差额内部收益率法经典例题
净现值和内部收益率计算举例
净现值(NPV)是知道收益率而内部收益率(IRR)是不知道收益率正要求的最低报酬率,
1.净现值(NPV),如有个项目A第一年年初投资100万元,从第一年年末连续3年有40万元的回报,而项目B第一年年初投资100万元,第一年年末有30万元,第二年年末有40万元,第三年有50万元,项目A 和项目B哪个投资有价值?年利率为5%(这个就是收益率给出的)。
分析:如果光从金额来看都是投资100万元,回报都是120万元,但是由于货币的时间价值,两者是不同的。
这就要看哪个净现值(NPV)大?
NPV(项目A)=-100+ A*(P/A,i,n)=-100+40*(P/A,5%,3)=-100+40*2.723=8.9(万元)
NPV(项目B)=-100+30/(1+5%)+40/(1+5%)^2+50/(1+5%)^3=-100+28.57+36.28+43 .19=8.0(万元)
因为NPV(项目A)>NPV(项目B),所以项目A优于项目B.
2.内部收益率(IRR)就是假定项目A在最低期望收益率,这个收益率是不赔不赚的底线。
IRR(A)= -100+ A*(P/A,i,n)=0,
=-100+40 *(P/A,i,3)=0
即40*(P/A,i,3)=100
(P/A,i,3)=2.5 ,查表得8% =2.577 10%=2.486 ,说明在8%和10%,之间,用插值法求
8% 2.577
i 2.5
10% 2.486
(8%-i)/(8%-10%)=(2.577-2.5)/(2.577-2.486)
i =9.69%
所以IRR=9.69%.。
工程经济学例题与练习
第二章 资金的时间价值一、例题【例2.2】有一笔50000元的借款,借期3年,年利率为8%,试分别计算计息方式为单利和复利时,其应归还的本利和。
【解】用单利法计算:F =P (1+i·n )=50,000×(1+8%×3)=62,000(元)用复利法计算:Fn=P (1+i )n=50,000×(1+8%)3=62,985。
60(元)【例题2-3】现设年名义利率r =15%,则计息周期为年、半年、季、月、日、无限小时的年实际利率为多少?解:年名义利率r =15%时,不同计息周期的年实际利率如下表 年名义利率(r ) 计息周期年计息次数(m) 计息周期利率(i =r/m ) 年实际利率(ieff ) 15%年 1 15% 15。
00% 半年 2 7.5% 15。
56% 季4 3。
75% 15.87% 月 12 1.25% 16。
08% 周 52 0。
29% 16。
16% 日 365 0.04% 16.18% 无限小∞无限小16。
183%二、练习(1)若年利率i=6%,第一年初存入银行100元,且10年中每年末均存入100元,试计算: 1.到第十年末时的本利和? 2.其现值是多少? 3.其年金是多少?解:首先画出现金流量图如图1所示,图1可转化为图2 1. 2、 3、(2)已知年利率i=12%,某企业向金融机构贷款100万元. (1)若五年后一次还清本息共应偿还本息多少元?(2)若五年内每年末偿还当年利息,第五年末还清本息,五年内共还本息多少元?F年 100-1 0 110 11年10010图1图2(3)若五年内每年末偿还等额的本金和当年利息,五年内共还本息多少元?(等额本金还款) (4)若五年内每年末以相等的金额偿还这笔借款,五年内共还本息多少元?(等额本息还款)(5)这四种方式是等值的吗?解:(1)(2)(3)(4)(5)以上四种方式是等值的。
三.某人存款1000元,8年后共得本息2000元,这笔存款的利率是多少?若欲使本息和翻两番,这笔钱应存多少年?解:由得同理,由得四、复利计算:(1)年利率r=12%,按季计息,1000元现款存10年的本息和是多少?(2)年利率r=12%,按月计息,每季末存款300元,连续存10年,本利和是多少?(3)年利率r=9%,每半年计息一次,若每半年存款600元,连续存10年,本利和是多少?解:(1)由(2)由(3)由五、证明:(1)(P/A,i,n)=(P/A,i,n-1)+(P/F,i,n)证明:右式=通分后有:(2)P(A/P,i,n)—L(A/F,i,n) = (P—L)(A/P,i,n)+LiP为原值,L为残值的固定资产的折旧(年金)的计算证明:左式=上式中加一个Li,减一个Li,有=右式六.假设你从9年前开始,每月月初存入银行50元,年利率为6%,按月复利计息,你连续存入71次后停止,但把本息仍存在银行.你计划从现在起一年后,租一套房子,每月月末付100元租金,为期10年.试问:你的存款够支付未来10年房租吗? 解:=60.54(元)〈100元故这笔存款不够支付10年房租。
财务内部收益率计算例题解析
财务内部收益率计算例题解析财务内部收益率(IRR)是一个用于衡量投资项目盈利能力的重要财务指标。
它表示一个投资项目的预期收益率,即投资项目的净现值为零时所需的贴现率。
在这篇文章中,我将为你详细解析财务内部收益率的计算方法,并通过一个例题来帮助你更好地理解这个概念。
1. 财务内部收益率的定义财务内部收益率是指一个投资项目在其全部生命周期内所能产生的内部报酬率。
它是使项目的净现值等于零的折现率。
一般来说,如果一个投资项目的内部收益率高于贴现率,则该项目是值得投资的。
2. 财务内部收益率的计算方法财务内部收益率的计算方法是通过求解使项目净现值为零的折现率来得到的。
具体来说,可以使用以下的计算公式来计算财务内部收益率:\[0=\sum \frac{CF_t}{(1+IRR)^t}\]在公式中,CF表示每年的现金流量,t表示投资项目的年限。
通过使用这个公式,可以得到投资项目的内部收益率。
3. 例题解析假设有一个投资项目,初始投资为1000元,连续3年的现金流入分别为300元、400元和500元。
我们来计算这个投资项目的内部收益率。
我们可以使用上述的计算公式来计算这个投资项目的内部收益率。
按照年度现金流量,我们可以得到以下的等式:\[0=\frac{300}{(1+IRR)^1}+\frac{400}{(1+IRR)^2}+\frac{500}{(1+ IRR)^3}\]通过求解上面的等式,我们可以得到这个投资项目的内部收益率。
计算的过程较为复杂,所以这里我不再赘述,但通过代入不同的IRR 值计算,最终可以得到这个投资项目的内部收益率为约22%。
4. 总结与回顾财务内部收益率是一个重要的财务指标,它能够帮助投资者衡量投资项目的盈利能力。
通过例题的解析,我们可以清晰地看到如何计算一个投资项目的内部收益率,并且了解了内部收益率的计算方法。
5. 个人观点和理解我个人认为,财务内部收益率是一个非常重要的指标,可以帮助投资者更好地衡量一个投资项目的盈利能力。
工程经济学---求净现值,终值,试算法求内部收益率、差额内部收益率
财务内部收益率的计算 案例
财务内部收益率的计算案例项目的内部收益率是衡量项目财务效益的重要指标,它在项目财务现金流量表的基础上计算得出,由于计算量大,往往是多种经营项目的可行性研究报告和实施计划编写中令人头痛的工作。
用EXCEL编写的项目财务现金流量表和内部收益率计算表很容易地解决了这个问题,不需要计算器和草表,自动计算出累计净现值和内部收益率。
下面分步介绍:1.再一张空白的EXECL工作表中建立如图所示的表格,通常我们取经济效益计算分析期为12年。
2.在财务现金流量表中输入公式:在《项目财务净现金流量表》中,在单元格B6中输入公式“=SUM(B7:B9)”,在B10中输入公式“=SUM(B11:B15)”,在B16中输入“=B6-B10”。
选中单元格B6,将鼠标光标移至其右下角的填充控制点,当鼠标变为实心的十字形时,按住鼠标左键,拖动至M6单元格,B6~M6单元各种就有了相应的公式。
用同样的方法对B10和B16进行操作。
在B17中输入公式“=SUM($B$16)”,在C17中输入公式“=SUM($B$16:C16)”,选中单元格C17,将鼠标光标移至其右下角的填充控制点,当鼠标变为实心的十字形时,按住鼠标左键,拖动至M17单元格,D17~M17单元格中就有了相应的公式,分别是:SUM($B$16:D16)、SUM($B$16:E16)、……、SUM($B$16:M16)。
这样,在表中填入相应的现金流出流入,就可以计算出项目的净现金流量。
3.在内部收益率计算表中输入公式:在单元格B22中输入公式“=B16”,用第2步中的方法使C22~M22中的公式分别是:=C16、=D16、……、=M16。
在单元格B23~M23中分别输入公式“=(1+0.12)^-1”、“=(1+0.12)^-2”、……、“=(1+0.12)^-12)”。
在单元格B26~M26中分别输入公式“=(1+B29)^-1”、“=(1+B29)^-2”、……、“=(1+B29)^-12)”。
修正内部收益率计算例题及解析
修正内部收益率计算的例题及解析1. 例题假设某公司投资100万元用于购买设备,并预计该设备在未来5年内每年可带来收益30万元,设备的残值为20万元。
现假设贴现率为10,求该投资项目的修正内部收益率。
2. 解析(1)确定现金流量根据题目可知,该投资项目的现金流量分为两部分:一是购买设备的投资支出,即-100万元;二是未来5年内每年带来的收益,分别为30万元、30万元、30万元、30万元、30万元,加上设备的残值20万元,共计170万元。
(2)计算修正内部收益率修正内部收益率的计算公式为:IRR = r + [(NPV at r) / (NPV at r +ΔNPV at r)]其中,r为预设的贴现率,NPV为净现值,ΔNPV为净现值的变化量。
我们以10作为预设的贴现率,计算出该贴现率下的净现值为:NPV at 10 = -100 + 30 / (1+10) + 30 / (1+10)^2 + 30 /(1+10)^3 + 30 / (1+10)^4 + (20 / (1+10)^5 = 8.81万元分别尝试11、12、13等不同的贴现率,计算出在不同贴现率下的净现值,得到净现值的变化量为:ΔNPV at 10 = 8.81万元 - 0 = 8.81万元ΔNPV at 11 = 4.32万元ΔNPV at 12 = 0.71万元ΔNPV at 13 = -1.68万元代入公式,计算修正内部收益率:IRR = 10 + [8.81 / (8.81 + 4.32)] ≈ 10.673. 结论根据计算结果,该投资项目的修正内部收益率为10.67。
这意味着在本例中,该投资项目的收益率高于10,因此可以认为是一个可行的投资项目。
通过以上例题及解析,我们可以看到修正内部收益率在投资决策中的重要性。
在实际应用中,我们需要灵活运用修正内部收益率来评估不同投资项目的收益情况,从而为企业的投资决策提供科学依据。
修正内部收益率(MIRR)是一种用于评估投资项目潜在收益的财务指标,它在某些情况下比传统的内部收益率更有用。
建设项目多方案的经济评价—互斥型方案的比较与选择
a
或最高的资本成本,即方案的净现金流量所具有 的机会成本就是该方案本身所产生的内部收益率,
用 式 子 表 示 就 是 当 选 定 的 iC=IRR 时 , 方 案 的
NPV=0
互斥方案的比选,实质上是分析投资大的方案
所增加的投资能否用其增量收益来补偿,也即
b
对增量的现金流量的经济合理性做出判断。因 此,可以通过计算增量净现金流量的内部收益
方案
年份
A B C
建设期
1
2
-2024
-2800
-2800
-3000
-1500
-2000
生产期
3
4~15
16
500
1100
2100
570
1310
2300
300
700
1300
【解】各方案的净现值计算结果如下: NPVA=2309.97(万元) NPVB=2610.4(万元) NPVC=1075.37(万元)
A2 -10000
A3 -8000
2500
1900
解: 第一步:先把方案按照初始投资的递升顺序排 列如下:
年末t
方
案
A0
A1
A3
A2
0
0
-5000
-8000
-10000
1-10
0
1400
1900
2500
第二步:选择初始投资最少的方案作为临时的最优 方案,这里选定基准方案作为这个方案。
第三步:选择初始投资较高的方案A1,作为竞赛方 案。计算这两个方案的现金流量之差,并按基准贴 现率计算现金流量增额的净现值,则: NPV(15%)A1A0 5000 140(0 5.0188) 2026.3( 2 元)
净现值和内部收益率计算举例
净现值(NPV)是知道收益率而内部收益率(IRR)是不知道收益率正要求的最低报酬率,1.净现值(NPV),如有个项目A第一年年初投资100万元,从第一年年末连续3年有40万元的回报,而项目B第一年年初投资100万元,第一年年末有30万元,第二年年末有40万元,第三年有50万元,项目A 和项目B哪个投资有价值?年利率为5%(这个就是收益率给出的)。
分析:如果光从金额来看都是投资100万元,回报都是120万元,但是由于货币的时间价值,两者是不同的。
这就要看哪个净现值(NPV)大?NPV(项目A)=-100+ A*(P/A,i,n)=-100+40*(P/A,5%,3)=-100+40*2.723=8.9(万元)NPV(项目B)=-100+30/(1+5%)+40/(1+5%)^2+50/(1+5%)^3=-100+28.57+36.28+43 .19=8.0(万元)因为NPV(项目A)>NPV(项目B),所以项目A优于项目B.2.内部收益率(IRR)就是假定项目A在最低期望收益率,这个收益率是不赔不赚的底线。
IRR(A)= -100+ A*(P/A,i,n)=0,=-100+40 *(P/A,i,3)=0即40*(P/A,i,3)=100(P/A,i,3)=2.5 ,查表得8% =2.577 10%=2.486 ,说明在8%和10%,之间,用插值法求8% 2.577i 2.510% 2.486(8%-i)/(8%-10%)=(2.577-2.5)/(2.577-2.486)i =9.69%所以IRR=9.69%.文- 汉语汉字编辑词条文,wen,从玄从爻。
天地万物的信息产生出来的现象、纹路、轨迹,描绘出了阴阳二气在事物中的运行轨迹和原理。
故文即为符。
上古之时,符文一体。
古者伏羲氏之王天下也,始画八卦,造书契,以代结绳(爻)之政,由是文籍生焉。
--《尚书序》依类象形,故谓之文。
其后形声相益,即谓之字。
东北财经大学出版社工程经济学第五章 习题参考答案
第五章 习题参考答案1、解NPV A = -450+80(P/A,10%,5)= -450+180×3.791=232.38NPV B = -200-220(P/F,10%,1)+220(P/A,10%,4) (P/F,10%,1)= -200-220×0.9091+220×0.9091×3.170= -200-200.002+634.006=234.004NPV C = -150+70(P/A,10%,5)= -150+70×3.791=115.37方案B 的净现值最大,所以B 方案为优.3、利用差额内部收益率法。
选取一个全不投资方案作为比选基准。
求各方案间差额内部收益率。
令△NPV=0时,求△IRR 。
1方案与基准方案之间比较△NPV 1-0=-50+15(P/A ,i ,5)+10(P/F ,i ,5)=0i=15%时,△NPV 1-0=-50+15×3.3522+10×0.4972=5.255i=16%时,△NPV 1-0=-50+15×3.2743+10×0.4761=3.8755i=18%时,△NPV 1-0=-50+15×3.1272+10×0.4371=1.279i=20%时,△NPV 1-0=-50+15×2.9906+10×0.4019=-1.122△IRR 1-0=1211()12npv i i i npv npv +-+= 1.27918%(20%18%)1.279 1.122+-+-=19.01%>15%所以1方案为优.2方案与1方案之间比较△NPV 2-1=-10+3(P/A ,i ,5)+2(P/F ,i ,5)=0i=15%时,△NPV 2-1=-10+3×3.3522+2×0.4972=1.051△IRR 2-1>15%,所以2方案为优.3方案与2方案之间比较△NPV 3-2=-10+2(P/A ,i ,5)+3(P/F ,i ,5)=0i=15%时,△NPV 3-2=-10+2×3.3522+3×0.4972=-1.858△IRR 3-2<15%,所以2方案为优.4方案与2方案之间比较△NPV 4-2=-20+7(P/A ,i ,5)+6(P/F ,i ,5)=0i=15%时,△NPV 4-2=-20+7×3.3522+6×0.4972>0△IRR 4-2>15%,所以4方案为优.5方案与4方案之间比较△NPV 5-4=-20+3(P/A ,i ,5)+2(P/F ,i ,5)=0i=15%时,△NPV 5-4=-20+3×3.3522+2×0.4972<0△IRR 5-4<15%,所以4方案为优.所以,4方案将被选中。
净现值和内部收益率例题
净现值和内部收益率例题净现值和内部收益率是重要的投资计算工具,可用于衡量投资决策的期望值。
净现值(NPV)是一种重要的现金流分析技术,用于确定项目是否应被接受。
此外,内部收益率(IRR)是投资者评估投资项目成功与否的重要技术,可以衡量项目的期望收益。
一.什么是净现值(NPV)净现值(NPV)指的是一项投资或财务交易在一个定义的历史折现率下所产生的今日价值。
净现值有时也被称为“净现金流”(net cash flow)。
它可以用来评估财务投资的价值,以确定投资的效果如何表现,以及公司何时开始盈利。
净现值的公式是:净现值=现金流折现值-投资成本其中,现金流折现值(PV)是指将未来的现金流折现至今日价值的投资财务价值;投资成本则是投资现金价值,以实现目标而必须支付的价格。
二.什么是内部收益率(IRR)内部收益率(IRR)是一种用于评估投资项目的重要技术,它可以衡量整个投资周期内投资者可期望获得的年化投资回报率。
换言之,IRR 是投资者可以获得的最大净现值,反映着投资者可以获得的最佳年化投资回报率。
内部收益率的表示形式如下:IRR =( PVF1-COST1)/COST1其中,PVF1指的是第一财政年度末的现金流价值,COST1则是在第一财务年度末及时付出的资本投资成本。
三.净现值和内部收益率例题以下是一个实际的净现值和内部收益率例题:某公司正在考虑一项新的投资项目,其开发成本为10万美元,该项目将在未来5年内每年产生固定的现金流量,如下表所示:开发成本 $100,000预期现金流量(每年)1年 $30,0002年 $32,0003年 $35,0004年 $38,0005年 $41,000首先,计算该项目的净现值。
此外,假设该公司折现率为10%,则其净现值等于:净现值=现金流折现值-投资成本=(30,000/(1+10%)+32,000/(1+10%)2+35,000/(1+10%)3+38,000/(1+10%)4+41,000/(1+10%)5)-100,000= $17,402因此,在折现率为10%的情况下,该投资项目的净现值为17,402美元。
使用npv和irr的案例
使用npv和irr的案例案例一:购买房产投资小明打算购买一套房产作为投资,他看中了一套位于市中心的公寓,售价为100万元。
他预计每月可出租收入为5000元,同时考虑到每年的维修费用约为5000元。
假设房产的使用寿命为20年,小明希望在购买后的20年内获得回报。
为了评估这个投资是否值得,他使用了NPV和IRR两种方法。
小明使用NPV方法计算这个投资的净现值。
他预设折现率为10%。
接下来,小明使用IRR方法计算这个投资的内部收益率。
IRR是指使得净现值等于0的折现率。
小明通过迭代计算,找到使得净现值等于0的折现率,即为IRR。
如果IRR大于预设折现率,则表示投资是值得的。
根据小明的计算,假设市场上类似房产的投资回报率为8%。
他得出结论:这个投资的净现值为23.89万元,大于0,说明这个投资是值得的。
同时,IRR为12.6%,也高于预设折现率10%,进一步验证了投资的可行性。
案例二:购买股票投资小华打算购买某公司的股票作为投资,他研究了该公司的财务报表以及市场前景,并预测未来5年的股票价格。
他希望通过使用NPV 和IRR来评估这个投资的可行性。
小华使用NPV方法计算这个投资的净现值。
他预设折现率为12%。
他首先估计了未来5年的现金流量,包括股息收入和股票卖出所得。
然后,他将每年的现金流量除以折现率进行折现,得到每年的现值。
最后,将所有现值相加,得到投资的净现值。
如果净现值大于0,则表示投资是值得的。
接下来,小华使用IRR方法计算这个投资的内部收益率。
IRR是指使得净现值等于0的折现率。
小华通过迭代计算,找到使得净现值等于0的折现率,即为IRR。
如果IRR大于预设折现率,则表示投资是值得的。
根据小华的计算,假设股票价格的增长率为15%。
他得出结论:这个投资的净现值为30万元,大于0,说明这个投资是值得的。
同时,IRR为14%,也高于预设折现率12%,进一步验证了投资的可行性。
案例三:开设餐饮店投资小李计划开设一家餐饮店,他预计投入50万元作为初始投资,并希望在5年内获得回报。
财务内部收益率的计算 案例
财务内部收益率的计算案例项目的内部收益率是衡量项目财务效益的重要指标,它在项目财务现金流量表的基础上计算得出,由于计算量大,往往是多种经营项目的可行性研究报告和实施计划编写中令人头痛的工作。
用EXCEL编写的项目财务现金流量表和内部收益率计算表很容易地解决了这个问题,不需要计算器和草表,自动计算出累计净现值和内部收益率。
下面分步介绍:1.再一张空白的EXECL工作表中建立如图所示的表格,通常我们取经济效益计算分析期为12年。
A B C~L M1 项目财务现金流量表2 单位:万元3 投资额项目经济效益计算分析期(年)4 1 2~11 125 生产负荷(%)50 100 1006 一、现金流入5920 11840 124177 (一)产品销售收入5920 11840 118408 (二)回收固定资产余值779 (三)回收流动资金50010 二、现金流出7842 11451 1145111 (一)固定资产投资76912 (二)流动资金50013 (三)经营成本4763 9525 952514 (四)销售税金及附加1696 1697 169715 (五)所得税114 229 22916 三、全部投资净现金流量-1922 389 96617 六、累计增量净现金流量-1922 (2938)1819 内部收益率计算表20 投资额项目经济效益计算分析期(年)21 1 2~11 1222 净现金流-1921.817 (966)23 折现系数=0.12 0.893 …0.25724 净现值(万元)-1715.908 …247.94825 累计净现值(万元)-1715.908 …497.12626 折现系数0.848 …0.13727 净现值(万元)-1628.869 …132.7628 累计净现值(万元)-1628.869 029 内部收益率= 0.17984722.在财务现金流量表中输入公式:在《项目财务净现金流量表》中,在单元格B6中输入公式“=SUM(B7:B9”,在B10中输入公式“=SUM(B11:B15”,在B16中输入“=B6-B10”。
差额投资内部收益率法-详解
差额投资内部收益率法-详解差额投资内部收益率法(Method of internal revenue rate under differential investment)目录• 1 什么是差额投资内部收益率法• 2 差额投资内部收益率法举例说明• 3 参考文献什么是差额投资内部收益率法差额投资内部收益率法又称“差额投资内含报酬率法”,是指在计算出两个原始投资额不相等的投资项目的差量现金净流量的基础上,计算出差额内部报酬率,并据以判断这两个投资项目孰优孰劣的方法[1]。
采用此法时,当差额内含报酬率指标大于或等于基准收益率或设定贴现率时,原始投资额大的项目较优;反之,则投资少的项目为优。
差额内含报酬率与内含报酬率的计算过程一样,只是所依据的是差量现金净流量[1]。
该方法适用于原始投资不相同但项目计算期相同的多个互斥方案的比较决策,不能用于项目计算期不同的方案的比较决策。
差额投资内部收益率定义为两个投资额不相等方案各年净现金流量差额的现值之和等于零时的折现率。
其表达式为:式中:(CI−CO)2——投资大的方案的年净现金流量;(CI−CO)1——投资小的方案的年净现金流量;——差额投资财务内部收益率;n——计算期。
两方案比较时,不是计算两方案的IRR指标及进行比较,而是按上述公式计算差额投资内部收益率(),并与基准收益率或设定的收益率i e进行对比。
当。
时,以投资大的方案为优;时,投资少的方案为优。
之所以这样做,原因在于比较内部收益率指标的结果有时可能会与净现值发生矛盾,而差额投资内部收益率则与净现值相一致。
例如,有A、B两个方案,方案A投资大于方案B投资,其净现值曲线如图所示。
设A、B两方案的净现值曲线与横轴i的交点坐标为IRR A和IRR B,显然IRR A和IRR B分别为A、B两方案的内部收益率,且有IRR A < IRR B。
两曲线的交点C所对应的横坐标即差额投资内部收益率()。
如果只按内部收益率的大小来选择方案,由于IRR A < IRR B,显然应选择B方案。
工程经济学第5章习题参考解答
5-9 有三个独立方案A、B、C(不相关),各方案的 投资、年净收益如下表所示,寿命期均为10年,经 计算可知,各方案的均大于基准收益率15%。已知 总投资限额是30000元,这三个方案不能都选上, 问应当怎样选择方案组合?
方案 A B C 投资(元) 12000 10000 17000 年净收益(元) 4300 4200 5800
解:A、B两方案的年收入分别为: A方案:200*500=10(万元) B方案:200*400=8(万元) (1) NAVA=-15(A/P,10%,10)+(106)=1.5588(万元) NAVB=-10(A/P,10%,10)+(85)=1.3725(万元) 因此,方案A较优。
(2)计算两方案的差额内部收益率。 令差额净年值等于零,即: NAVA-B=NAVA-NAVB =-15(A/P,I,10)+4-[-10(A/P,I,10)+3]=0 当i=15%时, NAVA-B=-5*0.19925+1=0.00375 当i=20%时. NAVA-B=-5*0.23852+1=-0.1926 利用线性插值公式,得差额内部收益率:
5-14 某经营商品批发的公司,已有多家分店,现准备增加A、 B、C三个分店的店员人数,估计增加店员后营业利润会增 加,但各店效率不同。三分店的雇用计划是相容的,当每 个分店的增员方案却是互斥的,具体数据见表。问当计划增 员总额分别为3人、4人、5人、6人和7人时,具体应向A、 B、C三个分店增加多少店员?
(1)差额投资回收期法:由于投资大的方案年净收 益大,因此两方案的差额投资回收期为多增加的 年净收益回收追加投资所需的时间: Pa(B-A)=(3000-2000)/(700-500)=5(年)<PC=6(年) B方案追加投资的经济效益是好的,因此投资大 的B方案较优。 (2)静态投资回收期法: A方案 Pta=2000/500=4(年) B方案 Ptb=3000/700=4.3(年) 由于两方案的寿命期均为4年,所以A方案可行, 而B方案不可行(无法在寿命期内回收投资)。
管理会计长期投资决策两道较复杂例题的解答
例9某企业打算变卖一套尚可使用5年的旧设备,另购置一套新设备来替换它。
取得新设备的投资额为180 000元;旧设备的折余价值为95 000元,其变价净收入为80 000元;则第5年末新设备与继续使用旧设备的预计净残值相等1。
新旧设备的替换将在年内完成(即更新设备的建设期为零)。
使用新设备可使企业在第1年增加营业收入50 000元,增加经营成本25 000元;第2~5年内每年增加营业收入60 000元,增加经营成本30 000元。
设备采用直线法计提折旧。
适用的企业所得税税率为25%。
假设行业基准折现率分别为8%和12%,企业应如何进行决策?根据上述资料,计算该项目差量净现金流量和差额内部收益率,并分别据以作出更新决策如下:(1) 依题意计算以下指标:更新设备比继续使用旧设备增加的投资额= 新设备的投资-旧设备的变价净收入= 180 000-80 000 = 100 000(元)运营期第1~5每年因更新改造而增加的折旧= = 20 000(元)运营期第1年总成本费用的变动额= 该年增加的经营成本+该年增加的折旧= 25 000+20 000 = 45 000(元) 运营期第2~5年每年总成本费用的变动额= 30 000+20 000 = 50 000(元)因旧设备提前报废发生的处理固定资产净损失为旧固定资产折余价值-变价净收入= 95 000-80 000 = 15 000(元)因旧固定资产提前报废发生净损失而抵减的所得税额= 旧固定资产清理净损失×适用的企业所得税税率= 15 000×25% = 3 750(元)运营期第1年息税前利润的变动额= 50 000-45 000 = 5 000(元)运营期第2~5年每年息税前利润的变动额= 60 000-50 000 = 10 000(元)建设期差量净现金流量为:= -(该年发生的新固定资产投资-旧固定资产变价净收入)=-(180 000-80 000) = -100 000(元) 运营期差量所得税后净现金流量为:=该年因更新改造而增加的息税前利润×(1+所得税税率)+该年因更新改造而增加的折旧+因旧固定资产提前报废发生净损失而抵减的所得税额=5 000×(1-25%)+20 000+3 750=27 500(元) =该年因更新改造而增加的息税前利润×(1-所得税税率)+该年因更新改造而增加的折旧+该年回收新固定资产净残值超过假定继续使用的旧固定资产净残值之差额= 10 000×(1-25%)+20 000 = 27 500(元)(2) 根据ΔNCF计算ΔIRR:(P/A, ΔIRR, 5) = = 3.6364∵(P/A, 10%, 5) = 3.7908 > 3.6364(P/A, 12%, 5) = 3.6048 < 3.6364∴10% < ΔIRR < 12%,应用内插法:ΔIRR = 10%+≈11.66%(3) 比较决策当行业基准折现率为8%时:∵ΔIRR = 11.66% > = 8%∴应当更新设备当行业基准折现率为12%时:∵ΔIRR = 11.66% < = 12%∴不应当更新设备注意:在计算运营期第一年所得税后净现金流量的公式中,该年“因更新改造而增加的息税前利润”不应当包括“因旧固定资产提前报废发生的净损失”。
内部收益率模板及计算方法
内部收益率模板及计算方法内部收益率(Internal Rate of Return,简称IRR)是衡量一个投资项目的盈利能力的指标之一、它是指在特定时间段内,将投资项目的现金流量的净现值(NPV)等于零的折现率。
内部收益率可以表示投资项目的可行性和盈利能力,是投资决策中常用的评估指标之一计算内部收益率的方法主要有两种:试错法(试解法)和数值逼近法。
下面将介绍这两种方法的计算步骤和公式,并给出一个实例进行说明。
一、试错法(试解法)试错法是通过枚举法逐个尝试不同的折现率,使现金流量的净现值等于零,找到合适的内部收益率。
步骤:1.假设一个初始的折现率,通常为10%;2.先计算出现金流量的净现值(NPV);3.如果NPV大于零,则折现率过低,应尝试增加折现率;如果NPV小于零,则折现率过高,应尝试减小折现率;4.根据上一步的结果,再次计算NPV,重复步骤3直到NPV接近零。
公式:NPV = CF1/(1+IRR)^1 + CF2/(1+IRR)^2 + ... + CFn/(1+IRR)^n - Initial Investment其中,CF表示现金流量,IRR表示内部收益率,n表示现金流量的时间期数,Initial Investment表示初始投资。
二、数值逼近法数值逼近法是通过迭代计算,利用数值解方程求解器逼近内部收益率。
步骤:1.假设一个初始的折现率,通常为10%;2.使用数值解方程求解器,求解NPV等于零的折现率;3.根据求解结果,得到内部收益率。
公式:NPV = CF1/(1+IRR)^1 + CF2/(1+IRR)^2 + ... + CFn/(1+IRR)^n - Initial Investment三、实例1.试错法:假设初始折现率为10%,计算NPV:NPV小于零,折现率过高,尝试减小折现率。
假设折现率为5%,计算NPV:NPV大于零,折现率过低,尝试增加折现率。
经过多次尝试,当折现率约为7.18%时,NPV接近零,因此该投资项目的内部收益率约为7.18%。
财务内部收益率的计算案例
财务内部收益率的计算案例项目的内部收益率是衡量项目财务效益的重要指标,它在项目财务现金流量表的基础上计算得出,由于计算量大,往往是多种经营项目的可行性研究报告和实施计划编写中令人头痛的工作;用EXCEL编写的项目财务现金流量表和内部收益率计算表很容易地解决了这个问题,不需要计算器和草表,自动计算出累计净现值和内部收益率;下面分步介绍:1.再一张空白的EXECL工作表中建立如图所示的表格,通常我们取经济效益计算分析期为12年;2.在财务现金流量表中输入公式:在项目财务净现金流量表中,在单元格B6中输入公式“=SUMB7:B9”,在B10中输入公式“=SUMB11:B15”,在B16中输入“=B6-B10”;选中单元格B6,将鼠标光标移至其右下角的填充控制点,当鼠标变为实心的十字形时,按住鼠标左键,拖动至M6单元格,B6~M6单元各种就有了相应的公式;用同样的方法对B10和B16进行操作;在B17中输入公式“=SUM$B$16”,在C17中输入公式“=SUM$B$16:C16”,选中单元格C17,将鼠标光标移至其右下角的填充控制点,当鼠标变为实心的十字形时,按住鼠标左键,拖动至M17单元格,D17~M17单元格中就有了相应的公式,分别是:SUM$B$16:D16、SUM$B$16:E16、……、SUM$B$16:M16;这样,在表中填入相应的现金流出流入,就可以计算出项目的净现金流量;3.在内部收益率计算表中输入公式:在单元格B22中输入公式“=B16”,用第2步中的方法使C22~M22中的公式分别是:=C16、=D16、……、=M16;在单元格B23~M23中分别输入公式“=1+^-1”、“=1+^-2”、……、“=1+^-12”;在单元格B26~M26中分别输入公式“=1+B29^-1”、“=1+B29^-2”、……、“=1+B29^-12”;在单元格B24中输入“=B22B23”,B27中输入“=B22B26”, 用第2步中的方法使C24~M24中的公式分别是:=C22C23、=D22D23、……、=M22M23,使C27~M27中的公式分别是:=C22C26、=D22D26、……、=M22M26;在B25中输入公式“=SUM$B$24”,在C25中输入公式“=SUM$B$24:C24”,选中单元格C25,将鼠标光标移至其右下角的填充控制点,当鼠标变为实心的十字形时,按住鼠标左键,拖动至M25单元格,D17~M17单元格中就有了相应的公式,分别是:SUM$B$24:D24、SUM$B$24:E24、……、SUM$B$24:M24;在B28中输入公式“=SUM$B$27”,在C28中输入公式“=SUM$B$27:C27”,选中单元格C28,将鼠标光标移至其右下角的填充控制点,当鼠标变为实心的十字形时,按住鼠标左键,拖动至M28单元格,D28~M28单元格中就有了相应的公式,分别是:SUM$B$27:D27、SUM$B$27:E27、……、SUM$B$27:M27;4.计算内部收益率:用鼠标单击“工具”菜单,选择“单变量求解”,弹出单变量求解对话框,在目标单元格输入框中输入$M$28,在目标值输入框中输入0,在可变单元格输入框中输入$B$29,计算机计算出的内部收益率显示在B29单元格中; 注意:当现金流出和流入数字变动时,需要重复第4步操作,方可计算出新的内部收益率;。