基础知识天天练2-5. 数学 数学doc

合集下载

小学五年级数学天天练(各种类型整理).doc

小学五年级数学天天练(各种类型整理).doc

2.1×2= 8×0.125= 0.54÷0.6= 4.5-0.05= 4.7+2.3==201-101=+212 =92-97 =+10152 =+2121二、脱式计算,能简便运算的要简便运算:7.85+2.34-0.85+4.66 7.14-0.53-2.47 =++312151 =-+413121三、列式计算:,得多少?的差里减去与、从853112131,这个数是多少?倍之和是倍与这个数的、一个数的2353.2142四、解方程:7631=+X41127=-X五、应用题:1.、12颗糖,平均分给3个人,每人分得几颗?每人分得这些糖的几分之几?2、 5个苹果平均分给8个人,每人分得几个?每人分得这些苹果的几分之几?4.5×2= 6.9-2.5= 7.2×0.8= 0.3÷0.6= 7.3+0.27==+3231 =65-1 =65-65 =+5151 =51-54二、脱式计算,能简便运算的要简便运算:3 - 14 - 13 - 34 7.8×1.17-7.8×0.17 10- 712 - 512 58 + 45 - 38 + 15三、列式计算:多多少?的比、6551321是多少?的的、544182四、解方程: χ + 34 = 11121316 - χ= 38五、应用题:1、小明的爸爸用玻璃做了一个棱长是6dm 正方体鱼缸。

制作这个鱼缸时,至少需要玻璃多少平方米?小明在鱼缸里注入144L 的水,水面高度是多少分米?2、机床厂去年四个季度分别完成全年任务的1/6 、1/5 、4/15 、7/10 ,去年超额完成全年计划的几分之几?7.2+12.8= 46.7-3.8= 4.5×0.02= 8+7.2= 3.2÷0.04==+8383 =21-1 =+2192 =32-76 =+41103二、脱式计算,能简便运算的要简便运算: 51-4341+ )(1011751713+- 74-73-2 51211--三、列式计算:是多少?的千克的、4353921,乙数是多少?,乙数是甲数的、甲数是85722四、解方程: χ- 35 = 710237 +χ+425 =12五、应用题:1、工地运来一批钢材,其中圆形钢材2吨,方形钢材 2/5 吨,其它钢材 1/7 吨,这批钢材共有多少吨?2、 找一找:一个两位数,交换十位与个位上的数,所得的两位数仍是质数,写出两个这样的两位数。

高三基础知识天天练2-3. 数学 数学doc人教版

高三基础知识天天练2-3. 数学 数学doc人教版

第2模块第3节[知能演练]一、选择题1.函数y=-x2(x∈R)是() A.左减右增的偶函数B.左增右减的偶函数C.减函数、奇函数D.增函数、奇函数解析:∵y=-x2是开口向下的一条抛物线,∴y=-x2在(-∞,0)上为增函数,(0,+∞)上为减函数,不妨设y=f(x)=-x2,则f(-x)=-(-x)2=-x2=f(x),∴f(x)为偶函数.答案:B2.已知函数f(x)在R上是奇函数,且当x>0时,f(x)=x2-2x,则f(x)在R上的解析式是() A.f(x)=x·(x-2)B.f(x)=|x|(x-2)C.f(x)=|x|(|x|-2)D.f(x)=x(|x|-2)答案:D3.f(x)、g(x)都是定义在R上的奇函数,且F(x)=3f(x)+5g(x)+2,若F(a)=b,则F(-a)等于() A.-b+4 B.-b+2C.b-2 D.b+2解析:依题设F(-x)=3f(-x)+5g(-x)+2=-3f(x)-5g(x)+2,∴F(x)+F(-x)=4,则F(a)+F(-a)=4,F(-a)=4-F(a)=4-b.答案:A4.定义在R上的函数f(x)既是奇函数又是周期函数,T是它的一个正周期.若将方程f(x)=0在闭区间[-T,T]上的根的个数记为n,则n可能为() A.0 B.1C.3 D.5解析:定义在R上的函数f(x)是奇函数,则f(0)=0,又f(x)是周期函数,T是它的一个正周期,∴f (T )=f (-T )=0,f (-T 2)=-f (T 2)=f (-T 2+T )=f (T2).∴f (-T 2)=f (T2)=0,则n 可能为5,选D.答案:D 二、填空题5.设函数f (x )=(x +1)(x +a )x 为奇函数,则a =________.解析:∵f (1)+f (-1)=0⇒2(1+a )+0=0, ∴a =-1. 答案:-16.已知函数f (x )=x 2-cos x ,对于[-π2,π2]上的任意x 1,x 2,有如下条件:①x 1>x 2;②x 21>x 22;③|x 1|>x 2.其中能使f (x 1)>f (x 2)恒成立的条件序号是________.解析:函数f (x )=x 2-cos x 显然是偶函数,其导数y ′=2x +sin x 在0<x <π2时,显然也大于0,是增函数,想象其图象,不难发现,x 的取值离对称轴越远,函数值就越大,②满足这一点.当x 1=π2,x 2=-π2时,①③均不成立.答案:② 三、解答题7.已知f (x )=px 2+23x +q 是奇函数,且f (2)=53.(1)求实数p ,q 的值;(2)判断函数f (x )在(-∞,-1)上的单调性,并加以证明. 解:(1)∵f (x )是奇函数,∴f (-x )=-f (x ),即px 2+2-3x +q =-px 2+23x +q .从而q =0,因此f (x )=px 2+23x .又∵f (2)=53,∴4p +26=53.∴p =2.(2)f (x )=2x 2+23x,任取x 1<x 2<-1,则f (x 1)-f (x 2)=2x 21+23x 1-2x 22+23x 2=2(x 2-x 1)(1-x 1x 2)3x 1x 2.∵x 1<x 2<-1,∴x 2-x 1>0,1-x 1x 2<0,x 1x 2>0. ∴f (x 1)-f (x 2)<0.∴f (x )在(-∞,-1)上是单调增函数.8.已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (x )在[-1,1]上的解析式; (2)证明f (x )在(0,1)上是减函数.(1)解:只需求出f (x )在x ∈(-1,0)和x =±1,x =0时的解析式即可,因此,要注意应用奇偶性和周期性,当x ∈(-1,0)时,-x ∈(0,1).∵f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,由f (0)=f (-0)=-f (0),且f (1)=f (-2+1)=f (-1)=-f (1), 得f (0)=f (1)=f (-1)=0. ∴在区间[-1,1]上有f (x )=⎩⎨⎧2x4x +1x ∈(0,1),-2x 4x+1x ∈(-1,0),0 x ∈{-1,0,1}.(2)证明:当x ∈(0,1)时,f (x )=2x4x +1.设0<x 1<x 2<1, f (x 1)-f (x 2)=2x 14x 1+1-2x 24x 2+1=(2x 2-2x 1)(2x 1+x 2-1)(4x 1+1)(4x 2+1).∵0<x 1<x 2<1.∴2x 2-2x 1>0,2x 1+x 2-1>0. ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),故f (x )在(0,1)上单调递减.[高考·模拟·预测]1.已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2008)+f (2009)的值为( )A .-2B .-1C .1D .2解析:f (-2008)+f (2009)=f (0)+f (1)=log 21+log 22=1.答案:C2.已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )·f (x ),则f (52)的值是( )A .0 B.12 C .1D.52解析:令g (x )=f (x )x ,则g (-x )=f (-x )-x =-f (x )x =-g (x ),∴g (x )为奇函数.又g (x +1)=f (x +1)x +1=f (x )x =g (x ).∴g (52)=f (52)52=g (12)=g (-12)=-g (12),∴g (12)=0,∴f (52)=0.故选A. 答案:A3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:∵f (x -4)=-f (x ),∴f (x +4)=-f (x ),∴f (x +8)=f (x ).∴f (-25)=f (-1)=-f (1),f (11)=f (3)=-f (-1)=f (1),f (80)=f (0)=0.而f (x )在[0,2]上是增函数,∴f (1)≥f (0)=0.∴f (-25)<f (80)<f (11).故选D.答案:D4.函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是奇函数,则( ) A .f (x )是偶函数 B .f (x )是奇函数 C .f (x )=f (x +2) D .f (x +3)是奇函数解析:由题意f (-x +1)=-f (x +1),f (-x -1)=-f (x -1),即f (x )=-f (2-x )且f (x )=-f (-2-x ).∴f (x )=-f (2-x )=f [-2-(2-x )]=f (x -4),∴f (-x +3)=f (-x -1)=-f [2-(-x -1)]=-f (x +3),故选D. 答案:D5.定义在R 上的增函数y =f (x )对任意x ,y ∈R 都有f (x +y )=f (x )+f (y ). (1)求f (0);(2)求证:f (x )为奇函数;(3)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围. 解:(1)令x =y =0,得f (0+0)=f (0)+f (0),即f (0)=0. (2)令y =-x ,得f (x -x )=f (x )+f (-x ),又f (0)=0,则有 0=f (x )+f (-x ).即f (-x )=-f (x )对任意x ∈R 成立, 所以f (x )是奇函数.(3)证法一:因为f (x )在R 上是增函数,又由(2)知f (x )是奇函数.f (k ·3x )<-f (3x -9x -2)=f (-3x +9x +2), 所以k ·3x <-3x +9x +2,32x -(1+k )·3x +2>0对任意x ∈R 成立.令t =3x >0,问题等价于t 2-(1+k )t +2>0对任意t >0恒成立. 令f (t )=t 2-(1+k )t +2,其对称轴为x =1+k 2,当1+k2<0即k <-1时,f (0)=2>0,符合题意; 当1+k2≥0即k ≥-1时,对任意t >0,f (t )>0恒成立⇔⎩⎪⎨⎪⎧1+k 2≥0,Δ=(1+k )2-4×2<0,解得-1≤k <-1+2 2. 综上所述,当k <-1+22时,f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立. 解法二:由k ·3x <-3x +9x +2, 得k <3x +23x -1.u =3x +23x -1≥22-1,即u 的最小值为22-1,要使对x ∈R 不等式k <3x +23x -1恒成立,只要使k <22-1.所以满足题意的k 的取值范围是(-∞,22-1)[备选精题]6.已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ).(1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在x ∈[2,+∞)上为增函数,求a 的取值范围. 解:(1)当a =0时,f (x )=x 2,对任意x ∈(-∞,0)∪(0,+∞), f (-x )=(-x )2=x 2=f (x ),∴f (x )为偶函数. 当a ≠0时,f (x )=x 2+ax (a ≠0,x ≠0),取x =±1,得f (-1)+f (1)=2≠0,f (-1)-f (1)= -2a ≠0.∴f (-1)≠-f (1),f (-1)≠f (1).∴函数f (x )既不是奇函数,也不是偶函数.(2)解法一:要使函数f (x )在x ∈[2,+∞)上为增函数, 等价于f ′(x )≥0在x ∈[2,+∞)上恒成立,即f ′(x )=2x -ax 2≥0在x ∈[2,+∞)上恒成立,故a ≤2x 3在x ∈[2,+∞)上恒成立.∴a ≤(2x 3)min =16.∴a 的取值范围是(-∞,16]. 解法二:设2≤x 1<x 2,f(x1)-f(x2)=x21+ax1-x22-ax2=(x1-x2)x1x2[x1x2(x1+x2)-a],要使函数f(x)在x∈[2,+∞)上为增函数,必须f(x1)-f(x2)<0恒成立,∵x1-x2<0,即a<x1x2(x1+x2)恒成立,又∵x1+x2>4,x1x2>4,∴x1x2(x1+x2)>16.∴a的取值范围是(-∞,16].。

高三基础知识天天练2-9. 数学 数学doc人教版

高三基础知识天天练2-9. 数学 数学doc人教版

第2模块 第9节[知能演练]一、选择题1.某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,按九折出售,每件还获利( )A .25元B .20.5元C .15元D .12.5元解析:每件获利100(1+25%)×0.9-100=100(1.25×0.9-1)=12.5元. 答案:D2.某债券市场常年发行三种债券,A 种面值为1000元,一年到期本息和为1040元;B 种债券面值为1000元,买入价为960元,一年到期本息之和为1000元;C 种面值为1000元,半年到期本息和为1020元.设三种债券的年收益分别为a ,b ,c ,则a ,b ,c 的大小关系是( )A .a =c <bB .a <b <cC .a <c <bD .c <a <b解析:设年初为1000元,则A 种债券收益40元,B 种债券收益1000960×40≈41.67元.C 种债券收益为20+10201000×20=40.4元.∴b >c >a . 答案:C3.在一次数学试验中,运用图形计算器采集到如下一组数据:则x ,y ( )A .y =a +bxB .y =a +b xC .y =ax 2+bD .y =a +bx解析:由表格数据逐个验证,知模拟函数为y =a +b x . 答案:B4.国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元部分的14%纳税;超过4000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元,这个人应得稿费(扣税前)为( )A .2800元B .3000元C .3800元D .3818元解析:设扣税前应得稿费为x 元,则应纳税额为分段函数,由题意,得y =⎩⎪⎨⎪⎧0 (x ≤800)(x -800)×14% (800<x ≤4000)11%·x (x >4000). 如果稿费为4000元应纳税为448元,现知某人共纳税420元,所以稿费应在800~4000元之间,∴(x -800)×14%=420,∴x =3800.答案:C 二、填空题5.计算机的价格大约每3年下降23,那么今年花8100元买的一台计算机,9年后的价格大约是________元.解析:设计算机价格平均每年下降p %,由题意可得13=(1-p %)3,∴p %=1-(13)13,∴9年后的价格y =8100[1+(13)13-1]9=8100×(13)3=300(元).答案:3006.如图是一份统计图表,根据此图表得到的以下说法中,正确的是________.①这几年人民生活水平逐年得到提高;②人民生活费收入增长最快的一年是2000年; ③生活价格指数上涨速度最快的一年是2001年;④虽然2002年生活费收入增长缓慢,但由于生活价格指数也略有降低,因而人民生活有较大的改善.解析:由题意,“生活费收入指数”减去“生活价格指数”的差是逐年增大的,故①正确;“生活费收入指数”在2000年~2001年最陡,故②正确;“生活价格指数”在2001年~2002年上涨速度不是最快的,故③不正确;由于“生活价格指数”略呈下降,而“生活费收入指数”曲线呈上升趋势,故④正确.答案:①②④ 三、解答题7.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如下图).(1)分别写出两种产品的收益与投资的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?解:(1)设投资债券收益与投资额的函数关系为f (x )=k 1x ,投资股票的收益与投资额的函数关系为g (x )=k 2x ,由图象得f (1)=18=k 1,g (1)=k 2=12,f (x )=18x (x ≥0),g (x )=12x (x ≥0).(2)设投资债券类产品x 万元, 则股票类投资为20-x 万元.y =f (x )+g (20-x )=x 8+1220-x (0≤x ≤20).令t =20-x ,则y =20-t 28+12t =-18(t 2-4t -20)=-18(t -2)2+3.所以当t =2,即x =16时,投资债券16万元,股票4万元时,收益最大,y max =3万元. 8.某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x (元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).(1)求函数y =f (x )的解析式及其定义域;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多? 解:(1)当x ≤6时,y =50x -115,令50x -115>0, 解得x >2.3.∵x ∈N *,∴x ≥3,∴3≤x ≤6,x ∈N *, 当x >6时,y =[50-3(x -6)]x -115.令[50-3(x -6)]x -115>0,有3x 2-68x +115<0, 上述不等式的整数解为2≤x ≤20(x ∈N *), ∴6<x ≤20(x ∈N *). 故y =⎩⎪⎨⎪⎧50x -115 (3≤x ≤6,x ∈N *)-3x 2+68x -115 (6<x ≤20,x ∈N *), 定义域为{x |3≤x ≤20,x ∈N *}.(2)对于y =50x -115(3≤x ≤6,x ∈N *). 显然当x =6时,y max =185(元), 对于y =-3x 2+68x -115=-3(x -343)2+8113(6<x ≤20,x ∈N *).当x =11时,y max =270(元).∵270>185,∴当每辆自行车的日租金定在11元时,才能使一日的净收入最多.[高考·模拟·预测]1.某种细胞在培养过程中正常情况下,时刻t (单位:分)与细胞数n (单位:个)的部分数据如下:( )A .200B .220C .240D .260解析:由表格中所给数据可以得出n 与t 的函数关系为n =2t 20,令n =1000,得2t20=1000,又210=1024,所以时刻t 最接近200分,故选A.答案:A2.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=12n (n +1)(2n +1)吨,但如果年产量超过150吨,将会给环境造成危害.为保证环境,环保部门应给该厂这条生产线拟定最长的生产期限是( )A .5年B .6年C .7年D .8年解析:由题知第一年产量为a 1=12×1×2×3=3;以后各年产量分别为a n =f (n )-f (n -1)=12n (n +1)(2n +1)-12n (n -1)(2n -1)=3n 2(n ∈N *),令3n 2≤150,得1≤n ≤52⇒1≤n ≤7,故生产期限最长为7年.答案:C3.某市出租车收费标准如下: 起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km.解析:设乘客每次乘坐出租车需付费用为f (x )元,由题意可得: f (x )=4.一位设计师在边长为3的正方形ABCD 中设计图案,他分别以A ,B ,C ,D 为圆心,以b (0<b ≤32)为半径画圆,由正方形内的圆弧与正方形边上线段(圆弧端点在正方形边上的连线)构成了丰富多彩的图形,则这些图形中实线部分总长度的最小值为________.解析:由题意实线部分的总长度为l =4(3-2b )+2πb =(2π-8)b +12,l 关于b 的一次函数的一次项系数2π-8<0,故l 关于b 为单调减函数,因此,当b 取最大值时,l 取得最小值,结合图形知,b 的最大值为32,代入上式得l 最小=(2π-8)×32+12=3π.答案:3π5.如右图,一个铝合金窗分为上、下两栏,圆周框架和中间隔档的材料为铝合金,宽均为6 cm ,上栏与下栏的框内高度(不含铝合金部分)的比为1∶2,此铝合金窗占用的墙面面积为28800 cm 2,设该铝合金窗的宽和高分别为a (cm),b (cm),铝合金窗的透光部分的面积为S (cm 2).(1)试用a ,b 表示S ;(2)若要使S 最大,则铝合金窗的宽和高分别为多少? 解:(1)∵铝合金窗宽为a (cm),高为b (cm),a >0,b >0, ∴ab =28800. ①又设上栏框内高度为h (cm),下栏框内高度为2h (cm),则3h +18=b ,∴h =b -183,∴透光部分的面积S =(a -18)×2(b -18)3+(a -12)×b -183=(a -16)(b -18)=ab -2(9a +8b )+288 =28800-2(9a +8b )+288 =29088-2(9a +8b ). (2)∵9a +8b ≥29a ·8b=29×8×28800=2880,当且仅当9a =8b 时等号成立,此时b =98a ,代入①得a =160,从而b =180,即当a =160,b =180时,S 取得最大值.答:铝合金窗的宽为160 cm ,高为180 cm 时,可使透光部分的面积最大.[备选精题] 6.两县城A 和B 相距20 km ,现计划在两县城外以AB 为直径的半圆弧上选择一点C 建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A 和城B 的总影响度为对城A 与对城B 的影响度之和,记C 点到城A 的距离为x km ,建在C 处的垃圾处理厂对城A 和城B 的总影响度为y .统计调查表明:垃圾处理厂对城A 的影响度与所选地点到城A 的距离的平方成反比,比例系数为4;对城B 的影响度与所选地点到城B 的距离的平方成反比,比例系数为k ,当垃圾处理厂建在弧的中点时,对城A 和城B 的总影响度为0.065.(Ⅰ)将y 表示成x 的函数;(Ⅱ)讨论(Ⅰ)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A 和城B 的总影响度最小?若存在,求出该点到城A 的距离;若不存在,说明理由.解:(Ⅰ)根据题意∠ACB =90°,AC =x km ,BC =400-x 2 km ,且建在C 处的垃圾处理厂对城A 的影响度为4x 2,对城B 的影响度为k400-x 2,因此,总影响度y =4x 2+k400-x 2(0<x <20).又因为垃圾处理厂建在弧的中点时,对城A 和城B 的总影响度为0.065,所以4(102+102)2+k400-(102+102)2=0.065, 解得k =9,所以y =4x 2+9400-x 2(0<x <20).(Ⅱ)因为y ′=-8x 3+18x(400-x 2)2=18x 4-8×(400-x 2)2x 3(400-x 2)2=(x 2+800)(10x 2-1600)x 3(400-x 2)2.由y ′=0解得x =410或x =-410(舍去), 易知410∈(0,20).y ,y ′随xy最小值=y|x=410=116,此时x=410,故在弧AB上存在一点,使得建在此处的垃圾处理厂对城A和城B的总影响度最小,该点与城A的距离x=410 km.。

高三基础知识天天练2-8. 数学 数学doc人教版

高三基础知识天天练2-8. 数学 数学doc人教版

第2模块 第8节[知能演练]一、选择题1.函数f (x )=(x -1)ln xx -3的零点有( )A .0个B .1个C .2个D .3个解析:由f (x )=(x -1)ln xx -3=0得:x =1,∴f (x )=(x -1)ln xx -3只有一个零点,故选B.答案:B 2.若函数f (x )在(1,2)内有一个零点,要使零点的近似值满足精确度为0.01,则对区间(1,2)至少二等分( )A .5次B .6次C .7次D .8次解析:设对区间(1,2)至少二等分n 次,此时区间长为1,第1次二等分后区间长为12,第2次二等分后区间长为122,第3次二等分后区间长为123,…,第n 次二等分后区间长为12n ,依题意得12n <0.01,∴n >log 2100由于6<log 2100<7,∴n ≥7,即n =7为所求.答案:C3.f (x )是定义在R 上的以3为周期的偶函数,且f (2)=0.则方程f (x )=0在区间(0,6)内解的个数的最小值是( )A .5B .4C .3D .2解析:∵f (x )是定义在R 上的偶函数,且周期是3,f (2)=0,∴f (2)=f (5)=f (-2)=f (1)=f (4)=0.答案:B4.设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:令g (x )=x 3-22-x ,可求得:g (0)<0,g (1)<0,g (2)>0,g (3)>0,g (4)>0,易知函数g (x )的零点所在区间为(1,2).答案:B二、填空题5.若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式a ·f (-2x )>0的解集是________.解析:由于f (x )=x 2+ax +b 的两个零点是-2和3, 即方程x 2+ax +b =0的两个根是-2和3,因此⎩⎪⎨⎪⎧ -2+3=-a -2·3=b ⇒⎩⎪⎨⎪⎧a =-1b =-6,因此f (x )=x 2-x -6, 所以不等式a ·f (-2x )>0,即-(4x 2+2x -6)>0,即2x 2+x -3<0,解集为{x |-32<x <1}.答案:{x |-32<x <1}6.若一元二次方程ax 2+bx +c =0(a >0)的两根x 1、x 2满足m <x 1<n <x 2<p ,则f (m )·f (n )·f (p )________0(填“>”、“=”或“<”).解析:∵a >0,∴f (x )=ax 2+bx +c 的图象开口向上.∴f (m )>0,f (n )<0,f (p )>0. 答案:< 三、解答题7.已知函数f (x )=x 3-x 2+x 2+14.证明:存在x 0∈(0,12),使f (x 0)=x 0.解:令g (x )=f (x )-x .∵g (0)=14,g (12)=f (12)-12=-18,∴g (0)·g (12)<0.又函数g (x )在[0,12]上连续,所以存在x 0∈(0,12),使g (x 0)=0.即f (x 0)=x 0.8.函数f (x )=x 3-12x 2-2x +5-λ在区间[-1,2]上有三个零点,求λ的值.解:设g (x )=x 3-12x 2-2x +5,则g ′(x )=3x 2-x -2=(3x +2)(x -1), ∴g (x )在(-1,-23)和(1,2)上单调递增,在(-23,1)上单调递减.又g (-1)=112,g (-23)=15727,g (1)=72,g (2)=7,由题意知g (x )=λ有三个根,∴λ∈[112,15727). [高考·模拟·预测]1.为了求函数f (x )=2x -x 2的一个零点,某同学利用计算器,得到自变量x 和函数值f (x )( )A .(0.6,1.0)B .(1.4,1.8)C .(1.8,2.2)D .(2.6,3.0) 解析:∵f (1.8)·f (2.2)=0.24×(-0.24)<0, ∴零点在(1.8,2.2)上.故选C. 答案:C2.已知函数f (x )=(13)x -log 2x ,若实数x 0是方程f (x )=0的解,且0<x 1<x 0.则f (x 1)的值为( )A .恒为正值B .等于0C .恒为负值D .不大于0解析:∵f (x )在定义域(0,+∞)上单调递减,当x →0时,f (x )→+∞, ∵f (x 0)=0,∴f (x )=0只有一个实根. ∴当0<x 1<x 0时,f (x 1)>0恒成立,故选A. 答案:A3.若函数f (x )的零点与g (x )=4x +2x -2的零点之差的绝对值不超过0.25,则f (x )可以是( )A .f (x )=4x -1B .f (x )=(x -1)2C .f (x )=e x -1D .f (x )=ln(x -12)解析:∵g ′(x )=4x ln4+2>0,∴g (x )在(-∞,+∞)上是增函数.又g (0)=1-2=-1<0,g (12)=2+1-2=1>0,∴g (x )只有一个零点x 0,且x 0∈(0,12).对于选项A :f (x )=4x -1,其零点为x =14,∴|14-x 0|<14,故选项A 符合.答案:A4.已知方程|x |-ax -1=0仅有一个实根且小于0,则a 的取值范围为________.解析:利用数形结合判断显然有a ≥1. 答案:a ≥15.已知函数f (x )=e x -k -x ,其中x ∈R . (1)k =0时,求函数f (x )的值域;(2)当k >1时,函数f (x )在[k,2k ]内是否存在零点,并说明理由. 解:(1)k =0时,f (x )=e x -x ,f ′(x )=e x -1, 令f ′(x )=0,得x =0.又x ∈(-∞,0)时,f ′(x )<0, ∴f (x )在(-∞,0)内单调递减. x ∈(0,+∞)时,f ′(x )>0, ∴f (x )在(0,+∞)内单调递增. ∴x =0时,f (x )取到极小值.又∵这个极小值是R 上的唯一的极小值, ∴x =0时,f (x )min =f (0)=1. 即函数f (x )的值域为[1,+∞).(2)f (k )·f (2k )=(e k -k -k )·(e 2k -k -2k ) =(1-k )·(e k -2k ). ∵k >1,∴1-k <0.令g (k )=e k -2k ,g (1)=e 1-2>0, 又g ′(k )=e k -2,当k >1时,g ′(k )>e 1-2>0, ∴k ∈(1,+∞),g (k )为增函数. ∴g (k )>g (1)>0.∴k >1时,e k -2k >0. ∴f (k )·f (2k )<0.∴即函数f (x )当k >1时在[k,2k ]内存在零点.[备选精题]6.已知二次函数y =g (x )的导函数的图象与直线y =2x 平行,且y =g (x )在x =-1处取得极小值m -1(m ≠0).设f (x )=g (x )x. (1)若曲线y =f (x )上的点P 到点Q (0,2)的距离的最小值为2,求m 的值. (2)k (k ∈R )如何取值时,函数y =f (x )-kx 存在零点,并求出零点. 解:设二次函数为g (x )=ax 2+bx +c ,∵y =g ′(x )=2ax +b 的图象与直线y =2x 平行, ∴a =1.又∵y =g (x )在x =-1处取得极小值m -1, ∴-b2a=-1,g (-1)=a (-1)2+b (-1)+c =m -1,∴b =2,c =m , 从而f (x )=g (x )x =mx+x +2.(1)已知m ≠0,设曲线y =f (x )上点P 的坐标为P (x ,y ),则点P 到点Q (0,2)的距离为 |PQ |=(x -0)2+(y -2)2=x 2+(mx+x )2=2x 2+m 2x2+2m≥22x 2·m 2x2+2m =22|m |+2m ,当且仅当2x 2=m 2x 2⇒x =±|m |2时等号成立. ∵|PQ |的最小值为2,∴22|m |+2m =2⇒2|m |+m =1. ①当m >0时,解得m =12+1=2-1. ②当m <0时,解得m =11-2=-2-1. 故m =2-1或m =-2-1.(2)y =f (x )-kx 的零点即方程mx +(1-k )x +2=0的解,∵m ≠0,∴mx +(1-k )x +2=0与(k -1)x 2-2x -m =0有相同的解. ①若k =1,(k -1)x 2-2x -m =0⇒x =-m2≠0,∴函数y =f (x )-kx 有零点x =-m2.②若k ≠1,(k -1)x 2-2x -m =0的判别式Δ=4[1+m (k -1)]. 若Δ=0⇒k =1-1m ,此时函数y =f (x )-kx 有一个零点x =-m .若Δ>0⇒1+m (k -1)>0,∴当m >0,k >1-1m ,或m <0,k <1-1m 时,方程(k -1)x 2-2x -m =0有两个解 x 1=1+1+m (k -1)k -1和x 2=1-1+m (k -1)k -1.此时函数y =f (x )-kx 有两个零点x 1和x 2. ③若Δ<0⇒1+m (k -1)<0,∴当m >0,k <1-1m ,或m <0,k >1-1m时,方程(k-1)x2-2x-m=0无实数解.此时函数y=f(x)-kx没有零点.。

高三基础知识天天练1-1. 数学 数学doc人教版

高三基础知识天天练1-1. 数学 数学doc人教版

第1模块 第1节[知能演练]一、选择题1.满足条件M ∪{1}={1,2,3}的集合M 的个数是( )A .1B .2C .3D .4解析:满足条件M ∪{1}={1,2,3}的集合M 为{2,3},{1,2,3},共两个. 答案:B2.已知集合P ={(x ,y )||x |+|y |=1},Q ={(x ,y )|x 2+y 2≤1},则( )A .P ⊆QB .P =QC .P ⊇QD .P ∩Q =Ø 答案:A3.若集合A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22},则能使A ⊆B 成立的所有a 的集合是( )A .{a |1≤a ≤9}B .{a |6≤a ≤9}C .{a |a ≤9}D .Ø解析:若2a +1>3a -5,即a <6时,A =Ø⊆B ; 若2a +1=3a -5,即a =6时,A ={x |x =13}⊆B ; 若2a +1<3a -5,即a >6时,由A ⊆B 得⎩⎪⎨⎪⎧2a +1≥33a -5≤22,解得6<a ≤9.综上可得a ≤9. 答案:C4.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪ (∁R B )=R ,则实数a 的取值范围是( )A .a ≤1B .a <1C .a ≥2D .a >2解析:∁R B =(-∞,1]∪[2,+∞),又A ∪(∁R B )=R ,数轴上画图可得a ≥2,故选C. 答案:C 二、填空题5.若集合{(x ,y )|x +y -2=0且x -2y +4=0} {(x ,y )|y =3x +b },则b =________.解析:由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +4=0.⇒⎩⎪⎨⎪⎧x =0,y =2.点(0,2)在y =3x +b 上,∴b =2.答案:26.对于集合M 、N 定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ),设A ={t |t =x 2-3x ,x ∈R },B ={x |y =lg(-x )},则A ⊕B =________.解析:∵t =x 2-3x =(x -32)2-94≥-94,∴A ={t |t ≥-94}.又由B 可知y =lg(-x ),则-x >0,得x <0, ∴B ={x |x <0},∴A -B ={x |x ≥0},B -A ={x |x <-94},∴A ⊕B =(-∞,-94)∪[0,+∞).答案:(-∞,-94)∪[0,+∞)三、解答题7.已知集合A ={x |x 2-5x +6=0},B ={x |mx +1=0},且B ⊆A ,求实数m 的值组成的集合.解:A ={x |(x -2)(x -3)=0}={2,3}, 若m =0,B =Ø⊆A ;若m ≠0,B ={x |x =-1m},由B ⊆A 得-1m =2,或-1m =3,解得m =-12,m =-13, 因此实数m 的值组成的集合是{0,-12,-13}.8.已知集合E ={x ||x -1|≥m },F ={x |10x +6>1}.(1)若m =3,求E ∩F ;(2)若E ∪F =R ,求实数m 的取值范围; (3)若E ∩F =Ø,求实数m 的取值范围. 解:(1)当m =3时,E ={x ||x -1|≥3}={x |x ≤-2或x ≥4},F ={x |10x +6>1}={x |x -4x +6<0}={x |-6<x <4}.∴E ∩F ={x |x ≤-2或x ≥4}∩{x |-6<x <4} ={x |-6<x ≤-2}. (2)∵E ={x ||x -1|≥m },①m ≤0时,E =R ,E ∪F =R ,满足条件. ②m >0时,E ={x |x ≤1-m 或x ≥1+m }, 由E ∪F =R ,F ={x |-6<x <4},∴⎩⎪⎨⎪⎧ 1-m ≥-6,1+m ≤4,m >0,解得0<m ≤3.∴综上,实数m 的取值范围为(-∞,3]. (3)∵E ={x ||x -1|≥m },①m ≤0时,E =R ,E ∩F =F ≠Ø,不满足条件.②m >0时,E ={x |x ≤1-m 或x ≥1+m },由E ∩F =Ø,F ={x |-6<x <4}, ∴⎩⎪⎨⎪⎧1-m ≤-6,1+m ≥4,m >0,解得m ≥7.∴综上,实数m 的取值范围为[7,+∞).[高考·模拟·预测]1.已知全集U =R ,集合M ={x |-2≤x -1≤2}和N ={x |x =2k -1,k =1,2,…}的关系的韦恩(Venn)图如下图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个解析:∵阴影部分M ∩N ={x |-2≤x -1≤2}∩{x |x =2k -1,k =1,2,…}={x |-1≤x ≤3}∩{x |x =2k -1,k =1,2,…}={1,3},∴阴影部分所示的集合的元素共有2个,故选B.答案:B 2.已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的韦恩(Venn)图是( )解析:N ={x |x 2+x =0}={-1,0},而M ={-1,0,1},故N M ,所以选B. 答案:B3.设全集U =A ∪B ={x ∈N *|lg x <1}.若A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4},则集合B =______________.解析:由题意得U =A ∪B ={1,2,3,4,5,6,7,8,9},A ∩(∁U B )={1,3,5,7,9},所以B ={2,4,6,8}. 答案:{2,4,6,8}4.设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b 、ab 、ab∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集F ={a +b 2|a ,b ∈Q }也是数域,有下列命题:①整数集是数域;②若有理数集Q ⊆M ,则数集M 必为数域; ③数域必为无限集; ④存在无穷多个数域.其中正确命题的序号是________.(把你认为正确的命题的序号都填上)解析:对于整数集Z ,a =1,b =2时,a b =12∉Z ,故整数集不是数域,①错;对于满足Q ⊆M 的集合M =Q ∪{2},1+2∉M ,M 不是数域,②错;若P 是数域,则存在a ∈P 且a ≠0,依定义,2a,3a,4a …均是P 中的元素,故P 中有无数个无素,③正确;类似数集F ,{a +b 3|a ,b ∈Q },{a +b 5|a ,b ∈Q }等均是数域,④正确.答案:③④5.已知集合A ={x |(x -2)[x -(3a +1)]<0},B ={x |x -2ax -(a 2+1)<0}.(1)当a =2时,求A ∩B ;(2)求使B ⊆A 的实数a 的取值范围. 解:(1)当a =2时,A ={x |2<x <7},B ={x |4<x <5}. ∴A ∩B ={x |4<x <5}, (2)B ={x |2a <x <a 2+1},①当B =Ø时,2a ≥a 2+1,∴a =1, 此时A ={x |2<x <4},B ⊆A 符合题意.②若B ≠Ø,方程(x -2)[x -(3a +1)]=0的两根为x 1=2,x 2=3a +1. ∵B ≠Ø.∴A ≠Ø∴3a +1≠2,即a ≠13.当3a +1>2,即a >13时,⎩⎪⎨⎪⎧2a ≥2a 2+1≤3a +12a <a 2+1⇒⎩⎪⎨⎪⎧a ≥10≤a ≤3⇒1<a ≤3a ≠1.当3a +1<2,即a <13时,⎩⎪⎨⎪⎧ 2a ≥3a +1a 2+1≤2⇒⎩⎪⎨⎪⎧a ≤-1-1≤a ≤1⇒a =-1. ∴a 的取值范围为[1,3]∪{-1}.[备选精题]6.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}. (1)若B ⊆A ,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集的个数;(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围. 解:(1)当m +1>2m -1,即m <2时,B =Ø满足B ⊆A . 当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立, 需⎩⎪⎨⎪⎧m +1≥-22m -1≤5,可得2≤m ≤3, 综上,m 的取值范围是m ≤3.(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5}, 所以A 的非空真子集个数为28-2=254.(3)因为x ∈R ,且A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},又没有元素x 使x ∈A 与x ∈B 同时成立.则①若B =Ø,即m +1>2m -1,得m <2时满足条件. ②若B ≠Ø,则要满足的条件是 ⎩⎪⎨⎪⎧ m +1≤2m -1m +1>5或⎩⎪⎨⎪⎧m +1≤2m -12m -1<-2,解得m >4. 综上,m 的取值范围是m <2或m >4.。

2024 年下半年基础数学天天练

2024 年下半年基础数学天天练

2024 年下半年基础数学天天练试题部分一、选择题:1. 若一个等差数列的前三项分别为2,5,8,则该数列的公差是:A. 1B. 2C. 3D. 42. 在直角坐标系中,点A(2,3)关于y轴的对称点坐标是:A.(2,3)B.(2,3)C.(2,3)D.(2,3)3. 已知一个正方形的对角线长为10cm,则该正方形的面积是:A. 50cm²B. 100cm²C. 25cm²D. 20cm²4. 若一个等比数列的首项为2,公比为3,则该数列的前5项和为:A. 2+6+18+54+162B. 2+6+18+54+81C. 2+6+18+54+162D. 2+6+18+54+2435. 在平面直角坐标系中,点P(3,4)到原点O的距离是:A. 5B. 7C. 9D. 116. 若一个等差数列的第4项为15,公差为3,则该数列的第10项是:A. 30B. 33C. 36D. 397. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标是:A.(2,3)B.(2,3)C.(2,3)D.(2,3)8. 已知一个正方形的边长为6cm,则该正方形的周长是:A. 24cmB. 36cmC. 12cmD. 18cm9. 若一个等比数列的首项为4,公比为1/2,则该数列的前5项和为:A. 4+2+1+1/2+1/4B. 4+2+1+1/2+1/8C. 4+2+1+1/2+1/4D. 4+2+1+1/2+1/1610. 在平面直角坐标系中,点P(3,4)到点Q(1,2)的距离是:A. 5B. 7C. 9D. 11二、判断题:1. 等差数列的公差可以是负数。

()2. 平面直角坐标系中,任意一点到原点的距离都是该点的坐标的平方和的平方根。

()3. 正方形的对角线互相垂直且相等。

()4. 等比数列的公比可以是1。

()5. 在平面直角坐标系中,任意两点之间的距离都是这两点的坐标差的平方和的平方根。

高三基础知识天天练3-7. 数学 数学doc人教版

高三基础知识天天练3-7. 数学 数学doc人教版

第3模块 第7节[知能演练]一、选择题1.在△ABC 中,a 2-c 2+b 2=ab ,则角C 为( )A .60°B .45°或135°C .120°D .30°解析:∵a 2-c 2+b 2=ab ,∴cos C =a 2+b 2-c 22ab =ab 2ab =12.又∵0°<C <180°,∴C =60°.答案:A2.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C的值为 ( )A.85B.58C.53D.35解析:由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos A ,即72=52+AC 2-10AC ·cos120°,∴AC =3.由正弦定理得sin B sin C =AC AB =35.答案:D3.已知△ABC 的三边长分别为a ,b ,c ,且面积S △ABC =14(b 2+c 2-a 2),则A 等于( )A .45°B .30°C .120°D .15°解析:由S △ABC =14(b 2+c 2-a 2)=12bc sin A得sin A =b 2+c 2-a 22bc =cos A ,∴A =45°.答案:A4.在△ABC 中,BC =2,B =π3,若△ABC 的面积为32,则tan C 为( )A. 3 B .1 C.33D.32解析:由S △ABC =12BC ·BA sin B =32得BA =1,由余弦定理得AC 2=AB 2+BC 2-2AB ×BC cos B ,∴AC =3,∴△ABC 为直角三角形,其中A 为直角,∴tan C =AB AC =33.答案:C 二、填空题5.某人向正东方向走了x 千米,他右转150°,然后朝新方向走了3千米,结果他离出发点恰好3千米,那么x 的值是________.解析:如图所示,该问题转化为已知△ABC 中BC =3,AC =3,B =30°,求AB 的长.由正弦定理AC sin B =BC sin A 可求得角A ,进而可求出角C 再由AB sin C =ACsin B可求得AB ,即x . 答案:3或2 36.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,b =7,c =3,则B =________.解析:由余弦定理变形得cos B =a 2+c 2-b 22ac =1+3-72×1×3=-32.又∵B ∈(0,π),∴B =5π6.答案:5π6三、解答题7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,并且a 2=b (b +c ). (1)求证:A =2B ;(2)若a =3b ,判断△ABC 的形状. (1)证明:因为a 2=b (b +c ),即a 2=b 2+bc , 所以在△ABC 中,由余弦定理可得, cos B =a 2+c 2-b 22bc =c 2+bc 2ac=b +c 2a =a 22ab =a 2b =sin A2sin B, 所以sin A =sin2B ,∴A =2B 或A +2B =π,而当A +2B =π时有B =C 即b =c ,代回已知得a =2b ,此时a 2=b 2+c 2,故A =90°,而B =C =45°也即A =2B .故A =2B .(2)解:因为a =3b ,所以ab =3,由a 2=b (b +c )可得c =2b ,cos B =a 2+c 2-b 22ac =3b 2+4b 2-b 243b 2=32所以B =30°,A =2B =60°,C =90°. 所以△ABC 为直角三角形.8.已知a 、b 、c 是△ABC 的三边长,关于x 的方程ax 2-2c 2-b 2x -b =0(a >c >b )的两根之差的平方等于4,△ABC 的面积S =103,c =7. (1)求角C ; (2)求a ,b 的值.解:(1)设x 1、x 2为方程ax 2-2c 2-b 2x -b =0的两根,则x 1+x 2=2c 2-b 2a,x 1·x 2=-b a. ∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2 =4(c 2-b 2)a 2+4b a =4.∴a 2+b 2-c 2=ab .又cos C =a 2+b 2-c 22ab =ab 2ab =12,又∵C ∈(0°,180°),∴C =60°. (2)由S =12ab sin C =103,∴ab =40.①由余弦定理c 2=a 2+b 2-2ab cos C , 即c 2=(a +b )2-2ab (1+cos60°). ∴72=(a +b )2-2×40×(1+12).∴a +b =13.又∵a >b ② ∴由①②,得a =8,b =5.[高考·模拟·预测]1.△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且cos2B +3cos(A +C )+2=0,b =3,则c ∶sin C 等于( )A .3∶1 B.3∶1 C.2∶1D .2∶1解析:cos2B +3cos(A +C )+2=2cos 2B -3cos B +1=0,∴cos B =12或cos B =1(舍).∴B=π3.∴c sin C =b sin B =332=2.故选D. 答案:D2.△ABC 中,AB =3,AC =1,B =30°,则△ABC 的面积等于( )A.32B.34C.32或 3D.32或34解析:1sin30°=3sin C ,∴sin C =32.∴C =60°或120°. (1)当C =60°时,A =90°,∴BC =2,此时,S △ABC =32; (2)当C =120°时,A =30°,S △ABC =12×3×1×sin30°=34,故选D.答案:D3.在锐角△ABC 中,b =2,B =π3,sin2A +sin(A -C )-sin B =0,则△ABC 的面积为________.解析:sin2A +sin(A -C )-sin B =sin2A +sin(A -C )-sin(A +C )=sin2A -2sin C cos A =2cos A (sin A -sin C )=0,∵△ABC 是锐角三角形, ∴cos A ≠0.∴sin A =sin C ,即A =C . 又B =π3,∴△ABC 为正三角形.∴S =34×22= 3. 答案: 34.已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a =c =6+2且∠A =75°,则b =( )A .2B .4+2 3C .4-2 3D.6- 2解析:sin A =sin75°=sin(30°+45°)=sin30°cos45°+sin45°cos30°=2+64.由a =c =6+2可知,∠C =75°,所以∠B =30°,sin B =12.由正弦定理得b =asin A ·sin B=2+62+64×12=2,故选A. 答案:A5.在△ABC 中,BC =5,AC =3,sin C =2sin A . (1)求AB 的值; (2)求sin ⎝⎛⎭⎫2A -π4的值. 解:(1)在△ABC 中,根据正弦定理,AB sin C =BCsin A .于是AB =sin Csin A BC =2BC =2 5.(2)在△ABC 中,根据余弦定理得 cos A =AB 2+AC 2-BC 22AB ·AC =255.于是sin A =1-cos 2A =55. 从而sin2A =2sin A cos A =45,cos2A =cos 2A -sin 2A =35.所以sin ⎝⎛⎫2A -π4=sin2A cos π4-cos2A sin π4=210. [备选精题]6.已知函数f (x )=2sin x cos 2φ2+cos x sin φ-sin x (0<φ<π)在x =π处取最小值.(1)求φ的值;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边.已知a =1,b =2,f (A )=32,求角C .解:(1)f (x )=2sin x 1+cos φ2+cos x sin φ-sin x=sin x +sin x cos φ+cos x sin φ-sin x =sin x cos φ+cos x sin φ=sin(x +φ). 因为f (x )在x =π时取最小值. 所以sin(π+φ)=-1,故sin φ=1. 又0<φ<π,所以φ=π2.(2)由(1)知f (x )=sin ⎝⎛⎭⎫x +π2=cos x .因为f (A )=cos A =32,且A 为△ABC 的内角, 所以A =π6.由正弦定理得sin B =b sin A a =22.又b >a ,所以B =π4或B =3π4.当B =π4时,C =π-A -B =π-π6-π4=7π12,当B =3π4时,C =π-A -B =π-π6-3π4=π12.综上所述,C =7π12或C =π12.。

最新人教版小学数学五年级下册天天练系列之口算+应用计时评测75套(原卷版)

最新人教版小学数学五年级下册天天练系列之口算+应用计时评测75套(原卷版)

五年级数学下册天天练系列之口算+应用计时评测75套(原卷版)编者的话:《五年级数学下册天天练系列》是基于《五年级数学下册典型例题系列》和期末真题总结与编辑而成的,该系列主要包括《计算题计时评测90套》、《应用题计时评测80套》、《口算题计时评测75套》、《口算+应用计时评测75套》,其优点在于选题典型,难度适当,题量适中,在编辑时为求一份文档供一期使用,可谓呕心沥血,费尽心力,非常值得使用和收藏。

本专题是口算+应用计时评测75套。

本部分内容按照五年级数学下册单元顺序进行编排,主要选取该单元常考的口算题和应用题,每页覆盖两道大题,题量适中,难度合适,共划分75套练习,总计超过1500道小题,建议练习使用时,将时长控制在15分钟左右,欢迎使用。

练习一年月日时间:分秒分数:一、口算。

25×0.2=0×5.8= 1.25×4= 4.05×4=0.6+4.4×2=6÷100= 2.2÷0.1= 2.4÷0.6=0.6÷0.02=5×0.4÷5×0.4=1÷0.2= 1.2÷4=4.5÷5= 3.5÷0.7=0.32÷16= 1.25×8=0.12÷0.2=0.63÷0.9= 0.56+0.8=7.5÷3=二、解决问题。

下图由()个小正方体组成,有()层。

它有()个“□”露在外面。

请在下面方格纸中画出中你从不同角度看到的图像。

练习二年月日时间:分秒分数:一、口算。

0.01×100=1000×0.1=78÷1000=0.9÷10=1.2×0.5= 3.6÷0.9=73÷10=0.25×4=0.8×1.25=120÷0.6=0.78×10=1000×0.03=2÷100=50÷100= 1.3×100= 4.6÷10=0.1÷100=14÷1000=12÷60= 5.6÷1000=二、解决问题。

基础知识天天练 数学5-2

基础知识天天练 数学5-2

第5模块 第2节[知能演练]一、选择题1.若x ≠y ,两个等差数列x ,a 1,a 2,y 与x ,b 1,b 2,b 3,y 的公差分别为d 1和d 2,则d 2d 1等于 ( )A.23B.32C.34D.43解析:d 1=y -x 4-1=y -x 3,d 2=y -x 5-1=y -x4.∴d 2d 1=34. 答案:C2.{a n }为等差数列,a 10=33,a 2=1,S n 为数列{a n }的前n 项和,则S 20-2S 10等于( )A .40B .200C .400D .20解析:本题考查等差数列的运算.S 20-2S 10=20(a 1+a 20)2-2×10(a 1+a 10)2=10(a 20-a 10)=100d ,又a 10=a 2+8d ,∴33=1+8d , ∴d =4,∴S 20-2S 10=400. 答案:C3.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和等于( )A .160B .180C .200D .220解析:∵a 1+a 2+a 3=-24,a 18+a 19+a 20=78, ∴a 1+a 2+a 3+a 18+a 19+a 20=3(a 1+a 20)=54, ∴S 20=20(a 1+a 20)2=20×542×3=180.答案:B4.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2D.12解析:由a 5a 3=a 1+a 92a 1+a 52=[12(a 1+a 9)×9]×5[12(a 1+a 5)×5]×9=S 9S 5×59⇒5S 99S 5=59⇒S 9S 5=1.答案:A 二、填空题5.设S n 是等差数列{a n }的前n 项和,若a 12=-8,S 9=-9,则S 16=________. 解析:由S 9=-9,得a 1+a 92=a 5=-1,又a 12=-8,所以a 5+a 12=a 1+a 16=-9. 故S 16=(a 1+a 16)×162=-72.答案:-726.等差数列的前n 项和为S n ,若S 7-S 3=8,则S 10=________;一般地,若S n -S m =a (n >m ),则S n +m =________.解析:设等差数列的首项为a 1,公差为d ,则 S 7-S 3S 10=4a 1+18d 10a 1+45d =25=8S 10⇒S 10=20; 同理S n -S mS n +m =(n -m )·(a 1+n +m -12d )(n +m )a 1+(n +m )(n +m -1)2d=n -m n +m =aS n +m ⇒S n +m =n +m n -m·a . 答案:20n +mn -m·a 三、解答题7.等差数列{a n }中,a 4=10,且a 3,a 6,a 10成等比数列.求数列{a n }前20项的和S 20. 解:设数列{a n }的公差为d ,则a 3=a 4-d =10-d ,a 6=a 4+2d =10+2d , a 10=a 4+6d =10+6d . 由a 3,a 6,a 10成等比数列得a 3a 10=a 26,即(10-d )(10+6d )=(10+2d )2,整理得10d 2-10d =0,解得d =0或d =1. 当d =0时,S 20=20a 4=200;当d =1时,a 1=a 4-3d =10-3×1=7, 于是S 20=20a 1+20×192d =20×7+190=330.8.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *),(1)求证:数列{b n }是等差数列;(2)记S n =b 1+b 2+…+b n ,求2S n +8n 的最小值.(1)证明:b n =1a n -1=12-1a n -1-1=a n -1a n -1-1, 而b n -1=1a n -1-1,∴b n -b n -1=a n -1a n -1-1-1a n -1-1=1(n ∈N *).∴数列{b n }是首项为b 1=1a 1-1=-52,公差为1的等差数列.(2)解:∵b n =n -72,∴S n =b 1+b 2+…+b n =n (n -6)2.则2S n +8n =(n +8)(n +2)n =(n +16n)+10. 由基本不等式,知(n +16n)+10≥216+10=18.当且仅当n =4时取等号,即n =4时,2S n +8n取最小值18.[高考·模拟·预测]1.已知S n 是等差数列{a n }的前n 项和,S 10>0并且S 11=0,若S n ≤S k 对n ∈N *恒成立,则正整数k 构成的集合为( )A .{5}B .{6}C .{5,6}D .{7}解析:等差数列中由S 10>0,S 11=0得, S 10=10(a 1+a 10)2>0⇒a 1+a 10>0⇒a 5+a 6>0,S 11=11(a 1+a 11)2=0⇒a 1+a 11=2a 6=0,故可知,等差数列{a n }是递减数列且a 6=0,所以S 5=S 6≥S n ,即k =5或6,故选C.答案:C2.等差数列{a n }的前n 项和为S n .已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m =( )A .38B .20C .10D .9解析:由条件得2a m =a m -1+a m +1=a 2m ,从而有a m =0或2.又由S 2m -1=a 1+a 2m -12×(2m -1)=38且2a m =a 1+a 2m -1得(2m -1)a m =38,故a m ≠0,则有2m -1=19,m =10.答案:C3.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99.以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18解析:∵a 1+a 3+a 5=105,a 2+a 4+a 6=99, ∴3a 3=105,3a 4=99,即a 3=35,a 4=33, ∴a 1=39,d =-2,得a n =41-2n .令a n >0且a n +1<0,n ∈N *,则有n =20.故选B. 答案:B4.已知数列{a n }共有m 项,记{a n }的所有项和为S (1),第二项及以后所有项和为S (2),第三项及以后所有项和为S (3),…,第n 项及以后所有项和为S (n ),若S (n )是首项为1,公差为2的等差数列的前n 项和,则当n <m 时,a n =________.解析:由题意得S (n )=a n +…+a m =n ×1+n (n -1)2×2=n 2,当n <m 时,S (n +1)=a n +1+…+a m =(n +1)2.故a n =S (n )-S (n +1)=n 2-(n +1)2=-2n -1.答案:-2n -15.已知数列{a n }满足a 1=1,a n >0,S n 是数列{a n }的前n 项和,对任意n ∈N *,有2S n=p (2a 2n +a n -1)(p 为常数).(1)求p 和a 2,a 3的值; (2)求数列{a n }的通项公式.解:(1)令n =1得2S 1=p (2a 21+a 1-1),又a 1=S 1=1, 得p =1;令n =2得2S 2=2a 22+a 1-1,又S 2=1+a 2,得2a 22-a 2-3=0,a 2=32或a 2=-1(舍去),∴a 2=32; 令n =3得2S 3=2a 23+a 3-1,又S 3=52+a 3, 得2a 23-a 3-6=0,a 3=2或a 3=-32(舍去),∴a 3=2. (2)由2S n =2a 2n +a n -1,得2S n -1=2a 2n -1+a n -1-1(n ≥2), 两式相减,得2a n =2(a 2n -a 2n -1)+a n -a n -1,即(a n +a n -1)(2a n -2a n -1-1)=0,∵a n >0,∴2a n -2a n -1-1=0,即a n -a n -1=12(n ≥2),故{a n }是首项为1,公差为12的等差数列,得a n =12(n +1).[备选精题]6.已知f (x )=4+1x 2,数列{a n }的前n 项和为S n ,点P n (a n ,1a n +1)(n ∈N *)在曲线y =f (x )上,且a 1=1,a n >0.(1)求数列{a n }的通项公式a n ;(2)数列{b n }的首项b 1=1,前n 项和为T n ,且T n +1a 2n =T na 2n +1+16n 2-8n -3,求数列{b n }的通项公式b n .解:(1)由题意知1a n +1=4+1a 2n. ∴1a 2n +1=4+1a 2n .∴1a 2n +1-1a 2n =4,即{1a 2n }是等差数列.∴1a 2n =1a 21+4(n -1)=1+4n -4=4n -3. ∴a 2n =14n -3. 又∵a n >0, ∴a n =14n -3. (2)由题意知(4n -3)T n +1=(4n +1)T n +(4n +1)(4n -3). ∴T n +14n +1-T n4n -3=1.设T n4n -3=c n,则上式变为c n +1-c n =1. ∴{c n }是等差数列.∴c n =c 1+n -1=T 11+n -1=b 1+n -1=n .∴T n4n -3=n ,即T n =n (4n -3)=4n 2-3n . ∴当n =1时,b n =T 1=1;当n ≥2时,b n =T n -T n -1=4n 2-3n -4(n -1)2+3(n -1)=8n -7. 经验证n =1时也适合上式. ∴b n =8n -7(n ∈N *).。

基础知识天天练五

基础知识天天练五

基础知识天天练五〖晚餐一练〗1.下列各组词语中加点的字的读音,完全相同的一组是()A.悄寂讥诮春寒料峭行情走俏B.憧憬冲压忧心忡忡首当其冲C.当今当权螳臂当车罚不当罪D.差距差劲差可告慰差强人意2.下列句子中,没有错别字的一项是()A.慧星收讫挺而走险振聋发馈B.汇编狙击急公好义彪炳春秋C.踌躇逼仄既往不纠纵横捭阖D.潦倒棉密励精图治敝帚自珍3.(原创题)依次填入横线处的词语,恰当的一组是()①1月20日,信阳市新县法院调解一起房屋所有权纠纷案,胡某自愿________起诉,一场令胡某、农行、吴某三方费尽心思交涉三年的“拉锯战”终于画上了句号。

②也就是说,我国彩电使用一年所________的电力,相当于4个葛洲坝发电站所发的电的总和。

③市人大常委会秘书处及时________各区县分会场代表的质询意见,分门别类送交各主管委员会负责人。

A.撤回消耗收集B.撤消消耗搜集C.撤回消费搜集D.撤消消费收集4.(原创题)下列各句中,加点的成语使用不恰当的一句是()A.听到群众的喝令声,歹徒们立即作鸟兽散....,其中一名歹徒莫某慌不择路,跳到湖里,另外几名则趁黑夜潜逃。

B.有人开玩笑说:“犹太金融资本家在豪宅客厅里打个喷嚏,世界上不少银行都将连锁感冒。

”这可不是骇人听闻....,他们在全球政治经济领域的作用确实非常之大。

C.健全国内的反腐倡廉机制是有效阻止贪官外逃的治本之策,而一味希图靠外力拿办贪官则是舍本逐末....,断不可取。

D.又是十年过去了,看看现在,外面的车型真是让人眼花缭乱....:从适合代步的小型车到性能优越的suv,从遥远的德系、日系车到我们国家自主研发的品牌,大街上跑的车数不胜数。

5.下列句子中,没有语病的一句是()A.别开生面的元宵联谊会,使秦山核电站三期工程的20多名外籍专家歆享了中国“上元节”的喜庆与祥和。

B.鉴于这些工作人员长期负责某一系统的财务审计,形成了一种稳定的施审与受审关系,难免违规交往。

四年级下册53天天练数学教辅

四年级下册53天天练数学教辅

四年级下册53天天练数学教辅这本教辅是为了帮助四年级学生提高数学能力而设计的,下面将为大家介绍一些教辅内容和使用方法。

第一部分:数学基础知识在这一部分,教辅详细讲解了四年级下册的数学基础知识,包括整数、小数、分数、几何图形等。

每个知识点都有相应的解题方法和例题,帮助学生理解和掌握基础知识。

例如,在整数部分,教辅通过生动有趣的例子介绍了正数和负数的概念,以及它们在实际生活中的应用。

学生可以通过练习题巩固对整数的理解和运用。

第二部分:思维训练思维训练是这本教辅的重点之一。

在这部分,教辅提供了一系列的思维训练题目,帮助学生培养解决问题的能力和逻辑思维能力。

例如,在“找规律”一节中,教辅提供了一些数字序列,要求学生找出规律并填写缺失的数字。

这样的题目可以锻炼学生的观察能力和逻辑思维能力,提高他们解决问题的能力。

第三部分:实践应用实践应用是为了帮助学生将数学知识应用到实际生活中。

在这一部分,教辅设计了一些与日常生活相关的题目,让学生能够更好地理解和运用数学知识。

例如,在“比例和百分数”一节中,教辅通过购物的例子,让学生计算折扣和找零钱。

这样的题目可以帮助学生将学到的知识与实际情境相结合,提高他们解决实际问题的能力。

第四部分:综合训练综合训练是为了检验学生对前面所学知识的掌握程度和应用能力。

在这一部分,教辅提供了一些综合性的题目,让学生能够全面地运用所学知识解决问题。

例如,在“综合运算”一节中,教辅设计了一些需要进行多种运算的题目,要求学生在一定时间内解答出正确的答案。

这样的综合训练可以帮助学生提高解决问题的速度和准确性。

通过这本教辅的学习,四年级的学生可以更好地掌握数学基础知识,培养解决问题的能力和逻辑思维能力,将数学知识应用到实际生活中,提高解决实际问题的能力。

希望同学们认真学习,取得优异成绩!。

2022小学三年级下册数学专项应用题知识点天天练部编版

2022小学三年级下册数学专项应用题知识点天天练部编版

2022小学三年级下册数学专项应用题知识点天天练部编版班级:________ 姓名:________ 时间:________1. 甲、乙两袋大米共36千克,从甲袋取出3千克放入乙袋,此时乙袋的大米是甲袋的3倍。

甲、乙两袋原有大米各多少千克?2. 一辆货车从甲地开往乙地,每小时行40千米,一辆客车从乙地开往甲地,每小时行45千米,相遇时,客车比货车多行20千米,甲、乙两地相距多少千米.3. 一架飞机每小时飞行812千米,这架飞机的速度是一辆汽车速度的9倍,这辆汽车每小时大约行驶多少千米?4. 一艘轮船上午8:30开船,17:30到达目的地,共行驶了540千米。

平均每小时行驶多少千米?5. 一个可容纳1000人的音乐厅举办音乐会,每张入场券50元,现在已售出712张入场券,收入多少元?6. 一辆汽车从甲地到乙地,速度是85千米/时,共用了5小时,甲乙两地之间的距离是多少千米?7. 商店里有两种笔记本。

一种售价14元,另一种售价16元,如果每种都买24本,共需多少元?8. 有甲、乙两桶油,甲桶油56千克,比乙桶油少25千克。

两桶油一共多少千克?9. 高速公路上小汽车的速度是120千米/时,小红一家开车去外婆家,在高速路上行驶了3小时,下了高速还行驶了20千米。

小红家到外婆家有多远?10. 淘气和笑笑进行打字比赛,淘气4分打了416个字,笑笑3分打了336个字,谁打字快?11. 张叔叔家离公司780米,他每天上班要往返两次,他每天往返于家和公司之间一共要走多少米?12. 根据问题要求选择合适的条件,再解答。

(1)买18盏台灯和1个电饭煲一共多少钱?(2)1个电饭煲比20把水壶便宜多少钱?13. 丽丽要录入一份1120个字的稿件,她能在25分内录完这篇稿件吗?14. 一辆汽车从上午9:00到下午4:00共行驶560千米,平均每小时行驶多少千米?15. 一只笔袋售价19元,爸爸给3个孩子每人买了一只笔袋,爸爸总共花了多少钱?16. 用一根铁丝正好能围成一个边长8厘米的正方形,这根铁丝长多少厘米?(变式题)17. 用这些卡车4次运完这堆沙子,平均每辆卡车每次运多少吨?18. 一台全自动口罩生产机6分钟可生产720个医用口罩,这台口罩生产机每小时可生产口罩多少个?19. 某工程队给脱贫村铺一条水泥路,每天铺48米,铺了15天后,还剩74米。

2022小学四年级下学期数学专项计算题知识点天天练部编版

2022小学四年级下学期数学专项计算题知识点天天练部编版

2022小学四年级下学期数学专项计算题知识点天天练部编版班级:________ 姓名:________ 时间:________1. 当a=3,b=4,c=5时,求下面各式的值。

a+b+c b+(c-a)(b-a)c+a bc-ab2. 用小数计算。

7千米-3千米87米 3吨80千克+860千克 9角+8元7角5分3. 口算。

750÷15= 130×30= 630×0= 900÷60=240÷60= 50×300= 140×70= 125×80=416÷70≈ 643÷79≈ 98×202≈ 201×92≈4. 计算下面各题。

(1)950+560÷14×28 (2)(70+80)÷(68-18)(3)(216-25×8)+198 (4)940×[128-(154-31)](5)209+102÷(52-35)(6)83×[16÷(47-39)]5. 用计算器脱式计算。

193+456×267 25120÷(449-289) 41600÷128×246. 直接写得数。

120÷3=480÷80=700÷25=630÷70=4800÷800=450÷30=720÷30=1000÷50=1000÷125=723÷90≈ 540÷58≈ 160÷43≈7. 口算。

100×20= 30×800= 40×600= 210×30= 90×101=230×50= 70×120= 20×220= 350×30= 420×30=8. 脱式计算。

2022小学三年级下册数学专项应用题知识点天天练部编人教版

2022小学三年级下册数学专项应用题知识点天天练部编人教版

2022小学三年级下册数学专项应用题知识点天天练部编人教版班级:________ 姓名:________ 时间:________1. 王老师到体育用品商店买球。

其中篮球每个49元,足球每个50元,橄榄球每个20元。

(1)买11个足球需要多少钱?(2)买10个篮球和4个橄榄球共需多少钱?2. 小冬用20元钱买8千克西瓜,找回4元,每千克西瓜多少元?3. 有两根绳子,白绳的长度比红绳的4倍少2米,如果白绳长18米,问红绳长多少米?4. 体育老师买球,他算了一下,买5个足球和4个篮球要付267元,而买2个足球和4个篮球只要162元.足球和篮球每个各多少元?5. 林场栽了450棵松树苗,栽了270棵柏树苗.将这些树苗栽成40行,平均每行栽多少棵?6. 小明有练习本15本,小红有练习本25本,问小红给小明几本练习本之后,小明的练习本是小红练习本的3倍?7. “十一”黄金周,陈叔叔准备自驾去北京游玩。

他所在地距北京约有1200千米,10月1日早上8:00出发,以每小时100千米的速度行驶,中途休息半个小时。

陈叔叔什么时候到达北京?8. 一箱蜜蜂一个月大约产6千克蜂蜜,蛋糕房现需要126千克蜂蜜,大约需要多少箱蜜蜂?9. 100名学生去离学校33公里的地方,只有一辆载25人的车,车每小时行驶55公里,学生步行速度5km/h,求最快要多久到目的地?10. 果园里有桃树和梨树共280棵,梨树的棵数是桃树的3倍。

果园里桃树和梨树分别有多少棵?11. 姐姐和妹妹各买了一些作业本。

如果姐姐给妹妹8本,两人的作业本数就同样多;如果妹妹给姐姐2本,姐姐的作业本数就是妹妹的5倍。

姐姐和妹妹原来各买了多少本作业本?12. 王师傅5天做了75个玩具,李师傅7天做了98个玩具,谁做的快一点?13. 买3个足球和5个篮球共用281元,买3个足球和7个篮球共用355元。

现在要买3个足球和6个篮球,一共要用多少元?14. 从学校到新华书店的路程是600米,小明每分钟步行82米,8分钟能从学校走到新华书店吗?15. 王伯伯的工作是给一个足球场修剪草坪,假如他每小时修剪的草坪长度是40米,宽度是6米,那么王伯伯8小时内能修剪多大面积的草坪?16. 李叔叔买2件一样的西服花了680元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2模块 第5节[知能演练]一、选择题1.当0<a <1时,函数①y =a |x |与函数②y =log a |x |在区间(-∞,0)上的单调性为( ) A .都是增函数 B .都是减函数C .①是增函数,②是减函数D .①是减函数,②是增函数解析:①②均为偶函数,且0<a <1,x >0时,y =a |x |为减函数,y =log a |x |为减函数,当x <0时,①②均是增函数.答案:A2.函数f (x )=a x +log a x 在区间[1,2]上的最大值与最小值之和为-14,最大值与最小值之积为-38,则a 等于( )A .2B.12 C .2或12D.23解析:a x 与log a x 具有相同的单调性,最大值与最小值在区间的端点处取得,f (1)+f (2)=-14,f (1)·f (2)=-38,解得a =12,选B.答案:B3.已知函数f (x )=lg(x +1),用h (t )替换x ,那么不改变函数f (x )的值域的替换是( ) A .h (t )=t 2 B .h (t )=2t -2 C .h (t )=sin tD .h (t )=1t解析:原函数f (x )=lg(x +1)的值域是R ,用h (t )替换x 后,要使f (x )的值域不变,应使h (t )+1能够取遍所有正数,只有h (t )=2t -2符合题意,故选B.答案:B4.设a >1,若对于任意的x ∈[a,2a ],都有y ∈[a ,a 2]满足方程log a x +log a y =3,这时a 的取值的集合为( )A .{a |1<a ≤2}B .{a |a ≥2}C .{a |2≤a ≤3}D .{2,3}解析:由log a x +log a y =3,得log a (xy )=3,即y =a 3x ,∵a >1且x >0,∴y =a 3x在x ∈[a,2a ]上单调递减,∴y max =f (a )=a 3a =a 2,y min =f (2a )=a 32a =a 22,由题意,得⎩⎪⎨⎪⎧a 22≥a ,a >1得a ≥2.故选B.答案:B 二、填空题5.函数y =log 3(x 2-2x )的单调减区间是________. 解析:令u =x 2-2x ,则y =log 3u .∵y =log 3u 是增函数,u =x 2-2x >0的减区间是 (-∞,0),∴y =log 3(x 2-2x )的减区间是(-∞,0). 答案:(-∞,0)6.已知f (3x )=4x log 23+233,则f (2)+f (4)+f (8)+…+f (28)的值等于________. 解析:令3x =t ,∴x =log 3t , ∴f (t )=4log 23·log 3t +233, 即f (t )=4log 2t +233, ∴f (2)+f (4)+f (8)+…+f (28)=4(log 22+log 24+log 28+…+log 228)+8×233 =4·log 22·22·23…28+8×233 =4·log 2236+1864. =4×36+1864=2008. 答案:2008 三、解答题7.对于正实数a ,函数y =x +a x 在(34,+∞)上为增函数,求函数f (x )=log a (3x 2-4x )的单调递减区间.解:∵y =x +a x 在(34,+∞)上为增函数,∴34<x 1<x 2时y 1<y 2, 即x 1+a x 1-x 2-a x 2=(x 1-x 2)(x 1x 2-a )x 1x 2<0⇒x 1x 2-a >0⇒a <x 1x 2,∴a ≤916恒成立,f (x )=log a (3x 2-4x )的定义域为(-∞,0)∪(43,+∞),而0<a ≤916<1,∴f (x )与g (x )=3x 2-4x 在(-∞,0),(43,+∞)上的单调性相反,∴f (x )的单调递减区间为(43,+∞).8.已知函数f (x )=log 4(4x +1)+kx (k ∈R )是偶函数. (1)求k 的值;(2)设g (x )=log 4(a ·2x -43a ),若函数f (x )与g (x )的图象有且只有一个公共点,求实数a 的取值范围.解:(1)由函数f (x )是偶函数可知:f (x )=f (-x ), ∴log 4(4x +1)+kx =log 4(4-x +1)-kx ,log 44x +14-x +1=-2kx ,即x =-2kx 对一切x ∈R 恒成立, ∴k =-12.(2)函数f (x )与g (x )的图象有且只有一个公共点,即方程log 4(4x +1)-12x =log 4(a ·2x -43a )有且只有一个实根,化简得:方程2x +12x =a ·2x -43a 有且只有一个实根,令t =2x >0,则方程(a -1)t 2-43at -1=0有且只有一个正根,①a =1⇒t =-34,不合题意;②Δ=0⇒a =34或-3,若a =34⇒t =-2,不合题意;若a =-3⇒t =12;③一个正根与一个负根,即-1a -1<0⇒a >1. 综上:实数a 的取值范围是{-3}∪(1,+∞).[高考·模拟·预测]1.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点(a ,a ),则f (x )=( )A .log 2x B.12x C .log 12xD .x 2解析:由题意f (x )=log a x ,∴a =log a a 12=12,∴f (x )=log 12x .故选C.答案:C2.若不等式x 2-x ≤0的解集为M ,函数f (x )=ln(1-|x |)的定义域为N ,则M ∩N 为( )A .[0,1)B .(0,1)C .[0,1]D .(-1,0]解析:由题意得M =[0,1],N =(-1,1),则M ∩N =[0,1).故选A. 答案:A3.设a =log 3π,b =log 23,c =log 32,则( )A .a >b >cB .a >c >bC .b >a >cD .b >c >a解析:a =log 3π>1,b =log 23=12log 23∈(12,1),c =log 32=12log 32∈(0,12),故有a >b >c .答案:A4.若log 2a <0,(12)b >1,则( )A .a >1,b >0B .a >1,b <0C .0<a <1,b >0D .0<a <1,b <0解析:由log 2a <0⇒0<a <1,由(12)b >1⇒b <0,故选D.答案:D5.已知:f (x )=lg(a x -b x )(a >1>b >0). (1)求f (x )的定义域;(2)判断f (x )在其定义域内的单调性;(3)若f (x )在(1,+∞)内恒为正,试比较a -b 与1的大小. 解:(1)由a x -b x >0, ∴(a b )x >1.∵ab >1,∴x >0, ∴f (x )的定义域为(0,+∞). (2)设x 2>x 1>0,∵a >1>b >0, ∴a x 2>a x 1,b x 1>b x 2,-b x 2>-b x 1, ∴a x 2-b x 2>a x 1-b x 1>0,∴ax 2-bx 2ax 1-bx 1>1,∴f (x 2)-f (x 1)>0,∴f (x )在(0,+∞)内是增函数.(3)当x ∈(1,+∞)时,f (x )>f (1),要使f (x )>0,须f (1)≥0,∴a -b ≥1.[备选精题]6.已知f (x )=log a x ,g (x )=2log a (2x +t -2)(a >0,a ≠1,t ∈R ). (1)当t =4,x ∈[1,2],且F (x )=g (x )-f (x )有最小值2时,求a 的值; (2)当0<a <1,x ∈[1,2]时,有f (x )≥g (x )恒成立,求实数t 的取值范围. 解:(1)当t =4时,F (x )=g (x )-f (x )=log a (2x +2)2x ,x ∈[1,2],令h (x )=(2x +2)2x =4(x +1x+2),x ∈[1,2],设u =x +1x ,x ∈[1,2]作出u (x )的图象可知u (x )=x +1x 在[1,2]上为单调增函数.∴h (x )在[1,2]上是单调增函数, ∴h (x )min =16,h (x )max =18. 当0<a <1时,有F (x )min =log a 18, 令log a 18=2,求得a =32>1(舍去); 当a >1时,有F (x )min =log a 16, 令log a 16=2,求得a =4>1.∴a =4.(2)当0<a <1,x ∈[1,2]时,有f (x )≥g (x )恒成立, 即当0<a <1,x ∈[1,2]时, log a x ≥2log a (2x +t -2)恒成立, 由log a x ≥2log a (2x +t -2)可得 log a x ≥log a (2x +t -2),∴x ≤2x +t -2,∴t ≥-2x +x +2. 设u (x )=-2x +x +2=-2(x )2+x +2 =-2(x -14)2+178,∵x ∈[1,2],∴x ∈[1,2].∴u (x )max =u (1)=1. ∴实数t 的取值范围为t ≥1.。

相关文档
最新文档