九年级数学配方法

合集下载

人教版数学九年级上册22.2.1《配方法》说课稿2

人教版数学九年级上册22.2.1《配方法》说课稿2

人教版数学九年级上册22.2.1《配方法》说课稿2一. 教材分析《配方法》是人教版数学九年级上册第22.2.1节的内容,本节课的主要内容是让学生掌握配方法的原理和应用。

配方法是解一元二次方程的一种重要方法,它能把一般形式的一元二次方程转化为完全平方式,从而使方程的解法更加简单。

在初中数学中,配方法不仅是一元二次方程解法的基础,也是后续学习二次函数、一元二次不等式等知识的基础。

二. 学情分析九年级的学生已经学习过一元二次方程的基本概念和解法,对二次项、一次项、常数项有一定的了解。

但是,学生对于配方法的原理和推导过程可能还不太理解,对于如何运用配方法解决实际问题可能还存在困难。

因此,在教学过程中,我需要引导学生从已有的知识出发,逐步理解和掌握配方法,并能够运用配方法解决实际问题。

三. 说教学目标1.知识与技能目标:让学生掌握配方法的原理和步骤,能够运用配方法解一元二次方程。

2.过程与方法目标:通过学生的自主探究和合作交流,培养学生的数学思维能力和解决问题的能力。

3.情感态度与价值观目标:让学生体验数学的乐趣,培养对数学的兴趣和自信心。

四. 说教学重难点1.教学重点:配方法的原理和步骤,如何运用配方法解一元二次方程。

2.教学难点:配方法的推导过程,如何灵活运用配方法解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生自主探究和合作交流。

2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合数学软件和网络资源,为学生提供丰富的学习资源。

六. 说教学过程1.导入新课:通过复习一元二次方程的基本概念和解法,引出配方法的概念和作用。

2.自主探究:让学生自主探究配方法的原理和步骤,引导学生发现配方法的规律。

3.合作交流:让学生分组讨论,分享各自的方法和经验,互相学习和借鉴。

4.讲解示范:通过讲解和示范,让学生理解和掌握配方法的具体操作步骤。

5.练习巩固:布置一些练习题,让学生运用配方法解一元二次方程,巩固所学知识。

九年级上册数学配方法

九年级上册数学配方法

配方法是一种在数学中解决二次方程的解法。

其基本思想是通过恒等变形,把一个解析式利用配方,配成一个完全平方式,然后利用平方的非负性,得到一个最简方程,进而求出原方程的解。

具体来说,对于一元二次方程ax²+bx+c=0(a,b,c为常数,a≠0),可以通过配方将其转化为(x+b/2a)²=(b²-4ac)/4a²的形式,然后通过平方的非负性求出x的解。

配方法通常分为以下步骤:
1. 将二次项系数化为1,即将方程化为x²+bx+c=0的形式;
2. 找到方程的两根x1和x2,令x1+x2=-b/a,x1*x2=c/a;
3. 将方程的右边化为0,即方程化为x²+bx+c=0的形式;
4. 将方程的左边配方,即方程化为(x+b/2a)²=(b²-4ac)/4a²的形式;
5. 通过平方的非负性求出x的解,即(x+b/2a)²=(b²-4ac)/4a²≥0,解得x=-b/2a±√(b²-4ac)/2a。

需要注意的是,当b²-4ac<0时,方程没有实数解。

此外,配方法也可以用于解高次方程或不等式等问题。

人教版九年级初中数学上册第二十一章一元二次方程-解一元二次方程(配方法)PPT课件

人教版九年级初中数学上册第二十一章一元二次方程-解一元二次方程(配方法)PPT课件
2
B.x 2 6 x 8 0,x 2 6 x 9 8 9, x 3 1
2
2
2
2
7
7 7
7 7 97
C.2 x 7 x 6 0,x x 3, x 2 x 3 , x
第二十一章 一元二次方程
21.2.1 解一元二次方程
——配方法
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.理解配方法的概念,并运用配方法解一元二次方程。
2.掌握用配方法解一元二次方程的一般步骤。
重点难点
重点:用配方法解一元二次方程。
难点:用配方法解一元二次方程的步骤。
新知探究
尝试写出解方程x2+6x+4=0的过程?
第二十一章 一元二次方程
课 程 结 束
人教版九年级(初中)数学上册
授课老师:XX
C.大于等于1
的值( C )
D.不大于1
【思路点拨】将二次三项式配方,然后根据平方大于等于0,求出最值。
【解题过程】 解:∵ 2 x 2 4 x 3
2 x 2 2 x 1 2 1 3
2 x 1 1。
2
2 x 1 0,
2
原式 1。
方”)
新知探究
通过配方法解一元二次方程的步骤
用配方法解一元二次方程
ax 2 bx c 0 a 0 的一般步骤:
(1)移项:将含有x的项移到方程的左边,常数项移到方程的右边;
(2)二次项系数化为1:两边同除以二次项的系数;
(3)配方:方程两边都加上一次项系数一半的平方;

人教版数学九年级上册22.2.2《配方法》教案1

人教版数学九年级上册22.2.2《配方法》教案1

人教版数学九年级上册22.2.2《配方法》教案1一. 教材分析《配方法》是初中数学九年级上册的教学内容,主要目的是让学生掌握配方法的基本原理和应用。

配方法是一种解决二次方程问题的方法,通过将二次方程转化为完全平方形式,从而简化问题的求解过程。

本节课的内容是在学生已经掌握了二次方程的基本概念和求解方法的基础上进行讲解的,为后续学习更复杂的二次方程问题打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了二次方程的基本概念和求解方法,具备了一定的数学基础。

但是,对于配方法的理解和应用还需要进一步的引导和培养。

学生的学习兴趣和学习积极性较高,对于新的学习内容有一定的好奇心和求知欲。

三. 教学目标1.让学生掌握配方法的基本原理和应用。

2.培养学生解决二次方程问题的能力。

3.培养学生的逻辑思维能力和创新思维能力。

四. 教学重难点1.配方法的基本原理的理解和应用。

2.配方法在解决二次方程问题中的应用。

五. 教学方法采用问题驱动的教学方法,通过引导学生自主探究和合作交流,让学生在解决实际问题的过程中掌握配方法的基本原理和应用。

同时,运用案例教学法,结合具体的例子进行讲解,使学生更好地理解和掌握配方法。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备教学课件和教学素材。

七. 教学过程导入(5分钟)通过一个实际问题引入本节课的主题,例如:已知一个二次方程的解为x1=3和x2=4,求原方程。

让学生尝试解决这个问题,引发学生对配方法的好奇心和兴趣。

呈现(10分钟)讲解配方法的基本原理和步骤。

通过具体的例子进行讲解,让学生理解和掌握配方法的基本原理和应用。

同时,引导学生进行思考和讨论,巩固学生的理解。

操练(10分钟)让学生进行配方法的练习。

提供一些配方法的练习题,让学生独立完成。

在学生完成练习的过程中,进行巡视指导和解答学生的疑问。

巩固(10分钟)通过一些综合性的题目,让学生应用配方法解决实际问题。

引导学生进行合作交流,共同解决问题,巩固学生对配方法的理解和应用。

人教版数学九年级上册教案21.2.1《配方法》

人教版数学九年级上册教案21.2.1《配方法》

人教版数学九年级上册教案21.2.1《配方法》一. 教材分析《配方法》是人教版数学九年级上册第21章第2节的内容,本节课主要让学生掌握配方法的原理和步骤,并能够运用配方法解决一些实际问题。

教材通过引入“完全平方公式”的概念,引导学生探索如何将一个二次多项式转化为完全平方形式,从而引出配方法。

学生在学习过程中,需要理解并掌握配方法的基本步骤,以及如何判断一个多项式是否可以配成完全平方形式。

二. 学情分析学生在学习本节课之前,已经学习了二次方程的解法、完全平方公式等知识,对于二次多项式的基本概念和性质有一定的了解。

但学生在运用配方法解决实际问题时,可能会遇到一些困难,如判断多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。

因此,在教学过程中,教师需要关注学生的学习情况,引导学生积极参与课堂活动,提高学生运用配方法解决问题的能力。

三. 教学目标1.知识与技能目标:使学生掌握配方法的原理和步骤,能够运用配方法将一个二次多项式转化为完全平方形式。

2.过程与方法目标:通过小组合作、讨论交流等学习活动,培养学生探索问题、解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和自信心。

四. 教学重难点1.重点:配方法的原理和步骤。

2.难点:如何判断一个多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。

五. 教学方法1.启发式教学:教师通过提出问题,引导学生思考和探索,激发学生的学习兴趣。

2.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队协作能力。

3.案例教学:教师通过举例子,让学生理解并掌握配方法的运用。

六. 教学准备1.准备相关教案和教学资料。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备一些实际问题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)教师通过提出一个实际问题,引导学生思考如何解决。

例如:已知一个二次多项式 f(x) = x^2 - 6x + 9,请问如何将其转化为完全平方形式?2.呈现(10分钟)教师引导学生回顾二次方程的解法和完全平方公式,然后引导学生探索如何将 f(x) = x^2 - 6x + 9 转化为完全平方形式。

人教版九年级上册数学《配方法》一元二次方程PPT教学课件

人教版九年级上册数学《配方法》一元二次方程PPT教学课件

将常数项移到右边,含未 2 2 -3=-1
知数的项移到左边
一移
移项
二化
二次项系数 左、右两边同时除以二次 2 - =
化为1
项系数
三配
配方
左、右两边同时加上一次
项系数一半的平方
利用平方根的意义直接开
平方
四开
开平方
五解
解两个一元 移项,合并
一次方程
2
3 1
即 x
4 16
★ 用配方法解方程
探究交流
怎样解方程x2+6x+4=0?
1.把方程变成(x+n)2=
x2+6x+4=0
移项
二次项系数为1的完全平方式:
x2+6x=-4
常数项等于一次项系数一半的平方.
两边都加上9
x2+6x+9=-4+9
配方
(x+3)2=5
2.用直接开平方法解方程(x+3)2=5
(x+3)2=5
开方
x x
1
2
例1 利用直接开平方法解下列方程:
(1) x2=25;
(1) x2=25,
解:
直接开平方,得 x 5,
x1 5 ,x2 5.
(2) x2-900=0.
(2)移项,得 x2=900.
直接开平方,得 x=±30,
∴x1=30, x2=-30.
★ 用直接开平方法解方程
对照例1中解方程的方法,你认为怎样解方程(x+2)2=25?
解:x2+2x-3=0,
(x+1)2=4.
x1=-3,x2=1.
5.如图,在R

九年级数学上册配方法计算题

九年级数学上册配方法计算题

九年级数学上册配方法计算题
九年级数学上册涉及到配方法计算题的内容主要包括一元二次方程的配方法解题、配方法求解不等式、配方法求解二次函数的顶点等。

配方法是解决一元二次方程的常用方法之一,通过配方法可以将一元二次方程转化为完全平方的形式,从而更容易求解方程。

在配方法计算题中,学生需要掌握完全平方公式,即
(a+b)²=a²+2ab+b²和(a-b)²=a²-2ab+b²,以及利用这些公式将一元二次方程转化为完全平方的形式。

通过配方法,可以将一元二次方程转化为(x±a)²=b的形式,从而求得方程的解。

此外,学生还需要掌握如何利用配方法来解决不等式,以及如何利用配方法求解二次函数的顶点和对称轴等问题。

在解题过程中,学生需要注意化简表达式、正确运用完全平方公式、准确地进行计算和代入等步骤,确保解题过程的准确性和完整性。

另外,学生还需要理解配方法的原理和应用场景,从而能够灵活运用配方法解决实际问题。

总之,九年级数学上册的配方法计算题涉及到一元二次方程的配方法解题、配方法求解不等式、配方法求解二次函数的顶点等内
容,学生需要掌握相关的基本概念和方法,灵活运用配方法解决各种类型的数学问题。

希望这些信息能够帮助你更好地理解九年级数学上册配方法计算题的内容。

九年级上册数学人教版 一元二次方程的解法-配方法

九年级上册数学人教版  一元二次方程的解法-配方法

第2讲 一元二次方程的解法(二)----配方法配方法:利用完全平方公式把一元二次方程转化成的形式,再利用直接开平方法解一元二次方程的方法叫做配方法.①当p >0时,方程有两个不等的实数根,;②当p=0时,方程有两个相等的实数根=-n ;③当p <0时,因为对任意实数x ,都有,所以方程无实数根. 知识要点梳理:完全平方公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+-尝试解方程:x 2-4x +3=0我们把方程x 2-4x +3=0变形为(x -2)2=1,它的左边是一个含有未知数的完全平方式,右边是一个非负常数.这样,就能应用直接开平方的方法求解.这种解一元二次方程的方法叫做配方法.练一练 :配方.填空:(1)x 2+6x +( )=(x + )2;(2)x 2-8x +( )=(x - )2;(3)x 2+23x +( )=(x + )2; 从这些练习中你发现了什么特点?(1)________________________________________________(2)________________________________________________经典例题例1. 用配方法解下列方程:(1)x 2-6x -7=0; (2)x 2+3x -1=0. 解(1)移项,得x 2-6x =____.方程左边配方,得x 2-2·x ·3+_ _2=7+___,即(____ __)2=__ __.所以 x -3=_______.原方程的解是x 1=_____,x 2=_____.(2)移项,得x 2+3x =1.方程左边配方,得x 2+3x +( )2=1+____,即 ____________________所以___________________原方程的解是: x 1=______________x 2=___________总结规律用配方法解二次项系数是1的一元二次方程?有哪些步骤?例2.用配方法解下列方程:(1)011242=--x x (2)03232=-+x x(3)03422=+-x x例3.当x 为何值时,代数式5x 2 +7x +1和代数式x 2 -9x +15的值相等?例4.求证:不论a 、b 取何实数,多项式a 2b 2 +b 2 -6ab -4b +14的值都不小于1.例5. 试证:不论k 取何实数,关于x 的方程 (k 2 -6k +12)x 2 = 3 - (k 2 -9)x 必是一元二次方程.经典练习一、选择题1.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .±3D .以上都不对2. 若9x 2 -ax +4是一个完全平方式,则a 等于( );A. 12B. -12C. 12或-12D. 6或-63.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-14.把方程x x 432=+,得( )A .(x-2)2=7B .(x+2)2=21C .(x-2)2=1D .(x+2)2=25.用配方法解方程x 2+4x=10的根为( )A .2±B .-2C .D .6.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数二、填空1.用适当的数填空:①、x 2+6x+ =(x+ )2; ②、x 2-5x+ =(x - )2; ③、x 2+ x+ =(x+ )2; ④、x 2-9x+ =(x - )2⑤ (x - )2 = x 2 - 32x + ;2.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,所以方程的根为_________.三.用配方法解方程:(1)x2+8x-2=0 (2)x2-5x-6=0.(3)2x2-x=6 (4)4x2-6x+()=4(x-)2=(2x-)2(5)x2+px+q=0(p2-4q≥0).四、用配方法求解下列问题(1)求2x2-7x+2的最小值;(2)求-3x2+5x+1的最大值。

新人教版九年级数学(上)一元二次方程的解法——配方法、求根公式法

新人教版九年级数学(上)一元二次方程的解法——配方法、求根公式法

新人教版九年级数学(上)一元二次方程的解法——配方法、求根公式法知识点一、配方法解一元二次方程()002≠=++a c bx ax 222442a ac b a b x -=??? ??+? ※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。

典型例题:例1、试用配方法说明322+-x x 的值恒大于0。

例2、已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。

例3、已知,x、y y x y x 0136422=+-++为实数,求yx 的值。

例4、分解因式:31242++x x一元二次方程的解法(二)针对练习:★★1、试用配方法说明47102-+-x x 的值恒小于0。

★★2、已知041122=---+x x x x ,则=+x x 1 .★★★3、若912322-+--=x x t ,则t 的最大值为,最小值为。

★★★4、如果4122411-++-=--++b a c b a ,那么c b a 32-+的值为。

知识点二、根的判别式从配方法那里我们知道不是所有的一元二次方程都是有实数解的,原因在于配方得到的右边的项为2244a ac b - ;而当04422<-a ac b ,是不能开方的,所以方程无实数解。

而2244aac b -与0的大小关系又取决于ac b 42-;所以:当042>-ac b 时,方程有两个不相等的实数根;当042=-ac b 时,方程有两个相等的实数根;当042<-ac b 时,方程没有实数根。

由此可知ac b 42-的取值决定了一元二次方程根的情况,我们把ac b 42-称作根的判别式,用符号“Δ”表示;即:ac b 42-=? 根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。

典型例题:例1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是。

例2、关于x 的方程()0212=++-m mx x m 有实数根,则m 的取值范围是( ) A.10≠≥且m m B.0≥m C.1≠m D.1>m例3、已知关于x 的方程()0222=++-k x k x (1)求证:无论k 取何值时,方程总有实数根;(2)若等腰?ABC 的一边长为1,另两边长恰好是方程的两个根,求?ABC 的周长。

北师版九年级数学上册第2章2用配方法求解一元二次方程

北师版九年级数学上册第2章2用配方法求解一元二次方程
一次项系数一半的平方; (2)若方程的二次项系数不为1,则先将二次项系数化为1,
再在方程的两边同时加上一次项系数一半的平方.
特别提醒
知2-讲
1.用配方法解方程时,在方程两边同时加上“一次项系数
一半的平方”,这里“一次项系数”是指在二次项系数
化为1后的一次项系数.另外,要注意是在方程“两边”
都加,不是“一边”加.
知3-练
3-1. 关爱儿童健康,创建育人环境. 如图,某幼儿园教室 矩形地面的长为8 m,宽为5 m,现准备在地面正中间 铺设一块面积为18 m2的地毯. 四周未铺地毯的条形区 域的宽度相同, 求四周未铺地毯的条形区域的宽度.
知3-练
解:设四周未铺地毯的条形区域的宽度是 x m. 根据题意,得(8-2x)(5-2x)=18. 整理,得 x2-123x=-121. 配方,得 x2-123x+-1432=-121+-1432, 即x-1432=8116.
知3-练
思路导引:
知3-练
解:设AD=x m(0 < x ≤ 20),则AB=1002-xm. 根据题意,得x·1002-x=450 . 整理,得x2-10 0x+900=0. 配方,得(x-50)2=1600, 解得x1=10,x2=90(舍去). 所以,所利用旧墙AD 的长为10 m.
知3-练
知1-讲
知1-练
例 1 用直接开平方法解下列方程: 解题秘方::紧扣“直接开平方法”的步骤求解.
知1-练
(1)9x2-81=0;
解:移项,得9x2=81. 系数化为1,得x2=9. 开平方,得x =±3 . ∴ x1=3,x2=-3 .
将方程变成左边是完 全平方的形式,且系数为1, 右边是非负数的形式(如果 方程右边是负数,那么这 个方程无实数根).

九年级数学配方法解一元二次方程

九年级数学配方法解一元二次方程

左边写成完全平方的形式
(x 3)2 5
开平方
变成了(x+h)2=k 的形式
x3 5
x3 5,x3 5 得: x1 3 5, x2 3 5
用配方法解一元二次方程的步骤
1、 常数项 移到方程右边. 2、将方程左边配成一个 完全平方 式。 (两边都加上 一次项系数一半的平方 ) 3、用 直接开平方法 解出原方程的解。
根据平方根的定义,可解得 x1 a,x2 a
这种解一元二次方程的方法叫做直接开平方
法. 2.把一元二次方程的左边配成一个完全平方
式,然后用开平方法求解,这种解一元二次方程的 方法叫做配方法.
注意:配方时, 等式两边同时加上的是一次项 系数一半的平方.
21.2 解一元二次方程 21.2.2 公式法复习题
1. 证明:代数式x2+4x+ 5的值不小于1.
2. 证明:代数式-2y2+2y-1的值不大于
1 2
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
1.一般地,对于形如x2=a(a≥0)的方程,
答:道路宽1米
课堂练习
3.若实数x、y满足(x+y+2)(x+y-1)=0,
则x+y的值为( D ).
(A)1
(B)-2
(C)2或-1 (D)-2或1
4.对于任意的实数x,代数式x2-5x+10的值
是一个( B )
(A)非负数 (B)正数
(C)整数 (D)不能确定的数
综合应用
例题3. 用配方法解决下列问题

人教版九年级上册数学课件 21.2.1 配方法(共37张PPT)

人教版九年级上册数学课件  21.2.1  配方法(共37张PPT)

知识回顾 问题探究 课堂小结
知识梳理
1.直接开平方法解一元二次方程:若x2 aa 0, 则x叫做a的平方
根,表示为x a,这种解一元二次方程的方法叫做直接开平 方法。
2.配方法解一元二次方程:在方程的左边加上一次项系数一半的 平方,再减去这个数,使得含未知数的项在一个完全平方式里, 这种方法叫做配方,配方后就可以用因式分解法或直接开平方 法了,这样解一元二次方程的方法叫做配方法。
1
b 2 2
x
b 2
2
4
b2 4
x b 4 b2
2
2
b 4 b2 x
2
【思路点拨】将二次项系数为1的二次三项式配成完全平方式,常数项
为一次项系数一半的平方。将方程化成 x m2 n 的形式。
知识回顾 问ห้องสมุดไป่ตู้探究 课堂小结
探究二:利用配方法解一元二次方程 重点、难点知识★▲
活动2 利用配方法解一元二次方程
知识回顾 问题探究 课堂小结 探究一:配方法解一元二次方程的步骤 难点知识▲
活动2 大胆猜想,探究新知。
1.方程x2+6x+9=2的等号左边是一个_完__全__平__方___式____,可用 _直___接__开__平__方__法_____解。 2.方程x2+6x-16=0的等号左边_不__是____(是或不是)一个完
知识回顾 问题探究 课堂小结 探究一:配方法解一元二次方程的步骤 难点知识▲
活动1 以旧引新
要使一块矩形场地的长比宽多6m,并且面积为16m2, 场地的长和宽应各是多少? 问题(:1)如何设未知数?怎样列方程?
设场地的宽为xm,长为(x+6)m,根据题 意 列 方 程 得 x ( x+6 ) =16 , 整 理 后 为 x2+6x16=0。 (2)所列方程与我们上节课学习的方程x2+6x+9=2 有何联系与区别?

考点03 配方法、根的判别式以及根与系数关系的9考点归类-解析版 2023-2024学年九年级数学考

考点03 配方法、根的判别式以及根与系数关系的9考点归类-解析版 2023-2024学年九年级数学考

考点03 配方法、根的判别式以及根与系数关系的9考点归类1,配方法的应用的方法技巧(1)比较大小:配方法不但可以解一元二次方程,而且能求代数式的最值,还能用于比较代数式的大小.用配方法比较代数式的大小,主要是用作差法将代数式作差后得到的新代数式配方,根据新代数式与0的关系确定代数式的大小(2)求最值:用配方法求代数式的最值是将代数式配方为完全平方式与常数的和的形式,根据完全平方式的非负性确定代数式的最值;(3)未知系数的取值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.(4)用配方法构造“非负数之和”解决问题:通过配完全平方式,利用“非负性”解决问题。

2,根的判别式的应用的方法【技巧】根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.(1)判断根的情况:式子b2-4ac叫做方程ax2+bx+c=0(a≠0)根的判别式,通常用希腊字母△表示它,即△=b2-4ac.(2)求字母的值或取值范围:根据判别式,确定与0的关系,直接代入解不等式即可。

(3)与三角形结合:一般会把根与三角形的边进行结合考察,考虑到三角形的三边关系能否构成三角形即可,有时候还会与等腰三角形结合。

(4)与一次函数结合:通过一次函数与方程和不等式的关系,观察图像即可。

3,根与系数的关系方法根与系数的关系:若x1,x2是一元二次方程ax²+bx+c=0(a≠0)的两根时,x1+x2=-ba ,x1x2=ca.考点1比较大小考点2求最值考点3未知系数的取值考点4用配方法构造“非负数之和”解决问题考点5判断根的情况考点6求字母的值或取值范围考点7与三角形结合考点8与一次函数结合考点9 根与系数的关系求变形式子考点1 利用配方法比较大小【详解】(1)224622x x x -+=-+(),所以当2x =时,代数式246x x -+有最小值,这个最值为2,故答案为:2-;2;2;小;2;(2)2123x x ---()222x x =-+2110x =-+()>则2123x x -->.【点睛】本题考查的是配方法的应用,掌握配方法的一般步骤是解题的关键,注意偶次方的非负性的应用.2.(2022秋·七年级单元测试)我们知道20a ≥,所以代数式2a 的最小值为0.学习了多项式乘法中的完全平方公式,可以逆用公式,即用()2222a ab b a b ±+=±来求一些多项式的最小值.例如,求263x x ++的最小值问题.解:∵()2226369636x x x x x ++=++-=+-,又∵()230x +≥,∴()2366x +-≥-,∴263x x ++的最小值为6-.请应用上述思想方法,解决下列问题:(1)探究:()2245____________x x x -+=+;(2)求224x x +的最小值.(3)比较代数式:21x -与23x -的大小.【答案】(1)2-,1(2)2-(3)21>23x x --【分析】(1)根据完全平方式的特征求解.(2)先配方,再求最值.(3)作差后配方比较大小即可.【详解】(1)解:22245441(2)1x x x x x -+=-++=-+.(2)222242(211)2(1)2x x x x x +=++-=+-,故答案为:2,2-(2)解:221612611x x x x --+=-+2692x x =-++()232x =-+()30,x -³Q()23220,x \-+³>21612.x x \->-(3)解:()222323x x x x -++=--+()22113x x =--+-+()214x =--+ ()210,x --£Q ()2144,x \--+£ ∴223x x -++的最大值为4.【点睛】本题考查的是配方法的应用,掌握“配方法的步骤与非负数的性质”是解本题的关键.考点2利用配方法求最值【分析】(1)根据完全平方式的特征求解;(2)先配方,再求最值;(3)作差后配方比较大小.【详解】(1)解:()2224644222x x x x x +=-++=-+-故当20x -=,即2x =时,代数式246x x -+最小值为2;(2)∵224250x x y y -+++=,则2244210x x y y -++++=,∴()()22210x y -++=,即20x -=,10y +=,∴2x =,1y =-,∴211x y +=-=;(3)()()2221232211x x x x x ---=-+=-+,∵()210x -≥,∴()2110x -+>,∴2123x x ->-.【点睛】本题考查配方法的应用,正确配方,充分利用平方的非负性是求解本题的关键.7.(2023春·陕西咸阳·八年级统考期末)把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式: ²43a a ++.解:原式:²441(2)²1(21)(21)(3)(1)a a a a a a a =++-=+-=+++-=++②2246M a a =-+, 利用配方法求M 的最小值.解:2²462(²21)622(1)²4M a a a a a =-+=-++-=-+222(1)02(1)44a a -≥∴-+≥,,∴当1a =时,M 有最小值4.请根据上述材料解决下列问题:(1)用配方法因式分解²412x x --;(2)若 2441M x x =+-, 求M 的最小值.【答案】(1)(6)(2)x x -+考点3 利用配方法未知系数的取值∴2a =,1b =,∴1a b -=,故选A .【点睛】本题考查了解一元二次方程的方法—配方法,熟练一元二次方程的解法是解题的关键.10.(2023春·山东威海·八年级统考期末)用配方法解方程2610x x --=,若配方后结果为2()x m n -=,则n 的值为( )A .10-B .10C .3-D .9【答案】B【分析】利用配方法将方程2610x x --=配成2()x m n -=,然后求出n 的值即可.【详解】∵2610x x --=,∴261x x -=,∴26919x x -+=+,即2(3)10x -=, 10n ∴=.故选:B .【点睛】本题主要考查了利用配方法解一元二次方程,熟练掌握配方法的步骤是解题的关键.11.(2023秋·全国·九年级专题练习)用配方法解一元二次方程2630x x ++=时,将它化为2()x m n +=的形式,则m n -的值为( )A .6-B .3-C .0D .2【答案】B【分析】由2630x x ++=,配方可得()236x +=,进而可得m n ,的值,然后代入m n -,计算求解即可.【详解】解:∵2630x x ++=,∴2696x x ++=,∴()236x +=,∴3m =,6n =,∴3m n -=-,故选:B .【点睛】本题考查了配方法解一元二次方程,代数式求值.解题的关键在于正确的配方求出m n ,的值.考点4 用配方法构造“非负数之和”解决问题∵三角形的三条边为a,b,c,∴b-a<c<b+a,∴3<c<13.又∵这个三角形的最大边为c,∴8<c<13.故选:C.【点睛】本题考查了配方法在三角形的三边关系中的应用,熟练掌握配方法、偶次方的非负性及三角形的三边关系是解题的关键.14.(2023春·浙江·七年级专题练习)已知2248200++-+=,那么y x=()x y x yA.-16B.16C.-8D.8【答案】B【分析】利用配方法把已知条件变形为(x+2)2+(y-4)2=0,再根据非负数的性质得x+2=0,y-4=0,即可求出x与y的值,进一步代入求得答案即可.【详解】∵x2+4x+y2-8y+20=0,∴x2+4x+4+y2-8y+16=0,∴(x+2)2+(y-4)2=0,∴x+2=0,y-4=0,∴x=-2,y=4,∴x y=16.故选B.【点睛】此题考查配方法的应用,非负数的性质,掌握完全平方公式是解决问题的关键.15.(2023春·山东淄博·八年级统考期中)不论x、y为什么实数,代数式x2+y2+2x-4y+9的值()A.总不小于4B.总不小于9C.可为任何实数D.可能为负数【答案】A【分析】要把代数式x2+y2+2x-4y+9进行拆分重组凑完全平方式,来判断其值的范围即可.【详解】x2+y2+2x-4y+9=(x2+2x+1)+(y2-4y+4)+4=(x+1)2+(y-2)2+4,∵(x+1)2≥0,(y-2)2≥0,∴(x+1)2+(y-2)2+4≥4,考点5 利用根的判别式判断根的情况根.20.(2023·全国·九年级假期作业)若1x =是一元二次方程220(0)ax bx a -+=≠的一个根,那么方程220ax bx ++=的根的情况是( )A .有两个不相等的实数根B .有一个根是=1x -C .没有实数根D .有两个相等的实数根【答案】B【分析】先将1x =代入220(0)ax bx a -+=≠中得到20a b -+=,再根据一元二次方程根的判别式进行求解即可得出结论.【详解】解:∵1x =是一元二次方程220(0)ax bx a -+=≠的一个根,∴20a b -+=,即2b a =+,对于方程220ax bx ++=,∵242b a ∆=-⨯()228a a =+-()220a =-≥,∴方程220ax bx ++=有两个实数根,故选项A 、C 、D 错误,不符合题意;当=1x -时,2220ax bx a b ++=-+= ,即=1x -是方程220ax bx ++=的一个根,故选项B 正确,符合题意,故选:B .【点睛】本题考查了一元二次方程的解和根的判别式,解答的关键是理解一元二次方程的解的意义,掌握一元二次方程20ax bx c ++=根的情况与根的判别式24b ac ∆=-的关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.考点6 利用根的判别式求字母的值或取值范围故选:A .【点睛】本题考查了根的判别式:一元二次方程200ax bx c a ++=≠()的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当0∆<时,方程无实数根.24.(2023春·吉林长春·八年级长春外国语学校校考期末)已知关于x 的一元二次方程()21210k x x --+=有两个实数根,则k 的取值范围是( )A .21k k ≤-≠且B .21k k ≤≠且C .21k k ≥-≠且D .2k ≥【答案】B【分析】根据方程有两个实数根,得出0∆≥且10k -≠,求出k 的取值范围,即可得出答案.【详解】解:由题意知,24441840b ac k k ∆=-=--=-≥(),且10k -≠,解得:2k ≤,且1k ≠,则k 的取值范围是2k ≤,且1k ≠,故选:B .【点睛】此题考查了根的判别式,(1)一元二次方程根的情况与判别式∆的关系:①0∆>⇔方程有两个不相等的实数根;②0∆=⇔方程有两个相等的实数根;③0∆⇔<方程没有实数根.(2)一元二次方程的二次项系数不为0.考点7 利用根的判别式与三角形结合【详解】(1)证明:2(2)42k k∆=+-⨯2448k k k=++-2(2)0k =-≥所以此方程总有实根.(2)解:①若b c =,则此方程有两个相等实根此时20k -=,则2k =,原方程为:2440x x -+=,122x x ==,∴另外两边长为2和2,②若a c =,则1a =是方程2(2)20x k x k -++=的根,∴21(2)20k k -++=,∴1k =,原方程为2320x x -+=,解得:11x =,22x =,而1、1、2为边不能构成三角形.所以,三角形另外两边长为2,2.【点睛】本题考查了一元二次方程根的判别式、解一元二次方程、等腰三角形存在性、三角形三边关系等知识点,熟练掌握相关知识点是解决本题的关键.26.(2023春·广东河源·九年级校考开学考试)若方程(c 2+a 2)x +2(b 2-c 2)x +c 2-b 2=0有两个相等的实数根,且a ,b ,c 是三角形ABC 的三边,证明此三角形是等腰三角形.【答案】见解析【分析】先根据方程有两个相等的实数根得出△=0,再得出b 、c 的关系即可.【详解】解:Δ=[2(b 2-c 2)]2-4(c 2+a 2)(c 2-b 2)=4(b 2-c 2)(b 2-c 2+a 2+c 2)=4(b+c )(b-c )(b 2+a 2).∵方程有两个相等实根.∴Δ= 0,即4(b+c )(b-c )(b 2+a 2)=0.∵a ,b ,c 是三角形的三边,∴b+c≠0,a 2+b 2≠0,只有b-c=0,解得b=c .出判别式的值的情况,从而得到关于a、b、c及k的等式是解题的关键.28.(2011秋·江苏无锡·九年级统考期中)已知关于x的方程22a x bx c x-+++=有两个相等的实数(1)2(1)0根,试证明以a、b、c为三边的三角形是直角三角形.【答案】【详解】考点:根的判别式;勾股定理的逆定理.分析:先把方程变为一般式:(c-a)x2+2bx+a+c=0,由方程有两个相等的实数根,得到△=0,即△=(2b)2-4(c-a)(a+c)=4(b2+c2-a2)=0,则有b2+c2-a2=0,即b2+c2=a2,根据勾股定理的逆定理可以证明以a、b、c 为三边的三角形是直角三角形.解答:证明:a(1-x2)+2bx+c(1+x2)=0去括号,整理为一般形式为:(c-a)x2+2bx+a+c=0,∵关于x的一元二次方程a(1-x2)+2bx+c(1+x2)=0有两个相等的实数根.∴△=0,即△=△=(2b)2-4(c-a)(a+c)=4(b2+c2-a2)=0,∴b2+c2-a2=0,即b2+c2=a2.∴以a、b、c为三边的三角形是直角三角形.点评:本题考查了一元二次方程的根的判别式和勾股定理的逆定理等知识.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.考点8 利用根的判别式与一次函数结合【分析】根据一元二次方程2210mx x --=无实数根得0m ≠且2(2)4(1)0m ∆=--⨯-<,即可得1m <-,又∵20b =>,可得一次函数2y mx =+的图象经过一、二、四象限,即可得.【详解】解:∵一元二次方程2210mx x --=无实数根,∴0m ≠且2(2)4(1)0m ∆=--⨯-<,440m +<,44m <-,1m <-,又∵20b =>,∴一次函数2y mx =+的图象经过一、二、四象限,∴一次函数2y mx =+的图象不经过第三象限,故选:C .【点睛】本题考查了一元二次方程的根的判别式,一次函数的图像性质,解题的关键是理解题意,掌握这些知识点.30.(2023·广东汕头·广东省汕头市聿怀初级中学校考三模)一元二次方程2240x x --=有两个实数根a ,b ,那么一次函数(1)y ab x a b =-++的图象一定不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】根据根与系数的关系即可求出ab 与a b +的值,然后根据一次函数的图象与性质即可求出答案.【详解】解:由根与系数的关系可知:2a b +=,4ab =-,∴15ab -=∴一次函数解析式为:52y x =+,故一次函数的图象一定不经过第四象限.故选:D .【点睛】本题考查了一元二次方程,解题的关键是熟练运用根与系数的关系以及一次函数的图象与性质.31.(2020秋·贵州贵阳·九年级校考阶段练习)若关于x 的一元二次方程2210x x kb ++=-没有实数根,则一次函数y kx b =+的大致图象可能是( )A .B .C .D .【答案】A【分析】首先根据一元二次方程没有实数根确定k ,b 的取值范围,然后根据一次函数的性质确定其图象的位置.【详解】解:∵方程2210x x kb ++=-没有实数根,∴()4410kb ∆=-+<,解得:0kb >,即k b 、同号,当00k b >>,时,一次函数y kx b =+的图象过一,二,三象限,当00k b <<,时,一次函数y kx b =+的图象过二,三,四象限,故选:A .【点睛】本题考查了根的判别式及一次函数的图象的问题,解题的关键是根据一元二次方程的根的判别式确定k ,b 的取值范围,难度不大.32.(2023·安徽合肥·统考二模)关于x 的一元二次方程2210mx x --=无实数根,则一次函数y mx m =-的图像不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【分析】根据一元二次方程根与判别式的关系,求得m 的取值范围,再根据一次函数的图象与系数的关系求解即可.【详解】解:∵一元二次方程2210mx x --=无实数根∴224(2)4(1)0b ac m ∆=-=--⨯⨯-<,解得1m <-,由一次函数y mx m =-可得0k m =<,0b m =->,∴一次函数y mx m =-过一、二、四象限,不过第三象限,故选:C【点睛】此题考查了一元二次方程根与判别式的关系,以及一次函数图象与系数的关系,解题的关键是熟练掌握相关基础知识.考点9 利用根与系数的关系求变形式子。

人教版九年级数学上册一元二次方程的解法(二)配方法课件

人教版九年级数学上册一元二次方程的解法(二)配方法课件

例1.解下列方程:
2
1
x
8x 1 0

解:移项,得 x2-8x=-1,
配方,得 x2-8x+42=-1+42 ,
即 (x-4)2=15
由此可得 x 4 15,
x1 4 15, x2 4 15.
例1.解下列方程:
2
2
2
x
1 3x

解:移项,得 2x2-3x=-1,
二次项系数化为1,得
2
配方,得
3 3
1 3
x x ,
2 4
2 4
2
2

由此可得
3
1
x x ,
22
2
2
3 1
x ,
4 16
3
1
x ,
4
4
1
x1 1, x 2 .
2
例1.解下列方程:
3x
3
2
6x 4 0
1.理解配方法的概念.
2.掌握用配方法解一元二次方程及解决有关问题.(重点)
3.探索直接开平方法和配方法之间的区分和联系.(难点)
1.用直接开平方法解下列方程:
(1)4x2=1

1
2
x=
解:
4
直接开平方,得
1
x ,
2
1
1
x1 ,x2
2
2
(2)(x-1)2=3.
解:(x-1)2=± 3
加其他数行吗?
x2+6x=-4
2
两边都加上9(即( ) )

x2+6x+9=-4+9

九年级数学配方法

九年级数学配方法
x2 x2
3 、 解 方
用配方法解一元二次方程的步骤:
1.移项:把常数项移到方程的右边; 2.配方:方程两边都加上一次项系数绝对值一
半的平方; 3.变形:方程左分解因式,右边合并同类; 4.开方:根据平方根意义,方程两边开平方; 5.求解:解一元一次方程; 6.定解:写出原方程的解.
例题讲析:
• 例:解方程: 3x2+8x-3=o
随堂练习1
• 1.用配方法解方程x2+2x-1=0时 • ①移项得__________________ • ②配方得__________________ • 即(x+__________)2=__________ • ③x+__________=__________或
x+__________=__________ • ④x1=__________,x2=__________ • 2.用配方法解方程2x2-4x-1=0 • ①方程两边同时除以2得__________ • ②移项得__________________ • ③配方得__________________ • ④方程两边开方得__________________ • ⑤x1=__________,x2=__________
用配方法解一元二次方程的步骤:
(1)把二次项系数化为1; (2)移项:方程的一边为二次项和一次项,
九年级数学(上)第二章 一元二次方程 一元二次方程的解法: 配方法(2)
永安中学: 王建国
回顾与复习
我们通过配成完全平方式的方法,得 到了一元二次方程的根,这种解一元
二次方程的方法称为配方法
1、平方根的意义: 如果x2=a,那么x= a.
2、完全平方式:式子a2±2ab+b2叫完全平方式 ,且a2±2ab+b2 =(a±b)2.

九年级数学配方法

九年级数学配方法
xx22
3、 解 方 程:
用配方法解一元二次方程的步骤:
1.移项:把常数项移到方程的右边; 2.配方:方程两边都加上一次项系数绝对值一
半的平方; 3.变形:方程左分解因式,右边合并同类; 4.开方:根据平方根意义,方程两边开平方; 5.求解:解一元一次方程; 6.定解:写出原方程的解.
例题讲析:
x2 3
重一百多万吨。最奇的是这个怪物长着十分疯妖般的枪尾!这巨怪有着纯红色假山形态的身躯和暗红色细小原木一般的皮毛,头上是暗橙色篦子般的鬃 毛,长着亮蓝色奶酪形态的芝麻粗布额头,前半身是鲜红色肥肠形态的怪鳞,后半身是有些魔法的羽毛。这巨怪长着亮黄色奶酪样的脑袋和春绿色烤鸭 形态的脖子,有着嫩黄色萝卜一样的脸和褐黄色路灯样的眉毛,配着浅绿色电池般的鼻子。有着烟橙色领章一样的眼睛,和天蓝色精灵形态的耳朵,一 张烟橙色排骨形态的嘴唇,怪叫时露出浓绿色冰雕样的牙齿,变态的鲜红色球杆一般的舌头很是恐怖,暗红色圆规造型的下巴非常离奇。这巨怪有着仿 佛细竹样的肩胛和特像螺栓般的翅膀,这巨怪紧缩的深红色破钟一般的胸脯闪着冷光,如同面条般的屁股更让人猜想。这巨怪有着极似海带形态的腿和 葱绿色铃铛样的爪子……跳动的暗橙色面包一般的六条尾巴极为怪异,蓝宝石色蘑菇样的剃须刀梦天肚子有种野蛮的霸气。深红色软管般的脚趾甲更为 绝奇。这个巨怪喘息时有种浅绿色柳枝一般的气味,乱叫时会发出鹅黄色长椅一样的声音。这个巨怪头上浅橙色陀螺般的犄角真的十分罕见,脖子上活 似匕首般的铃铛似乎有点和谐愚笨……蘑菇王子和知知爵士见情况突变,急忙变成了一个巨大的云梯杖腿圣!这个巨大的云梯杖腿圣,身长四百多米, 体重一百多万吨。最奇的是这个怪物长着十分帅气的杖腿!这巨圣有着纯蓝色彩蛋一样的身躯和墨蓝色细小铅笔似的皮毛,头上是淡青色木偶造型的鬃 毛,长着暗灰色犀牛一样的铜钱烟波额头,前半身是淡蓝色狮子一样的怪鳞,后半身是闪亮的羽毛。这巨圣长着深紫色犀牛一样的脑袋和淡白色熊猫一 样的脖子,有着亮紫色海豹般的脸和墨紫色龙虾一样的眉毛,配着深白色菜叶造型的鼻子。有着亮青色马鞍般的眼睛,和纯灰色病鬼一样的耳朵,一张 亮青色云梯一样的嘴唇,怪叫时露出暗白色冰灯一样的牙齿,变态的淡蓝色木头似的舌头很是恐怖,墨蓝色黄瓜模样的下巴非常离奇。这巨圣有着极似 玉笋一样的肩胛和很像牙膏造型的翅膀,这巨圣柔软的深蓝色肥肠似的胸脯闪着冷光,仿佛木瓜造型的屁股更让人猜想。这巨圣有着酷似香肠一样的腿 和纯白色折扇一样的爪子……古怪的淡青色狮子似的三条尾巴极为怪异,淡灰色海龙一样的香槟蛇筋肚子有种野蛮的霸气。深蓝色气桶造型的脚趾甲更 为绝奇。这个巨圣喘息时有种深白色鲇鱼似的气味,乱叫时会发出暗紫色药瓶般的声音。这个巨圣头上金红色蘑菇造型的犄角真的十分罕见,脖子上如 同闪电造型的铃铛的确绝对的标新立异同时还隐现着几丝秀雅!这时那伙校霸组成的巨大旗

新人教版九年级数学上册暑期讲义:第三课 配方法、公式法

新人教版九年级数学上册暑期讲义:第三课 配方法、公式法

新人教版九年级数学上册暑期讲义:第三课 配方法、公式法配方法:()002≠=++a c bx ax 222442a ac b a b x -=⎪⎭⎫ ⎝⎛+⇒ 公式法:⑴条件:)04,02≥-≠ac b a 且⑵公式: aac b b x 2422,1-±-=,()04,02≥-≠ac b a 且 例1.试用配方法说明322+-x x 的值恒大于0。

例2.已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。

例3.已知0136422=+-++y x y x ,x,y 为实数,求yx 的值。

例4.在实数范围内......分解因式:31242++x x例5.在实数范围内分解因式:(1)3222--x x ; (2)1842-+-x x . ⑶22542y xy x --例6.如果012=-+x x ,那么代数式7223-+x x 的值。

课堂同步:1.等腰三角形的两边的长是方程091202=+-x x 的两个根,则此三角形的周长为( ) A .27 B .33 C .27和33 D .以上都不对2.小明用配方法解下列方程时,只有一个配方有错误,请你确定小明错的是( ) A .22990x x --=化成2(1)100x -= B .2890x x ++=化成2(4)25x += C .22740t t --=化成2781416t ⎛⎫-=⎪⎝⎭ D .23420y y --=化成221039y ⎛⎫-= ⎪⎝⎭ 3.一元二次方程032=+x x 的解是 ;用配方法解方程2x ²+4x+1 =0,配方后得到的方程是 ;用配方法解方程23610x x -+=,则方程可变形为 . 4.菱形ABCD 的一条对角线长为6,边AB 的长是方程01272=+-x x 的一个根,则菱形ABCD 的面积 为5.在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=-,则方程(4⊕3)⊕24x =的解是6.已知041122=---+x x x x ,则=+x x 17.用配方法解方程:⑴ 016102=++x x ⑵0432=--x x ⑶05632=-+x x⑷0942=--x x (5)(x-2)(x-5)=-2 (6)x x 3122=+(7)04632=+-x x8.用公式法解方程:(1)0122=-+x x ⑵04122=--x x ⑶112842+=++x x x⑷()x x x 824-=- ⑸022=+x x ⑹010522=++x x9.试用配方法说明47102-+-x x 的值恒小于0。

初中九年级上册数学课件: 5、配方法求最值

初中九年级上册数学课件: 5、配方法求最值
代数式的配方与用配方法解一元二次 方程有什么异同点?
课堂小结:
1.配方法解一元二次方程
左边:完全平方式
;右边:常数
2.解题步骤:移,化,配,开,解,定。
3.配方法解方程是等式变形,代数式配方是恒 等变形,先加再减一次项系数一半的平方。
作业:课堂点晴P17
用配方法解一元二次方程的步骤:
1.移项:把常数项移到方程的右边; 2.化一:化二次项系数为1; 3.配方:方程两边都加上一次项系数一半的平方; 4.开方:根据平方根意义,方程两边开平方; 5.求解:解一元一次方程; 6.定解:写出原方程的解.
练习巩固
1、用配方法解下列方程:
(1)x2 10x 16 0
(2)3x2 6x 5 0
2 .用配方法证明:不论x取何实数,多项式
x2 2x 3 的值必定大于零.
变式:1、求 2x2 4x 3 的最小值? 2、求 4x2 6x 1 的最大值? 2
练习、将下列代数式配方:
(1)x2 10x 16 (2)3x2 6x 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
报牌器自带手机安装
[单选,A1型题]下列哪一项不符合单纯性高热惊厥的诊断标准()A.发作呈全身性B.惊厥持续数秒至数分钟,不超过10minC.惊厥于24h内无复发D.发作后无神经系统异常E.发作后EEG检查呈棘慢波 [单选]哪一种类型的压缩器失速对发动机严重的损伤有着最大的潜在威胁?()A.断续的"逆火"失速B.接进"逆火"失速C.稳定的、持续的气流反转失速 [单选,A1型题]下列不应选用青霉素G的情况是()。A.梅毒B.伤寒C.鼠咬热D.气性坏疽E.钩端螺旋体病 [多选]各类用电人员上岗工作要求()。A.安全教育培训B.自学临时用电标准掌握基本操作方法C.有实际现场经验未经培训D.掌握安全用电基本知识和所用设备性能E.安全技术交底 [名词解释]玻璃成份 [问答题,简答题]我国某沿海城市某建设工程项目承包合同形式为采用工程量清单计价的主体总承包总价合同,其工程量清单某章节中包括如下内容:(1)对安装玻璃幕墙工程之指定分包暂定造价RMB1500000.00元,总承包单位对上述工程提供协调及施工设施的配合费用45000.00元。(2)对外围 [单选,A1型题]放射性核素标记化合物可与组织中特定的分子结构特异性结合而成像,以下不属于这类显像技术的是()。A.放射免疫显像B.放射受体显像C.灌注显像D.反义显像E.基因显像 [多选]下列有关计算加油站销售收入的公式中,正确的有()。A.销售收入=不含税销售收入&divide;(1+增值税税率)B.销售收入=含税销售收入&divide;(1+增值税税率)C.销售收入=含税销售单价&times;销售总量D.销售收入=不含税销售单价&times;销售总量 [单选]大脑中动脉血栓栓塞,栓子可能来源于()A.髂静脉B.肝静脉C.右心房D.左心室E.股动脉 [单选,B1型题]肺透明膜病多见于()A.剖宫产儿B.早产儿C.过期产儿D.巨大儿E.小于胎龄儿 [问答题,简答题]竞赛奖励的实施有哪些内容? [单选,A2型题,A1/A2型题]钙剂和维生素D治疗的目标是()。A.使血钙提到正常范围B.使血磷降低C.使血镁提到正常水平D.减轻、控制临床症状E.以上都对 [多选]关于药物溶出速度的影响因素,正确的是()A.溶出速度与扩散层的厚度成反比,与扩散系数成正比B.扩散系数受溶出介质的黏度和药物分子大小的影响C.溶出速度与溶出介质的体积无关D.溶出速度与温度无关E.增加固体的表面积有利于提高溶出速度 [单选]小儿惊厥最常见的原因是()A.癫痫B.低钙惊厥C.高热惊厥D.低血糖E.颅内感染 [问答题,简答题]计算题:某常压精馏塔,用来分离甲醇-水液体混合物的获得纯度不低于98.49%的甲醇。已知塔的生产处理量为204kg/h的甲醇-水混合液,其中甲醇含量为69%,现要求塔釜残液中甲醇含量不大于1%。(以上均为质量百分数),试计算塔顶、塔釜的采出量。 [单选]下列不属于分拆上市功能效应分析的是()。A.使子公司获得自主的融资渠道B.有效激励子公司管理层的工作积极性C.解决投资不足的问题D.股票增值 [单选]捻转补泻法中的补法是()。A.捻转角度大,频率慢,用力轻B.捻转角度小,频率快,用力重C.捻转角度大,频率快,用力重D.捻转角度小,频率慢,用力轻E.捻转角度小,频率慢,用力重 [填空题]目前,我国钢筋混凝土高层建筑框架、框架—剪力墙结构体系单位面积的重量(恒载与活荷载)大约为();剪力墙、筒体结构体系为()。 [填空题]在站点施工时,严禁用()直接塞入插座内供电。 [单选]跳汰选煤是依据煤和矸石()差别来实现煤和矸石分选的方法。A、粒度B、密度C、形状 [单选]感染邪毒型产后痉证的治疗方剂为()A.玉真散B.撮风散C.三甲复脉汤D.解毒活血汤E.安宫牛黄丸 [单选]适用于皮肤松弛部位腧穴的进针方法是()。A.单手进针法B.舒张进针法C.提捏进针法D.夹持进针法E.指切进针法 [单选]()的发展使得能源需求和碳排放呈现快速增长的趋势。A.农业B.轻工业C.重工业D.服务业 [单选]1:500比例尺地形图上0.2mm,在实地为()。A、10米B、10分米C、10厘米 [单选]室内非埋地明敷主干线据地面高度不得小于()。A.2.5mB.3.5mC.4.5mD.5.5m [单选]从业人员的工作责任感和集体荣誉感是一种()的力量,是从业人员道德信念的行为体现。A、监督B、无形C、社会D、促进 [单选,A1型题]放射性药品使用许可证的有效期为()A.1年B.2年C.3年D.5年E.7年 [单选,A2型题,A1/A2型题]下列因素中能使冠状动脉血流量增多的是()。A.主动脉舒张压降低B.心室收缩压下降C.心室舒张期延长D.左心室收缩力降低E.冠状动脉痉挛 [单选]将信托分为民事信托和商事信托的依据是()。A.信托利益归属的不同B.受托人身份的不同C.信托设立目的的不同D.委托人人数的不同 [多选]产科检查包括()A.肛门检查B.测量体重与血压C.阴道检查D.腹部检查E.骨盆测量 [单选]利用谷物为原料,主要成分是葡萄糖、麦芽糖、糊精的()呈浓厚粘稠状,甜度不如蔗糖。A、麦芽糖B、糖浆C、蜂蜜D、饴糖 [单选,A2型题,A1/A2型题]紫外线杀菌的最佳波长为()。A.200nmB.265nmC.300nmD.560nmE.650nm [单选]使用资料陈旧、水深点稀少的海图,且航行在船舶活动较少的海区时,应()。A.尽可能将航线设计在水面空白处B.尽可能将航线设计在水深点上C.尽可能将航线设计在水深点稀少处D.尽可能使航线与等深线垂直 [单选,A2型题,A1/A2型题]AML-M2a的细胞化学染色特点是()A.POX染色阴性B.PAS染色强阳性C.NAP染色活性增加D.&alpha;-NBE弱阳性,可被NaF抑制E.原始粒细胞出现Phi(&psi;)小体 [单选]从一种成熟组织或细胞转变为另一种同类型组织或细胞的过程称为()A.间变B.发育不良C.增生D.化生E.癌形成 [单选,A1型题]既有肠燥便秘,又有水肿腹满者应选用的药物是()A.火麻仁B.杏仁C.桃仁D.郁李仁E.商陆 [单选]下列哪种情况下,测深辨位可得出比较准确的结果()。A.计划航线与等深线平行,等深线稀疏B.计划航线与等深线垂直,等深线稀疏C.计划航线与等深线平行,等深线密集D.计划航线与等深线垂直,等深线密集 [单选]混凝土养护应注意夏天保持必要湿度,冬天保持必要温度,其主要原因是()。A.增加混凝土中游离水B.增加混凝土抗渗能力C.延缓混凝土凝结时间D.使水泥水化作用正常进行 [单选]信息采集在编辑工作中的作用不包括()。A.有助于把握出版物市场的趋势B.有助于出版物的科学设计C.有助于对稿件的判断和加工D.有助于帮助读者选择图书 [判断题]材料有受拉伸或压缩时,外力增加到一定数值时,应力不再增加,但应变却急剧增加的阶段为屈服阶段。()A.正
相关文档
最新文档