《材料热力学》课程教学大纲的基本要求

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、Aim and significance of the course课程任务和目的

In response to the growing economic and technological importance of polymers, ceramics, advanced metals, composites, and electronic materials, many departments concerned with materials are changing and expanding their curricula. The advent of new courses calls for the development of new textbooks that teach the principles of materials science and engineering as they apply to all classes of materials.

The Series in Materials Science and Engineering is designed to fill the needs of this changing curriculum.

Based on the curriculum of the Department of Materials Science and Engineering at Nanchang University, the series will include textbooks for the undergraduate core sequence of course on Thermodynamics, Physical chemistry, Chemical physics, Structures, Mechanics, and Transport Phenomena as they apply to the study of materials. More advanced texts based on this core will cover the principles and technologies of different material classes, such as ceramics, metals, polymers, and electronic materials.

The series will define the modern curriculum in materials science and engineering as the discipline changes with the demands of the future.

This curriculum is deal with: treatment of the laws of thermodynamics and their applications to equilibrium, and the properties of materials. Provides a foundation to treat general phenomena in materials science and engineering, including chemical reactions, magnetism, polarizability, and elasticity. Develops relations pertaining to multiphase equilibria as determined by a treatment of solution thermodynamics. Develops graphical constructions that are essential for the interpretation of phase diagrams. Treatment includes electrochemical equilibria and surface thermodynamics. Introduces aspects of statistical thermodynamics as they relate to macroscopic equilibrium phenomena

2、main contents and basic requirement课程内容及基本要求

First Law: system and surroundings, energy transfer, energy of system, energy as a state function, work, the close system, notation, intensive and extensive properties, the open system, enthalpy, steady state, heat capacity at constant volume, heat capacity at constant pressure, adiabatic flow through a valve: Joule-Thomson Expansion, equations of state, nonideal gases, adiabatic compression or expansion, enthalpies of formation, enthalpy changes in chemical reactions, adiabatic temperature change in chemical reactions

Second Law: entropy as a state function, entropy not conserved, open system entropy balance, adiabatic, reversible, steady state system, heat engines, diagrammatic representation,

相关文档
最新文档