切线及导数运算
高数切线方程的求法
高数切线方程的求法标题:高数切线方程的求法一、引言在微积分中,切线是一个基本的概念。
它是曲线在某一点处的局部近似,可以用来描述物理现象的变化趋势,也可以用于优化问题等。
本篇文章将详细介绍如何求解高数中的切线方程。
二、切线的基本概念给定一个函数y=f(x),在点(x0,y0)处的切线就是与曲线相切的一条直线。
这条直线经过点(x0,y0),并且其斜率等于函数在该点的导数f'(x0)。
三、切线方程的求法1. 求出函数在指定点的导数:对于任意可导函数y=f(x),在点x0处的导数可以通过求导法则得出,即f'(x0)。
2. 利用导数得到切线的斜率:切线的斜率就等于函数在指定点的导数,即k=f'(x0)。
3. 通过点斜式求得切线方程:已知切线的斜率和经过的定点(x0,y0),可以利用点斜式求得切线方程。
点斜式为y-y0=k(x-x0),其中k是切线的斜率,(x0,y0)是切线经过的点。
四、实例解析例如,我们要求函数y=x^2在点(1,1)处的切线方程。
首先,我们求出函数在x=1处的导数,因为y'=2x,所以f'(1)=2。
然后,我们得到切线的斜率为k=2。
最后,我们将斜率和切线经过的点代入点斜式,得到切线方程为y-1=2(x-1),化简后为y=2x-1。
五、结论求解高数中的切线方程,关键在于理解并掌握导数的概念和求导的方法,以及切线的基本性质。
通过实际的例子,我们可以更深入地理解和应用这些知识。
六、参考文献[1] 吴赣昌. 高等数学[M]. 北京: 高等教育出版社, 2004.[2] 斯坦利·艾林. 微积分及其应用[M]. 北京: 科学出版社, 2012.以上内容仅为初步指导,具体的理论学习和实践操作还需结合教材和教师的讲解进行。
曲线切线的导数求解法及其运用
科技信息
○ 教学研究○
SCIE NCE & TE CHNO LO GY INFORM ATION
2008 年 第 25 期
曲线切线的导数求解法及其运用
张 永宁 ( 三 明市 第九 中学 福 建 三明 36x0 ) 的几何意义, 是曲线 y=f(x ) 以 P(x0 , f(x 0 ) ) 为切点所作切线的 斜率. 相对于传统知识 而言, 由导数所 衍生出的 “曲线的切线问 题”, 在思路、方 法及过程上, 都使人耳目一新 , 彰显出
例 1.求与直线 l∶x- ! 3
y- 1=0 成 30°角且与曲线 C∶y= ! 3
3
x
相
切
的 切 线 方程 .
解: 由于直线 l∶x- ! 3 y- 1=0 的斜率为 ! 3 , 其倾斜角为 30°, 3
故所求切线的倾斜角为 60°或 0°, 即切线斜率分别为! 3 或 0,
所以可设切线为 y= ! 3 x+b 或 y=m( 其中 b、m∈R 为常数).
和有效的, 并 在教学大纲和 高考考纲 中, 有着 明确地要 求.然而 , 针对
以函数形式所 表示的一般曲线 的切线问题, “圆与圆锥曲线 的切线定
义”已不再适用, 其解题思路与方法当然也应另辟溪径.
对于 一 般曲 线 的 切 线 定义
为: 设曲 线 C 是函数 y=f( x) 的图
利用导数求切线方程
利用导数求切线方程1. 引言在微积分中,导数是一个重要的概念。
它描述了函数在给定点的变化率,可以用来解决许多实际问题。
其中一个应用就是求解切线方程。
切线是曲线上的一条直线,与曲线在给定点处相切。
求解切线方程可以帮助我们更好地理解曲线的性质和行为。
本文将介绍如何利用导数求解切线方程。
首先,我们将回顾导数的定义和性质。
然后,我们将详细介绍如何利用导数求解切线方程,并提供一些实例来帮助读者更好地理解。
2. 导数的定义和性质回顾在微积分中,导数描述了函数在给定点的变化率。
对于一个函数f(x),它在x处的导数可以通过以下极限定义得到:f′(x)=limℎ→0f(x+ℎ)−f(x)ℎ其中,f′(x)表示函数f(x)在x处的导数。
导数具有一些重要的性质,这些性质在求解切线方程时非常有用。
下面是一些常见的导数性质:•常数函数的导数为0:f′(x)=0•幂函数的导数:(x n)′=nx n−1•和差法则:(f(x)±g(x))′=f′(x)±g′(x)•乘法法则:(f(x)g(x))′=f′(x)g(x)+f(x)g′(x)•除法法则:(f(x)g(x))′=f′(x)g(x)−f(x)g′(x)g2(x)•复合函数的导数:(f(g(x)))′=f′(g(x))g′(x)这些性质将在后面的内容中被广泛应用。
3. 求解切线方程的步骤为了求解切线方程,我们需要知道曲线上的一个点以及该点处的斜率。
导数提供了一个方法来计算曲线在给定点处的斜率,因此我们可以利用导数来求解切线方程。
以下是求解切线方程的步骤:步骤 1:确定曲线上的一个点首先,我们需要确定曲线上的一个点。
这个点将成为切线方程的起点。
可以通过给定的问题或者观察曲线的图像来确定这个点。
步骤 2:计算导数在确定了起点之后,我们需要计算曲线在该点处的导数。
根据导数的定义和性质,我们可以得到导数的计算公式。
步骤 3:计算斜率利用导数求得的斜率可以用来确定切线的斜率。
利用导数求切线的方程
利用导数求切线的方程求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可.例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A .34y x =-B .32y x =-+C .43y x =-+D .45y x =-类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( )A .230x y -+=B .230x y --=C .210x y -+=D .210x y --=类型三:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例3 求过点(20),且与曲线1y x=相切的直线方程.例4 求过点(00),且与曲线ln y x =相切的直线方程.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.类型四:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例6 求过曲线321y x x x =--+上的点(1),0的切线方程.例7 求过曲线32y x x =-上的点(11)-,的切线方程.。
用导数求切线方程的四种类型知识讲解
用导数求切线方程的四种类型用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+=B.230x y --=C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--. 解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解. 例4 求过点(20),且与曲线1y x=相切的直线方程. 解:设00()P x y ,为切点,则切线的斜率为0201x x y x ='=-|. ∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得020011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=. 评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上. 设切点为00()M x y ,,则点M 的坐标满足30003y x x =-. 因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--. 化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。
导数专题:导数与曲线切线问题的6种常见考法(解析版)
导数专题:导数与曲线切线问题的6种常见考法一、求曲线“在”与“过”某点的切线1、求曲线“在”某点处的切线方程步骤第一步(求斜率):求出曲线在点()()00,x f x 处切线的斜率0()f x '第二步(写方程):用点斜式000()()()y f x f x x x '-=-第三步(变形式):将点斜式变成一般式。
2、求曲线“过”某点处的切线方程步骤(此类问题的点不一定是切点)第一步:设切点为()()00,Q x f x ;第二步:求出函数()y f x =在点0x 处的导数0()f x ';第三步:利用Q 在曲线上和0()PQ f x k '=,解出0x 及0()f x ';第四步:根据直线的点斜式方程,得切线方程为000()()()y f x f x x x '-=-.二、公切线问题研究曲线的公切线,一般是分别设出两切点,写出两切线方程,然后再使用这两个方程表示同一条直线,但要注意以下两个方面:(1)两个曲线有公切线,且切点是同一点;(2)两个曲线有公切线,但是切点不是同一点。
三、切线条数问题求曲线的切线条数一般是设出切点()(),t f t ,由已知条件整理出关于t 的方程,把切线问条数问题转化为关于t 的方程的实根个数问题。
四、已知切线求参数问题此类问题常见的考查形式有两种,一是判断符合条件的切线是否存在,二是根据切线满足条件求参数的值或范围。
常用的求解思路是把切线满足条件转化为关于斜率或切点的方程或函数,再根据方程的根的情况或函数性质去求解。
题型一“在”点求切线问题【例1】函数2()ln 2f x x x x =++在点()()1,1f 处的切线方程为()A.33y x =-B.3y x =C.31y x =+D.33y x =+【答案】B【解析】因为2()ln 2f x x x x =++,所以()1ln 2f x x x=++'()13f '∴=,又()13f =,∴曲线()y f x =在点()()1,1f 处的切线方程为33(1)y x -=-,即3y x =.故选:B.【变式1-1】已知函数()f x 满足()()3211f x x f x =-'⋅+.(1)求()1f '的值;(2)求()f x 的图象在2x =处的切线方程.【答案】(1)()11f '=;(2)8110x y --=【解析】(1)因为()()3211f x x f x =-'⋅+,则()()2321f x x f x ''=-,所以,()()1321f f ''=-,解得()11f '=.(2)由(1)可知()321f x x x =-+,则()232f x x x '=-,则()25f =,()28f '=,因此,()f x 的图象在2x =处的切线方程为()582y x -=-,即8110x y --=.【变式1-2】若曲线2y x ax b =++在点(0,)P b 处的切线方程为10x y -+=,则a ,b 的值分别为()A.1,1B.1-,1C.1,1-D.1-,1-【答案】A【解析】因为2y x a '=+,所以0|x y a='=曲线2y x ax b =++在点(0,)b 处的切线10x y -+=的斜率为1,1a ∴=,又切点(0,)b 在切线10x y -+=上,010b ∴-+=1b ∴=.故选:A.【变式1-3】已知函数()2ln f x a x x =+的图象在1x =处的切线方程为30x y b -+=,则a b +=()A.2-B.1-C.0D.1【答案】B【解析】因为()2ln f x a x x =+,所以()2af x x x'=+.又()f x 的图象在1x =处的切线方程为30x y b -+=,所以()123f a '=+=,解得1a =,则()2ln f x x x =+,所以()11f =,代入切线方程得310b -+=,解得2b =-,故1a b +=-.故选:B.题型二“过”点求切线问题【例2】(多选)已知曲线()()3211f x x =++,则曲线过点()0,3P 的切线方程为()A.630x y +-=B.630x y -+=C.5260x y -+=D.3260x y -+=【答案】BD【解析】设切点坐标为()()300,211x x ++,()()261f x x '=+,∴切线斜率为()()20061k f x x '==+切线方程为()()()2003012161y x x x x ⎤=+-++⎦-⎡⎣曲线过点()0,3P ,代入得()()()20030362111x x x ⎡⎤++⎣=--⎦+可化简为()()032001113x x x +-+=,即3020023x x -=-,解得00x =或032x =-则曲线过点()0,3P 的切线方程为630x y -+=或3260x y -+=故选:BD【变式2-1】过原点的直线,m n 与分别与曲线()e xf x =,()lng x x =相切,则直线,m n 斜率的乘积为()A.-1B.1C.eD.1e【答案】B【解析】设()(),f x g x 的切点分别为()()1122,e ,,ln xx x x ,由题意可得()e xf x '=,()1g x x'=,所以()f x 在1x x =处的切线为()111e e x xy x x -=-,()g x 在2x x =处的切线为()2221ln y x x x x -=-,又因为两条切线过原点,所以()()1112220e e 010ln 0x x x x x x ⎧-=-⎪⎨-=-⎪⎩,解得121e x x =⎧⎨=⎩,所以直线,m n 斜率的乘积为()()1121e 1ef xg x ''=⨯=,故选:B【变式2-2】设点P 是曲线e e e ex xx x y ---=+上任意一点,直线l 过点P 与曲线相切,则直线l 的倾斜角的取值范围为______.【答案】π0,4⎛⎤⎥⎦⎝【解析】设直线l 的倾斜角为α2e e e e 4(e e e e e e x x x x x x x x x x y y -------''=∴=+++=()0e e 1x x y -≥∴≤<'+2][]tan (0,1,0,ααπ∴∈∈π0,4α⎛⎤∴∈ ⎥⎦⎝【变式2-3】过点()1,0作曲线e x y =的两条切线,则这两条切线的斜率之和为______.【答案】2e 1-【解析】0x >时,e x y =,设切点()11,ex x ,则11e ,e x xy k==',切线()1111:e e x xl y x x -=-过()1,0,()111e e 1x x x ∴-=-,2112,e x k ∴==,0x ≤时,e x y -=,切点()22,e xx -,22e ,e x x y k --=-=-',切线()2222:ee x x l y x x ---=--过()1,0,()222e e 1x x x --∴-=--,220,1x k ∴==-,故212e 1k k +=-.故答案为:2e 1-.题型三切线的条数问题【例3】若过点()0,(0)b b >只可以作曲线e xxy =的一条切线,则b 的取值范围是__________.【答案】24,e ∞⎛⎫+⎪⎝⎭【解析】函数e x x y =的定义域为R ,则1e x x y -'=,设切点坐标为000,e x x x ⎛⎫ ⎪⎝⎭,则切线斜率为001e x x k -=,故切线方程为:()000001e e x x x x y x x --=-,又切线过点()0,(0)b b >,则()000200001e e e x x x x x x b x b --=-⇒=,设()2ex x h x =,则()()20e xx x h x -'==得,0x =或2x =,则当(),0x ∈-∞时,()0h x '<,函数()h x 单调递减,当()0,2x ∈时,()0h x '>,函数()h x 单调递增,当()2,x ∈+∞时,()0h x '<,函数()h x 单调递减,所以()()2400,2e h h ==,又x →-∞时,()h x →+∞,x →+∞时,()0h x →,所以02ex x b =有且只有一个根,且0b >,则24e b >,故b 的取值范围是24,e ∞⎛⎫+ ⎪⎝⎭.故答案为:24,e ∞⎛⎫+⎪⎝⎭.【变式3-1】若曲线(2)e x y x a =-有两条过坐标原点的切线,则实a 的取值范围为______.【答案】(,0)(8,)-∞⋃+∞【解析】设切点坐标为:00(,)x y ,(22)e x y x a '=+-,所以切线斜率为00(22)e x k x a =+-,即切线方程为0000(2)e (22)e ()x xy x a x a x x --=+--,又切线过坐标原点,所以00000(2)e (22)e (0)x x x a x a x --=+--,整理得20020x ax a -+=,又曲线有两条过坐标原点的切线,所以该方程有两个解,所以280a a ∆=->,解得(,0)(8,).a ∈-∞⋃+∞故答案为:(,0)(8,).-∞⋃+∞【变式3-2】已知过点(),0A a 可以作曲线()2e xy x =-的两条切线,则实数a 的取值范围是()A.()2,+∞B.()(),e 2,∞∞--⋃+C.()(),22,∞∞--⋃+D.()(),12,-∞-+∞【答案】C【解析】设切点是()00,P x y ,0R x ∈,即()0002e x y x =-,而()1exy x '=-故切线斜率()001e x k x =-,切线方程是()()()00002e 1e x xy x x x x --=--,又因为切线经过点(),0A a ,故()()()00002e 1e x xx x a x --=--,显然01x ≠,则()0000021111x a x x x x -=+=-+--,在01x ≠上有两个交点,令01x x =-,设()1,0h x x x x =+≠,则()222111x h x x x-=-=',令()0h x '=得11x =-,21x =,所以当(),1x ∈-∞-时,()0h x '>,()h x 单调递增,当()1,0x ∈-时,()0h x '<,()h x 单调递减,当()0,1x ∈时,()0h x '<,()h x 单调递减,当()1,x ∈+∞时,()0h x '>,()h x 单调递增,又()12h -=-,()12h =,且x →-∞时,()h x →-∞,0x -→时,()h x →-∞,0x +→时,()h x →+∞,x →+∞时,()h x →+∞,所以()a h x =有两个交点,则2a >或2a <-,故实数a 的取值范围是()(),22,∞∞--⋃+.故选:C.【变式3-3】已知函数()326f x x x =-,若过点()1,P t 可以作出三条直线与曲线()f x 相切,则t 的取值范围是()A.()5,4--B.()4,3--C.()3,2--D.()2,1--【答案】A【解析】设过点()1,P t 的切线与()f x 相切于点()32,6m m m -,()2312f x x x '=-,()2312f m m m '∴=-,则切线方程为:()()()3226312y m m m m x m --=--,又切线过点()1,P t ,()()()23232312162912t m m m m m m m m ∴=--+-=-+-,令()322912g m m m m =-+-,则问题等价于y t =与()g m 有三个不同的交点,()()()261812612g m m m m m '=-+-=---,∴当()(),12,m ∈-∞+∞时,()0g m '<;当()1,2m ∈时,()0g m '>;()g m ∴在()(),1,2,-∞+∞上单调递减,在()1,2上单调递增,又()15g =-,()24g =-,由此可得()g m 图象如下图所示,由图象可知:当()5,4t ∈--时,y t =与()g m 有三个不同的交点,即当()5,4t ∈--时,过点()1,P t 可以作出三条直线与曲线()f x 相切.故选:A.题型四两曲线的公切线问题【例4】若直线1:2l y kx b k ⎛⎫=+> ⎪⎝⎭与曲线1()e x f x -=和()ln(1)g x x =+均相切,则直线l 的方程为___.【答案】y x=【解析】设()f x ,()g x 上的切点分别为()111,ex A x -,()()22,ln 1B x x+,由()1e xf x -'=,()11g x x '=+,可得1121e 1x k x -==+,故()f x 在A 处的切线方程为()()1111111111ee e e 1x x x x y x x y x x -----=-⇒=+-,()g x 在B 处的切线方程为()()()222222211ln 1ln 1111x y x x x y x x x x x -+=-⇒=++-+++,由已知()()()111122121221e 1ln 11e 1ln 11x x x x x x x x x --⎧=⇒-=+⎪+⎪⎨⎪-=+-⎪+⎩,所以()()()22222222221ln 1ln 1ln 11111x x x x x x x x x x ⎛⎫+=+-⇒=+ ⎪++++⎝⎭,故20x =或()2ln 11x +=,而()222111ln 111e 1e 2x x x +=⇒+=⇒=<+,不合题意舍去,故20x =,此时直线l 的方程为y x =.故答案为:y x =.【变式4-1】已知函数()e xf x =与函数()lng x x b =+存在一条过原点的公共切线,则b =________.【答案】2【解析】设该公切线过函数()e xf x =、函数()lng x x b =+的切点分别为()11,ex x ,()22,ln b x x +.因为()e xf x '=,所以该公切线的方程为()1111111e e e e ex x x x x y x x x x =-+=+-同理可得,该公切线的方程也可以表示为()2222211ln ln 1y x x x b x x b x x =-++=⋅++-因为该公切线过原点,所以()112121e e 10ln 10x x xx x b ⎧=⎪⎪⎪-=⎨⎪+-=⎪⎪⎩,解得1211,e ,2x x b ===.故答案为:2【变式4-2】函数()bf x ax x =+的图象在点(1,3)处的切线也是抛物线213x y =的切线,则a b -=()A.1B.3C.6D.2【答案】C【解析】()bf x ax x =+,则2()b f x a x '=-,则在点(1,3)处的切线的斜率为12(1)1bk f a a b '==-=-,213x y =,则6y x '=,则在点(1,3)处的切线的斜率为26k =,函数()bf x ax x =+的图象在点(1,3)处的切线也是抛物线213x y =的切线,则12k k =,即6a b -=,故选:C.【变式4-3】若曲线e x y a =与曲线y ==a __________.【解析】令()e x f x a =,()g x ()e xf x a '=,()g x '=设()f x 与()g x 的公共点为()00,x y ,()f x 与()g x 在公动点处有相同的切线,()()()()0000f x g x f x g x '⎧=∴'⎪⎨=⎪⎩,即00e e x x a a ⎧=⎪⎨⎪=⎩=012x =,12e a ∴=a ==题型五切线平行、垂直问题【例5】若曲线ln x ay x+=在点()1,a 处的切线与直线:250l x y -+=垂直,则实数=a ().A.12B.1C.32D.2【答案】C 【解析】因为21ln x ay x --'=,所以曲线ln x ay x+=在点()1,a 处的切线的斜率为()111k f a ='=-,直线l 的斜率22k =,由切线与直线l 垂直知121k k =-,即()211a -=-,解得32a =.故选:C.【变式5-1】已知曲线y =y x =--24垂直的曲线的切线方程为_________.【答案】2250x y -+=【解析】设切点为(),m n ,因为y =y '=,因为曲线的切线与直线y x =--24垂直,()21-=-,解得25m =,又点(),m n在曲线y =25n ==,所以切点坐标为()25,25,所以曲线y =y x =--24垂直的切线方程为:()125252y x -=-,即2250x y -+=,故答案为:2250x y -+=.【变式5-2】若曲线s n e i =+x y x a 存在两条互相垂直的切线,则a 的取值范围是________.【答案】()(),00,∞-+∞U 【解析】由题知,令()e sin x f x a x =+,则()e cos xf x a x '=+.若函数曲线存在两条互相垂直的切线则可得1x ∃,2x ,()()121f x f x ''⋅=-.当0a =时,()21e 0,xx x f x '=>⇒∀,()()120f x f x ''>,与题目矛盾;当0a ≠时,由()e 0,xy =∈+∞,cos y a x a=≥-可得()f x '的值域是(),a -+∞故12,x x ∃,使得()()1,0f x a '∈-,()210,f x a ⎛⎫'∈ ⎪ ⎪⎝⎭,()()121f x f x ''⋅=-.故答案为:()(),00,∞-+∞U .【变式5-3】曲线33y x x =-+在点P 处的切线平行于直线21y x =-,则点P 的坐标为______.【答案】()1,3或()1,3-【解析】由已知得231y x '=-,令2y '=,则2312x -=,解得1x =或=1x -,所以()1,3P 或()1,3P -.经检验,点()1,3P 与()1,3P -均符合题意.故答案为:()1,3或()1,3-【变式5-4】若曲线()21ln 2f x x x ax =++存在与直线50x y -=平行的切线,则实数a 的最大值为______.【答案】3【解析】()()10f x x a x x=++>,因为曲线()21ln 2f x x x ax =++存在与直线50x y -=平行的切线,所以15x a x ++=在()0,∞+有解.即15a x x ⎛⎫=-+ ⎪⎝⎭在()0,∞+有解.设()15g x x x⎛⎫=-+ ⎪⎝⎭,()0,x ∈+∞,则()1553g x x x ⎛⎫=-+≤-= ⎪⎝⎭,当且仅当1x x=,即1x =时等号成立,即()3g x ≤.所以3a ≤,即a 的最大值为3.故答案为:3题型六与切线有关的最值问题【例6】若动点P 在直线1y x =+上,动点Q 在曲线22x y =-上,则|PQ |的最小值为()A.14B.4C.22D.18【答案】B【解析】设与直线1y x =+平行的直线l 的方程为y x m =+,∴当直线l 与曲线22x y =-相切,且点Q 为切点时,P ,Q 两点间的距离最小,设切点()00,Q x y ,22x y =-,所以212y x =-,y x ∴'=-,0011x x ∴-=⇒=-,012y ∴=-,∴点11,2Q ⎛⎫-- ⎪⎝⎭,∴直线l 的方程为12y x =+,,P Q ∴两点间距离的最小值为平行线12y x =+和1y x =+间的距离,,P Q ∴24=.故选:B .【变式6-1】在平面直角坐标系xOy 中,P 是曲线24x y =上的一个动点,则点P 到直线40x y ++=的距离的最小值是_____.【答案】2【解析】设直线0x y b ++=与214y x =相切,则切线的斜率为1-且12y x '=,令112y x '==-,则2x =-,即切点的横坐标为2-,将2x =-,代入214y x =,可得1y =,即切点坐标为()2,1-,所以点P 到直线40x y ++=的距离的最小值即为()2,1-到直线的距离,即2d =,故答案为:【变式6-2】已知P 为直线210x y +-=上的一个动点,Q 为曲线423242210x x y x x --++=上的一个动点,则线段PQ 长度的最小值为______.【解析】直线210x y +-=可化为:1122y x =-+.对于曲线423242210x x y x x --++=.当0x =时,代入10=不成立,所以0x ≠.所以423242210x x y x x --++=可化为22112122y x x x =-++,导数为31142y x x -'=-所以线段PQ 的最小值即为与1122y x =-+平行的直线与423242210x x y x x --++=相切时,两平行线间的距离.设切点(),Q m n .由题意可得:322111422112122m m n m m m ⎧--=-⎪⎪⎨⎪=-++⎪⎩,即32214112122m m n m m m ⎧=⎪⎪⎨⎪=-++⎪⎩,解得:234m n ⎧=⎪⎪⎨⎪=-⎪⎩或234m n ⎧=-⎪⎪⎨⎪=+⎪⎩.当Q ⎝⎭时,PQ当,324Q ⎛-+ ⎝⎭时,PQ =综上所述:线段PQ.【变式6-3】点P 是曲线2ln y x x =-上任意一点,且点P 到直线y x a =+的距离的a 的值是__________.【答案】2-【解析】由题设12y x x '=-且0x >,令0'>y ,即22x >;令0'<y ,即202x <<,所以函数2ln y x x =-在0,2⎛⎝⎭上单调递减,在,2⎫+∞⎪⎪⎝⎭上单调递增,且12|ln 022x y ->,如图所示,当P 为平行于y x a =+并与曲线2ln y x x =-相切直线的切点时,距离最近.令1y '=,可得12x =-(舍)或1x =,所以1|1x y ==,则曲线上切线斜率为1的切点为(1,1)P ,=2a =(舍去)或2-,故答案为:2-.。
导数的求导法则切线计算(教师用)
第10讲 变化率与导数、导数的计算、知 识 梳 理1.基本初等函数的导数公式2.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ).(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ).(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).3.复合函数的导数设u=v(x)在点x处可导,y=f(u)在点u处可导,则复合函数f[v(x)]在点x处可导,且f′(x)=f′(u)·v′(x).[感悟·提升]1.“过某点”与“在某点”的区别曲线y=f(x)“在点P(x0,y0)处的切线”与“过点P(x0,y0)的切线”的区别:前者P(x0,y0)为切点,如(6)中点(1,3)为切点,而后者P(x0,y0)不一定为切点.2.导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点,如(4).三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积,如(9).考点一 导数的计算【例1】 分别求下列函数的导数: (1)y =e x ·cos x ; (2)y =x -sin x 2cos x2; (3)y =ln (2x +1)x.解 (1)y ′=(e x )′cos x +e x (cos x )′=e x cos x -e x sin x . (2)∵y =x -sin x 2cos x 2=x -12sin x , ∴y ′=⎝ ⎛⎭⎪⎫x -12sin x ′=1-12cos x .(3)y ′=⎣⎢⎡⎦⎥⎤ln (2x +1)x ′=[ln (2x +1)]′x -x ′ln (2x +1)x 2=(2x +1)′2x +1·x -ln (2x +1)x 2=2x2x +1-ln (2x +1)x 2=2x -(2x +1)ln (2x +1)(2x +1)x 2.规律方法 (1)本题在解答过程中常见的错误有:①商的求导中,符号判定错误;②不能正确运用求导公式和求导法则,在第(3)小题中,忘记对内层函数2x +1进行求导.(2)求函数的导数应注意:①求导之前利用代数或三角变换先进行化简,减少运算量; ②根式形式,先化为分数指数幂,再求导.③复合函数求导先确定复合关系,由外向内逐层求导,必要时可换元处理.【训练1】 (1)(2013·江西卷改编)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________.(2)若f (x )=3-x +e 2x ,则f ′(x )=________. 解析 (1)令e x =t ,则x =ln t , ∴f (t )=ln t +t ,即f (x )=ln x +x .因此f′(x)=(ln x+x)′=1x+1,于是f′(1)=1+1=2.(2)若f(x)=a3+2ax-x2,则f′(x)=3a2+2x.(×)(3)(教材习题改编)函数y=x cos x-sin x的导函数是y′=-x sin x.(√)(4)[f(ax+b)]′=f′(ax+b).(×)考点二导数的几何意义【例2】(1)(2013·广东卷)若曲线y=kx+ln x在点(1,k)处的切线平行于x轴,则k=________.(2)设f(x)=x ln x+1,若f′(x0)=2,则f(x)在点(x0,y0)处的切线方程为____________________.解析 (1)函数y =kx +ln x 的导函数y ′=k +1x , 由导数y ′|x =1=0,得k +1=0,则k =-1. (2)因为f (x )=x ln x +1, 所以f ′(x )=ln x +x ·1x =ln x +1. 因为f ′(x 0)=2,所以ln x 0+1=2, 解得x 0=e ,所以y 0=e +1.由点斜式得,f (x )在点(e ,e +1)处的切线方程为y -(e +1)=2(x -e),即2x -y -e +1=0.答案 (1)-1 (2)2x -y -e +1=0规律方法 (1)导数f ′(x 0)的几何意义就是函数y =f (x )在点P (x 0,y 0)处的切线的斜率.第(1)题要能从“切线平行于x 轴”提炼出切线的斜率为0,进而构建方程,这是求解的关键,考查了分析问题和解决问题的能力.(2)在求切线方程时,应先判断已知点Q (a ,b )是否为切点,若已知点Q (a ,b )不是切点,则应求出切点的坐标,利用切点坐标求出切线斜率,进而用切点坐标表示出切线方程.【训练2】 (1)(2012·新课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为____________________.(2)若函数f (x )=e x cos x ,则此函数图象在点(1,f (1))处的切线的倾斜角为( ). A .0 B .锐角 C .直角 D .钝角解析 (1)∵y =x (3ln x +1),∴y ′=3ln x +1+x ·3x =3ln x +4,∴k =y ′|x =1=4,∴所求切线的方程为y -1=4(x -1),即4x -y -3=0. (2)f ′(x )=e x cos x -e x sin x =e x (cos x -sin x ), ∴f ′(1)=e(cos 1-sin 1).∵π2>1>π4.而由正余弦函数性质可得cos 1<sin 1. ∴f ′(1)<0,即f (x )在(1,f (1))处的切线的斜率k <0, ∴切线的倾斜角是钝角.答案 (1)4x -y -3=0 (2)D考点三 导数运算与导数几何意义的应用【例3】 (2013·北京卷)设l 为曲线C :y =ln xx 在点(1,0)处的切线. (1)求l 的方程;(2)试证明:除切点(1,0)之外,曲线C 在直线l 的下方. 审题路线 (1)求f ′(1)――→导数几何意义点斜式求直线l 的方程(2)构建g (x )=x -1-f (x )――→转化g (x )>0对x >0且x ≠1恒成立――→运用导数研究函数y=g(x)的性质―→获得结论解(1)设f(x)=ln xx,则f′(x)=1-ln xx2.∴f′(1)=1-ln 11=1,即切线l的斜率k=1.由l过点(1,0),得l的方程为y=x-1.(2)令g(x)=x-1-f(x),则除切点之外,曲线C在直线l的下方等价于g(x)>0(∀x>0,x≠1).g(x)满足g(1)=0,且g′(x)=1-f′(x)=x2-1+ln xx2.当0<x<1时,x2-1<0,ln x<0,∴g′(x)<0,故g(x)在(0,1)上单调递减;当x>1时,x2-1>0,ln x>0,g′(x)>0,g(x)单调递增.所以,g(x)>g(1)=0(∀x>0,x≠1).所以除切点之外,曲线C在直线l的下方.规律方法(1)准确求切线l的方程是本题求解的关键;第(2)题将曲线与切线l的位置关系转化为函数g(x)=x-1-f(x)在区间(0,+∞)上大于0恒成立的问题,进而运用导数研究,体现了函数思想与转化思想的应用.(2)当曲线y=f(x)在点P(x0,f(x0))处的切线平行于y轴(此时导数不存在)时,切线方程为x=x0;当切点坐标不知道时,应首先设出切点坐标,再求解.【训练3】(2014·济南质检)设函数f(x)=a e x+1a e x+b(0<a<1).(1)求f(x)在[0,+∞)内的最小值;(2)设曲线y=f(x)在点(2,f(2))处的切线方程为y=32x,求a和b的值.解(1)f′(x)=a e x-1a e x=(a e x-1)(a e x+1)a e x.令f′(x)=0,得x=ln 1 a>0.当0≤x<ln 1a时,f′(x)<0;当x>ln 1a,f′(x)>0.∴f (x )在⎣⎢⎡⎦⎥⎤0,ln 1a 上递减,在⎣⎢⎡⎭⎪⎫ln 1a ,+∞上递增.从而f (x )在[0,+∞)上的最小值f ⎝ ⎛⎭⎪⎫ln 1a =2+b .(2)∵y =f (x )在点(2,f (2))处的切线为y =32x , ∴f (2)=3,且f ′(2)=32, ∴⎩⎪⎨⎪⎧a e 2+1a e 2+b =3a e 2-1a e 2=32①②解之得b =12且a =2e 2.理解导数的概念时,要注意f ′(x 0),(f (x 0))′与f ′(x )的区别:f ′(x )是函数y =f (x )的导函数,f ′(x 0)是f (x )在x =x 0处的导数值,是常量但不一定为0,(f (x 0))′是常数一定为0,即(f (x 0))′=0.易错辨析3——求曲线切线方程考虑不周【典例】 (2014·杭州质检)若存在过点O (0,0)的直线l 与曲线f (x )=x 3-3x 2+2x 和y =x 2+a 都相切,则a 的值是( ). A .1 B.164 C .1或164D .1或-164[错解] ∵点O (0,0)在曲线f (x )=x 3-3x 2+2x 上, ∴直线l 与曲线y =f (x )相切于点O . 则k =f ′(0)=2,直线l 的方程为y =2x . 又直线l 与曲线y =x 2+a 相切,∴x 2+a -2x =0满足Δ=4-4a =0,a =1,选A.[答案] A[错因] (1)片面理解“过点O (0,0)的直线与曲线f (x )=x 3-3x 2+2x 相切”.这里有两种可能:一是点O 是切点;二是点O 不是切点,但曲线经过点O ,解析中忽视后面情况.(2)本题还易出现以下错误:一是当点O (0,0)不是切点,无法与导数的几何意义沟通起来;二是盲目设直线l 的方程,导致解题复杂化,求解受阻.[正解] 易知点O (0,0)在曲线f (x )=x 3-3x 2+2x 上, (1)当O (0,0)是切点时,同上面解法.(2)当O (0,0)不是切点时,设切点为P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =f ′(x 0)=3x 20-6x 0+2.又k =y 0x 0=x 20-3x 0+2,由①,②联立,得x 0=32(x 0=0舍),所以k =-14, ∴所求切线l 的方程为y =-14x . 由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0.依题意,Δ=116-4a =0,∴a =164.综上,a =1或a =164.[防范措施] (1)求曲线的切线方程应首先确定已知点是否为切点是求解的关键,分清过点P 的切线与在点P 处的切线的差异.(2)熟练掌握基本初等函数的导数,导数的运算法则,正确进行求导运算.【自主体验】函数y=ln x(x>0)的图象与直线y=12x+a相切,则a等于().A.2ln 2 B.ln 2+1 C.ln 2 D.ln 2-1解析设切点为(x0,y0),且y′=1x,∴=1x0=12,则x0=2,y0=ln 2.又点(2,ln 2)在直线y=12x+a上,∴ln 2=12×2+a,∴a=ln 2-1.对应学生用书P247基础巩固题组(建议用时:40分钟)一、选择题1.若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)等于().A.-1 B.-2 C.2 D.0解析f′(x)=4ax3+2bx,∵f′(x)为奇函数且f′(1)=2,∴f′(-1)=-2. 答案 B2.如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=( ).A .2B .6C .-2D .4解析 如图可知,f (5)=3,f ′(5)=-1,因此f (5)+f ′(5)=2.答案 A3.(2014·济南质检)设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a =( ).A .2B .-2C .-12 D.12解析 ∵y ′=x -1-(x +1)(x -1)2=-2(x -1)2,∴y ′|x =3=-2(3-1)2=-12,∴-a =2,即a =-2.答案 B4.已知曲线y =14x 2-3ln x 的一条切线的斜率为-12,则切点横坐标为( ).A .-2B .3C .2或-3D .2解析 设切点坐标为(x 0,y 0),∵y ′=12x -3x ,∴=12x 0-3x 0=-12,即x 20+x 0-6=0,解得x 0=2或-3(舍).答案 D5.(2014·湛江调研)曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( ).A.13B.12C.23 D .1解析 y ′|x =0=(-2e -2x )|x =0=-2,故曲线y =e -2x +1在点(0,2)处的切线方程为y=-2x +2,易得切线与直线y =0和y =x 的交点分别为(1,0),⎝ ⎛⎭⎪⎫23,23,故围成的三角形的面积为12×1×23=13.二、填空题6.已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,则f ⎝ ⎛⎭⎪⎫π4的值为________. 解析 ∵f ′(x )=-f ′⎝ ⎛⎭⎪⎫π4sin x +cos x ,∴f ′⎝ ⎛⎭⎪⎫π4=-f ′⎝ ⎛⎭⎪⎫π4sin π4+cos π4,∴f ′⎝ ⎛⎭⎪⎫π4=2-1,∴f ⎝ ⎛⎭⎪⎫π4=(2-1)cos π4+sin π4=1. 答案 17.(2013·南通一调)曲线f (x )=f ′(1)e e x -f (0)x +12x 2在点(1,f (1))处的切线方程为________.解析 f ′(x )=f ′(1)e e x -f (0)+x ⇒f ′(1)=f ′(1)e e 1-f (0)+1⇒f (0)=1.在函数f (x )=f ′(1)e e x -f (0)x +12x 2中,令x =0,则得f ′(1)=e.所以f (1)=e -12,所以f (x )在(1,f (1))处的切线方程为y =e(x -1)+f (1)=e x -12,即y =e x -12.答案 y =e x -128.若以曲线y =13x 3+bx 2+4x +c (c 为常数)上任意一点为切点的切线的斜率恒为非负数,则实数b 的取值范围是________.解析 y ′=x 2+2bx +4,∵y ′≥0恒成立,∴Δ=4b 2-16≤0,∴-2≤b ≤2. 答案 [-2,2]三、解答题9.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值;(2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围.解 f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意得⎩⎨⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或1.(2)∵曲线y =f (x )存在两条垂直于y 轴的切线,∴关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, ∴Δ=4(1-a )2+12a (a +2)>0,即4a 2+4a +1>0,∴a ≠-12.∴a 的取值范围是⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,+∞. 10.已知函数f (x )=x 3-ax 2+10.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)在区间[1,2]内至少存在一个实数x ,使得f (x )<0成立,求实数a 的取值范围. 解 (1)当a =1时,f ′(x )=3x 2-2x ,f (2)=14,曲线y =f (x )在点(2,f (2))处的切线斜率k =f ′(2)=8,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -14=8(x -2),即8x -y -2=0.(2)由已知得a >x 3+10x 2=x +10x 2,设g (x )=x +10x 2(1≤x ≤2),g ′(x )=1-20x 3,∵1≤x ≤2,∴g ′(x )<0,∴g (x )在[1,2]上是减函数.g (x )min =g (2)=92,∴a >92,能力提升题组(建议用时:25分钟)一、选择题1.(2014·北京西城质检)已知P,Q为抛物线x2=2y上两点,点P,Q的横坐标分别为4,-2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为().A.1 B.3 C.-4 D.-8解析依题意,得P(4,8),Q(-2,2).由y=x22,得y′=x.∴在点P处的切线方程为y-8=4(x-4),即y=4x-8.①在点Q处的切线方程为y-2=-2(x+2),即y=-2x-2.②联立①,②得点A(1,-4).答案 C2.已知f(x)=log a x(a>1)的导函数是f′(x),记A=f′(a),B=f(a+1)-f(a),C =f′(a+1),则().A.A>B>C B.A>C>BC.B>A>C D.C>B>A解析记M(a,f(a)),N(a+1,f(a+1)),则由于B=f(a+1)-f(a)=f(a+1)-f(a) (a+1)-a,表示直线MN的斜率,A=f′(a)表示函数f(x)=log a x在点M处的切线斜率;C =f′(a+1)表示函数f(x)=log a x在点N处的切线斜率.由图象得,A>B>C.答案 A二、填空题3.(2014·武汉中学月考)已知曲线f (x )=x n +1(n ∈N *)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 013x 1+log 2 013x 2+…+log 2 013x 2 012的值为________.解析 f ′(x )=(n +1)x n ,k =f ′(1)=n +1,点P (1,1)处的切线方程为y -1=(n +1)(x -1),令y =0,得x =1-1n +1=n n +1,即x n =n n +1, ∴x 1·x 2·…·x 2 012=12×23×34×…×2 0112 012×2 0122 013=12 013,则log 2 013x 1+log 2 013x 2+…+log 2 013x 2 012=log 2 013(x 1x 2…x 2 012)=-1.三、解答题4.(2013·福建卷改编)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程;(2)当实数a >0时,求函数f (x )的极值.解 函数f (x )的定义域为(0,+∞),f ′(x )=1-a x .(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),因而f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.(2)由f ′(x )=1-a x =x -a x ,x >0.令f ′(x )=0,得x =a >0.当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.。
求导公式练习及导数与切线方程
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 求导公式练习及导数与切线方程考点分析:以解答题的形式考查函数的单调性和极值;近几年高考对导数的考查每年都有,选择题、填空题、解答题都出现过,且最近两年有加强的趋势。
知识点一:常见基本函数的导数公式(1)(C 为常数),(2)(n 为有理数),(3),(4),(5),(6),(7),(8),知识点二:函数四则运算求导法则设,均可导(1)和差的导数:(2)积的导数:(3)商的导数:知识点三:复合函数的求导法则()1.一般地,复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数,即或题型一:函数求导练习例一:函数 y=exsinx 的导数等于.例二:函数 y=(x2+1)ex 的导数为.11/ 6例三:函数 f(x)=cos(2﹣3x)的导数等于 _________ .变式练习: 1.求函数 y= 的导数.2.求函数 y=(1+cos2x)2 的导数.3.求y=e2xcos3x 的导数.题型二:用导数求切线方程的四种类型求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点 P(x0,y0 ) 及斜率,其求法为:设 P(x0,y0 ) 是曲线 y ?f (x) 上的一点,则以 P 的切点的切线方程为: y ? y0 ? f ?(x0 )(x ? x0 ) .若曲线 y ? f (x) 在点 P(x0,f (x0 )) 的切线平行于 y 轴(即导数不存在)时,由切线定义知,切线方程为 x ? x0 .下面例析四种常见的类型及解法.类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数 f ?(x) ,并代入点斜式方程即可.例 1 曲线 y ? x3 ? 3x2 ? 1 在点 (1,?1) 处的切线方程为()2---------------------------------------------------------------最新资料推荐------------------------------------------------------ A. y ? 3x ? 4B. y ? ?3x ? 2 C. y ? ?4x ? 3D. y ? 4x ? 5解:由 f ?(x) ? 3x2 ? 6x 则在点 (1,?1) 处斜率 k ?f ?(1) ? ?3 ,故所求的切线方程为y ? (?1) ? ?3(x ?1) ,即 y ? ?3x ? 2 ,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例 2 与直线 2x ? y ? 4 ? 0 的平行的抛物线 y ? x2 的切线方程是()A. 2x ? y ? 3 ? 0 C. 2x ? y ?1 ? 0B. 2x ? y ? 3 ? 0 D. 2x ? y ?1 ? 0解:设 P(x0,y0 ) 为切点,则切点的斜率为 y?|x?x0 ? 2x0 ?2 .∴ x0 ? 1.由此得到切点 (1,1) .故切线方程为 y ?1 ? 2(x ?1) ,即 2x ? y ?1 ? 0 ,故选D.评注:此题所给的曲线是抛物线,故也可利用 ? 法加以解决,即设切线方程为 y ? 2x ? b ,代入 y ? x2 ,得 x2 ? 2x ? b ? 0 ,又因为 ? ? 0 ,得 b ? ?1 ,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.例3 求过曲线 y ? x3 ? 2x 上的点 (1,?1) 的切线方程.解:设想 P(x0,y0 ) 为切点,则切线的斜率为 y?|x?x0 ? 3x02 ? 2 .∴切线方程为 y ? y0 ? (3x02 ? 2)(x ? x0 ) .y ? (x03 ? 2x0 ) ? (3x02 ? 2)(x ? x0 ) .又知切线过点 (1,?1) ,把它代入上述方程,得 ?1 ? (x03 ? 2x0 ) ? (3x02 ? 2)(1 ? x0 ) .解得x0? 1,或x0??1 2.故所求切线方程为y ? (1? 2) ? (3 ? 2)(x ?1),或y?? ???1 8?1????? ??3 4?2?? ?? ??x?1 2? ??,即x ? y ? 2 ? 0 ,3/ 6或 5x ? 4y ?1 ? 0 .评注:可以发现直线 5x ? 4y ?1 ? 0 并不以(1,?1) 为切点,实际上是经过了点 (1,?1) 且以? ???1,7 28? ??为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.3---------------------------------------------------------------最新资料推荐------------------------------------------------------ 例 4 求过点 (2,0) 且与曲线 y ? 1 相切的直线方程. x解:设P(x0,y0 )为切点,则切线的斜率为y?|x?x0 ??1 x02.∴切线方程为y?y01 ??x02(x ? x0 ) ,即y?1 x0??1 x02(x ? x0 ) .又已知切线过点 (2,0) ,把它代入上述方程,得 ? 1 x0?? 1 x02(2 ?x0 ) .解得 x0? 1,y0?1 x0? 1 ,即x?y?2?0.评注:点 (2,0) 实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例 5 已知函数 y ? x3 ? 3x ,过点 A(0,16) 作曲线 y ? f (x) 的切线,求此切线方程.解:曲线方程为 y ? x3 ? 3x ,点 A(0,16) 不在曲线上.设切点为 M (x0,y0 ) ,则点 M 的坐标满足 y0 ? x03 ? 3x0 .因 f ?(x0 ) ? 3(x02 ?1) ,故切线的方程为 y ? y0 ? 3(x02 ?1)(x ? x0 ) .点 A(0,16) 在切线上,则有16 ? (x03 ? 3x0 ) ? 3(x02 ?1)(0 ? x0 ) .化简得x03 ? ?8 ,解得 x0 ? ?2 .所以,切点为 M (?2,? 2) ,切线方程为 9x ? y ?16 ? 0 .评注:此类题的解题思路是,先判断点 A 是否在曲线上,若点 A 在曲线上,化为类型一或类型三;若点 A 不在曲线上,应先设出切点并求出切点.练习:曲线 y ? 2x ? x3 在点(1,1)处的切线方程为.3、求直线的方程(1)求曲线 y ? 1 在切点(1,1)的切线方程及在 x=2 处的切线方程; x(2)求过曲线 y ? x ln x 上一点 (1, 0) 且与此点为切点的切线垂直的直线方程;45/ 6(3)求以曲线 y ? sin x 上一点 (? , 0) 为切点的切线方程; x4、(1)求曲线 y ? ex ? x 上的点到直线 y ? 2x ? 3 的最短距离;(2)设函数 f (x) ? ax ? 1 (a,b ? Z ) ,曲线 y ? f (x) 在点 (2, f (2)) 处的切线方程x?b 为 y ? 3 ,求 f (x) 的解析式.(3)求经过原点的曲线 y ? xex 的切线方程。
利用导数求曲线的切线和公切线以及切线条数专题总结.doc
导数中的切线问题专题总结一、求切线方程1.过曲线上一点求切线方程的三个步骤2.求过曲线y =f (x )外一点P (x 1,y 1)的切线方程的六个步骤(1)设切点(x 0,f (x 0)).(2)利用所设切点求斜率k =f ′(x 0)=li m Δx →0f x 0+Δx-f x 0Δx .(3)用(x 0,f (x 0)),P (x 1,y 1)表示斜率.(4)根据斜率相等求得x 0,然后求得斜率k .(5)根据点斜式写出切线方程.(6)将切线方程化为一般式.例1.已知曲线y =1x .(1)求曲线在点P (1,1)处的切线方程;(2)求曲线过点Q (1,0)处的切线方程.例2.已知曲线y=1 x .(1)求曲线在点P(1,1)处的切线方程;(2)求曲线过点Q(1,0)处的切线方程.3.(2016全国卷Ⅲ)已知f(x)为偶函数,当x<0时,f(x)=f(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是二、求切点坐标【小结】求切点坐标可以按以下步骤进行(1)设出切点坐标;(2)利用导数或斜率公式求出斜率;(3)利用斜率关系列方程,求出切点的横坐标;(4)把横坐标代入曲线或切线方程,求出切点纵坐标例1.已知抛物线y =2x 2+1分别满足下列条件,请求出切点的坐标.(1)切线的倾斜角为45°.(2)切线平行于直线4x -y -2=0.(3)切线垂直于直线x +8y -3=0..变式练习直线l :y =x +a (a ≠0)和曲线C :y =x 3-x 2+1相切,则a 的值为___________,切点坐标为____________.三、求两个函数公切线公切线问题:切点相同。
()()00x g x f =()()00''x g x f =切点不同。
()()()()k x g x f mkx x g m kx x f ==+=+=212211'',例1、 已知直线b kx y +=是曲线2ln +=x y 的切线,也是曲线x e y =的切线,求k 和b 的值解析:例2.若直线b kx y +=是曲线2ln +=x y 的切线,也是y =ln(x +1)的切线,求b 的值例3.已知函数f (x )=lnx ,g (x )=2﹣(x >0)(1)试判断当f (x )与g (x )的大小关系;(2)试判断曲线 y=f (x )和 y=g (x )是否存在公切线,若存在,求出公切线方程,若不存在,说明理由;变式练习1.两曲线y =x 2−1和y =alnx −1存在公切线,则正实数a 的取值范围变式练习2.若曲线y =12e x 2与曲线y =alnx 在它们的公共点P (s,t )处有公切线,则实数a =变式练习 3.已知函数()()1263,1163223++=--+=x x x g ax x ax x f 和直线m:9+=kx y ,又()01'=-f ,是否存在k,使直线m 既是曲线()x f y =的切线,又是曲线()x g y =的切线?如果存在,求出k 的值四、切线条数切线的条数问题====以切点0x 为未知数的方程的根的个数例1.已知函数32()f x ax bx cx =++在点0x 处取得极小值-4,使其导数'()0f x >的x 的取值范围为(1,3),求:(1)()f x 的解析式;(2)若过点(1,)P m -可作曲线()y f x =的三条切线,求实数m 的取值范围.例2.已知函数f (x )=2x 3﹣3x+1,g (x )=kx+1﹣lnx .(1)设函数,当k <0时,讨论h (x )零点的个数;(2)若过点P (a ,﹣4)恰有三条直线与曲线y=f (x )相切,求a 的取值范围.变式练习.已知函数f (x )=x 2+2(1﹣a )x ﹣4a ,g (x )=﹣(a+1)2,则f (x )和g (x )图象的公切线条数的可能值是 .。
用导数求切线方程的四种类型[精选.]
用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可.例1 曲线3231y x x =-+在点(11)-,处的切线方程为( )A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( )A.230x y -+= B.230x y --= C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x xy x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.例3求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x xy x ='=-|. ∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--.解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例4 求过点(20),且与曲线1y x=相切的直线方程.解:设00()P x y ,为切点,则切线的斜率为0201x xy x ='=-|.∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得02011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=.评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上.设切点为00()M x y ,, 则点M 的坐标满足30003y x x =-.因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--.化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。
导数的求导法则切线计算
第10讲变化率与导数、导数的计算诊断-基础知识知识梳理1.2.导数的运算法则⑴[f(X)±(x)] f,(X)±,(x).⑵[f(x)g(x)],= f' (x)g(x) + f(x)g' (x).口xMxtK 2<jg, n二[gx]2 (g(x)工0).3.复合函数的导数设u = v(x)在点x处可导,y= f(u)在点u处可导,则复合函数f[v(x)]在点x处可导, 且f' (x) = f' (u) v v (x).[感悟提升]1•“过某点”与“在某点”的区别曲线y=f(x) “在点P(x o, y o)处的切线”与“过点P(x o, y o)的切线”的区别:前者P(x o, y o)为切点,如(6)中点(1,3)为切点,而后者P(x o, y o)不一定为切点.2.导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. 二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点,女口(4).三是复合函数求导的关键是分清函数的结构形式. 由外向内逐层求导,其导数为两层导数之积,如(9).以例求法举一反三x x 1 _ x — ?si n x ,2x + 1突破-高频考点考点一导数的计算【例1】 分别求下列函数的导数: X X(1)y = e c os x ; (2)y =x — sin qcos 2;ln (2x + 1 \⑶ y=——.解 (1)y '_ (e x )' cos x + ^(cos x)'_ e <cos x — e <sln x.[In 2x + 1 ] ' x — x ' In 2x + 1x2x +1 ' 2x , o , 2x +1 X-2+ 门 2x +1 — n2x + 门 _ 2 _ 2x x _ 2x —(2x + 1 )n (2x + 1 )= 2x +1 x 2 .规律方法(i )本题在解答过程中常见的错误有:①商的求导中,符号判定错误 ②不能正确运用求导公式和求导法则,在第 (3)小题中,忘记对内层函数 进行求导.(2)求函数的导数应注意:① 求导之前利用代数或三角变换先进行化简,减少运算量;1 1 — 2COS x.②根式形式,先化为分数指数幕,再求导.③复合函数求导先确定复合关系,由外向内逐层求导,必要时可换元处理.【训练1】(1)(2013江西卷改编)设函数f(x)在(0,+x)内可导,且f(e x)= x+ e x, 则f'(1) = ____________ .⑵若f(x) = ^/3^x + e2x,贝U f' (x) = ______ .解析(1)令e x= t,则x= In t,•'f(t) = In t +1, 即卩f(x) = In x+ x.1因此f' (x)= (In x+x)' = + 1,于是f' (1)= 1 + 1 = 2.x⑵若f(x)= a3+ 2ax—x2,则f' (x)= 3a2+ 2x.( x)(3) (教材习题改编)函数y= xcosx —sin x的导函数是y'= —xsin x. (V)⑷[f(ax+ b)] '= f' (ax+ b). (x )考点二导数的几何意义【例2】(1)(2013广东卷)若曲线尸kx+ In x在点(1, k)处的切线平行于x轴,则k= ________ .⑵设f(x) = xln x + 1,若f' (x o) = 2,贝U f(x)在点(x o, y o)处的切线方程为1解析(1)函数y= kx+ In x的导函数y' = k+ x,入由导数y'E仁0,得k+1 = 0,则k=— 1.(2)因为f(x) = xln x+ 1,1所以f' (x)= In x+x • = In x+ 1.x因为f' (x o) = 2,所以In x o+ 1 = 2, 解得x o= e,所以y o= e+ 1.由点斜式得,f(x)在点(e, e+ 1)处的切线方程为y—(e+ 1) = 2(x—e),即2x—y —e + 1 = o.答案(1)— 1 (2)2x—y —e+ 1 = o规律方法(1)导数f' (x o)的几何意义就是函数y= f(x)在点P(x o, y o)处的切线的斜率•第(1)题要能从“切线平行于x轴”提炼出切线的斜率为o,进而构建方程,这是求解的关键,考查了分析问题和解决问题的能力.⑵在求切线方程时,应先判断已知点Q(a, b)是否为切点,若已知点Q(a, b)不是切点,则应求出切点的坐标,利用切点坐标求出切线斜率,进而用切点坐标表示出切线方程.【训练2】(1)(2012新课标全国卷)曲线y=x(3ln x+ 1)在点(1,1)处的切线方程为(2)若函数f(x)= e x cos x,则此函数图象在点(1, f(1))处的切线的倾斜角为()•A •0 B •锐角C •直角D •钝角3解析(1)了= x(3ln x+ 1),.°y' = 3ln x+ 1 + x x= 3ln x+ 4,「k= y' |x= 1= 4, 入所求切线的方程为y—1= 4(x- 1),即4x-y-3 = 0.(2)f‘ (x) = e x cos x—e x sin x= e x(cos x—sin x),•■f' (1)= e(cos 1— sin 1).n n••2>1>4・而由正余弦函数性质可得cos 1<sin 1.•f (1)<0,即卩f(x)在(1, f(1))处的切线的斜率k<0,f •切线的倾斜角是钝角.答案(1)4x —y — 3 = 0 (2)D考点三导数运算与导数几何意义的应用In x 【例3】(2013北京卷)设I为曲线C: y=业在点(1,0)处的切线.X⑴求I的方程;(2)试证明:除切点(1,0)之外,曲线C在直线I的下方.导数几何意义审题路线⑴求f' (1) ——> 点斜式求直线I的方程转化运用导数⑵构建g(x) = x— 1 —f(x) --- >g(x)>0对x>0且X M 1恒成立------- >研究函数y =g(x)的性质一获得结论解⑴设f(x) = I:X,则f' (x)= 1 F x.1 —In 1 ••• f' (1)= 1= 1,即切线I的斜率k= 1.由I过点(1,0),得I的方程为y= x— 1.⑵令g(x) = x— 1 —f(x),贝U除切点之外,曲线C在直线I的下方等价于g(x)>0(?x>0, X M 1).2x —1 + In x g(x)满足g(1) = 0,且g' (x)二1—f' (x)二x2 .当0<x<1 时,x2—1<0, In x<0,••• g' (x)<0,故g(xx)在(0,1)上单调递减;当x>1 时,x—1>0, In x>0, g' (x)>0, g(x)单调递增.所以,g(x)>g(1)= 0(? x>0, X M 1).所以除切点之外,曲线C在直线I的下方.规律方法(1)准确求切线I的方程是本题求解的关键;第(2)题将曲线与切线I的ae 2+ ae 2—位置关系转化为函数g(x) = x — 1 — f(x)在区间(0,+x )上大于o 恒成立的问题, 进而运用导数研究,体现了函数思想与转化思想的应用.(2)当曲线y =f(x)在点P(x o , f(x o ))处的切线平行于y 轴(此时导数不存在)时,切线 方程为x = x o ;当切点坐标不知道时,应首先设出切点坐标,再求解 . 1【训练3】(2014济南质检)设函数f(x)= ae x + x + b(0<a<1).ae (1) 求f(x)在[0,+x )内的最小值;3(2) 设曲线y =f(x)在点(2,f(2))处的切线方程为y =㊁x ,求a 和b 的值. . , x 1 (ae —1( ae + 1)解(1)f (x) = ae — ae x =ae x. 1令 f ' (x) = 0,得 x = In >0.a 1当 0<x<ln 时,f ' (x)<0;a 1当 x>ln ,f ' (x)>0.a••• f(x)在0,In 1上递减,在lln a ,+^ '上递增. 从而f(x)在[0,+x )上的最小值f In a = 2+ b. 3⑵T y =f(x)在点(2,f(2))处的切线为y = 2x , 3••• f(2)= 3,且 f ' (2) = 3, 1ae 2+ b = 3 ae1 32 = ae 2 1 2解之得b = 2且 a = e 2.理解导数的概念时,要注意f'(X0), (f(X0))'与f' (x)的区别:f' (x)是函数y=f(x)的导函数,f' (x o)是f(x)在x= x o处的导数值,是常量但不一定为0, (f(x o))'是常数一定为0, 即(f(x o))' = 0.培养-解题能力教拣解邇提进能力易错辨析3――求曲线切线方程考虑不周【典例】(2014杭州质检)若存在过点0(0,0)的直线I与曲线f(x) = x3—3x2+ 2x 和y=x2+ a都相切,则a的值是().1A - 1 B.641 1c. 1或64 D - 1或—鬲[错解]V 点0(0,0)在曲线f(x) = x3—3x2+ 2x 上,•••直线I与曲线y=f(x)相切于点O.则k= f' (0) = 2,直线I的方程为y= 2x.又直线I与曲线y= x2+ a相切,•'x2+ a —2x= 0 满足△= 4 —4a= 0, a= 1,选A.[答案]A[错因](1)片面理解“过点O(0,0)的直线与曲线f(x) = x3—3x2+ 2x相切这里有两种可能:一是点O是切点;二是点O不是切点,但曲线经过点O,解析中忽视后面情况.(2)本题还易出现以下错误:一是当点0(0,0)不是切点,无法与导数的几何意义沟通起来;二是盲目设直线l的方程,导致解题复杂化,求解受阻.--K又203x 0 + 2, C . In 2[正解]易知点0(0,0)在曲线f(x) = X 3— 3X 2+ 2x 上, ⑴当0(0,0)是切点时,同上面解法.⑵当0(0,0)不是切点时,设切点为 P(X 0, y 0),则y ° = x 3— 3x 0 + 2x 0,且k = f '(X 0)=3x 0— 6x 0 + 2.由①,②联立,得X 0= 2(x 0= 0舍),所以k = — 4, 1•••所求切线I 的方程为y = — 4x.「 1出 y = — 4x , /曰 2 1 c 由 得 x + 4x + a = 0.I 2 | 4y = x + a ,1 1 1 依题意,16— 4a = 0,「a = §4.综上,a = 1 或 a = §4.[防范措施](1)求曲线的切线方程应首先确定已知点是否为切点是求解的关键, 分清过点P 的切线与在点P 处的切线的差异.(2)熟练掌握基本初等函数的导数,导数的运算法则,正确进行求导运算.【自主体验】1函数y = In x(x>0)的图象与直线y =2x + a 相切,贝U a 等于().A . 2ln 2B .In 2 + 1D .In 2 — 1y f I r p解析设切点为(x o, y o),且y' = X,.・. =X = 2,则x o= 2, y o= InX X0 212. 又点(2, In 2)在直线y=2x+ a上,1.n 2 = 2X2+ a,「a= In 2 —1.课时-题组训练_ 阶梯训擦竦出富分对应学生用书P247基础巩固题组(建议用时:40分钟)一、选择题1 •若函数f(x)= ax4+ bx2+ c满足f' (1) = 2,则f' (—1)等于().A1 B 2 C. 2 D . 0解析f' (x) = 4ax3+ 2bx,.f' (x)为奇函数且f' (1)= 2,.' (—1)= —2. 答案B2.y= —x+ 8,贝U f(5) + f' (5)=如图,C.—2 D . 4解析 ■•yx — 1 — x + 1X - 12212 ,y k=(X —1)—23=2 =3- 1 212,・•—a = 2,即解析 如图可知,f(5) = 3, f ' (5)=— 1,因此 f(5) + f ' (5) = 2. 答案 A3. (2014济南质检)设曲线 尸 在点(3,2)处的切线与直线ax + y + 1= 0垂直,X — 1 则 a =().A . 2B . — 21 1C .— 2 D.Q =—2. 答案 B1 2 14•已知曲线y = ^x 2— 3ln x 的一条切线的斜率为一刁则切点横坐标为(). A . — 2 B . 3 C . 2 或—3 D . 2I1 313 1 解析 设切点坐标为(x o , y o ),,.y ' = ?x — x ,: = 2x 0 — x 0 = — 2,即卩 x 0+x o — 6= 0,解得 x o = 2 或一 3(舍). 答案 D5. (2014湛江调研)曲线y = e —2x+ 1在点(0,2)处的切线与直线y = 0和y =x 围成 的三角形的面积为().A1 f 1A? B .1C.3 D .1解析y' |x=o= (—2e-2x)|x=o= —2,故曲线y= e"2x+ 1在点(0,2)处的切线方程为y= —2x+ 2,易得切线与直线y= 0和y=x的交点分别为(1,0), |,故围成1 2 1的三角形的面积为心1X 3二3.二、填空题6. _________________________________________________ 已知函数f(x) = f' J4C0S x+ sin x,则的值为_________________________________ .解析f (x)= —f' ;Sin x+ cos x,.f —f' ©sin :+ cos ;, f ©=\n n n2—1,--f4二(2—1)cos 4+ sin 4二1.答案17. (2013南通一调)曲线f(x)= f e1 e x—f(0)x+ 1x2在点(1, f(1))处的切线方程为________ .解析f‘(x)=f e1 e x—f(0)+x? f ' (1)=f j1 e1—f(0)+1? f(0) = 1.在函数f(x)D Df ' f 1 \ 1 1=e e x—f(0)x+ ?x2中,令x= 0,则得f ' (1)= e所以f(1)= e—?,所以f(x)在1 1(1, f(1))处的切线方程为y= e(x—1)+ f(1) = ex—?,即y= ex —1答案y= ex—28 .若以曲线y= Jx3+ bx2+ 4x+ c(c为常数)上任意一点为切点的切线的斜率恒为非负数,则实数b的取值范围是_____________ .2 2解析y ' = x + 2bx + 4 ,与'> 0 恒成立,二△二4b —16< 0,A-2< b< 2.答案[—2,2]g(X)min = g(2)=92,•a>9,a^ —1 2.、解答题9.已知函数f(x) = x3+ (1 -a)x2—a(a+ 2)x+ b(a, b€ R).⑴若函数f(x)的图象过原点,且在原点处的切线斜率为一3,求a, b的值;(2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围.解f' (x) = 3x2+ 2(1 —a)x—a(a + 2).⑴由题意得I0芒二+ 2 一3, 解得 b = 0, a= — 3 或 1.⑵•/曲线y=f(x)存在两条垂直于y轴的切线,•••关于x的方程f' (x) = 3x2+ 2(1 —a)x —a(a+ 2)= 0有两个不相等的实数根,•••4(1 —a)2+ 12a(a+ 2)>0,即4a2+ 4a + 1>0,10.已知函数f(x) = x3—ax2+ 10.(1)当a= 1时,求曲线y=f(x)在点(2, f(2))处的切线方程;(2)在区间[1,2]内至少存在一个实数x,使得f(x)<0成立,求实数a的取值范围. 解(1)当a= 1 时,f' (x) = 3x2—2x, f(2)= 14,曲线y=f(x)在点(2, f(2))处的切线斜率k=f'⑵=8,•曲线y= f(x)在点(2, f(2))处的切线方程为y—14= 8(x—2),即卩8x—y —2 = 0.3x3+ 10 10⑵由已知得a>x x2 = x+x0,入入设g(x) = x+ x0(1w x<2), g' (x) = 1—2;0,•/ 1< x< 2,•g' (x)v0,「. g(x)在[1,2]上是减函数.能力提升题组(建议用时:25分钟)•a的取值范围是一、选择题1. (2014北京西城质检)已知P, Q为抛物线x2= 2y上两点,点P, Q的横坐标分别为4,—2,过P, Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为().A. 1B. 3C.—4D. —8解析依题意,得P(4,8), Q( —2,2).2x由y= 2,得y,= x.•••在点P处的切线方程为y—8 = 4(x—4),即y= 4x —8.①在点Q处的切线方程为y—2= —2(x+ 2),即卩y= —2x—2•②联立①,②得点A(1,—4).答案C2. 已知f(x)= log a x(a>1)的导函数是f' (x),记A= f,(a), B = f(a+ 1)—f(a), C =f,(a+ 1),则().A. A>B>C B . A>C>BC. B>A>CD. C>B>Af(a+ 1)— f(a) 解析记M(a, f(a)), N(a+ 1, f(a+ 1)),则由于B= f(a+ 1)—f(a)= ,(a+ 1 —a表示直线MN的斜率,A= f,(a)表示函数f(x)= log a x在点M处的切线斜率;C=f,(a+ 1)表示函数f(x) = log a x在点N处的切线斜率.由图象得,A>B>C.答案A、填空题3. (2014武汉中学月考)已知曲线f(x) = x n + 1(n€ N*)与直线x= 1交于点P,设曲线y= f(x)在点P处的切线与X轴交点的横坐标为X n,贝U log2 013X1 + log2 013X2+… + lOg2 013X2 012 的值为 __________________ .解析f' (x)= (n+ 1)X n, k= f' (1) = n+ 1,点P(1,1)处的切线方程为y— 1 = (n+ 1)(x-1),1 n 阳n令y= 0,得x= 1 —= ,即X n= ,n+ 1 n+ 1 n+ 11 2 3 2 011 2 012 1•'X1 X2 … X2 012= 2X3X4^^X 2 012X2 013= 2 013,贝卩log2 013x1 + log2 013x2 + …+ lOg2 013X2 012=lOg2 013(X1X2 …X2 012) =—1.三、解答题4. (2013福建卷改编)已知函数f(x) = X—aln x(a€ R).(1) 当a=2时,求曲线y=f(x)在点A(1, f(1))处的切线方程;(2) 当实数a>0时,求函数f(x)的极值.a解函数f(x)的定义域为(0,+^), f' (x)= 1—.X2(1)当a=2 时,f(x) = x —2ln x, f' (x)= 1 —(x>0),X因而f(1)=1, f' (1) = —1,所以曲线y= f(x)在点A(1, f(1))处的切线方程为y—1 = —(x—1),即x+ y—2= 0.a x—a⑵由f' (x) = 1—x= x, x>0.令f' (x) = 0,得x= a>0.当x€ (0, a)时,f (x)<0;当x€ (a,+x)时,f (x)>0.从而函数f(x)在x= a处取得极小值,且极小值为f(a)= a —aln a,无极大值.。
三角函数的导数和切线
三角函数的导数和切线导数是微积分中一个重要的概念,它描述了函数在某一点上的变化率。
三角函数是数学中常见的函数之一,其导数的求解也是我们需要掌握的知识点之一。
本文将介绍三角函数的导数和切线。
一、正弦函数的导数和切线正弦函数是三角函数中的一种,表示为y = sin(x)。
我们可以通过求导的方式来得到正弦函数的导数。
1. 正弦函数的导数首先,我们需要使用导数的定义来求解正弦函数的导数。
根据导数的定义,导数等于函数在该点的斜率。
对于正弦函数来说,该点的斜率可以通过计算函数的极限来得到。
设f(x) = sin(x),则:f'(x) = lim(h→0) [sin(x+h) - sin(x)] / h通过极限运算,可以得到正弦函数的导数为:f'(x) = cos(x)所以,正弦函数的导数是余弦函数。
2. 正弦函数的切线切线是与函数图像仅有一个交点且与该点的斜率相等的直线。
对于正弦函数来说,我们可以通过求导的方式来获得切线的斜率,从而得到切线的方程。
设点P(x0, y0)为正弦函数上的一点,则切线的斜率k可以通过求解该点的导数f'(x0)得到。
k = f'(x0) = cos(x0)切线方程的一般形式为y - y0 = k(x - x0),代入正弦函数的切线方程为:y - y0 = cos(x0)(x - x0)二、余弦函数的导数和切线余弦函数是三角函数中的另一种,表示为y = cos(x)。
同样地,我们可以通过求导的方式来得到余弦函数的导数以及切线方程。
1. 余弦函数的导数同样地,我们使用导数的定义来求解余弦函数的导数。
根据定义,余弦函数的导数等于函数在该点的斜率。
设f(x) = cos(x),则:f'(x) = lim(h→0) [cos(x+h) - cos(x)] / h通过极限运算,可以得到余弦函数的导数为:f'(x) = -sin(x)所以,余弦函数的导数是负的正弦函数。
朱昊鲲导数切线公式
朱昊鲲导数切线公式要了解朱昊鲲导数切线公式,需要先理解导数的概念以及求导的方法。
然后我们可以根据导数的定义来推导出朱昊鲲导数切线公式。
导数的概念:在微积分中,导数是表示函数变化率的概念。
对于函数f(x),它在点x处的导数(也称为斜率)表示了函数曲线在该点附近的变化率。
导数可以用来判断函数在其中一点的增减性、求解最值问题、计算曲线在其中一点的切线等。
f`(x)=[f(x+h)-f(x-h)]/2h其中,h是一个趋于零的数。
根据导数的定义,我们可以得到朱昊鲲导数切线的公式。
假设函数f(x)在点a处的导数存在,则该点处的切线的斜率即为导数的值,即:f'(a)切线的方程可以表示为:y=f(a)+f'(a)(x-a)其中,f(a)是函数f(x)在点a处的函数值,f'(a)是函数f(x)在点a处的导数。
推导过程:我们可以通过导数的定义和切线的性质来推导出朱昊鲲导数切线公式。
根据导数的定义,f'(a)=[f(a+h)-f(a-h)]/2h(1)另外,切线的斜率可以表示为Δy/Δx,其中Δy是函数值的改变量,Δx是自变量的改变量。
那么,切线的斜率可以表示为:Δy/Δx=[f(a+h)-f(a)]/h根据切线性质,当h趋近于0时,切线的斜率趋近于导数的值。
那么我们可以得到:f'(a) = lim(h→0) [f(a+h) - f(a)] / h (2)另一方面,根据切线方程的性质,切线通过点(a,f(a)),斜率为f'(a)。
那么,切线的方程可以表示为:y-f(a)=f'(a)(x-a)将切线方程中的f'(a)代入为lim(h→0) [f(a+h) - f(a)] / h,我们可以得到朱昊鲲导数切线公式:y = f(a) + lim(h→0) [f(a+h) - f(a)] / h (x - a)这就是朱昊鲲导数切线公式,通过该公式可以求得函数在任意一点的切线的方程。
用导数求切线方程的四种类型
用导数求切线方程的四种类型求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法.类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =-B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+= B.230x y --= C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|. 01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D. 评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x=,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.例3 求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线方程为2000(32)()y y x x x -=--. 320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--. 解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解. 例4 求过点(20),且与曲线1y x=相切的直线方程.解:设00()P x y ,为切点,则切线的斜率为021x x y x ='=-|.∴切线方程为0021()y y x x x -=--,即02011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得0211(2)x x x -=--.解得000111x y x ===,,即20x y +-=.评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上. 设切点为00()M x y ,,则点M 的坐标满足30003y x x =-. 因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--. 化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=. 评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.。
求导公式练习及导数与切线方程
考点分析:以解答题的形式考查函数的单调性和极值;近几年高考对导数的考查每年都有,选择题、填空题、解答题都出现过,且最近两年有加强的趋势。
知识点一:常见根本函数的导数公式〔 1〕〔 C 为常数〕,〔 2〕〔 n 为有理数〕,〔 3〕,〔 4〕,〔 5〕,〔 6〕,〔 7〕,〔8〕,知识点二:函数四那么运算求导法那么设,均可导〔1〕和差的导数:〔 2〕积的导数:〔 3〕商的导数:〔〕知识点三:复合函数的求导法那么1. 一般地,复合函数对自变量的导数,等于函数对中间变量的导数,乘以中间变量对自变量的导数,即或题型一:函数求导练习例一:函数y=e x sinx的导数等于.例二:函数y=〔 x2+1〕e x的导数为.例三:函数 f 〔 x〕 =cos〔 2﹣3x〕的导数等于_________.变式练习:1.求函数y=的导数.2.求函数y=〔 1+cos2x 〕2的导数.3.求 y=e2x cos3x 的导数.题型二:用导数求切线方程的四种类型求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点P( x0, y0 ) 及斜率,其求法为:设P(x0,y0 ) 是曲线 y f (x) 上的一点,那么以P 的切点的切线方程为: y y0 f ( x0 )( x x0 ) .假设曲线y f ( x) 在点 P( x0, f (x0 )) 的切线平行于y 轴〔即导数不存在〕时,由切线定义知,切线方程为x x0.下面例析四种常见的类型及解法.类型一:切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数 f ( x) ,并代入点斜式方程即可.例 1 曲线 y x3 3 x21在点 (1, 1)处的切线方程为〔〕A. y 3x 4B. y 3 x 2C. y 4 x 3D. y 4 x 5解:由 f( x)2 6 x 那么在点 (1,1)处斜率 k f (1) 3 ,故所求的切线方程为3xy ( 1)3(x1),即 y 3 x 2,因而选B.类型二:斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例 2 与直线 2 x y 40 的平行的抛物线y x2 的切线方程是〔〕A. 2 x y 3 0B. 2x y 3 0C. 2 x y 1 0D. 2x y 1 0解:设 P(x0, y0 ) 为切点,那么切点的斜率为y |x x02x0 2.∴ x0 1.由此得到切点(11),.故切线方程为y 12( x 1),即 2 x y 10 ,应选D.评注:此题所给的曲线是抛物线,故也可利用法加以解决,即设切线方程为 y 2 x b ,代入 y x2,得 x2 2 x b0 ,又因为0 ,得 b 1 ,应选D.类型三:过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.例 3 求过曲线 y x32x 上的点 (1, 1) 的切线方程.解:设想 P( x0,y0 ) 为切点,那么切线的斜率为y |x x03x022.∴切线方程为 y y0(3 x022)( x x0 ) .y ( x03 2 x0 ) (3 x022)( x x0 ) .又知切线过点 (1, 1) ,把它代入上述方程,得1( x032x0 )(3 x022)(1x0 ) .解得 x0 1 ,或 x0 1 .2故所求切线方程为 y (1 2) (3 2)( x1) ,或 y 1131,即82x42x y 2 0 ,或 5 x 4 y 1 0 .评注:可以发现直线 5 x 4 y 1 0 并不以 (1, 1) 为切点,实际上是经过了点(1, 1) 且以17,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用28待定切点法.类型四:过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例 4 求过点 (2,0) 且与曲线 y1相切的直线方程.x解:设 P(x 0, y 0 ) 为切点,那么切线的斜率为 y |x x1 .2x 0∴ 切线方程为 y1( x 11(xx 0 ) .y 02x 0 ) ,即 yx2xx又切线过点(2,0) ,把它代入上述方程,得1 1 (2 x 0 ) .x 0x 0 2解得 x 0 1, y 011 ,即 x y2 0 .x 0评注:点 (2,0) 实际上是曲线外的一点,但在解答过程中却无需判断它确实切位置,充分反映出待定切点法的高效性.例 5 函数 y x 33x ,过点 A(0,16) 作曲线 y f ( x) 的切线,求此切线方程.解:曲线方程为yx 3 3x ,点 A(0,16) 不在曲线上.设切点为 M (x 0,y 0 ) , 那么点 M 的坐标满足y 0 x 0 3 3x 0 .因 f ( x 0 ) 3( x 0 2 1) , 故切线的方程为y y 0 3( x 0 2 1)(x x 0 ) .点 A(0,16) 在切线上,那么有16 (x 0 33x 0 ) 3(x 021)(0 x 0 ) .化简得 x 038 ,解得 x 02 .所以,切点为 M ( 2, 2) ,切线方程为 9 xy 16 0 .评注: 此类题的解题思路是,先判断点A 是否在曲线上, 假设点 A 在曲线上, 化为类型一或类型三;假设点A 不在曲线上,应先设出切点并求出切点. 练习:曲线 y2 x x3 在点〔 1, 1〕处的切线方程为.3、求直线的方程〔 1〕求曲线 y1x在切点 (1,1) 的切线方程及在 x =2 处的切线方程;〔 2〕求过曲线 y x ln x 上一点 (1,0) 且与此点为切点的切线垂直的直线方程;sin x〔 3〕求以曲线y上一点(,0) 为切点的切线方程;x4、〔 1〕求曲线y e x x 上的点到直线y 2x 3 的最短距离;〔 2〕设函数f (x) ax1( a, b Z ) ,曲线y f (x) 在点 (2, f (2)) 处的切线方程x b为y 3,求 f (x) 的解析式.〔 3〕求经过原点的曲线y xe x的切线方程。
函数切线方程的求法
函数切线方程的求法:
函数切线是指与函数图像在某一点处相切的直线。
切线方程可以通过以下步骤来求得:
确定切点:需要先确定切点的横坐标和纵坐标。
求函数的导数:切线的斜率等于函数的导数,因此需要求出函数的导数。
带入求解:用切点的横坐标和纵坐标,以及函数的导数,带入一般式直线方程y-y_0=k(x-x_0),即可求得切线的方程。
其中,(x_0,y_0)为切点坐标,k为函数的导数。
例如,若要求函数y=x^2+1在点(1,2)处的切线方程,则可以先求出函数的导数y'=2x,再带入求解,得到切线方程为y-2=2(x-1),即y=2x+1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习
1 一 运 物 走 的 程 例、 个 动 体 过 路 s 位 m 时 t 位 s (单 : )是 间(单 : )的 函 s= f(t) 2t。 f′(5), 数 = 求 并
2
释 的 际 义 解 它 实 意 。
ห้องสมุดไป่ตู้
2 求函数y = 例2、 求函数y= f(x) +x在下列各点 x 导数, 几何意义: 的 导数并说明其的 , 几何意义 : (1) = −2, x (2) = x0 x
练
习
应用练习 3 = 例 、 函 y= f(x) 2x 在 =1 3 求 数 x
的 线 程 处 切 方 。
变式练习
求曲线y= f(x) 2x 过点(1,2)的切线 y = 过点( 求曲线
3
方程。 方程。
方法总结
1、求曲线y=f(x)在点 、求曲线 在点P(a,f(a))处的切线方程: 处的切线方程: 在点 处的切线方程 (1)求斜率 f′(a) 求斜率k= 求斜率 (2)求切线方程:y-b= f′(a) 求切线方程: (x-a) 求切线方程 2、求曲线y=f(x)过点 、求曲线 过点P(a,f(a))的切线方程: 的切线方程: 过点 的切线方程 (1)设切点(m,n) 设切点( 设切点 (2)列切点满足的方程组:曲线方程和切线方程 列切点满足的方程组: 列切点满足的方程组 (3)求出切点,再求斜率和切线方程。 求出切点,再求斜率和切线方程。 求出切点