第三章 土中应力计算

合集下载

土力学:第三章土中应力计算

土力学:第三章土中应力计算

附加应力的分布规律
平面分布规律
附加应力在平面上的分布呈扩散状,随着深度的 增加而减小。
深度分布规律
在一定深度范围内,附加应力随深度的增加而增 大,达到一定深度后基本保持稳定。
方向分布规律
附加应力在不同方向上的分布不同,与外部荷载 的方向和土体的性质有关。
附加应力的影响因素
01
外部荷载
外部荷载的大小、分布和作用方 式直接影响附加应力的分布和大 小。
在水平方向上,自重应力 表现为均匀分布。
侧向应力
在土体边缘,自重应力表 现为侧向应力,对土体的 稳定性产生影响。
自重应力的影响因素
土的密度
土的密度越大,自重应力越大。
重力加速度
重力加速度越大,自重应力越大。
土体的几何形状和尺寸
土体的几何形状和尺寸对自重应力的分布和大小有显著影响。
04 土中附加应力计算
02
03
土体的性质
边界条件
土体的容重、压缩性、内摩擦角、 粘聚力等性质对附加应力的影响 较大。
土体的边界条件,如固定边界、 自由边界等,对附加应力的分布 和大小也有影响。
05 土中有效应力计算
CHAPTER
有效应力的概念与计算方法
有效应力的概念
有效应力是指土壤颗粒之间的法向应 力,是土壤保持其结构稳定和防止剪 切破坏的主要因素。
土中应力计算的重要性
01
02
03
工程安全
准确的土中应力计算是确 保工程安全的前提,能够 预测可能出现的危险和制 定应对措施。
设计优化
通过土中应力计算,可以 优化设计方案,提高工程 结构的稳定性和经济性。
科学研究
土中应力计算有助于深入 研究土力学性质和规律, 推动土力学学科的发展。

第3章 土体中的应力计算

第3章 土体中的应力计算

1. M(x、y、z)点的应力: ( 、 、 )点的应力:
3P z3 3P σz = ⋅ 5 = ⋅ cos3 θ 2π R 2π R2 3P z2 x 3Px τzx = ⋅ = ⋅ cos2 θ 2π R5 2π R3 3P z2 y 3Py τzy = ⋅ = ⋅ cos2 θ 2π R5 2π R3
mn 1 n2 ] * ⋅[ − 2π m2 + n2 (1+ n2 ) m2 + n2 +1
同理,可以求得最大荷载角点下任意深度z处 的竖直附加应力σz 为: σz = α tc' p0 = (α c- α tc) p0 (3-7)
3P z5 P 3 σz = = 5 z2 2π R 2π
5
其中 = x2 + y2 + z2 R
(3-3)
P =α P 2 2 z2 ( r z) +1 z 1
(3-4)
其中α = α (r/z)称为集中荷载作用下的应力分布系数 具体的α 值见教材p79表3.5.1
b
图3-11 矩形面积上作用 三角形分布时角 点下的附加应力
根据布希涅斯克解,dP在角点1下深度z处M点 引起的竖向附加应力dσz为:
3p0 xz3 dσ z = 2π b x2 + y2 + z 2
(
)
5
dxdy
2
将上式沿矩形面积积分后,可得出竖直三角形 荷载作用在矩形面上时,在零角点下任意深度 z处所引起的竖直附加应力σz为: σz = α tc p0 (3-6) 式中 α tc =
y z
x
图3-4
2. 与材料力学比较 与材料力学比较(用摩尔圆解决问题时)

土力学课件 第3章 土中应力分布及计算.

土力学课件 第3章 土中应力分布及计算.

计算如图所示水下地基土中的自重应力分布
水面 a 8m
粗砂 r=19KN/m3 rsat=19.5KN/m3
黏土r=19.3KN/m3 4m rsat=19.4KN/m3 W=20%,WL=55%,WP=24%
b 76KPa 176KPa c 253.2KPa
解:水下的粗砂层受到 水的浮力作用, 其有效重度: r , rsat rw 19.5 10 9.5 KN / m 3 粘土层因为W WP , 所以I L 0, 故认为土层 不受到水的浮力作用, 土层面上还受到 上面的静水压力作用。 a点:Z 0, CZ 0 KPa; b点:Z 8m, 该点位于粗砂层中,
应力符号规定
法向应力以压为正,剪应力方向的符号规定则与材料力 学相反。材料力学中规定剪应力以顺时针方向为正,土力学 中则规定剪应力以逆时针方向为正。
压为正,拉为负,剪应力以逆时针为正
土中的自重应力计算
土中应力按其起因可分为自重应力和附加应力两种。
自重应力是土受到重力作用产生的应力,自重应力一般是自 土体形成之日起就产生于土中。
二.成层土自重应力计算 地基土通常为成层土。当地基为成层土体时,设各土层 的厚度为hi,重度为ri,则在深度z处土的自重应力计算公 式为:
cz i hi
i 1
n
z hi
i 1
n
n—从地面到深度z处的土层数; hi—第i层土的厚度,m。 成层土的自重应力沿深度呈折线分布,转折点位于r值 发生变化的土层界面上。
◇若0<IL<1,土处于塑性状态,土颗粒是否受到水的 浮力作用就较难肯定,在工程实践中一般均按土体受 到水浮力作用来考虑。
四.存在隔水层时土的自重应力计算
当地基中存在隔水层时,隔水层面以下土的自重应力应 考虑其上的静水压力作用。

土力学与地基基础(土中的应力计算)

土力学与地基基础(土中的应力计算)
此时基底平均压力按下式计算: 此时基底平均压力按下式计算:
矩形基础:A=b× 矩形基础:A=b×L
d1 + d2 Gk =A
Gk = γ G Ad
γG=20kN/m3
2、偏心荷载下的基底压力 单向偏心荷载下的矩形基础如图。 单向偏心荷载下的矩形基础如图。 设计时, 设计时,通常基底长边方向取与偏心 方向一致, 方向一致,最大压力值与最小压力值 按材料力学短柱偏心受压公式计算: 按材料力学短柱偏心受压公式计算:
p0 = pk − σ c
四、地基附加应力
地基附加应力是指建筑物荷载在土体中引起的附加于原有应力之上的应力。 地基附加应力是指建筑物荷载在土体中引起的附加于原有应力之上的应力。
(一)竖向集中应力作用下的地基附加应力
1、布辛奈斯克解 、
3p z3 3 1 p σz = = 2π ( r 2 + z 2 )5 / 2 2π ( r / z )2 + 1 5 / 2 z 2
第三章 地基土中的应力计算
一、概述 地基土中的应力: 地基土中的应力: 1、自重应力 2、附加应力
建筑物修建以前, 建筑物修建以前,地基中由于土 体本身的有效重量所产生的应力。 体本身的有效重量所产生的应力。 建筑物修建以后,建筑物重量等 建筑物修建以后, 外荷载在地基中引起的应力, 外荷载在地基中引起的应力,所 谓的“附加” 谓的“附加”是指在原来自重应 力基础上增加的压力。 力基础上增加的压力。
γ
γ′
均质地 基
γ1(γ
1
< γ2 )
γ2 γ′ 2
成层地基
(二)水平向自重应力
σ cx = σ cy = K 0σ cz
式中: 土的侧压力系数或静止土压力系数, 式中:K0——土的侧压力系数或静止土压力系数,经验值可查课本 土的侧压力系数或静止土压力系数 表3.1

土力学第三章

土力学第三章

向下渗流
z z u H w h
存在向下渗流,有效自重应力增大γw⊿h

A点的有效自重应力:
3.4 基底压力计算
上部结构
建筑物设计
基础 地基
上部结构的自重及各 种荷载都是通过基础 传到地基中的。
基础结构的外荷载 基底反力 基底压力 基底附加压力 地基附加应力 地基沉降变形 基底压力:基础底面传递 给地基表面的压力,也称 基底接触压力。 暂不考虑上部结构的影响, 使问题得以简化; 用荷载代替上部结构。
Aw 1 A
PSi
PaVi
有效应力σ′
'u
3.2 有效应力原理
2. 有效应力原理
'u
σ:作用在饱和土中任意面上的总应力 σ′:作用在同一平面土骨架上的有效应力 u:作用于同一平面上孔隙水压力 土的变形和强度变化只取 决于有效应力的变化
3.2 有效应力原理
①变形的原因 颗粒间克服摩擦相对滑移、滚动—与 σ’ 有关; 接触点处应力过大而破碎—与 σ’ 有关。
②强度的成因 凝聚力和摩擦—与σ’ 有关 ③孔隙水压力的作用 对土颗粒间摩擦、土粒的破碎没有贡献, 并且水不能承受剪应力,因而孔隙水压力 对土的强度没有直接的影响; 它在各个方向相等,只能使土颗粒本身 受到等向压力,由于颗粒本身压缩模量很 大,故土粒本身压缩变形极小。因而孔隙 水压力对变形也没有直接的影响,土体不 会因为受到水压力的作用而变得密实。
pmax
min
y
P 6e 1 A b
3.5.2 基础底面接触压力
2、偏心荷载作用——单向偏心荷载 P b e x y
p max
pmax
min

第3章-土应力计算

第3章-土应力计算

z z1 z 2
2 均布荷载时, p0 2kN / m
2 三角形荷载时, p0max 98 2 96kN / m
35/74
A点附加应力计算表格
均布荷载时 p0=2.000kN/m2 Kz1 3 0.6 0.234 z1 (kN/m2) 0.468 三角荷载时
Z(m)
z

3/74
第三章 土中应力计算 3.1 土的自重压力
沿水平面均匀分布,且与z成正比,即随深度 按直线规律分布。
天然地面 σcz
cz
cz z
σcz= z
z
cy
cx
1 1
z
4/74
第三章 土中应力计算 3.1 土的自重压力
cz i hi
i 1
n
天然地面
2/74
第三章 土中应力计算 3.1 土的自重压力
研究目的:确定土体的初始应力状态。 研究方法:土体简化为连续体,应用连续体 力学(例如弹性力学)方法来研究土中应力的 分布。
假设天然土体是一个半无限体,地面以下土质 均匀,天然重度为 (kN/m3),则在天然地面下任 意深度z(m)处的竖向自重应力 cz (kPa)可取作用于 该深度水平面上任一单位面积上土柱的重量 z l 计算 即: cz
p II I z M
III IV
o
III IV
o
II I
z K cⅠ KcⅡ Kc Ⅲ K cⅣ p
25/74
均布矩形荷载下任意点的应力计算
计算点在基底边缘 II I
o
o
z K cⅠ KcⅡ p
计算点在基底边缘外
o III I

土力学-第三章-土中应力计算详解

土力学-第三章-土中应力计算详解

基本假定
地基土是各向同性、均质、半无限空间弹性体 地基土在深度和水平方向都是无限的
地 表 临 空
地基:均质各向同性线性变形半空间体
应用弹性力学关于弹性半空间的理论解答
1.均质土竖向自重应力
若将地基视为均质半无限空间弹性体,土体在自重作用下只能产 生竖向变形,而无侧向位移及剪切变形存在,因此在深度z处平面上, 土体因自身重力产生的竖向应力等于单位面积上土柱体的重力。
3.水平向自重应力
天然地面
地基土在重力作用下,除承受 作用于水平面上的竖向自重应力外, 在竖直面上还作用有水平向自重应 力。由于土柱体在重力作用下无侧 向变形和剪切变形,因此可以证明 侧向自重应力与竖向自重应力成正 比,剪应力均为零。
cz z
cx cy K0 cz
cz
z
cx
cy
侧压力系数或静止 土压力系数
4 地下水位升降对自重应力的影响
自重应力分布曲线的变化规律
土的自重应力分布曲线是一条折线,拐点在土 层交界处和地下水位处。
同一层土的自重应力按直线变化。
自重应力随深度的增加而增大。
【例题3-1 】计算自重应力,并绘分布图。
4. 例题分析 【例】一地基由多层土组成,地质剖面如下图所示,试计算并绘制 自重应力σcz沿深度的分布图。
57.0kPa
80.1kPa
103.1kPa 150.1kPa 194.1kPa
cz 1h1 2 h2 n hn i hi
i 1
n


均质地基
1 (
1
2)
2 2
成层地基
3.2 基底压力与基底附加应力
上部结构

第3章土中的应力计算汇总

第3章土中的应力计算汇总

第3章⼟中的应⼒计算汇总第三章地基中的应⼒计算§3-1 概述⼀、⼟体应⼒计算的⽬的:1、⽤于计算⼟体的变形,如建筑物的沉降;2、⽤于验算⼟体的稳定,如边坡的稳定性。

⼆、相关的概念1、⽀撑建筑物荷载的⼟层称为地基。

2、建筑物的下部通常要埋在地下⼀定的厚度,使之坐落在较好的地层上。

由天然⼟层直接⽀撑建筑物的称为天然地基3、软弱地基其承载⼒和变形不能满⾜设计要求,经加固后⽀撑建筑物的称为⼈⼯地基。

4、⽽与地基相接触的建筑物底部称为基础。

5、与建筑物基础底⾯直接接触的⼟层称为持⼒层。

6、将持⼒层下⾯的⼟层称为下卧层。

7、分类:(1)⼟体的应⼒按引起的原因分为⾃重应⼒和附加应⼒;⾃重应⼒——在未建造基础前,由⼟体⾃⾝的有效重量所产⽣的应⼒。

附加应⼒——由于建筑物荷载在地基内部引起的引⼒。

由外荷(静的或动的)引起的⼟中应⼒。

(2)按⼟体中⼟⾻架和⼟中孔隙(⽔、⽓)的应⼒承担作⽤原理或应⼒传递⽅式可分为有效应⼒和孔隙应(压)⼒。

有效应⼒——由⼟⾻架传递(或承担)的应⼒。

孔隙应⼒——由⼟中孔隙流体⽔和⽓体传递(或承担)的应⼒。

孔隙应⼒分为:静孔隙应⼒和超静孔隙应⼒。

对于饱和⼟体由于孔隙应⼒是通过⼟中孔隙⽔来传递的,因⽽它不会使⼟体产⽣变形,⼟体的强度也不会改变。

由于⼟层有其特殊的性质,作为地基的⼟层在上部荷载作⽤下将产⽣应⼒和变形。

从⽽给建筑物带来⼀系列⼯程问题,最主要的是地基的稳定问题和变形问题。

如果地基内部产⽣的应⼒在途的强度所允许的范围内时,⼟体是稳定的;反之,如果地基内部某⼀区域中的应⼒超过了⼟的强度,那么,哪⾥的⼟体将发⽣破坏,并可能会引起整个地基产⽣滑动⽽失去稳定,从⽽导致建筑物倾倒。

如果地基⼟的变形量超过了允许值,即使⼟体尚未破坏,也会造成建筑物毁坏或失去使⽤价值。

因此,为保证建筑物的安全和正常使⽤,设计时必须对地基进⾏强度和稳定性分析并计算基础的沉降量。

为此,就要研究在各种荷载作⽤下地基内部的应⼒分布规律。

第3章 土体中的应力计算

第3章 土体中的应力计算
Chapter
3
土体中的应力计算


研究土中的应力和分布规律是研究地基和土工建筑物变形
和稳定问题的依据
自重应力 附加应力 惯性力 渗透力
: 由土体自身重量所产生的应力 :由外荷载引起的土中应力
1 地基中的几种应力状态 a、三维(空间)应力状态
xy xy xz ij yz yy yz zx zy zz
zz (OXAY ) zz (OYBZ) zz (OZCT) zz (OTDX )
A
Y O
B
Z
Point of interest
zo ( KsI KsII KsIII KsIV ) p
(b)O 在荷载面外部
O D C X D Z O
(q)
C
(q)
影响因素 (1) 分布荷载p(x,y)的分布规律及其大小 (2) 分布荷载作用面积 A 的几何形状及大小
(3) 应力计算点的坐标值
z p0
3.3.2.1 空间问题的附加应力计算 (一) 矩形面积竖直均布荷载 1. 角点下应力
B
dP dA
x
p
x L y x
R z
R
z
集中荷载 dP = dxdyp0, M点处 dz 为
基压缩变形的主要原因。因为一般基础都埋臵于地面下一定深度,因此在计
算由建筑物造成的基底附加压力时,应扣除基底标高处土中原有的自重应力
p0 p cd p 0 d
cd
cd
p
cd
p0
3.3 地基中的附加应力
附加应力:指建筑物荷重在土体中引起的附加于原有应力之上 的应力。

第三章-土体中的应力计算

第三章-土体中的应力计算

3P z 3 z 5 2 R
式中
P z K 2 z
为竖向集中力作用竖向附加应力系 数(查表)。
§3 土体中的应力计算
P z K 2 z
特点
§3.3 地基中附加应力的计算
一. 竖直集中力作用下的附加应力计算-布辛内斯克课题
3 1 K 2 [1 (r / z )2 ]5 / 2
3.P作用线上,r=0, K=3/(2π),z=0, σz→∞,z→∞,σz=0 4.在某一水平面上z=const,r=0, K最大,r↑,K减小,σz减小 5.在某一圆柱面上r=const,z=0, σz=0,z↑,σz先增加后减小
6.σz 等值线-应力泡
P
P
球根 应力 球根
0.1P
0.05P
0.02P 0.01P
cy

假设土体为均匀连续介质,并为半无限空 间体,在距地表深度z处,土体的自重应力 为:

cz = z
自重产生的水平应力将在土压力计算部分 介绍。


若地基由多层土所组成
c 1h1 2 h2 ...... n hn h
i 1
n
i i
c 1h1 2 h2 ...... n hn h
七. 条形面积竖直均布荷载作用下的附加应力计算
任意点下的附加应力—F氏解的应用
p
z K s zp x K s xp xz K s xz p
y
B
x
z
x
z
M
x z s s Ks , K , K F ( B , x , z ) F ( , ) F( m , n ) z x xz B B

3土中的应力计算

3土中的应力计算

σcx=K0 σcz = K0 γ z
第三章 土中应力计算 3.2 土的自重应力
二、成层土中自重应力
土中竖向和侧向的自重应力一般均指有效自重应力,计算时, 土中竖向和侧向的自重应力一般均指有效自重应力,计算时,对地下 有效自重应力 水位以下土层必须以有效重度 代替天然重度 为简便起见, 天然重度。 水位以下土层必须以有效重度γ ' 代替天然重度。为简便起见,常把竖 简称为自重应力, 表示。 向有效自重应力σcz简称为自重应力,并以符号σc表示。 若地基是由多层土所组成, 若地基是由多层土所组成,设各层的厚度为h1、h2、…hi、…hn,则地 基中第n层底面处的竖向土自重应力: 基中第n层底面处的竖向土自重应力:
σ(kPa) ( )
σcz=γ z
z
地基中的初始应力,即地基中任一点的自重应力 自重应力, 地基中的初始应力,即地基中任一点的自重应力,只需用竖向应力和 水平向应力表示。 水平向应力表示。天然地面下任意深度z处水平面上的竖向自重应力为
σcz=γ z
竖直面上的水平向自重应力为 为静止侧压力系数。 K0 为静止侧压力系数。
土中应力计算 第三章 土中应力计算
3.1 概述
要保证建筑物的安全和正常使用必须控制其沉降量和 要保证建筑物的安全和正常使用必须控制其沉降量和不均匀沉降差值 沉降量 差异沉降量)不超过一定范围,对软粘土地基上的建筑物尤为重要。 (差异沉降量)不超过一定范围,对软粘土地基上的建筑物尤为重要。沉降 分析是土力学的基本课题之一。 分析是土力学的基本课题之一。 沉降量的大小主要取决于土体产生变形的原因 土体本身的性状两个方 土体产生变形的原因和 沉降量的大小主要取决于土体产生变形的原因和土体本身的性状两个方 面。 土体产生变形的原因主要是土体中应力状态的改变 应力状态的改变( 土体产生变形的原因主要是土体中应力状态的改变(如地面荷载引起地 基中应力场的改变,在地基中产生附加应力)。 基中应力场的改变,在地基中产生附加应力)。 土体本身的性状主要指土的压缩性 土的压缩性( 应力-应变关系), ),是指土体在 土体本身的性状主要指土的压缩性(或应力-应变关系),是指土体在 附加应力作用下产生的效应。 附加应力作用下产生的效应。

第3章 土中应力计算

第3章 土中应力计算

表3-1 z=3m处水平面上竖应力计算
r(m)
0
1
2
3
4
5
r/z
0
0.33
0.67
1
1.33
1.67
K
0.478 0.369
0.189
0.084
0.038
0.017
z(kPa)
10.6
8.2
4.2
1.9
0.8
0.4
表3-2 r=1m处竖直面上竖应力z的计算
z(m)
0
1
2
3
4
5
6
r/z
1
0.5
0.33
M(x,y,0)
z
附加应力系数
z
K
P z2
M(x,y,z) z
1885年法国学者 布辛内斯克解
z
3Pz 3
2R5
3P
2R2
cos3 q
图 直角坐标表示
❖ 讨论6个应力分量和3个位移分量:
法向应力:
z
3Fz3
2 R5
x
3F
2
zx2
R5
1 2
3
R2 Rz z2 R3(R z)
x2 (2R z)
(a) 马鞍形分布 (b) 抛物线分布 (c) 钟形分布
▪上述演化只是一典型的情形,实际情况十分复杂 ▪大多数情况处于上述两种极端情况之间。
(3)情况3 弹塑性地基上有限刚性的基础
3.2.2 基底压力的简化计算
❖ 基底压力分布十分复杂;
❖ 但是,根据弹性理论中圣维南原理,在基底一定深度 处引起的地基附加应力与基底荷载分布形状无关,只与 其合力的大小和位置有关。

土力学与地基基础——第3章 地基土中的应力计算

土力学与地基基础——第3章 地基土中的应力计算
编辑ppt
三、水平向自重应力 土的水平向自重应力cx和cy可按下式计算:
cxcyK0cz
天然地面
土的侧压力系数/ 静止土压力系数
cz cx
广义虎克定律推导出
理论关系为
K0
1

值K可0 以在实验室测定。
cy
编辑ppt
z
四、例题分析
【例】一地基由多层土组成,地质剖面如下图所示,试计
算并绘制自重应力σcz沿深度的分布图
土中应力
自重应力
附加应力
编辑ppt
建筑物修建以前,地 基中由土体本身重量 所产生的应力
建筑物重量等外荷载 在地基中引起的应力 增量
土中应力计算的目的:
第一节 概述
土中应力过大时,会使土体因强度不够发生破坏, 甚至使土体发生滑动失去稳定。
土中应力的增加会引起土体变形,使建筑物发生沉 降,倾斜以及水平位移。
布。根据平衡条件求得重分布后的基底最大压应力。
pmax
pmin pmax
pmin=0
e<l/6
e=l/6
pmax
e>l/6
pmin<0 基底压力重分编布辑pppt max
2(F G) pmax 3( l e)b pmin=0
基底压力重分布
l
l/2-e e>l/6
偏心荷载作用线
应与基底压力的
b
编辑ppt
法国数学家布辛内斯克(J. Boussinesq)1885年推出了该
问题的理论解,包括六个应力分量和三个方向位移的表达

教材P48页
其中,竖向应力z:
z3 2 PR z3 52 3 [1(r1 /z)2]5/2zP 2z P 2

第三章 土中应力的计算

第三章 土中应力的计算

z 2 z 2( aeoh) z 2(ebfo) q( t 1 t 2 )
(3)三角形荷载FEC(最大值为p-q)
作用范围3,4块,对M点引起的竖向应力σz3
z 3 z 3(ofcg) z 3( hogd ) ( p q)( t 3 t 4 )
第三章
土中应力的计算
3.1 概述
土中的应力—指土体在自重、构筑物荷载以及 其它因素(如水渗流、地震等)作用下,土体中 所产生的应力,包括自重应力和附加应力。

自重应力—土体受自重作用而产生的应力。
附加应力—土体受建筑物等外荷载作用而产生 的应力。
1、土中应力计算目的 为了对建筑物地基基础进行沉降(变形)、 承载力与稳定性分析,必须掌握建筑前后土中应 力的分布和变化情况。
2、偏心荷载作用时,基底压力按偏心受压公式计算:
Pmax
min
F G M F G 6e (1 ) A W A l
式中: F+G、M-作用在基础底面中 心的竖直荷载及弯矩, M=(F+G)e; e-荷载偏心距; W-基础底面的抵抗矩(抗弯截 面系数),对矩形基础 W=bl2/6; b、l-基础底面的宽度与长度。
IL w wP 50 25 1.09 1 w L w P 48 25
故受浮力作用,其浮重度为:
'
( s w ) ( 26.8 9.81) 16.8 7.1 kN/m3 s (1 w ) 26.8 (1 0.50)
a 点:z = 0 m,σcz=γz=0; b 点:z = 2 m,σcz=γz=19 ×2=38 kPa c 点:z = 5 m , σcz =∑γihi=19 ×2+10 ×3=68 kPa, d 点:z = 9 m,σcz =∑γihi=19 ×2+10 ×3+7.1 ×4=96.4 kPa 土层中的自重应力cz分布,如图所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

G = γ GV = γ Gbld
γ G 取基础自重及回填土的平均重度20kN/m3
第三章 土中应力计算 18
3.偏心荷载下的基底压力 3.偏心荷载下的基底压力 偏心距
pmax
m in
F +G M F +G 6e = ± = (1± ) A W A l
偏心所在边
第三章 土中应力计算 19

l e< 6
10
第三章 土中应力计算
3. 分布规律 自重应力分布线的斜率是容重; 自重应力分布线的斜率是容重; 自重应力在等容重地基中随深度呈直线分布; 自重应力在等容重地基中随深度呈直线分布; 自重应力在成层地基中呈折线分布; 自重应力在成层地基中呈折线分布; 在土层分界面处和地下水位处发生转折。 在土层分界面处和地下水位处发生转折。
作业上交时间: 作业上交时间:待定 答疑时间:周三5、 节 答疑时间:周三 、6节 答疑地点: 号楼 号楼323室 答疑地点:48号楼 室
第三章 土中应力计算 36
p167
§3-5 有效应力原理
一、有效应力原理
定义:
P 粒 应 σs = s 间 力 As 中 压 u 性 力 P 总 力= 应 σ A
— — — —
接近弹性解 马鞍型 抛物线型 倒钟型
14
二、计算意义
地基表面所受荷载的大小、分布等情况,为计算 由此产生的附加应力作准备,也可作为基础结构设计 的计算资料。
三、基底压力的简化计算
1.简化根据 1.简化根据 圣维南原理:若z>2b,土中应力分布主要取决于荷 载合力大小和作用点位置,与分布形式关系不大。故尽 管基底压力受诸多因素影响,且为非线性分布,但为了 计算简便,可视为线性分布。
梯形分布

l e= 6
l e> 6
′ pmax
三角形分布

重分布
2(F + G) = l 3b( − e) 2
第三章 土中应力计算 20
四、基底附加压力
考虑基底处总荷载增量
F + G −σc A
F + G −σc A p0 = A
挖除基坑的土体自重
基底处总荷载增量产生的应力称为基底附加应力 基底附加应力
2z3 p0dξ
dp
2 2
]

σz = ∫
b2
−b 2
dσz = αsz p0
σz = αsz p0
x z αsz = f ( , ) b b
第三章 土中应力计算
见P111 表4-10
35
作业P 作业 115
思考题: 、 、 思考题:4-1、4-3、4- 53-1、 3、 4 、3-6 练习题: 练习题: 4-10、4-11 、
根据广义虎克定律:
1 εx = σcx − µ(σcz +σcy ) = 0 E0 1 εy = σcy − µ(σcz +σcx ) = 0 E0
[
]
[
]
得 令
µ σcx = σcy = σcz 1− µ µ ---静止土压力系数 K0 = 1− µ
(水平向)
第三章 土中应力计算 8
三、成层土及有地下水时的计算
dQ = pdy
3z p dy dσz = 5 2πR
3
dσz
dQ
(0,y,0)
(x,0,z)
2z p σz = ∫ dσz = 2 2 2 −∞ π (x + z )
第三章 土中应力计算 34
+∞
3
(二)均布条形荷载
计算点:空间任意点的σz
dp = p0 dξ
dσz =
π[(x −ξ)2 + z
第三章 土中应力计算
25
二、空间问题的σz计算 (一)矩形基底均布荷载
1.角点下 1.角点下σz的公式推导 计算点:角点下任意深度
的σz
dQ
(x,y,0)
R
基底平均附加应力
第三章 土中应力计算
26
R = (x + y + z )
2 2
2 12
dQ = p0dxdy
σz = ∫∫ dσz = ∫
A b 0
σ′ = σ −u
第三章 土中应力计算 38
有效应力原理:
1. σ ′ = σ − u
2.有效应力控制土的强度与变形 对非饱和土:
σ ′ = σ − [ua − χ(ua − uw )]
(Bishop,1955)
第三章 土中应力计算
39
二、按有效应力原理计算土中自重应力
第三章 土中应力计算
40
第三章 土中应力计算
第三章 土中应力计算
1
§3-1 概述 §3-2 土中自重应力 §3-3 基底压力计算 §3-4 地基附加应力计算
第三章 土中应力计算
2
§3-1 概述
一、自重应力和附加应力的概念
1.自重应力(长驻应力) 1.自重应力(长驻应力) 自重应力
由土体自重引起的应力
2.附加应力 2.附加应力
P(1+ µ) z2 1 w= 3 + 2(1− µ) 2πE R R
R---计算点至原点的空间距离 r---计算点在xoy平面的投影至原点的距离
σx σyτxyτyz τzx 及u、v、w略,见P98-99
第三章 土中应力计算 24
2.σz在地基内的分布
P
σz沿深度及径向分布规律 σz等值线分布规律(应力泡) 等值线分布规律(应力泡)
Байду номын сангаас29
x dQ = p0dxdy b 3 p0 xz dxdy 3 dσz1 = 2π b(x2 + y2 + z2 )5 2
σz1 = ∫∫ dσz =αt1 p0
A
荷载变化边边长
σz1 = αt1 p0
对最大荷载边角点:
l z αt1 = f ( , ) b b
见P107 表4-8(1、2点)
30
σz2 = (αc −αt1) p0 = αt 2 p0
第三章 土中应力计算
§3-3 基底压力
一、计算意义 二、基底压力的简化计算 三、基底附加压力
§3-4 地基附加应力
一、竖向集中力下地基附加应力 二、空间问题的σz计算
(一)矩形基底均布荷载 (二)矩形基底三角形分布荷载 (三)圆形基底均布荷载中心点下的σz
第三章 土中应力计算 15
基底压力的 分布形式十 分复杂
根据圣维南原理,基底压力的具体分布形式对地基应 根据圣维南原理, 力计算的影响仅局限于一定深度范围;超出此范围以 力计算的影响仅局限于一定深度范围; 后,地基中附加应力的分布将与基底压力的分布关系 不大,而只取决于荷载的大小、方向和合力的位置。 不大,而只取决于荷载的大小、方向和合力的位置。
基础尺寸较 小 荷载不是很 大
简化计算方法: 简化计算方法:
假定基底压力按直线分布的材料力学方法
第三章 土中应力计算
16
2.中心荷载下的基底压力(合力通过基底形心) 2.中心荷载下的基底压力(合力通过基底形心) 中心荷载下的基底压力
F +G p= A
(kPa)
17
第三章 土中应力计算
其中: F---设计地面以上的上部结构传下的 竖向荷载(kN) G---基础自重及回填土(kN),可按下式计算
三、条形荷载下的σz
§3-5 有效应力原理
第三章 土中应力计算 31
(三)圆形基底均布荷载中心点下的σz
1.中心点下的 1.中心点下的σz
σz = α0 p0
2.任意点σz的计算公式 2.任意点 略
z α0 = f ( ) r0
见P107 表4-9
第三章 土中应力计算
32
三、条形荷载下的σz
平面应变条件——二维问题 二维问题 平面应变条件
σx σy σz τxy τxz τyx τyz τzx τzy
因τzx=τxz
τxy=τyx
τyz=τzy
因此,一个单元体只有6个独立的应力分量,即
σx σy σz τxy τyz τzx
第三章 土中应力计算 6
二、自重应力公式推导
竖向自重应力
τxy=τyz=τzx=0
σcz=γz
7
第三章 土中应力计算
o xx yy y zz
τzx
σz
εy = 0;
γyx = γyz = 0; γzx ≠ 0
τzx
σz τxz σx
σ y τyz
τxy
33
σx
第三章 土中应力计算
三、条形荷载下的σz
条形荷载:荷载沿宽度方向可变,沿长度方向不变 条形基础:墙基、挡土墙基础、路基、坝基等(l/b≥10)
(一)线荷载
1.成层土 1.成层土
σc = ∑γ i hi
i=1
n
σc线在分层处有斜率突变点
2.地下水的影响 2.地下水的影响 含水层中:重度取γ' 不透水层面:叠加静水压力
第三章 土中应力计算 9
0
1
γ1 (γ
1
< γ2 )
2
γ2
3
γ′ 2
σc0 = 0 σc1 = γ1h1 σc2 = γ1h1 +γ 2h2 ′ σc3=γ1h1 +γ 2h2 +γ 3h3
p0 = p −σc = p −γ mh
加权平均重度
第三章 土中应力计算 21
思考题: 、 、 思考题:4-1、4-3、4- 5、4-63-1、 作业P 作业 118 练习题: 练习题: 4-8、4-9 、 作业上交时间: 作业上交时间:待定 答疑时间:周四5、 节 答疑时间:周四 、6节 答疑地点: 答疑地点:F101室 室
相关文档
最新文档