《材料热力学》课程教学大纲的基本要求
《工程热力学》课程教学大纲
《工程热力学》课程教学大纲课程编号:0807000115英文名称:Engineering Thermodynamics学分:3总学时:48。
其中,讲授48学时,实验0学时,上机0学时,实训0学时。
适用专业: 热能与动力工程专业、建筑环境与设备工程专业先修课程:高等数学、大学物理一、课程性质与教学目的本课程是热能与动力工程及建筑环境与设备工程专业的一门专业基础课程。
其任务是使学生了解热能与机械能在相互转换过程中的特点和规律;学会对热能与机械能进行转换的基本特点和规律。
掌握对不同工质和不同种类过程进行分析的思想方法。
树立能量转换效率和转换质量进行评价的基本思想和方法。
熟练工程计算的思路和方法。
二、基本要求要求学生掌握有关物质的热力性质、热能有效利用以及热能与其他能量转换的基本规律,并能正确运用这些规律进行各种热工过程和热力循环的分析计算。
本课程主要用于提高学生的热工基础理论水平,培养学生具备分析和处理热工问题的抽象能力和逻辑思维能力。
为学生今后的专业学习专业课提供必要的基础知识,同时训练学生在实际工程中的理论联系实际的能力。
此外本课程在有关计算技能和实践技能方面也使学生得到一定的训练。
三、重点与难点重点:工程热力学的主要研究内容;热力系统;状态及平衡状态;状态参数及其特性;热平衡及热力学第一定律;第一定律的实质;热力学第一定律应用;理想气体特性;对比态状态方程;第二定律的实质;第二定律各种表述的等效性;不可逆过程;混合物的成分表示;湿空气的概念;湿空气过程;绝热流动过程(可逆与不可逆过程)特性,喷管计算(设计及校核);有摩擦的流动;定温压缩和绝热压缩;多变压缩;提高压缩机效率的途径;蒸汽卡诺循环。
难点:工程热力学的研究方法,准平衡过程;状态量和过程;功和热的异同;热力学能和焓的概念;可逆与不可逆过程;可逆与准平衡过程;熵,熵产与熵流量;广延量和强度量;混合物的参数计算;湿空气的参数;湿空气h-d、p-h图及应用;定熵流动的基本方程,定熵流动特性图;滞止参数;多级压缩中间冷却;朗肯循环;复杂循环(回热、再热)的计算;循环分析的一般方法。
材料科学基础课程教学大纲
材料科学基础课程教学大纲
一、课程背景与目标
材料科学基础课程是材料科学与工程专业的一门基础性课程,旨在培养学生对材料科学基本理论和基本知识的理解和掌握,为其后续的专业学习和科研工作打下坚实的基础。
本课程通过系统地讲授材料结构、性能与应用等方面的基础知识,旨在培养学生的科学思维、分析问题和解决问题的能力。
二、教学内容
1. 材料科学基础
1.1 材料科学的发展历程
1.2 材料科学的研究方法与手段
1.3 材料科学的基本概念和专业术语
2. 材料结构与性能
2.1 材料的晶体结构与非晶体结构
2.2 材料的晶体缺陷与非晶缺陷
2.3 材料的晶体结构与性能关系
2.4 材料的物理性质与化学性质
2.5 材料的机械性能与材料强度
3. 材料制备与加工
3.1 金属材料的制备与加工
3.2 陶瓷材料的制备与加工
3.3 高分子材料的制备与加工
3.4 复合材料的制备与加工
3.5 材料制备与加工中的工艺控制与监测
4. 材料性能测试与分析
4.1 材料性能测试的基本原理与方法4.2 材料力学性能测试与分析
4.3 材料热学性能测试与分析
4.4 材料电学性能测试与分析。
《热学》教学大纲
《热学》课程教学大纲一、课程基本信息英文名称 Thermal Physics 课程代码 PHYS1002课程性质 专业必修课程 授课对象 物理学学 分 3学分 学 时 54学时主讲教师 修订日期 2021年9月指定教材 李椿等,热学(第3版)[M], 北京:高等教育出版社,2015.二、课程目标(一)总体目标:让学生了解热力学和统计物理学的基本知识和基本概念,掌握由宏观的热力学定律和从物质的微观结构出发来研究宏观物体的热的性质的研究方法,了解宏观可测量量与微观量的关系以及如何把宏观规律与微观解释相联系的方法。
在教学中通过对热学相关问题的深入讨论、物理前沿课题、新技术应用的教学和讨论,强化学生对热学基本概念和基本原理的理解,使学生体会物理学思想及科学方法,更好地理解科学本质,形成辩证唯物主义世界观和科学的时空观,培养学生科学思维能力,分析问题和解决问题能力。
(二)课程目标:课程目标1:通过系统的学习热学的基本规律,让学生掌握物体内部热学的普遍规律,以及热运动对物体性质的影响。
课程目标2:体会该课程理论体系建立过程中的物理思想方法,培养学生模型建构、分析与综合、推理类比等科学思维方法,掌握研究宏观物体热性质的宏观描述方法(热力学)和微观描述方法(统计物理学),为学习后续课程和独力解决实际问题打下必要的基础。
课程目标3:应用热学理论分析讨论固、液、气相变中的问题,适当介绍一些与本课程相关的前沿课题,培养学生科学探究能力。
课程目标4:通过学习和了解热学发展史、重大科学事件和物理学家故事等,体会物理学家的物理思想和科学精神,培养学生的爱国热情,探索未知、追求真理、永攀高峰的责任感和使命感。
(三)课程目标与毕业要求、课程内容的对应关系表1:课程目标与课程内容、毕业要求的对应关系表课程目标对应课程内容对应毕业要求(及对应关系说明)课程目标1 第一章 温度第二章 气体分子动理论的基本概念第三章 气体分子热运动速率和能量的统计分布律第四章 气体内的输运过程第五章 热力学第一定律第六章 热力学第二定律第八章 液体第九章 相变7-2具有终身学习的意识,了解物理学前沿和物理教学领域及国际发展动态。
《材料的热学》课件
解释能量转换与热能利用的科学原理。
热力学第二定律
1 热力学第二定律的表
述
在孤立系统中,不断增 加,不可逆过程不能自发 发生。
2 卡诺循环
理想的热机循环,能实现 最高效率的理论。
3 热力学第二定律的应
用
解释自然界中各种能量转 化的局限性。
热力学第三定律
1 熵的概念
研究系统无序程度的物理量。
的方向密切相关。
热力学循环
1 标准热力学循环
由一系列变化组成的最基本的热力学过程。
2 常见的热力学循环
卡诺循环、斯特林循环、奥托循环、布雷顿循环等。
结束语
1 热力学的理论与应用
为科学探索和工程实践提供了重要的基础。
2 热力学的未来发展
与材料科学、能源领域等关联紧密,将有更广阔的应用前景。
热量
能量的传递形式,使物体温度发生变化。
热力学功
系统与外界交换的能量。
热平衡与热传递
1 热平衡的条件
物体间热量的传递达到稳 定状态,没有净热量的交 换。
2 热平衡的稳定性
系统达到热平衡后,微小 扰动不会导致系统温度变 化。
3 热传递的方式
热传导、热对流、热辐射。
热力学第一定律
1 定与表述
能量守恒定律,能量既不能创造也不能消失,只能从一种形式转化为另一种形式。
《材料的热学》PPT课件
欢迎来到《材料的热学》PPT课件。本课程将为您介绍热力学的基本概念、定 律和参数,以及热平衡、热传递、热力学循环等内容,让您深入了解材料的 热学。
概述
• 热力学的基本概念 • 热力学的三大定律
热力学基本参数
温度
衡量物体热运动强度的物理量。
《材料物理性能》课程教学大纲
《材料物理性能》课程教学大纲课程代码:ABCL0518课程中文名称: 材料物理性能课程英文名称:Physical properties of materials课程性质:选修课程学分数:2课程学时数:32授课对象:新能源材料与器件专业本课程的前导课程:《近代物理概论》,《材料科学前沿系列讲座》一、课程简介本课程主要包括材料的热学、光学、电学、磁学等性能和应用。
主要介绍各种重要性能的原理及微观机制,性能的测定方法以及控制和改善性能的措施,各种材料的结构和性能的关系,各种性能之间的相互制约与变化规律。
通过本课程的学习,培养学生测定各种性能的动手能力,另一方面培养学生判断材料优劣、正确选择和使用材料、改变材料性能、探索新材料、新性能、新工艺打下理论基础。
二、教学基本内容和要求本课程基本内容包括材料的电、磁、光、热学性能及材料物理检测方法等,主要阐述了上述性能的物理模型、变化规律、影响因素以及物理效应之间的关系,旨在使学生尽可能地从物理效应和微观机制角度掌握材料性能。
以下分章阐述:第一章热学性能课程教学内容:材料热学性能中热容(包括热容的两个经典理论和量子力学理论)、热膨胀、热传导和热稳定性的概念、机理及影响因素。
课程的重点:材料的热膨胀;材料的热传导;材料的热电性。
课程的难点:材料的热容与热焓。
课程教学要求:1. 掌握材料热学性能,包括热容、热膨胀、热传导等性能;2. 理解材料热学性能的测量方法;3. 掌握材料热学性能分析方法的应用。
第二章电学性能课程教学内容:材料导电的物理现象,了解离子导电、电子导电和玻璃态导电的机理,接触超导概念。
课程的重点:超导电性;影响金属导电性的因素;导电性的测量;电阻分析的应用。
课程的难点:绝缘体的电学性能。
课程教学要求:1.了解材料的电学性能,包括材料的导电性、超导电性、介电性和压电性等性能;2.掌握电学性能的测量方法及其分析方法;。
《材料热力学与动力学》课程教学大纲.doc
《材料热力学与动力学》课程教学大纲一、课程基本信息课程编号:13103103 课程类别:专业核心课程适应专业:材料物理总学时:54学时总学分:3学分课程简介:本课程是我院材料专业的专业基础课程,本课程重点介绍了经典热力学和统计热力学理论在揭示材料中的相和组织形成规律方面的应用,注意通过材料问题实例来使读者理解和寧握热力学的基本规律。
本课程由浅入深地讨论单组元系、二组元系和三组元以上的多组元系材料的相形成规律和相平衡问题;相变的热力学问题;重要的溶体模型和集团变分模型;亚稳、局域等次级相平衡以及材料设计与热力学等问题。
授课教材:《材料热力学》第2版,徐祖耀,中国科学技术出版社,2001。
参考书目:[1]《材料热力学与动力学》,徐瑞,哈尔滨工业大学出版社,2003。
[2]《材料热力学》,徐祖耀,小国科学技术出版社,1982。
二、课程教育目标:通过该课程的学习,常握热力学四大定律的概念、实质、适用条件、意义,理解热力学定律是如何通过热力学函数应用到材料科学研究领域而形成材料热力学规律,掌握上述规律的概念、函数表达、适用条件,能用材料热力学规律解决材料研究中的具体问题,能解释材料科学研究中遇到的热力学现象,熟练棠握热焙、嫡、自由能、偏克分子量、活度等热力学参量在具体材料变化过程中的求解方法和对过程做出正确的判断,学握热力学函数小的重要函数关系尤其是麦克斯韦关系,学握相图热力学、相变热力学、曲面热力学、溶液热力学、缺陷热力学等规律和概念,了解动力学规律,并解决材料研究中的一些问题。
三、教学内容与要求第一章绪论与热力学第一定律教学重点:第一定律及应用。
教学难点:状态函数的理解及在热力学计算中的灵活运用。
教学时数:6教学内容:材料热力学的概念、课程的教学目的和学习方法,第一定律及相关函数,状态函数及全微分,热焙与比热,标准态等知识。
教学方式:课堂讲授教学要求:理解材料热力学的概念、课程的教学目的和学习方法,学握第一定律及相关函数, 状态函数及全微分,热恰与比热,标准态等知识。
《材料热力学与动力学》课程教学大纲
《学生创新实验周》教学大纲课程编号:0802905125课程名称:学生创新实验周英文名称:Innovative experiments week of students设计周数:1 学分:1开设学期:第7学期适用专业:高分子材料与工程专业先修课程:高分子化学、高分子物理、高分子合成工艺学一、实验课程简介根据甲醛树脂的典型特点,制订合适的实验方案,制备以甲醛树脂为主要原料的涂料或粘合剂、并测定其性能,提出改进措施,分析失败原因。
通过实验培养工程实践的动手能力和分析解决问题的能力,掌握涂料和粘合剂制备的一般程序和方法。
二、实验教学目标与基本要求本课程是在专业学习的基础上,通过综合实验、性能测试、结构表征等内容环节,以实践技能训练为主要内容,以工程思维培养为主体,全面培养学生的动手能力,创新思维能力,综合运用知识和分析解决问题的能力。
实验技术是高分子科研和教学中不可缺少的一个环节。
通过实验,使学生了解和掌握高分子合成的方法、高分子结构与性能关系的基本原理,从而在感性上进一步加深理解高分子科学的原理,掌握实验知识和技能,培养工艺资料的使用能力,为以后学习和从事高分子学科内的工作打下基础。
要求学生通过综合实验初步掌握高分子合成工艺设计方法。
三、本实验课程的基本理论与实验技术知识本实验是一门技术基础实验课,在实验过程中,注意掌握缩聚反应的基本理论、基本知识和基本技能。
熟悉各种材料实验常用设备的操作过程、原理,为将来工作打下基础。
四、实验方法、特点与基本要求1. 基本操作技能掌握涂4粘度计、旋转粘度计、pH计、建筑涂料耐洗刷仪等常规涂料、粘合剂测试设备的使用方法;根据具体情况确定样品的游离甲醛含量,掌握滴定操作的基本步骤,独立制订制备工艺、正确选用设备,整理数据、给出结论,并进行分析。
验证所学的科学知识、加深和巩固对所学知识的认识和了解。
2. 设计性实验主要的实验内容是制备一种甲醛树脂,包括脲醛树脂、三聚氰胺甲醛树脂、聚乙烯醇甲醛树脂等等,实验中要求学生能设计树脂的配方、制备出相应产品、掌握其中的实验方法、操作规程及相关设备的使用,并对所制备的树脂进行一定的性能测试。
材料热力学课程教学大纲.pdf
与运
评
用、自
understand the concept of and
估
application of thermodynamic
学
relations.
课后
To know the conditions of
作业、
equilibrium;derive the Clapeyon
综
2
讲课
理解 与运
equation and understand the
合
application of the Clapeyron equation 评
用、自 in real cases; understand the orders of 估
学
transitions.
The principle of thermodynamic
课后Biblioteka activity; the idea of chemical
材料热力学课程教学大纲
课程基本信息(Course Information)
课程代码
*学时
(Course Code) MT222
(Credit Hours)
60
*学分 (Credits)
4
*课程名称
(中文)材料热力学
(Course Name) (英文)Thermodynamics of Materials
system Equilibrium
Chemical Equilibrium
Electrochemistry
Solution
principle of idealization in the analysis
of a system; to calculate the change of
研究生材料热力学教学大纲
研究生材料热力学教学大纲研究生材料热力学教学大纲热力学是材料科学中的重要基础学科之一,它研究物质在能量转化和传递过程中的规律。
在研究生阶段,学生需要通过系统的学习和掌握热力学的基本概念、原理和方法,为后续的专业研究和实践奠定坚实的基础。
本文将就研究生材料热力学教学大纲进行探讨。
一、课程目标研究生材料热力学教学的首要目标是培养学生对热力学基本概念的理解和掌握,包括热力学系统、状态函数、热力学过程等。
同时,学生还需要学会运用热力学原理和方法解决实际问题,如相平衡、化学反应、相变等。
此外,培养学生的科学研究能力和创新思维也是研究生热力学教学的重要目标。
二、课程内容研究生材料热力学教学内容应包括以下几个方面:1. 热力学基础知识:介绍热力学的基本概念和基本原理,如能量、热力学系统、状态函数、热力学第一定律等。
学生需要通过理论学习和实例分析,掌握这些基础知识。
2. 热力学过程:介绍热力学过程的基本类型和特点,如等温过程、绝热过程、等熵过程等。
学生需要学会分析和计算不同类型的热力学过程。
3. 热力学平衡:讲解热力学平衡的概念和条件,如热力学平衡的判据、平衡态的稳定性等。
学生需要通过实例分析和实验探究,理解和应用热力学平衡的原理。
4. 相平衡和相变:介绍物质的相平衡和相变过程,如固液相平衡、液气相平衡、相变的热力学条件等。
学生需要通过实验和计算,掌握相平衡和相变的基本原理和计算方法。
5. 化学反应的热力学:讲解化学反应的热力学基础,如焓、反应热、反应平衡等。
学生需要学会应用热力学原理和方法,分析和计算化学反应的热力学参数。
三、教学方法研究生材料热力学教学应采用多种教学方法,包括理论讲解、实验教学和案例分析等。
1. 理论讲解:教师应结合教材和教学大纲,对热力学的基本概念和原理进行系统讲解。
同时,可以引入一些实例和应用,帮助学生理解和应用热力学知识。
2. 实验教学:通过设计和实施一些热力学实验,让学生亲自操作和观察实验现象,从而加深对热力学知识的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、Aim and significance of the course课程任务和目的In response to the growing economic and technological importance of polymers, ceramics, advanced metals, composites, and electronic materials, many departments concerned with materials are changing and expanding their curricula. The advent of new courses calls for the development of new textbooks that teach the principles of materials science and engineering as they apply to all classes of materials.The Series in Materials Science and Engineering is designed to fill the needs of this changing curriculum.Based on the curriculum of the Department of Materials Science and Engineering at Nanchang University, the series will include textbooks for the undergraduate core sequence of course on Thermodynamics, Physical chemistry, Chemical physics, Structures, Mechanics, and Transport Phenomena as they apply to the study of materials. More advanced texts based on this core will cover the principles and technologies of different material classes, such as ceramics, metals, polymers, and electronic materials.The series will define the modern curriculum in materials science and engineering as the discipline changes with the demands of the future.This curriculum is deal with: treatment of the laws of thermodynamics and their applications to equilibrium, and the properties of materials. Provides a foundation to treat general phenomena in materials science and engineering, including chemical reactions, magnetism, polarizability, and elasticity. Develops relations pertaining to multiphase equilibria as determined by a treatment of solution thermodynamics. Develops graphical constructions that are essential for the interpretation of phase diagrams. Treatment includes electrochemical equilibria and surface thermodynamics. Introduces aspects of statistical thermodynamics as they relate to macroscopic equilibrium phenomena2、main contents and basic requirement课程内容及基本要求First Law: system and surroundings, energy transfer, energy of system, energy as a state function, work, the close system, notation, intensive and extensive properties, the open system, enthalpy, steady state, heat capacity at constant volume, heat capacity at constant pressure, adiabatic flow through a valve: Joule-Thomson Expansion, equations of state, nonideal gases, adiabatic compression or expansion, enthalpies of formation, enthalpy changes in chemical reactions, adiabatic temperature change in chemical reactionsSecond Law: entropy as a state function, entropy not conserved, open system entropy balance, adiabatic, reversible, steady state system, heat engines, diagrammatic representation,refrigerators, heat pumps, entropy changes, entropy changes in chemical reactions and the third lawProperty Relationships : the property relation, the function F and G, chemical potentials, partial molar quantities, property relations derived from U, H, F, and G, ideal gas, entropy of mixing, heat capacity, variation of heat capacity, isentropic pressure-temperature relationship, isentropic compression of solids, thermo elastic effect, compressibility, magnetic effectsEquilibrium: condition of equilibrium, barometric equation, phase equilibria, special case: closed system, constant volume, first-order transitions: variation of equilibrium pressure with temperature, Clapeyron equation in vapor equilibria, variation of vapor pressure of condensed phase with total applied pressure, variation of vapor pressure with particle size, second-order transitions, superconductivity: an exampleChemical Equilibrium: thermodynamic activity, chemical equilibrium, gaseous equilibria, solid-vapor equilibria, sources of information onG , Ellingham diagrams, variation of equilibrium constant with temperature, gases dissolved in metals (Sievert ’s law), chemical equilibrium and adiabatic flame temperaturesElectrochemistry: electrochemical cell, nomenclature, calculation of cell voltage, direction of reaction, half-cell reactions, variation of voltage with concentration: Nernst equation, pourbaix diagram, concentration cells, oxygen pressure determination, temperature dependence of voltage, electrochemical potentialSolutions : thermodynamic activity, partial molar quantities, relative partial molar quantities, entropy of mixing: ideal solution, enthalpy of mixing: ideal solution, graphical representation, nonideal solution, Gibbs-Duhen relation, dilute solution and colligative properties, integrating the Gibbs-Duhen equation, regular solutions, regular solutions: atomic interpretation, polymer solution, osmotic pressurePhase Rule: phase, components, specifying a system, equilibrium condition, Gibbs phase ruler, one component system, examples, phase rule for condensed systemsPhase Diagrams: freezing point depression, the level rule, simple eutectic, cooling curves, complete miscibility, immiscibility, spinodal points, peritectic phase diagram, compounds, ternary diagramsStatistical Thermodynamics : Macrostates and Microstates. Temperature. Information and Entropy3、Practical lecture 实践环节及基本要求it is core of the materials and engineering curriculum, and it is theory course.4、sequence of courses与其他课程的联系former course :physical chemistry,basic of materials and engineering,physics5、the acquirements对学生能力培养要求Many consider this a "vegetables'' class--as in "eating your vegetables first.'' It is true that thermodynamics is about developing a rigorous understanding of natural processes. And it is true that thermodynamics can become tedious and also true that the useful applications don't begin until a solid foundation is developed. However, I don't think it necessarily has to be boring and I encourage you to keep your minds open about the beauty of developing a subject rigorously. Veggies can be tasty as well.Much of what you will learn about materials science will rely on your comprehension of thermodynamics. Unfortunately, most of you do not yet know about all the wonderful things you are going to learn over the next three years as you become a professional materials scientist and how they depend on this course. So, there will be times when you will be struggling to learn something without knowing why you should bother to learn it. Had we an infinite amount of time, I would introduce a practical aspect of each thermodynamic concept, then rigorously teach you the concept, and then show how it applies in a particular case.However, there are a large number of concepts that I must teach you in a finite amount of time.Furthermore, some concepts are so basic and essential that any practical example would seem artificial[6]. I have tried to distill the thermodynamics you will need to know into 37 lectures--sometimes you are going to have to trust that I am trying to teach you something useful.I truly and deeply like thermodynamics and have liked it since the first time I took it. It iselegant and beautiful. I also think that it takes many years to master this subject. I believe thata thorough understanding of the subject--especially of the second law--separates qualifiedscientists from amateurs and pretenders.6、Time Management学时分配表7、Final Grade成绩总评The grade in 2.00 will be determined by:Class Participation (10%):Records will be kept for good questions and comments during lectures--you must raise your hand so we can maintain some order in the classroom. You will also need to state your name when asking a question. Students will also be asked randomly about the current lecture topic. You are allowed to absence on making a comment twice during my teaching. Not being present at a lecture in which you are asked a question counts as two absence, unless you have informed the teacher that you cannot attend a particular lecture by sending me email.Students will not get credit for showing off--only productive comments or genuine questions will receive credit. If you are curious whether you are getting credit--please ask. However, if you are unsure, then you are probably not participating actively. Asking questions during recitation orcoming to office hours also count as participation. If you fear that you are getting very far behind in class participation, it is possible to for you to send email to teacher.Homework (20%):You are allowed to turn in the homework up to the next one. Otherwise, homework is no acceptation. Homework will tend to test problem solving ability.Homework assignments will be posted almost every chapter and will usually be due the following lesson (i.e., you will have about two weeks to complete each homework, although some assignments are very difficult. The intent is allow you a bit of flexibility so that you can budget your time accordingly). If you work in groups, you still have to turn in a single homework and record the entire group number in the last line. I hope that you will use the group homeworks as a vehicle for cooperative teaching and learning as well as a time-saving device. Regarding the group homeworks--some students fall into a trap of letting other members of their group do the hard intellectual work and think that they can catch up in time to take the exams. Of course, this is not only a mistake and not an effective way to learn--it is also bad manners.Final Exam (70%): will cover all lecture material.There are review lessons before final exam. It would be wise to listen to them carefully as this year's exams will follow a similar format. You should expect conceptual questions on exams--the kind you should read very carefully because they can be tricky. For instance, a typical question may be: Explain whether and why the following statements are true or false. "The entropy of an isolated system can never decrease.'' "If the Gibbs Free energy of two bodies are equal, then the two bodies are in equilibrium at constant pressure.''There may simple questions that require symbolic computation--you definitely won't need a calculator, but bring one with you if it helps you feel more comfortable. No notes or open book exams. Thermodynamics is a subject that must be digested slowly. Please try to keep up and work at a constant rate. Cramming for a thermodynamics exam is usually a recipe for poor performance.8、Additional Reference Material 课外推荐读物In the first part of this course, it might also be useful for you to browse through the classic monograph by Fermi . It is a classic introduction to the fundamentals of thermodynamics--it is also a bargain. The coverage in Fermi is generic and applicable to all branches of physics and engineering. Concepts that are specific to materials science will be covered in the lectures.It is very useful to take a look at one or two of the hundreds of other thermodynamics texts[8]. Everyone learns in different ways and you may find one that is particularly suitable for you. Perhaps the reason that there are so many thermodynamics texts is that few people agree on the best way to explain the material. You will find that notation varies considerably from book to book (and sometimes even within a single text). You can often learn just by sorting out differences in notation--after all, it is only the subject material that counts. You will learn even more if youstudy the different ways that similar subject material is developed. You will begin to master the subject when you start identifying the conceptual errors that exist in nearly every textbook.Gaskell and Devereux are widely used in Materials Sciences courses at other good universities. Gaskell, in particular, is full of practical worked problems for materials scientists. Keep in mind that notation varies from textbook to textbook; nevertheless, these books may help clarify complicated topics and provide additional practical problems.Statistical Physics from the Landau and Lifshitz series is an excellent advanced treatise on both classical and statistical thermodynamics. It is ponderous, but is a good investment if you find yourself needing more thermo.Denbigh is perhaps the most complete textbook on chemical equilibrium. It is dense but very well-written. The introductory book by Bent has a number of very clear examples and historical anecdotes, I used it very often while preparing lectures.Besides Fermi, Planck also wrote short and very readable introductory treatises on thermodynamics. Shrodinger has a very nice (but perhaps too advanced for this course) introduction to statistical thermodynamics that is also a bargain. You probably associate these authors with other topics--their interest in the formulation of thermodynamics demonstrates the importance that most professional scientists place on a coherent understanding of thermodynamics as a foundation for advanced study. Chandrasekhar devoted an entire chapter of his book on Stellar Structure to the differential geometry of the second law of thermodynamics. The most complete and fundamental development of thermodynamics is a single paper by J. Willard Gibbs. Even though it is very difficult to read, Gibbs is the quintessential reference in thermodynamics. I've tried to use Gibbs as much as possible when I prepared the lectures.You should have a good book on multivariable calculus. MIT's 18.02 is a prerequisite for this course.List:1、Bent, Henry A. The Second Law: An Introduction to Classical and StatisticalThermodynamics. Oxford University Press, 1965.2、Chandrasekhar, S. An Introduction to the Study of Stellar Structure. New York: DoverPublications, 1939.3、Denbigh K.The Principles of Chemical Equilibrium. 3rd edition. Cambridge Univ. Press,1971.4、Devereux, Owen F. Topics in Metallurgical Thermodynamics. NY: John Wiley andSons, 1983.5、Fermi, Enrico. Thermodynamics. New York: Dover Publications, 1936.6、Gaskell, David R. Introduction to Metallurgical Thermodynamics.NY:McGraw-Hill, 2nd edition, 1981.7、Gibbs, J. Willard. "On the equilibrium of heterogeneous substances." (1876). InCollected Works 1, Longmans, Green, and Co., 1928.8、Lifshitz, E.M., and L.P.Pitaevskii. Statistical Physics. 3rd edition. Part 1. New York:Pergammon Press, 1980, pages 365ff.9、Planck, Max. Treatise on Thermodynamics. 7th edition. New York: DoverPublications, 1926.10、Shrodinger, Edwin. Statistical Thermodynamics. Dover, 1989.。