北京市海淀区20中2018-2019学年高二上学期期中考试数学(理)试题Word版含解析

合集下载

2020-2021学年北京市海淀区教师进修学校附属实验学校高二上学期期中考试数学试题(解析版)

2020-2021学年北京市海淀区教师进修学校附属实验学校高二上学期期中考试数学试题(解析版)

北京市海淀区教师进修学校附属实验学校2020-2021学年高二上学期期中考试数学试题一.选择题 1. 过点1,0A ,()0,1B 的直线的倾斜角α是( )A. 4πB. 3πC. 23πD. 34π『答 案』D『解 析』因为10101AB k -==--,所以tan 1α=-,tan [0,)απ∈,34απ∴=,故选:D.2. 如图所示,在复平面内,点A 对应的复数为z ,则复数2z 的虚部为( )A. 4-B. 1C. 3D. 4『答 案』A『解 析』由图可知2z i =-+,()22224434z i i i i=-+=-+=-,虚部为4-.故选:A3. 已知空间中三条不同的直线l ,m ,n 和两个不同的平面α,β,下列四个命题中正确的是( )A. 若//αβ,m α⊂,n β⊂,则//m nB. 若l α⊥,l β⊥,则//αβC. 若αβ⊥,m αβ=,l m ⊥,则l β⊥D. 若l m ⊥,m α⊥,则//l α『答 案』B『解 析』对于A ,若//αβ,m α⊂,n β⊂,则m 与n 平行或异面,故A 错误;对于B ,若l α⊥,l β⊥,则//αβ,故B 正确; 对于C ,如图,αβ⊥,m αβ=,l m ⊥,l β⊂,故C 错误;对于D ,如图,l m ⊥,m α⊥,l α⊂,故D 错误.故选:B. 4. 已知直线()1:210l ax a y +++=,22:0l x ay ++=,若12l l ⊥,则实数a 的值是( )A. 0B. 2或-1C. 0或-3D. -3『答 案』C 『解 析』由12l l ⊥知:(2)0a a a ++=,解得:0a =或3a =-.故选:C .5. 已知空间中两条不同的直线m ,n ,一个平面α,则“直线m ,n 与平面α所成角相等”是“直线m ,n 平行”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要『答 案』B『解 析』直线m ,n 与平面α所成角相等,推不出直线m ,n 平行,例如平面内任意两直线与平面所成角都为0,但是直线可以相交; 当直线m ,n 平行时,直线与平面所成角相等成立,故“直线m ,n 与平面α所成角相等”是“直线m ,n 平行”的必要不充分条件. 故选:B. 6. 已知长方体1111ABCD A B C D -,下列向量的数量积一定不为0的是( ) A.1AD AB ⋅ B. 11AD B C ⋅C.1BD BC ⋅D. 1BD AC ⋅『答 案』C 『解 析』当长方体1111ABCD A B C D -为正方体时,根据正方体的性质可知:1111,,AB AD AD B C BD AC⊥⊥⊥,所以10AB AD ⋅=、110AD B C ⋅=、10BD AC ⋅=.根据长方体的性质可知:1BC CD ⊥,所以1BD 与BC 不垂直,即1BD BC ⋅一定不为0.故选:C.7. 如图在四面体PABC 中,PC ⊥平面ABC ,AB BC CA PC ===,那么直线AP 和CB 所成角的余弦值( )A.B. C. 12D.4- 『答 案』A『解 析』设2AB BC CA PC ====,分别取,,AB AC PC 的中点,,D E F ,连接,,,DE EF DF CD ,则//,//DE BC EF AP ,所以DEF ∠(或其补角)就是直线AP 和CB 所成的角, 又PC ⊥平面ABC ,DC ⊂平面ABC ,所以PC ⊥DC ,所以2DF ===,又112DE BC ==,12FE AP ==DEF 中,22222212cos 2DE EF DF DEF DE EF +-+-∠===⨯, 所以直线AP 和CB 所成角的余弦值为.8. 已知正方体1111ABCD A B C D -的棱长为1,P 为BC 中点,Q 为线段1CC (不含端点)上的动点.三棱锥1Q A AP -的体积记为1V ,三棱锥1C A AP -的体积记为2V ,则以下结论正确的是()A.12V V < B.12V V > C.12V V = D.12,V V 大小关系不确定『答 案』C 『解 析』由1111ABCD A B C D -为正方体,则11//CC AA ,1CC ⊄平面1AA P ,1AA ⊂平面1AA P,所以1//CC 平面1AA P,因为Q 为线段1CC 上的动点,所以Q 到平面1AA P的距离与C 到平面1AA P的距离相等,所以11Q A AP C A APV V --=,即12V V =.故选:C.9. 唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在位置为()4,4B --,若将军从点()2,0A -处出发,河岸线所在直线方程为2x y +=,则“将军饮马”的最短总路程为( )A.B. 5C.D. 10『答 案』D『解 析』如图,点A 关于直线的对称点为A ',则A B '即为“将军饮马”的最短总路程,设(),A a b ',则()2222112a bb a -⎧+=⎪⎪⎨⎪⨯-=-⎪+⎩,解得2,4a b ==,则10A B '==,故“将军饮马”的最短总路程为10.故选:D. 10. 如图,正方体1111ABCD A B C D -的棱长为2,点O 为底面ABCD 的中心,点P 在侧面11BB C C的边界及其内部运动,若1D O OP ⊥,则11D C P△面积的最小值为()A.B.C.D. 『答 案』B『解 析』如图所示:当点P 在C 处时,1D O OC⊥,当点P 在1B B的中点1P 时,(22222222211113,26,19OP D O D P =+==+==+=,所以222111OP D O D P +=,所以11D O OP ⊥,又1OP OC O ⋂=,所以1D O ⊥平面1OPC ,所以点P 的轨迹是线段1PC ,因为11D C ⊥平面11PC C,所以11D C P△面积最小时,11C P PC ⊥,此时111C C BCC PPC⨯===,11122D C PS=⨯=,故选:B.二、填空题(本大题共6小题,共30分)11. 写出直线:210l x y--=一个方向向量a =_________.『答案』()1,2.『解析』因为直线L:0ax by c,方向向量d为(,)b a-或(,)b a-,所以210x y--=的2,1a b==-,即一个方向向量(1,2)d =.故答案为:()1,212. 若复数2iiz-=,则复数z=________.『答案』12i-+『解析』因为2i1212i1iz i-+===---,所以12z i=-+,故答案为:12i-+.13. 在长方体1111ABCD A B C D-中,设11AD AA==,2AB=,则1AC CB⋅=_______.『答案』1-『解析』如图,由题意()()() 111 AC CB AB AD AA AD AB AD AD AD AA AD ⋅=++⋅-=-⋅+⋅+⋅21AD=-=-.故答案为-1.14. 已知直线1:10l ax y+-=,直线2:30--=l xy,12l l//,则两平行直线间的距离为______.『答案』『解 析』因为12l l //,所以111a =-,解得1a =-,故1:10l x y -+=由平行线间的距离公式知d ==,故答案为:15. 已知正四面体A BCD -的棱长为2,点E 是AD 的中点,点F 在线段BC 上,则下面四个命题中:①F BC ∃∈,//EF AC ②F BC ∀∈,EF ③F BC ∃∈,EF 与AD 不垂直④F BC ∀∈,直线EF 与平面BCD夹角正弦的最大值为3所有不正确的命题序号为_______.『答 案』①③ 『解 析』如图,对F BC ∀∈, EF 与AC 异面或相交, 故①错误; 当点F 为BC 中点时,EF 为异面直线AD 和 BC的公垂线段,此时EF 取得最小值,当F 与,B C 重合时,EF因为,AD BE AD CE ⊥⊥,BE CE E ⋂=,所以AD ⊥平面BEC ,故AD EF ⊥,故③错误;因为E 到平面BCD 的距离为定值d ,设直线EF 与平面BCD 夹角为θ,则sin ||d EF θ=,当F 为BC 中点时,易知EF 为异面直线AD 和 BC 的公垂线段,此时EF 取得最小值,sin ||dEF θ=有最大值,此时1DF DE ==,故EF ==,由直角三角形EFD 可知,EF DE DF d ⋅=⋅,解得d =,所以sin ||3d EF θ==,故④正确.故答案为:①③16. 定义空间中点到几何图形的距离为:这一点到这个几何图形上各点距离中最短距离. (1)在空间中到定点O 距离为1的点围成的几何体的表面积为________;(2)在空间,定义边长为2的正方形ABCD 区域(包括边界以及内部的点)为Ω,则到Ω距离等于1的点所围成的几何体的体积为________.『答 案』(1). 4π (2). 10+23π『解 析』(1)与定点O 距离等于1的点所围成的几何体是一个半径为1的球,所以其表面积为4π;(2)分析可知,到距离等于1的点所围成的几何体是一个棱长为1,1,2的长方体和4个高为1,底面半径为1的半圆柱以及四个半径为1的四分之一球所围成的几何体 ,所以其体积为:231144101124114122++224333πππππ⨯⨯+⨯⨯⨯⨯+⨯⨯⨯=+=. 故答案为:4π;10+23π.三.解答题17. 若复数22(6)(2)z m m m m i =+-+--,当实数m 为何值时, (1)z 是纯虚数;(2)z 对应的点在第二象限.解:(1)若z 是纯虚数,则226020m m m m ⎧+-=⎨--≠⎩,解得3m =-;(2)若z 对应的点在第二象限,则226020m m m m ⎧+-<⎨-->⎩,解得3<1m -<-, 即m 的取值范围为()3,1--.18. 如图,在四棱柱1111ABCD A B C D -中,1AA ⊥平面ABCD ,底面ABCD 满足//AD BC且12,AB AD AA BD DC =====(1)求证:AB ⊥平面11ADD A ;(2)求直线AB 与平面11B CD 所成角的正弦值;(3)求点1C 到平面11B CD 的距离.(1)证明:1AA ⊥平面ABCD ,AB平面ABCD ,故1AA AB⊥.2AB AD ==,BD =,故222AB AD BD +=,故AB AD ⊥. 1AD AA A⋂=,故AB ⊥平面11ADD A .(2) 解:如图所示:分别以1,,AB AD AA 为,,x y z 轴建立空间直角坐标系, 则()0,0,0A ,()2,0,0B ,()12,0,2B ,()2,4,0C ,()10,2,2D .设平面11B CD 的法向量(),,n x y z =,则11100n B C n B D ⎧⋅=⎪⎨⋅=⎪⎩,即420220y z x y -=⎧⎨-+=⎩, 取1x =得到()1,1,2n =,()2,0,0AB =,设直线AB 与平面11B CD 所成角为θ,故2sin cos ,26n AB n AB n ABθ⋅====⋅.所以直线AB 与平面11B CD所成角的正弦值6;(3)解:设点1C 到平面11BCD 的距离为h ,则111111C B CD C B C D V V --=,而1111111111823323C B CD BC D V SCC -=⨯⨯=⨯⨯⨯=,又1B C ===1D C ===11B D =2221111B D D CB C +=,所以111B D D C ⊥,所以111111122B CD SB D DC =⨯⨯=⨯=.所以11111118333C B CD B CD V Sh h -=⨯⨯=⨯⨯=,解得h =, 所以点1C到平面11B CD的距离为3.19. 已知平行四边形ABCD 的三个顶点坐标为(2,1),(4,1),(2,3).A B C -- (1)求平行四边形ABCD 的顶点D 的坐标;(2)求平行四边形ABCD 的面积; (3)在ABC 中,求外心M 的坐标. 解:(1)AC 中点为()0,1,该点也为BD 中点,设(),D x y ,根据中点坐标公式得到:+4+10,122x y ==,解得:4,1x y =-=,所以()4,1D -;(2)()()4,1,2,3B C 故得到斜率为:31124k -==--,代入点()4,1B 坐标可得到直线BC :+50x y -= ,∴A 到BC=,又根据两点间距离公式得到:BC=, ∴四边形ABCD 的面积为12=. (3) 设点(),M x y ,则MA MB MC ==,即()()()()()()222222+2+14123x y x y x y +=-+-=-+-,化简得:3+3010x y x y -=⎧⎨--=⎩ ,解得10x y =⎧⎨=⎩,所以外心M 的坐标为()1,0M .20. 如图1,矩形ABCD ,1,2,AB BC ==点E 为AD 的中点,将ABE △沿直线BE 折起至平面PBE ⊥平面BCDE (如图2),点M 在线段PD 上,//PB 平面CEM .(1)求证:2MP DM =;(2)求二面角B PE C --的大小;(3)若在棱,PB PE分别取中点,F G,试判断点M与平面CFG的关系,并说明理由.(1)证明:设BD EC O⋂=,连接MO,//PB平面CEM,PB⊂平面PBD,平面PBD平面CEM MO=,//PB MO∴,MD ODMP OB∴=,//ED BC,12OD EDOB BC∴==,12MDMP∴=,即2MP DM=;(2)解:取BE中点Q,连接PQ,PB PE=,PQ BE∴⊥,又平面PBE⊥平面BCDE,PQ∴⊥平面BCDE,EC⊂平面BCDE,PQ EC∴⊥,BE EC==,2BC=,满足222BE EC BC+=,EC BE∴⊥,PQ BE Q⋂=,EC∴⊥平面PBE,EC ⊂平面PEC,∴平面PBE⊥平面PEC,∴二面角B PE C--的大小为90;(3)解:延长ED到N,使ED DN=,连接,,CN PN GN,,F G 分别是,PB PE 的中点,//FG BE ∴,2BC ED =,BC EN ∴=,//BC EN ,∴四边形BCNE 是平行四边形,//BE CN ∴,//FG CN ∴,则,,,F C N G 确定平面FCNG ,PEN 中,PD 是EN 边中线,且:2:1PM MD =,M ∴是PEN △的重心,又GN 为PE 边的中线,则M 在GN 上,∴M ∈平面CFG .21. 已知直线,:120l kx y k -++=,k ∈R ,直线l 交x 轴于点A ,交y 轴于点B ,坐标原点为O .(1)证明:直线l 过定点;(2)若直线l 在x 轴上截距小于0,在y 轴上截距大于0.设AOB 的面积为S ,求S 的最小值及此时直线的方程;(3)直接写出AOB 的面积S (0S >)在不同取值范围下直线l 的条数. (1)证明:直线l 的方程可变形为()()210k x y ++-=,由2010x y +=⎧⎨-=⎩,可得21x y =-⎧⎨=⎩,∴直线l 过定点()2,1-; (2)解:当0x =时,12y k =+;当0y =时,12kx k +=-,()12,0,0,12k A B k k +⎛⎫∴-+ ⎪⎝⎭,由题120120kk k +⎧-<⎪⎨⎪+>⎩,解得0k >,则()11121111244442222k S OA OB k k k k ⎛⎫+⎛⎫=⨯⨯=⨯⨯+=++≥= ⎪ ⎪ ⎪⎝⎭⎝⎭,当且仅当14k k =,即12k =时等号成立,故S 的最小值为4,此时直线l 的方程为240x y -+=;(3)解:由(2)111211222222k S OA OB k k k k +=⨯⨯=⨯⨯+=++,令()1222f k k k =++,则直线l 的条数等价于()y f k =与()0y S S =>的交点个数,画出函数图象,由图可知,当04S <<时,直线l 有2条; 当4S =时,直线l 有3条;当4S>时,直线l 有4条.22. 已知集合12,,,)|{1,1}(1,2,,)}{(n n i A x x x x i n =⋅⋅⋅∈-=⋅⋅⋅,,n x y A ∈,12,,)(,n x x x x =⋅⋅⋅,12,,)(,n y y y y =⋅⋅⋅,其中,{1,1}(1,2,,)i i x y i n ∈-=⋅⋅⋅.定义1122n n xy x y x y x y =++⋅⋅⋅+,若0xy =,则称x 与y 正交.(1)若()1,1,1,1x =,写出nA 中与x 正交的所有元素;(2)令,}{|n B x y x y A =∈若m B ∈,证明:m n +为偶数;(3)若n A A ⊆且A 中任意两个元素均正交,分别求出8,14n =时,A 中最多可以有多少个元素. (1)解:4A 中与x 正交的所有元素为:(1,1,1,1)--,(1,1,1,1),(1,1,1,1),(1,1,1,1),(1,1,1,1)--------,(1,1,1,1).--(2)证明:对于m B ∈,存在{}12(,,,),1,1n i x x x x x =∈-,{}12(,,,),1,1n i y y y y y =∈-,使得=x y m ,令1,,0,i i i i ix y x y δ=⎧=⎨≠⎩,1nii k δ==∑,当=i ix y 时,1i i x y =,当≠i i x y 时,1=-i i x y , 那么xy1()2ni i i x y k n k k n===--=-∑,所以2m n k +=为偶数.(3)解:当8n =时,不妨设1(1,1,1,1,1,1,1,1)x =,2(1,1,1,1,1,1,1,1)x =----,在考虑4n =时,共有4种互相正交的情况即:1111111111111111------,分别与12,x x 搭配,可形成8种情况,所以8n =时,A 中最多可以有8个元素. 当14n =时,不妨设1(1,1,1)y =(有14个1),2(1,1,,1,1,1,1)y =---(有7个1-,7个1),则12,y y 正交,令1214(,,,)a a a a =,1214(,,,)b b b b =,1214(,,,)c c c c =,且它们之间互相正交,设,,a b c 相应位置数字都相同的共有k 个,除去这k 列外,,a b 相应位置数字都相同的共有m 个,,b c 相应位置数字都相同的共有n 个,则(14)22140ab m k m k m k =+---=+-=,所以7m k +=,7n k +=,所以n m =, 由于(142)0ac m m k k m =--++--=,所以*727,2==∉m m N ,所以任意三个元素都不正交,综上,14n =,A 中最多可以有2个元素.。

2018-2019学年北京市海淀区人大附中高一(上)期末物理试卷

2018-2019学年北京市海淀区人大附中高一(上)期末物理试卷

2018-2019 学年北京市海淀区人大附中高一(上)期末物理试卷副标题题号一二三四总分得分一、单选题(本大题共11 小题,共33.0 分)1.如图 1,2017 年 12 月 29 日,高一各班举行了内容丰富、形式多样、积极向上、催人奋进的联欢活动,气球是节日联欢会上的常客。

图 1 是同学们联欢的部分场景。

图 2 是某班的一个“粘”在竖直墙上气球,处于静止状态,已知气球(包含其中的气体)的总重力大小为G.关于墙和周围空气对气球的合力,下列说法正确的是()A. 墙和周围空气对气球的合力大于GB. 墙和周围空气对气球的合力小于GC.墙和周围空气对气球的合力方向竖直向上D.墙和周围空气对气球的合力方向斜向左上2. 如图所示,将一个大小为6N 的力 F 沿相互垂直的x 轴和 y 轴分解.已知力 F 与 x 轴的夹角θ=60°,则力F在x轴上的分力F x的大小为()A.2 NB.3 NC.6 ND.12 N3. 如图所示,一个物块在与水平方向成α角的恒力F 作用下沿水平面向右运动一段距离 x,在此过程中,恒力 F 对物块所做的功为()A. B. C. Fxsinα D. Fxcosα4.功的单位是焦耳( J),焦耳与基本单位米( m)、千克( kg)、秒( s)之间的关系正确的是()A. 1J=1 kg?m/sB. 1J=1kg?m/s2C. 1J=1kg?m2/sD. 1J=1 kg?m2/s25.一物体以速度 v 运动,到达位置 A 开始受到向前但偏右的(观察者沿物体的运动方向看,下同)的合力,到达 B 时,合力改成与前进方向相同,到达 C 时,合力又突然改成向前但偏左,最终到达 D .以下四图表示物体全程的运动轨迹,正确的是()A. B.C. D.6. 小乔同学在2017 年 12 月 31 日迎来了自己的17 岁生日,她收到了小瑾送她的音乐盒,如图 5 所示,当音乐响起时,音乐盒上的女孩儿会随着音乐保持姿势原地旋转。

2022-2023海淀高三数学期中考试数学参考答案

2022-2023海淀高三数学期中考试数学参考答案

海淀区2022—2023学年第一学期期中练习高三数学参考答案一、选择题二、填空题(11 (12)(0,1)(1,)+∞ (13)答案不唯一,小于1的实数均可(14)2;1−或1 (15)2;(0,2)三、解答题(16)(本小题13分)解:(Ⅰ)设等差数列{}n a 的公差为d ,因为253,25a S ==, 所以113,54525.2a d a d +=⎧⎪⎨⨯+=⎪⎩解得11,2.a d =⎧⎨=⎩所以21n a n =−. (Ⅱ)选择条件③.因为11,3b q ==, 所以13n n b −=. 因为m k a b =, 即1213k m −−= .得1312k m −+=.因为*k ∈N ,13k −为奇数,131k −+为偶数,所以*m ∈N .可得1312k m −+=.(17)(本小题14分)解:(Ⅰ)2()2sin()cos()2cos ()14444f ππππ−=−−+−−22(2(1222=⋅+− 1=−.(Ⅱ)()sin 2cos 2)4f x x x x π=+=+.所以()f x 的最小正周期为22T π==π. (Ⅲ)因为0,2x π≤≤所以52,444x πππ≤+≤当242x ππ+=,即8x π=时,()f x 取得最大值,所以()f x 在区间[0,]2π上的最大值为()8f π=;当5244x ππ+=,即2x π=时,()f x 取得最小值, 所以()f x 在区间[0,]2π上的最小值为()12f π=−.(18)(本小题14分)解:(Ⅰ)()f x 的定义域为R .2'()2f x x x =−,令'()0f x =,120,2x x ==.由表可得,()f x 的单调递增区间为(,0),(2,)−∞+∞;单调递减区间为(0,2). (Ⅱ)由函数解析式及(Ⅰ)可知44(1),(0)0,(2),(3)033f f f f −=−==−=.①当(1,2)m ∈−时,4(1,],()3x m f x ∀∈−≠−,不符合题意;②当[2,3]m ∈时,()f x 在区间[1,]m −上的取值范围是4[,0]3−,符合题意;③当3m >时,由()f x 在区间(2,)+∞上单调递增可知()(3)0f m f >=,不符合题意. 综合上述,[2,3]m ∈(19)(本小题14分) 解:(Ⅰ)在ABD △中,75BAD ∠=︒,45ABD ∠=︒,所以60ADB ∠=︒.由正弦定理:sin sin AD AB ABD ADB =∠∠,得sin 45sin 60AD AB=︒︒,所以,sin4512sin60AD AB︒=⋅==︒(km).1sin sin75sin(4530))2BAD∠=︒=︒+︒=+=,所以ABD△的面积为11sin123622ABDS AB AD BAD=⋅⋅∠=⨯⨯=+△(2km).(Ⅱ)由30BAC∠=︒,60ABC∠=︒, 得45CAD∠=︒,AC=在ACD△中由余弦定理,得2222cos363166260 CD AC AD AC AD CAD=+−⋅⋅∠=⨯+⨯−⨯=.所以,CD=(km).即点C, D之间的距离为km.(20)(本小题15分)解:(Ⅰ)当2a=时,()e2sinxf x x=−,则(0)1f=.'()e2cosxf x x=−,则'(0)1f=−.曲线()f x在(0,(0))f处的切线方程为1y x=−+.(Ⅱ)当1a=时,记()()2e sin2xg x f x x=−=−−,则'()e cosxg x x=−.当(0,x∈π)时,0e e1,cos1x x>=<,所以'()'(0)0g x g>=.所以()g x在(0,)π上单调递增.因为(0)10,()e20g gπ=−<π=−>,所以函数()2y f x=−在区间(0,π)上有且仅有一个零点.(Ⅲ)设()()cos2h x f x x=+−e sin cos2x a x x=−+−.则'()e cos sinxh x a x x=−−.设()e cos sinxs x a x x=−−.则'()e cos sinxs x x a x=−+.因为当[0,]x ∈π时,0e e 1,cos 1,sin 0x x x ≥=, 所以当0a ≥时,[0,]x ∈π时,'()0s x ≥, 所以'()h x 在区间[0,]π上单调递增()*.(1)当1a >时,'(0)10h a =−<,'()e 0h a ππ=+>, 且'()h x 在区间[0,]π上单调递增, 所以存在唯一0(0,)x ∈π,使得0'()0h x =. 当0(0,)x x ∈时,'()0h x <, 所以()h x 在区间0(0,)x 上单调递减. 可得0()(0)0h x h <=,所以与题意不符.(2)当1a =时,()e sin cos 2x h x x x =−+−. '()e cos sin x h x x x =−−由()*可知:'()h x 在区间[0,]π上单调递增, 所以当[0,]x ∈π时,'()'(0)0h x h ≥=. 所以()h x 在区间[0,]π上单调递增. 所以()(0)0h x h =区间[0,]π上恒成立. 符合题意. (3)当1a <时,()e sin cos 2e sin cos 2x x h x a x x x x =−+−>−+−.由(2)可知,此时()0h x >在区间[0,]π上恒成立. 综上所述,实数a 的取值范围是(,1]−∞. (21)(本小题15分) 解:(Ⅰ)(ⅰ)数表1不具有性质(2)p .理由:2,13,12,23,22,33,3||||||12a a a a a a −+−+−=≠.(ⅱ)存在. 3t =时,数表2具有性质()p t .(Ⅱ)不存在数表2023m A ⨯具有性质(6)p .假设存在m 使得数表2023m A ⨯具有性质(6)p ,则,11,1,21,2,1,||||||6(1,2,,1)i i i i i n i n a a a a a a i m +++−+−++−==−.即在这两行中,有6列的数不同,设其中有k 列是第i 行的数为1,第1i +行的数为0,则有6k −列是第i 行的数为0,第1i +行的数为1.所以,从第i 行到第1i +行,一共增加了62k −个1,1的个数的奇偶性不变. ……7分 所以,任意两行中,1的个数的奇偶性相同.与数表2023m A ⨯第一行有2023个1,最后一行有0个1矛盾. 所以,不存在具有性质(6)p 的数表2023m A ⨯.(Ⅲ)()f t 的最大值的为1n +.定义1m −行n 列的数表(1)m n B −⨯: 其第i 行第j 列为,,1,||1,2,,1(1,2,,)i j i j i j b a a i m j n +=−=−=,.则,{0,1}i j b ∈,且,0i j b =表示,1,,i j i j a a +两数相同,,1i j b =表示,1,,i j i j a a +两数不同. 因为数表m n A ⨯的第1行确定,所以给定数表(1)m n B −⨯后,数表m n A ⨯唯一确定. ①先证()1f t n ≤+.我们按照如下方式,构造数表n n B ⨯:对于第21s −行和第2s 行,1,2,,2n s =, 令21,2121,21,0s s s s b b −−−==,2,212,20,1s s s s b b −==,且在这两行其余的2n −列中,任选相同的1t −列都为1,其他列都为0. 于是可得到具有性质()p t 的数表(1)n n A +⨯如下:第1列第2列第3列第4列第n -1列第n 列第1行 第3行 第5行 … 第n +1行 即对于每个{2,3,,1}t n ∈−,当1m n =+时,都存在数表m n A ⨯具有性质()p t .所以()1f t n ≤+.②再证1t n =−时,()1f t n ≥+. 记,1,2,...(1,2,,)i i i i n S a a a i m =+++=.因为1t n =−是奇数,所以i S 与+1i S 的奇偶性不相同(1,2,,1i m =−).因为10m S n S ==,, 所以m 是奇数.我们考虑(1)m n B −⨯的第i 行和1i +行,因为1t n =−,所以这两行中都有1n −列为1,1列为0. 若这两行相同,则数表m n A ⨯的第i 行和第2i +行相同,2i i S S +=.若这两行不同,设其分别在第,p q 列为0()p q ≠,则数表m n A ⨯的第i 行和第2i +行只在第,p q 列上不同,其他列都相同,2||2i i S S +−≤. 因为1,0m S n S ==,其中n 是偶数. 所以1224311||||22m m m m m m n S S S S S S S S −−−−=−=−+−++−≤⨯. 所以1m n ≥+,即(1)1f n n −≥+. 结合①,(1)1f n n −=+.综上所述,()f t 的最大值的为1n +.。

北京市海淀区2013-2014学年高二下学期期中考试数学理试题 扫描版含答案

北京市海淀区2013-2014学年高二下学期期中考试数学理试题 扫描版含答案

海淀区高二年级第二学期期中练习数学(理科)参考答案及评分标准 2014.04一. 选择题:本大题共8小题,每小题4分,共32分.(8)讲评提示:考察函数ex . 二.填空题:本大题共6小题,每小题4分,共24分. (9)(2,)+ (10)4π (11)16(12)2(13)111111()2321n n n +++++<+∈-N* ,12k + (注:每空2分)(14)20(,0)a b (注:回答出20(,0)a b 给4分;答案为0(,0)ab b 或20(,0)b b 或22(,0)2a bb +给3分;其它答案酌情给1~2分;未作答,给0分)三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分10分)证明:(Ⅰ)连接AC 交BD 于点O ,连接OE . 在矩形ABCD 中,AO OC =. 因为 AE EP =,所以 OE ∥PC . ………………………2分 因为 PC Ë平面BDE ,OE Ì平面BDE , 所以 PC ∥平面BDE . ………………………5分 (Ⅱ)在矩形ABCD 中,BC CD ^. 因为 PD BC ^,CDPD D =,PD Ì平面PDC ,DC Ì平面PDC ,所以 BC ^平面PDC . ………………………8分 因为 PC Ì平面PDC ,所以 BC PC ^.OAEBCDP即 PBC ∆是直角三角形. ………………………10分(16)(本小题满分11分)解:(Ⅰ)因为 ()332f x ax x =++,所以 2'()33f x ax =+. ………………………2分 因为 函数()f x 的一个极值点是1, 所以 '(1)330f a =+=.解得:1a =-. ………………………4分 经检验,1a =-满足题意. 所以 (2)0,'(2)9f f ==-.所以曲线()y f x =在点(2,(2))f 处的切线方程是9(2)y x =--,即9180x y +-=. ………………………6分 (Ⅱ)由(Ⅰ)知:2'()33f x x =-+.令'()0f x =,得 121,1x x =-=. ………………………7分 当x 在[2,3]-上变化时,()'(),f x f x 的变化情况如下表………………………10分 所以 函数()f x 在[2,3]-上的最大值为4,最小值为-16. ………………………11分(17)(本小题满分12分) 解:(Ⅰ)因为()e a xg x x -=,x ∈R ,所以'()(1)ea xg x x -=-. ………………………2分令'()0g x =,得1x =.当x 变化时,()g x 和'()g x 的变化情况如下:故()g x 的单调递减区间为;单调递增区间为. ………………………5分 (Ⅱ)因为 ()e a x h x x -=+, 所以 '()1ea xh x -=-. ………………………6分令'()0h x =,得x a =.当x 变化时,()h x 和'()h x 的变化情况如下:即()h x 的单调递增区间为;单调递减区间为. ………………………8分 所以()h x 的最小值为()1h a a =+.①当10a +>,即1a >-时,函数()h x 不存在零点.②当10a +=,即1a =-时,函数()h x 有一个零点. ………………………10分 ③当10a +<,即1a <-时,(0)e 0ah =>, 下证:(2)0h a >.令()e 2x m x x =-,则'()e 2x m x =-. 解'()e 20x m x =-=得ln 2x =.当ln 2x >时,'()0m x >,所以 函数()m x 在[)ln 2,+∞上是增函数. 取1ln 2x a =->>,得:ln2()e 2e 2ln 222ln 20a m a a --=+>-=->. 所以 (2)e 2()0a h a a m a -=+=->.结合函数()h x 的单调性可知,此时函数()h x 有两个零点.综上,当1a >-时,函数()h x 不存在零点;当1a =-时,函数()h x 有一个零点;当1a <-时,函数()h x 有两个零点. ………………………12分 (18)(本小题满分11分) (Ⅰ)解:(1)不是,因为线段12A B 与线段12A A 不垂直;(2)不是,因为线段23B B 与线段23A A 不垂直. ………………………2分(Ⅱ)命题“对任意n ∈N 且2n >,总存在一条折线12n C A A A ---:有共轭折线”是真命题.理由如下:当n 为奇数时,不妨令21,2,3,4,n k k =-=,取折线1221k C A A A ----:.其中(,)(1,2,,21)i i i A a b i k =-,满足211(1,2,,21),0(1,2,,),i i a i i k b i k -=-=-==21(1,2,,1)i b i k ==-.则折线C 的共轭折线为折线C 关于x 轴对称的折线.如图所示.当n 为偶数时,不妨令2,2,3,4,n k k ==,取折线122k C A A A ---:.其中(,)(1,2,,2)i i i A a b i k =,满足22121(1,2,,21),2,0(1,2,,),1(1,2,,)i k i i a i i k a k b i k b i k -=-=-=====.折线C的共轭折线为折线122'k C B B B ---:.其中(,)(1,2,,2)i i i B x y i k =满足22212211(1,2,,23),21,21,2,0(1,2,,1),i k k k i x i i k x k x k x k y i k ---=-=-=-=+===-2222121(1,2,,2),3,1,1i k k k y i k y y y --=-=-=-=-=.如图所示. ………………………7分注:本题答案不唯一.(Ⅲ)证明:假设折线1234B B B B ---是题设中折线C 的一条共轭折线(其中11B A =,44B A =),设1(,)t t t t B B x y += (1,2,3t =),显然,t t x y 为整数. 则由11t t t t B B A A ++⊥,得:11223312312330,30,30,9,1. x yx yx yx x xy y y+=⎧⎪-=⎪⎪+=⎨⎪++=⎪⎪++=⎩①②③④⑤由①②③式得11223,,.3333 y x y x y x=-⎧⎪=⎨⎪=-⎩这与⑤式矛盾,因此,折线C无共轭折线. ………………………11分注:对于其它正确解法,相应给分.。

人教版北京市海淀区2018-2019学年七年级(下)期中考试数学试卷(含答案)

人教版北京市海淀区2018-2019学年七年级(下)期中考试数学试卷(含答案)

2018-2019学年北京市海淀区七年级(下)期中数学试卷一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.4的算术平方根是()A.16B.±2C.2D.2.在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.4.如图所示,AB∥CD,若∠1=144°,则∠2的度数是()A.30°B.32°C.34°D.36°5.在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,内错角相等D.两直线平行,同位角相等6.如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A.4B.5C.6D.77.小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x轴、y轴正方向,图中点A的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是()A.(3.2,1.3)B.(﹣1.9,0.7)C.(0.7,﹣1.9)D.(3.8,﹣2.6)8.我们知道“对于实数m,n,k,若m=n,n=k,则m=k”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a,b,c是直线,若a∥b,b∥c,则a∥c.②a,b,c是直线,若a⊥b,b⊥c,则a⊥c.③若∠α与∠β互余,∠β与∠γ互余,则∠α与∠γ互余.其中正确的命题是()A.①B.①②C.②③D.①②③9.如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x 值可能为()A.1B.6C.9D.1010.根据表中的信息判断,下列语句中正确的是x1515.115.215.315.415.515.615.715.815.916 x2225228.01231.04234.09237.16240.25243.36246.49249.64252.81256()A.=1.59B.235的算术平方根比15.3小C.只有3个正整数n满足15.5D.根据表中数据的变化趋势,可以推断出16.12将比256增大3.19二、填空题(本大题共16分,每小题2分)11.(2分)将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为.12.(2分)如图,数轴上点A,B对应的数分别为﹣1,2,点C在线段AB上运动.请你写出点C可能对应的一个无理数.13.(2分)如图,直线a,b相交,若∠1与∠2互余,则∠3=.14.(2分)依据图中呈现的运算关系,可知a=,b=.15.(2分)平面直角坐标系xOy中,已知线段AB与x轴平行,且AB=5,若点A的坐标为(3,2),则点B的坐标是.16.(2分)一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点D在斜边AB上.现将三角板DEF绕着点D顺时针旋转,当DF第一次与BC平行时,∠BDE的度数是.17.(2分)如图,电子宠物P在圆上运动,点O处设置有一个信号转换器,将宠物P的位置信号沿着垂直于线段OP的方向OQ传送,被信号接收板l接收.若传送距离越近,接收到的信号越强,则当P点运动到图中号点的位置时,接收到的信号最强(填序号①,②,③或④).18.(2分)若两个图形有公共点,则称这两个图形相交,否则称它们不相交.回答下列问题:(1)如图1,直线P A,PB和线段AB将平面分成五个区域(不包含边界),当点Q落在区域时,线段PQ与AB相交(直接填写区域序号);(2)在设计印刷线路板时,常常会利用折线连接元件,要求所有连线不能相交.如图2,如果沿着图中的格线连接印有相同字母的元件,那么一共有种连线方案.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.(8分)计算:(1)+()2﹣;(2).20.(8分)求出下列等式中x的值:(1)12x2=36;(2).21.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(﹣3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:;(2)若中国人民大学的坐标为(﹣3,﹣4),请在坐标系中标出中国人民大学的位置.22.有一张面积为100cm2的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为150cm2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.四、解答题(本大题共11分,23题5分,24题6分)23.(5分)如图,点D,点E分别在∠BAC的边AB,AC上,点F在∠BAC内,若EF∥AB,∠BDF=∠CEF.求证:DF∥AC.24.(6分)已知正实数x的平方根是m和m+b.(1)当b=8时,求m;(2)若m2x+(m+b)2x=4,求x的值.五、解答题(本大题共19分,25~26每题6分,27题7分)25.(6分)在平面直角坐标系xOy中,已知点A(a,a),B(a,a﹣3),其中a为整数.点C在线段AB上,且点C的横纵坐标均为整数.(1)当a=1时,画出线段AB;(2)若点C在x轴上,求出点C的坐标;(3)若点C纵坐标满足1,直接写出a的所有可能取值:.26.(6分)如图,已知AB∥CD,点E是直线AB上一个定点,点F在直线CD上运动,设∠CFE=α,在线段EF上取一点M,射线EA上取一点N,使得∠ANM=160°.(1)当∠AEF=时,α=;(2)当MN⊥EF时,求α;(3)作∠CFE的角平分线FQ,若FQ∥MN,直接写出α的值:.27.(7分)对于平面直角坐标系xOy中的不同两点A(x1,y1),B(x2,y2),给出如下定义:若x1x2=1,y1y2=1,则称点A,B互为“倒数点”.例如,点A(,1),B(2,1)互为“倒数点”.(1)已知点A(1,3),则点A的倒数点B的坐标为;将线段AB水平向左平移2个单位得到线段A′B′,请判断线段A′B′上是否存在“倒数点”.(填“是”或“否”);(2)如图所示,正方形CDEF中,点C坐标为(),点D坐标为(),请判断该正方形的边上是否存在“倒数点”,并说明理由;(3)已知一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值:.2018-2019学年北京市海淀区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:C.2.【解答】解:点P(﹣3,2)在第二象限,故选:B.3.【解答】解:根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选:D.4.【解答】解:∵AB∥CD,∴∠1=∠CAB=144°,∵∠2+∠CAB=180°,∴∠2=180°﹣∠CAB=36°,故选:D.5.【解答】解:有平行线的画法知道,得到同位角相等,即同位角相等两直线平行.∴同位角相等两直线平行.故选:B.6.【解答】解:根据题意得:平移折线AEB,得到折线CFD,则平移过程中扫过的图形为矩形ABCD,所以其面积为2×3=6,故选:C.7.【解答】解:由图可知,(﹣1.9,0.7)距离原点最近,故选:B.8.【解答】解:①a,b,c是直线,若a∥b,b∥c,则a∥c,是真命题.②a,b,c是直线,若a⊥b,b⊥c,则a∥c,是假命题.③若∠α与∠β互余,∠β与∠γ互余,则∠α=∠γ,是假命题;故选:A.9.【解答】解:A.将x=1代入程序框图得:输出的y值为1,不符合题意;B.将x=6代入程序框图得:输出的y值为3,不符合题意;C.将x=9代入程序框图得:输出的y值为3,不符合题意;D.将x=10代入程序框图得:输出的y值为4,符合题意;故选:D.10.【解答】解:A.根据表格中的信息知:,∴=1.59,故选项不正确;B.根据表格中的信息知:<,∴235的算术平方根比15.3大,故选项不正确;C.根据表格中的信息知:15.52=240.25<n<15.62=243.36,∴正整数n=241或242或243,∴只有3个正整数n满足15.5,故选项正确;D.根据表格中的信息无法得知16.12的值,∴不能推断出16.12将比256增大3.19,故选项不正确.故选:C.二、填空题(本大题共16分,每小题2分)11.【解答】解:将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为(﹣1,7),故答案为:(﹣1,7),12.【解答】解:由C点可得此无理数应该在﹣1与2之间,故可以是,故答案为:(答案不唯一,无理数在﹣1与2之间即可),13.【解答】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°﹣45°=135°,故答案为:135°.14.【解答】解:依据图中呈现的运算关系,可知2019的立方根是m,a的立方根是﹣m,∴m3=2019,(﹣m)3=a,∴a=﹣2019;又∵n的平方根是2019和b,∴b=﹣2019.故答案为:﹣2019,﹣2019.15.【解答】解:∵线段AB与x轴平行,∴点B的纵坐标为2,点B在点A的左边时,3﹣5=﹣2,点B在点A的右边时,3+5=8,∴点B的坐标为(﹣2,2)或(8,2).故答案为:(﹣2,2)或(8,2).16.【解答】解:∵DF∥BC,∴∠FDB=∠ABC=45°,∴∠EDB=∠DFB﹣∠EDF=45°﹣30°=15°,故答案为15°.17.【解答】解:根据垂线段最短,得出当OQ⊥直线l时,信号最强,即当当P点运动到图中①号点的位置时,接收到的信号最强;故答案为:①.18.【解答】解:(1)当点Q落在区域②时,线段PQ与AB相交;(2)点A沿向上两个格、向右三个格、向下一个格连接,也可以沿向上两个格、向右两个格、向下一个格、向右一个格连接,两种方法;点B沿向下两个格、向右一个格连接,或向下一个格、向右一个格、向下一个格连接,或向右一个格、向下两个格连接,或向右一个格、向下一个格、向左一个格、向下一个格、向右一个格连接,共四种方法;点C只有一种连接方法,所以共6种方法.故答案为:②,6.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.【解答】解:(1)原式==(2)原式==.20.【解答】解:(1)x2=3∴x=±(2)x3﹣24=3x3=27∴x=321.【解答】解:(1)北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:22.【解答】解:设长方形信封的长为5xcm,宽为3xcm.由题意得:5x•3x=150,解得:x=(负值舍去)所以长方形信封的宽为:3x=3,∵=10,∴正方形贺卡的边长为10cm.∵(3)2=90,而90<100,∴3<10,答:不能将这张贺卡不折叠的放入此信封中.四、解答题(本大题共11分,23题5分,24题6分)23.【解答】证明:∵EF∥AB,∴∠CEF=∠A,∵∠BDF=∠CEF,∴∠BDF=∠A,∴DF∥AC.24.【解答】解:(1)∵正实数x的平方根是m和m+b ∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=.五、解答题(本大题共19分,25~26每题6分,27题7分)25.【解答】解:(1)(2)由题意可知,点C的坐标为(a,a),(a,a﹣1),(a,a﹣2)或(a,a﹣3),∵点C在x轴上,∴点C的纵坐标为0.由此可得a的取值为0,1,2或3,因此点C的坐标是(0,0),(1,0),(2,0),(3,0)(3)a的所有可能取值是2,3,4,5.故答案为:2,3,4,5.26.【解答】解:(1)∵AB∥CD,∴∠AEF+∠CFE=180°,∵∠CFE=α,∠AEF=,∴α+=180°,∴α=120°;(2)如,1所示,过点M作直线PM∥AB,由平行公理推论可知:AB∥PM∥CD.∵∠ANM=160°,∴∠NMP=180°﹣160°=20°,又∵NM⊥EF,∴∠NMF=90°,∠PMF=∠NMF﹣∠NMP=90°﹣20°=70°.∴α=180°﹣∠PMF=180°﹣70°=110°;(3)如图2,∵FQ平分∠CFE,∴∠QFM=,∵AB∥CD,∴∠NEM=180°﹣α,∵MN∥FQ,∴∠NME=,∵∠ENM=180°﹣∠ANM=20°,∴20°++180°﹣α=180°,∴α=40°.故答案为:120°,40°.27.【解答】解:(1)设A(x1,y1),B(x2,y2),∵x1x2=1,y1y2=1,A(1,3),∴x2=1,y2=,点B的坐标为(1,),将线段AB水平向左平移2个单位得到线段A′B′,则A′(﹣1,3),B′(﹣1,),∵﹣1×(﹣1)=1,3×=1,∴线段A′B′上存在“倒数点”,故答案为:(1,);是;(2)正方形的边上存在“倒数点”M、N,理由如下:①若点M(x1,y1)在线段CF上,则x1=,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=,点N(x2,y2)应当满足y2=,∴点N只可能在线段DE上,N(,),此时点M(,)在线段EF上,满足题意;∴该正方形各边上存在“倒数点”M(,),N(,);(3)如图所示:一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,则该正方形有两条边在坐标轴上,∵坐标轴上的点的横坐标或纵坐标为0,∴在坐标轴上的边上不存在倒数点,又∵该正方形各边上不存在“倒数点”,∴各边上点的横坐标和纵坐标的绝对值都≤1,即正方形面积的最大值为1;故答案为:1.。

北京市海淀区2020学年九年级上期期中考试数学试卷及答案

北京市海淀区2020学年九年级上期期中考试数学试卷及答案

D2014——2015学年海淀初三数学第一学期期中测试2014.11一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.下列图形是中心对称图形的是( )A B C D2.将抛物线2y x =向上平移1个单位,得到的抛物线的解析式为( ) A.21y x =+ B.21y x =- C.()21y x =+D.()21y x =-3.袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋子中摸出1个球.下面说法正确的是( ) A.这个球一定是黑球 B.这个球一定是白球C.“摸出黑球”的可能性大D.“摸出黑球”和“摸出白球”的可能性一样大 4.用配方法解方程2230x x --=时,配方后得到的方程为( )A.2(1)=4x - B.2(1)4x -=- C.2(1)=4x + D.2(1)=4x +- 5.如图,O 为正五边形ABCDE 的外接圆,O 的半径为2,则AB 的长为( )A.5πB.25πC.35πD.45π 6.如图,AB 是O 的直径,CD 是O 的弦,59ABD ∠=︒,则C ∠等于( )A.29︒B.31︒C.59︒D.62︒7.已知二次函数24y x x m =-+(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程240x x m -+=的两个实数根是( )A.121,1x x ==-B.121,2x x =-=C.121,0x x =-=D.121,3x x ==8.如图,C 是半圆O 的直径AB 上的一个动点(不与A ,B 重合),过C 作AB 的垂线交半圆于点D ,以点D ,C ,O 为顶点作矩形DCOE . 若AB =10,设AC =x ,矩形DCOE 的面积为y ,则下列图象中能表示y 与x 的函数关系的图象大致是( )A B CD二、填空题(本题共16分,每小题4分)9.如图,PA ,PB 分别与O 相切于点A ,B ,连接AB .60APB ∠=︒,5AB =,则PA 的长是 .10.若关于x 的一元二次方程240x x k -+=有两个相等的实数根,ED C BA PEDCBA则k 的值为_________.11.在平面直角坐标系xOy 中,函数2y x =的图象经过点11(,)M x y ,22(,)N x y 两点,若1 42x -<<-,202x <<,则1y 2y .(用“<”,“=”或“>”号连接)12.如图,正方形ABCD 中,点G 为对角线AC 上一点,AG=AB . ∠CAE =15°且AE=AC ,连接GE .将线段AE 绕点A 逆时针旋转得到 线段AF ,使DF=GE ,则∠CAF 的度数为____________. 三、解答题(本题共30分,每小题5分) 13.解方程:2310x x +-=.14.如图,∠DAB =∠EAC ,AB =AD ,AC =AE .求证:BC =DE .15.已知二次函数的图象经过点(0,1),且顶点坐标为(2,5),求此二次函数的解析式.16.如图,四边形ABCD 内接于⊙O ,∠ABC =130°,求∠OAC 的度数.17.若1x =是关于x 的一元二次方程22420x mx m -+=的根,求代数式()2213+m -的值.18.列方程解应用题:某工厂废气年排放量为450万立方米,为改善空气质量,决定分两期治理,使废气的排放量减少到288万立方米.如果每期治理中废气减少的百分率相同,求每期减少的百分率. 四、解答题(本题共20分,每小题5分)19.下图是某市某月1日至15日的空气质量指数趋势图,空气质量指数不大于100表示空气质量优良,空气质量指数大于200表示空气重度污染.(1)由图可知,该月1日至15日中空气重度污染的有 天; (2)小丁随机选择该月1日至15日中的某一天到达该市,求小丁到达该市当天空气质量优良的概率. 20.已知关于x 的方程2(3)30ax a x +--=(0)a ≠.(1)求证:方程总有两个实数根;(2)若方程有两个不相等的负整数根,求整数a 的值.21.如图,AB 是⊙O 的直径,CD 是弦,CD ⊥AB 于点E ,点G 在直径DF 的延长线上,∠D =∠G =30.GDCC空气质量指数(1)求证:CG 是⊙O 的切线; (2)若CD =6,求GF 的长. 22.阅读下面材料:小丁在研究数学问题时遇到一个定义:对于排好顺序的三个数:123,,x x x ,称为数列123,,x x x .计算1x ,122x x +,1233x x x ++,将这三个数的最小值称为数列123,,x x x 的价值.例如,对于数列2,1-,3,因为22=,2(1)122=+-,2(1)3433+-+=,所以数列2,1-,3的价值为12. 小丁进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的价值.如数列1-,2,3的价值为12;数列3,1-,2的价值为1;….经过研究,小丁发现,对于“2,1-,3”这三个数,按照不同的排列顺序得到的不同数列中,价值的最小值为12. 根据以上材料,回答下列问题:(1)数列4-,3-,2的价值为______;(2)将“4-,3-,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的价值的最小值为______ ,取得价值最小值的数列为___________(写出一个即可); (3)将2,9-,a (1)a >这三个数按照不同的顺序排列,可得到若干个数列. 若这些数列的价值的最小值为1,则a 的值为__________.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy 中,抛物线2(1)y x m x m =---(0)m >与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 的坐标;(2)当15ABC S △=时,求该抛物线的表达式;(3)在(2)的条件下,经过点C 的直线l :y kx b =+(0)k <与抛物线的另一个交点为D . 该抛物线在直线l 上方的部分与线段CD 组成一个新函数的图象. 请结合图象回答:若新函数的最小值大于8-,求k 的取值范围.24.将线段AB 绕点A 逆时针旋转60°得到线段AC ,继续旋转α(0120)α<<得到线段AD ,连接CD .(1)连接BD ,①如图1,若α=80°,则∠BDC 的度数为 ;②在第二次旋转过程中,请探究∠BDC 的大小是否改变.若不变,求出∠BDC 的度数;若改变,请说明理由.(2)如图2,以AB 为斜边作直角三角形ABE ,使得∠B =∠ACD ,连接CE ,DE . 若∠CED =90°,求α的值.25.如图,在平面直角坐标系xOy 中,点(,)P a b 在第一象限.以P 为圆心的圆经过原点,与y 轴的另一个交点为A .点Q 是线段OA 上的点(不与O ,A 重合),过点Q 作PQ 的垂线交⊙P 于点(,)B m n ,其中0≥m .(1)若5b =,则点A 坐标是________________; (2)在(1)的条件下,若OQ =8,求线段BQ 的长;(3)若点P 在函数2y x =(0)x >的图象上,且△BQP 是等腰三角形. ①直接写出实数a 的取值范围:__________________;②在12,4PQ 的长度可以为 ,并求出此时点B 的坐标.海淀区九年级第一学期期中练习2014.11数学试卷答案及评分参考阅卷须知:1. 为便于阅卷,本试卷答案中有关解答题的推导步骤写的较为详细,阅卷时,只要考生将主要过程正确写出即可.2. 若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3. 评分参考中所注分数,表示考生正确做到此步应得的累加分数.9. 5 ; 10. 4 ; 11. > ; 12. 30°或60°.(注:每个答案2分) 三、解答题(本题共30分,每小题5分) 13.(本小题满分5分)解:∵131a ,b ,c ===-, …………………………………………………………………1分∴2341(1)=13>0∆=-⨯⨯-. … ……………………………………………………2分∴x ==∴12x =. ……………………………………………………5分 14.(本小题满分5分)证明:∵∠DAB =∠EAC ,∴∠DAB +∠BAE =∠EAC+∠BAE .∴∠DAE =∠BAC . ………………………………………………………………1分 在△BAC 和△DAE 中,∴△BAC ≌△DAE . ………………………………………………………………4分 ∴BC =DE . ………………………………………………………………………5分 15.(本小题满分5分)解:设二次函数的解析式为()225y a x =-+ (0)a ≠.……………………………1分∵二次函数的图象经过点(0,1).∴()21025a =-+.………………………………………………………………2分 ∴1a =-. …………………………………………………………………………4分 ∴二次函数的解析式为241y x x =-++.………………………………………5分 16. (本小题满分5分)解:∵四边形ABCD 内接于⊙O ,∴∠ADC +∠ABC =180°. …………………………………………………………1分 ∵∠ABC =130°,∴∠ADC =180°-∠ABC =50°. …………………………………………………2分∴∠AOC =2∠ADC =100°. ………………………………………………………3分 ∵OA=OC ,∴∠OAC =∠OCA . ……………………………………………………………4分∴∠OAC =1(180)402AOC -∠=. ……………………………………………… 5分17. (本小题满分5分)解:依题意,得 21420m m -+=. ……………………………………………………2分∴2241m m -=-. ………………………………………………………………3分 ∴()()2222132213245154+=m m m m m --++=-+=-+=. …………5分 18. (本小题满分5分)解:设每期减少的百分率为x .…………………………………………………… ……1分 由题意,得()24501288x -=. ……………………………………………… ………2分 解方程得 115x =,295x =. ………………………………………………… ……3分经检验,915x =>不合题意,舍去;15x = 符合题意. ……………… …………4分 答:每期减少的百分率为20%. ……………………………………………… ………5分四、解答题(本题共20分,每小题5分) 19. (本小题满分5分)解:(1)3. …………………………………………………………………………… 2分(2)小丁随机选择该月1日至15日中的某一天到达该市,则到达该市的 日期有15种不同的选择,在其中任意一天到达的可能性相等. ……………3分 由图可知,其中有9天空气质量优良. ………………………………… ……4分 所以,P (到达当天空气质量优良)93155==. …………………… ………5分 20. (本小题满分5分)解:(1)∵0a ≠,∴原方程为一元二次方程.∴()234(3)a a ∆=--⨯⨯- ………………………………………………1分()23a =+.∵()230≥a +.∴此方程总有两个实数根. …………………………………………………2分 (2)解原方程,得 11x =-,23x a=. ……………………………………………3分 ∵此方程有两个负整数根,且a 为整数,∴1a =-或3-. …………………………………………………………………4分 ∵12x x ≠,∴3a ≠-.∴1a =-. ………………………………………………………………………5分 21. (本小题满分5分) (1)证明:连接OC .∵OC=OD ,∠D =30°, ∴∠OCD =∠D = 30°.…………………………………1分 ∵∠G =30°,∴∠DCG =180°-∠D -∠G =120°. ∴∠GCO =∠DCG -∠OCD =90°. ∴OC ⊥CG .又∵OC 是⊙O 的半径.∴CG 是⊙O 的切线.……………………………………2分(2)解:∵AB 是⊙O 的直径,CD ⊥AB ,∴132CE CD ==. ………………………………………………………3分∵在Rt △OCE 中,∠CEO =90°,∠OC E =30°, ∴12OE OC =,222OC OE CE =+. 设OE x =,则2OC x =. ∴()22223x x =+.解得x =.∴OC = ………………………………………………………………4分 ∴OF =在△OCG 中,∵∠OCG =90°,∠G =30°, ∴2OG OC ==∴GF GO OF =-= ……………………………………………………5分22. (本小题满分5分)答:(1)53. …………………………………………………………………………………1分(2)12, ………………………………………………………………………………2分3,2,4--或2,3,4--.(写出一个即可)…………………………………………3分 (3)11或4.(每个答案各1分) ……………………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. (本小题满分7分)解:(1)∵ 抛物线2(1)y x m x m =---(0)m >与x 轴交于A 、B 两点,∴ 令0y =,即 2(1)0x m x m ---=.解得11x =-,2x m =. …………………………………………………1分又∵ 点A 在点B 左侧,且0m >,∴ 点A 的坐标为(1,0)-. …………………………………………………2分(2)由(1)可知点B 的坐标为(0)m ,.∵抛物线与y 轴交于点C ,∴点C 的坐标为(0,)m -. (3)分∵0m >,∴1AB m =+,OC m =. ∵15△ABC S =, ∴1(1)152m m +=. ∴6m =-或5m =. ∵0m >,∴5m =.∴抛物线的表达式为245y x x =--. ………………………4分(3)由(2)可知点C 的坐标为(0,5)-.∵直线l :y kx b =+(0)k <经过点C ,∴5b =-. ………………………………………5分 ∴直线l 的解析式为5y kx =-(0)k <. ∵2245(2)9y x x x =--=--,∴当点D 在抛物线顶点处或对称轴左侧时,新函数的最小值为9-,不符合题意. 当点D 在抛物线对称轴右侧时,新函数的最小值有可能大于8-. 令8y =-,即2458x x --=-.解得 11x =(不合题意,舍去),23x =. ∴抛物线经过点(3,8)-.当直线5y kx =-(0)k <经过点(3,8)-时,可求得1k =-.…………………6分 由图象可知,当10k -<<时新函数的最小值大于8-. ………………………7分24.(本小题满分7分) 解:(1)①30°. …………………………………………………………………………1分②不改变,∠BDC 的度数为30.方法一:由题意知,AB=AC=AD .∴点B 、C 、D 在以A 为圆心,AB 为半径的圆上.…………………………2分 ∴∠BDC=12∠BAC =30.……………………………………………………3分 方法二:由题意知,AB=AC=AD . ∵AC =AD ,∠CAD =α, ∴1801=9022ADC C αα-==-∠∠.…………………………………2分 ∵AB=AD ,∠BAD =60α+,∴()18060120160222ADB B ααα-+-====-∠∠. ∴11(90)(60)3022BDC ADC ADB αα=-=---=∠∠∠.…………3分 (2)过点A 作AM ⊥CD 于点M ,连接EM .∴90AMC ∠=.在△AEB 与△AMC 中,∴△AEB ≌△AMC . ………………………………………………………4分∴AE AM =,BAE CAM ∠=∠.∴60EAM EAC CAM EAC BAE BAC ∠=∠+∠=∠+∠=∠=.∴△AEM 是等边三角形.∴EM AM AE ==. …………………………………………………………5分 ∵AC AD =,AM CD ⊥ , ∴CM DM =. 又90DEC ∠=,∴EM CM DM ==.∴AM CM DM ==. …………………………………………………………6分 ∴点A 、C 、D 在以M 为圆心,MC 为半径的圆上.∴90CAD α=∠=. …………………………………………………………7分 25. (本小题满分8分) 解: (1)(0,10). …………………………………………………………………1分(2)连接BP 、OP ,作PH ⊥OA 于点H .∵5,b =PH ⊥OA , ∴152OH AH OA ===.∵OQ =8,∴3QH OQ OH =-=.B在Rt △QHP 中,22229PQ QH PH PH =+=+.在Rt PHO △中,2222225PO OH PH PH BP =+=+=.在Rt △BQP 中,22222(25)(9)16BQ BP PQ PH PH =-=+-+=. ∴4BQ =.……………………………………………………………………3分(3)①1≥a .……………………………………………………………………………4分……………………………………………………………………………5分 解:∵△BQP是等腰直角三角形,PQ =∴半径BP = 又∵2(,)P a a ,∴2242OP a a =+=.即42200a a +-=.解得2a =±.∵0a >,∴2a =. ……………………………………………………………………………6分 ∴(2,4)P .如图,作BM y ⊥轴于点M ,则△QBM ≌△PQH . ∴2MQ PH ==,MB QH ===∴1B . …………………………………7分若点Q 在OH上,由对称性可得2B . ……………………………8分综上,当PQ =B点坐标为或2-.。

2018-2019年度第一学期期中考试win7

2018-2019年度第一学期期中考试win7

2018-2019年度第一学期期中考试WINDOWS7试卷一、单项选择题(每个 1.5分,共60分) 1. Windows7的整个显示屏幕称为()D .桌面 A .窗口 B .操作台 C .工作台2.在 Windows7中,可以打开“开始”菜单的组合键是() C .Crl +空格键 D. Ctrl+Tab A. Ctrl B. Ctrl+Esc 3.下面打开“计算机”窗口的操作是( )A .用左键单击桌面“计算机”图标B .用左键双击桌面“计算机”图标C .用右键单击桌面“计算机”图标D .用右键双击桌面“计算机”图标 4.在 Windows7中,能弹出对话框的操作是()。

A .选择了带省略号的菜单项B .选择了带向右三角形箭头的菜单C .选择了颜色变灰的菜单项D .运行与对话框对应的应用程序 5.在 Windows7窗口的菜单项中,有些菜单项前面有“√”,它表示( ) A .如果用户选择了此命令,则会弹出下一级菜单 B .如果用户选择了此命令,则会弹出一个对话框 C .该菜单项当前正在被使用 D .该菜单项不能被使用6.在 Windows7窗口的菜单项中,有些菜单项呈灰色显示,它表示()。

A .该某单项已经被使用过B .该菜单项已经被删除C .该菜单项正在被使用D .该菜单项当前不能被使用 7.在 Windows7中随时能得到帮助信息的快捷键是()。

A. Ctrl-f1 B. Shift+F1 C. F3 D. F18.能够提供即时信息及轻松访问常用工具的桌面元素的是()。

A 、桌面图标B 、桌面小工具C 、任务栏D 、桌面背景()。

9.窗口被最大化后如果要调整窗口的大小,正确的操作是()A .用鼠标拖曳窗口的边框线B .单击“向下还原”按钮,再用鼠标拖曳边框线C .单击“最小化”按钮,再用鼠标拖曳边框线D .用鼠标拖曳窗口的四角 10. Windows7窗口与对话框相比,窗口可以移动和改变大小,而对话框()。

北京市海淀区中关村中学2018-2019学年高二上学期期中考试数学(理)试题Word版含解析

北京市海淀区中关村中学2018-2019学年高二上学期期中考试数学(理)试题Word版含解析

北京市海淀区中关村中学2018-2019学年上学期期中考试高二数学(理)试题一、选择题(本大题共8小题,每小题5分,共40分,每题只有一个正确答案,请将正确答案的序号涂在答题卡上)1.线段AB 在平面α内,则直线AB 与平面α的位置关系是( ).A .AB α⊂B .AB α⊄C .线段AB 的长短而定D .以上都不对【答案】A【解析】∵线段AB 在平面α内, ∴直线AB 上所有的点都在平面α内,∴直线AB 与平面α的位置关系是:直线AB 在平面α内, 即AB α⊂, 故选A .2.如图,1111ABCD A B C D -为正方体,下列结论错误..的是( ).DABC C 1D 1B 1A 1A .BD ∥平面11CB D B .1AC BD ⊥C .1AC ⊥平面11CB DD .异面直线AD 与1CB 角为60︒【答案】D【解析】异面直线AD 与CB 所成的角为45︒, 所以结论错误, 故选D .3.ABC △的斜二侧直观图如下图所示,则ABC △的面积为( ).A .1B .2CD .以上都不对【答案】B【解析】根据斜二测画法的原则可知:ABC △为直角三角形,底为2,高为2,所以面积是2, 故选B .4.下列说法正确的是( ).A .a b ∥,b a αα⊂⇒∥B .a b ⊥,b a αα⊂⇒⊥C .a α⊥,b a b α⊥⇒∥D .αβ⊥,a a βα⊂⇒⊥【答案】C【解析】由线面垂直的性质定理可知:a α⊥,b α⊥,则a b ∥, 故选C .5.已知三棱锥的主视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的左视图可能是( ).俯视图主视图2211A .1122 B .32 C .22D .22【答案】B【解析】根据正视图和俯视图,作出该三棱锥的几何直观图,如图所示,223O DABC则侧视图为直角三角形,且底边边长为||AD =,高为||2OC =, 故选B .6.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( ).A .90︒B .60︒C .45︒D .30︒【答案】C【解析】DACO折叠后的三棱锥如图,易知当平面ACD 垂直于平面ABC 时三棱锥的体积最大, 设AC 的中点为O ,则DBO ∠即为所求, 而DOB △是等腰直角三角形, 所以45DBO ∠=︒, 故选C .7.如下图所示,已知A ,B ,C 三点不共线,P 为平面ABC 内一定点,O 为平面ABC 外任一点,则下列能表示向量OP 的为( ).A BCOPA .22OA OB OC ++ B .32OA AB AC -- C .23OA AB AC +-D .32OA AB AC +-【答案】D【解析】以AP 为对角线,以AB ,AC 所在直线为邻边做平行四边形, 则32AP AB AC =-,∴32OP AP AO AB AC OA =-=-+, 故选D .8.如下图在直三棱柱111ABC A B C -中,π2BAC ∠=,11AB AC AA ===,已知G 与E 分别为11A B 和1CC 的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点),若GD EF ⊥,则线段DF 长度的取值范围为( ).DGABC EFC 1B 1A 1A.⎫⎪⎭B.⎣⎦C.D.【答案】A【解析】建立如图所示的空间直角坐标系,则(0,0,0)A ,10,1,2E ⎛⎫ ⎪⎝⎭,1,0,12G ⎛⎫⎪⎝⎭,(,0,0)F x ,(0,,0)D y .∵GD EF ⊥,∴210x y +-=,∴DF∵01x <<,01y <<, ∴102y <<, ∴当25y =时,线段DF,当0y =时,线段DF 长度的最大值是1,(因为不包括端点,故0y =不能取,即DF 长度不能等于1), 故线段DF的长度的取值范围是:⎫⎪⎭, 故选A .二、填空题(本大题共6小题,每小题5分,共30分.请把结果填在答题纸中)9.已知αβ⊥,平面α与平面β的法向量分别为m ,n ,且(1,2,5)m =-,(3,6,)n z =-,则z =__________.【答案】3【解析】∵αβ⊥,且平面α与平面β的法向量分别为m ,n , ∴(1,2,5)(3,6,)31250m n z z ⋅=--=--+=, 解得:3z =.10.已知正四棱锥V ABCD -的底面面积为16,一条侧棱长为,则它的斜高..为__________. 【答案】6【解析】设VO 为正四棱锥V ABCD -的高,连接OB ,则VO OB ⊥,VD ABCO∵底面正方形ABCD 的面积为16, ∴4BC =,OB =又∵VB =∴6VO =, ∴正四棱锥V ABCD -的高为6.11.若一个圆锥的底面半径为1,侧面积是底面积的2倍,则该圆锥的体积为__________.【解析】设圆锥的母线长为l ,∵2ππS r ==底,【注意有文字】∴π2πS rl ==侧,【注意有文字】 ∴2l =,∴圆锥的高h∴圆锥的体积11π33V S h ==⨯底.【注意有文字】12.若一个底面是正三角形的三棱柱的主视图如下图所示,则其表面积等于__________.【答案】6+【解析】由题意知三棱柱的底面是一个边长为2的正三角形, 侧棱长是1,且侧棱与底面垂直,∴三棱柱的表面积是:12232162⨯⨯⨯⨯=+13.二面角的棱上有A 、B 两点,直线AC 、BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4AB =,6AC =,8BD =,CD =__________.DA BC【答案】60︒【解析】E CBA D如图,过点B 作BE AC ∥,使得BE AC =, 连接CE ,DE ,则四边形ABEC 为平行四边形, ∴6BE AC ==,BE AB ⊥,CE AB ∥,CE AB =, 而BD AB ⊥,∴DBE ∠即是二面角AB αβ--的平面角, ∵BE AC ∥,AC AB ⊥,BD AB ⊥,CE AB ∥, ∴BE CE ⊥,BD CE ⊥, ∴CE ⊥平面BDE , ∴CE DE ⊥,在Rt CDE △中,4CE AB ==,CD =∴DE ==在BDE △中,2221cos 22BE BD DE DBE BE BD +-∠==⋅,∴60DBE ∠=︒,故该二面角的大小为60︒.14.如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A ,P ,Q 的平面截该正方体所得的截面为S ,则下列命题正确的是__________(写出所有正确命题的编号).A 1①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与11C D 的交点R 满足114C R =;④当314CQ <<时,S 为五边形; ⑤当1CQ =时,S. 【答案】①②④ 【解析】①项,12CQ =时,S 为APQD , 而102CQ <<时,线段1DD 上同理,存在一点,与PQ 平行, 此时,S 为四边形,且是梯形,故命题①为真;M Q P D 1C 1A 1B 1CB AD②项,1AP D Q =,1AD PQ ∥,1APQD 是等腰梯形,故命题②为真;③项OQPD 1C 1A 1B 1C B AD当34CQ =时,如图所示,0AP DC =, ∵点P 是BC 的中点,∴CO CD AB ==, ∴1113C R C Q CO QC ==, ∴S 与11CD 的交点R 满足113C R =,故命题③为假.④项,如图所示,S 为五边形,故命题④为真;QP D 1C 1A 1B 1CB AD⑤项,如图所示,S2=, DAB C B 1A 1C 1D 1PQ故命题⑤为假.综上所述,命题正确的是:①②④.三、解答题(本大题共3小题,共30分,写出必要的解答过程) 15.已知向量(2,1,2)a =--,(1,1,4)b =-. (I )计算23a b -和23a b -. (II )求,a b . 【答案】见解析【解析】解:(I )232(2,1,2)3(1,1,4)(4,2,4)(3,3,12)(1,5,8)a b -=----=----=-.2|23|1(a b -=+=(2)cos ,||||33a b a b a b ⋅===⨯,又[],0,πa b ∈, 故π,4a b =.16.如图,四棱锥P ABCD -的底面是边长为1的正方形,侧棱PA ⊥底面ABCD ,且2PA =,E 是侧棱PA 上的动点.A BCPE(I )如果E 是PA 的中点,求证PC ∥平面BDE .(II )是否不论点E 在侧棱PA 的任何位置,都有BD CE ⊥?证明你的结论. 【答案】见解析【解析】OECBA(1)证明:连接AC 交BD 于O ,连接EO , ∵四边形ABCD 是正方形, ∴O 是AC 的中点, 又∵E 是PA 的中点, ∴PC OE ∥,∵PC ⊄平面BDE ,OE ⊂平面BDE , ∴PC ∥平面BDE .(2)不论点E 在何位置,都有BD CE ⊥,证明如下: ∵四边形ABCD 是正方形, ∴BD AC ⊥,∵PA ⊥底面ABCD ,且BP ⊂平面ABCD , ∴BD PA ⊥, 又∵ACPA A =,∴BD ⊥平面PAC ,∵不论点E 在何位置,都有CEC 平面PAC , ∴不论点E 在何位置,都有BD CE ⊥.17.如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=︒,点E 是棱PC 的中点,平面ABE 与棱PD 交于点F .D ABC EF P(1)求证:AB EF ∥.(2)若2PA PD AD ===,且平面PAD ⊥平面ABCD , 求①二面角E AF D --的锐二面角的余弦值.②在线段PC 上是否存在一点H ,使得直线BH 与平面AEF 所成角等于60︒,若存在,确定H 的位置,若不存在,说明理由. 【答案】见解析【解析】(1)证明:∵AB CD ∥,CD ⊂平面PCD ,AB ⊄平面PCD , ∴AB ∥平面PCD ,又∵AB ⊂平面ABEF ,且平面ABEF 平面PCD EF =,∴AB EF ∥,(2)①取AD 的中点O ,连接PO ,OB ,BD , ∵ABCD 是菱形,且120ABC ∠=︒,PA PD AD ==, ∴ABD △,PAD △是等边三角形, ∴PO AD ⊥,OB AD ⊥,又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,PO ⊂平面PAD ,∴PO ⊥平面ABCD ,以O 为原点,以OB ,OD ,OP 为坐标轴建立空间坐标系O xyz -,则:(0,1,0)A =-,(0,1,0)D,P,B,C,E ⎝⎭,10,2F ⎛ ⎝⎭.30,2AF ⎛= ⎝⎭,1,02EF ⎛⎫=-- ⎪ ⎪⎝⎭,设平面AEF 的法向量为(,,)n x y z =,则: 00n AF n EF ⎧⋅=⎪⎨⋅=⎪⎩,∴302102y y ⎧+=⎪⎪⎨⎪-=⎪⎩, 令1x =得:(1,3,3)n =-; ∵OB ⊥平面PAD ,∴(3,0,0)OB =为平面PAD 的一个法向量.∴cos ,||||13OB n OB n OB n ⋅===故二面角E AF D -- ②假设PC 上存在点H 便得直线BH 与平面AEF 所成角等于60︒, 则BH 与n 所成夹角为30︒,设(,2)(01)CH CP λλλ==-≤≤,则:(,22)BH BC CH λ=+=-,cos ,||||13BH n BH n BH n ⋅===, 化简得:2191260λλ--=,解得:λλ, ∴线段PC 上存在一点H ,使得直线BH 与平面AEF 所成的角等于60︒.。

2018-2019学年人教新版北京市海淀区七年级第二学期期中数学试卷 含解析

2018-2019学年人教新版北京市海淀区七年级第二学期期中数学试卷 含解析

2018-2019学年七年级第二学期期中数学试卷一、选择题(共10小题) 1.4的算术平方根是( ) A .16B .2±C .2D .22.在平面直角坐标系中,点(3,2)P -在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.过点B 画线段AC 所在直线的垂线段,其中正确的是( )A .B .C .D .4.如图所示,//AB CD ,若1144∠=︒,则2∠的度数是( )A .30︒B .32︒C .34︒D .36︒5.在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是( )A .内错角相等,两直线平行B .同位角相等,两直线平行C .两直线平行,内错角相等D .两直线平行,同位角相等6.如图,平移折线AEB ,得到折线CFD ,则平移过程中扫过的面积是( )A .4B .5C .6D .77.小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x 轴、y 轴正方向,图中点A 的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是( )A .(3.2,1.3)B .( 1.9,0.7)-C .(0.7, 1.9)-D .(3.8, 2.6)-8.我们知道“对于实数m ,n ,k ,若m n =,n k =,则m k =”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a ,b ,c 是直线,若//a b ,//b c ,则//a c . ②a ,b ,c 是直线,若a b ⊥,b c ⊥,则a c ⊥. ③若α∠与β∠互余,β∠与γ∠互余,则α∠与γ∠互余. 其中正确的命题是( ) A .①B .①②C .②③D .①②③9.如图所示是一个数值转换器,若输入某个正整数值x 后,输出的y 值为4,则输入的x 值可能为( )A.1 B.6 C.9 D.1010.根据表中的信息判断,下列语句中正确的是x15 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16 2x225 228.01 231.04 234.09 237.16 240.25 243.36 246.49 249.64 252.81 256 ()A.25.281 1.59=B.235的算术平方根比15.3小C.只有3个正整数n满足15.515.6<<nD.根据表中数据的变化趋势,可以推断出216.1将比256增大3.19二、填空题(本大题共16分,每小题2分)11.将点(1,4)A-向上平移三个单位,得到点A',则A'的坐标为.12.如图,数轴上点A,B对应的数分别为1-,2,点C在线段AB上运动.请你写出点C 可能对应的一个无理数.13.如图,直线a,b相交,若1∠互余,则3∠与2∠=.14.依据图中呈现的运算关系,可知a=,b=.15.平面直角坐标系xOy中,已知线段AB与x轴平行,且5AB=,若点A的坐标为(3,2),则点B的坐标是.16.一副直角三角板如图放置,其中90E∠=︒,点D在斜∠=︒,60C DFE∠=∠=︒,45A边AB上.现将三角板DEF绕着点D顺时针旋转,当DF第一次与BC平行时,BDE∠的度数是.17.如图,电子宠物P在圆上运动,点O处设置有一个信号转换器,将宠物P的位置信号沿着垂直于线段OP的方向OQ传送,被信号接收板l接收.若传送距离越近,接收到的信号越强,则当P点运动到图中号点的位置时,接收到的信号最强(填序号①,②,③或④).18.若两个图形有公共点,则称这两个图形相交,否则称它们不相交.回答下列问题:(1)如图1,直线PA,PB和线段AB将平面分成五个区域(不包含边界),当点Q落在区域时,线段PQ与AB相交(直接填写区域序号);(2)在设计印刷线路板时,常常会利用折线连接元件,要求所有连线不能相交.如图2,如果沿着图中的格线连接印有相同字母的元件,那么一共有 种连线方案.三、解答题 19.计算: (1)2231(4)()83-+-; (2)2(32)52--. 20.求出下列等式中x 的值: (1)21236x =;(2)33388x -=.21.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(3,2)-.(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标: ; (2)若中国人民大学的坐标为(3,4)--,请在坐标系中标出中国人民大学的位置.22.有一张面积为2100cm 的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为2150cm ,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.四、解答题(本大题共11分,23题5分,24题6分)23.如图,点D ,点E 分别在BAC ∠的边AB ,AC 上,点F 在BAC ∠内,若//EF AB , BDF CEF ∠=∠.求证://DF AC .24.已知正实数x 的平方根是m 和m b +. (1)当8b =时,求m ;(2)若22()4m x m b x ++=,求x 的值.五、解答题(本大题共19分,25~26每题6分,27题7分)25.在平面直角坐标系xOy 中,已知点(,)A a a ,(,3)B a a -,其中a 为整数.点C 在线段AB 上,且点C 的横纵坐标均为整数. (1)当1a =时,画出线段AB ;(2)若点C 在x 轴上,求出点C 的坐标;(3)若点C 纵坐标满足15y <<,直接写出a 的所有可能取值: .26.如图,已知//AB CD ,点E 是直线AB 上一个定点,点F 在直线CD 上运动,设CFE α∠=,在线段EF 上取一点M ,射线EA 上取一点N ,使得160ANM ∠=︒.(1)当2aAEF ∠=时,α= ; (2)当MN EF ⊥时,求α;(3)作CFE ∠的角平分线FQ ,若//FQ MN ,直接写出α的值: .27.对于平面直角坐标系xOy 中的不同两点1(A x ,1)y ,2(B x ,2)y ,给出如下定义:若121x x =,121y y =,则称点A ,B 互为“倒数点”.例如,点1(2A ,1),(2,1)B 互为“倒数点”. (1)已知点(1,3)A ,则点A 的倒数点B 的坐标为 ;将线段AB 水平向左平移2个单位得到线段A B '',请判断线段A B ''上是否存在“倒数点”. (填“是”或“否” ); (2)如图所示,正方形CDEF 中,点C 坐标为11(,)22,点D 坐标为31(,)22,请判断该正方形的边上是否存在“倒数点”,并说明理由;(3)已知一个正方形的边垂直于x 轴或y 轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值: .参考答案一、选择题(共10小题)1.4的算术平方根是()A.16 B.2±C.2 D.2【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.解:2的平方为4,∴的算术平方根为2.4故选:C.2.在平面直角坐标系中,点(3,2)P-在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.解:点(3,2)P-在第二象限,故选:B.3.过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.【分析】垂线段满足两个条件:①经过点B.②垂直于AC;由此即可判断.解:根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选:D .4.如图所示,//AB CD ,若1144∠=︒,则2∠的度数是( )A .30︒B .32︒C .34︒D .36︒【分析】根据平行线的性质即可得到结论. 解://AB CD ,1144CAB ∴∠=∠=︒, 2180CAB ∠+∠=︒, 218036CAB ∴∠=︒-∠=︒,故选:D .5.在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是( )A .内错角相等,两直线平行B .同位角相等,两直线平行C .两直线平行,内错角相等D .两直线平行,同位角相等【分析】根据平行线的判定定理即可得到结论.解:有平行线的画法知道,得到同位角相等,即同位角相等两直线平行. ∴同位角相等两直线平行.故选:B .6.如图,平移折线AEB ,得到折线CFD ,则平移过程中扫过的面积是( )A .4B .5C .6D .7【分析】根据平移的性质确定平移过程中扫过的图形的形状,从而确定面积;解:根据题意得:平移折线AEB ,得到折线CFD ,则平移过程中扫过的图形为矩形ABCD , 所以其面积为236⨯=,故选:C .7.小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x 轴、y 轴正方向,图中点A 的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是( )A .(3.2,1.3)B .( 1.9,0.7)-C .(0.7, 1.9)-D .(3.8, 2.6)-【分析】根据平面直角坐标系的定义建立平面直角坐标系,然后根据象限特点解答即可. 解:由图可知,( 1.9,0.7)-距离原点最近,故选:B .8.我们知道“对于实数m ,n ,k ,若m n =,n k =,则m k =”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a ,b ,c 是直线,若//a b ,//b c ,则//a c .②a ,b ,c 是直线,若a b ⊥,b c ⊥,则a c ⊥.③若α∠与β∠互余,β∠与γ∠互余,则α∠与γ∠互余.其中正确的命题是( )A .①B .①②C .②③D .①②③【分析】根据平行线的判定、垂直和互余进行判断即可.解:①a ,b ,c 是直线,若//a b ,//b c ,则//a c ,是真命题.②a ,b ,c 是直线,若a b ⊥,b c ⊥,则//a c ,是假命题.③若α∠与β∠互余,β∠与γ∠互余,则αγ∠=∠,是假命题;故选:A .9.如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A.1 B.6 C.9 D.10【分析】将各个选项的x的值代入程序框图得输出的y值,依次进行判断即可.解:A.将1x=代入程序框图得:输出的y值为1,不符合题意;B.将6x=代入程序框图得:输出的y值为3,不符合题意;C.将9x=代入程序框图得:输出的y值为3,不符合题意;D.将10x=代入程序框图得:输出的y值为4,符合题意;故选:D.10.根据表中的信息判断,下列语句中正确的是x15 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16 2x225 228.01 231.04 234.09 237.16 240.25 243.36 246.49 249.64 252.81 256 ()A25.281 1.59=B.235的算术平方根比15.3小C.只有3个正整数n满足15.515.6<<n16.1将比256增大3.19D.根据表中数据的变化趋势,可以推断出2【分析】根据表格中的信息可知2x和其对应的算术平方根的值,然后依次判断各选项即可.解:A252.8115.9=,=,故选项不正确;∴ 2.5281 1.59B234.0915.3235=235∴的算术平方根比15.3大,故选项不正确;C .根据表格中的信息知:2215.5240.2515.6243.36n =<<=,∴正整数241n =或242或243,∴只有3个正整数n 满足15.515.6n <<,故选项正确; D .根据表格中的信息无法得知216.1的值,∴不能推断出216.1将比256增大3.19,故选项不正确.故选:C .二、填空题(本大题共16分,每小题2分)11.将点(1,4)A -向上平移三个单位,得到点A ',则A '的坐标为 (1,7)- .【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.解:将点(1,4)A -向上平移三个单位,得到点A ',则A '的坐标为(1,7)-,故答案为:(1,7)-,12.如图,数轴上点A ,B 对应的数分别为1-,2,点C 在线段AB 上运动.请你写出点C 可能对应的一个无理数 3(答案不唯一,无理数在1-与2之间即可) .【分析】根据无理数的估计解答即可.解:由C 点可得此无理数应该在1-与2之间,故可以是3,故答案为:3(答案不唯一,无理数在1-与2之间即可),13.如图,直线a ,b 相交,若1∠与2∠互余,则3∠= 135︒ .【分析】依据1∠与2∠互余,12∠=∠,即可得到1245∠=∠=︒,进而得出3∠的度数. 解:1∠与2∠互余,12∠=∠,1245∴∠=∠=︒,318045135∴∠=︒-︒=︒,故答案为:135︒.14.依据图中呈现的运算关系,可知a = 2019- ,b = .【分析】利用立方根和平方根的定义及性质即可解决问题.解:依据图中呈现的运算关系,可知2019的立方根是m ,a 的立方根是m -, 32019m ∴=,3()m a -=,2019a ∴=-;又n 的平方根是2019和b ,2019b ∴=-.故答案为:2019-,2019-.15.平面直角坐标系xOy 中,已知线段AB 与x 轴平行,且5AB =,若点A 的坐标为(3,2),则点B 的坐标是 (2,2)-或(8,2) .【分析】根据平行于x 轴的直线上的点的纵坐标相等,再分点B 在点A 的左边与右边两种情况讨论求解.解:线段AB 与x 轴平行,∴点B 的纵坐标为2,点B 在点A 的左边时,352-=-,点B 在点A 的右边时,358+=,∴点B 的坐标为(2,2)-或(8,2).故答案为:(2,2)-或(8,2).16.一副直角三角板如图放置,其中90C DFE ∠=∠=︒,45A ∠=︒,60E ∠=︒,点D 在斜边AB 上.现将三角板DEF 绕着点D 顺时针旋转,当DF 第一次与BC 平行时,BDE ∠的度数是 15︒ .【分析】利用平行线的性质即可解决问题.解://DF BC,FDB ABC∴∠=∠=︒,45∴∠=∠-∠=︒-︒=︒,EDB DFB EDF453015故答案为15︒.17.如图,电子宠物P在圆上运动,点O处设置有一个信号转换器,将宠物P的位置信号沿着垂直于线段OP的方向OQ传送,被信号接收板l接收.若传送距离越近,接收到的信号越强,则当P点运动到图中①号点的位置时,接收到的信号最强(填序号①,②,③或④).【分析】根据垂线段最短得出即可.解:根据垂线段最短,得出当OQ⊥直线l时,信号最强,即当当P点运动到图中①号点的位置时,接收到的信号最强;故答案为:①.18.若两个图形有公共点,则称这两个图形相交,否则称它们不相交.回答下列问题:(1)如图1,直线PA,PB和线段AB将平面分成五个区域(不包含边界),当点Q落在区域②时,线段PQ与AB相交(直接填写区域序号);(2)在设计印刷线路板时,常常会利用折线连接元件,要求所有连线不能相交.如图2,如果沿着图中的格线连接印有相同字母的元件,那么一共有种连线方案.【分析】(1)由相交线的定义可以找到点Q 所在的区域;(2)因为要求所有连线不能相交,所以可按图示7种方法连接.解:(1)当点Q 落在区域②时,线段PQ 与AB 相交;(2)点A 沿向上两个格、向右三个格、向下一个格连接,也可以沿向上两个格、向右两个格、向下一个格、向右一个格连接,两种方法;点B 沿向下两个格、向右一个格连接,或向下一个格、向右一个格、向下一个格连接,或向右一个格、向下两个格连接,或向右一个格、向下一个格、向左一个格、向下一个格、向右一个格连接,共四种方法;点C 只有一种连接方法,所以共7种方法.故答案为:②,7.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.计算:(12231(4)()83-+-; (22(32)52-.【分析】(1)根据实数的混合计算解答即可;(2)根据实数的混合计算解答即可.解:(1)原式1423=+- 73= (2)原式32252=-222=--20.求出下列等式中x 的值:(1)21236x =;(2)33388x -=. 【分析】(1)根据等式的性质方程两同时除以12,再由平方根的定义问题可解.(2)方程可先去分母,得3243x-=,再移项合并同类项,最后根据立方根定义可求解.解:(1)23x=∴=±x3(2)3243x-=327x=∴=x321.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(3,2)-.(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:(3,1);(2)若中国人民大学的坐标为(3,4)--,请在坐标系中标出中国人民大学的位置.【分析】(1)利用清华大学的坐标为(0,3),北京大学的坐标为(3,2)-画出直角坐标系;(2)根据点的坐标的意义描出中国人民大学所表示的坐标.解:(1)北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:22.有一张面积为2100cm的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为2150cm,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.【分析】设长方形信封的长为5xcm,宽为3xcm.根据长方形的面积列出关于x的方程,解之求得x的值,再由其宽和长与10的大小可得答案.解:设长方形信封的长为5xcm,宽为3xcm.由题意得:53150x x=,解得:10x=所以长方形信封的宽为:3310x=,10010=,∴正方形贺卡的边长为10cm.2=,而90100(310)90<,∴<,31010答:不能将这张贺卡不折叠的放入此信封中.四、解答题(本大题共11分,23题5分,24题6分)23.如图,点D ,点E 分别在BAC ∠的边AB ,AC 上,点F 在BAC ∠内,若//EF AB , BDF CEF ∠=∠.求证://DF AC .【分析】想办法证明BDF A ∠=∠即可解决问题.【解答】证明://EF AB ,CEF A ∴∠=∠,BDF CEF ∠=∠,BDF A ∴∠=∠,//DF AC ∴.24.已知正实数x 的平方根是m 和m b +.(1)当8b =时,求m ;(2)若22()4m x m b x ++=,求x 的值.【分析】(1)利用正实数平方根互为相反数即可求出m 的值;(2)利用平方根的定义得到2()m b x +=,2m x =,代入式子22()4m x m b x ++=即可求出x 值.解:(1)正实数x 的平方根是m 和m b +0m m b ∴++=,8b =,280m ∴+=4m ∴=-;(2)正实数x 的平方根是m 和m b +,2()m b x ∴+=,2m x =,22++=,m x m b x()4224∴+=,x x22∴=,xx>,x∴=.2五、解答题(本大题共19分,25~26每题6分,27题7分)25.在平面直角坐标系xOy中,已知点(,)B a a-,其中a为整数.点C在线段ABA a a,(,3)上,且点C的横纵坐标均为整数.(1)当1a=时,画出线段AB;(2)若点C在x轴上,求出点C的坐标;(3)若点C纵坐标满足15<<,直接写出a的所有可能取值:2,3,4,5 .y【分析】(1)根据坐标与图形的特点解答即可;(2)根据x轴的点的特点解答即可;(3)根据无理数的估计和坐标特点解答即可.解:(1)(2)由题意可知,点C 的坐标为(,)a a ,(,1)a a -,(,2)a a -或(,3)a a -, 点C 在x 轴上, ∴点C 的纵坐标为0.由此可得a 的取值为0,1,2或3,因此点C 的坐标是(0,0),(1,0),(2,0),(3,0) (3)a 的所有可能取值是2,3,4,5. 故答案为:2,3,4,5.26.如图,已知//AB CD ,点E 是直线AB 上一个定点,点F 在直线CD 上运动,设CFE α∠=,在线段EF 上取一点M ,射线EA 上取一点N ,使得160ANM ∠=︒.(1)当2aAEF ∠=时,α= 120︒ ; (2)当MN EF ⊥时,求α;(3)作CFE ∠的角平分线FQ ,若//FQ MN ,直接写出α的值: .【分析】(1)根据平行线的性质即可得到结论;(2)如图1所示,过点M 作直线//PM AB ,由平行公理推论可知:////AB PM CD .根据平行线的性质即可得到结论;(3)如图2,根据角平分线的定义和平行线的性质即可得到结论. 解:(1)//AB CD ,180AEF CFE ∴∠+∠=︒, CFE α∠=,2aAEF ∠=, 1802αα∴+=︒,120α∴=︒;(2)如,1所示,过点M 作直线//PM AB ,由平行公理推论可知:////AB PM CD . 160ANM ∠=︒,18016020NMP ∴∠=︒-︒=︒,又NM EF ⊥,90NMF ∴∠=︒,902070PMF NMF NMP ∠=∠-∠=︒-︒=︒. 180********PMF α∴=︒-∠=︒-︒=︒;(3)如图2,FQ 平分CFE ∠, 2QFM α∴∠=,//AB CD , 180NEM α∴∠=︒-,//MN FQ , 2NME α∴∠=,18020ENM ANM ∠=︒-∠=︒,201801802αα∴︒++︒-=︒,40α∴=︒.故答案为:120︒,40︒.27.对于平面直角坐标系xOy 中的不同两点1(A x ,1)y ,2(B x ,2)y ,给出如下定义:若121x x =,121y y =,则称点A ,B 互为“倒数点”.例如,点1(2A ,1),(2,1)B 互为“倒数点”. (1)已知点(1,3)A ,则点A 的倒数点B 的坐标为 1(1,)3;将线段AB 水平向左平移2个单位得到线段A B '',请判断线段A B ''上是否存在“倒数点”. (填“是”或“否” ); (2)如图所示,正方形CDEF 中,点C 坐标为11(,)22,点D 坐标为31(,)22,请判断该正方形的边上是否存在“倒数点”,并说明理由;(3)已知一个正方形的边垂直于x 轴或y 轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值: .【分析】(1)设1(A x ,1)y ,2(B x ,2)y ,由题意得出21x =,213y =,点B 的坐标为1(1,)3,由平移的性质得出(1,3)A '-,1(1,)3B '-,即可得出结论;(2)①若点1(M x ,1)y 在线段CF 上,则112x =,点2(N x ,2)y 应当满足22x =,可知点N 不在正方形边上,不符题意; ②若点1(M x ,1)y 在线段CD 上,则112y =,点2(N x ,2)y 应当满足22y =,可知点N 不在正方形边上,不符题意;③若点1(M x ,1)y 在线段EF 上,则132y =,点2(N x ,2)y 应当满足223y =,得出3(2N ,2)3,此时点2(3M ,3)2在线段EF 上,满足题意;(3)由题意得出各边上点的横坐标和纵坐标的绝对值都1,得出正方形面积的最大值为1即可.解:(1)设1(A x ,1)y ,2(B x ,2)y , 121x x =,121y y =,(1,3)A , 21x ∴=,213y =,点B 的坐标为1(1,)3, 将线段AB 水平向左平移2个单位得到线段A B '', 则(1,3)A '-,1(1,)3B '-,1(1)1-⨯-=,1313⨯=,∴线段A B ''上存在“倒数点”, 故答案为:1(1,)3;是;(2)正方形的边上存在“倒数点” M 、N ,理由如下: ①若点1(M x ,1)y 在线段CF 上, 则112x =,点2(N x ,2)y 应当满足22x =, 可知点N 不在正方形边上,不符题意; ②若点1(M x ,1)y 在线段CD 上, 则112y =,点2(N x ,2)y 应当满足22y =, 可知点N 不在正方形边上,不符题意; ③若点1(M x ,1)y 在线段EF 上, 则132y =,点2(N x ,2)y 应当满足223y =, ∴点N 只可能在线段DE 上,3(2N ,2)3,此时点2(3M ,3)2在线段EF 上,满足题意;∴该正方形各边上存在“倒数点” 2(3M ,3)2,3(2N ,2)3;(3)如图所示:一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,则该正方形有两条边在坐标轴上,坐标轴上的点的横坐标或纵坐标为0,∴在坐标轴上的边上不存在倒数点,又该正方形各边上不存在“倒数点”,∴各边上点的横坐标和纵坐标的绝对值都1,即正方形面积的最大值为1;故答案为:1.。

北京市海淀区2018-2019学年高二第二学期期末练习化学试题(选修5,有的答案和详细解析)

北京市海淀区2018-2019学年高二第二学期期末练习化学试题(选修5,有的答案和详细解析)

北京市海淀区2018-2019学年高二第二学期期末练习化学试题(选修5,有的答案和详细解析)一、在下列各题的四个选项中,只有一个选项符合题意。

(每小题3分,共42分)1.(2019年海淀高二期末)下列物质中,属于弱电解质的是A. H2OB. Na2CO3C. HClD. NaCl【答案】A2. .(2019年海淀高二期末)下列溶液一定呈中性的是A. FeCl3溶液B. Na2CO3溶液C. Na2SO4溶液D. CH3COOH和CH3COONa混合溶液【答案】C3. .(2019年海淀高二期末)原电池是化学电源的雏形。

若保持如图所示原电池的电池反应不变,下列说法正确的是A. Zn可以换成FeB. Cu可以换成石墨C. 稀H2SO4可以换成蔗糖溶液D. 稀H2SO4可以换成CuSO4溶液【答案】B4. .(2019年海淀高二期末)一定条件下,在2 L密闭容器中发生反应:A(g)+3B(g) === 2C(g) + 4D(g),测得5 min内,A的物质的量减小了10 mol,则5min内该反应的化学反应速率是A. υ(A) = 1 mol/(L·min)B. υ(B) = 1 mol/(L·min)C. υ(C) = 1 mol/(L·min)D. υ(D) = 1 mol/(L·min)【答案】A5.(2019年海淀高二期末).某温度下,可逆反应mA(g) + nB(g)pC(g)的化学平衡常数为K,下列说法正确的是A. 其他条件不变,升高温度,K值一定增大B. 其他条件不变,增大B(g)的浓度,K值增大C. 其他条件不变,增大压强,K值不变D. K值不会随反应条件的改变而改变【答案】C6. .(2019年海淀高二期末)铜是人类最早发现和使用的金属之一,铜及其合金的用途广泛。

粗铜中含有少量铁、锌、银、金等杂质,工业上可用电解法精炼粗铜制得纯铜,下列说法正确的是A. 精铜做阳极,粗铜做阴极B. 可用AgNO3溶液做电解质溶液C. 电解时,阴极反应为Cu – 2e- === Cu2+D. 电解后,可用阳极泥来提炼金、银【答案】D7. .(2019年海淀高二期末)一定条件下,将NO(g)和O2(g)按物质的量之比2∶1充入反应容器,发生反应:2NO(g) + O 2(g) 2NO2(g)。

2021届北京市海淀区高三上学期期中考试化学试题解析

2021届北京市海淀区高三上学期期中考试化学试题解析

海淀区2020~2021学年第一学期期中练习高三化学本试卷100分。

考试时长90分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回。

可能用到的相对原子质量:H1C12O16Na23S32Fe56第一部分选择题(共42分)在下列各题的四个选项中,选出最符合题目要求的一项。

(每小题3分,共42分)1.下列物品所使用的主要材料属于无机非金属材料的是A.陶瓷工艺品B.纸质练习簿C.不锈钢盆D.蚕丝领带答案:A思路:解:A.陶瓷的主要成分为硅酸盐,属于无机非金属材料,故A选;B.纸张的主要成分为纤维素,为有机材料,故B不选;C.不锈钢的主要成分为铁,有无机金属材料,故C不选;D.蚕丝主要成分为蛋白质,为有机材料,故D不选。

故答案选:A。

2.下列对化学用语的描述中,不正确...的是A.甲烷的结构式:B.磷的原子结构示意图:C.20983Bi和21083Bi 互为同位素D.由Na 和Cl 形成NaCl 的过程:答案:B 思路:解:A.甲烷为正四面体结构含有4条C-H 键,结构式为,故A 正确;B.该图中质子数为15,核外电子数为18,为P 3-的结构示意图,故B 错误;C.同位素是指质子数相同、中子数不同的同一元素的核素的互称,20983Bi和21083Bi 为Bi 的同位素,故C 正确;D.Na 和Cl 形成NaCl 的过程Na 失去电子变为Na +,Cl 得到电子变为Cl -,图示为,故D 正确;故答案选:B 。

3.下列反应中,H 2O 做氧化剂的是 A.2Na+2H 2O=2NaOH+H 2↑ B.3NO 2+H 2O=2HNO 3+NO C.Cl 2+H 2O HCl+HClOD.SO 2+H 2OH 2SO 3答案:A 思路: 【分析】氧化还原反应中反应物中氧化剂化合价下降,还原剂化合价升高以此判断。

解:A.H 2O 中H 化合价由+1到0价,化合价下降,H 2O 做氧化剂,故A 选;B.H 2O 没有元素化合价发生改变,既不做氧化剂也不做还原剂,故B 不选;C.H 2O 没有元素化合价发生改变,既不做氧化剂也不做还原剂,故C 不选;D.SO 2与H 2O 反应没有化合价的改变为非氧化还原反应,故D 不选。

2018-2019学年北京市海淀区高三(上)期中物理试卷

2018-2019学年北京市海淀区高三(上)期中物理试卷

2018-2019 学年北京市海淀区高三(上)期中物理试卷副标题题号一二三四五总分得分一、单选题(本大题共 4 小题,共12.0 分)1.如图所示,一条不可伸长的轻绳一端固定于悬点O,另一端连接着一个质量为 m 的小球。

在水平力 F 的作用下,小球处于静止状态,轻绳与竖直方向的夹角为θ,已知重力加速度为 g,则下列说法正确的是()A. 绳的拉力大小为mgtan θB. 绳的拉力大小为 mgcos θC. 水平力F大小为mgtanθD. 水平力F大小为mgcosθ2.一列简谐横波沿 x 轴传播,某时刻的波形如图所示,其中a、 b、 c 为三个质点,此时质点 a 在平衡位置,且向上运动,由此可知下列说法正确的是()A. 该波沿x轴正方向传播B. a的振幅为零C. 该时刻以后,b和c始终有相同的加速度D. 该时刻以后,c比b先到平衡位置3.在“验证力的平行四边形定则”实验中,将轻质小圆环挂在橡皮条的一端,橡皮条的另一端固定在水平木板上的A点,圆环上有绳套。

实验中先用两个弹簧测力计分别勾住绳套,并互成角度地拉圆环,将圆环拉至某一位置O,如图所示。

再只用一个弹簧测力计,通过绳套把圆环拉到与前面相同的位置O.关于此实验,下列说法正确的是()A.橡皮条、弹簧测力计和绳应位于与纸面平行的同一平面内B.实验中只需记录弹簧测力计的示数C. 用平行四边形定则求得的合力方向一定沿AO 方向D. 两弹簧测力计之间的夹角应取90°,以便计算合力的大小4.某同学以一定的初速度竖直向上抛出一小球。

以抛出点为零势能点,不计空气阻力,小球可视为质点,图 7 所示图线中,能反映小球从抛出到落回抛出点的过程中,其动能Ek 或重力势能E p随时间 t 变化关系的是()A. B.C. D.二、多选题(本大题共 6 小题,共 18.0 分)5.如图所示, 水平放置的转盘以角速度 ω匀速转动, 放在转 盘上的质量为 m 的小物体跟着转盘一起做匀速圆周运动。

2023-2024学年北京市海淀区高三上学期期中考试物理试卷含详解

2023-2024学年北京市海淀区高三上学期期中考试物理试卷含详解

海淀区2023—2024学年第一学期期中练习高三物理本试卷共8页,100分。

考试时长90分钟。

考生务必将答案答在答题纸上,在试卷上作答无效.考试结束后,将本试卷和答题纸一并交回。

第一部分一、本部分共10题,每题3分,共30分。

在每题给出的四个选项中,有的题只有一个选项是正确的,有的题有多个选项是正确的。

全部选对的得3分,选不全的得2分,有选错或不答的得0分。

把正确的答案填涂在答题纸上。

1.如图所示,铅球放在固定斜面上,用竖直挡板挡住并处于静止状态。

不计一切摩擦。

下列说法正确的是()A.铅球对斜面的压力大于铅球所受的重力B.铅球对挡板的压力大于铅球对斜面的压力C.若增大斜面倾角θ,铅球对挡板的压力增大D.若增大斜面倾角θ,铅球对斜面的压力减小2.一简谐横波沿x 轴传播,某时刻的波形如图所示。

已知此时质点E 向y 轴负方向运动,下列说法正确的是()A.波沿x 轴负方向传播B.质点D 此时向y 轴负方向运动C .质点A 将比质点B 先回到平衡位置D.质点D 的振幅为零3.在“探究两个互成角度的力的合成规律”实验中,橡皮条的一端E 挂有轻质小圆环,另一端G 固定,如图甲所示。

小圆环受到两个弹簧测力计的拉力12F F 、共同作用,静止于O 点,如图乙所示。

撤去12F F 、,改用一个弹簧测力计单独拉小圆环,仍使小圆环处于O 点静止,其拉力为F ,如图丙所示。

做好记录,画出12F F 、和F 的图示,并用虚线把拉力F 的箭头端分别与12F F 、的箭头端连接,如图丁所示。

关于本实验,下列说法正确的是()A.本实验体现了等效替代的思想方法B.实验中需要记录的信息只有12F F 、和F 的大小C.由图丁可初步猜测F 与12F F 、满足平行四边形的关系D.重复多次实验时,每次都必须将小圆环拉至O 点4.如图所示的曲线MN 是某一质点的运动轨迹,AA '为曲线上A 点处的切线。

质点从B 点运动到A 点所发生的位移为x ,所用时间为t 。

北京市海淀区高三上期中考试数学试题(理)含答案

北京市海淀区高三上期中考试数学试题(理)含答案

海淀区高三年级第一学期期中练习数学(理科) .11本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合,则集合中元素的个数为A.1 B.2 C.3 D.42.下列函数中为偶函数的是3.在△ABC中,的值为A.1 B.-1 C.12D.-124.数列的前n项和为,则的值为A.1 B.3 C.5 D.65.已知函数,下列结论错误的是A. B.函数的图象关于直线x=0对称C.的最小正周期为 D.的值域为6.“x>0 ”是“”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.如图,点O为坐标原点,点A(1,1).若函数且)的图象与线段OA分别交于点M,N,且M,N恰好是线段OA的两个三等分点,则a,b满足8. 已知函数函数.若函数恰好有2个不同零点,则实数a 的取值范围是二、填空题(共6小题,每小题5分,共30分) 9.10.在△AB C 中,角A ,B ,C 的对边分别为a ,b ,c .若 c =4,则11.已知等差数列的公差,且39108a a a a +=-.若n a =0 ,则n =12.已知向量,点A (3,0) ,点B 为直线y =2x 上的一个动点.若AB a ,则点B 的坐标为 . 13.已知函数,若的图象向左平移个单位所得的图象与的图象向右平移个单位所得的图象重合,则的最小值为 14.对于数列,都有为常数)成立,则称数列具有性质. ⑴ 若数列的通项公式为,且具有性质,则t 的最大值为 ;⑵ 若数列的通项公式为,且具有性质,则实数a 的取值范围是三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.(本小题满分13分) 已知等比数列的公比,其n 前项和为(Ⅰ)求公比q 和a 5的值; (Ⅱ)求证:16.(本小题满分13分)已知函数.(Ⅰ)求的值;(Ⅱ)求函数的最小正周期和单调递增区间.17.(本小题满分13分)如图,在四边形ABCD中,AB=8,BC=3,CD=5,(Ⅰ)求BD的长;(Ⅱ)求证:18.(本小题满分13分)已知函数,曲线在点(0,1)处的切线为l(Ⅰ)若直线l的斜率为-3,求函数的单调区间;(Ⅱ)若函数是区间[-2,a]上的单调函数,求a的取值范围.19.(本小题满分14分)已知由整数组成的数列各项均不为0,其前n项和为,且(Ⅰ)求的值;(Ⅱ)求的通项公式;(Ⅲ)若=15时,Sn取得最小值,求a的值.20.(本小题满分14分)已知x为实数,用表示不超过x的最大整数,例如对于函数f(x),若存在,使得,则称函数函数.(Ⅰ)判断函数是否是函数;(只需写出结论)(Ⅱ)设函数f(x)是定义R在上的周期函数,其最小正周期为T,若f(x)不是函数,求T的最小值.(Ⅲ)若函数是函数,求a的取值范围.海淀区高三年级第一学期期中练习参考答案 数 学 (理科) .11阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

人教版数学高三期中测试精选(含答案)8

人教版数学高三期中测试精选(含答案)8

【答案】A
9.设 a, b, c 是互不相等的整数,则下列不等式中不恒成立的是( )
A.| a b || a c | | b c |
C.
|
a
b
|
a
1
b
2
B. a2
1 a2
a
1 a
D. a 3 a 1 a 2 a
【来源】上海市上海中学 2018-2019 学年高三上学期期中数学试题
x [2, 4] ,不等式 f (x) t 2 恒成立,则 t 的取值范围为__________.
【来源】山东省菏泽一中、单县一中 2016-2017 学年高二下学期期末考试数学(文)试
题 【答案】 (,10]
2x y 1 0,
12.设关于
x

y
的不等式组
x m 0,
表示的平面区域为 D ,若存在点
【答案】(1)见解析;(2) 2- n 2 n n2
2n
2
7x 5y 23 0
30.已知
x,y
满足条件:
x
7
y
11
0
,求:
4x y 10 0
(1) 4x 3y 的最小值; x y 1
(2) x 5 的取值范围.
【来源】上海市上海中学 2015-2016 学年高二上学期期中数学试卷
an
2n
的前
n
项和
Sn

【来源】江西省抚州市临川一中 2019-2020 届高三上学期第一次联合考试数学(文科)
试题
【答案】(1) an
1 2
n
;(2)
Sn
2n1
n2
n
2
.
34.已知等差数列an 的前 n 项和为 Sn , a2 a8 82 , S41 S9 .

2018-2019学年九年级上学期期中考试数学试题(含答案)

2018-2019学年九年级上学期期中考试数学试题(含答案)

2018~2019学年度第一学期期中质量调研九年级数学一、选择题(每小题3分,共30分)1.一元二次方程x 2-2x -1=0的根的情况为( )A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根2.一个长方形的面积为210 cm 2,宽比长少7 cm.设它的宽为x cm ,则可得方程( )A .2(x +7)+2x =210B .x +(x +7)=210C .x (x -7)=210D .x (x +7)=2103.有两个一元二次方程:①02=++c bx ax ,②02=++a bx cx ,其中a +c =0, 以下四个结论中,错误的是( ) A .如果方程①有两个相等的实数根,那么方程②也有两个相等的实数根; B .如果方程①和方程②有一个相同的实数根,那么这个根必定是x=1;C .如果4是方程①的一个根,那么14是方程②的一个根;D .方程①的两个根的符号相异,方程②的两个根的符号也相异;4.若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表: x-7 -6 -5 -4 -3 -2 y-27-13-3353则当0=x 时,y 的值为( )A .5B .-3C .-13D .-275.二次函数c bx ax y ++=2的图象如图所示,反比例函数x ay =与正比例函数x c b y )(+=在同一坐标系中的大致图象可能是A B C D 6.如果将抛物线2y x =向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是( ). A .2(4)2y x =--B .2(4)2y x =-+C .2(4)2y x =+-D .2(4)2y x =++xxxxxyyyyy2018.107.若1(4,)A y -,1(3,)B y -,1(1,)C y 为二次函数242y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( ).A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.如图,Rt OAB △的顶点(2,4)A -在抛物线2y ax =上,将Rt OAB △绕点O 顺时针旋转90︒,得到OCD △,边CD 与该抛物线交于点P ,则点P 的坐标为( ). A .(2,2)B .(2,2)C .(2,2)D .(2,2)(第8题) (第9题) (第10题)9.如图,在Rt ABC △中,90C =︒∠,6cm AC =,2cm BC =,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动,若点P ,Q 均以1cm/s 的速度同时出发,且当一点移动终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( ). A .20cmB .18cmC .25cmD .32cm10.如图,正方形OABC 的边长为2,OA 与x 轴负半轴的夹角为15︒,点B 在抛物线2(0)y ax a =<的图象上,则a 的值为( ). A .12-B .26-C .2-D .23-二、填空题(每小题3分,共24分)11.将一元二次方程(2)(1)3x x -+=化成一般形式,且使得二次项系数为正数,则化成一般形式后的一元二次方程是 .12.已知关于x 的方程x 2+3x +a =0的一个根为-4,则另一个根为 .13.某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是 . 14.若抛物线y =x 2-k x +k -1的顶点在x 轴上,则k = .15.若抛物线2(2)3y x m x =-+-+的顶点在y 轴上,则m =__________.16.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.17.二次函数22y x ax a =-+在 03x ≤≤的最小值是-2,则a =__________18.如图,在平面直角坐标系中,抛物线y =x 2+mx 交x 轴的负半轴于点A .点B 是y 轴正半轴上一点,点A 关于点B 的对称点A ′恰好落在抛物线上.过点A ′作x 轴的平行线交抛物线于另一点C .若点A ′的横坐标为1,则A ′C 的长为 .三、解答题(共76分)19.⑴ 2(3)5x -= ⑵ 01422=+-x x⑶ 03322=--x x⑷03)32=+--x x ( 20.(6分)已知关于x 的方程x 2+8x +12-a =0有两个不相等的实数根.⑴ 求a 的取值范围;⑵ 当a 取满足条件的最小整数时,求出方程的解.21.(6分)如图,△ABC 中,∠C =90°,BC =6,AC =4.点P 、Q 分别从点A 、出发,点P 沿A →C 的方向以每秒1个单位长的速度向点C 运动,点Q 沿B →向以每秒2个单位长的速度向点C 运动.当其中一个点先到达点C 时,点P 、运动.当四边形ABQP 的面积是△ABC 面积的一半时,求点P 运动的时间.Q BP22.(8分)某工厂设计了一款工艺品,每件成本40元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是80元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于65元.如果降价后销售这款工艺品每天能盈利3000元,那么此时销售单价为多少元?我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率.(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?24.(本题满分10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x (单位:元)有如下关系:60(3060)y x x =-+≤≤.设这种双肩包每天的销售利润为w 元. (1)求w 与x 之间的函数解析式.(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?25.(本题满分10分)如图1,在平面直角坐标系中,二次函数2(0)y ax bx c a =++>的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),OB OC =,13OA OC =. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)如图2,若点(2,)G y 是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,APG △的面积最大?求出此时P 点的坐标和APG △的最大面积.26.已知关于x 的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根. (1)求m 的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n (n≥m )与变化后的图象有公共点时,求n2﹣4n 的最大值和最小值.27.(本题满分10分)已知二次函数22y ax bx =+-的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当2x =-和5x =时二次函数的函数值y 相等. (1)求实数a 、b 的值.(2)如图1,动点E 、F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 以每秒5个单位长度的速度沿射线AC 方向运动,当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将AEF △沿EF 翻折,使点A 落在点D处,得到DEF △.①是否存在某一时刻t ,使得DCF △为直角三角形?若存在,求出t 的值;若不存在,请说明理由.②设DEF △与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式.参考答案及评分意见一、选择题 1-5 BDBCB ;6.【答案】C ;【解析】22242(4)(4)2y x y x y x =−−−−→=+−−−−→=+-向左平移向下平移个单位个单位. 故选C . 7.【答案】B ;【解析】二次函数2242(2)6y x x x =+-=+-,∴对称轴2x =-, ∴当14x =-,23x =-,31x =时,213y y y <<.故选B .8.【答案】C ;【解析】将(2,4)A -代入2y ax =中得:1a =,∴2y x =, 由题意知,2OB =,4BA =,∴2OD =,将2y =代入2y x =得,2x =±, ∴(2,2)P .故选C .9.【答案】C ;【解析】由题意知,AP t =,CQ t =,6CP t =-,222222(6)21236PQ PC CQ t t t t =+=-+=-+22(3)18t =-+,又∵02t ≤≤,故2t =时,220PQ =最小, 此时25PQ =.故选C .10.【答案】B ;【解析】∵正方形OABC 的边长为2,∴22OB =,由题意知,15AOB =︒∠,∴30COB =︒∠,∴2BC =,6OC =,故(6,2)B --, 代入2y ax =中得:26a -=,26a =-.故选B .二、填空题11.012=+-x x ; 12.1; 13.25%; 14.K=2;15.【答案】2;【解析】由题意知:对称轴202m x -==,解得2m =. 16.【答案】2(2)9y x =--+;【解析】∵抛物线在x 轴上截得的线段长为6,且对称轴为2x =, ∴抛物线与x 轴的两交点为(1,0)-,(5,0),设2(2)9y a x =-+,将(5,0)代入得:1a =-, ∴2(2)9y x =--+.分分分分 分20. ⑴ 根据题意得:0)12482>--a (解得:4->a⑵ ∵ 4->a ∴ 最小的整数为﹣3 ------------------------------------------------------------ ∴ x 2+8x +12﹣(﹣3)=0 即:x 2+8x +15=0解得:x 1=-3,x 2=-521.设点P 运动了x 秒,则AP =x ,BQ =2x由AC =4,BC =6得:PC =4-x ,QC =6-2xP根据题意得:ABC ABQP S S △四边形21= ∴ ABC PQC S S △△21= ∵ ∠C =90 ∴642121)26)4(21⨯⨯⨯=⋅-⋅x x -( 解得:11=x ,62=x 经检验,x =6舍去答:点P 运动的时间是1秒.22.解:设降价x 元后销售这款工艺品每天能盈利3000元. 根据题意可得:3000)550)(4080(=+--x x解这个方程得:201021==x x ,(不合题意,舍去) 当x =10时,80-x =70>65;当x =20时,80-x =60<65(不符合题意,舍去)答:此时销售单价应定为75元.23.【解析】(1)设这两年该企业年利润平均增长率为x ,则:22(1) 2.88x +=, 解得10.220%x ==,2 2.2x =-(不合题意,舍去) 故这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业的年利润为 2.88(120%) 3.456+=,3.456 3.4>,故该企业2017年的利润能超过3.4亿元. 24.【解析】(1)(30)w x y =-⋅(60)(30)x x =-+-2901800x x =-+-,w 与x 之间的函数解析式:2901800w x x =-+-.(2)根据题意得:22901800(45)225w x x x =-+-=--+, ∵10-<,当45x =时,w 有最大值,最大值是225.(3)当200w =时,2901800200x x -+-=,解得140x =,250x =, ∵5048<,250x =不符题意,舍去,故销售单价应定为40元. 25.【解析】(1)由已知得:(0,3)C -,(1,0)A -,将A ,B ,C 三点的坐标代入,得09303a b c a b c C -+=⎧⎪++=⎨⎪=-⎩,∴223y x x =--.(2)存在.∵(1,4)D -,∴直线CD 的解析式为:3y x =--,∴E 点的坐标为(3,0)-, 由A 、C 、E 、F 四点的坐标得:2AE CF ==,AE CF ∥,∴以A 、C 、E 、F 为顶点,的四边形为平移四边形,∴存在点F ,坐标为(2,3)-. (3)过点P 作y 轴的平行线与AG 交于点Q ,易得(2,3)G -,直线AG 为1y x =--, 设2(,23)P x x x --,则(,1)Q x x -,22PQ x x =-++,21(22)32APG APQ GPQ S S S x x =+=-++⨯△△△,当12x=时,APGS△最大,此时115,24P⎛⎫-⎪⎝⎭,APGS△最大为278.26.解:(1)对于一元二次方程x2﹣(m+1)x+(m2+1)=0,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)由消去y得到x2+6x+n+2=0,由题意△≥0,∴36﹣4n﹣8≥0,∴n≤7,∵n ≤m ,m =1, ∴1≤n ≤7,令y ′=n 2﹣4n =(n ﹣2)2﹣4,∴n =2时,y ′的值最小,最小值为﹣4, n =7时,y ′的值最大,最大值为21, ∴n 2﹣4n 的最大值为21,最小值为﹣4.27.【解析】(1)由题意得:164204222552a b a b a b +-=⎧⎨--=+-⎩,解得:12a =,32b =-.(2)①由(1)知213222y x x =--,∵(4,0)A ,∴(1,0)B -,(0,2)C ,∴4OA =,1OB =,2OC =,∴5AB =,25AC =,5BC =, ∴22225AC BC AB +==,∴ABC △为Rt △,且90ACB =︒∠,∵2AE t =,5AF t =,52AF AB AE AC ==,又∵EAF CAB =∠∠,∴AEF ACB △∽△, ∴90AEF ACB ==︒∠∠,∴翻折后,A 落在D 处,∴DE AE =,∴24AD AE t ==,12EF AE t ==, 若DCF △为Rt △,点F 在AC 上时,i )∴若C 为直角顶点,则D 与B 重合,∴1522AE AB ==,55224t =÷=,如图2 ii )若D 为直角顶点,∵90CDF =︒∠,∴90ODC EDF +=︒∠∠,∵EDF EAF =∠∠,∴90OBC EAF +=︒∠∠,∴ODC OBC =∠∠,∴BC DC =, ∵OC BD ⊥,∴1OD OB ==,∴3AD =,∴34AE =,∴34t =,如图3 当点F 在AC 延长线上时,90DFC >︒∠,DCF △为钝角三角形,综上所述,34t =或54.②i )当504t <≤时,重叠部分为DEF △,∴2122S t t t =⨯⨯=.ii )当524t <≤时,设DF 与BC 相交于点G ,则重叠部分为四边形BEFG ,如图4,过点G 作GH BE ⊥于H ,设GH x =,则2x BH =,2DH x =,∴32xDB =,∵45DB AD AB t =-=-,∴3452x t =-,∴2(45)3x t =-,∴1122(45)(45)223DEF DBG S S S t t t t ===⨯⨯--⨯-△△2134025533t t =-+-.iii )当522t <≤时,重叠部分为BEG △,如图5,∵2(45)52BE DE DB t t t =-=--=-,22(52)GE BE t ==-,∴21(52)2(52)420252S t t t t =⨯-⨯-=-+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市海淀区20中2018-2019学年高二上学期期中考试数学(理)试题一、选择题共8小题,每小题5分,共40分.1. 直线的倾斜角为()A. B. C. D.【答案】B所以直线的倾斜角等于,故选.2. 如果两直线,且平面,则与的位置关系是()A. 相交B.C.D. 或【答案】D【解析】试题分析:直线与平面的位置关系有三种:线在面内、线面平行、线面相交;其中能符合题目要求的有线面平行与线在面内;考点:直线与平面的位置关系;3. 若三点、、共线,则的值为()A. B. C. D.【答案】A【解析】∵三点,,在一条直线上,∴,∴,计算得出,故选A.4. 圆与圆的位置关系是()A. 相交B. 外离C. 内切D. 外切【答案】A【解析】由圆与圆可得,,,,,所以,,所以两圆的位置关系是相交,故选A.5. 若两直线与平行,则它们之间的距离为()A. B. C. D.【答案】C【解析】可化为,由两平行线之间的距离公式可得,故选.6. 已知圆,直线,,若,被圆所截得的弦的长度之比为,则的值为()A. B. C. D.【答案】C【解析】圆的圆心为,半径为,圆心到线的距离为,被圆所截得的弦的长度为,圆心到的距离为,被圆所截得的弦的长度为,结合,被圆所截得的弦的长度之比为,可得,求得,故选.7. 如图,已知三棱锥的底面是等腰直角三角形,且,侧面底面,,则这个三棱锥的三视图中标注的尺寸,,分别是()A. ,,B. ,,C. ,,D. ,,【答案】A【解析】由三棱锥及其三视图可知,为等边的高,所以,又因为为的长,所以,可得为点到的距离,由此,故选.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.8. 如图,已知平面平面,,、是直线上的两点,、是平面内的两点,且,,,,,是平面上的一动点,且有,则四棱锥体积的最大值是()A. B. C. D.【答案】A【解析】由题知:,是直角三角形,又,所以.因为,,所以.作于,则.令,则,可得,所以即为四棱锥的高,又底面为直角梯形,.所以,故选.【方法点睛】本题主要考查面面垂直的性质,棱锥的体积公式以及求最值问题,属于难题. 求最值的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法;⑤图像法,本题首先根据线面关系将体积最值转化为函数求最值问题,然后应用方法①解答的.二、填空题共6小题,每小题5分,共30分.9. 已知两点,,则线段的长为__________.【答案】【解析】因为,,,所以由两点间距离公式可得线段的长为,故答案为.10. 底面直径是,高是的圆柱的侧面积为__________.【答案】【解析】因为圆柱的底面直径是,所以底面半径为,又因为圆柱的高是,所以由圆柱的侧面积公式可得圆柱的侧面积为,故答案为.11. 已知直线与直线垂直,则的值为__________.【答案】【解析】由直线与直线垂直,可得,计算得出,故答案是.12. 从点引圆的切线,则切线长是__________.【答案】【解析】因为圆的方程为,所以圆心,半径,所以,所以切线长,故答案为.13. 已知某三棱锥的三视图如图所示,则该三棱锥的最长棱的长是__________.【答案】则该三棱锥的最长棱的长是,,故答案为.14. 若动点在直线上,动点在直线上,设线段的中点为,且,则的取值范围是__________.【答案】【解析】由直线方程可知两直线斜率相等,所以,由平行线线的几何性质知的轨迹为平行于的直线,直线方程为,又点在圆的内部,故的轨迹是如图所示的线段.即原点和距离的平方.由图可知,,,,故答案为.【方法点晴】本题主要考查轨迹方程及解析几何求最值,属于难题.解决曲线轨迹中的最值问题一般有两种方法:一是几何意义,特别是用曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将曲线轨迹中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.本题是先将转化为直线上的点与原点距离的平方,然后利用几何方法解答的.三、解答题共6小题,共80分.解答应写出相应文字说明,演算步骤或证明过程.15. 求满足下列条件的曲线方程:(1)过点,两点的直线方程;(2)过点且圆心在的圆的方程.【答案】(1);(2).【解析】试题分析:(1)由,求出直线的斜率,设出直线方程,将点代入求出参数,即可得结果;(2)设圆为,将代入,得,从而可得圆的方程.试题解析:(1)∵过点,,∴,∴设直线为,将代入得:,即,∴.(2)∵圆心为,∴设圆为,将代入,得:,∴.∴.16. 如图,在直三棱柱中,,,为中点,与交于点.(1)求证:平面;(2)求证:平面;(3)求三棱锥的表面积.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)证明:连结,可得为的中位线,可得,根据线面平行的判定定理可得平面;(2)在直三棱柱中,可证平面,从而可得,又,,即可证明平面;(3),分别利用三角形面积公式求出各三角形面积,求和即可得结果.试题解析:(1)证明:连结,∵直三棱柱,,∴四边形为正方形,∴为中点,∵为中点,∴,∵平面,平面,∴平面.(2)证明:方法1,∵直三棱柱,∴,又∵,,∴平面,∵平面,∴,∵正方形,∴,又∵,∴平面.方法2:∵直三棱柱,∴平面平面,∵平面平面,,∵平面,∵平面,∴,∵正方形,∴,又∵,∴平面.(3).【方法点晴】本题主要考查线面平行的判定定理、线面垂直的判定定理、利用等积变换求三棱锥体积,属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.17. 已知的三个顶点,,.(1)设,边上的中点分别为,,求所在直线方程;(2)求边上的高线所在直线方程;(3)求的面积.【答案】(1);(2);(3).【解析】试题分析:(1)由中点坐标公式可得的中点坐标,从而可得直线的斜率,再根据点斜式可得方程;(2)由两点可得的斜率,由垂直关系可得高线的斜率,点斜式可得方程;(3)可得的方程,可求到直线的距离即三角形的高,再由距离公式求得边上的高,代入面积公式可得结果.试题解析:(1)∵,,,∴,,∴,∴所在直线方程:,即.(2)∵,为,中点,∴,∴所求直线斜率,代入,得,即.(3),到距离.∵,为,中点,∴.18. 已知圆.(1)直线的方程为,直线交圆于、两点,求弦长的值;(2)从圆外一点引圆的切线,求此切线方程.【答案】(1);(2)或.【解析】试题分析:(1)由圆方程可得圆心,,先求出圆心到直线距离,根据勾股定理可得;(2)当直线为时,与圆相切,符合题意.当斜率存在时,设斜率为,可设直线,利用圆心到切线的距离等于半径列方程,即可解得的值,从而可得结果..试题解析:(1)∵圆,∴圆心,,圆心到直线距离,∴.(2)①当直线为时,与圆相切,符合题意.②当斜率存在时,设斜率为,∴直线,即,圆心到直线距离,∵直线与圆相切,∴即,∴,∴直线:,∴综上可知,切线方程为或.19. 如图,四棱锥中,底面是边长为的菱形,,,为中点.(1)求证:平面平面;(2)若,,的交点记为,求证平面;(3)在(2)的条件下求三棱锥的体积.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)根据等腰三角形的性质可得,根据菱形的性质可得,由线面垂直的判定定理可得面,根据面面垂直的判定定理可得结果;(2)由,为中点,可得,由(1)知,利用线面垂直的判定定理可得结论;(3)先证明面,则,利用棱锥的体积公式可得结果.试题解析:(1)设,连结,∴,为中点,∴,又∵底面为菱形,∴,∵,∴面,又∵面,∴面面.(2)∵,为中点,∴,又∵,,∴面.(3)过作于,∴,又∵面,面,∴.【方法点晴】本题主要考线面垂直的判定定理、面面垂直的判定定理以及利用等积变换求棱锥体积,属于难题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.20. 已知圆和定点,由圆外一点向圆引切线,切点为,且满足.(1)求实数,满足的等量关系;(2)求线段长的最小值;(3)若以为圆心所作的圆与圆有公共点,试求半径取最小值时圆的方程.【答案】(1);(2);(3).【解析】试题分析:(1)连接,则为直角三角形,利用,即可求得实数,满足的等量关系;(2)表示出利用配方法即可求出的最小值;(3)由⊙与⊙有公共点,可得,只需求出的最小值以及取得最小值时的的值,即可求出半径最小值的圆的方程.试题解析:(1)连接,∵为切点,∴,∴,∵,∴,∴.(2)∵,∴,∴.∴当时,线段长的最小值为.(3)设半径为,∵⊙与⊙有公共点,⊙半径为,∴,即且,∴,∴当时,,此时,,∴当半径取最小值时,圆方程为:.。

相关文档
最新文档