银川市2011-2012第二学期期末七年级数学试题

合集下载

银川市人教版(七年级)初一下册数学期末测试题及答案

银川市人教版(七年级)初一下册数学期末测试题及答案
21.如图,CD⊥AB,EF⊥AB,垂足分别为D、F,∠1=∠2,若∠A=65°,∠B=45°,求∠AGD的度数.
22.四边形ABCD中,∠A=140°,∠D=80°.
(1)如图①,若∠B=∠C,试求出∠C的度数;
(2)如图②,若∠ABC的角平分线交DC于点E,且BE∥AD,试求出∠C的度数;
(3)如图③,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.
A.1.2×107B.0.12×10﹣6C.1.2×10﹣7D.1.2×10﹣8
7.若x2+kx+16是完全平方式,则k的值为( )
A.4B.±4C.8D.±8
8.若多项式 是完全平方式,则 的值为()
A.4B. C. D.
9.如图,有以下四个条件:其中不能判定 的是()
① ;② ;③ ;④ ;
A.①B.②C.③D.④
23.问题情境:如图1, , , ,求 的度数.
小明的思路是:如图2,过 作 ,通过平行线性质,可得 ______.
问题迁移:如图3, ,点 在射线 上运动, , .
(1)当点 在 、 两点之间运动时, 、 、 之间有何数量关系?请说明理由.
(2)如果点 在 、 两点外侧运动时(点 与点 、 、 三点不重合),请你直接写出 、 、 之间有何数量关系.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
根据因式分解的定义,需要将式子变形为几个整式相乘的形式,据此可判断.
【详解】
A、C不是几个式子相乘的形式,错误;
B中, 不是整式,错误;
D是正确的
故选:D.
【点睛】
本题考查因式分解的定义,注意一定要化成多个整式相乘的形式才叫因式分解.

2011~2012学年度第二学期七年级期末质量检测数学试题及参考答案评分标准

2011~2012学年度第二学期七年级期末质量检测数学试题及参考答案评分标准

ADECB图1图2乒乓球30%排球 20%足球25%篮球 20% 其它5% 图3第二学期七年级期末质量检测数学试题试题总量:共4页22小题 命题人:Kevin 考试时间:120分钟 试卷分值:120分第Ⅰ卷 (基础题;满分100分)一、选择题(本题满分18分,共有6道小题,每小题3分)1.如图1,AD ∥BC ,点E 在BD 的延长线上,若∠ADE =155°,则∠DBC 的度数为 A .155° B .50° C .45° D .25°2.如图2是测量一颗玻璃球体积的过程:(1)将300ml 的水倒进一个容量为500ml 的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出. 根据以上过程,推测这样一颗玻璃球的体积在A .20cm 3以上,30cm 3以下B .30cm 3以上,40cm 3以下C .40cm 3以上,50cm 3以下D .50cm 3以上,60cm 3以下 3.在直角坐标系中,第四象限的点M 到横轴的距离为28,到纵轴的距离为6,则M 点的坐标为A.)28,6(--B.)6,28(-C.)28,6(-或)28,6(-D.)28,6(- 4. 若一个多边形的内角和为外角和的3倍,则这个多边形为 A.八边形 B.九边形 C.十边形 D.十二边形 5. 图3是某班学生最喜欢的球类活动人数统计图,则下列说法不正确...的是 A.该班喜欢乒乓球的学生最多; B.该班喜欢排球与篮球的学生一样多;C.该班喜欢足球的人数是喜欢排球人数的1.25倍; D.该班喜欢其它球类活动的人数为5人.6.不等式组⎩⎨⎧<<+<<-5321x a x a 的解集为23+<<a x ,则a 的取值范围是A 、1>aB 、3≤aC 、1<a 或3>aD 、31≤<a()()6304342-÷+⎪⎭⎫ ⎝⎛-⨯-)6()2(422-+--xy x xy x 二、填空题(本题满分18分,共有6道小题,每小题3分)7、在平面直角坐标系中,点P 在x 轴上,且点P 到y 轴的距离为4,则点P 的坐标是_________.8、某校去年有学生1000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%.问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x 名,走读学生y 名,则可列出方程组为 .9、某工厂从10万个灯泡中随意抽取100个灯泡作寿命测试,以便确定这批灯泡的质量.在这里,总体是_______________,样本是_______________ 10、如图:一长方形纸片剪去一个角后,得到一个五边形ABCFE ,则图中∠1+∠2= 度.11、若不等式组2 < x < a 的整数解有3个,则a 的取值范围是 .12、用火柴棒按如图的方式搭一行三角形,搭一个三 角形需3支火柴棒,搭2个三角形需5支火柴棒,搭 3个三角形需7支火柴棒,照这样的规律下去,搭n 个三角形需要S 支火柴棒,那么用n 的代数式表示S 的式子是________________(n 为正整数).三、解答题(本题满分64分,共有5道小题) 13.(本题满分24分) (一)(本题满分8分)解方程组和解不等式组(1)⎩⎨⎧=+=-.732,423y x y x (2)⎪⎩⎪⎨⎧=++-=-2322)1(3)(4yx y y x(二)(本题满分8分)(1)、计算: (2)、化简: (三)(本题满分8分)(1)3(x+1)-1=x-2 (2)2546+=--x x x 14.(本题满分10分)如图,EF//AD ,1∠=2∠.说明:∠DGA+∠BAC=180°.请将说明过程填写完成. 解:∵EF//AD ,(已知)∴2∠=_____.(_____________________________).又∵1∠=2∠,(______)∴1∠=_____,(________________________). ∴AB//______,(____________________________) ∴∠DGA+_______=_____°.(_____________________________)FE D CBA(第14题)21321CB AEDFG15.(本题满分10分)小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况. 他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图. 根据以上提供的信息,解答下列问题: (1)补全频数分布表. (2)补全频数分布直方图. (3)绘制相应的频数分布折线图.(4)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户?16.(本题满分10分)如图:已知AB ∥DE ∥CF ,若∠ABC=70°,∠CDE=130°,求∠BCD 的度数。

【精品】2011-2012学年度七年级数学下学期期末试卷(3)

【精品】2011-2012学年度七年级数学下学期期末试卷(3)

17. ( 6 分)解方程组:
2x y 6 xy3
18. ( 6 分)解不等式组:
2 x - 3< 9 x ,并把解集在数轴上表示出来
1 3x 2 x 9
20.(6 分 ) 已知:如图∠ 1=∠ 2。求证∠ 3+∠ 4=180°,请完成下列证明。
证明:∵∠ 1=∠2
∴ a∥ b(

∴∠ 3+∠5=180°(

A.500 条 B.1000
条 C.1500
条 D.2000

二、填空题(本大题共 6 小题。每小题 3 分,共 18 分)
11. 一直 P 点在平面直角坐标系中的第四象限内,且点
P 到 x 轴的距离是 2. 到 y
轴的距离是 3,则 P 点的坐标是

12. 将 3x-3y=8 变形为用 x 的代数式表示 y 的形式是
C.6
D.5
7. 下列图形具有稳定性的是(

A 正方形 B. 长方形 C. 平行四边形 D. 直角三角形
8. 如图,下列条件中,不能判断 AB∥CD的是(

A. ∠ 1=∠ 4 B. ∠2=∠ 3 C. ∠ 2=∠ 4 D. ∠ 1+∠ 3=180°
第 8 小题图
第 9 小题图
9. 为估计池塘岸边 A、 B 间的距离,小明在池塘的一侧选取一点 O,测的 OA=15m,
3

13. 将命题:“同位角相等,两直线平行。 ”改写成“如果 ,, ,那么 ,, 。 ”的形
式是:

14. 将△ ABC向右平移 5 个单位、向上平移 6 个单位后 A 点的坐标为( 4,7),则
平移前 A 点的坐标为

2011-2012七年级下册数学期末考试卷子

2011-2012七年级下册数学期末考试卷子

2011-2012学年第二学期期末学业水平测试试卷(解析版)一、精心选一选,慧眼识金!1.下列图形中,是中心对称图形但不是轴对称图形的是(A)考点:中心对称图形;轴对称图形;生活中的旋转现象.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形,符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、是轴对称图形,也是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选A.点评:掌握中心对称图形与轴对称图形的概念.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.2、为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最终买什么水果,下面的调查数据中最值得关注的是( C )A.中位数B.平均数 C.众数 D.加权平均数考点:统计量的选择.分析:根据平均数、中位数、众数的意义进行分析选择.解答:解:平均数、中位数、众数是描述一组数据集中程度的统计量.既然是为筹备班级的初中毕业联欢会做准备,那么买的水果肯定是大多数人爱吃的才行,故最值得关注的是众数.故选C.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.3、矩形不一定具有的特征是(C)A、对角线相等B、四个角是直角C、对角线互相垂直D、对边分别相等考点:矩形的性质.分析:矩形对角线的性质:平分、相等,但不垂直. 解答:解:A 、矩形的对角线平分、相等,故A 具有; B 、矩形的四个角都是直角,故B 具有;; C 、矩形的对角线平分、相等,故C 不具有; D 、矩形的对边相等,故D 具有;故选C .点评:本题考查矩形的性质:对边平行且相等,矩形的对角线平分、相等,四个角都是直角.4.不等式组2130x x ≤⎧⎨+≥⎩的解集在数轴上可以表示为( A )ACD 5、关于x 的方程a x 4125=+的解都是负数,则x 的取值范围是( A ) A 、<3a B、<3a - C、>3a D、>3a - 考点:一元一次方程的解;解一元一次不等式.分析:本题首先要解这个关于x 的方程,求出方程的解,根据解是负数,可以得到一个关于a 的不等式,就可以求出a 的范围. 解答:解:解关于x 的方程得到:x=4-125a ,根据题意得:4-125a <0,解得a <3.故选A点评:本题是一个方程与不等式的综合题目.解关于x 的不等式是本题的一个难点. 6.若25kx 9x2++是完全平方式,则k=( D )A 、30 B、30- C、15± D、30± 考点:完全平方式. 分析:由于25kx 9x2++是完全平方式,根据完全平方公式得到25kx 9x2++=2(35)x ±,然后把2(35)x ±展开得2930+25x x ±,即可得到k 的值. 解答:解:∵25kx 9x2++是完全平方式,∴25kx 9x 2++=2(35)x ±, 而2(35)x ±=2930+25x x ±, ∴k=30±. 故答案为30±.点评:本题考查了完全平方公式:2222+=()a ab b a b ±± 二、耐心填一填,一锤定音!7.要使正方形旋转后与自身重合,至少将它绕中心顺时针旋转 90° 考点:旋转对称图形.分析:正方形可以被其对角线平分成4个全等的部分,则旋转的角度即可确定.解答:解:要使正方形旋转后,与其自身重合,至少应将它绕中心逆时针方向旋转的度数是 360°÷4 =90°.点评:本题考查旋转对称图形,解答此题的关键是要明确“至少应将它绕中心顺时针旋转的度数”为其中心角的度数,然后根据正方形中心角的求法解答.8、已知一个多边形的内角和是它的外角和的2倍,则这个多边形的边数为 六 . 考点:多边形内角与外角.分析:多边形的外角和是360°,内角和是它的外角和的2倍,则内角和是2×360=720度.n 边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n ,就得到方程,从而求出边数解答:解:设这个多边形的边数为n ,∵n 边形的内角和为(n-2)•180°,多边形的外角和为360°, ∴(n-2)•180°=360°×2, 解得n=6.∴此多边形的边数为六.点评:本题主要考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.9. 若一组数据6,9,9,x,12,6的众数是9,则x 的值是 9 考点:众数.分析:众数又是指一组数据中出现次数最多的数据,根据定义就可以求出. 解答:解:因为一组数据6,9,9,x,12,6的众数是9,根据众数的定义,9出现的次数最多,因为6已经出现了2次,所以9必出现3次. 所以x 是9.点评:本题比较容易,考查众数的知识.解题的关键是此题的众数是唯一的. 10. 菱形的对两条对角线长分别是10cm 和24cm ,则这菱形的面积为2120cm 11.2ab a 分解因式的结果是a(b+1)(b-1)12. 如图,△ABC 以点A 旋转中心,按逆时针方向旋转60°,△AB ′C ′,则△ABB ′是等边 三角形。

2011-2012学年第二学期期末七年级数学试题

2011-2012学年第二学期期末七年级数学试题

2011-2012学年度第二学期七年级期末数 学 试 题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷满分为36分;第Ⅱ卷满分为84分.本试题共6页,满分为120分.考试时间为120分钟.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,请考生将每题的正确选项填写在下列表格中.一、选择题:(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求) 1.如图,∠1+∠2等于( )A .60°B .90°C .110°D .180° 2.下列运算正确的是( )A .2222a a a +=B .339()a a =C .248a a a ⋅=D .632a a a ÷=3.微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩小.某种电子元件的面积大约为0.000 000 7平方毫米,数字0.000 0007用科学记数法表示为( ) A .7×10-7 B .7×10-6 C. 0.7×10-8 D. 0.7×10-6 4.如果□×3ab=3a 2b ,则□内应填的代数式是( )A .aB .3aC .abD .3ab5.下列语句中给出的数据,是准确值的是( )A.我国的国土面积约是960万平方公里B.今天的最高气温是23℃C.一本书142页D.半径为10 m 的圆的面积为314 m 26.已知一个三角形的两边长分别是2和3,则下列数据中,可作为第三边的长的是( )A .1B .3C .5D .7第1题图7.下列国旗图案中是轴对称图形的是( )A. B. C. D.8.在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超.有同学预测“李东夺冠的概率是80%”,对该同学的说法理解正确的是( ) A .李东夺冠的可能性较小B .李东和他的对手比赛l0局时,他一定赢8局C .李东夺冠的可能性较大D .李东肯定会赢9.化简41(-4x +8)-3(4-5x )的结果为( )A.-16x -10B.-16x -4C. 56x -40D. 14x -1010.小英早上从家里骑车上学,途中想到社会实践调查资料忘带了,立刻原路返回,返家途中遇到给她送资料的妈妈,接过资料后,小英加速向学校赶去.能大致反映她离家距离s 与骑车时间t 的关系的图象是( )11.如图,A ,B 是数轴上两点.在线段AB 上任取一点C ,则点C 到表示﹣1的点的距离不大于2的概率是( )A. 12 B.23C. 34D.4512.如图所示,在折纸活动中,小明制作了一张ABC △纸片,点D ,E 分别在AB ,AC 上,将ABC △沿着DE 折叠压平,A 与A ′重合,若∠A =70°,则∠1+∠2=( )A.70°B.110°C.130°D.140°A .B .C .D .ABBCBE BD1 2A '3-10 第11题图1-第Ⅱ卷(非选择题 共84分)注意事项:(签字笔)或圆珠笔直接在试卷上作答. 二、填空题(本大题共8个小题,每小题3分,共24分.把答案填在题中的横线上.)13.单项式3x 2y 3的系数是_________.14.近似数12.50是精确到_________位.15.一个材质均匀的正方体的六个面上分别标有字母A 、B 、C , 其展开图如图所示. 随机抛掷此正方体,A 面朝上的概率是16.如图,已知直线AD 、BC交于点E ,且AE=BE ,欲证明△AEC ≌△BED ,需增加的条件可以是____________(只填一个即可).17.如图,OP 平分∠MON ,P A ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若P A =2,则PQ 的最小值为__________.18.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为___________.19.如图,若乙、丙都在甲的北偏东70°方向上.乙在丁的正北方向上,且乙到丙、丁的距离相同.则α的度数是___________.20.已知A =2x ,B 是多项式,在计算B +A 时,小马虎同学把B +A 错看成了B ÷A ,结果得2112x x +-,则B +A = .三、解答题(本大题共7个小题,共60分.解答应写出文字说明、证明过程或演算步骤.)21.(本题满分14分,第(1)小题6分,第(2)小题8分)(1)2(3)2(3+)7x x x -+-A第17题图 第16题图 第19题图(2)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b )(2a -b ),其中a =2,b =1.22.(本小题满分6分)在图中的方格纸中画出△ABC 关于直线MN 对称的△A ′B ′C ′ .23.(本小题满分6分) 如图,AD ∥BC ,∠1=∠2,∠A =100°,且BD ⊥CD ,求∠C 的度数.24.(本小题满分6分) 如图,B ,C ,E ,F 在同一条直线上,BF =CE ,AE =DF ,AE ∥DF ,那么AB =CD 吗?请说明理由.A BD C1 2CABMNA BCEF25.(本小题满分7分)有足够多的长方形和正方形卡片,如下图:(1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是_________________________________________________(2)小明想用类似方法解释多项式乘法22(3)(2)273a b a b a ab b ++=++,那么需用2号卡片___________张,3号卡片_______________张.26.(本小题满分9分)在我市全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间x (时)变化的图象(全程)如图所示.(1)本次环城越野赛全程共__________千米;(2)出发0.5小时后甲选手领先乙选手_______千米; (3)出发后________小时,甲乙两位选手相遇;(4)若出发1.5小时后甲乙两位选手的速度保 持相同,那么甲选手跑完全程共用了多少时间?x /时甲 乙27.(本小题满分12分)如图 AB =AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O . (1)求证:AD =AE ;(2)连接OA ,BC ,试判断直线OA ,BC(3)若∠BAC =45°,OA =4时,求BC 的长.数学试题参考答案及评分标准13.3 14.百分 15.1316. CE =DE (或∠C =∠D 或∠A =∠B ) 17. 2 18. 40°或100° 19. 35° 20. 322x x + 三、解答题21.(1)解:原式=2269627x x x x -+++-………………………………………..…….4分=232x +…………………………………………………………….…...6分 (2)解:原式=22224b ab a b -+-……………………….……………………………4分 =242a ab -………………………………………………………………6分当a =2,b =1时,原式=4×22-2×2×1=12…………………..……………………8分22.如图,每作对一条边得2分23.解:∵AD ∥BC ∴∠A +∠ABC =180°………………………………………………………...…..……….2分 ∵∠A =100°∴∠ABC =80°………………………………………………………..….………………...3分 ∴∠1=∠2=40°……………………………………………………………………….…..4分 又∵BD ⊥CD. ∴∠C=180°-90°-40°=50°……………………………………………..…………...……..6分 24.解:∵BF =CE∴BF + EF =CE +EF ,即BE =CF ……………………………………………………..…1分 ∵AE ∥DF∴∠AEB =∠DFC …………………………………………………………………..….…2分 在△ABE 和△DCF 中 AE DF AEB DFC BE CF =⎧⎪∠=∠⎨⎪=⎩∴△AEB ≌△DFC …………………………………………………………………..……4分 ∴AB =CD ……………………………………………………………………………......…6分C A B M NA′ C ′B ′25.解:(1)或……………….3分代数意义:(a +b )(a +2b )=a 2+3ab +2b 2……………….……………………………….5分 (2)3,7.……………………………………………………………………………..…7分 26.解:(1)20;………………………………………………………….……………….2分(2)3;………………………………………………………………….………………4分 (3)1;………………………………………………………………………….………6分 (4)选手乙的速度=20÷2=10(千米/时)…………………..………..……………….7分 由图象可知选手甲在0.5到1.5小时之间是匀速前进, 所以1.5小时时的行程为12千米, (20-12)÷10=0.8(小时)所以甲选手跑完全程共用了1.5+0.8=2.3小时……………………..…………………..9分 27.(1)证明:∵CD ⊥AB ,BE ⊥AC∴∠ADC =∠AEB =90°…………………………………………………….……………..1分 在△ADC 和△AEB 中ADC AEB A AAC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△AEB ……………………………………………………….……………….2分 ∴AD =AE …………………………………………………………………………………..3分 (2)OA ⊥BC …………………………………………………………….………………..4分 理由:在Rt △AOD 和Rt △AOE 中 AD AEAO AO =⎧⎨=⎩ ∴Rt △AOD ≌Rt △AOE ………………………………………………….……………….6分 ∴∠OAD =∠OAE …………………………………………………………………………7分∴OA 平分∠BAC 又∵AB =AC∴OA ⊥BC …………………………………………………………..………….…………8分 (3)∵∠BAC =45°,∠ADC =∠AEB =90° ∴∠ABE =∠ACD =45°∴∠BOD =∠ABE =45°,AD =CD ………………………………………...……………..9分 ∴OD =BD ………………………………………..…………….………………………....10分 ∴Rt △AOD ≌Rt △CBD …………………………………………………….……………11分 ∴BC =OA =4………………………………………..………………………….………….12分。

2011—2012学年度第二学期期末七年级数学检测题

2011—2012学年度第二学期期末七年级数学检测题

图 140°30°DCBA 2011—2012学年度第二学期期末七年级数学检测试题一.选择题(每小题3分,共30分) 1.单项式248b a 的次数是( B ).A .-8 B. 6 C .4 D. 2 2.如图,在⊿ABC 中,AD 平分∠BAC 且与BC 相交于点D ,∠B = 40º, ∠BAD = 30º ,则∠C 的度数是( B )(A ) 70º (B ) 80º (C ) 100º (D ) 110º 3. 等腰三角形的周长为13cm ,其中一边长为3cm ,则该等腰三角形的底边长为( B ) A 、7cm B 、3cm C 、7cm 或3cm D 、5cm 4. 下列四个国产小汽车车标中,是轴对称图形的是( C ).A .B .C .D .5.游园晚会上有一个闯关活动:将18个大小重量完全一样的彩球放入一个袋中,其中6个白球,5个黄球,4个绿球,3个红球,如果任意摸出一个彩球是白球就可以过关,那么一次过关的概率是 ( A ) (A )31 (B ) 185 (C ) 92 (D ) 616.1.449精确到十分位的近似数是( C )(A )1.5 (B1.45 (C )1.4 (D )2.0 7.下列各组长度的三条线段能组成三角形的是( C ) A.1cm ,2cm ,3cm ; B.1cm ,1cm ,2cm ; C.1cm ,2cm ,2cm ;D.1cm ,3cm ,5cm ;8. 在△ABC 中,∠ABC 与∠ACB 的平分线相交于O ,则∠BOC 一定( A ) A.大于90° B.等于90°C.小于90° D.小于或等于90°9. 面积是160平方米的长方形,它的长y 米,宽x 米之间的关系表达式是 ( B )A.y =160xB.y =x160C.y =160+xD.y =160-x 10.如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法正确的个数为( C ) (1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶; (3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A 1个B 2个C 3个D 4个 二.填空题(每小题3分,共18分) 11. 计算:=-423)2(z xy 812416z y x12. 将3大佛门票和4张尧山景区门票分别装入7个完全相同的信封中,小明从中随机抽取一个信 封,信封中恰好装有尧山景区门票的的概率为 4/7 .13. 如图,AC 、BD 相交于点O ,∠A =∠D ,请你再补充一个条件, 使得⊿AOB ≌⊿DOC ,你补充的条件是 AO=DO14.小华从平面镜子里看到镜子对面电子钟示数的图像如图所示(钟面和镜子平行), 这使得时刻应是 10:51 ;15. 均匀地向一个容器注水,最后把容器注满,在注水过程中,水面的高度h 随时间t 的变化规律如图(图中OABC 为一折线),这个容器的形状是______③_________.第16题 ① ② ③16.观察下列运算并填空:1×2×3×4+1=25=52; 2×3×4×5+1=121=112: 3×4×5×6+1=361=192;…… 根据以上结果,猜想:(n+1)(n+2)(n+3)(n+4)+1= [(n+1)(n+4)+1]2三.化简计算(每小题6分,共12分) 17.计算(每小题3分):(1) 1)-1)(m 1)(m (m 2++ (2)[]x x x ÷+-+3)3)(1(.解:(1)1)-1)(m 1)(m (m 2++=14-m …………(3分)解:(2)[]x x x ÷+-+3)3)(1(=x x x x ÷+-+-)333(2=2)2(2-=÷-x x x x (3分)18. 先化简,再求值:xy y x y x x ÷+-)2(3222,其中3,1-==y x . 解:xy y x y x x ÷+-)2(3222=)2(22x xy x +-=xy 2-………………(4分)当3,1-==y x 时,原式=6)3(12=-⨯⨯-……………………(6分)四.探究题(本题满分6分)19.如图,A 、B 两点分别位于一个池塘的两端,小明想用绳子测量A 、B长,你能帮他想个主意测量吗? (1)画出测量图案;(2)写出测量步骤;(3)计算AB 的距离(写出求解或推理过程).解:(1)正确完成测量图的 ………………1分(2)测量方法:在池塘边上找一点C ,连接AC 并处长至D ,使AC=DC , 同样连接BC 并延长至E ,使BC=EC ,则DE=AB ,量出DE 的长度就是 A 、B 间的距离。

七年级第二学期数学试卷1

七年级第二学期数学试卷1

银川市2012—2013学年度第二学期七年级数学期末检测试卷(时间:120分钟 满分120分)题号 一 二 三 四 附加题 总分 得分(答卷不使用计算器,附加题成绩计入总分)一、选择题(每小题3分,共24分) 1.下列计算正确的是( ).A .743)(a a = B.55a a a =÷ C .326a a a ⋅= D .3338)2(n m mn -=-2.下列各组线段能组成三角形的是( ).A .1cm ,2 cm ,4 cmB .8 cm ,6 cm ,4 cmC .12 cm ,5 cm ,6 cmD .3 cm ,3 cm ,6 cm3.一个角的度数是40°,则它的补角的度数是( ). A. 50° B. 100° C .140° D. 320°4. 已知同一平面内的直线321l l l 、、,如果21l l ⊥ 、32l l ⊥,则1l 与3l 的位置关系是( ). A . 垂直 B. 平行 C .相交 D. 以上都不对5. 等腰三角形的一个内角是40°,则另外两个角的度数分别为( ). A.70°、70° B.40°、100° C.40°、40° D.70°、70°或40°、100°6. 在ABC ∆和'''A B C ∆中,已知'B B ∠=∠,''BC B C =,下面判断中错误的是( ). A.若添加条件 ''AB A B =,则ABC ∆≌'''A B C ∆B.若添加条件 ''AC A C =,则ABC ∆≌'''A B C ∆C.若添加条件 'C C ∠=∠,则ABC ∆≌'''A B C ∆D.若添加条件 'A A ∠=∠,则ABC ∆≌'''A B C ∆7.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图刻画( ).ABCD8.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其它完全相同.小明通过多次摸球试验后发现,摸到红色球的频率稳定在15%左右,则口袋中红色球可能有().A.4个 B.6个C.34个 D.36个二、填空题(每小题3分,共24分).9.计算25-=,05= .10. 计算:1010425.0⨯= .11.将0.000000071用科学记数法表示为.12.、、都是轴对称图形.13.袋子中共装有3个白球和2个红球,每个球除颜色外其它都相同,从袋子中任意摸出1个球.则(1)P(摸到红球)= ,(2) P(摸到绿球) = , (3)P(摸到红球或者白球) =.14.如图,点P是BAC∠的角平分线上的一点,若PE AB⊥,PF AC⊥,垂足分别为点E、F,则PE PF=.理由是.15.如图,已知AOB∠=1200,AO OC⊥,BO OD⊥,则COD∠=度.16.如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分BEF∠交CD于点G,若1∠=50︒,则2∠= .14题图 15题图 16题图三、解答题(17、18每题4分,19、20每题5分,21题6分,共24分)17.计算:aaa2)2(232÷⋅18.计算:)32()23(+-xx19.如图,在ABC∆中,已知AB AC=,AD BC⊥于点D.请写出图中的等量关系,并说明等量关系成立的理由.20.化简求值:[222)3()3(yxxyxy--+]xy÷其中414-==yx,.CD21.某娱乐场所组织一个翻奖牌游戏,数字的背面写有祝福语或奖金数.游戏规则是:每次翻动正面一个数字,看看背面对应的内容,就可知道是得奖还是得到温馨祝福.请你回答下列问题: (1)翻到奖金50元的概率是多少?(2)翻到祝福身体健康的概率是多少?(3)翻不到奖金的概率是多少?正面 背面四、解答题(第22题6分、23、24题7分,25题8分,共28分) 22.如图,在ABC ∆和DCB ∆中,AC 与DB 相交于O , 已知AB DC =,A D ∠=∠.试说明:AOB ∆≌DOC ∆.23.利用尺规作图(不写作法,保留作图痕迹). 已知:1∠,2∠和线段a ,求作:ABC ∆,使AB =a ,1CAB ∠=∠,2ABC ∠=∠.24.计算(分别有A 、B 、C 三类题目,可任选一类解答,多做的题目不记分). (A 类5分)计算)52)(25(x y y x --+-;(B 类6分)若18x x +=-,求出221xx +的值;12 a(C 类7分)计算)32)(32()2(42--+--+x x x 的值.25.小明的奶奶每天晚饭后从家中出发去散步,她所出门的时间与离家距离之间的关系如图.(1)下图反映了两个变量之间的关系,哪是自变量,哪是因变量?(2)小明的奶奶每天出门散步多长时间?中途休息了多长时间?(3)小明的奶奶出门散步半个小时时距离家有多远?(4)小明的奶奶由离家最远的地方返回时的平均速度是多少?五、附加题(第26、27小题各10分,共20分).26. 如图,在ABC ∆中,已知AB AC =,A ∠=40°,DE 垂直平分AC 交AB 于E ,求BCE ∠的度数.27.如图,已知AB ∥DE ,AC ∥DF ,BE CF =. 试说明:AB DE =.ABDFCE ABCE D。

2012年七年级(下)期末教学质量监测数学试题(含答案)

2012年七年级(下)期末教学质量监测数学试题(含答案)

2011-2012学年度下学期期终教学质量监测七年级数学试题.1. 下列运算正确的是()A.22aaa=⋅B.33)(abab=C.632)(aa=D.5210aaa=÷2.下列事件属于必然事件的是()A.投出铅球后,经过一段时间铅球会落地B.明天我市最高气温为56℃C.中秋节晚上能看到月亮D.下雨后有彩虹出现3.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.方程组⎩⎨⎧=+=-422yxyx的解是( )A.⎩⎨⎧==21yxB.⎩⎨⎧==13yxC.⎩⎨⎧-==2yxD.⎩⎨⎧==2yx5. 若一个三角形三个内角度数的比为2︰7︰4,那么这个三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形6.如图,已知AB∥CD, 则图中与∠1互补的角有()A.2个B.3 个C.4 个D.5个7. 已知三角形的两边分别为4和9,则此三角形的第三边可能是()A. 4B. 5C.9D.138.下列说法正确的是()A.在一次抽奖活动中,“中奖的概率是1100”表示抽奖100次就一定会中奖B.随机抛一枚硬币,落地后正面一定朝上C.同时掷两枚均匀的骰子,朝上一面的点数和为6D.在一副没有大小王的扑克牌中任意抽一张,抽到的牌是6的概率是1139.在平面直角坐标系中,点A (2,3)与点B 关于x 轴对称,则点B 的坐标为( ). A.(3,2) B.(-2,-3) C.(-2,3) D.(2,-3) 10.)104.0()103.0()10(52⨯⋅⨯-⋅-等于( ) A .8102.1⨯ B .71012.0⨯-C .7102.1⨯D .81012.0⨯-11.一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) A.5个 B.6个 C.7个 D.8个 12.下列说法正确的是( )A.三角形中最小的锐角一定小于600 ;B.直角三角形的高线只有一条;C.在同圆中任意两条直径都相互平分;D. 长度相等的两条弧叫做等弧 13. 如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( ) A .30°B .40°C .60°D .70°14. 下列说法正确的是( )A.一个角的补角一定大于它本身,B. 一个角的余角一定小于它本身C. 一个钝角减去一个锐角的差一定是一个锐角,D.同角的补角相等15.计算()201220110221-(-⨯--)π的结果是( ).A .-2B .-1C . 2D .3二、填空题:将结果直接填写在每题的横线上.16. 一个角的补角比这个角的余角的2倍还大180,则这个角的度数为 .17. 如果从多边形的一个顶点出发可以引5条对角线,那么这个多边形的内角和为 .18. 如图,已知CD 平分∠ACD ,DE ∥AC ,∠1=30°,则∠2= 度.19. 方程4320x y +=的所有非负整数解为: .20. 如果点Q (m +2,m -1)在直角坐标系的x 轴上,则点Q 的坐标为 . 21.如图,用代数式表示阴影部分面积为 .A C BDE三、解答题(本大题共7个小题)22.计算1.3222)()(ab b a2. )21)(43)(32(222z xy z yz x --3. )4.03.0)(2.01.0(n m n m +-4.2)2(b a -23. 从-2,-1,2这三个数中任取两个不同的数作为点的坐标,求该点在第四象限的概率是多少?24.尺规作图(保留作图痕迹,不写作法)已知:线段a 、b (a >b ),求作△ABC ,使AB =AC =a ,BC =2b25. 先化简,再求值.(3a +1)(2a -3)-(6a -5)(a -4),其中a =-2.ab26. 某工程队在“村村通”工程中,用8天的时间修筑了一条爱心路,如图是修筑的公路长度y(米)与时间x(天)之间的关系图象.根据图象提供的信息,求爱心路的长度.27. 小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?28. 把地球的赤道近似地看做一个圆,如果环绕地球赤道有一个同心圆,它的周长比赤道仅多出10米,小博士(身高:157厘米)告诉同学们,她可以绕着赤道转一圈,而头却碰不到外面的圆,你相信吗?试用学过的知识加以说明.(π取3.14)参考答案一、选择题: 每小题3分,满分45分二、填空题:每小题3分,满分18分 16.18° 17.1080° 18. 60° 19.⎩⎨⎧==42y x ,⎩⎨⎧==05y x 20. (3,0)21. 2c bc ac -+三、解答题(本大题共7个小题,满分57分)22.(每小题3分,本题满分12分,缺少必要的步骤酌情减分)1. 87b a 2.43341z y x 3. 2208.002.003.0n mn m -- 4. 2)2(b a -=222244)2(22)2)(2(b ab a b ab ab a b a b a +-=-+--=--23.(本题满分6分)解:从-2,-1,2这三个数中任取两个不同的数作为点的坐标,所有可能的结果数为6,即(-2,-1),(-2,2),(-1,-2),(-1,2),(2,-2),(2,-1)……2分这些点中在第四象限的有两个,即(2,-2),(2,-1),………………………4分所以P (点在第四象限)3162==………………………………………………6分 24(本题满分6分,每做出一条边得2分).略 25.(本题满分6分)原式=205246329622-++--+-a a a a a a =2322-a ………………4分 当2-=a 时,6723)2(222322-=--=-a ………………………………6分 26(本题满分9分)解:设两点(2,180)(4,288)所在直线为b kx y +=,…………1分则可得方程组⎩⎨⎧=+=+28841802b k b k ,…………………………………………4分解这个方程组得⎩⎨⎧==7254b k ,………………………………………………6分所以7254+=x y ,………………………………………………………7分 当8=x 时,50472854=+⨯=y ,……………………………………8分答:这条爱心路长504米……………………………………………………9分. 注;其它做法,只要合理均得分,如以下方法:,54)24()180288(=-÷- 324)28(54=-⨯,504180324=+27(本题满分10分)解:设平路有x 米,坡路有y 米,………………………………………………2分 根据题意得10,608015.6040x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩…………………………………………………………………6分 解这个方程组,得300,400.x y =⎧⎨=⎩所以x +y =700.…………………………9分所以小华家离学校700米.………………………………………………………10分28(本题满分8分) 解:相信.设地球赤道的周长C ,因为赤道与环绕赤道的圆是同心圆, 所以两个圆的半径之差为59.12102210≈=-+πππC C (米), 因为59.1米>57.1米,所以我相信小博士的话. (也可参考教材164页例2解答)。

银川市数学七年级下学期期末数学试题题

银川市数学七年级下学期期末数学试题题

银川市数学七年级下学期期末数学试题题一、选择题1.如图所示图形中,把△ABC平移后能得到△DEF的是()A.B.C.D.2.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A.11 B.12 C.13 D.143.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.184.如图,下列结论中不正确的是()A.若∠1=∠2,则AD∥BC B.若AE∥CD,则∠1+∠3=180°C.若∠2=∠C,则AE∥CD D.若AD∥BC,则∠1=∠B5.如果多项式x2+2x+k是完全平方式,则常数k的值为()A.1 B.-1 C.4 D.-46.下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.2x•2x2=2x3D.(m﹣n)2=m2﹣n27.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B的度数为()A.75°B.72°C.78°D.82°8.将一副三角板如图放置,作CF//AB,则∠EFC的度数是()A .90°B .100°C .105°D .110° 9.若一个多边形的每个内角都等于与它相邻外角的2倍,则它的边数为( ) A .4B .5C .6D .8 10.已知a 、b 、c 是正整数,a >b ,且a 2-ab-ac+bc=11,则a-c 等于( ) A .1- B .1-或11-C .1D .1或11 二、填空题 11.已知:12345633,39,327,381,3243,3729,======……,设A=2(3+1)(32+1)(34+1)(316+1)(332+1)+1,则A 的个位数字是__________.12.若(3x+2y )2=(3x ﹣2y )2+A ,则代数式A 为______.13.如图,∠1、∠2是△ABC 的外角,已知∠1+∠2=260°,求∠A 的度数是______.14.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且△ABC 的面积等于4cm 2,则阴影部分图形面积等于_____cm 215.一个n 边形的内角和是它外角和的6倍,则n =_______.16.已知2x +3y -5=0,则9x •27y 的值为______.17.把一根 9m 长的钢管截成 1m 长和 2m 长两种规格均有的短钢管,且没有余料,设某种截法中 1m 长的钢管有 a 根,则 a 的值可能有_____种.18.一个两位数的十位上的数是个位上的数的2倍,若把两个数字对调,则新得到的两位数比原两位数小36,则原两位数是_______.19.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→1,2→()2,2…根据这个规律,则第2020个点的坐标为_________.20.已知x 2a +y b ﹣1=3是关于x 、y 的二元一次方程,则ab =_____.三、解答题21.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示.现将△ABC 平移,使点C 变换为点D ,点A 、B 的对应点分别是点E 、F . (1)在图中请画出△ABC 平移后得到的△EFD ;(2)在图中画出△ABC 的AB 边上的高CH ;(3)△ABC 的面积为_______.22.先化简,再求值:()()()()2212112,x x x x x --+---其中2230x x --=.23.(类比学习)小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x 2+3x +2进行因式分解的方法: 15162401 6 8080 0 2221322222 0x x x x x x x x +++++++ 即(x 2+3x +2)÷(x +1)=x +2,所以x 2+3x +2=(x +1)(x +2).(初步应用)小明看到了这样一道被墨水污染的因式分解题:x 2+□x +6=(x +2)(x +☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:22262 (2)62 0x x x x x x x x +++++-++☆☆☆ 得出□=___________,☆=_________.(深入研究)小明用这种方法对多项式x 2+2x 2-x -2进行因式分解,进行到了:x 3+2x 2-x -2=(x +2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x 3+2x 2-x -2因式分解.24.如图1,在△ABC 的AB 边的异侧作△ABD ,并使∠C =∠D ,点E 在射线CA 上. (1)如图,若AC ∥BD ,求证:AD ∥BC ;(2)若BD ⊥BC ,试解决下面两个问题:①如图2,∠DAE =20°,求∠C 的度数;②如图3,若∠BAC =∠BAD ,过点B 作BF ∥AD 交射线CA 于点F ,当∠EFB =7∠DBF 时,求∠BAD 的度数.25.已知m 2,3na a ==,求①m n a +的值; ②3m-2n a 的值26.解下列方程组或不等式组 (1)24231x y x y +=⎧⎨-=⎩ (2)()211113x x x x ⎧--≤⎪⎨+>-⎪⎩27.A 市准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的提示牌和垃圾箱,若购买2个提示牌和3个垃圾箱共需550元,且垃圾箱的单价是提示牌单价的3倍.(1)求提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案.28.己知关于x 、y 的二元一次方程组221x y k x y +=⎧⎨+=-⎩的解互为相反数,求k 的值。

银川市人教版七年级下学期期末数学试题题

银川市人教版七年级下学期期末数学试题题

银川市人教版七年级下学期期末数学试题题一、选择题1.分别表示出下图阴影部分的面积,可以验证公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 22.若8x a =,4y a =,则2x y a +的值为( ) A .12B .20C .32D .256 3.如图,∠1=50°,如果AB ∥DE ,那么∠D=( )A .40°B .50°C .130°D .140° 4.下列式子是完全平方式的是( ) A .a 2+2ab ﹣b 2B .a 2+2a +1C .a 2+ab +b 2D .a 2+2a ﹣1 5.下列计算中,正确的是( )A .(a 2)3=a 5B .a 8÷ a 2=a 4C .(2a )3=6a 3D .a 2+ a 2=2 a 2 6.若关于x 的不等式组2034x x a x-<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( ) A .1 B .3 C .4 D .67.下面图案中可以看作由图案自身的一部分经过平移后而得到的是( )A .B .C .D .8.下列运算正确的是( )A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=1 9.下列运算正确的是( ) A .236x x x ⋅=B .224(2)4x x -=-C .326()x x =D .55x x x ÷= 10.一个三角形的两边长分别是2和4,则第三边的长可能是( )A .1B .2C .4D .7 二、填空题11.若a m =5,a n =3,则a m +n =_____________.12.不等式1x 2x 123>+-的非负整数解是______. 13.等式01a =成立的条件是________.14.已知方程组,则x+y=_____. 15.如图,把△ABC 沿线段DE 折叠,使点A 落在点F 处,BC ∥DE ,若∠B =50°,则∠BDF=_______°.16.a m =2,b m =3,则(ab )m =______.17.若(x 2+x-1)(px+2)的乘积中,不含x 2项,则p 的值是 ________.18.已知关于x 的不等式3()50a b x a b -+->的解集是1x <,则关于x 的不等式4ax b >的解集为_______.19.若a m =2,a n =3,则a m +n 的值是_____.20.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.三、解答题21.第19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入W 元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品. (1)若24W =万元,求领带及丝巾的制作成本是多少?(2)若用W 元钱全部用于制作领带,总共可以制作几条?(3)若用W 元钱恰好能制作300份其他的礼品,可以选择a 条领带和b 条丝巾作为一份礼品(两种都要有),请求出所有可能的a 、b 的值.22.因式分解:(1)x 4﹣16;(2)2ax 2﹣4axy +2ay 2. 23.如图,在方格纸内将△ABC 经过一次平移得到A B C ''',图中标出了点B 的对应点B '.(1)在给定的方格纸中画出平移后的A B C ''';(2)画出BC 边上的高AE ;(3)如果P 点在格点上,且满足S △PAB =S △ABC (点P 与点C 不重合),满足这样条件的P 点有 个.24.已知a6=2b=84,且a<0,求|a﹣b|的值.25.如图1,在△ABC的AB边的异侧作△ABD,并使∠C=∠D,点E在射线CA上.(1)如图,若AC∥BD,求证:AD∥BC;(2)若BD⊥BC,试解决下面两个问题:①如图2,∠DAE=20°,求∠C的度数;②如图3,若∠BAC=∠BAD,过点B作BF∥AD交射线CA于点F,当∠EFB=7∠DBF时,求∠BAD的度数.26.水果商贩老徐上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元.老徐购得草莓和苹果共60箱,刚好花费3100元.(1)问草莓、苹果各购买了多少箱?(2)老徐有甲、乙两家店铺,每出售一箱草莓或苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓a箱,苹果b箱,其余均分配给乙店,由于他口碑良好,两家店都很快卖完了这批水果.①若老徐在甲店获利600元,则他在乙店获利多少元?②若老徐希望获得总利润为1000元,则a b+=?27.解下列二元一次方程组:(1)70231x yx y+=⎧⎨-=-⎩①②;(2)239 345x yx y-=⎧⎨+=⎩①②.28.因式分解:(1)16x2-9y2(2)(x2+y2)2-4x2y2【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】直接利用图形面积求法得出等式,进而得出答案.【详解】 梯形面积等于:()()()()122a b a b a b a b ⨯⨯+⨯-=+-, 正方形中阴影部分面积为:a 2-b 2,故a 2-b 2=(a +b )(a -b ).故选:C .【点睛】此题主要考查了平方差公式的几何背景,正确表示出图形面积是解题关键.2.D解析:D【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解.【详解】解:∵()222=84256x y xy a a a +⋅=⋅=.故选D .【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键. 3.C解析:C【解析】试题分析:∵∠1与∠2为对顶角,∴∠1=∠2=50°,∵AB ∥DE ,∴∠2+∠D=180°,则∠D=130°,故选C .考点:平行线的性质.4.B解析:B【分析】利用完全平方公式的结构特征判断即可.【详解】解:下列式子是完全平方式的是a 2+2a+1=(a+1)2,故选B .【点睛】此题考查了完全平方式:(a+b)²=a²+2ab+b²,熟练掌握完全平方公式是解本题的关键.5.D解析:D【分析】直接利用同底数幂的乘除运算法则,积的乘方运算法则以及合并同类项法则分别计算得出答案.【详解】解:A 、(a 2)3=a 6,故此选项错误;B 、a 8÷ a 2=a 6,故此选项错误;C 、(2a )3=8a 3,,故此选项错误;D 、a 2+ a 2=2 a 2,故此选项正确.故选:D【点睛】此题主要考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握运算法则是解题关键.6.C解析:C【分析】先解不等式组,根据只有2个整数解得到a 的范围,再解方程,得到a 的范围,再根据a 是整数,综合得出a 的值之和.【详解】解:解不等式2034x x a x -<⎧⎨+>-⎩得: 44a -<x <2, ∵不等式组恰好只有2个整数解,∴-1≤44a -<0, ∴0≤a <4; 解方程21236x a a x +++=+得:x=52a -, ∵方程的解为非负整数, ∴52a -≥0, ∴a ≤5,又∵0≤a <4,∴a=1, 3,∴1+3=4, ∴所有满足条件的整数a 的值之和为4.故选:C .【点睛】本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.7.C解析:C【解析】【分析】根据平移不改变图形的形状和大小,结合图案,对选项一一分析,排除错误答案.【详解】解:A 、图案自身的一部分围绕中心经旋转而得到,故错误;B 、图案自身的一部分沿对称轴折叠而得到,故错误;C 、图案自身的一部分沿着直线运动而得到,是平移,故正确;D 、图案自身的一部分经旋转而得到,故错误.故选C .【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.8.D解析:D【分析】通过幂的运算公式进行计算即可得到结果.【详解】A .23235a a a a +==,故A 错误;B .538a a a +≠,故B 错误; C .()23326a a a ⨯==,故C 错误; D .5501a a a ÷==,故D 正确;故选:D .本题主要考查了整式乘除中的幂的运算性质,准确运用公式是解题的关键.9.C解析:C【解析】解:A.x2⋅x3=x5,故A错误;B.(-2x2)2 =4 x4,故B错误;C.( x3 )2=x6,正确;D.x5÷x =x4,故D错误.故选C.10.C解析:C【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的取值范围,即可求解..【详解】设第三边为x,由三角形三条边的关系得4-2<x<4+2,∴2<x<6,∴第三边的长可能是4.故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.二、填空题11.15【分析】根据幂的运算公式即可求解.【详解】∵am=5,an=3,∴am+n= am×an=5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运解析:15【分析】根据幂的运算公式即可求解.∵a m=5,a n=3,∴a m+n= a m×a n=5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运算.12.0,1,2,3,4【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:去分母得3(1+x)>2(2x-1)去括号得3+3x>4x解析:0,1,2,3,4【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:去分母得3(1+x)>2(2x-1)去括号得3+3x>4x-2移项合并同类项得x<5非负整数解是0,1,2,3,4.【点睛】本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.13..【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:.故答案为:.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.a≠.解析:0【分析】根据零指数幂有意义的条件作答即可.【详解】a≠.由题意得:0a≠.故答案为:0【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.14.2【解析】由题意得,两个方程左右相加可得,4x+4y=8⇒x+y=2,故答案为2. 解析:2【解析】由题意得,两个方程左右相加可得,,故答案为2. 15.80°【解析】∵BC∥DE,∴∠ADE=∠B=50°,∵∠EDF=∠ADE=50°,∴∠BDF=180°-50°-50°=80°.故答案为80°.解析:80°【解析】∵BC∥DE,∴∠ADE=∠B=50°,∵∠EDF=∠ADE=50°,∴∠BDF=180°-50°-50°=80°.故答案为80°.16.6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为am=2,bm=3,所以(ab)m=am•bm=2×3=6,故答案为:6.【点睛】此题考查积解析:6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为a m=2,b m=3,所以(ab)m=a m•b m=2×3=6,故答案为:6.【点睛】此题考查积的乘方,关键是根据积的乘方运算法则将未知转化为已知.17.【分析】先按照多项式乘以多项式,再把同类项合并,利用不含项即这一项的系数为,即可得到答案.【详解】解:而上式不含项,,故答案为:【点睛】本题考查的是多项式的乘法运算,同时解析:2.-【分析】先按照多项式乘以多项式,再把同类项合并,利用不含2x 项即这一项的系数为0,即可得到答案.【详解】解:()()232212222x x px px x px x px +-+=+++--()()32222px p x p x =+++--而上式不含2x 项,20p ∴+=,2,p ∴=-故答案为: 2.-【点睛】本题考查的是多项式的乘法运算,同时考查多项式的概念中的项的次数,及不含某项的条件,掌握以上知识是解题的关键.18.【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵的解集是,∴=1,a -b<0,∴a=2b,b<0.则不等式可以化为2bx>4b.∵b<解析:2x <【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵3()50a b x a b -+->的解集是1x <,∴()53a b a b --=1,a-b<0, ∴a=2b,b<0.则不等式4ax b >可以化为2bx>4b.∵b<0.∴x<2.即关于x 的不等式4ax b >的解集为x<2.【点睛】本题考查了不等式的解法,正确确定b 的符号是关键.19.6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:am+n =am•an=2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,解析:6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:a m +n =a m •a n =2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,掌握a m +n =a m •a n 是解题的关键;20.7【分析】设甲队胜了x 场,则平了(10-x )场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x 的最小整数解.【详解】设甲队胜了x 场,则平了(10-x解析:7【分析】设甲队胜了x 场,则平了(10-x )场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x 的最小整数解.【详解】设甲队胜了x 场,则平了(10-x )场,由题意得,3x+(10-x )≥24,解得:x≥7,即甲队至少胜了7场.故答案是:7.【点睛】考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出不等关系,列出不等式求解.三、解答题21.(1)领带的制作成本是120元,丝巾的制作成本是160元;(2)可以制作2000条领带;(3)42a b =⎧⎨=⎩【分析】(1)设领带及丝巾的制作成本是x 元和y 元,根据题意列出方程组求解即可; (2)由600(2)W x y =+与400(3)W x y =+可得到43y x =,代入可得2000W x =,即可求得答案;(3)根据44600(2)300()33x x ax bx +=+即可表达出a 、b 的关系式即可解答. 【详解】解:(1)设领带及丝巾的制作成本是x 元和y 元, 则600(2)240000400(3)240000x y x y +=⎧⎨+=⎩解得:120160x y =⎧⎨=⎩答:领带的制作成本是120元,丝巾的制作成本是160元.(2)由题意可得:600(2)W x y =+,且400(3)W x y =+,∴600(2)400(3)x y x y +=+, 整理得:43y x =,代入 600(2)W x y =+可得:4600(2)20003W x x x =+=, ∴可以制作2000条领带.(3)由(2)可得:43y x =, ∴44600(2)300()33x x ax bx +=+ 整理可得:3420a b +=∵a 、b 都为正整数, ∴42a b =⎧⎨=⎩【点睛】本题考查了二元一次方程组的综合应用,解题的关键是根据题意列出方程,并对已知条件进行适当的变形.22.(1)2(4)(2)(2)x x x ++- (2)22()a x y -【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【详解】解:(1)原式=(x 2+4)(x 2﹣4)=(x 2+4)(x +2)(x ﹣2);(2)原式=2a (x 2﹣2xy +y 2)=2a (x ﹣y )2.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23.(1)见解析;(2)见解析;(3)8【分析】(1)由点B 及其对应点B′的位置得出平移的方向和距离,据此作出点A 、C 平移后的对应点,再首尾顺次连接即可得;(2)根据三角形高线的概念作图即可;(3)由S △PAB =S △ABC 知两个三角形共底、等高,据此可知点P 在如图所示的直线m 、n 上,再结合图形可得答案.【详解】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,垂线段AE即为所求;(3)如图所示,满足这样条件的点P有8个,故答案为:8.【点睛】本题主要考查作图-平移变换,解题的关键是掌握平移变换的定义和性质,据此得出变换后的对应点及三角形高线的概念、共底等高的三角形面积问题.24.16【分析】根据幂的乘方运算法则确定a、b的值,再根据绝对值的定义计算即可.【详解】解:∵(±4)6=2b=84=212,a<0,∴a=﹣4,b=12,∴|a﹣b|=|﹣4﹣12|=16.【点睛】本题考查幂的乘方,难度不大,也是中考的常考知识点,熟练掌握幂的乘方运算法则是解题的关键.25.(1)见解析;(2)35°;(3)117°【分析】(1)由AC∥BD得∠D=∠DAE,角的等量关系证明∠DAE与∠C相等,根据同位角得AD∥BC;(2)由BD⊥BC得∠HBC=90°,余角的性质和三角形外角性质解得∠C的度数为35°;(3)由BF∥AD得∠D=∠DBF,垂直的定义得∠DBC=90°,三角形的内角和定理,角的和差求得∠DBA=∠CBA=45°,由已知条件∠EFB=7∠DBF,角的和差得出∠BAD的度数为117°.【详解】解:(1)如图1所示:∵AC∥BD,∴∠D=∠DAE,又∵∠C=∠D,∴∠DAE=∠C,∴AD∥BC;(2)①如图2所示:∵BD⊥BC,∴∠HBC=90°,∴∠C+∠BHC=90°,又∵∠BHC=∠DAE+∠D,∠C=∠D,∠DAE=20°,∴20°+2∠C=90°,∴∠C=35°;②如图3所示:∵BF∥AD,∴∠D=∠DBF,又∵∠C=∠D,∴∠C=∠D=∠DBF,又∵BD⊥BC,∴∠DBC=90°,又∵∠D+∠DBA+∠BAD=180°,∠C+∠CBA+∠BAC =180°.∠BAC =∠BAD ,∴∠DBA =∠CBA =45°,又∵∠EFB =7∠DBF ,∠EFB =∠FBC+∠C ,∴7∠DBF =2∠DBF+∠DBC ,解得:∠DBF =18°,∴∠BAD =180°﹣45°﹣18°=117°.【点睛】本题考查了平行线的判定与性质,余角的性质,三角形的内角和性质,三角形的外角性质,角的和差等相关知识点,掌握平行线的判定与性质,三角形内角和和外角的性质是解题的关键.26.(1)草莓35箱,苹果25箱;(2)①340元,②53或52【分析】(1)抓住题中关键的已知条件,老徐购得草莓和苹果共60箱,刚好花费3100元,设未知数列方程组,求解方程即可;(2)①由题意列二元一次方程,可得到34120a b +=,列式求出他在乙店获利;②根据老徐希望获得总利润为1000元,建立关于a 、b 的二元一次方程,整理可得18034a b -=,再根据a 、b 的取值范围及a 一定是4的整数倍,即可求出结果; 【详解】 (1)解:设草莓购买了x 箱,苹果购买了y 箱,根据题意得:6060403100x y x y ⎧+=⎨+=⎩, 解得3525x y ⎧=⎨=⎩.答:草莓购买了35箱,苹果购买了25箱;(2)解:①若老徐在甲店获利600元,则1520600ab +=, 整理得:34120a b +=,他在乙店的获利为:()()12351625a b -+-, =()820434a b -+,=820-4120⨯,=340元;②根据题意得:()()1520123516251000a b a b ++-+-=, 整理得:34180ab +=, 得到18034ab -=,∵a、b 均为正整数,∴a 一定是4的倍数,∴a 可能是0,4,8…,∵035a ≤≤,025b ≤≤, ∴当且仅当a=32,b=21或a=25,b=24时34180a b +=成立, ∴322153a b +=+=或28+24=52.故答案为340元;53或52.【点睛】本题主要考查了二元一次方程组的应用,根据题意列式是解题的关键.27.(1)43x y =⎧⎨=⎩;(2)31x y =⎧⎨=-⎩【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1)由①得:x =7﹣y ③,把③代入②得:2(7﹣y )﹣3y =﹣1,解得:y =3,把y =3代入③得:x =4, 所以这个二元一次方程组的解为:43x y =⎧⎨=⎩; (2)①×4+②×3得:17x =51,解得:x =3,把x =3代入①得:y =﹣1,所以这个方程组的解为31x y =⎧⎨=-⎩. 【点睛】本题主要考查了方程组的解法,准确运用代入消元法和加减消元法解题是解题的关键.28.(1)(43)(4-3)x y x y +;(2)22()(-y)x y x +.【分析】(1)直接利用平方差公式22()()a b a b a b +-=-分解即可;(2)先利用平方差公式,再利用完全平方公式222()2a b a ab b ±=±+即可.【详解】(1)原式2243))((x y =-(43)(43)x y x y =+-;(2)原式2222)()(2x y xy =-+2222(2)(2)x y x y xy y x ++=+-22=+-.x y x y()()【点睛】本题考查了利用平方差公式和完全平方公式进行因式分解,熟记公式是解题关键.。

宁夏银川市七年级下学期数学期末考试试卷

宁夏银川市七年级下学期数学期末考试试卷

宁夏银川市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共30分)1. (3分)下列各数中比0小的数是()A .B .C .D .2. (3分)无论x取什么值,下列不等式都成立的是()A . x2>0B . x2>xC . x2+1>0D . 2x>x3. (3分)下列说法错误的是()A . 2x<﹣8的解集是x<﹣4B . x<5的正整数解有无穷个C . ﹣15是2x<﹣8的解D . x>﹣3的非负整数解有无穷个4. (3分)计算3n· ()=-9n+1,则括号内应填入的式子为()A . 3n+1B . 3n+2C . -3n+2D . -3n+15. (3分) (2019七下·姜堰期中) 下列各式从左到右的变形,是因式分解的是()A . xB .C .D .6. (3分)若分式的值为零,则x的取值为()A . 0B . -3C . 3D . 3或-37. (3分)化简,其结果是()A . -B . 2C . -2D .8. (3分)如图,以下说法错误的是()A . ∠1,∠2是内错角B . ∠2,∠3是同位角C . ∠1,∠3是内错角D . ∠2,∠4是同旁内角9. (3分)如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A . 70B . 65C . 60D . 5510. (3分)在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为()A . (a-b)2=a2-2ab+b2B . (a+b)2=a2+2ab+b2C . a2-b2=(a+b)(a-b)D . a2+ab=a(a+b)二、填空题 (共5题;共20分)11. (4分)(2017·郴州) 把多项式3x2﹣12因式分解的结果是________.12. (4分)已知x1= + ,x2= ﹣,则x12+x22=________.13. (4分) (2019七下·涡阳期末) 已知分式方程 =1的解为非负数,则a的取值范围是________.14. (4分) (2011七下·广东竞赛) 在平面直角坐标系中,将线段AB平移到A′B′,若点A、B、A′的坐标分别是(-2,0),(0,3),(2,1),则点B′的坐标是________15. (4分)如图,四边形ABCD是矩形纸片,AB=2.对折矩形纸片ABCD,使AD与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN 交BC于点G.有如下结论:①∠ABN=60°;②AM=1;③QN=;④△BMG是等边三角形;⑤P为线段BM上一动点,H是BN的中点,则PN+PH 的最小值是.其中正确结论的序号是________ .三、解答题 (共6题;共40分)16. (8分) (2019七下·涡阳期末) 计算:(1)(-1)2+ -5-(2004-π)0(2) [(2x+y)2-y(y+4x)-8x]÷2x.17. (10分) (2019七下·涡阳期末) 解方程:1+ = .18. (2分) (2017八上·湖州期中) 解不等式组:,并写出它的所有非负整数解.19. (8分) (2019七下·临洮期中) 已知:如图,∠ADE=∠B,∠DEC=115°.求∠C的度数.20. (10分) (2019七下·涡阳期末) 列方程解应用题:甲乙两站相距1200千米,货车与客车同时从甲站出发开往乙站,已知客车的速度是货车速度的2.5倍,结果客车比货车早6小时到达乙站,求客车与货车的速度分别是多少?21. (2分)如图,根据要求填空.(1)过A作AE∥BC,交________于点E;(2)过B作BF∥AD,交________于点F;(3)过C作CG∥AD,交________;(4)过D作DH∥BC,交BA的________于点H.四、计算题 (共1题;共12分)22. (12分) (2019七下·涡阳期末) 先化简代数式( + )÷ ,然后在2,-2,0中取一个合适的a值代入求值.参考答案一、选择题 (共10题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共20分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共6题;共40分)16-1、16-2、17-1、18-1、19-1、20-1、21-1、21-2、21-3、21-4、四、计算题 (共1题;共12分)22-1、。

银川市七年级下册数学期末试题及答案解答

银川市七年级下册数学期末试题及答案解答

银川市七年级下册数学期末试题及答案解答一、选择题1.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( )A .三角形B .四边形C .六边形D .八边形 2.把一块直尺与一块含30°的直角三角板如图放置,若∠1=34°,则∠2的度数为( )A .114°B .126°C .116°D .124°3.下列图形可由平移得到的是( )A .B .C .D .4.下列等式从左到右的变形,属于因式分解的是( )A .8x 2 y 3=2x 2⋅4 y 3B .( x +1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x +16=( x ﹣4)25.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150° 6.下列各式中,计算结果为x 2﹣1的是( )A .()21x -B .()(1)1x x -+-C .()(1)1x x +-D .()()12x x -+ 7.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150° 8.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .256 9.计算a •a 2的结果是( )A .aB .a 2C .a 3D .a 410.下列各式从左到右的变形中,是因式分解的为( )A .ab +ac +d =a (b +c )+dB .(x +2)(x ﹣2)=x 2﹣4C .6ab =2a ⋅3bD .x 2﹣8x +16=(x ﹣4)2二、填空题11.已知关于x 的不等式3x - m+1>0的最小整数解为2,则实数m 的取值范围是___________.12.已知:实数m,n 满足:m+n=3,mn=2.则(1+m)(1+n)的值等于____________.13.已知m a =2,n a =3,则2m n a -=_______________.14.因式分解:224x x -=_________.15.如果a 2﹣b 2=﹣1,a+b=12,则a ﹣b=_______. 16.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.17.已知点m (3a -9,1-a ),将m 点向左平移3个单位长度后落在y 轴上,则a= __________ .18.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.19.比较大小:π0_____2﹣1.(填“>”“<”或“=”)20.若长方形的长为a +3b ,宽为a +b ,则这个长方形的面积为_____. 三、解答题21.已知a+b=2,ab=-1,求下面代数式的值:(1)a 2+b 2;(2)(a-b )2.22.对于多项式x 3﹣5x 2+x +10,我们把x =2代入此多项式,发现x =2能使多项式x 3﹣5x 2+x +10的值为0,由此可以断定多项式x 3﹣5x 2+x +10中有因式(x ﹣2),(注:把x =a 代入多项式,能使多项式的值为0,则多项式一定含有因式(x ﹣a )),于是我们可以把多项式写成:x 3﹣5x 2+x +10=(x ﹣2)(x 2+mx +n ),分别求出m 、n 后再代入x 3﹣5x 2+x +10=(x ﹣2)(x 2+mx +n ),就可以把多项式x 3﹣5x 2+x +10因式分解.(1)求式子中m 、n 的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x 3+5x 2+8x +4.23.如图,大圆的半径为r ,直径AB 上方两个半圆的直径均为r ,下方两个半圆的直径分别为a ,b .(1)求直径AB 上方阴影部分的面积S 1;(2)用含a ,b 的代数式表示直径AB 下方阴影部分的面积S 2= ;(3)设a =r +c ,b =r ﹣c (c >0),那么( )(A )S 2=S 1;(B )S 2>S 1;(C )S 2<S 1;(D )S 2与S 1的大小关系不确定;(4)请对你在第(3)小题中所作的判断说明理由.24.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?25.计算:(1)022019()32020-- (2)4655x x x x ⋅+⋅26.如图,已知AB ∥CD , 12∠=∠,BE 与CF 平行吗?27.如果a c = b ,那么我们规定(a ,b )=c ,例如:因为23= 8 ,所以(2,8)=3. (1)根据上述规定,填空:(3,27)= ,(4,1)= ,(2,14)= ; (2)若记(3,5)=a ,(3,6)=b ,(3,30)=c ,求证: a + b = c .28.在南通市中小学标准化建设工程中,某校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元;(2)根据学校实际,需购进电脑和电子白板共31台,若总费用不超过30万元,则至多购买电子白板多少台?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】一个外角与一个内角的比为1 : 3,则内角和是外角和的3倍,根据多边形的外角和是360°,即可求得多边形的内角的度数,依据多边形的内角和公式即可求解.【详解】解:多边形的内角和是:360°×3=1080°.设多边形的边数是n,则(n-2)•180=1080,解得:n=8.即这个多边形是正八边形.故选D.【点睛】本题考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.2.D解析:D【分析】利用平行线的性质求出∠3即可解决问题.【详解】如图,∵a∥b,∴∠2=∠3,∵∠3=∠1+90°,∠1=34°,∴∠3=124°,∴∠2=∠3=124°,故选:D.【点睛】此题考查平行线的性质,三角形的外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.3.A解析:A【详解】解:观察可知A选项中的图形可以通过平移得到,B、C选项中的图形需要通过旋转得到,D选项中的图形可以通过翻折得到,故选:A4.D解析:D【解析】【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D正确;故选D.【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.5.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.6.C解析:C【分析】运用多项式乘法法则对各个算式进行计算,再确定答案.【详解】解:A.原式=x2﹣2x+1,B.原式=﹣(x﹣1)2=﹣x2+2x﹣1;C.(x+1)(x﹣1)=x2﹣1;D.原式=x2+2x﹣x﹣2=x2+x﹣2;∴计算结果为x2﹣1的是C.故选:C .【点睛】此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.7.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.8.D解析:D【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解.【详解】解:∵()222=84256x y xy a a a +⋅=⋅=.故选D .【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键. 9.C解析:C【分析】根据同底数幂的乘法法则计算即可.【详解】解:a •a 2=a 1+2=a 3.故选:C .【点睛】本题考查了幂的运算性质,准确应用同底数幂的乘法是解题的关键.10.D解析:D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C 、等式左边是单项式,不是因式分解,故本选项错误;D 、符合因式分解的定义,故本选项正确.故选D .【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.二、填空题11.【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m -1,∴x>,∵不等式3x - m+1>解析:4<7m ≤【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m -1,∴x>-13m , ∵不等式3x - m+1>0的最小整数解为2, ∴1≤-13m <3, 解之得4<7m ≤.故答案为:4<7m ≤.【点睛】本题考查了一元一次不等式的解法,根据最小整数解为2列出关于m 的不等式是解答本题的关键.12.6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m+n=3,mn=2,∴(1+m)(1+n)=1+n+m+mn=1+3+2=6.故答案为:6.【点睛】本题考查了多解析:6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m+n=3,mn=2,∴(1+m)(1+n)=1+n+m+mn=1+3+2=6.故答案为:6.【点睛】本题考查了多项式乘以多项式,掌握多项式乘以多项式的法则是解答本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.13.【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:am-2n=am÷a2n=am÷(an)2=2÷9=故答案为【点睛】本题考查了同底数幂的除法和幂的解析:2 9【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:a m-2n=a m÷a2n=a m÷(a n)2 =2÷9=2 9故答案为2 9【点睛】本题考查了同底数幂的除法和幂的乘方与积的乘方,解答本题的关键在于熟练掌握各知识点的运算法则.14.【分析】直接提取公因式即可.【详解】.故答案为:.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.解析:2(2)x x-【分析】直接提取公因式即可.【详解】2242(2)x x x x-=-.故答案为:2(2)x x-.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.15.-2【分析】根据平方差公式进行解题即可【详解】∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=,∴a-b=-1÷=-2,故答案为-2.解析:-2【分析】根据平方差公式进行解题即可【详解】∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=12,∴a-b=-1÷12=-2, 故答案为-2.16.5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:,由图乙得:,化简得,∴,∵a+b>0,∴a+b解析:5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:2()1a b -=,由图乙得:22()()12+--=a b a b ,化简得6ab =,∴22()()412425+=-+=+=a b a b ab ,∵a +b >0,∴a +b =5,故答案为:5.【点睛】本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型. 17.4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y 轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与解析:4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y 轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了y 轴上的点的坐标特征.18.;【详解】解:由题意可知,∠B=60°,∠C=70°,所以°,所以°,在三角形BAE 中,°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.解析:5︒;【详解】解:由题意可知,∠B=60°,∠C=70°,所以18013050A ∠=-=°,所以25BAD ∠=°,在三角形BAE 中,906030BAE ∠=-=°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.19.>【分析】先求出π0=1,2-1=,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=,1>,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较解析:>【分析】先求出π0=1,2-1=12,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=12,1>12,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较.理解任意非零数的零次方等于1和熟记负指数幂的计算公式是解题关键.20.a2+4ab+3b2【分析】根据长方形面积公式可得长方形的面积为(a+3b)(a+b),计算即可.【详解】解:由题意得,长方形的面积:(a+3b)(a+b)=a2+4ab+3b2.故答案为解析:a2+4ab+3b2【分析】根据长方形面积公式可得长方形的面积为(a+3b)(a+b),计算即可.【详解】解:由题意得,长方形的面积:(a+3b)(a+b)=a2+4ab+3b2.故答案为:a2+4ab+3b2.【点睛】本题考查长方形的面积公式和多项式乘法,熟练掌握多项式乘法计算法则是解题的关键.三、解答题21.(1)6;(2)8.【分析】(1)先将原式转化为(a+b)2-2ab,再将已知代入计算可得;(2)先将原式转化为(a+b)2-4ab,再将已知代入计算计算可得.【详解】解:(1)当a+b=2,ab=-1时,原式=(a+b)2-2ab=22-2×(-1)=4+2=6;(2)当a+b=2,ab=-1时,原式=(a+b )2-4ab=22-4×(-1)=4+4=8.【点睛】本题主要考查完全平方公式的变形求值问题,解题的关键是熟练掌握完全平方公式及其灵活变形.22.(1)m =﹣3,n =﹣5;(2)x 3+5x 2+8x +4=(x +1)(x +2)2.【解析】【分析】(1)根据x 3﹣5x 2+x+10=(x ﹣2)(x 2+mx+n ),得出有关m ,n 的方程组求出即可; (2)由把x =﹣1代入x 3+5x 2+8x+4,得其值为0,则多项式可分解为(x+1)(x 2+ax+b )的形式,进而将多项式分解得出答案.【详解】(1)在等式x 3﹣5x 2+x+10=(x ﹣2)(x 2+mx+n ),中,分别令x =0,x =1,即可求出:m =﹣3,n =﹣5(2)把x =﹣1代入x 3+5x 2+8x+4,得其值为0,则多项式可分解为(x+1)(x 2+ax+b )的形式,用上述方法可求得:a =4,b =4,所以x 3+5x 2+8x+4=(x+1)(x 2+4x+4),=(x+1)(x+2)2.【点睛】本题主要考查了因式分解的应用,根据已知获取正确的信息,是近几年中考中热点题型同学们应熟练掌握获取正确信息的方法.23.(1)214r π ;(2)14ab π ;(3)C ;(4)理由见解析【分析】(1)用半径为r 的半圆的面积减去直径为r 的圆的面积即可;(2)用直径为(a +b )的半圆的面积减去直径为a 的半圆的面积,再减去直径为b 的半圆的面积即可;(3)(4)将a =r +c ,b =r ﹣c ,代入S 2,然后与S 1比较即可.【详解】解:(1)S 1=222111244r r r πππ-=; (2)S 2=22211111()222424a b a b πππ+•-•-•,=18π(a +b )2﹣18πa 2﹣218b π =14ab π, 故答案为:14ab π;(3)选:C ;(4)将a =r +c ,b =r ﹣c ,代入S 2,得: S 2=14π(r +c )(r ﹣c )=14π(r 2﹣c 2), ∵c >0,∴r 2>r 2﹣c 2,即S 1>S 2.故选C .【点睛】 此题考查了列代数式表示图形的面积,解题的关键是:结合图形分清各个半圆的半径及熟记圆的面积公式.24.2辆大货车与1辆小货车可以一次运货11吨【分析】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨,根据“3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,将其代入(2)x y +中即可求出结论.【详解】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨由题意得:32175429x y x y +=⎧⎨+=⎩ 解得:51x y =⎧⎨=⎩ 则225111x y +=⨯+=答:2辆大货车与1辆小货车可以一次运货11吨.【点睛】本题考查了二元一次方程组的实际应用,理解题意,正确列出方程组是解题关键.25.(1)89;(2)102x ; 【分析】 (1)根据零指数幂和负整数指数幂的运算法则即可计算;(2)根据同底数幂的乘法法则和合并同类项即可计算.【详解】(1)原式=1-19=89; (2)原式=x 10+x 10=2x 10.【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,解答本题的关键是明确各法则的计算方法.26.见解析.【分析】先根据平行线的性质得出ABC BCD ∠=∠,再根据角的和差得出EBC BCF ∠=∠,然后根据平行线的判定即可得.【详解】//BE CF ,理由如下:∵//AB CD∴ABC BCD ∠=∠(两直线平行,内错角相等)∵12∠=∠∴12ABC BCD ∠-∠=∠-∠即EBC BCF ∠=∠∴//BE CF .(内错角相等,两直线平行)【点睛】本题考查了角的和差、平行线的判定与性质,掌握平行线的判定与性质是解题关键.27.(1)3;0; -2;(2)证明见解析.【分析】(1)根据已知和同底数的幂法则得出即可;(2)根据已知得出3a =5,3b =6,3c =30,求出3a ×3b =30,即可得出答案.【详解】(1)(3,27)=3,(4,1)=0,(2,14)=-2, 故答案为3;0;-2;(2)证明:由题意得:3a = 5,3b = 6,3c = 30,∵ 5⨯ 6=30,∴ 3a ⨯ 3b = 3c ,∴ 3a +b = 3c ,∴ a + b = c .【点睛】本题考查了同底数幂的乘法,有理数的混合运算等知识点,能灵活运用同底数幂的乘法法则进行变形是解此题的关键.28.(1)电脑0.5万元,电子白板1.5万元;(2)14台【分析】(1)设每台电脑x 元,每台电子白板y 元,根据题意列出方程组,解方程组即可;(2)设购进电子白板m 台,则购进电脑()31m -台,根据总费用不超过30万元,列出不等式,根据m 实际意义即可求解.【详解】(1)设每台电脑x 元,每台电子白板y 元,则2 3.52 2.5x y x y +=⎧⎨+=⎩,解得0.51.5x y =⎧⎨=⎩故每台电脑0.5万元,每台电子白板1.5万元;(2)设购进电子白板m 台,则购进电脑()31m -台,由题意得1.50.5(31)30m m +-≤解得14.5m ≤,又因为m 是正整数,则14m ≤,故至多购买电子白板14台.【点睛】本题考查了二元一次方程组应用,一元一次不等式应用,综合性较强,难度不大,根据题意列出二元一次方程组、一元一次不等式是解题关键.。

银川市七年级下册数学期末试题及答案解答

银川市七年级下册数学期末试题及答案解答

银川市七年级下册数学期末试题及答案解答一、选择题1.已知关于x ,y 的方程组03210ax by ax by +=⎧⎨-=⎩的解为21x y =⎧⎨=-⎩,则a ,b 的值是( ) A .12a b =⎧⎨=⎩ B .21a b =⎧⎨=⎩ C .12a b =-⎧⎨=-⎩ D .21a b =⎧⎨=-⎩2.如果多项式x 2+mx +16是一个二项式的完全平方式,那么m 的值为( ) A .4 B .8C .-8D .±8 3.下列运算正确的是( ) A .()3253a b a b = B .a 6÷a 2=a 3C .5y 3•3y 2=15y 5D .a +a 2=a 34.下列计算错误的是( ) A .2a 3•3a =6a 4 B .(﹣2y 3)2=4y 6C .3a 2+a =3a 3D .a 5÷a 3=a 2(a≠0) 5.端午节前夕,某超市用1440元购进A 、B 两种商品共50件,其中A 种商品每件24元,B 品件36元,若设购进A 种商品x 件、B 种商品y 件,依题意可列方程组( ) A .5036241440x y x y +=⎧⎨+=⎩ B .5024361440x y x y +=⎧⎨+=⎩ C .144036241440x y x y +=⎧⎨+=⎩ D .144024361440x y x y +=⎧⎨+=⎩ 6.如图,AB ∥CD ,DA ⊥AC ,垂足为A ,若∠ADC=35°,则∠1的度数为( )A .65°B .55°C .45°D .35° 7.一个三角形的两边长分别是2和4,则第三边的长可能是( )A .1B .2C .4D .7 8.甲、乙二人同时同地出发,都以不变的速度在环形路上奔跑.若反向而行,每隔3min 相遇一次,若同向而行,则每隔6min 相遇一次,已知甲比乙跑得快,设甲每分钟跑x 圈,乙每分钟跑y 圈,则可列方程为( )A .36x y x y -=⎧⎨+=⎩B .36x y x y +=⎧⎨-=⎩C .331661x y x y +=⎧⎨-=⎩D .331661x y x y -=⎧⎨+=⎩9.平面直角坐标系中,点A 到x 轴的距离为1,到y 轴的距离为3,且在第二象限,则点A 的坐标为( )A .()1,3-B .()3,1-C .()1,3-D .()3,1- 10.比较255、344、433的大小( ) A .255<344<433 B .433<344<255C .255<433<344D .344<433<255 二、填空题 11.计算:20202019120192019⎛⎫⨯- ⎪⎝⎭=________.12.计算:2202120192020⨯-=__________13.如果62x y =⎧⎨=-⎩是关于x 、y 的二元一次方程mx -10=3y 的一个解,则m 的值为_____.14.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.15.若a m =2,a n =3,则a m +n 的值是_____.16.若方程4x ﹣1=3x +1和2m +x =1的解相同,则m 的值为_____.17.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________.18.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.19.已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.20.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→1,2→()2,2…根据这个规律,则第2020个点的坐标为_________.三、解答题21.阅读理解并解答:为了求1+2+22+23+24+…+22009的值.可令S =1+2+22+23+24+…+22009则2S =2+22+23+24+…+22009+22010因此2S﹣S=(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1所以S=22010﹣1即1+2+22+23+24+…+22009=22010﹣1请依照此法,求:1+5+52+53+54+…+52020的值.22.如图,△ABC中,AE是△ABC的角平分线,AD是BC边上的高.(1)若∠B=35°,∠C=75°,求∠DAE的度数;(2)若∠B=m°,∠C=n°,(m<n),则∠DAE=°(直接用m、n表示).23.解方程或不等式(组)(1)24 231 x yx y+=⎧⎨-=⎩(2)2151132 x x-+-≥(3)312(2)15233x xx x+<+⎧⎪⎨-≤+⎪⎩24.解下列方程组(1)29 321 x yx y+=⎧⎨-=-⎩.(2)34332(1)11 x yx y⎧+=⎪⎨⎪--=⎩.25.如图,△ABC的顶点都在方格纸的格点上,将△ABC向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A′B′C′;(2)在图中画出△A′B′C′的高C′D′.26.解方程组(1)21325x yx y+=⎧⎨-=⎩(2)111231233x yx y⎧-=⎪⎪⎨⎪--=⎪⎩27.如图,ABC∆中,B ACB∠=∠,点,D F分别在边,BC AC的延长线上,连结,CE CD平分ECF∠.求证://AB CE.28.己知关于x、y的二元一次方程组221x y kx y+=⎧⎨+=-⎩的解互为相反数,求k的值。

银川市人教版七年级下册数学期末考试试卷及答案

银川市人教版七年级下册数学期末考试试卷及答案

银川市人教版七年级下册数学期末考试试卷及答案一、选择题1.下列等式由左边到右边的变形中,属于因式分解的是( )A .(a ﹣2)(a+2)=a 2﹣4B .8x 2y =8×x 2yC .m 2﹣1+n 2=(m+1)(m ﹣1)+n 2D .x 2+2x ﹣3=(x ﹣1)(x+3)2.观察下列等式: 133=,239=,3327=,4381=,53243=,63729=,732187=,试利用上述规律判断算式234202033333+++++…结果的末位数字是( ) A .0 B .1 C .3 D .73.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为( ) A .0.38×106 B .3.8×106 C .3.8×105 D .38×1044.某中学现有学生500人,计划一年后女生在校生增加3%,男生在校生增加4%,这样,在校学生将增加3.4%,设该校现有女生人数x 和男生y ,则列方程组为( )A .500(14%)(13%)500(1 3.4)x y x y +=⎧⎨+++=⨯+⎩B .5003%4% 3.4%x y x y +=⎧⎨+=⎩C .500(13%)(14%)500(1 3.4%)x y x y +=⎧⎨+++=⨯+⎩D .5004%3%500 3.4%x y x y +=⎧⎨+=⨯⎩5.下列方程中,是二元一次方程的是( )A .x 2+x =1B .2x ﹣3y =5C .xy =3D .3x ﹣y =2z 6.下列运算中,正确的是( ) A .a 8÷a 2=a 4B .(﹣m)2•(﹣m 3)=﹣m 5C .x 3+x 3=x 6D .(a 3)3=a 6 7.若一个三角形的两边长分别为3和6,则第三边长可能是( )A .6B .3C .2D .10 8.将一副三角板如图放置,作CF //AB ,则∠EFC 的度数是( )A .90°B .100°C .105°D .110° 9.如图,将△ABC 纸片沿DE 折叠,点A 的对应点为A’,若∠B=60°,∠C=80°,则∠1+∠2等于( )A .40°B .60°C .80°D .140° 10.下列不等式:ac bc >;ma mb -<-;22ac bc >;22ac bc ->-,其中能推出a b >的是( )A .ac bc >B .ma mb -<-C .22ac bc >D .22ac bc ->-二、填空题11.若分解因式221(3)()x mx x x n +-=++,则m =__________. 12.科学家发现2019nCoV -冠状肺炎病毒颗粒平均直径约为0.00000012m ,数据0.00000012用科学记数法表示_______.13.二元一次方程7x+y =15的正整数解为_____.14.计算:(12)﹣2=_____. 15.若满足方程组33221x y m x y m +=+⎧⎨-=-⎩的x 与y 互为相反数,则m 的值为_____. 16.已知m 为正整数,且关于x ,y 的二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,则m 的值为_______.17.已知关于x 的不等式3()50a b x a b -+->的解集是1x <,则关于x 的不等式4ax b >的解集为_______.18.若2a +b =﹣3,2a ﹣b =2,则4a 2﹣b 2=_____.19.已知点m (3a -9,1-a ),将m 点向左平移3个单位长度后落在y 轴上,则a= __________ .20.比较大小:π0_____2﹣1.(填“>”“<”或“=”) 三、解答题21.如图,边长为1的正方形ABCD 被两条与边平行的线段EF ,GH 分割成四个小长方形,EF 与GH 交于点P ,设BF 长为a ,BG 长为b ,△GBF 的周长为m ,(1)①用含a ,b ,m 的式子表示GF 的长为 ;②用含a ,b 的式子表示长方形EPHD 的面积为 ;(2)已知直角三角形两直角边的平方和等于斜边的平方,例如在图1,△ABC 中,∠ABC=900,则222AB BC AC +=,请用上述知识解决下列问题:①写出a ,b ,m 满足的等式 ;②若m=1,求长方形EPHD 的面积;③当m 满足什么条件时,长方形EPHD 的面积是一个常数?22.第19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入W 元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品. (1)若24W =万元,求领带及丝巾的制作成本是多少?(2)若用W 元钱全部用于制作领带,总共可以制作几条?(3)若用W 元钱恰好能制作300份其他的礼品,可以选择a 条领带和b 条丝巾作为一份礼品(两种都要有),请求出所有可能的a 、b 的值.23.如图 1,直线GH 分别交,AB CD 于点 ,E F (点F 在点E 的右侧),若12180︒∠+∠= (1)求证://AB CD ;(2)如图2所示,点M N 、在,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.(3)如图 3 所示,点M 在线段EF 上,点N 在直线CD 的下方,点P 是直线AB 上一点(在E 的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量24.如图,△ABC 中,AE 是△ABC 的角平分线,AD 是BC 边上的高.(1)若∠B =35°,∠C =75°,求∠DAE 的度数;(2)若∠B =m °,∠C =n °,(m <n ),则∠DAE = °(直接用m 、n 表示).25.如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助网格). (1)画出△ABC 中BC 边上的高线AH .(2)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF .(3)画一个锐角△ABP (要求各顶点在格点上),使其面积等于△ABC 的面积的2倍.26.如图,△ABC 的顶点都在方格纸的格点上,将△ABC 向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A′B′C′;(2)在图中画出△A′B′C′的高C′D′.27.已知在△ABC 中,试说明:∠A +∠B +∠C =180°方法一: 过点A 作DE ∥BC . 则(填空)∠B =∠ ,∠C =∠∵ ∠DAB +∠BAC + ∠CAE =180°∴∠A +∠B +∠C =180°方法二: 过BC 上任意一点D 作DE ∥AC ,DF ∥AB 分别交AB 、AC 于E 、F (补全说理过程 )28.定义:若实数x ,y 满足22x y t =+,22y x t =+,且x ≠y ,则称点M (x ,y )为“好点”.例如,点(0,-2)和 (-2,0)是“好点”.已知:在直角坐标系xOy 中,点P (m ,n ).(1)P 1(3,1)和P 2(-3,1)两点中,点________________是“好点”.(2)若点P (m ,n )是“好点”,求m +n 的值.(3)若点P 是“好点”,用含t 的代数式表示mn ,并求t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】认真审题,根据因式分解的定义,即:将多项式写成几个因式的乘积的形式,进行分析,据此即可得到本题的答案.【详解】解:A .不是乘积的形式,错误;B .等号左边的式子不是多项式,不符合因式分解的定义,错误;C .不是乘积的形式,错误;D .x 2+2x ﹣3=(x ﹣1)(x+3),是因式分解,正确;故选:D .【点睛】本题主要考查了因式分解的定义,即:将多项式写成几个因式的乘积的形式,牢记定义是解题的关键,要注意认真总结.2.A解析:A【分析】观察可以发现3n 的末位数字为4个一循环,故相加后末位数字为定值,而2020是4的整数倍,即可求解.【详解】解:通过观察可以发现3n 的末位数字为3、9、7、1……,4个为一循环,而12343333=392781=120++++++末尾数字为0,∵20204=505÷,故234202033333+++++…的末尾数字也为0.故选A .【点睛】本题属于找规律题型,难度不大,是中考的常考知识点,细心观察,总结规律是顺利解题的关键.3.C解析:C科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:380000=3.8×105.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.C解析:C【分析】本题有两个相等关系:现有女生人数x +现有男生人数y =现有学生500;一年后女生在校生增加3%后的人数+男生在校生增加4%后的人数=现在校学生增加3.4%后的人数;据此即可列出方程组.【详解】解:设该校现有女生人数x 和男生y ,则列方程组为()()()50013%14%5001 3.4%x y x y +=⎧⎨+++=⨯+⎩. 故选:C .【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题关键.5.B解析:B【分析】根据二元一次方程的定义对各选项逐一判断即可得.【详解】解:A .x 2+x =1中x 2的次数为2,不是二元一次方程;B .2x ﹣3y =5中含有2个未知数,且含未知数项的最高次数为一次的整式方程,是二元一次方程;C .xy =3中xy 的次数为2,不是二元一次方程;D .3x ﹣y =2z 中含有3个未知数,不是二元一次方程;故选:B .【点睛】本题主要考查了二元一次方程的定义判断,准确理解是解题的关键.6.B【分析】根据同类项的定义及合并同类相法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,积的乘方,分析判断后利用排除法求解.【详解】解:A、a8÷a2=a4不正确;B、(-m)2·(-m3)=-m5正确;C、x3+x3=x6合并得2x3,故本选项错误;D、(a3)3=a9,不正确.故选B.【点睛】本题主要考查了合并同类项及同底数幂的乘法、除法,熟练掌握运算性质和法则是解题的关键.7.A解析:A【分析】根据三角形三边关系即可确定第三边的范围,进而可得答案.【详解】解:设第三边为x,则3<x<9,纵观各选项,符合条件的整数只有6.故选:A.【点睛】本题考查了三角形的三边关系,属于基础题型,熟练掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.8.C解析:C【分析】根据等腰直角三角形求出∠BAC,根据平行线求出∠ACF,根据三角形内角和定理求出即可.【详解】解:∵△ACB是等腰直角三角形,∴∠BAC=45°,∵CF//AB,∴∠ACF=∠BAC=45°,∵∠E=30°,∴∠EFC=180°﹣∠E﹣∠ACF=105°,故选:C.【点睛】本题考查了三角形的内角和定理和平行线的性质,能求出各个角的度数是解此题的关键.解析:C【分析】根据平角定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠,再利用三角形的内角和定理进行转换,得34140B C ∠+∠=∠+∠=︒从而解题.【详解】解:根据平角的定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠.又34180A ∠+∠+∠=︒,180A B C ∠+∠+∠=︒,346080140B C ∴∠+∠=∠+∠=︒+︒=︒,∴123602(34)360214080∠+∠=︒-∠+∠=︒-⨯︒=︒,故选:C .【点睛】此题综合运用了平角的定义、折叠的性质和三角形的内角和定理.10.C解析:C【分析】根据不等式的性质逐项判断即可.【详解】解:A. ac bc >,由于不知道c 的符号,故无法得到a b >,故该选项不合题意;B. ma mb -<-,由于不知道-m 的符号,故无法得到a b >,故该选项不合题意;C. 22ac bc >,∵20c ≠,∴2c >0,∴a b >,故该选项符合题意;D. 22ac bc ->-,∵20c ≠,∴20c -<,∴a b <,故该选项不合题意.故选:C【点睛】本题考查了不等式的性质,熟知不等式的性质是解题关键.二、填空题11.【分析】将分解因式的结果式子展开,与原式各项对应,再计算字母的值即可.【详解】解:,解得:,故答案为:.【点睛】此题考查因式分解,正确利用多项式乘多项式法则进行计算是解此题的关 解析:4-【分析】将分解因式的结果式子展开,与原式各项对应,再计算字母的值即可.【详解】解:2(3)()(3)3x x n x n x n ++=+++,∴3321n m n +=⎧⎨=-⎩, 解得:74n m =-⎧⎨=-⎩, 故答案为:4-.【点睛】此题考查因式分解,正确利用多项式乘多项式法则进行计算是解此题的关键.12.【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是解析:71.210-⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:根据科学记数法的定义:0.00000012=71.210-⨯故答案为:71.210-⨯.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.13.或【分析】将x 看做已知数求出y ,即可确定出正整数解.【详解】解:方程7x+y =15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或.【点解析:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩【分析】将x看做已知数求出y,即可确定出正整数解.【详解】解:方程7x+y=15,解得:y=﹣7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.故答案为:18xy=⎧⎨=⎩或21xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.14.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:()﹣2===4,故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可.解析:【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:(12)﹣2=2112⎛⎫⎪⎝⎭=114=4,故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可. 15.【分析】把m看做已知数表示出x与y,代入x+y=0计算即可求出m的值.【详解】解:,①+②得:5x=3m+2,解得:x=,把x=代入①得:y=,由x与y互为相反数,得到=0,去分母解析:【分析】把m看做已知数表示出x与y,代入x+y=0计算即可求出m的值.【详解】解:33221x y mx y m+=+⎧⎨-=-⎩①②,①+②得:5x=3m+2,解得:x=325m+,把x=325m+代入①得:y=945m-,由x与y互为相反数,得到3294+55m m+-=0,去分母得:3m+2+9﹣4m=0,解得:m=11,故答案为:11【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组,熟练掌握方程组的解法及相反数的性质是解本题的关键.16.【分析】先把二元一次方程组求解出来,用m表示,再根据有整数解求解m的值即可得到答案;【详解】解:,把①②式相加得到:,即:,要二元一次方程组有整数解,即为整数,又∵为正整数,故解析:2【分析】先把二元一次方程组210320mx y x y +=⎧⎨-=⎩求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;【详解】解:210320mx y x y +=⎧⎨-=⎩①②, 把①②式相加得到:310+=mx x , 即:103x m =+ , 要二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解, 即103x m =+为整数, 又∵m 为正整数,故m=2, 此时10223x ==+,3y = , 故,x y 均为整数,故答案为:2;【点睛】 本题主要考查了二元一次方程组的求解,掌握二元一次方程组的求解步骤是解题的关键;17.【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵的解集是,∴=1,a -b<0,∴a=2b,b<0.则不等式可以化为2bx>4b.∵b<解析:2x <【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵3()50a b x a b -+->的解集是1x <,∴()53a b a b --=1,a-b<0, ∴a=2b,b<0.则不等式4ax b >可以化为2bx>4b.∵b<0.∴x<2.即关于x 的不等式4ax b >的解集为x<2.【点睛】本题考查了不等式的解法,正确确定b 的符号是关键.18.-6【分析】根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a+b=﹣3,2a ﹣b =2,∴4a2﹣b2=(2a+b )(2a ﹣b )=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】解析:-6【分析】根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a +b =﹣3,2a ﹣b =2,∴4a 2﹣b 2=(2a +b )(2a ﹣b )=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】此题考查的是根据平方差公式求值,掌握利用平方差公式因式分解是解决此题的关键. 19.4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y 轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与解析:4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y 轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了y 轴上的点的坐标特征.20.>【分析】先求出π0=1,2-1=,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=,1>,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较解析:>【分析】先求出π0=1,2-1=12,再根据求出的结果比较即可. 【详解】解:∵π0=1,2-1=12,1>12, ∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较.理解任意非零数的零次方等于1和熟记负指数幂的计算公式是解题关键. 三、解答题21.(1)①m a b --;②1a b ab --+;(2)①22220m ma mb ab --+=;②12;③m=1 【分析】(1)①直接根据三角形的周长公式即可;②根据BF 长为a ,BG 长为b ,表示出EP ,PH 的长,根据求长方形EPHD 的面积;(2)①直接根据直角三角形两直角边的平方和等于斜边的平方,表示出a ,b ,m 之间的关系式;②根据线段之间的关系利用勾股定理求出长方形EPHD 的面积的值;③结合①的结论和②的作法即可求解.【详解】(1)①∵BF 长为a ,BG 长为b ,△GBF 的周长为m ,∴GF m a b =--,故答案为:m a b --;②∵正方形ABCD 的边长为1 ,∴AB=BC=1,∵BF 长为a ,BG 长为b ,∴AG=1-b ,FC=1-a ,∴EP=AG=1-b ,PH=FC=1-a ,∴长方形EPHD 的面积为:(1)(1)1a b a b ab --=--+,故答案为:1a b ab --+;(2)①△ABC 中,∠ABC=90°,则222AB BC AC +=,∴在△GBF 中, GF m a b =--,∴()222m a b a b --=+, 化简得,22220m ma mb ab --+=故答案为:22220m ma mb ab --+=;②∵BF=a ,GB=b ,∴FC=1-a ,AG=1-b ,在Rt △GBF 中,22222GF BF BG a b ==+=+,∵Rt △GBF 的周长为1,∴1BF BG GF a b ++=+=即1a b =--,即222212(()b a b a b a +=-+++),整理得12220a b ab --+= ∴12a b ab +-=, ∴矩形EPHD 的面积••S PH EP FC AG ==()()11a b =--1a b ab =--+11122=-=. ③由①得: 22220m ma mb ab --+=, ∴212ab ma mb m =+-. ∴矩形EPHD 的面积••S PH EP FC AG == ()()11a b =--1a b ab =--+2112ma mb a m b +-=--+ ()()211121m a m m b =--+-+, ∴要使长方形EPHD 的面积是一个常数,只有m=1.【点睛】本题考查了正方形的特殊性质和勾股定理,根据正方形的特殊性质和勾股定理推出22220m ma mb ab --+=是解题的关键.22.(1)领带的制作成本是120元,丝巾的制作成本是160元;(2)可以制作2000条领带;(3)42a b =⎧⎨=⎩【分析】(1)设领带及丝巾的制作成本是x 元和y 元,根据题意列出方程组求解即可; (2)由600(2)W x y =+与400(3)W x y =+可得到43y x =,代入可得2000W x =,即可求得答案;(3)根据44600(2)300()33x x ax bx +=+即可表达出a 、b 的关系式即可解答. 【详解】解:(1)设领带及丝巾的制作成本是x 元和y 元,则600(2)240000400(3)240000x y x y +=⎧⎨+=⎩ 解得:120160x y =⎧⎨=⎩ 答:领带的制作成本是120元,丝巾的制作成本是160元.(2)由题意可得:600(2)W x y =+,且400(3)W x y =+,∴600(2)400(3)x y x y +=+, 整理得:43y x =,代入 600(2)W x y =+可得:4600(2)20003W x x x =+=, ∴可以制作2000条领带.(3)由(2)可得:43y x =, ∴44600(2)300()33x x ax bx +=+ 整理可得:3420a b +=∵a 、b 都为正整数, ∴42a b =⎧⎨=⎩【点睛】本题考查了二元一次方程组的综合应用,解题的关键是根据题意列出方程,并对已知条件进行适当的变形.23.(1)证明过程见解析;(2)12N AEM NFD ∠=∠-∠,理由见解析;(3)13∠N+∠PMH=180°. 【分析】(1)根据同旁内角互补,两直线平行即可判定AB ∥CD ;(2)设∠N=2α,∠M=3α,∠AEM=x ,∠NFD=y ,过M 作MP ∥AB ,过N 作NQ ∥AB 可得∠PMN=3α-x ,∠QNM=2α-y ,根据平行线性质得到3α-x =2α-y ,化简即可得到12N AEM NFD ∠=∠-∠; (3)过点M 作MI ∥AB 交PN 于O ,过点N 作NQ ∥CD 交PN 于R ,根据平行线的性质可得∠BPM=∠PMI ,由已知得到∠MON=∠MPN+∠PMI=3∠PMI 及∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD ,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM ,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH ,根据平行线的性质得到3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减即可得到∠RFM-∠PMI=13∠FNP ,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH ,即得到13∠FNP=180°-∠PMH ,即13∠N+∠PMH=180°. 【详解】(1)证明:∵∠1=∠BEF ,12180︒∠+∠=∴∠BEF+∠2=180°∴AB ∥CD.(2)解:12N AEM NFD ∠=∠-∠设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y 过M作MP∥AB,过N作NQ∥AB∵//AB CD,MP∥AB,NQ∥AB∴MP∥NQ∥AB∥CD∴∠EMP=x,∠FNQ=y∴∠PMN=3α-x,∠QNM=2α-y∴3α-x=2α-y即α=x-y∴12N AEM NFD ∠=∠-∠故答案为12N AEM NFD ∠=∠-∠(3)解:13∠N+∠PMH=180°过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R.∵//AB CD,MI∥AB,NQ∥CD∴AB∥MI∥NQ∥CD∴∠BPM=∠PMI∵∠MPN=2∠MPB∴∠MPN=2∠PMI∴∠MON=∠MPN+∠PMI=3∠PMI∵∠NFH=2∠HFD∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD∵∠RFN=∠HFD∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM∴∠MON+∠PRF+∠RFM=360°-∠OMF即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF ∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH∵3∠PMI+∠PNH=180°∴3∠PMI+∠FNP+∠FNH=180°∵3∠RFM+∠FNH=180°∴3∠PMI-3∠RFM+∠FNP=0°即∠RFM-∠PMI=13∠FNP∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH∠FNP-2×13∠FNP=180°-∠PMH13∠FNP=180°-∠PMH即13∠N+∠PMH=180°故答案为13∠N+∠PMH=180°【点睛】本题主要考查了平行线的判定与性质.解题的关键是正确作出辅助线,通过运用平行线性质得到角之间的关系.24.(1)20°;(2)11 22 n m【分析】(1)根据∠DAE=∠EAC﹣∠DAC,求出∠EAC,∠DAC即可.(2)计算方法与(1)相同.【详解】解:(1)∵∠B=35°,∠C=75°,∴∠BAC=180°﹣35°﹣75°=70°,∵AE平分∠BAC,∴∠CAE=12∠CAB=35°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣75°=15°,∴∠DAE=∠EAC﹣∠DAC=35°﹣15°=20°.(2)∵∠B=m°,∠C=n°,∴∠BAC=180°﹣m°﹣n°,∵AE平分∠BAC,∴∠CAE=12∠CAB=90°﹣(12m)°﹣(12n)°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣n°,∴∠DAE=∠EAC﹣∠DAC=(12n﹣12m)°,故答案为:(12n﹣12m).【点睛】本题考查三角形内角和定理角平分线的定义,三角形的高的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(1)见解析;(2)见解析;(3)见解析.【分析】(1)根据三角形高的定义求解可得;(2)根据平移的定义作出变换后的对应点,再顺次连接即可得;(3)计算得出格点△ABC的面积是3,得出格点△ABP的面积为6,据此画出格点△ABP 即可.【详解】解:(1)如图所示,(2)如图所示;(3)S△ABC=1323 2⨯⨯=S△ABP=2S△ABC=6画格点△ABP如图所示,(答案不唯一).【点睛】本题主要考查作图-平移变换,解题的关键是熟练掌握平移变换的定义和性质,并据此得出变换后的对应点.26.(1)图见解析;(2)图见解析.【详解】解:(1)△A′B′C′如下图;(2)高C′D′如下图.27.DAB,CAE ;见解析【分析】方法一:根据平行线的性质:两直线平行,内错角相等解答;方法二:根据平行线的性质:两直线平行、同位角相等解答.【详解】方法一:∵DE∥BC,∴∠B=∠DAB,∠C=∠CAE,故答案为:DAB,CAE;方法二:∵DE∥AC,∴∠A=∠BED,∠C=∠BDE,∵DF∥AB,∴∠EDF=∠BED,∠B=∠CDF,∵∠CDF+∠EDF+∠BDE=180°,∴∠A+∠B+∠C=180°.【点睛】此题考查平行线的性质,三角形内角和定理的证明过程,解题的关键是熟记平行线的性质并运用于解题.t>28.(1)2P;(2)2-;(3)3【分析】(1)将P1(3,1)和P2(-3,1)分别代入等式即可得出结果;(2)将点P(m,n)代入等式即可得出m+n的值;(3)根据“好点”的定义,将P点代入即可得到关于m和n的等式,将两个等式结合即可得出结果.【详解】解:(1)对于1(3,1)P ,2321,7t t =⨯+=,2123,5t t =⨯+=-对于2(3,1)P -,2(3)21,7t t -=⨯+=,212(3),7t t =⨯-+=,所以2P 是“好点” (2)∵点(,)P m n 是好点,∴222,2m n t n m t =+=+, 222()m n n m -=-,∴2m n +=-(3)∵222,2m n t n m t =+=+, 2222m n n t m t -=+--①, 2222m n m t n t +=+++②, 得()()2()0m n m n m n -++-=, 即()(2)0m n m n -++=,由题知,,2m n m n ≠∴+=-,由②得2()22()2m n mn m n t +-=++, ∴4242,4mn t mn t -=-+=-, ∵m n ≠,∴2()0m n ->, ∴2()40m n mn +->,∴44(4)0t -->,所以3t >,【点睛】本题主要考查的是新定义“好点”,正确的掌握整式的乘法解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

银川市2009—2010学年度第二学期期末七年级数学检测试题(时间:120分钟 满分120分)一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分) 1.下列计算中正确的是( )A .342285x x x B . 2334x x -=-2C .2x +(x y 2-)=yD .2x 22)2(x x x =--- 2.一粒沙子的体积大约0.0368毫米3,下列用科学记数法表示正确的是( ) A .0.368×101- B. 3.68×103- C. 3.68×102- D. 3.68×101- 3.如图,点O 在直线AB 上,且CO ⊥OD .若∠COA =36°,则∠DOB 的大小为( ) A . 3 6° B . 54° C . 64° D . 72°4.以下四个图形中,对称轴条数最多的一个图形是( )5.下列各组数中能构成一个三角形边长的是( )A . 5,5,11B .8,7,15C .6,8,10D .10,20,306.小刚、小颖、小彬一起在照镜子,小刚说:“我发现了一个有趣的现象,我们衣服的号码和镜子中的号码完全一样”.根据小刚的说法,他们三人的号码不可能是....( ) A . 101 B .801 C .181D .8087.已知火车站托运行李的费用C 和托运行李的重量P (千克)(P 为整数)的对应关系则C 与P 的对应关系为( )A. C=0.5(P-1)B. C=2P-0.5C. C=2P+ 0.5D. C=2 +0.5(P-1)8.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),把剩下的部分剪成一个矩形(如图),通过计算两个图形(阴影部分)的面积验证了一个等式,则这个等式是( )二、填空题(每小题3分,共24分)9.下列图形中全等图形是___________(填标号).10.计算 022012)21(= . 11.若一箱草莓的质量是10.90千克,那么精确到10千克是 ______千克.12.小亮周末去奶奶家,因为修路,他这次走了一条他不太熟悉的新路,走到一个有三岔路的路口突然迷了路,而这三个岔路中只有一个通往奶奶家,小亮能一次选对的概率是 . 13.32)2(p -= .14.如图1,已知直线EF 与a 、b 分别相交于M 、N .若a ∥b ,∠1=47°, 则 ∠2=___ °.A.(a +b)2=a 2+2a b+b 2B. (a -b)2=a 2-2a b+b 2C. a 2-b 2=(a +b)(a -b)D. (a + 2b)(a -b)= a 2+a b+b 215.如图2,ΔABC 和ΔDCB 中,AB =DC ,要使ΔABC ≌ΔDCB ,应补充条件_________ .(填写一个你认为合适的条件即可).16.如图3,ΔABC 中,∠C =90°,BE 是∠B 的平分线,ED ⊥AB 于D ,若AC =3cm ,那么AE +DE =________. 三、计算题(每题6分,共12分) 17.计算(每小题3分,共6分) (1))25()29(22y x x y x x(2))2()21(22m n mn -⨯+18.(6分)光的速度大约是3×108m/s ,求光经过7.8×106m 所需的时间(四舍五入到百分位)四、作图题(6分)19. 如图,以l 为对称轴,画出已知图形的对称图形.五、解答题(共54分)20. (6分)下图是可以自由转动的转盘,该转盘被分成10个相等的扇形.甲、乙两人做如下游戏,并约定:转盘停止转动时,若指针指向偶数区域,则甲获胜;若指针指向奇数区域,则乙获胜.你认为这个游戏对甲、乙双方公平吗?试说明理由.21. (6分)如图,A 、B 分别表示一骑自行车者和一骑摩托车者在两城镇间旅行时路程与时间的关系,根据这个图像,你能得到关于这两个旅行者在旅行中的哪些信息?(至少写出6个)22. (6分) 在新修的花园小区中,有一条“Z”字形绿色长廊ABCD ,如图,AB ∥CD ,在AB 、BC 、CD 三段绿色长廊上各修建一凉亭E 、M 、F ,且BE =CF ,M 是BC 的中点,E 、M 、F 在一条直线上.若在凉亭M 与F 之间有一池塘,在用皮尺不能直接测量的情况下,你能知道M 与F 之间的距离吗?试说明理由.23. (8分)如图,(1).如果∠1=∠4,a 与b 平行吗?试说明理由.(2).如果只有c ∥d,∠1=56°,你能求出图中标出的哪些角,求出这些角的度数.24(下面A 、B 、C 三类题目中,可任选一类解答,多解的题目不记分.) (A 类8分)先化简,再求值:)(]6)3()2[(223633y x y x y x y x y x ,其中2,21=-=y x .(B 类9分)先化简,再求值:y x y xy xy 3)34()2)(2(---+-,其中61,6=-=y x . (C 类10分)先化简,再求值:225)231)(231()31(x x y x y y x --+--,其中9,91-==y x .25.(10分).如图,AE =AC ,AB =AD ,∠EAB =∠CAD .(1) BC 与DE 相等吗?说明理由.(2)若BC 与DE 相交于点F ,EF =CF .连接AF ,∠BAF 与∠DAF 相等吗?说明理由.26.(10分)一辆邮政车自A 城驶往B 城,沿途有n 个车站(包括起点A 和终点B ),该车在每个车站停靠,每停靠一站.....不仅要卸下已经通过的各车站发给该车站的邮包...................一个..,还要装上该车站发给后面行程中每个车站的邮包一个........................邮车在第1个车站 (A 站)启程时要装上该站发给后面行程中每个车站的邮包)1(-n 个,邮车上邮包总数是)1(-n 个;邮车到第2个车站,卸下邮包1个,启程时要装上该站发给后面行程中每个车站的邮包)2(-n 个,邮车上邮包总数是 1)1(--n +)2(-n =)2(2-n (个);邮车到第3个车站,共卸下邮包2个,启程时要装上该站发给后面行程中每个车站的邮包)3(-n 个,邮车上邮包总数是 2)2(2--n +)3(-n =)3(3-n (个).(1)邮车到第4个车站,启程时计算出邮车上邮包个数. (2)邮车到第5个车站,启程时计算出邮车上邮包个数.(3)邮车到第x 个车站,启程时邮车上邮包总数是多少(用x ,n 表示)? (4)当18=n ,9=x 时,求出邮车上邮包的个数.残阳渐逝,血红冲天。

半是夕阳余光,半是狰狞血雨。

是的,血,到处都是冷腥的鲜血。

整个皇宫之内,血流成河,白玉理石全被洗涮成黑红之色,到处是断壁残肢,尸横一片,到处是厮杀后的痕迹。

“为什么?” 百里冰左手紧捂着胸口,瞪大着眼睛看着对面十米敌对方处,挥手点兵之人。

那是她的未婚夫,她倾尽一生所爱之人。

亦是绝杀她百里一族,将她迫入绝境之人。

她不懂,为何倾尽所有的爱,换来的是百里一族的灭顶之灾。

台下之人仍是一身儒雅白衣,清俊的脸上,就连平日里对她宠溺的笑容都没有变过。

冷逸辰就这样含笑相对,却不肯多说只字片语。

权利?利益?她虽是寒月帝国唯一的继承人,可是她早已与身为寒月帝国帝皇的外公达成协议,她与冷逸辰成婚后,冷逸辰为帝,她为后,她会做好他的贤内助,她从来不是他成功之路上的绊脚石,他为何要如此对她?冷逸辰仍是气定神闲的坐在不远处,手中的白羽扇仍旧轻摇着,完全不惧百里冰眼中的怒意,只是仿佛没有听到她的问话般,仍一派温和之笑,却坚定的吐出一个字,“杀!”百里冰怒上心头。

手中剑气如虹,眼看便要破势而出,却听到远处传来震天动地,撕心裂肺的愤然吼声,“冷逸辰,我百里一族与你不死不休!”“噗!”百里冰同一时刻,一口鲜血狂喷而出,心脏之处传来剧痛。

她突的单腿倒下。

是皇帝外公的声音。

百里冰痛苦的闭上眼睛。

果然,冷逸辰在派人围杀她的同时,也对她的皇帝外公与其他族人动手了,看来百里一族今日恐怕难逃灭族之祸了。

她看着惜日对她呵护倍至的爱人,指甲恨得深入掌心,却感觉不到半丝痛意。

血阳残光,打在百里冰的脸上,映红了她的眼,也血洗了她的心。

“冷逸辰,你借我生辰之名,将我百里一族全部聚此,竟是为了灭我全族。

你可知欺我百里者,杀无赦。

”明明落在下风,却仍是气度非凡,那轩昂之姿,百分不输男儿。

百里冰冷面肃目,冷冷怒视着冷逸辰。

天色瞬间黯然,黑云密布,邪风四起,所有天地剑气从四面八方汇集于百里冰身上,她的剑力更胜之前。

冷逸辰前密密麻麻的高手执剑相护,可他仍然感觉到了百里冰身上所散发的凛冽剑气。

他笑容未变,眼神却一沉。

第一高手就是第一高手,她的内功,竟让他觉得有毁天灭地之势,难怪她会成为寒月帝国的传奇。

可惜,可惜了……“大家小心,小心她的剑气,小心……”百里冰冷笑,全身之气一瞬之间向四面八方激烈旋转,呼啸而众人而去,可是,她的眼睛却紧紧盯着台下那稳坐之人。

她用尽生命去爱的人竟要将她至于死地,竟灭杀她全族,既然如此,哪怕魂飞魄散,她也要拉他一起下地狱。

她百里冰从来就不是打落牙齿往肚子里吞的人。

有仇必报,有恩必还一直是她做人的原则,死有什么大不了,她又不是没死过,重要的是要拉着仇人一起死。

十年前身为特警的她在金三角的大毒枭身旁做卧底,后身份暴露,大毒枭欲将她除掉,她便拉着他一起与手榴弹同归于尽了,之后她便穿越到此,这十年,她已经是赚的了。

只是,她眼中闪过寒光,从前有多爱,如今就有多恨。

无形内心越聚越大,四周兵将已有被卷入其中者,武功低的,甚至直接被撕成碎片。

“她拼命了,第一高手要拼命了……”“保护冷王殿下,保护冷王殿下……”“不要让她出剑,否则我们全部都要死在这里,快,大家一起围攻,杀了她……”“杀啊……”又一口鲜血狂喷而出,百里冰只觉浑身刺痛,生命的气息越来越弱。

毒,是毒。

今早冷逸辰为她亲倒的茶,原来是杯断魂茶。

百里冰一声长啸,听得人悲然魂绝,她瞎了眼,当真是瞎了这双眼,才会爱上这个男人。

随后人剑合一,内力爆向四方,所过之出,血色飞舞,散染一片。

人剑所过之处,全部被夷平,所有生命,全部被秒杀。

血如泉水喷色四方,侥幸活下来的人全部惊呆在当场。

屠杀,这是赤/裸裸的屠杀,以一人之力屠杀二十万大军,这是怎样变态的实力,就连冷逸辰都变得不淡定了。

她永远都能带给他惊喜,只是今天这惊喜,来得太不是时候。

就在所有人都不知所措,等待被屠杀的时候,百里冰只觉从心口处传来剧痛,随后暴体而亡。

她知道,毒已入心,无力回天,终含恨而终。

“死了?”过了许久,才有人从她的突然暴体中回过神来。

相关文档
最新文档