不等式的综合应用(习题课)

第2课时 一元二次不等式的综合应用(习题课)

[自主解答] (1)要使 mx2-mx-1<0 恒成立, 若 m=0,显然-1<0. 若 m≠0,Δm=<0பைடு நூலகம்,2+4m<0 ⇒-4<m<0. ∴-4<m≤0, 即 m 的取值范围是-4<m≤0.
(2)解法一 要使 y<-m+5 在 x∈[1,3]上恒成立,
就要使 mx-122+34m-6<0 在 1≤x≤3 上恒成立.
解析 设产销量为每年 x 万瓶,则销售收入为每年 70x 万元,从中征收税金为 70x·R% 万元,并且 x=100-10R.
由题意可知 70(100-10R)·R%≥112, 即 R2-10R+16≤0. ∴2≤R≤8,∴税率定在 2%~8%之间,年收附加税不少于 112 万元.
02
课后案 学业评价
6 m<7.
解法二 当 x∈[1,3]时,f(x)<-m+5 恒成立, 即当 1≤x≤3 时,m(x2-x+1)-6<0 恒成立. ∵x2-x+1=x-122+34>0, 又 m(x2-x+1)-6<0,∴m<x2-6x+1. ∵函数 y=x2-6x+1=x-1262+34在 1≤x≤3 上的最小值为67, ∴只需 m<67即可.∴m 的取值范围是 m<67.
题型三 一元二次不等式的实际应用 某物流公司购买了一块长 AM=30 米,宽 AN=20 米的矩形地块,计划将图
中矩形 ABCD 建设为仓库,其余地方为道路和停车场,要求顶点 C 在地块对角线 MN 上,B,D 分别在边 AM,AN 上,假设 AB 的长度为 x 米.
(1)求矩形 ABCD 的面积 S 关于 x 的函数解析式; (2)要使仓库占地 ABCD 的面积不少于 144 平方米,则 AB 的长度应在什么范围内?

高中数学新人教A版必修5第三章 3.2 第二课时 一元二次不等式及其解法(习题课)

高中数学新人教A版必修5第三章   3.2  第二课时 一元二次不等式及其解法(习题课)

第二课时 一元二次不等式及其解法(习题课)解简单的分式不等式[典例] 解下列不等式: (1)x +23-x ≥0;(2)2x -13-4x>1. [解] (1)原不等式等价于⎩⎪⎨⎪⎧(x +2)(3-x )≥0,3-x ≠0,即⎩⎪⎨⎪⎧(x +2)(x -3)≤0,x ≠3⇒-2≤x <3. ∴原不等式的解集为{x |-2≤x <3}. (2)原不等式可化为2x -13-4x -1>0,即3x -24x -3<0.等价于(3x -2)(4x -3)<0. ∴23<x <34. ∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪23<x <34.(1)解分式不等式时,要注意先移项,使右边化为零,要注意含等号的分式不等式的分母不为零.(2)分式不等式的4种形式及解题思路 ①f (x )g (x )>0⇔f (x )g (x )>0; ②f (x )g (x )<0⇔f (x )g (x )<0; ③f (x )g (x )≥0⇔f (x )g (x )≥0且g (x )≠0⇔f (x )g (x )>0或f (x )=0; ④f (x )g (x )≤0⇔f (x )g (x )≤0且g (x )≠0⇔f (x )g (x )<0或f (x )=0. (3)不等式与不等式组的同解关系①f (x )g (x )≥0⇔⎩⎪⎨⎪⎧ f (x )≥0,g (x )≥0或⎩⎪⎨⎪⎧ f (x )≤0,g (x )≤0, ②f (x )g (x )≤0⇔⎩⎪⎨⎪⎧f (x )≥0,g (x )≤0或⎩⎪⎨⎪⎧f (x )≤0,g (x )≥0, ③f (x )g (x )>0⇔⎩⎪⎨⎪⎧ f (x )>0,g (x )>0或⎩⎪⎨⎪⎧ f (x )<0,g (x )<0,④f (x )g (x )<0⇔⎩⎪⎨⎪⎧ f (x )>0,g (x )<0或⎩⎪⎨⎪⎧f (x )<0,g (x )>0.[活学活用]1.若集合A ={x |-1≤2x +1≤3},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x -2x ≤0,则A ∩B =( ) A .{x |-1≤x <0} B .{x |0<x ≤1} C .{x |0≤x ≤2}D .{x |0≤x ≤1}解析:选B ∵A ={x |-1≤x ≤1},B ={x |0<x ≤2}, ∴A ∩B ={x |0<x ≤1}.2.已知关于x 的不等式ax +b >0的解集是(1,+∞),则关于x 的不等式ax -bx -2>0的解集是( )A.{}x |x <-1或x >2B.{}x |-1<x <2C.{}x |1<x <2D.{}x |x >2解析:选A 依题意,a >0且-ba =1. ax -b x -2>0⇔(ax -b )(x -2)>0⇔⎝⎛⎭⎫x -ba (x -2)>0, 即(x +1)(x -2)>0⇒x >2或x <-1.不等式中的恒成立问题2取值范围.[解] 由题意可知,只有当二次函数f (x )=x 2+2(a -2)x +4的图象与直角坐标系中的x 轴无交点时,才满足题意,则其相应方程x 2+2(a -2)x +4=0此时应满足Δ<0,即4(a -2)2-16<0,解得0<a <4.故a 的取值范围是(0,4).对于x ∈[a ,b ],f (x )<0(或>0)恒成立,应利用函数图象.1.已知f (x )=x 2+2(a -2)x +4,是否存在实数a ,使得对任意x ∈[-3,1],f (x )<0恒成立.若存在求出a 的取值范围;若不存在说明理由.解:若对任意,x ∈[-3,1],f (x )<0恒成立,则满足题意的函数f (x )=x 2+2(a -2)x +4的图象如图所示.由图象可知,此时a 应该满足⎩⎪⎨⎪⎧ f (-3)<0,f (1)<0,即⎩⎪⎨⎪⎧25-6a <0,1+2a <0,解得⎩⎨⎧a >256,a <-12.这样的实数a 是不存在的,所以不存在实数a 满足:对任意x ∈[-3,1],f (x )<0恒成立. 对此类问题,要弄清楚哪个是参数,哪个是自变量.2.已知函数y =x 2+2(a -2)x +4,对任意a ∈[-3,1],y <0恒成立,试求x 的取值范围.解:原函数可化为g (a )=2xa +x 2-4x +4,是关于a 的一元一次函数. 要使对任意a ∈[-3,1],y <0恒成立,只需满足⎩⎪⎨⎪⎧ g (1)<0,g (-3)<0,即⎩⎪⎨⎪⎧x 2-2x +4<0,x 2-10x +4<0.因为x 2-2x +4<0的解集是空集,所以不存在实数x ,使函数y =x 2+2(a -2)x +4,对任意a ∈[-3,1],y <0恒成立.(1)解决恒成立问题一定要搞清谁是自变量,谁是参数.一般地,知道谁的范围,谁就是自变量,求谁的范围,谁就是参数.分离参数法是解决不等式恒成立问题的一种行之有效的方法.a ≥f (x )恒成立⇔a ≥f (x )max (f (x )存在最大值); a ≤f (x )恒成立⇔a ≤f (x )min (f (x )存在最小值).(2)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定区间上全部在x 轴下方.一元二次不等式的实际应用[典例] 某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应的提高比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,问投入成本增加的比例x 应在什么范围内?[解] (1)由题意,得y =[1.2×(1+0.75x )-1×(1+x )]×1 000×(1+0.6x )(0<x <1),整理得y =-60x 2+20x +200(0<x <1).(2)要保证本年度的利润比上年度有所增加,当且仅当⎩⎪⎨⎪⎧ y -(1.2-1)×1 000>0,0<x <1,即⎩⎪⎨⎪⎧-60x 2+20x >0,0<x <1,解不等式组,得0<x <13,所以为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 的范围为⎝⎛⎭⎫0,13.用一元二次不等式解决实际问题的步骤(1)理解题意,搞清量与量之间的关系;(2)建立相应的不等关系,把实际问题抽象为数学中的一元二次不等式问题; (3)解这个一元二次不等式,得到实际问题的解.[活学活用]某校园内有一块长为800 m ,宽为600 m 的长方形地面,现要对该地面进行绿化,规划四周种花卉(花卉带的宽度相同),中间种草坪,若要求草坪的面积不小于总面积的一半,求花卉带宽度的范围.解:设花卉带的宽度为x m(0<x <600),则中间草坪的长为(800-2x )m ,宽为(600-2x )m.根据题意可得(800-2x )(600-2x )≥12×800×600,整理得x 2-700x +600×100≥0,即(x -600)(x -100)≥0,所以0<x ≤100或x ≥600,x ≥600不符合题意,舍去.故所求花卉带宽度的范围为(0,100]m.层级一 学业水平达标1.不等式x -1x ≥2的解集为( )A .[-1,+∞)B .[-1,0)C .(-∞,-1]D .(-∞,-1]∪(0,+∞)解析:选B 不等式x -1x ≥2,即x -1x -2≥0,即-x -1x ≥0,所以x +1x ≤0,等价于x (x +1)≤0且x ≠0,所以-1≤x <0.2.不等式4x +23x -1>0的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x >13或x <-12 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <13 C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >13 D.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12 解析:选A4x +23x -1>0⇔(4x +2)(3x -1)>0⇔x >13或x <-12,此不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >13或x <-12.3.若不等式x 2+mx +m2>0恒成立,则实数m 的取值范围是( )A .(2,+∞)B .(-∞,2)C .(-∞,0)∪(2,+∞)D .(0,2)解析:选D ∵不等式x 2+mx +m2>0,对x ∈R 恒成立,∴Δ<0即m 2-2m <0,∴0<m <2.4.某商品在最近30天内的价格f (t )与时间t (单位:天)的函数关系是f (t )=t +10(0<t ≤20,t ∈N);销售量g (t )与时间t 的函数关系是g (t )=-t +35(0<t ≤30,t ∈N),则使这种商品日销售金额不小于500元的t 的范围为( )A .[15,20]B .[10,15]C .(10,15)D .(0,10]解析:选B 由日销售金额为(t +10)(-t +35)≥500, 解得10≤t ≤15.5.若关于x 的不等式x 2-4x -m ≥0对任意x ∈(0,1]恒成立,则m 的最大值为( ) A .1 B .-1 C .-3D .3解析:选C 由已知可得m ≤x 2-4x 对一切x ∈(0,1]恒成立,又f (x )=x 2-4x 在(0,1]上为减函数,∴f (x )min =f (1)=-3,∴m ≤-3. 6.不等式5-x x +4≥1的解集为________.解析:因为5-x x +4≥1等价于1-2x x +4≥0,所以2x -1x +4≤0,等价于⎩⎪⎨⎪⎧(2x -1)(x +4)≤0,x +4≠0,解得-4<x ≤12.答案:⎝⎛⎦⎤-4,12 7.若不等式x 2-4x +3m <0的解集为空集,则实数m 的取值范围是________. 解析:由题意,知x 2-4x +3m ≥0对一切实数x 恒成立,所以Δ=(-4)2-4×3m ≤0,解得m ≥43.答案:⎣⎡⎭⎫43,+∞8.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意的实数x 都成立,则a 的取值范围是________.解析:根据定义得(x -a )⊗(x +a )=(x -a )[1-(x +a )]=-x 2+x +a 2-a ,又(x -a )⊗(x +a )<1对任意的实数x 都成立,所以x 2-x +a +1-a 2>0对任意的实数x 都成立,所以Δ<0,即1-4(a +1-a 2)<0,解得-12<a <32.答案:⎝⎛⎭⎫-12,32 9.已知f (x )=-3x 2+a (5-a )x +b .(1)当不等式f (x )>0的解集为(-1,3)时,求实数a ,b 的值; (2)若对任意实数a ,f (2)<0恒成立,求实数b 的取值范围. 解:(1)由f (x )>0,得-3x 2+a (5-a )x +b >0, ∴3x 2-a (5-a )x -b <0. 又f (x )>0的解集为(-1,3),∴⎩⎪⎨⎪⎧ 3+a (5-a )-b =0,27-3a (5-a )-b =0,∴⎩⎪⎨⎪⎧ a =2,b =9或⎩⎪⎨⎪⎧a =3,b =9.(2)由f (2)<0,得-12+2a (5-a )+b <0, 即2a 2-10a +(12-b )>0.又对任意实数a ,f (2)<0恒成立, ∴Δ=(-10)2-4×2(12-b )<0,∴b <-12,∴实数b 的取值范围为⎝⎛⎭⎫-∞,-12. 10.某工厂生产商品M ,若每件定价80元,则每年可销售80万件,税务部门对市场销售的商品要征收附加税.为了既增加国家收入,又有利于市场活跃,必须合理确定征收的税率.据市场调查,若政府对商品M 征收的税率为P %(即每百元征收P 元)时,每年的销售量减少10P 万件,据此,问:(1)若税务部门对商品M 每年所收税金不少于96万元,求P 的范围;(2)在所收税金不少于96万元的前提下,要让厂家获得最大的销售金额,应如何确定P 值;(3)若仅考虑每年税收金额最高,又应如何确定P 值. 解:税率为P %时,销售量为(80-10P )万件, 即f (P )=80(80-10P ),税金为80(80-10P )·P %, 其中0<P <8.(1)由⎩⎪⎨⎪⎧80(80-10P )·P %≥96,0<P <8,解得2≤P ≤6. 故P 的范围为[2,6].(2)∵f (P )=80(80-10P )(2≤P ≤6)为减函数, ∴当P =2时,厂家获得最大的销售金额, f (2)=4 800(万元). (3)∵0<P <8,g (P )=80(80-10P )·P %=-8(P -4)2+128, ∴当P =4时,国家所得税金最高,为128万元.层级二 应试能力达标1.不等式x +5(x -1)2≥2的解是( )A.⎣⎡⎦⎤-3,12 B.⎣⎡⎦⎤-12,3 C.⎣⎡⎭⎫12,1∪(1,3]D.⎣⎡⎭⎫-12,1∪(1,3] 解析:选D x +5(x -1)2≥2⇔⎩⎪⎨⎪⎧x +5≥2(x -1)2,x -1≠0⇔⎩⎪⎨⎪⎧-12≤x ≤3,x ≠1,∴x ∈⎣⎡⎭⎫-12,1∪(1,3]. 2.已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x +3x -1<0,N ={x |x ≤-3},则集合{x |x ≥1}等于( ) A .M ∩N B .M ∪N C .∁R (M ∩N ) D .∁R (M ∪N )解析:选Dx +3x -1<0⇔(x +3)(x -1)<0,故集合M 可化为{x |-3<x <1},将集合M 和集合N 在数轴上表示出来(如图),易知答案.3.对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是( )A .(1,3)B .(-∞,1)∪(3,+∞)C .(1,2)D .(-∞,1)∪(2,+∞)解析:选B 设g (a )=(x -2)a +(x 2-4x +4),g (a )>0恒成立且a ∈[-1,1]⇔⎩⎪⎨⎪⎧ g (1)=x 2-3x +2>0,g (-1)=x 2-5x +6>0⇔⎩⎪⎨⎪⎧x <1或x >2,x <2或x >3⇔x <1或x >3. 4.在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( )A .[15,30]B .[12,25]C .[10,30]D .[20,30]解析:选C 设矩形的另一边长为y m ,则由三角形相似知,x 40=40-y40,∴y =40-x ,∵xy ≥300,∴x (40-x )≥300,∴x 2-40x +300≤0,∴10≤x ≤30.5.若函数f (x )=log 2(x 2-2ax -a )的定义域为R ,则a 的取值范围为________. 解析:已知函数定义域为R ,即x 2-2ax -a >0对任意x ∈R 恒成立. ∴Δ=(-2a )2+4a <0. 解得-1<a <0. 答案:(-1,0)6.现有含盐7%的食盐水200克,生产上需要含盐5%以上、6%以下的食盐水,设需要加入含盐4%的食盐水为x 克,则x 的取值范围是________.解析:5%<x ·4%+200·7%x +200<6%,解得x 的范围是(100,400). 答案:(100,400)7.已知不等式mx 2-2x +m -2<0.(1)若对于所有的实数x 不等式恒成立,求m 的取值范围;(2)设不等式对于满足|m |≤2的一切m 的值都成立,求x 的取值范围.解:(1)对所有实数x ,都有不等式mx 2-2x +m -2<0恒成立,即函数f (x )=mx 2-2x +m -2的图象全部在x 轴下方.当m =0时,-2x -2<0,显然对任意x 不能恒成立; 当m ≠0时,由二次函数的图象可知有⎩⎪⎨⎪⎧m <0,Δ=4-4m (m -2)<0,解得m <1-2, 综上可知,m 的取值范围是(-∞,1-2).(2)设g (m )=(x 2+1)m -2x -2,它是一个以m 为自变量的一次函数,由x 2+1>0,知g (m )在[-2,2]上为增函数,则只需g (2)<0即可,即2x 2+2-2x -2<0,解得0<x <1. 故x 的取值范围是(0,1).8.已知函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,求a 的取值范围; (2)当x ∈[-2,2]时,f (x )≥a 恒成立,求a 的取值范围.解:(1)f (x )≥a 恒成立,即x 2+ax +3-a ≥0恒成立,必须且只需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0,∴-6≤a ≤2.∴a 的取值范围为[-6,2]. (2)f (x )=x 2+ax +3=⎝⎛⎭⎫x +a 22+3-a 24. ①当-a2<-2,即a >4时,f (x )min =f (-2)=-2a +7, 由-2a +7≥a ,得a ≤73,∴a ∈∅.②当-2≤-a 2≤2,即-4≤a ≤4时,f (x )min =3-a 24,由3-a 24≥a ,得-6≤a ≤2.∴-4≤a ≤2.③当-a2>2,即a <-4时,f (x )min =f (2)=2a +7,由2a +7≥a ,得a ≥-7,∴-7≤a <-4. 综上,可得a 的取值范围为[-7,2].。

一元二次不等式及绝对值不等式

一元二次不等式及绝对值不等式

一元二次不等式及绝对值不等式一、知识梳理一.一元二次不等式的解法(1)将不等式的右端化为0,左端化为二次项系数大于0的不等式ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0);(2)求出相应的一元二次方程的根;(3)利用二次函数的图象与根确定一元二次不等式的解集.ax2+bx+c<0(y<0)的解集{x|x1< x <x2}△<0yxOΦΦR没有实根y>0二、例题分析例1.不等式-x2-x+2≥0的解集是例2.解关于x的不等式x2+(2-a)x-2a<0,其中a∈R。

例3.已知关于x的不等式x2+ax+b<0的解集为(1,2).试求关于x的不等式bx2+ax+1>0的解集.例4、-x+10 3x+1>变式1、-10 3+1xx+≥变式2.-x+12 3+1x≥二,|x|的几何意义是实数x在数轴上对应的点离开原点O的距离,所以|x|<a (a>0)的解集是{x|-a<x<a};不等式|x|>a (a>0)的解集是{x|x>a或x<-a}。

把不等式|x|<a与|x|>a (a>0)中的x替换成ax+b,就可以得到|ax+b|<c与|ax+b|>c (c>0)型的不等式的解法。

例5.解关于x的不等式|3x-2|<4变式引深:解关于x的不等式|ax-2|<4,其中a∈R。

例6. 解不等式|x-3|-|2x+3|≥2。

变式:|x-1|<|x+7|例7、|2x-2x-6|<3x三、课后变式小提升1、8x-1≥16x22、2x2+4x+3>0;3、-3x2-2x+8>0;4、解不等式1<|x-2|≤75、|x+1|>2-x6、2|55|1 x x-+<.7、解不等式|x-2|+|x+3|>5.8、解50 23xx+< -9、解530 23xx+>-10、解530 23xx+≥-11、解532 23xx+≥-四、课后作业:复习所讲内容,完成课后小练习,加油哦!!!。

一元二次不等式及其解法(习题课) 课件

一元二次不等式及其解法(习题课) 课件

1.对于比较简单的分式不等式,可直接转化为一元二次不等式或一 元一次不等式组求解,但要注意分母不为零. 2.对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不 要去分母),使之转化为不等号右边为零,然后再用上述方法求解.
探究二 不等式中的恒成立问题 [典例 2] 设函数 f(x)=mx2-mx-1. (1)若对于一切实数 x,f(x)<0 恒成立,求 m 的取值范围; (2)对于 x∈[1,3],f(x)<-m+5 恒成立,求 m 的取值范围.
(4)方程 f(x)=0 的一根小于 k1,另一根大于 k2 且 k1<k2 的条件是 fk1<0, fk2<0.
探究四 一元二次不等式的实际应用 [典例 4] 某农贸公司按每担 200 元的价格收购某农产品,并每 100 元纳税 10 元(又称征税率为 10 个百分点),计划可收购 a 万担.政府 为了鼓励收购公司多收购这种农产品,决定将征税率降低 x(x>0)个百 分点,预测收购量可增加 2x 个百分点. (1)写出降税后税收 y(万元)与 x 的函数关系式; (2)要使此项税收在税率调节后,不少于原计划税收的 83.2%,试确 定 x 的取值范围.
a<0,
Δ<0
2.有关不等式恒成立求参数的取值范围的方法 (1)f(x)≤a 恒成立⇔f(x)max≤a. (2)f(x)≥a 恒成立⇔f(x)min≥a.
探究三 一元二次方程根的分布问题
[典例 3] 已知方程 x2+2mx-m+12=0 的两根都大于 2,求实数 m
的取值范围.
[解析] 法一:设方程 x2+2mx-m+12=0 的两根为 x1,x2.
则 x1,x2 的分布范围与方程系数之间的关系如下表所示.

教材绝对值不等式与一元二次不等式练习课

教材绝对值不等式与一元二次不等式练习课

教材绝对值不等式与一元二次不等式练习课目的:通过练习逐步做到能较熟练掌握上述两类不等式的解法。

过程:一、复习:绝对值不等式与一元二次不等式的复习。

二、例题:例1、解不等式2135某35某2和②124497解①:某解②:某557979∴原不等式的解集是{某|某}∪{某|某}={某|某或某}555525某15例2、解不等式346525某15解:原不等式可化为:1020某11106346121121∴∴原不等式的解集是{某|}某某2022202235某4解:原不等式可化为:①1525某146(略)或解:原不等式化为325某15346例3、解关于某的不等式2某31a(aR)解:原不等式可化为:2某3a1当a+1>0即a>1时(a+1)<2某+31时原不等式的解集是{某|当a≤1时解集为例4、解不等式214某7解一:原不等式可化为:24某1713某或某4某12443某1或3某23244某24某1721114某1当某时某某4∴Ⅰ:解二:∵14某Ⅱ:44114某当某时24某17214某74(下略)a4a2某22a4a2};某22解三:原不等式解集等价于下面两个不等式解集的并集:2≤14某<72≤(14某)<7(下略)例5、解不等式|某+2|+|1某|解:原不等式即为|某+2|+|某1|某21某某4Ⅱ:1解:整理得2某2+6某-3<0用求根公式求根得解集{某|②(某-1)(3-某)解:整理得2某23某+4>0∵230∴不等式解集为R③某410不等式解集为{某|某≤-4或某>}3某133某103某10或解:取并集2某53某12某53某12某513某1某12某1某2315315}某22解:移项,通分,整理得④0≤某2-2某-3<5解:原不等式的解集为下面不等式组的解集某1或某3某22某3022某4某2某55∴原不等式的解集为{某|-2例7、已知U=R且A={某|某2-5某-6<0}B={某||某-2|≥1}求:1)A∩B2)A∪B3)(CuA)∩(CuB)解:A={某|-1例8、解关于某的不等式(1-a)某2+4a某-(4a+1)>0(aR)解:1当1-a=0即a=1时原不等式化为4某-5>0某>2当1-a>0即a<1时∵=4(3a+1)(1)当a13a1054即a1时>013此时原不等式的解集是某|某1(2)当a=时=0原不等式化为4某2-4某+1>0即(2某-1)2>031此时原不等式的解集是{某R|某}21(3)当a0此时原不等式的解集为R32a3a12a3a1或某1a1a3当1-a<0即a>1时原不等式可化为(a-1)某2-4a某+(4a+1)<0这样a-1>0这时=4(3a+1)>0用求根公式求得:1综上可得:当a311当a=-时原不等式解集为{某R|某}232a3a12a3a11当a1时原不等式解集为某|某或某1a1a35当a=1时原不等式解集为{某|某>}42a3a12a3a1当a>1时原不等式解集为某某|a1a1此时原不等式的解集为:某|2a3a12a3a1某a1a1例9、已知A={某||某-a|≤1}B={某|解:化简A={a-1≤某≤a+1}某2某300}且某3A∩B=求a的范围。

高考数学总复习1.2绝对值不等式与一元二次不等式训练大纲文试题

高考数学总复习1.2绝对值不等式与一元二次不等式训练大纲文试题

第2讲 绝对值不等式与一元二次不等式A 级 课时对点练(时间是:40分钟 满分是:60分)一、选择题(此题一共5小题,每一小题5分,一共25分) 1.不等式|x2-x |<2的解集为( )A .(-1,2)B .(-1,1)C .(-2,1)D .(-2,2)解析:由|x 2-x |<2得:-2<x 2-x <2,即⎩⎪⎨⎪⎧x 2-x +2>0x 2-x -2<0,解得-1<x <2.答案:A2.不等式⎪⎪⎪⎪⎪⎪x +1x -1<x 的解集为 ( )A .{x |0<x <1}∪{x |x >1}B .{x |x >1+2或者1-2<x <1}C .{x |-1<x <0}D .{x |x >1+2} 答案:D 3.不等式x |x |<x 的解集为( )A .(0,1)B .(-1,1)C .(-∞,-1)∪(0,1)D .(-1,0)∪(1,+∞)解析:原不等式可化为x (|x |-1)<0⇒⎩⎪⎨⎪⎧x >0|x |<1或者⎩⎪⎨⎪⎧x <0|x |>1⇒x <-1或者0<x <1.答案:C4.(2021·卷)不等式|x -2|>x -2的解集是 ( ) A .(-∞,2) B .(-∞,+∞) C .(2,+∞) D.(-∞,2)∪(2,+∞) 解析:∵|x -2|>x -2,∴xx <2. 答案:A 5.不等式|x+2|+|x-1|<4的解集为( )A .(-2,1)B .[-2,1] C.⎝ ⎛⎭⎪⎫-∞,32 D.⎝ ⎛⎭⎪⎫-52,32解析:可以通过去绝对值、数形结合、排除等方法解决. 答案:D二、填空题(此题一共3小题,每一小题5分,一共15分) 6.(2021·卷)不等式2-xx +4>0的解集是________.解析:由2-xx +4>0得(x -2)(x +4)<0,解得:-4<x <2.答案:(-4,2)7.不等式3<|2x -3|<5的解集为________. 解析:∵3<|2x -3|<5.∴9<(2x -3)2<25,即⎩⎪⎨⎪⎧4x 2-12x >0,4x 2-12x -16<0,∴⎩⎪⎨⎪⎧x x -3>0,x +1x -4<0.解之得-1<x <0或者3<x <4.∴不等式的解集为{x |-1<x <0或者3<x <4}. 答案:{x |-1<x <0或者3<x <4}8.(2021·模拟)不等式x 2+px +q <0的解集是{x |-3<x <2},那么p +q =________. 解析:∵-3+2=-p ,(-3)×2=q ,∴p =1,q =-6. ∴p +q =1-6=-5. 答案:-5三、解答题(每一小题10分,一共20分)9.不等式ax 2+bx +c >0的解集为{x |1<x <3},求cx 2+bx +a <0的解集.解:解法一:注意到一元二次不等式的解集与相应二次方程的根之间的关系,可以知道ax 2+bx +c =0的两个实根为1,3,即原不等式与(x -1)(x -3)<0同解,即x 2-4x +3<0与-ax 2-bx -c <0同解, 因此-a 1=-b -4=-c3=k >0,这样目的不等式cx 2+bx +a <0可变成3x 2-4x +1>0,3x 2-4x +1=0的根为13,1.因此所求不等式的解集为⎩⎨⎧⎭⎬⎫x |x <13或者x >1. 解法二:由ax 2+bx +c >0的解集为{x |1<x <3}, 可知ax 2+bx +c =0的两个实根为1,3,且a <0,根据韦达定理-ba =4,c a=3.因a <0,不等式cx 2+bx +a <0可变成c ax 2+b ax +1>0,即3x 2-4x +1>0,解得{x |x <13或者x >1}.10.解关于x 的不等式12x 2-ax >a 2(a ∈R ).解:由12x 2-ax -a 2>0⇔(4x +a )(3x -a )>0⇔⎝ ⎛⎭⎪⎫x +a 4⎝ ⎛⎭⎪⎫x -a 3>0,①a >0时,-a 4<a 3,解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或者x >a 3;②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a3,解集为⎩⎨⎧⎭⎬⎫x |x <a 3或者x >-a 4. B 级 素能提升练(时间是:30分钟 满分是:40分)一、选择题(此题一共2小题,每一小题5分,一共10分)1.在R 上定义运算⊙:a ⊙b =ab +2a +b ,那么满足x ⊙(x -2)<0的实数x 的取值范围为( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞) D.(-1,2)解析:根据题意得:x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2,∴解x 2+x -2<0,得 -2<x <1. 答案:B2.(2021·模拟)关于x 的不等式|x -4|+|x -3|<a 有实数解,那么实数a 的取值范围为( )A .(1,+∞) B.[1,+∞) C .(-∞,1) D .(0,1]解析:|x -4|+|x -3|的几何意义是数轴上任意点(坐标为x )到3和4对应的点的间隔 之和,所以要想|x -4|+|x -3|<a 有实数解,只要a 大于|x -4|+|x -3|的最小值就可以了.而|x -4|+|x -3|取到最小值是当点x 在3和4对应的点之间时,最小值为1,所以a >1. 答案:A二、填空题(每一小题5分,一共10分)3.假设不等式5-x >7|x +1|和不等式ax 2+bx -2>0的解集一样,那么实数a ,b 的值是________.解析:由5-x >7|x +1|得:-2<x <-14,∴-2和-14是方程ax 2+bx -2=0的两根,∴⎩⎪⎨⎪⎧-b a =-2-14,-2a =-2×⎝ ⎛⎭⎪⎫-14.解得a =-4,b =-9. 答案:-4,-94.关于x 的不等式ax -1x +1<0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫-12,+∞,那么a =____. 解析:由于不等式ax -1x +1<0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫-12,+∞,故-12应是ax -1=0的根.∴a =-2. 答案:-2三、解答题(每一小题10分,一共20分)5.设函数f (x )=ax +2,不等式|f (x )|<6的解集为(-1,2),试求不等式xf x≤1的解集. 解:∵|ax +2|<6,∴(ax +2)2<36, 即a 2x 2+4ax -32<0,由题设可得⎩⎪⎨⎪⎧-4a a2=-1+2,-32a 2=-1×2;解得:a =-4,∴f (x )=-4x +2,由x f x ≤1即x-4x +2≤1变形得: 5x -24x -2≥0,它等价于(5x -2)(4x -2)≥0,且4x -2≠0, 解得:x >12或者x ≤25,∴原不等式解集为{x |x >12或者x ≤25}.6.关于x 的不等式ax -5x 2-a<0的解集为M . (1)当a =4时,求集合M .(2)假设3∈M 且5∉M ,务实数a 的取值范围. 解:(1)当a =4时,原不等式可化为4x -5x 2-4<0,解得x <-2或者54<x <2.故M =(-∞,-2)∪⎝ ⎛⎭⎪⎫54,2. (2)由3∈M 得3a -532-a <0,且5∉M得5a -552-a≥0,或者52-a =0. 解之得a ∈⎣⎢⎡⎭⎪⎫1,53∪(9,25].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值不等式与一元二次
不等式练习课
目的: 通过练习逐步做到能较熟练掌握上述两类不等式的解法. 过程:
一、复习:绝对值不等式与一元二次不等式的复习.
二、例题:
例1、解不等式 4
5312x +-≤ 解:原不等式可化为:① 24
531≥+-x 或 ② 24531-≤+-x 解①得5
7-≤x ,解②得 59≥x . ∴原不等式的解集是{x |57-≤x }∪{x |59≥x }={x |5
7-≤x 或59≥x }. 例2、解不等式 6541352≤+-x 解:原不等式可化为:6
54135265≤+-≤-x 10112010≤+-≤-⇒x
20
21201≤≤⇒x ∴原不等式的解集是{x |
2021201≤≤x }
例3、解关于x 的不等式 a x <-+132 (a ∈R) 解:原不等式可化为:132+<+a x
(1)当 a +1>0 即a >-1时,
-(a +1)<2x +3<a +1 2
224-<<+-⇒a x a ; (2)当 a +1≤0即 a ≤-1时,解集为Φ.
∴(1)当a >-1时,原不等式的解集是 {x |2
224-<<+-
a x a }; (2)当a ≤-1时,解集为Φ.
例4、解不等式 7412<-≤x 解一:原不等式可化为:7142<-≤x ⎪⎩⎪⎨⎧<-≥-714214x x ⎪⎩⎪⎨⎧<<-≥-≤⇒2234341x x x 或 2434123<≤-≤<-⇒x x 或 解二: ∵ ⎪⎩⎪⎨⎧<-≥
-=-)4
1(41)41(1441x x x x x ∴ Ⅰ:⎪⎩⎪⎨⎧<-≤≥714241x x 或 Ⅱ:⎪⎩
⎪⎨⎧<-≤<741241x x (下略)
解三:原不等式解集等价于下面两个不等式解集的并集: 2≤1-4x <7,或2≤-(1-4x )<7.(下略)
例5、解不等式 |x +2| + |1-x |< x -4
解:原不等式即为 |x +2| + |x -1|< x -4
Ⅰ: ⎩
⎨⎧+<-+---<4122x x x x ⇒ x ∈Φ ; Ⅱ: ⎩
⎨⎧+<-++<≤-41212x x x x ⇒ -1<x <1; Ⅲ: ⎩
⎨⎧+<-++≥4121x x x x ⇒ 1≤x <3. ∴ 原不等式的解集为:{x |-1<x <3}
例6、解下列不等式:
① 3-6x -2x 2<0;
解:整理得 2x 2+6x -3<0.
用求根公式求根得解集{x |
2
1532153+-<<--x }. ② (x -1)(3-x )<x (x +1)+1;
解:整理得 2x 2-3x +4>0 ∵023<-=∆ ∴不等式解集为R.
③ 11352≤--x x ; 解:移项,通分,整理得 01
34≥-+x x . 不等式解集为{x |x ≤-4或x >31}
或解:取并集 ⎩
⎨⎧-≤->-1352013x x x 或 ⎩⎨⎧-≥-<-1352013x x x .
④ 0≤x 2-2x -3<5;
解:原不等式的解集为下面不等式组的解集
⎪⎩⎪⎨⎧<--≥--5
5203222x x x x ⎩⎨⎧<<-≥-≤⇒4231x x x 或 ∴原不等式的解集为 {x |-2<x ≤-1 或 3≤x <4}.
例7、已知U=R ,且A ={x |x 2-5x -6<0},B={x | |x -2|≥1}. 求:(1)A ∩B ; (2)A ∪B ; (3)(C u A )∩(C u B).
解:A ={x |-1<x <6},B={x |x ≤1或x ≥3},
∴C u A ={x |x ≤-1或x ≥6},C u B={x |1<x <3},于是
(1)A ∩B={x |-1<x ≤1或3≤x <6}
(2)A ∪B=R
(3)(C u A )∩(C u B)= {x |x ≤-1或x ≥6}∪{x |1<x <3}=Φ
也可求 C u (A ∪B)=Φ
例8、解关于x 的不等式 (1-a )x 2+4ax -(4a +1)>0 (a ∈R)
解:1 当1-a =0即 a =1时,原不等式化为 4x -5>0,x >4
5 2 当 1-a >0即a <1时,∵∆=4(3a +1)
(1)当⎩
⎨⎧>+<0131a a 即131<<-a 时,∆>0 此时原不等式的解集是⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧-++->-+--<a a a x a a a x x 11321132|或;
(2)当a =3
1-时,∆=0 原不等式化为 4x 2-4x +1>0, 即 (2x -1)2
>0,此时原不等式的解集是 {x ∈R|x ≠21}; (3)当a <3
1-时,∆<0 且 1-a >0,此时原不等式的解集为R ; 3 当1-a <0即a >1时,原不等式可化为
(a -1)x 2-4ax +(4a +1)<0
这样a -1>0,且∆=4(3a +1)>0,用求根公式得: 此时原不等式的解集为:⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧-++<<-+-11321132|a a a x a a a x 综上可得:
当a <-3
1时原不等式解集为R ; 当a =-31时原不等式解集为{x ∈R|x ≠2
1}; 当131<<-a 时原不等式解集为⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧-++->-+--<a a a x a a a x x 11321132|或; 当a =1时原不等式解集为{x | x >4
5}; 当a >1时原不等式解集为⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧-++<<-+-11321132|a a a x a a a x .
例9、已知A ={x | |x -a |≤1},B={x |03302≥---x x x }且A ∩B=Φ.
求a 的范围.
解:化简A ={a -1≤x ≤a +1}
由03302≥---x x x ⇒ 3)5)(6(-+-x x x ≥0 介绍“标根法” B={x |-5≤x <3 或 x ≥6}
要使A ∩B=Φ,必须满足 a +1<-5 或 ⎩
⎨⎧<+≥-6131a a 即a <-6或4≤a <5
∴ 满足条件的a 的范围是a <-6或4≤a <5
例10、(1)若不等式 (1-a )x 2-4x +6>0的解集是{x |-3<x <1}, 求a 的值;
(2)若-3<x <1时 (1-a )x 2-4x +6>0成立, 求a 的取值范围.
解:(1)由题设可知 1-a <0 ⎪⎩⎪⎨⎧-=⨯-=--=+-=-⇒313162
1314a
a 3=⇒a (2)设 y =(1-a )x 2-4x +6
1.当1-a >0即a <1时 抛物线开口向上 ∆=24a -8
当a <3
1时,∆<0,解集为R -3<x <1自然成立
当3
1<a <1时∆>0 此时对称轴 x =-312)1(24>-=--a a 而x =1时y =3-a >0,由图象可知: -3<x <1时都有y >0
当a =3
1时 0=∆这时对x ≠3都有y >0 故-3<x <1时 不等式成立
∴ a <1时 若-3<x <1不等式(1-a )x 2-4x +6>0都成立 2.当a =1时不等式为-4x +6>0对于-3<x <1时 2<-4x +6<18
即-4x +6>0成立
3.当a >1时1-a <0 抛物线开口向下 要使-3<x <1时(1-a )x 2-4x +6>0成立
必须 ⎪⎩⎪⎨⎧≥=≥-=>01031y x y x a 时时 ⎪⎩
⎪⎨⎧≥+-≥+->⇒02)1(018)1(91a a a 31≤<⇒a 综上:若-3<x <1时(1-a )x 2-4x +6>0成立,则a 的取值范围是a ≤3.
三、作业:《教学与测试》 第10课(选部分)。

相关文档
最新文档