湖南省张家界市2019-2020学年初二下期末复习检测数学试题含解析

合集下载

2019-2020学年八年级(下)期末数学试卷(含解析)

2019-2020学年八年级(下)期末数学试卷(含解析)

2019-2020学年八年级(下)期末数学试卷一、选择题(本大题共10小题,共40.0分)1. 把代数式根号外的因式移入括号内,则原式等于( ) A.B. C. D. 2. 用配方法解一元二次方程2x 2−3x −1=0,配方正确的是( )A. (x −34)2=1716B. (x −34)2=12C. (x −32)2=134D. (x −32)2=114 3. 如图,▱ABCD 的周长为36cm ,△ABC 的周长为28cm ,则对角线AC 的长为( )A. 28cmB. 18cmC. 10cmD. 8cm4. 下面性质中,平行四边形不一定具备的是( )A. 对角互补B. 邻角互补C. 对角相等D. 对角线互相平分5. 下列说法错误的是( ) A. 必然事件的概率为1B. 数据1、2、2、3的平均数是2C. 连续掷一枚硬币,若5次都是正面朝上,则第六次仍然可能正面朝上D. 如果某种活动的中奖率为40%,那么参加这种活动10次必有4次中奖6. 若x 1,x 2是方程2x 2+3x +1=0的两个根,则x 1+x 2的值是( )A. −3B. 32C. 12D. −32 7. 3、下列说法正确的是A. 若a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2B. 若a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2 C. 若a 、b 、c 是 △ABC 的三边,∠A =90°,则a 2+b 2=c 2D. 若a、b、c是△ABC的三边,∠C=90°,则a2+b2=c28.一个跳水运动员从10m高台上跳水,他每一时刻所在高度(单位:m)与所用时间(单位:s)的关系是:ℎ=−5(t−2)(t+1),则运动员起跳到入水所用的时间是()A. −5sB. 2sC. −1sD. 1s9.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则|a|<0是不可能事件;④16的平方根是±4,用式子表示是√16=±4;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个10.如图,四边形ABCD是正方形,直线a,b,c分别通过A、D、C三点,且a//b//c.若a与b之间的距离是3,b与c之间的距离是5,则正方形ABCD的面积是()A. 16B. 30C. 34D. 64二、填空题(本大题共4小题,共20.0分)11.分解因式:4x2−121=______.12.为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)4569户数3421则关于这10户家庭的月用水量的中位数是______ ,平均数是______ ,众数是______ .13. 若m2+m−1=0,n2+n−1=0,且m≠n,则mn=______.14. 如图,四边形ABCD是矩形,AB=2,AD=√2,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是______.三、计算题(本大题共1小题,共8.0分)15. 解下列方程:(7分)(1)(2)X(X+4)=3(X+4)四、解答题(本大题共8小题,共82.0分)16. 计算:(1)√18÷√23×√43.(2)√48÷√3−√12×√12+√24.(3)(1+√5)(1−√5)+(1+√5)2.(4)√12+|√3−2|+(π−3.14)0−√3−1.17. 课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=√3AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=√3AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)18. 现在要从甲、乙两名学生中选择一名学生去参加比赛,因甲乙两人的5次测试总成绩相同,所以根据他们的成绩绘制了尚不完整的统计图表进行分析.第1次第2次第3次第4次第5次甲成绩90708010060乙成绩709090a70请同学们完成下列问题:(1)a=______,x乙−=______;(2)请在图中完成表示乙成绩变化情况的折线;2=200,请你计算乙的方差;(3)S甲(4)可看出______将被选中参加比赛.(第1问和第4问答案可直接填写在答题卡的横线上) 19. 将一条长为20厘米的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形.要使这两个正方形的面积之和等于17平方厘米,那么这段铁丝剪成两段后的长度各是多少?20. 如图,在小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的直角三角形ABE,点E在小正方形的顶点上,且△ABE的面积为5;(2)在方格纸中画出以CD为一边的△CDF,点F在小正方形的顶点上,△CDF的面积为4,射线CF与射线AB交于点N,且∠CNA=45°,连接EF,请直接写出线段EF的长.21. 根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解贵阳市19路公交车的运营情况,公交公司统计了某天19路公交车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天19路公交车平均每班的载客量;(3)如果一个月按30天计算,请估计19路公交车一个月的总载客量,并把结果用科学记数法表示出来.22. 如图,在平行四边形ABCD中,E、F分别是BC、AD上的点,且BE=DF.求证:AE=CF.23. 如图,花园围墙上有一宽1m的矩形门ABCD,量得门框对角线AC的长为2m.现准备打掉部分墙体,使其变为以AC为直径的圆弧形门,问要打掉墙体的面积是多少?(π≈3.14,√3≈1.73)【答案与解析】1.答案:B解析:本题考查二次根式的概念,由负数没有平方根求出a 的范围,判断出a −1为负数,将原式变形即可得到结果.注意a −1为负数,化简后的根式为负.∵ >0, ∴a −1<0, ∴故选B .2.答案:A解析:解:由原方程,得x 2−32x =12,x 2−32x +916=12+916, (x −34)2=1716,故选:A .化二次项系数为1后,把常数项−12移项,应该在左右两边同时加上一次项系数−32的一半的平方. 本题考查了解一元二次方程--配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 3.答案:C解析:解:∵▱ABCD 的周长是36cm ,∴AB +AD =18m ,∵△ABC的周长是28cm,∴AB+BC+AC=28cm,∴AC=(AB+BC+AC)−(AB+AC)=28−18=10(cm).故选:C.平行四边形的周长为相邻两边之和的2倍,即2(AB+BC)=36,则AB+BC=18cm,而△ABC的周长=AB+BC+AC=28,继而即可求出AC的长.本题考查平行四边形的性质,解题关键是掌握平行四边形的周长为相邻两边之和的2倍,难度一般.4.答案:A解析:试题分析:根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行,即可得平行四边形的邻角互补;所以B、C、D正确.∵平行四边形的对角相等,对角线互相平分,对边平行,即可得平行四边形的邻角互补;∴B、C、D正确.故选A.5.答案:D解析:此题主要考查了概率的意义,正确掌握概率的意义是解题关键.直接利用概率的意义进而分别分析得出答案.解:A、必然事件的概率为1,正确,不合题意;B、数据1、2、2、3的平均数是2,正确,不合题意;C、连续掷一枚硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,正确,不合题意;D、如果某种活动的中奖率为40%,那么参加这种活动10次不一定有4次中奖,故此选项错误,符合题意.故选:D.6.答案:D解析:解:根据题意得x1+x2=−32.故选:D.直接根据根与系数的关系求解.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.7.答案:D解析:解:A、勾股定理只限于在直角三角形里应用,故A可排除;B、虽然给出的是直角三角形,但没有给出哪一个是直角,故B可排除;C、在Rt△ABC中,直角所对的边是斜边,C中的斜边应为a,得出的表达式应为,故C也排除;D、符合勾股定理,正确.故选D.8.答案:B解析:解:设运动员起跳到入水所用的时间是xs,根据题意可知:−5(x−2)(x+1)=0,解得:x1=−1(不合题意舍去),x2=2,那么运动员起跳到入水所用的时间是2s.故选:B.根据每一时刻所在高度(单位:m)与所用时间(单位:s)的关系是:ℎ=−5(t−2)(t+1),把ℎ=0代入列出一元二次方程,求出方程的解即可.可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.9.答案:B解析:解:①“明天降雨的概率是50%”表示明天降雨与不降雨可能性相同,此结论错误;②无理数是无线不循环的数,此结论错误;③若a为实数,则|a|<0是不可能事件,此结论正确;④16的平方根是±4,用式子表示是±√16=±4,此结论错误;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.此结论正确;故选:B.根据概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义逐一求解可得.本题主要考查概率的意义,解题的关键是掌握概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义.10.答案:C解析:解:作AE⊥直线b于点E,作CF⊥直线b于点F,∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,∴∠ADE+∠CDF=90°,∵AE⊥直线b,CF⊥直线b,∴∠AED=∠DFC=90°,∴∠ADE+∠DAE=90°,∴∠DAE=∠CDF,在△AED和△DFC中,{∠AED=∠DFC ∠DAE=∠CDF AD=DC,∴△AED≌△DFC(AAS),∴AE=DF,∵AE=3,CF=5,∠CFD=90°,∴DF=3,∴CD=√CF2+DF2=√52+32=√34,∴正方形ABCD的面积是:√34×√34=34,故选:C.先作辅助线AE⊥直线b于点E,CF⊥直线b于点F,然后根据题目中的条件,可以证明△AED和△DFC 全等,即可得到DF=AE,然后根据勾股定理,即可得到CD的长,从而可以得到正方形ABCD的面积.本题考查正方形的性质、全等三角形的判定与性质、勾股定理,平行线之间的距离,解答本题的关键是明确题意,利用数形结合的思想解答.11.答案:(2x+11)(2x−11)解析:解:原式=(2x+11)(2x−11),故答案为:(2x+11)(2x−11).根据平方差公式,可得答案.本题考查了因式分解,利用平方差公式是解题关键.12.答案:5吨;5.3吨;5吨解析:本题考查了众数、加权平均数及中位数的知识,一组数据中出现次数最多的数据叫做众数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;利用加权平均数的计算方法求得其平均数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:表中数据为从小到大排列,5t和5t处在第5位、第6位,其平均数5t为中位数,平均数为:3×4+4×5+2×6+910=5.3吨,数据5t出现了四次最多为众数.故答案为:5吨,5.3吨,5吨.13.答案:−1解析:解:由题意可知:m、n是方程x2+x−1=0的两根,∴mn=−1.故答案为:−1.根据根与系数的关系即可求出答案.本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.14.答案:2√2−2解析:解:连接AE,∵∠ADE=90°,AE=AB=2,AD=√2,∴sin∠AED=ADAE,∴∠AED=45°,∴∠EAD=45°,∠EAB=45°,∴AD=DE=√2,∴阴影部分的面积是:(2×√2−45⋅π×22360−√2×√22)+(45⋅π×22360−√2×√22)=2√2−2,故答案为:2√2−2.根据题意可以求得∠BAE和∠DAE的度数,然后根据图形可知阴影部分的面积就是矩形的面积与矩形中间空白部分的面积之差再加上扇形EAF与△ADE的面积之差的和,本题得以解决.本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.15.答案:解析:(1)用公式法解方程;(2)用因式分解法解方程。

湖南省张家界市八年级下学期期末考试数学试题

湖南省张家界市八年级下学期期末考试数学试题

湖南省张家界市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)若分式的值为零,则x的值是()A . 0B . ±2C . 4D . ﹣42. (2分)(2019·萧山模拟) 某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A . 甲运动员得分的极差大于乙运动员得分的极差B . 甲运动员得分的的中位数大于乙运动员得分的的中位数C . 甲运动员的得分平均数大于乙运动员的得分平均数D . 甲运动员的成绩比乙运动员的成绩稳定3. (2分)下列四个函数图象中,y随x的增大而增大的是()A . ①B . ①③C . ①④D . ①③④4. (2分) (2018九下·鄞州月考) 某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人” ;乙说:“两项都参加的人数小于5人” .对于甲、乙两人的说法,有下列四个命题,其中真命题的是()A . 若甲对,则乙对B . .若乙对,则甲对C . 若乙错,则甲错D . 若甲错,则乙对5. (2分)如图,将矩形纸片ABCD沿EF折叠(E,F分别是AD、BC上的点),使点B与四边形CDEF内一点重合,若°,则等于()A . 110°B . 115°C . 120°D . 130°6. (2分) (2017八下·卢龙期末) 如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF 相交于点O,下列结论①AE=BF;②AE⊥BF;③ AO=OE;④ 中,错误的有()A . 1个B . 2个C . 3个D . 4个7. (2分)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A . 甲、乙两人的速度相同B . 甲先到达终点C . 乙用的时间短D . 乙比甲跑的路程多8. (2分) (2018八上·紫金期中) 下列各组数,属于勾股数的是()A . 4,5,6B . 5,10,13C . 3,4,5D . 8,39,409. (2分)(2014·深圳) 如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD= ,E为CD中点,连接AE,且AE=2 ,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A . 1B . 3﹣C . ﹣1D . 4﹣210. (2分) (2016九上·门头沟期末) 已知点A(1,m)与点B(3,n)都在反比例函数y=图象上,那么m与n之间的关系是()A . m>nB . m<nC . m≥nD . m≤n二、填空题 (共10题;共13分)11. (1分) (2015八上·阿拉善左旗期末) 用科学记数法表示 0.0000057=________.12. (1分) (2015九上·宜春期末) 将油箱注满k升油后,轿车行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S= (k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶760千米,当平均耗油量为0.08升/千米时,该轿车可以行驶________千米.13. (1分) (2018九上·宝应月考) “植树节”时,九(1)班6个小组的植树棵数分别是:5,7,3,x,6,4.已知这组数据的众数是5,则该组数据的平均数是________14. (1分) (2017八下·揭西期末) 如图,已知△ABC中,AB=AC,AD平分∠BAC,E是AB的中点,若AC=6,则DE的长为________15. (1分)(2019·安阳模拟) 如图,边长为2的菱形ABCD中,BD=2,E、F分别是AD,CD上的动点(包含端点),且AE+CF=2,则线段EF长的最小值是________.16. (1分)(2019·从化模拟) 计算: =________.17. (4分)如图,平行四边形ABCD中,∠DAB=70°,将平行四边形ABCD变化为一个矩形(图中的虚线部分),在此过程中,分析每条边的运动.AB:________;AD:________;BC:________;CD:________.18. (1分) (2017八下·邗江期中) 如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC 至点D,使CD= BD,连接DM、DN、MN.若AB=6,则DN=________.19. (1分) (2017八下·射阳期末) 如图,在矩形ABCD中,对角线AC、BD相交于点O ,点E、F分别是AO、AD的中点,若AB=6 cm,BC=8 cm,则△AEF的周长为________cm.20. (1分) (2017八下·徐汇期末) 在梯形ABCD中,AD∥BC,AB=CD,AC⊥BD.如果AD=4,BC=10,那么梯形ABCD的面积等于________.三、解答题 (共6题;共58分)21. (5分)(2016·呼伦贝尔) 解方程:.22. (5分)南山植物园中现有A、B两个园区,已知A园区为长方形,长为(x+y)米,宽为(x﹣y)米;B 园区为正方形,边长为(x+3y)米.(1)请用代数式表示A、B两园区的面积之和并化简;(2)现根据实际需要对A园区进行整改,长增加(11x﹣y)米,宽减少(x﹣2y)米,整改后A区的长比宽多350米,且整改后两园区的周长之和为980米.①求x、y的值;②若A园区全部种植C种花,B园区全部种植D种花,且C、D两种花投入的费用与吸引游客的收益如表:C D投入(元/平方米)1216收益(元/平方米)1826求整改后A、B两园区旅游的净收益之和.(净收益=收益﹣投入)23. (15分) (2019八下·江阴月考) 在平面直角坐标系中,O为坐标原点,B在x轴上,四边形OACB为平行四边形,且∠AOB=60°,反比例函数(k>0)在第一象限内过点A,且与BC交于点F.(1)若OA=10,求反比例函数的解析式;(2)若F为BC的中点,且S△AOF=24 ,求OA长及点C坐标;(3)在(2)的条件下,过点F作EF∥OB交OA于点E(如图2),若点P是直线EF上一个动点,连结,PA,PO,问是否存在点P,使得以P,A,O三点构成的三角形是直角三角形?若存在,请直接写出P点坐标;若不存在,请说明了理由.24. (8分)(2018·溧水模拟) 某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021(1)根据上述信息可知:甲命中环数的中位数是________环,乙命中环数的众数是________环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会________.(填“变大”、“变小” 或“不变”)25. (10分)(2018·贵阳) 某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?26. (15分)(2017·昌乐模拟) 如图,已知二次函数y=ax2+bx+c的象经过A(﹣1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C.(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共13分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共6题;共58分) 21-1、22-1、23-1、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。

湖南省张家界市2019-2020学年中考数学复习检测试题

湖南省张家界市2019-2020学年中考数学复习检测试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为( )A .56×108B .5.6×108C .5.6×109D .0.56×10102.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有( )个.A .4B .3C .2D .13.下列图形中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .4.如图,△ABC 的面积为8cm 2 , AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( )A .2cm 2B .3cm 2C .4cm 2D .5cm 25.关于x 的分式方程230x x a +=-解为4x =,则常数a 的值为( )A .1a =B .2a =C .4a =D .10a =6.点M(a ,2a)在反比例函数y =8x 的图象上,那么a 的值是( )A .4B .﹣4C .2D .±27.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( )A .5.035×10﹣6B .50.35×10﹣5C .5.035×106D .5.035×10﹣58.如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°9.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④当1<x<3时,x2+(b﹣1)x+c<1.其中正确的个数为A.1 B.2 C.3 D.410.对于一组统计数据1,1,6,5,1.下列说法错误的是()A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是6二、填空题(本题包括8个小题)11.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=_____.12.如图,小红将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少厘米?设正方形边长为xcm,则可列方程为_____.13.在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm,则根据题意可得方程.14.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)15.如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C 是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是_____.16.关于x的一元二次方程ax2﹣x﹣14=0有实数根,则a的取值范围为________.17.分解因式:ax2﹣2ax+a=___________.18.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= ______三、解答题(本题包括8个小题)19.(6分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.请你用画树状图或列表的方法,求出这两数和为6的概率.如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.20.(6分)已知:如图,E是BC上一点,AB=EC,AB∥CD,BC=CD.求证:AC=ED.21.(6分)尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)22.(8分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:125,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).23.(8分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由. 24.(10分)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AB 、CD 分别交于点E 、F .求证:OE =OF .25.(10分)计算:18×(2﹣16)﹣6÷3+13. 26.(12分)如图,在ABC ∆中,点F 是BC 的中点,点E 是线段AB 的延长线上的一动点,连接EF ,过点C 作AB 的平行线CD ,与线段EF 的延长线交于点D ,连接CE 、BD .求证:四边形DBEC 是平行四边形.若120ABC ∠=︒,4AB BC ==,则在点E的运动过程中:①当BE =______时,四边形BECD 是矩形;②当BE =______时,四边形BECD 是菱形.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于56亿有10位,所以可以确定n=10﹣1=1.【详解】56亿=56×108=5.6×101,故选C.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.2.C【解析】【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.3.C【解析】【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.C【解析】延长AP 交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可求得△PBC 的面积.【详解】延长AP 交BC 于E .∵AP 垂直∠B 的平分线BP 于P ,∴∠ABP =∠EBP ,∠APB =∠BPE =90°.在△APB 和△EPB 中,∵,∴△APB ≌△EPB (ASA ),∴S △APB =S △EPB ,AP =PE ,∴△APC 和△CPE 等底同高,∴S △APC =S △PCE ,∴S △PBC =S △PBE +S △PCE S △ABC =4cm 1.故选C .【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S △PBC =S △PBE +S △PCE S △ABC . 5.D【解析】【分析】根据分式方程的解的定义把x=4代入原分式方程得到关于a 的一次方程,解得a 的值即可.【详解】解:把x=4代入方程230x x a+=-,得 23044a+=-, 解得a=1.经检验,a=1是原方程的解故选D .点睛:此题考查了分式方程的解,分式方程注意分母不能为2.6.D【解析】【分析】根据点M(a,2a)在反比例函数y=8x的图象上,可得:228a=,然后解方程即可求解.【详解】因为点M(a,2a)在反比例函数y=8x的图象上,可得:228a=,24a=,解得:2a=±,故选D.【点睛】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征. 7.A【解析】试题分析:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选A.考点:科学记数法—表示较小的数.8.A【解析】【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【详解】由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故选A.【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.9.B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<1;故①错误。

2019-2020年八年级第二学期期末教学质量检测数学试题(含答案)(解析版)

2019-2020年八年级第二学期期末教学质量检测数学试题(含答案)(解析版)

2019-2020年八年级第二学期期末教学质量检测数学试题(含答案)(解析版)学校名称姓名准考证号考生须知1.本试卷共6页,共三道大题,29道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共20分,每小题2分)第1-10题均有四个选项,符合题意的选项只有..一个1. 实数a,b,c,d在数轴上的对应点位置如图所示,这四个数中,绝对值最小的是A. aB. bC. cD. d【答案】C【解析】根据数轴上某个数与原点的距离的大小求得结论.解:由图可知:c到原点O的距离最短,所以在这四个数中,绝对值最小的是c.故选C.“点睛”本题考查了绝对值的定义、实数大小比较问题,熟练掌握绝对值最小的数就是到原点距离最小的数.2. 下列交通标志中是中心对称图形的是A. B.C. D.【答案】D【解析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中性对称图形,即可判断出.解:∵A.此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;B:∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;D.此图形旋转180°后能与原图形重合,此图形是中心对称图形,故此选项正确;故选D.“点睛“此题主要考查了中心对称图形的定义,根据定义得出图形形状是解决问题的关键.考点:中心对称图形.3. 下列图形中,内角和与外角和相等的是A. B.C. D.【答案】B【解析】根据多边形内角和公式(n-2)×180°与多边形的外角和定理列式进行计算即可得解.设多边形的边数为n,根据题意得(n-2)序号180°=360°,解得n=4.故选B.“点睛”本题考查了多边形内角和公式与外角和定理,熟记公式与定理是解题的关键.4. 在平面直角坐标系xOy中,点P的坐标为(1,1).如果将x轴向上平移2个单位长度,y轴不变,得到新坐标系,那么点P在新坐标系中的坐标是( )A. (1,-1)B. (-1,1)C. (3,1)D. (1,2)【答案】A【解析】将坐标xOy中的x轴向上平移2个单位,y轴不变,根据左加右减,上加下减的规律求解即可. 解:∵点P平面直角坐标系xOy中的坐标为(1,1),将坐标系xOy中的x轴向上平移2个单位,y轴不变,∴在新坐标系x/O/y/中,点P的坐标为(1,-1).故选A.“点睛”本题考查了坐标与图形变化-平移,熟记左加右减,上加下减的规律是解题的关键.5. 如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为()A. 2B. 3C. 4D. 5【答案】B【解析】由平行四边形得AD=BC,在Rt△BAC中,点E为BC边中点,根据直角三角形的中线等于斜边的一半即可求出AE.解:∵四边形ABCD是平行四边形,∴AD=BC=6,∵AC⊥AB,∴△BAC为Rt△BAC,∵点E为BC边中点,∴AE=BC=.故选B.6. 某校从初二年级抽出40名女生的身高数据,分组整理出如下频数分布表:表中a,b,c分别是()A. 6,12,0.30B. 6,10,0.25C. 8,12,0.30D. 6,12,0.24【答案】A【解析】根据题意,由频数分布表中各组的频率求出c,再由频数=总人数×频率可求出a、b的值.解:由频数分布表中,各组的频数之和为样本容量,则c=1-0.05-0.15-0.35-0.15=0.3,根据题意,用150~155之间频率是0.15,而总人数为40人,a=40×0.15=6,b=40×0.3=12.“点睛”本题考查频率分别直方表的运用,以及数据的分析、处理的能力,注意结合题意,认真分析,查找数据时务必准确.7. 小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得∠B=60°,接着活动学具成为图2所示正方形,并测得对角线AC=40cm,则图1中对角线AC的长为A. 20 cmB. 30 cmC. 0 cmD. cm【答案】D【解析】图2中根据勾股定理即可求得正方形的边长,图1根据有一个角是60°的等腰三角形是等边三角形即可求得.解:如图2,∵AB=BC=CD=DA,∠B=90°,∴四边形ABCD是正方形,连接AC,则AB2+BC2=AC2.∴AB=BC=20,如图1,∠B=60°,连接AC,∴△A BC为等腰三角形,∴AB=AC=20,故选D.“点睛”本题考查了正方形的性质,勾股定理以及等边三角形的判定与性质,利用勾股定理得出正方形的边长是关键.8. 对二次三项式变形正确的是()A. B. C. D.【答案】C【解析】先把常数项移到方程右边,再在方程两边同时加上一次项系数一半的平方,再把左边配成一个完全平方式.解:x2-4x-1= x2-4x +22-22-1=(x-2)2-5.“点睛”解题时二次项系数不是1的应把二次项系数化为1,要注意出现只在二次三项式一边加上一次项系数一半的平方这种错误的情况.9. 已知点(-2,a),(3,b)都在直线上,对于a,b的大小关系叙述正确的是()A. B. C. D.【解析】先根据一次函数的解析式判断出一次函数的增减性,再根据-4<-2即可得出结论.解:∵一次函数y=2x+m(m为常数)中,k=2>0,∴y随x的增大而增大,∵-2<3,∴a<b.故选B.“点睛”本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10. 教师运动会中,甲,乙两组教师参加“两人背夹球”往返跑比赛,即:每组两名教师用背部夹着球跑完规定的路程,若途中球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.若距起点的距离用y(米)表示,时间用x(秒)表示.下图表示两组教师比赛过程中y与x的函数关系的图象.根据图象,有以下四个推断:①乙组教师获胜②乙组教师往返用时相差2秒③甲组教师去时速度为0.5米/秒④返回时甲组教师与乙组教师的速度比是2:3其中合理的是()A. ①②B. ①③C. ②④D. ①④【答案】D【解析】根据函数图象可得乙组用时少,乙组教师获胜;由图象求出返回时甲组教师与乙组教师的速度比是2:3,所以选①④.“点睛”读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够根据函数的图象准确的把握住关键信息是解答此题的关键,然后根据实际情况采用排除法求解.二、填空题(本题共18分,每小题3分)11. 因式分解:=____________.【答案】【解析】应先提取公因式3,再对余下的多项式利用平方差公式继续分解.解:原式=3(m2﹣1),=3(m+1)(m﹣1).故答案为:3(m+1)(m﹣1).“点睛”分解因式的一般步骤:若有公因式,先提公因式;然后再考虑用公式法(平方差公式:a2-b2=(a +b)(a-b),完全平方公式:a2±2ab+b2=(a±b)2)或其它方法分解;直到每个因式都不能再分解为止. 12. 如图,平行四边形ABCD中,DE平分∠ADC,交BC边于点E,已知AD=6,BE=2,则平行四边形ABCD的周长为____________.【答案】20;【解析】试题分析:根据平行四边形的性质得出AB=CD,AD=BC=6,AD∥BC,根据平行线性质求出∠ADE=∠DEC,根据角平分线定义求出∠ADE=∠CDE,推出∠CDE=∠DEC,推出CE=DC,求出CD、即可求出答案.试题解析:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC=6,AD∥BC,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴CE=DC,∵BC=6,BE=2,∴CD=CE=6-2=4,∴AB=CD=4,∴平行四边形ABCD的周长为AD+CD+BC+A B=6+4+6+4=20.【点睛】本题考查了平行四边形的性质,角平分线定义,平行线的性质,等腰三角形的性质和判定的应用,解此题的关键是求出CD的长,注意:平行四边形的对边平行且相等,难度适中.13. 已知y是x的一次函数,下表列出了部分y与x的对应值.则m的值为____________.【答案】-1;【解析】当x=1时,y=1;x=3时,y=5.用待定系数法可求出函数关系式,然后把x=0代入,得到m的值.解:当x=1时,y=1;x=3时,y=5,据此列出方程组,求得,一次函数的解析式y=2x-1,然后把x=0代入,得到m= -1.故答案为-1.“点睛”本题考查待定系数法求函数解析式的知识,难度不大,要注意利用一次函数的特点,列出方程组,求出未知数.14. 关于x的一元二次方程有两个不相等的实数根,写出一个满足条件的实数c的值:c=____________.【答案】0(答案不唯一);【解析】因为方程x2+2x+c=0有两个不相等的实数根,所以△=b2-4ac>0,建立关于c的不等式,求出c的取值范围,在这个范围内即可.解:∵方程有两个不相等的实数根,∴△=b2-4ac=22-4c>0,解得: c<1,故答案为:0.(答案不唯一)“点睛”本题属于开放题,注意答案的不唯一性,同时本题还考查了一元二次方程根的判别式的应用.15. 小东、小林两名射箭运动员在赛前的某次测试中各射箭10次,成绩及各统计量如下图、表所示:若让你选择其中一名参加比赛则你选择的运动员是:__________________________,理由是:_____________________________________________________________.【答案】(1). 小东(2). 在水平相当的基础上小东的方差小说明波动小,发挥较小林稳定;【解析】观察折线图,从图中找出每人每次射击的环数,然后根据平均数、众数、方差的定义解答.解:求出小林平均数、众数、中位数、方差与小东的进行比较,选择的运动员是小东;在水平相当的基础上小东的方差小说明波动小,发挥较小林稳定.“点睛”此题结合图表,考查了对众数、中位数、的理解,并有一定的开放性,也对同学们提出比较高要求.16. 如图,点E为正方形ABCD外一点,且ED=CD,连接AE,交BD于点F.若∠CDE=40°,则∠DFC的度数为_____.【答案】.【解析】利用ABCD是正方形得出角之间相等的关系,由已知条件得出∠DFC.解:∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠CBF,∴△BAF≌△CBF,∴∠AFB=∠CFB,∵∠AFB=∠CFB=70°,∴∠CFB=180°-70°-70°=40°∵∠EDC=∠EFC,∴C、E、D、F四点共圆,∴∠CFE=∠CDE=40°,∴∠DEC=70°,∴∠DFC=110°.故答案为:110°.三、解答题(本题共62分,第17-19题,每小题4分,第20-29题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17. 解不等式组:【答案】【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.解:解不等式①得,解不等式②得,∴原不等式组的解为.“点睛”本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18. 用适当的方法解方程:.【答案】或【解析】:将型代数式加上一次项系数一半的平方,就可以配成完全平方式,配方时,在方程两边都要加一次项系数一半的平方,方程的解不变,此题可以利用等式的基本性质使方程一边是完全平方式,另一边是常数.解:或或“点睛”配方法是一种很重要的数学方法,但使用起来较复杂,故没有特别说明,一般不使用.但当二次项系数为1,一次项系数为偶数时,用配方法较简单.19. 如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,且△OAB为等边三角形.求证:四边形ABCD为矩形.【答案】见解析【解析】考查矩形的判定问题,平行四边形ABCD,再加上对角线相等进而证明是矩形.证明:∵四边形ABCD是平行四边形,∴ AC=2OA,BD=2OB,∵△OAB为等边三角形,∴ OA=OB,∴ AC=BD.∴四边形ABCD为矩形.20. 关于x的一元二次方程的一个根是0,求n的值.【答案】学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...解:∵关于x的一元二次方程的一个根是0,求n的值.∴,∴,∵,∴.21. 已知△ABC,请按要求完成画图、说明画图过程及画图依据.(1)以A,B,C为顶点画一个平行四边形;(2)简要说明画图过程;(3)所画四边形为平行四边形的依据是____________________________________【答案】(1)见解析;(2)见解析;(3)对角线相等的四边形是平行四边形.【解析】(1)由平行四边形的性质利用基本作图即可;(2)根据每步作图写出相应过程;(3)由平行四边形的判定得出结论.解:(1)如图所示,(2)画图过程:1.取AC中点D,2.连接BD并延长,使DE=BD,3.连接AE,CE.四边形ABCD是所求平行四边形.(3)依据:对角线相等的四边形是平行四边形.22. 随地球自转,一天中太阳东升西落,太阳经过某地天空的最高点时为此地的“地方时间”12点,因此,不同经线上具有不同的“地方时间”.两个地区“地方时间”之间的差称为这两个地区的时差.右图表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)下表是同一时刻的北京和首尔的时间,请填写完整.北京时间7:30首尔时间12:15(2)设北京时间为x(时),首尔时间为y(时),0≤x≤12时,求y关于x的函数表达式.【答案】(1)8:30,11:15;(2),.解:(1)根据如图表示同一时刻的北京时间得到首尔时间,首尔与北京时间的关系得,首尔时间为8:30,北京时间为11:15.(2)从图看出,同一时刻,首尔时间比北京时间多1小时,故y关于x的函数表达式是y=x+1.“点睛”本题考查的是一次函数的应用,根据题意正确求出函数解析式是解题的关键.23. 已知关于x的一元二次方程.(1)求证:此方程总有两个不相等的实数根;(2)若此方程的两个根都为整数,求整数a的值.【答案】(1) 方程有两个不相等的实数根;(2) .【解析】(1)先计算判别式的值达到△=4,然后根据判别式的意义即可得到方程总有两个不相等的实数根;(2)利用求根公式解方程,然后利用有理数的整除性确定a的值.证明:(1)∵m>0,△=[-2(m-1)]2-4m(m-2)=4m2-8m+4-4m2+8m=4>0,∴此方程总有两个不等实根;(2),,.∵ 方程的根均为整数,∴ .“点睛”本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0时,方程由两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.24. 如图,四边形ABCD是平行四边形,E,F分别为BC,AD的中点,(1)求证:AE=CF;(2)延长CF交BA的延长线于点M,求证:AM=AB.【答案】见解析.【解析】(1)利用平行四边形的性质和线段的中点定义即可得出AE=CF;(2)同(1)证明方法可得AM=AB.(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.又∵E,F分别为BC,AD的中点,∴AF=AD,CE=BC,∴AF=CE,∴四边形AECF是平行四边形,.∴AE=CF.(2)∵四边形AECF是平行四边形,∴AE∥CF,又∵E为BC的中点,∴A为BM的中点.即AM=AB.25. 绿色出行是对环境影响最小的出行方式,“共享单车”已成为北京的一道靓丽的风景线.已知某地区从xx年1月到5月的共享单车投放量如右图所示.(1)求1月至2月共享单车投放量的增长率;(2)求2月至4月共享单车投放量的月平均增长率.【答案】(1)28%;(2)【解析】(1)由直方统计图得(2月投放量-1月投放量)÷1月投放量即得1月至2月共享单车投放量的增长率,(2)增长率问题,一般用增长后的量=增长前的量×(1+增长率),解:(1).(2)“点睛”求平均增长率的方法.若设变化前的量为a,变化后的量为b,平均增长率为x,则经过两次变化后的数量关系为a(1±x)2=b.26. 如图,在平面直角坐标系xOy中,过点A(4,0)的直线与直线相交于点B(-4,m).(1)求直线的表达式;(2)若直线与y轴交于点C,过动点P(0,n)且平行于的直线与线段AC有交点,求n的取值范围.【答案】(1) ;(2) .【解析】(1)先求出B点坐标,再用待定系数法即可解决问题;(2)由图象可知直线l1在直线l2上方即可,由此即可写出m的范围.解:(1)∵点B(-4,m)在直线上,∴.∵点A(4,0)和B(-4,8)在直线上,设,∴ 解得∴直线的表达式为.(2)点C坐标为(0,4),平行于的直线过点C时表达式为,平行于的直线过点D时表达式为,∴n的取值范围是.“点睛”本题考查两条直线平行、相交问题,解题的关键是灵活应用待定系数法,学会利用图象根据条件确定自变量取值范围.27. 有这样一个问题:探究函数的图象与性质.小东根据学习一次函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)在函数中,自变量x可以是任意实数;下表是y与x的几组对应值.4 3 2 1求m的值;在平面直角坐标系xOy中,描出上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象;(3)结合函数图象,写出该函数的一条性质:__________.【答案】(1)①m=4;②见解析;(2) 时y随x的变大而变小,时y随x的变大而变大.【解析】(1)把x=4代入函数解析式,求出y的值即可;在坐标系内描出各点,再顺次连接即可;(2)根据函数图象即可得出结论.解:(1)①时,②(2)时y随x的变大而变小,时y随x的变大而变大.28. 已知将一矩形纸片ABCD折叠,使顶点A与C重合,折痕为EF.(1)求证:CE=CF;(2)若AB =8 cm,BC=16 cm,连接AF,写出求四边形AFCE面积的思路.【答案】见解析.【解析】(1)根据图形折叠前后图形不发生大小变化,证明两角相等推出CE=CF;(2)运用平行四边形的判定和勾股定理列方程求解,再用平行四边形面积公式计算出四边形AFCE的面积.(1)证明:∵矩形纸片ABCD折叠,顶点A与C重合,折痕为EF,∴∠1=∠2,AD∥BC,∴∠1=∠3,∴∠2=∠3,∴CE=CF.(2)思路:连接AF① 由矩形纸片ABCD折叠,易证四边形AFCE为平行四边形;② Rt△CED中,设DE为x,则CE为16-x,CD=8,根据勾股定理列方程可求得DE,CE的长;③由CF=CE,可得CF的长;运用平行四边形面积公式计算CF×CD可得四边形AFCE的面积.29. 在平面直角坐标系xOy中,点P的坐标为,点Q的坐标为,且,,若P,Q为某正方形的两个顶点,且该正方形的边均与某条坐标轴平行(含重合),则称P,Q互为“正方形点”(即点P是点Q的“正方形点”,点Q也是点P的“正方形点”).下图是点P,Q互为“正方形点”的示意图.已知点A的坐标是(2,3),下列坐标中,与点A互为“正方形点”的坐标是____________.(填序号)①(1,2);②(-1,5);③(3,2).(2)若点B(1,2)的“正方形点”C在y轴上,求直线BC的表达式;(3)点D的坐标为(-1,0),点M的坐标为(2,m),点N是线段OD上一动点(含端点),若点M,N互为“正方形点”,求m的取值范围.【答案】(1) ①③;(2) 或 ;(3) 或.【解析】(1)根据点A互为“正方形点”的坐标定义即可求出所求的坐标;(2)由已知条件先求出点C的坐标,利用待定系数法求得直线BC的表达式;(3)由点N是线段OD上一动点(含端点),求出点D、O的正方形点坐标,结合图象写出m的取值范围.解:(1)①③(2)∵点B(1,2)的“正方形点”C在y轴上,∴点C的坐标为(0,1),(0,3),∴直线BC的表达式为,.(3)过点OD分别作与x轴夹角为的直线,∵点M的坐标为(2,m),点N是线段OD上一动点(含端点),点M,N互为“正方形点”,∴点D的正方形点坐标是(2,3),(2,-3),点O的正方形点坐标是(2,2),(2,-2),∴或.-----如有帮助请下载使用,万分感谢。

湘教版 2019-2020学年八年级数学下学期期末考试试卷(含答案)

湘教版 2019-2020学年八年级数学下学期期末考试试卷(含答案)
B、菱形的对角线互相垂直平分,所以B选项的说法正确;
C、矩形的对角线相等且互相平分,所以C选项的说法错误;
D、角平分线上的点到角两边的距离相等,所以D选项的说法正确.
故选:C.
二、填空题(本题共8小题,每小题3分,共24分)
11.解:根据一次函数定义得,k+1≠0,
解得k≠﹣1.
故答案为:k≠﹣1.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
参考答案与试题解析
一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)
1.解:点(﹣2,1)在第二象限,
故选:B.
(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;
(2)请画出△ABC关于原点对称的△A2B2C2;
(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.
24.(8分)为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;
解得: ,
y=0.9x﹣121.5.
y=328.5时,
x=500.
答:这个月他家用电500千瓦时.
25.(1)证明:如图1,连接BF,
∵△ABC≌△DBE,
∴BC=BE,
∵∠ACB=∠DEB=90°,
在Rt△BCF和Rt△BEF中,

∴Rt△BCF≌Rt△BEF(HL),

2019-2020学年湖南省名校初二下期末学业水平测试数学试题含解析

2019-2020学年湖南省名校初二下期末学业水平测试数学试题含解析

2019-2020学年湖南省名校初二下期末学业水平测试数学试题一、选择题(每题只有一个答案正确)1.随着人民生活水平的提高,中国春节已经成为中国公民旅游黄金周.国家旅游局数据显示,2017年春节中国公民出境旅游约615万人次,2018,2019两年出境旅游人数持续增长,在2019年春节出境旅游达到700万人次,设2018年与2019年春节出境旅游总量较上一年春节的平均增长率为x ,则下列方程正确的是( ).A .615(1+x)=700B .615(1+2x)=700C .()26151700x +=D .()()261516151700x x +++= 2.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A 的全程是25千米,但交通比较拥堵,路线B 的全程比路线A 的全程多7千米,但平均车速比走路线A 时能提高60%,若走路线B 的全程能比走路线A 少用15分钟.若设走路线A 时的平均速度为x 千米/小时,根据题意,可列分式方程( ) A .25321.6x x -=15 B .3225151.6x x -= C .322511.64x x -= D .253211.64x x -= 3.在分式a b ab+(a ,b 为正数)中,字母a ,b 值分别扩大为原来的3倍,则分式的值( ) A .不变 B .缩小为原来的13 C .扩大为原来的3倍D .不确定 4.若分式xy x y+(x≠0,y≠0)中x ,y 同时扩大3倍,则分式的值( ) A .扩大3倍 B .缩小3倍 C .改变 D .不改变 5.一次函数y =(k ﹣3)x+2,若y 随x 的增大而增大,则k 的值可以是( )A .1B .2C .3D .46.如图,在平面直角坐标系xOy 中,点A 、C 、F 在坐标轴上,E 是OA 的中点,四边形AOCB 是矩形,四边形BDEF 是正方形,若点C 的坐标为(3,0),则点D 的坐标为( )A .(1,2.5)B .(1,1+ 3C .(1,3)D .31,1+ 3) 7.将点P(5,3)向左平移4个单位,再向下平移1个单位后,落在函数y =kx ﹣2的图象上,则k 的值为( ) A .k =2 B .k =4 C .k =15 D .k =3681α-有意义,a 的范围是( )A .a >﹣1B .a <﹣1C .a =±1D .a≤19.函数()()1240y x x y x x==>≥0,的图象如图所示,则结论:①两函数图象的交点A 的坐标为(2,2);②当x >2时,21y y >;③当x =1时,BC =3;④当x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小.则其中正确结论的序号是( )A .①②B .①③C .②④D .①③④10.为了解某学校七至九年级学生每天的体育锻炼时间,下列抽样调查的样本代表性较好的是( ) A .选择七年级一个班进行调查B .选择八年级全体学生进行调查C .选择全校七至九年级学号是5的整数倍的学生进行调查D .对九年级每个班按5%的比例用抽签的方法确定调查者二、填空题11.计算()()5353+-的结果等于______________. 12.在一次越野赛跑中,当小明跑了1600m 时,小刚跑了1450m ,此后两人分别调整速度,并以各自新的速度匀速跑,又过100s 时小刚追上小明,200s 时小刚到达终点,300s 时小明到达终点.他们赛跑使用时间t (s )及所跑距离如图s (m ),这次越野赛的赛跑全程为 m ?1321+=_____. 14.关于x 的方程()21410k x x -++=有解,则k 的范围是______.15.在平行四边形ABCD 中,若∠A =70°,则∠C 的度数为_________.16.命题“全等三角形的对应角相等”的逆命题是____________________________这个逆命题是______(填“真”或“假”)17.若α是锐角且sinα=32,则α的度数是.三、解答题18.把下列各式因式分解:(1)(m+n)3+2m(m+n)2+m2(m+n);(2)(a2+b2)2-4a2b2.19.(6分)某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为______,中位数为_______;(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?20.(6分)(1)因式分解:x2y﹣2xy 2+y3(2)解不等式组:513(1)1123x xx x-<+⎧⎪-⎨>-⎪⎩21.(6分)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x⩾0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数。

湖南省张家界市2020年初二下期末达标测试数学试题含解析

湖南省张家界市2020年初二下期末达标测试数学试题含解析

湖南省张家界市2020年初二下期末达标测试数学试题一、选择题(每题只有一个答案正确)1.用配方法解一元二次方程22610x x -+=时,此方程配方后可化为( )A .23724x ⎛⎫-= ⎪⎝⎭ B .235224x ⎛⎫-= ⎪⎝⎭ C .23524x ⎛⎫-= ⎪⎝⎭D .237224x ⎛⎫-= ⎪⎝⎭2.是关于x 的一元二次方程,则( ) A .B .C .D . 为任意实数3.直线y=x-2与x 轴的交点坐标是( ) A .(2,0)B .(-2,0)C .(0,-2)D .(0,2)4.如图,小明在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于C 、D 两点,直线CD 即为所求.根据他的作图方法可知四边形ABCD 一定是( )A .矩形B .菱形C .正方形D .无法确定5.下列说法正确的是( )A .对角线互相垂直的平行四边形是正方形B .一组对边平行另一组对边相等的四边形是平行四边形C .一组对边平行另一组对角相等的四边形是平行四边形D .对角线互相垂直的四边形是菱形6.设直线y =kx+6和直线y =(k+1)x+6(k 是正整数)及x 轴围成的三角形面积为S k (k =1,2,3,…,8),则S 1+S 2+S 3+…+S 8的值是( ) A .49B .634C .16D .147.把(111a a ---(a-1)移入根号内,结果是( ) A 1a -+B 1a +C .1a --+D .1a +8.关于x 的一元二次方程x 2+ax ﹣1=0的根的情况是( ) A .没有实数根 B .只有一个实数根 C .有两个相等的实数根D .有两个不相等的实数根9.甲、乙、丙、丁四位同学在一次数学测验中的平均成绩是90分,而甲、乙、丙三人的平均成绩是88分,下列说法一定正确的是( ) A .丁同学的成绩比其他三个同学的成绩都好 B .四位同学成绩的中位数一定是其中一位同学的成绩 C .四位同学成绩的众数一定是90分 D .丁同学成绩是96分10.如图,ABC ∆中,4AB =,6BC =,60B ∠=︒,将ABC ∆沿射线BC 的方向平移,得到A B C '''∆,再将A B C '''∆绕A '逆时针旋转一定角度,点B '恰好与点C 重合,则平移的距离和旋转角的度数分别为( )A .4,20︒B .2,60︒C .1,30D .3,46︒二、填空题11.正比例函数y =mx 经过点P (m ,9),y 随x 的增大而减小,则m =__.12.如图所示,为了安全起见,要为一段高5米,斜边长13米的楼梯上红地毯,则红地毯至少需要________米长。

湖南省张家界市八年级下学期数学期末考试试卷

湖南省张家界市八年级下学期数学期末考试试卷

湖南省张家界市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八上·皇姑期末) 正比例函数一定经过点()A .B .C .D .2. (2分) (2019八下·泰兴期中) 如果与最简二次根式是同类二次根式,那么a的值是()A . ﹣2B . ﹣1C . 1D . 23. (2分) (2017八下·桂林期中) 下列三边的长不能成为直角三角形三边的是()A . 3,4,5B . 4,5,6C . 6,8,10D . 5,12,134. (2分)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A . 7mB . 8mC . 9mD . 10m5. (2分)若反比例函数的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过A . 第一、二、四象限B . 第一、三、四象限C . 第二、三、四象限D . 第一、二、三象限6. (2分) (2015九上·淄博期中) 顺次连接四边形四边中点所组成的四边形是菱形,则原四边形为()A . 平行四边形B . 菱形C . 对角线相等的四边形D . 直角梯形7. (2分)某射击队要从四名运动员中选拔一名参加比赛,选拔赛中,每名队员的平均成绩与方差S2如下表所示.如果要选择一个平均成绩高且发挥稳定的人参赛,那么这个人应是A . 甲B . 乙C . 丙D . 丁8. (2分)已知直线y=2x+k与x轴的交点为(-2,0),则关于x的不等式2x+k<0的解集是()A . x>-2B . x≥-2C . x<-2D . x≤-29. (2分)如图,CD是斜边AB上的高,将BCD沿CD折叠,B点恰好落在AB的中点E处,则A 等于().A . 25B . 30C . 45D . 6010. (2分)函数y=|x-1|+|x-2|的最小值是()A . 3B . 2C . 1D . 0二、填空题 (共8题;共8分)11. (1分) (2017八上·灌云月考) 计算: ________12. (1分)平行四边形ABCD中,∠A=2∠B,则∠C=________13. (1分) (2016九上·微山期中) 在1×3的正方形网格格点上放三枚棋子,按图所示的位置己放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为________.14. (1分)某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:时间(单位:小时)43210人数24211则这10名学生周末利用网络进行学习的平均时间是________小时.15. (1分)将直线y=﹣x向上平移3个单位得到的函数解析式是________.16. (1分)(2013·南京) 计算:的结果是________.17. (1分) (2015七下·瑞昌期中) 某电视台“走基层”栏目的一位记者赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.如果汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,那么汽车在乡村公路上的行驶速度为________ km/h.18. (1分) (2017九上·信阳开学考) 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.点D是BC边上的一动点(不与点B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F 处.当△AEF为直角三角形时,BD的长为________.三、解答题 (共7题;共85分)19. (10分) (2017九上·东台期末) 计算题(1)计算:(2)解方程:20. (10分) (2016八上·东营期中) 如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6.(1)求证:△EDF≌△CBF;(2)求∠EBC.21. (15分)(2018·郴州) 如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.22. (10分) (2016九上·兴化期中) 市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如表(单位:环):第一次第二次第三次第四次第五次第六次甲10898109乙107101098(1)根据表格中的数据,分别计算甲、乙的平均成绩;(2)已知甲六次成绩的方差S甲2= ,试计算乙六次测试成绩的方差;根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.23. (10分)(2017·应城模拟) 学校准备购进一批排球和篮球,已知1个排球和2个篮球共需320元,3个排球和1个篮球共需360元.(1)求一个排球和一个篮球的售价各是多少元?(2)学校准备购进这种排球和篮球共40个,且篮球的数量不少于排球数量的3倍,求最省钱的购买方案.24. (15分) (2017八下·郾城期末) 某机动车出发前油箱内有油42L,行驶若干小时后,在途中加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的函数关系如图所示,根据如图回答问题:(1)机动车行驶几小时后加油?加了多少油?(2)试求加油前油箱余油量Q与行驶时间t之间的关系式;(3)如果加油站离目的地还有230km,车速为40km/h,要到达目的地,油箱中的油是否够用?请说明理由.25. (15分) (2017八下·东台期中) 如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.(1)求证:△CBG≌△CDG;(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共85分)19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。

湖南省张家界市八年级下学期数学期末考试试卷

湖南省张家界市八年级下学期数学期末考试试卷

湖南省张家界市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)计算的结果是()A . 2B . -2C . ±2D . ±42. (2分) (2016八上·芦溪期中) 以下列各组数为三角形的边长,能构成直角三角形的是()A . 1,2,3B . 5,6,9C . 5,12,13D . 8,10,133. (2分)已知点A(x1 , y1)和点B(x2 , y2)在同一条直线y=kx+b上,且k<0.若x1>x2 ,则y1与y2的关系是()A . y1>y2B . y1=y2C . y1<y2D . y1与y2的大小不确定4. (2分)(2012·锦州) 如图,反比例函数y= (k≠0)与一次函数y=kx+k(k≠0)在同一平面直角坐标系内的图象可能是()A .B .C .D .5. (2分)(2019·河南模拟) 若一组数据2,x,8,4,2的平均数是6,则这组数据的中位数和众数分别是()A . 8,2B . 3,2C . 4,2D . 6,86. (2分)如图,平行四边形ABCD中,∠C=108°,BE平分∠ABC,则∠AEB = ()A . 18°B . 36°C . 72°D . 108°7. (2分)如图,O是正方形ABCD的对角线BD上一点,⊙O与边AB,BC都相切,点E,F分别在AD,DC上,现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,则正方形ABCD的边长是()A . 3B . 4C . 2+D .8. (2分)空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是()A . 扇形图B . 条形图C . 折线图D . 直方图9. (2分) (2018八上·阳新月考) 在平面直角坐标系中,将直线平移后,得到直线,则下列平移作法正确的是()A . 将向右平移3个单位长度B . 将向右平移6个单位长度C . 将向上平移2个单位长度D . 将向上平移4个单位长度10. (2分) (2019七下·南通月考) 平面直角坐标系中,点A(-3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的长度最小时点C的坐标为()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)若二次根式在实数范围内有意义,则x的取值范围是________.12. (1分)(2019·铁岭模拟) 数据﹣2、﹣1、0、1、2的方差是________.13. (1分) (2017八下·新野期中) 已知一次函数的图象不经过第三象限,则的取值范围是________.14. (1分) (2020八上·邳州期末) 如图,在坐标系中,一次函数与一次函数的图像交于点,则关于的不等式的解集是________.15. (1分)在△ABC中,AB=9,AC=12,BC=15,则△ABC的中线AD=________ .16. (1分) (2019八下·诸暨期中) 如图,菱形ABCD的一个内角是60∘,将它绕对角线的交点O顺时针旋转90∘后得到菱形A′B′C′D′.旋转前后两菱形重叠部分多边形的周长为,则菱形ABCD的边长为________.三、解答题 (共9题;共85分)17. (5分) (2016九上·市中区期末) 计算:﹣4 ﹣tan60°+| ﹣2|.18. (10分)(2017·兰州模拟) 如图,在△ABC中,AC=BC,D是BC上的一点,且满足∠BAD= ∠C,以AD为直径的⊙O与AB,AC分别相交于点E,F.(1)求证:直线BC是⊙O的切线;(2)连接EF,若tan∠AEF= ,AD=4,求BD的长.19. (5分)如图,△ABC中,A,B,C三点的坐标分别为(2,5),(6,﹣4),(﹣2,0),求△ACB的面积.20. (5分)如图,△ABC中AB=AC,点D从点B出发沿射线BA移动,同时,点E从点C出发沿线段AC的延长线移动,已点知D、E移动的速度相同,DE与直线BC相交于点F.(1)如图1,当点D在线段AB上时,过点D作AC的平行线交BC于点G,连接CD、GE,判定四边形CDGE的形状,并证明你的结论;(2)过点D作直线BC的垂线垂足为M,当点D、E在移动的过程中,线段BM、MF、CF有何数量关系?请直接写出你的结论.21. (10分) (2019七上·威海期末) 如图,点A的坐标为(﹣,0),点B的坐标为(0,3).(1)求过A,B两点直线的函数表达式;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.22. (15分) (2018九上·扬州期中) 九(2)班组织了一次知识竞赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是________分,乙队成绩的众数是________分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是________队.23. (5分) (2018八下·桐梓月考) 如图所示,在△ABC中,AC=5,BC=12,AB=13,D是BC的中点,求AD的长和△ABD的面积.24. (15分)(2016·江汉模拟) 某地政府计划为农户购买农机设备提供补贴.其中购买Ⅰ型、Ⅱ型设备农民所投资的金额与政府补贴的额度存在下表所示的函数对应关系.型号金额Ⅰ型设备Ⅱ型设备投资金额x(万元)x5x24补贴金额y(万元)y1=kx(k≠0)2y2=ax2+bx(a≠0) 2.84(1)分别求y1和y2的函数解析式;(2)有一农户共投资10万元购买Ⅰ型、Ⅱ型两种设备,两种设备的投资均为整数万元,要想获得最大补贴金额,应该如何购买?能获得的最大补贴金额为多少?25. (15分) (2017七下·盐都期中) 如图,∠MON=90°,点A、B分别在直线OM、ON上,BC是∠ABN的平分线.(1)如图1,若BC所在直线交∠OAB的平分线于点D时,尝试完成①、②两题:①当∠ABO=30°时,∠ADB=________°②当点A、B分别在射线OM、ON上运动时(不与点O重合),试问:随着点A、B的运动,∠ADB的大小会变吗?如果不会,请求出∠ADB的度数;如果会,请求出∠ADB的度数的变化范围;________(2)如图2,若BC所在直线交∠BAM的平分线于点C时,将△ABC沿EF折叠,使点C落在四边形ABEF内点C′的位置.求∠BEC′+∠AFC′ 的度数.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共85分)17-1、18-1、18-2、19-1、20-1、21-1、21-2、22-1、22-2、22-3、23-1、24-1、24-2、25-1、25-2、。

张家界市八年级下学期数学期末试卷

张家界市八年级下学期数学期末试卷

张家界市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分)(2018·成都模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)(2018·峨眉山模拟) 把多项式分解因式,结果正确的是()A .B .C .D .3. (2分) (2019八上·温州开学考) 函数y= 中,自变量x的取值范围是()A . x>2B . x<2C . x≠-2D . x≠24. (2分) (2019七上·南山期末) 实数,,在数轴上的对应点的位置如图所示,则正确的结论是()A .B .C .D .5. (2分)若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为()A . 90°;B . 105°;C . 130°;D . 120°.6. (2分) (2018八上·无锡期中) 一个等腰三角形的两边长分别是4和9,则它的周长是()A . 13B . 17C . 22D . 17或227. (2分)若分式方程 +3= 有增根,则a的值是()A . ﹣1B . 0C . 1D . 28. (2分)(2020·宜兴模拟) 在平面直角坐标系中,若点M(m,n)与点Q(-2,3)关于原点对称,则点P(m-n,n)所在象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (2分) (2019八下·西乡塘期末) 如图,在平行四边形ABCD中,F,G分别为CD,AD的中点,BF=2,BG=3,,则BC的长度为()A .B .C . 2.5D .10. (2分) (2017八下·湖州期中) 在△ABC中,AB=6,AC=8,则BC边上中线AD的取值范围为()(提示:可以构造平行四边形)A . 2<AD<14B . 1<AD<7C . 6<AD<8D . 12<AD<1611. (2分)科技馆为某机器人编制一段程序,如果机器人在平地上按照图中所示的步骤行走,那么该机器人所走的总路程为()A . 6米B . 8米C . 12米D . 不能确定12. (2分) (2019七上·句容期末) 一张长方形纸片的长为m,宽为n(m>3n)如图1,先在其两端分别折出两个正方形(ABEF、CDGH)后展开(如图2),再分别将长方形ABHG、CDFE对折,折痕分别为MN、PQ(如图3),则长方形MNQP的面积为()A . n2B . n(m﹣n)C . n(m﹣2n)D .13. (2分)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A .B .C .D .14. (2分)下列各式中不成立的是()A .B .C .D .15. (2分)如图,直线a、b、c、d互不平行,对它们截出的一些角的数量关系描述错误的是()A . ∠1+∠6﹦∠2B . ∠4+∠5﹦∠2C . ∠1+∠3+∠6﹦180°D . ∠1+∠5+∠4﹦180°二、填空题 (共6题;共7分)16. (1分)(2017·平房模拟) 不等式组的解集是________.17. (1分) (2015八上·应城期末) 如图,在等腰△ABC的两腰AB、BC上分别取点D和E,使DB=DE,此时恰有∠ADE= ∠ACB,则∠B的度数是________.18. (1分) (2018八上·合浦期末) 从这七个数中,随机取出一个数,记为,那么使关于的方程有整数解,且使关于的不等式组有解的概率为________.19. (1分)(2019·泰兴模拟) 如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为________.20. (2分)用正方形和正方形组合能够铺满地面,每个顶点周围有m个正三角形和n个正方形,则m+n=________ .21. (1分) (2018八上·无锡期中) 如图,已知△ABC为等腰直角三角形,D为斜边AB上任意一点,(不与点A、B重合),连接CD,作EC⊥DC,且EC=DC,连接AE,则∠EAC为________度.三、解答题 (共7题;共58分)22. (10分) (2016七上·怀柔期末) 先化简,再求值:2(x2+2x﹣2)﹣(x2﹣2x﹣1),其中x=﹣.23. (10分) (2020八下·东坡期中) 解下列分式方程(1);(2).24. (5分)(2018·新乡模拟) 先化简,再求值:()÷ ,其中a= +1,b= ﹣1.25. (11分)(2020·白云模拟) 已知抛物线 : ( 为常数)的顶点为 .(1)求点的坐标;(用含的式子表示)(2)在同一平面直角坐标系中,存在函数图象,点在图象上,点在抛物线上,对于任意的实数,都有点,关于点对称.① 当 t=1 时,求图象对应函数的解析式;②当时,都有成立,结合图象,求的取值范围.26. (2分) (2018八上·洪山期中) 阅读下列材料,然后解决问题:和、差、倍、分等问题中有着广泛的应用,截长法与补短法在证明线段的和、差、倍、分等问题中有着广泛的应用.具体的做法是在某条线段上截取一条线段等于某特定线段,或将某条线段延长,使之与某特定线段相等,再利用全等三角形的性质等有关知识来解决数学问题.(1)如图1,在△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,把AB、AC、2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是________.(2)如图2,在四边形ABCD中,AB=AD,∠ABC+∠ADC=180°,E、F分别是边BC,CD上的两点,且∠EAF =∠BAD,求证:BE+DF=EF.(3)如图3,在△ABC中,∠ACB=90°,∠CAB=60°,点D是△ABC外角平分线上一点,DE⊥AC交CA延长线于点E,F是AC上一点,且DF=DB.求证:AC﹣AE= AF.27. (10分)(2019·玉州模拟) 蔬菜基地种植了娃娃菜和油菜两种蔬菜共亩,设种植娃娃菜亩,总收益为万元,有关数据见下表:成本(单位:万元/亩)销售额(单位:万元/亩)娃娃菜2.43油菜2 2.5(1)求关于的函数关系式(收益 = 销售额–成本);(2)若计划投入的总成本不超过万元,要使获得的总收益最大,基地应种植娃娃菜和油菜各多少亩?(3)已知娃娃菜每亩地需要化肥 kg,油菜每亩地需要化肥 kg,根据(2)中的种植亩数,基地计划运送所需全部化肥,为了提高效率,实际每次运送化肥的总量是原计划的倍,结果运送完全部化肥的次数比原计划少次,求基地原计划每次运送多少化肥.28. (10分) (2017八下·南沙期末) 如图,四边形OABC为矩形,A点在x轴上,C点在y轴上,矩形一角经过翻折后,顶点B落在OA边的点G处,折痕为EF,F点的坐标是(4,1),∠FGA=30°.(1)求B点坐标.(2)求直线EF解析式.(3)若点M在y轴上,直线EF上是否存在点N,使以M、N、F、G为顶点的四边形是平行四边形?若存在,求N点的坐标;若不存在,请说明理由.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共6题;共7分)16-1、17-1、18-1、19-1、20-1、21-1、三、解答题 (共7题;共58分)22-1、23-1、23-2、24-1、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、28-1、28-2、28-3、。

湘教版 2019-2020学年八年级数学下册期末测试卷(含答案)

湘教版 2019-2020学年八年级数学下册期末测试卷(含答案)

2019-2020学年八年级数学下册期末测试卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题4分,共40分)1.下列图案中,既是轴对称图形,又是中心对称图形的是()2.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=()度.A.270° B.300°C.360° D.400°3.“学习强国”的英语“Learningpower”中,字母“n”出现的频率是()A.1B.21 C.132D.24.一次函数y = x+2的图象与y轴的交点坐标为()A.(0,2) B.(0,﹣2)C.(2,0) D.(﹣2,0)5.如图,在平行四边形ABCD中,对角线AC、BD相交于点O.下列条件不能判定平行四边形ABCD为矩形的是()A.∠ABC=90°B.AC=BDC.AD=BC,AB∥CD D.∠BAD=∠ADC6.如图,∠C=90°,AB=12,BC=3,CD=4.若∠ABD=90°,则AD的长为() A.10 B.13 C.8 D.117.如图,在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则点C的坐标是()A.(8,2) B.(5,3) C.(3,7) D.(7,3)8.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6 cm,那么CE等于()A. 3 cm B.2 cm C.3 cm D.4 cm9.若把点A(-5m,2m-1)向上平移3个单位后得到的点在x轴上,则点A在() A.x轴上 B.第三象限 C.y轴上 D.第四象限10.小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明从图书馆回家的速度为0.8km/minC.食堂到图书馆的距离为0.8kmD.小明读报用了30min二、填空题(本题共8小题,每小题4分,共32分)11.点A(-3,0)关于y轴的对称点的坐标是_________.12.如果正比例函数y=kx的图象经过点(1,﹣2),那么k的值等于_________.第6题图第7题图第8题图第15题图 13.如图,在中国象棋的残局上建立平面直角坐标系,若“相”和“兵”的坐标分别是(3,﹣1)和(﹣3,1),则“卒”的坐标为________.14.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,E 是AC 的中点.若DE =5,则AB 的长为 .15.抽取某校学生一个容量为150的样本,测得学生身高后,得到如图所示的身高频数分布直方图,已知该校有学生1 500人,则可以估计出该校身高位于160 cm 至165 cm 之间的学生大约有 人.16.如图,平行四边形ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BD =12,则△DOE 的周长为 .17.如图,将矩形ABCD 的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH ,EH =12厘米,EF =16厘米,则边AD 的长是________ cm.18.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =23,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP = .三、解答题(本大题共8小题,共78分) 19.(本题满分6分)如图,∠A =∠D =90°,AC =DB ,AC 、DB 相交于点O .求证:OB =OC .20.(本题满分8分)某校为了解八年级学生的视力情况,对八年级的学生进行了一次视力调查,并将调查数据进行统计整理,绘制出如下频数分布表和频数分布直方图的一部分.视力 频数/人 频率 4.0≤x <4.3 20 0.1 4.3≤x <4.6 40 0.2 4.6≤x <4.9 70 0.35 4.9≤x <5.2 a 0.3 5.2≤x <5.5 10 b第17题图 第18题图 第14题图第13题图 第16题图(1)在频数分布表中,a=_________,b=_________;(2)将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,求视力正常的人数占被调查人数的百分比.21.(本题满分8分)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(﹣4,﹣2),请直接写出直线l的函数解析式.22.(本题满分10分)如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数.23.(本题满分10分)如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.24.(本题满分10分)如图,直线m的表达式为y =﹣3x+3,且与x轴交于点B,直线n经过点A(4,0),且与直线m交于点C(t,﹣3)(1)求直线n的表达式.(2)求△ABC的面积.(3)在直线n上存在异于点C的另一点P,使△ABP与△ABC的面积相等,请直接写出点P的坐标是.m25.(本题满分13分)已知:如图,一块R t △ABC 的绿地,量得两直角边AC =8cm ,BC =6cm.现在要将这块绿地扩充成等腰△ABD ,且扩充部分(△ADC )是以8cm 为直角边长的直角三角形,求扩充等腰△ABD 的周长.(1)在图1中,当AB =AD =10cm 时,△ABD 的周长为 . (2)在图2中,当BA =BD =10cm 时,△ABD 的周长为 . (3)在图3中,当DA =DB 时,求△ABD 的周长.26.(本题满分13分)(1)操作思考:如图1,在平面直角坐标系中,等腰Rt △ACB 的直角顶点C 在原点,将其绕着点O 旋转,若顶点A 恰好落在点(1,2)处.则①OA 的长为 ;②点B 的坐标为 (直接写结果);(2)感悟应用:如图2,在平面直角坐标系中,将等腰R t △ACB 如图放置,直角顶点 C (-1,0),点A (0,4),试求直线AB 的函数表达式;(3)拓展研究:如图3,在平面直角坐标系中,点B (4;3),过点B 作BA ⊥y 轴,垂足为点A ;作BC ⊥x 轴,垂足为点C ,P 是线段BC 上的一个动点,点Q 是直线62-=x y 上一动点.问是否存在以点P 为直角顶点的等腰R t △APQ ,若存在,请求出此时P 的坐标,若不存在,请说明理由.八年级数学参考答案及评分标准一、选择题:(每小题有且只有一个正确答案,本题共10小题,每小题4分,共40分)题次 1 2 3 4 5 6 7 8 9 10 答案 B C C A C B D B D D二、填空题:(本题共8小题,每小题4分,共32分)11.(3,0) 12.-2 13.(-2,-2) 14.1015.300 16.15 17.20 18.6三、解答题(本大题共8小题,共78分)19.(本题满分8分)证明:在Rt△ABC和Rt△DCB中,∴Rt△ABC≌Rt△DCB(HL),∴∠OBC=∠OCB,∴BO=CO.20.(本题满分8分)(1)600.05(2)(3)视力正常的人数占被调查人数的百分比是70%.21.(本题满分8分)解:(1)如图,△A1B1C1为所作,C1(﹣1,2);(2)如图,△A2B2C2为所作,C2(﹣3,﹣2);(3)因为A的坐标为(2,4),A3的坐标为(﹣4,﹣2),所以直线l的函数解析式为y=﹣x,22.(本题满分8分)(1)证明:∵四边形ABCD是正方形,∴∠DAB=∠ABC=90°,AD=AB,在△DAF和△ABE中,,∴△DAF≌△ABE(SAS),(2)由(1)知,△DAF≌△ABE,∴∠ADF=∠BAE,∵∠ADF+∠DAO=∠BAE+∠DAO=∠DAB=90°,∴∠AOD=180°﹣(∠ADF+DAO)=90°.23.(本题满分10分)解:(1)∵四边形ABCD是菱形,∴AB=BC,AC⊥BD,AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC与∠BAD的度数比为1:2,∴∠ABC=×180°=60°,∴∠ABO=∠ABC=30°,∵菱形ABCD的周长是8cm.∴AB=2cm,∴OA=AB=1cm,∴OB==,∴AC=2OA=2cm,BD=2OB=2cm;(2)S菱形ABCD=AC•BD=×2×2=2(cm2).24.(1)n的表达式为362y x=-;(2)S△ABC的面积是4.5;(3)P点坐标为(6,3).25.(本题满分13分)26.(本题满分13分)26.(本题满分13分)1、只要朝着一个方向努力,一切都会变得得心应手。

2019-2020学年湖南省张家界市中考数学复习检测试题

2019-2020学年湖南省张家界市中考数学复习检测试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在△ABC中,AB=AC=13,BC=24,则tanB等于()A.513B.512C.1213D.1252.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.3.如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )A.M B.N C.P D.Q4.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6 m5.把不等式组24030xx-≥⎧⎨->⎩的解集表示在数轴上,正确的是()A.B.C.D.6.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是()A.8 B.﹣8 C.﹣12 D.127.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.125B.95C.65D.1658.已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是()A.4b+2c B.0 C.2c D.2a+2c9.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c10.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是()A.B.C.D.二、填空题(本题包括8个小题)11.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB 的延长线上,当扇形AOB的半径为22时,阴影部分的面积为__________.12.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线B D交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为______.132(2)=__________14.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=__________(用含n的代数式表示).所剪次数 1 2 3 4 …n正三角形个数 4 7 10 13 …a n15.已知关于x的方程x2-23x-k=0有两个相等的实数根,则k的值为__________.16.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.17.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= ______18.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.三、解答题(本题包括8个小题)19.(6分)2018年江苏省扬州市初中英语口语听力考试即将举行,某校认真复习,积极迎考,准备了A、B、C、D四份听力材料,它们的难易程度分别是易、中、难、难;a,b是两份口语材料,它们的难易程度分别是易、难.从四份听力材料中,任选一份是难的听力材料的概率是.用树状图或列表法,列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,并求出两份材料都是难的一套模拟试卷的概率.20.(6分)先化简2211a a a a ⎛⎫-÷⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值. 21.(6分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A 、B 、C 、D 四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C 厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.抽查D 厂家的零件为 件,扇形统计图中D 厂家对应的圆心角为 ;抽查C 厂家的合格零件为 件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A 、B 、C 、D 四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.22.(8分)解不等式组21114(2)x x x +-⎧⎨+>-⎩23.(8分)抛物线23yax bx a =+-经过A (-1,0)、C (0,-3)两点,与x 轴交于另一点B .求此抛物线的解析式;已知点D (m,-m-1) 在第四象限的抛物线上,求点D 关于直线BC 对称的点D’的坐标;在(2)的条件下,连结BD ,问在x 轴上是否存在点P ,使PCB CBD ∠=∠,若存在,请求出P 点的坐标;若不存在,请说明理由.24.(10分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:a= %,并补全条形图.在本次抽样调查中,众数和中位数分别是多少?如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?25.(10分)如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛P在A港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.求AP,BP的长(参考数据:2≈1.4,3≈1.7,5≈2.2);甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?26.(12分)如图,△ABC中,点D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的长.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,AD=225AB BD-=,故tanB=512 ADBD=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.2.B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.3.A【解析】解:∵点P所表示的数为a,点P在数轴的右边,∴-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数-3a所对应的点可能是M,故选A.点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍.4.D【解析】【分析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴,即,解得:AB=6,故选:D.【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE ∽△CDE 是解答此题的关键. 5.A 【解析】 【分析】分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可. 【详解】2x 4030x -≥⎧⎨-⎩①>② 由①,得x≥2, 由②,得x <1,所以不等式组的解集是:2≤x <1. 不等式组的解集在数轴上表示为:.故选A . 【点睛】本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.D 【解析】 【分析】根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y 值. 【详解】∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1. 故选D . 【点睛】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键. 7.A 【解析】 【分析】连接AM ,根据等腰三角形三线合一的性质得到AM ⊥BC ,根据勾股定理求得AM 的长,再根据在直角三角形的面积公式即可求得MN 的长. 【详解】解:连接AM ,∵AB=AC ,点M 为BC 中点, ∴AM ⊥CM (三线合一),BM=CM , ∵AB=AC=5,BC=6, ∴BM=CM=3,在Rt △ABM 中,AB=5,BM=3, ∴根据勾股定理得:AM= 22AB BM -=2253-=4,又S △AMC =12MN•AC=12AM•MC , ∴MN=·AM CM AC= 125. 故选A . 【点睛】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边. 8.A 【解析】由数轴上点的位置得:b<a<0<c ,且|b|>|c|>|a|, ∴a+c>0,a−2b>0,c+2b<0, 则原式=a+c−a+2b+c+2b=4b +2c. 故选:B.点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键. 9.C 【解析】 【分析】首先根据数轴可以得到a 、b 、c 的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案为a+c.故选A.10.C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图二、填空题(本题包括8个小题)11.π﹣1【解析】【分析】根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.【详解】连接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,∴∠COD=45°,∴OC=2CD=12,∴CD=OD=1,∴阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积=24522360π()﹣12×11=π﹣1.故答案为π﹣1.【点睛】本题考查正方形的性质和扇形面积的计算,解题关键是得到扇形半径的长度.12【解析】∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴=.点睛:本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.13.2;【解析】试题解析:先求-2的平方4.14.3n+1.【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.试题解析:故剪n次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.15.-3【解析】试题解析:根据题意得:△=()2-4×1×(-k)=0,即12+4k=0,解得:k=-3,16.1 4【解析】【分析】先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.【详解】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=14S四边形,∴针头扎在阴影区域内的概率为14;故答案为:14.【点睛】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.17.【解析】如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90∘,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD−C′D=−1.故答案为:−1.点睛: 本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.18.1.【解析】【详解】∵AB=5,AD=12,∴根据矩形的性质和勾股定理,得AC=13.∵BO为Rt△ABC斜边上的中线∴BO=6.5∵O是AC的中点,M是AD的中点,∴OM是△ACD的中位线∴OM=2.5∴四边形ABOM的周长为:6.5+2.5+6+5=1故答案为1三、解答题(本题包括8个小题)19.(1)12;(2)14.【解析】【分析】(1)依据A、B、C、D四份听力材料的难易程度分别是易、中、难、难,即可得到从四份听力材料中,任选一份是难的听力材料的概率是12;(2)利用树状图列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,即可得到两份材料都是难的一套模拟试卷的概率.【详解】(1)∵A、B、C、D四份听力材料的难易程度分别是易、中、难、难,∴从四份听力材料中,任选一份是难的听力材料的概率是24=12,故答案为12;(2)树状图如下:∴P (两份材料都是难)=2184=. 【点睛】本题主要考查了利用树状图或列表法求概率,当有两个元素时,可用树形图列举,也可以列表列举.随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.20.-1【解析】【分析】先化简,再选出一个合适的整数代入即可,要注意a 的取值范围.【详解】 解:2211a a a a ⎛⎫-÷ ⎪--⎝⎭ (1)(1)12a a a a a ---=•- 1(1)12a a a a a -+-=•- 2a =, 当2a =-时,原式212-==-. 【点睛】 本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.21.(1)500, 90°;(2)380;(3)合格率排在前两名的是C 、D 两个厂家;(4)P (选中C 、D )=16. 【解析】试题分析:(1)计算出D 厂的零件比例,则D 厂的零件数=总数×所占比例,D 厂家对应的圆心角为360°×所占比例;(2)C 厂的零件数=总数×所占比例;(3)计算出各厂的合格率后,进一步比较得出答案即可;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:(1)D 厂的零件比例=1-20%-20%-35%=25%,D 厂的零件数=2000×25%=500件;D 厂家对应的圆心角为360°×25%=90°;(2)C 厂的零件数=2000×20%=400件,C 厂的合格零件数=400×95%=380件,如图:(3)A 厂家合格率=630÷(2000×35%)=90%,B 厂家合格率=370÷(2000×20%)=92.5%,C 厂家合格率=95%,D 厂家合格率470÷500=94%,合格率排在前两名的是C 、D 两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C 、D 的有2种,则P (选中C 、D )=212=16. 考点:1.条形统计图;2.扇形统计图;3. 树状图法.22.﹣1≤x <1.【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x ﹣2),得:x <1,则不等式组的解集为﹣1≤x <1.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.23.(1)2y x 2x 3=--(2)(0,-1)(3)(1,0)(9,0)【解析】【分析】(1)将A(−1,0)、C(0,−3)两点坐标代入抛物线y=ax2+bx−3a中,列方程组求a、b的值即可;(2)将点D(m,−m−1)代入(1)中的抛物线解析式,求m的值,再根据对称性求点D关于直线BC对称的点D'的坐标;(3)分两种情形①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,②连接BD′,过点C作CP′∥BD′,交x轴于P′,分别求出直线CP和直线CP′的解析式即可解决问题.【详解】解:(1)将A(−1,0)、C(0,−3)代入抛物线y=ax2+bx−3a中,得3033a b aa--=⎧⎨-=-⎩,解得12 ab=⎧⎨=-⎩∴y=x2−2x−3;(2)将点D(m,−m−1)代入y=x2−2x−3中,得m2−2m−3=−m−1,解得m=2或−1,∵点D(m,−m−1)在第四象限,∴D(2,−3),∵直线BC解析式为y=x−3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3−2=1,∴点D关于直线BC对称的点D'(0,−1);(3)存在.满足条件的点P有两个.①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,∵直线BD解析式为y=3x−9,∵直线CP过点C,∴直线CP的解析式为y=3x−3,∴点P坐标(1,0),②连接BD′,过点C作CP′∥BD′,交x轴于P′,∴∠P′CB=∠D′BC,根据对称性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD,∵直线BD′的解析式为113y x =- ∵直线CP′过点C ,∴直线CP′解析式为133y x =-, ∴P′坐标为(9,0),综上所述,满足条件的点P 坐标为(1,0)或(9,0).【点睛】本题考查了二次函数的综合运用.关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线BC 的特殊性求点的坐标,学会分类讨论,不能漏解.24.(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.【解析】【分析】(1)用1减去其他天数所占的百分比即可得到a 的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.【详解】解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,该扇形所对圆心角的度数为310°×10%=31°,参加社会实践活动的天数为8天的人数是:2020%×10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1.(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/时,乙船的速度是20海里/时【解析】【分析】(1)过点P作PE⊥AB于点E,则有PE=30海里,由题意,可知∠PAB=30°,∠PBA=45°,从而可得AP=60海里,在Rt△PEB中,利用勾股定理即可求得BP的长;(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据甲船比乙船晚到小岛24分钟列出分式方程,求解后进行检验即可得.【详解】(1)如图,过点P作PE⊥MN,垂足为E,由题意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,∵PE=30海里,∴AP=60海里,∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE=45°,∴PE=EB=30海里,在Rt△PEB中,BP=22PE EB+=302≈42海里,故AP=60海里,BP=42(海里);(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据题意,得604224 1.260x x-=,解得x=20,经检验,x=20是原方程的解,甲船的速度为1.2x=1.2×20=24(海里/时).,答:甲船的速度是24海里/时,乙船的速度是20海里/时.【点睛】本题考查了勾股定理的应用,分式方程的应用,含30度角的直角三角形的性质,等腰直角三角形的判定与性质,熟练掌握各相关知识是解题的关键.26.【解析】试题分析:可证明△ACD ∽△ABC ,则AD AC AC AB=,即得出AC 2=AD•AB ,从而得出AC 的长. 试题解析:∵∠ACD=∠ABC ,∠A=∠A , ∴△ACD ∽△ABC .∴AD AC AC AB =,∵AD=2,AB=6,∴26ACAC =.∴212AC =.∴AC=考点:相似三角形的判定与性质.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在正方形ABCD 中,E 为AB 的中点,G ,F 分别为AD 、BC 边上的点,若AG=1,BF=2,∠GEF=90°,则GF 的长为( )A .2B .3C .4D .52.下列图形中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .3.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A .B .C .D .4.在如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A .B .C .D .5.如图,C ,B 是线段AD 上的两点,若AB CD =,2BC AC =,则AC 与CD 的关系为( )A .2CD AC =B .3CD AC = C .4CD AC = D .不能确定6.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是()A .B .C.D.7.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A.32B.3 C.1 D.438.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2)B.a(x﹣3)(x+4)C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)9.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a +2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2,其中结论正确的是( )A.①②B.②③C.②④D.①③④10.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是()A.∠BDO=60°B.∠BOC=25°C.OC=4 D.BD=4二、填空题(本题包括8个小题)11.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.12.如图,点A,B在反比例函数y=1x(x>0)的图象上,点C,D在反比例函数y=kx(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为32,则k的值为_____.13.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.14.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为______dm.15.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.16.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是______.17.计算:25=____.18.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数是_____.三、解答题(本题包括8个小题)19.(6分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A市投资“改水工程”的年平均增长率;从2008年到2010年,A市三年共投资“改水工程”多少万元?20.(6分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.21.(6分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数kyx的图象上,过点A的直线y=x+b交x轴于点B.求k和b的值;求△OAB的面积.22.(8分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.23.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)24.(10分)某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.商场第一次购入的空调每台进价是多少元?商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?25.(10分)阅读下面材料,并解答问题. 材料:将分式42231x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式. 解:由分母为﹣x 2+1,可设﹣x 4﹣x 2+3=(﹣x 2+1)(x 2+a )+b 则﹣x 4﹣x 2+3=(﹣x 2+1)(x 2+a )+b=﹣x 4﹣ax 2+x 2+a+b=﹣x 4﹣(a ﹣1)x 2+(a+b )∵对应任意x ,上述等式均成立,∴113a a b -=⎧⎨+=⎩,∴a=2,b=1 ∴42231x x x --+-+=222(1)(2)11x x x -+++-+=222(1)(2)1x x x -++-++211x -+=x 2+2+211x -+这样,分式42231x x x --+-+被拆分成了一个整式x 2+2与一个分式211x -+的和. 解答:将分式422681x x x --+-+ 拆分成一个整式与一个分式(分子为整数)的和的形式.试说明422681x x x --+-+的最小值为1.26.(12分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:()1他购进的猕猴桃和芒果各多少千克?()2如果猕猴桃和芒果全部卖完,他能赚多少钱?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴AE AG,BF BE又∵AE=BE,∴AE2=AG•BF=2,∴(舍负),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.2.C【解析】【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.B【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.4.D【解析】【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【详解】由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y 随x 的增大而减小,且当x=0时,y=4, 当y=0时,x=1.故选D .【点睛】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解.5.B【解析】【分析】由AB=CD ,可得AC=BD ,又BC=2AC ,所以BC=2BD ,所以CD=3AC.【详解】∵AB=CD ,∴AC+BC=BC+BD ,即AC=BD ,又∵BC=2AC ,∴BC=2BD ,∴CD=3BD=3AC.故选B .【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.6.B【解析】【分析】根据相似三角形的判定方法一一判断即可.【详解】解:因为111A B C 中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等, 故选:B .【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.7.A【解析】【分析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【详解】∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=3 2故选A.8.A【解析】试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案为a(x﹣6)(x+2).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.9.C【解析】试题分析:根据题意可得:a0,b0,c0,则abc0,则①错误;根据对称轴为x=1可得:=1,则-b=2a,即2a+b=0,则②正确;根据函数的轴对称可得:当x=2时,y0,即4a+2b+c0,则③错误;对于开口向下的函数,离对称轴越近则函数值越大,则,则④正确.点睛:本题主要考查的就是二次函数的性质,属于中等题.如果开口向上,则a0,如果开口向下,则a0;如果对称轴在y轴左边,则b的符号与a相同,如果对称轴在y轴右边,则b的符号与a相反;如果题目。

张家界市八年级下学期数学期末考试试卷

张家界市八年级下学期数学期末考试试卷

张家界市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019八下·长春月考) 若分式的值为0,则x的值为()A . 2B . -2C . 4D . -42. (2分)下列根式中,不能与合并的是()A .B .C .D .3. (2分) (2017八下·万盛期末) 下列函数:①y=﹣2x,②y=﹣3x2+1,③y= x﹣2,其中一次函数的个数有()A . 0个B . 1个C . 2个D . 3个4. (2分) (2017八下·德州期末) 2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:队员1队员2队员3队员4平均数(秒)51505150方差s2(秒2) 3.5 3.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A . 队员1B . 队员2C . 队员3D . 队员45. (2分) (2017八下·莒县期中) 点P1(x1 , y1),点P2(x2 , y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2 ,则y1与y2的大小关系是()A . y1>y2B . y1>y2>0C . y1<y2D . y1=y26. (2分)下列各组数中,以它们为边长的线段不能构成直角三角形的是()A . 1,,B . 3,4,5C . 5,12,13D . 2,2,37. (2分) (2017九上·海宁开学考) 将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①②两部分,将①展开后得到的平面图形是()A . 矩形B . 三角形C . 梯形D . 菱形8. (2分) (2017八下·万盛期末) 下面正确的命题中,其逆命题不成立的是()A . 同旁内角互补,两直线平行B . 全等三角形的对应边相等C . 角平分线上的点到这个角的两边的距离相等D . 对顶角相等9. (2分) (2017八下·万盛期末) 下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,…,按此规律,第⑥个图形中矩形的个数为()A . 30B . 25C . 28D . 3110. (2分) (2017八下·万盛期末) 2016年,某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图,则关于这10户家庭的月用水量,下列说法错误的是()A . 众数是6B . 中位数是6C . 平均数是6D . 方差是411. (2分) (2017八下·万盛期末) 一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为()A . 20 LB . 25 LC . 27LD . 30 L12. (2分) (2017八下·万盛期末) 如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是()A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)13. (1分) (2018九上·内乡期末) 计算:=________.14. (1分) (2017八下·万盛期末) 如图,▱ABCD的对角线AC、BD相交于点O,则添加一个适当的条件:________,可使其成为矩形(只填一个即可).15. (1分) (2017八下·万盛期末) 一次函数y1=kx+b与y2=x+a的图象如图所示,则关于x、y的方程组的解为________.16. (1分) (2017八下·万盛期末) 一组数据1,﹣1,0,﹣1,1的方差________.17. (1分) (2017八下·万盛期末) 李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期,收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:序号12345678910质量(千克)14212717182019231922根据调查,市场上今年樱桃的批发价格为每千克15元,用所学的统计知识估计今年此果园樱桃按批发价格销售所得的总收入约为________元.18. (1分) (2017八下·万盛期末) 已知如图,在矩形ABCD中,点E是AD的中点,连结BE,将△ABE沿着BE翻折得到△FBE,EF交BC于点H,延长BF、DC相交于点G,若DG=16,BC=24,则FH=________.三、解答题) (共6题;共64分)19. (20分) (2019七下·晋州期末)(1)因式分解:-28m3n2+42m2n3-14m2n(2)因式分解:9a2(x-y)+4b2(y-x)(3)求不等式的负整数解(4)解不等式组,把它们的解集在数轴上表示出来.20. (3分) (2017八下·万盛期末) 如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,且点A、B、C均在格点上.(1)请在所给的网格内画出以线段AB、BC为边的菱形并写出点D的坐标________;(2)菱形ABCD的周长为________;(3)菱形ABCD的面积为________.21. (10分) (2017八下·万盛期末) 如图,点D、C在BF上,AC∥DE,∠A=∠E,BD=CF,(1)求证:AB=EF.(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.22. (10分) (2017八下·万盛期末) 如图,已知直线l:y=﹣ x+3分别与x、y轴交于点A和B.(1)求△AOB的面积;(2)求原点O到直线l的距离.23. (10分) (2017八下·万盛期末) 某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:小组研究报告小组展示答辩甲918078乙817485丙798390(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?24. (11分) (2017八下·万盛期末) 2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了________小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?参考答案一、选择题 (共12题;共24分)1-1、2、答案:略3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题) (共6题;共64分)19-1、19-2、19-3、19-4、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、。

2019-2020学年湖南省名校八年级第二学期期末学业水平测试数学试题含解析

2019-2020学年湖南省名校八年级第二学期期末学业水平测试数学试题含解析

2019-2020学年湖南省名校八年级第二学期期末学业水平测试数学试题一、选择题(每题只有一个答案正确)1.下列各式中,正确的是( )A .2<15<3B .3<15<4C .4<15<5D .14<15<162.星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km )与散步所用的时间(min )之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是( )A .从家出发,休息一会,就回家B .从家出发,一直散步(没有停留),然后回家C .从家出发,休息一会,返回用时20分钟D .从家出发,休息一会,继续行走一段,然后回家3.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .23cmB .24cmC .26cmD .212cm4.如图,点D 是等边△ABC 的边AC 上一点,以BD 为边作等边△BDE ,若BC =10,BD =8,则△ADE 的周长为( )A .14B .16C .18D .205.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-56.一组数据2,4,x ,2,4,7的众数是2,则这组数据的平均数,中位数分别为( )A .3.5,3B .3,4C .3,3.5D .4,37.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是 ( )A .矩形B .直角梯形C .菱形D .正方形8.要使二次根式3x -有意义,则x 的取值范围是( )A .x<3B .x≤3C .x>3D .x≥39.我国在近几年奥运会上所获金牌数(单位:枚)统计如下:届 数23届 24届 25届 26届 27届 28届 金牌数 15 5 16 16 28 32则这组数据的众数与中位数分别是( )A .32、32B .32、16C .16、16D .16、3210.在平面直角坐标系中,点(–1,–2)在第( )象限.A .一B .二C .三D .四二、填空题11.在Rt △ABC 中,∠C =90°,若a=6,b=8,则c=________.12.在梯形ABCD 中,AD ∥BC ,如果AD =4,BC =10,E 、F 分别是边AB 、CD 的中点,那么EF =_____. 13.已知一组数据3,5,9,10,x ,12的众数是9,则这组数据的平均数是___________.14.一次函数53y x =-+的图象不经过第_______象限.15.在平面直角坐标系中,直线l :1y x =-与x 轴交于点1A ,如图所示依次作正方形111A B C O 、正方形2221A B C C 、…、正方形1n n n n A B C C -,使得点123A A A 、、、…在直线l 上,点123C C C 、、、 …在y 轴正半轴上,则点n B 的横坐标是__________________。

湖南省张家界市2019-2020学年八年级第二学期期末复习检测数学试题含解析

湖南省张家界市2019-2020学年八年级第二学期期末复习检测数学试题含解析

湖南省张家界市2019-2020学年八年级第二学期期末复习检测数学试题一、选择题(每题只有一个答案正确)1.已知一元二次方程x2-2x-m=0有两个实数根,那么m的取值范围是()A.B.C.D.2.如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2-MB2等于()A.9 B.35 C.45 D.无法计算3.已知直角三角形的两直角边长分别为5和12,则此直角三角形斜边上的中线长为()A.52B.6C.13D.1324.下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2x5.如图,已知P为正方形ABCD外的一点,PA=1,PB=2,将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,则∠BP′C的度数为()A.105°B.112.5°C.120°D.135°6.9的算术平方根是()A.﹣3 B.±3 C.3 D372(4))A.2 B.-4 C.4 D.±48.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%95)A .10B .15C .20D .2510.如图,被笑脸盖住的点的坐标可能是( )A .(5,2)B .(5,2)-C .(5,2)--D .(5,2)-二、填空题 11.我国古代数学领域有些研究成果曾位居世界前列,其中“杨辉三角”就是一例.南宋数学家杨辉(约13世纪)所著的《详解九章算术》(1261年)一书中,用图中的三角形解释二项和的乘方规律.杨辉三角两腰上的数都是1,其余每个数都为它的上方(左右)两数之和,这个三角形给出了(a+b)n (n=1,2,3,4,5)的展开式(按a 的次数由大到小的顺序)的系数规律.例如,此三角形中第3行的3个数1,2,1,恰好对应着(a+b)2=a 2+2ab+b 2展开式中各项的系数:第4行的4个数1,3,3,1,恰好对应着(a+b)3=a 3+3a 2b+3ab 2+b 2展开式中各项的系数,等等.利用上面呈现的规律填空:(a+b)6=a 6+6a 5b+________ +20a 3b 3+15a 2b 4+ ________+b 612.如图,在ABCD 中,3AB =,5BC =,以点B 为圆心,以任意长为半径作弧,分别交BA 、BC 于点P 、Q ,再分别以点P 、Q 为圆心,以大于12PQ 的长为半径作弧,两弧在ABC ∠内交于点M ,连结BM 并延长,交AD 于点E ,则DE 的长为____.13.已知:如图,平行四边形ABCD 中,BE 平分ABC ∠交AD 于E ,CF 平分BCD ∠交AD 于F ,若3AB =,5BC =,则EF =___.143n n 的最小值为__________________。

2019-2020学年张家界市慈利县八年级下学期期末数学试卷

2019-2020学年张家界市慈利县八年级下学期期末数学试卷

2019-2020学年张家界市慈利县八年级下学期期末数学试卷一、选择题(本大题共8小题,共24.0分)1. 下列图案中,属于轴对称图形的是( ) A.B. C. D. 2. 如图,在Rt △ABC 中,CD 是斜边AB 上的中线.已知AC =3,CD =2,则tan A 的值为( ) A. 34 B. 43 C. √73D. √74 3. 如图,▱ABCD 的对角线AC 与BD 相交于点O ,AB ⊥AC ;若AB =3,AC =4,则BD 的长是( )A. 5B. 10C. √13D. 2√134. 如图,▱ABCD 中,E 为BC 边上一点,且AE 交DC 延长线于F ,连接BF ,下列关于面积的结论中错误的是( )A. S △ABF =S △ADEB. S △ABF =S △ADFC. S △ABF =12S ▱ABCDD. S △ADE =12S ▱ABCD5. 对于不为零的两个实数m ,n ,我们定义:m ⊗n ={m −n(m ≥n)−n m (m <n),那么函数y =x ⊗3的图象大致是( )A. B.C. D.6.已知正比例函数y=kx(k≠0),点(−2,3k+5)是其图象上的点,则k的值为()A. 3B. 5C. −1D. −37.如图,已知A,B两点的坐标分别为(2,0),(0,2),⊙C的圆心坐标为(−1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,△ABE面积的最小值是()A. 2B. 1C.D.8.下列命题中,正确命题的序号是()①一组对边平行且相等的四边形是平行四边形②一组邻边相等的平行四边形是正方形③对角线相等的四边形是矩形④对角互补的四边形内接于圆A. ①②B. ②③C. ③④D. ①④二、填空题(本大题共6小题,共18.0分)9.将完全相同的正五边形按图排列组成一个圆圈,图中排列了前两个正五边形.若需要n个这样的正五边形才能组成一个完整的圆圈,则n的值为______ .10.AD是△ABC中∠BAC的平分线,DE⊥AB于点E,若S△ABC=10,DE=2,AB=4,则AC的长是______.11.如图,在平面直角坐标系中,△ABC是等边三角形,且点A的坐标为(−1,0),点B的坐标为(3,0),则点C的坐标为______.12.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2013次相遇地点的坐标是______.13.如图,在△ABC中,∠ABC=90°,分别以△ABC的三边为边向外作正方形,其中两个正方形的面积分别为100,76.则字母a代表的正方形的边长是______ .14.点P(−1,m)、Q(2,n)是直线y=−2x上的两点,则m与n的大小关系是______ .三、解答题(本大题共9小题,共58.0分)15.如图,在△ABC中,∠B=30°,∠C=50°.(1)尺规作图:①作边AB的垂直平分线交BC于点D;②连接AD,作∠CAD的平分线交BC于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠DAE的度数.16.在直角坐标系中,将点P(x,y)向右平移1个单位长度,再向上平移2个单位长度到点P′,写出点P′的坐标,并求PP′的长.17.为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了奉市全部5000名司机中的部分司机后,统计整理并制作了如图的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m=______;(2)该市支持选项B的司机大约有多少人?18.如图,田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均种有一棵大核桃树.田村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形的形状,请问田村能否实现这一设想?若能,请你设计并画出图形;若不能,请说明理由(画图要保留痕迹,不写画法).19.如图,在四边形ABCD中,BC=CD,∠C=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:(1)∠BOD=∠C;(2)四边形OBCD是菱形.20.中雅培粹学校的小明和左老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,而左老师先跑,当小明出发时,左老师已经距起点200米了,他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).根据图中的已知信息,解答下列问题:(1)小明出发______秒后,追上了左老师,此时距离起点______米;(2)图中已知部分,小明与左老师相遇______次,出发______秒后开始休息;(3)左老师的速度为______米/秒,追上左老师前,小明的速度为______米/秒.21.已知一次函数y=(1−2m)x+(3m−1)(1)当m取何值时,y随x的增大而减小?(2)当m取何值时,函数的图象过原点?22.学校准备假期组织老师去隆中参加诸葛亮文化节,现有甲、乙两家旅行社表示对老师优惠.设参加文化节的老师有x人,甲、乙两家旅行社实际收费分别为y1元,y2元,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:(1)当参加老师的人数为多少时,两家旅行社收费相同?(2)分别求出y1,y2关于x的函数关系式?(3)如果共有50人参加时,选择哪家旅行社合算?23.通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整并解答.原题:(1)如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(2)类比引申如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系______ 时,仍有EF=BE+DF.说明理由.。

湖南省张家界市2020年八年级第二学期期末达标测试数学试题含解析

湖南省张家界市2020年八年级第二学期期末达标测试数学试题含解析

湖南省张家界市2020年八年级第二学期期末达标测试数学试题一、选择题(每题只有一个答案正确) 1.已知关于x 的一次函数()12=-+y m x 的图象如图所示,则实数m 的取值范围为( )A .1mB .1m <C .0m >D .0m <2.如果a < b ,则下列式子错误的是( )A .a +7< b +7B .a ﹣5< b ﹣5C .﹣3 a <﹣3 bD .66a b < 3.下列调查中,适合采用普查的是( )A .了解一批电视机的使用寿命B .了解全省学生的家庭1周内丢弃塑料袋的数量C .了解某校八(2)班学生每天用于课外阅读的时间D .了解苏州市中学生的近视率4.如图,四边形ABCD 为矩形,△ACE 为AC 为底的等腰直角三角形,连接BE 交AD 、AC 分别于F 、 N,CM 平分∠ACB 交BN 于M,下列结论:(1)BE ⊥ED;(2)AB=AF;(3)EM=EA;(4)AM 平分∠BAC ,其中正确的结论有( )A .1个B .2个C .3个D .4个 5.函数y kx b =+与(0)k y k x=≠在同一坐标系中的图象可能是( ) A . B .C .D .6.若二次根式有意义,则a 的取值范围是( )A .a≥2B .a≤2C .a >2D .a≠27.如图,在ABC △中,D 是BC 的中点,6BC =,ADC BAC ∠=∠,则AC 的长为( )A .23B .4C .42D .328.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 9.若23a b =,则下列变形错误的是( ) A .23a b = B .32b a = C .3=2a b D .22a b =10.如图,已知一次函数y =kx+b 的图象经过A 、B 两点,那么不等式kx+b >0的解集是( )A .x >3B .x <3C .x >5D .x <5二、填空题 11.如图,在Rt ABC ∆中,90︒∠=C ,30A ︒∠=,9BC =,若点P 是边AB 上的一个动点,以每秒3个单位的速度按照从A B A →→运动,同时点Q 从B C →以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动。

湖南省名校2019-2020学年八年级第二学期期末学业水平测试数学试题含解析

湖南省名校2019-2020学年八年级第二学期期末学业水平测试数学试题含解析

湖南省名校2019-2020学年八年级第二学期期末学业水平测试数学试题一、选择题(每题只有一个答案正确)1.如图,四边形ABCD为菱形,AB=5,BD=8,AE⊥CD于E,则AE的长为()A.165B.325C.245D.1252.能够判定一个四边形是平行四边形的条件是()A.一组对角相等B.两条对角线互相平分C.两条对角线互相垂直D.一对邻角的和为180°3.如图是一次函数y1=kx+b与y2=x+a的图象,则下列结论中错误的是()A.k<0 B.a>0 C.b>0 D.方程kx+b=x+a的解是x=34.如图,放映幻灯片时通过光源把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为()A.6cm B.12cm C.18cm D.24cm5.△ABC与△DEF的相似比为,则△ABC与△DEF的面积比为()A.B.C.D.6.已知点P(a,1)不在第一象限,则点Q(0,﹣a)在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴或原点上D.y轴负半轴上7.下列各组数据中能作为直角三角形的三边长的是()A.1,2,2 B.3C.13,14,15 D.6,8,108.如图,一同学在湖边看到一棵树,他目测出自己与树的距离为20m,树的顶端在水中的倒影距自己5m远,该同学的身高为1.7m ,则树高为().A.3.4m B.4.7 m C.5.1m D.6.8m9.函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限10.小明随机写了一串数字“1,2,3,3,2,1,1,1,2,2,3,3,”,则数字3出现的频数()A.6 B.5 C.4 D.3二、填空题11.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.12.如图,以Rt△ABC的斜边AB为一边在△ABC同侧作正方形ABEF.点O为AE与BF的交点,连接CO.若CA=2,CO=23,那么CB的长为________.13.已知,如图,矩形ABCD中,E,F分别是AB,AD的中点,若EF=5,则AC=_____.14.如图,平行四边形OABC的顶点O、A、C的坐标分别是(0,0)、(6,0)、(2,4),则点B的坐标为_____.15.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为20.57s =甲,20.62s 乙=,20.59s =丙,20.67s =丁,则成绩最稳定的是______.16.如图,已知在长方形ABCD 中,将△ABE 沿着AE 折叠至△AEF 的位置,点F 在对角线AC 上,若BE=3,EC=5,则线段CD 的长是__________.17.若2-是关于x 的一元二次方程()221240k x kx -++=的一个根,则k =____.三、解答题18.如图1,在平面直角坐标系中,直线AB 与x 轴交于点A ,与y 轴交于点B ,与直线OC :y x =交于点C .(1)若直线AB 解析式为212y x =-+,①求点C 的坐标;②求△OAC 的面积.(2)如图2,作AOC ∠的平分线ON ,若AB ⊥ON ,垂足为E , OA =4,P 、Q 分别为线段OA 、OE 上的动点,连结AQ 与PQ ,试探索AQ +PQ 是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.19.(6分)如果关于x的方程1+2xx-=224mx-的解,也是不等式组1222(3)5xxx x-⎧>-⎪⎨⎪-≤-⎩的解,求m的取值范围.20.(6分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.21.(6分)我们给出如下定义,如果一个四边形有一条对角线能将其分成一个等边三角形和一个直角三角形,那么这个四边形叫做等垂四边形,这条对角线叫做这个四边形的等垂对角线.(1)已知AC是四边形ABCD的等垂对角线,BAD∠,BCD∠均为钝角,且BCD∠比BAD∠大10︒,那么BCD∠=________.(2)如图,已知ABC∆与ADC∆关于直线AC对称,E、F两点分别在BC、CD边上,BE DF=,222AE EC CF=+,60EAF∠=︒.求证:四边形AECF是等垂四边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省张家界市2019-2020学年初二下期末复习检测数学试题一、选择题(每题只有一个答案正确)1.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( ) A .AC =BD ,AB ∥CD ,AB =CD B .AD ∥BC ,∠A =∠C C .AO =BO =CO =DO ,AC ⊥BDD .AO =CO ,BO =DO ,AB =BC2.一个多边形的每一个内角均为120︒,那么这个多边形是( ) A .七边形 B .六边形C .五边形D .正方形3.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=- C .()322x -+=D .()()3221x x ++=-4.下列二次根式中,是最简二次根式的是( ). A .2B .0C .1D .95.如图,在梯形ABCD 中,AB ∥CD ,中位线EF 与对角线AC 、BD 交于M 、N 两点,若EF=18cm ,MN=8cm ,则AB 的长等于( )cmA .10B .13C .20D .266.若式子2244x x x -++的值等于0,则x 的值为( ) A .±2B .-2C .2D .-47.下列方程中,是关于x 的一元二次方程的是( ). A .27x π=B .25x y +=C .11x x=+ D .24x x +=8.某人从一鱼摊上买了三条鱼,平均每条元,又从另一个鱼摊上买了两条鱼,平均每条元,后来他又以每条元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是A .B .C .D .与大小无关9.如图,已知菱形ABCD 的周长是24米,∠BAC =30°,则对角线BD 的长等于()A .63米B .33米C .6米D .3米10.下列定理中没有逆定理的是( ) A .等腰三角形的两底角相等B .平行四边形的对角线互相平分C .角平分线上的点到角两边的距离相等D .全等三角形的对应角相等二、填空题11.如图,在正方形ABCD 的右边作等腰三角形ADE ,AD =AE ,DAE=50∠︒,连BE ,则BED ∠=__________.12.某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y (升)与行驶时间t (小时)之间的关系如下表: t (小时) 1 1 2 3 y (升)111928476由表格中y 与t 的关系可知,当汽车行驶________小时,油箱的余油量为1. 13.方程260x x +-=的两个根是1x 和2x ,则1212x x x x ++的值为____.14.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.15.将直线y =﹣4x+3向下平移4个单位,得到的直线解析式是_____.16.如图,正方形ABCD 的边长为6,点E ,F 分别在AB ,AD 上,若CE=35,且∠ECF=45°,则CF 的长为__________.17.如图,在正方形ABCD 中,点E 是对角线BD 上一点,连接AE ,将DE 绕D 点逆时针方向旋转90︒到DF ,连接BF ,交DC 于点G ,若3DG =,2CG =,则线段AE 的长为___________.三、解答题18.如果一个三角形满足条件:三角形的一个角与菱形的一个角重合,且菱形的这个角的对角顶点在三角形的这个角的对边上,则称这个菱形为该三角形的“亲密菱形”.如题(1),菱形AEFD为△ABC的“亲密菱形”.在图(2)中,请以∠BAC为重合角用直尺和圆规作出△ABC的“亲密菱形”AEFD.19.(6分)随着信息技术的高速发展,计算机技术已是每位学生应该掌握的基本技能.为了提高学生对计算机的兴趣,老师把甲、乙两组各有10名学生,进行电脑汉字输入速度比赛,各组参赛学生每分钟输入汉字个数统计如下表:输入汉字(个)132 133 134 135 136 137甲组人数(人) 1 0 1 5 2 1乙组人数(人)0 1 4 1 2 2(1)请你填写下表中甲班同学的相关数据.组众数中位数平均数(x)方差(2s)甲组乙组134 134.5 135 1.8(2)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?(3)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价). 20.(6分)如图,在△ABC中,点分别在边上,已知四边形是平行四边形。

21.(6分)如图,每个小方格都是边长为1个单位长度的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).(1)画出△ABC向上平移4个单位长度后得到的△A1B1C1;(1)画出△ABC 绕点O 逆时针旋转90°后得到的△A 1B 1C 1.22.(8分)如图,直线y =34x +9分别交x 轴、y 轴于点A 、B ,∠ABO 的平分线交x 轴于点C .(1)求点A 、B 、C 的坐标;(2)若点M 与点A 、B 、C 是平行四边形的四个顶点,求CM 所在直线的解析式.23.(8分)先化简,再求值()222191691a a a a a a --÷+⨯++-,其中a=-2 24.(10分)关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.25.(1011101514的方法,观察发现11-10=15-14=1,于是比较这两个数的倒数:()()11101110111011101110==--+ ,()()15141514151415141514==--+,15+1411+101514-1110-15-1411-10. 8365.参考答案一、选择题(每题只有一个答案正确)1.C【解析】试题分析:根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.解:A,不能,只能判定为矩形;B,不能,只能判定为平行四边形;C,能;D,不能,只能判定为菱形.故选C.2.B【解析】分析:此题主要考查了多边形的内角与外角的关系,先求出这个多边形的每一个外角的度数,再用360°除以一个外角的度数即可得到边数.详解:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°-120°=60°,∴边数n=360°÷60°=6.故选B..点睛:此题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.即先求出这个多边形的每一个外角的度数,再用360°除即可得到边数.3.A【解析】【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【详解】方程两边都乘以x-1,得:3-(x+2)=2(x-1).故答案选A.【点睛】本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母. 4.A 【解析】 【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是. 【详解】A 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故正确;B =0,故错误;C =1,故错误;D 故错误; 故选:A . 【点睛】考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式. 5.D 【解析】分析:首先根据梯形中位线的性质得出AB+CD=36cm ,根据MN 的长度以及三角形中位线的性质得出EM=FN=5cm ,从而得出CD=10cm ,然后得出答案. 详解:∵EF=()1CD 18cm 2AB +=, ∴AB+CD=36cm , ∵MN=8cm ,EF=18cm , ∴EM+FN=10cm , ∴EM=FN=5cm ,根据三角形中位线的性质可得:CD=2EM=10cm , ∴AB=36-10=26cm , 故选D .点睛:本题主要考查的是梯形中位线以及三角形中位线的性质,属于基础题型.明确中位线的性质是解决这个问题的关键. 6.C 【解析】2x - =0且x²+4x+4≠0,解得x=2. 故选C. 7.D 【解析】 【分析】只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.A、是关于x的一元一次方程,不符合题意;B、为二元二次方程,不符合题意;C、是分式方程,不符合题意;D、只含有一个未知数,未知数的最高次数是2,二次项系数不为1,是一元二次方程,符合题意;故选D.【点睛】本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为1.8.A【解析】【分析】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.利润=总售价-总成本= ×5-(3a+2b)=0.5b-0.5a,赔钱了说明利润<0.【详解】利润=总售价-总成本= ×5-(3a+2b)=0.5b-0.5a,赔钱了说明利润<0∴0.5b-0.5a<0,∴a>b.故选A.【点睛】解决本题的关键是读懂题意,找到符合题意的不等关系式.9.C【解析】【分析】由菱形ABCD的周长是24米,∠BAC=30°,易求得AB=6米,△ABD是等边三角形,继而求得答案.【详解】解:∵菱形ABCD的周长是24米,∠BAC=30°,∴AB=AD=24÷4=6(米),∠DAB=2∠BAC=60°,∴△ABD是等边三角形,∴BD=AB=6米.故选C.此题考查了菱形的性质以及等边三角形的判定与性质.注意证得△ABD是等边三角形是解此题的关键.10.D【解析】【分析】先写出各选项的逆命题,判断出其真假即可解答.【详解】解:A、其逆命题是“一个三角形的两个底角相等,则这个三角形是等腰三角形”,正确,所以有逆定理;B、其逆命题是“对角线互相平分的四边形是平行四边形”,正确,所以有逆定理;C、其逆命题是“到角两边的距离相等的点在角平分线上”,正确,所以有逆定理;D、其逆命题是“两个三角形中,三组角分别对应相等,则这两个三角形全等”,错误,所以没有逆定理;故选:D.【点睛】本题考查的是命题与定理的区别,正确的命题叫定理.二、填空题11.45°【解析】【分析】先证明AB=AE,求得∠AEB,由AD=AE,∠DAE=50°,求得∠AED,进而由角的和差关系求得结果.【详解】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵AD=AE,∠DAE=50°,∴AB=AE,∠ADE=∠AED=65°,∠BAE=140°,∴∠ABE=∠AEB=20°,∴∠BED=65°−20°=45°,故答案为:45°.【点睛】本题主要考查了正方形的性质,等腰三角形的性质,三角形内角和定理,关键是求得∠AEB和∠AED的度数.12.12.2【解析】【分析】由表格可知,开始油箱中的油为111L,每行驶1小时,油量减少8L,据此可得y与t的关系式.解:由题意可得:y=111-8t , 当y=1时,1=111-8t 解得:t=12.2. 故答案为:12.2. 【点睛】本题考查函数关系式.注意贮满111L 汽油的汽车,最多行驶的时间就是油箱中剩余油量为1时的t 的值. 13.7- 【解析】 【分析】根据韦达定理求解即可. 【详解】∵方程260x x +-=的两个根是1x 和2x ∴由韦达定理得121216x x x x +=-⎧⎨=-⎩ 1212617x x x x ++=--=-故答案为:7-. 【点睛】本题考查了一元二次方程根的问题,掌握韦达定理是解题的关键. 14.1 【解析】 【分析】估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案. 【详解】因为共摸了200次球,发现有60次摸到黑球, 所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为20×0.3=6(个), 则红球大约有20-6=1个, 故答案为:1. 【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.15.y=﹣4x﹣1【解析】【分析】根据上加下减的法则可得出平移后的函数解析式.【详解】解:将直线y=﹣4x+3向下平移4个单位得到直线l,则直线l的解析式为:y=﹣4x+3﹣4,即y=﹣4x﹣1.故答案是:y=﹣4x﹣1【点睛】本题考查了一次函数图象与几何变换的知识,难度不大,掌握上加下减的法则是关键.16.210【解析】如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,CB CDCBE CDGBE DG=⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,GC ECGCF ECFCF CF=⎧⎪∠=∠⎨⎪=⎩,∴△GCF≌△ECF(SAS),∴GF=EF,∵5CB=6,∴2222(35)63CE CB-=-=,∴AE=3,设AF=x,则DF=6−x,GF=3+(6−x)=9−x,∴AE2229AE x x+=+(9−x)²=9+x²,∴x=4,即AF=4,∴GF=5,∴DF=2, ∴CF=222262210CD DF +=+= =210 ,故答案为:210.点睛:本题考查了全等三角形的判定与性质,勾股定理的知识点,构建三角形,利用方程思想是解答本题的关键.17.257【解析】【分析】连接EF ,过点E 作EM ⊥AD ,垂足为M ,设ME=HE=FH=x ,则GH=3-x ,从而可得到GH FH CG CB =,于是可求得x 的值,最后在Rt △AME 中,依据勾股定理可求得AE 的长.【详解】解:如图所示:连接EF ,过点E 作EM ⊥AD ,垂足为M .∵ABCD 为正方形,EM ⊥AD ,∠EDF=90°,AD=BC=CD=DG+CG=5,∴△MED 和△DEF 均为等腰直角三角形.∵DE=DF ,∠EDH=∠FDH=45°,∴DH ⊥EF ,EH=HF ,∴FH ∥BC .设ME=HE=FH=x ,则GH=3﹣x .由FH ∥BC 可知:GH FH CG CB=, 即352x x =﹣,解得:15=7x , ∴1520577AM AD DM =-=-=. 在Rt △AME 中,2225=7AE AM ME +=. 故答案为:257. 【点睛】本题主要考查的是正方形的性质、等腰直角三角形的性质和判定、平行线分线段成比例定理、勾股定理的应用,求得ME 的长是解题的关键.三、解答题18.见解析,【解析】【分析】由菱形的性质可知AF是∠BAC的平分线,故点F在∠BAC的平分线与BC的交点上,作∠BAC的角平分线AF交BC于F,作线段AF的垂直平分线MN交AC于D,交AB于E,四边形AEFD即为所求.【详解】解:如图,菱形AEFD即为所求.【点睛】本题考查作图-复杂作图,菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.(1)填写表格见解析;(2)乙组成绩更好一些;(3)①从众数看,甲班众数成绩优于乙班;②从中位数看,甲班每分钟输入135字以上的人数比乙班多;③从平均数看,两班同学输入的总字数一样,成绩相当;④从方差看,甲班成绩波动小,比较稳定;⑤从最好成绩看,乙班成绩优于甲班.(至少从两个角度进行评价).【解析】【分析】(1)根据众数、中位数、平均数以及方差的计算公式分别进行解答即可;(2)根据表中给出的数据,得出甲组优秀的人数有3人,乙组优秀的人数有4人,从而得出乙组成绩更好一些;(3)从中位数看,甲组每分钟输入135字以上的人数比乙组多;从方差看,S2甲<S2乙;甲组成绩波动小,比较稳定.【详解】解:(1)如下表:组众数中位数平均数(x)方差(2s)甲组135 135 135 1.6乙组134 134.5 135 1.8(2)∵每分钟输入汉字个数136及以上的甲组人数有3人,乙组有4人∴乙组成绩更好一些(3)①从众数看,甲班每分钟输入135字的人数最多,乙班每分钟输入134字的人数最多,甲班众数成绩优于乙班;②从中位数看,甲班每分钟输入135字以上的人数比乙班多;③从平均数看,两班同学输入的总字数一样,成绩相当; ④从方差看,甲的方差小于乙的方差,则甲班成绩波动小,比较稳定; ⑤从最好成绩看,乙班速度最快的选手比甲班多1人,若比较前3~4名选手的成绩,则乙班成绩优于甲班.(至少从两个角度进行评价).【点睛】此题考查了平均数、中位数、众数和方差的定义,从表中得到必要的信息是解题的关键.20.见解析;【解析】【分析】 想办法证明EF ∥AB 即可解决问题;【详解】证明:,.,.,四边形是平行四边形. 【点睛】本题考查证明平行四边形,熟练掌握平行的性质及定义是解题关键.21.(1)如图所示:△A 1B 1C 1,即为所求;见解析;(1)如图所示:△A 1B 1C 1,即为所求,见解析.【解析】【分析】(1)根据网格结构找出点A,B,C 平移后的对应点A 1 ,B 1 ,C 3B x 、 连接即可(1)根据网格结构找出点A,B,C 绕点O 逆时针旋转90°后得到的A 1,B 1,C 1,连接即可【详解】(1)如图所示:△A 1B 1C 1,即为所求;(1)如图所示:△A 1B 1C 1,即为所求.【点睛】 此题考查作图-旋转变换,作图-平移变换,熟练掌握作图的操作是解题关键22.(1)()()()12,0,0,9, 4.5,0A B C --;(2)32748y x =+或2732y x =-- 【解析】【分析】(1)首先根据一次函数的解析式即可得出A ,B 的坐标,然后利用勾股定理求出AB 的长度,然后根据角平分线的性质得出CD CO =,再利用1122ACB S AC OB AB CD =⋅=⋅△即可得出CD 的长度,从而求出点C 的坐标;(3)首先利用平行四边形的性质找出所有可能的M 点,然后分情况进行讨论,利用待定系数法即可求解.【详解】(1)令0x =,则30994y =⨯+=, 令0y =,则3904y x =+=,解得12x =- , ∴()()12,0,0,9A B -,12,9AO OB ∴== ,2215AB AO OB ∴=+= .过点C 作CD AB ⊥交AB 于点D ,∵BC 平分ABO ∠,,CD AB CO OB ⊥⊥ ,CD CO ∴= .1122ACB S AC OB AB CD =⋅=⋅△ ,()111291522CD CD∴-⋅=⨯,解得 4.5CD OC==,()4.5,0C∴-.(2)如图,能与A,B,C构成平行四边形的点有三处:123,,M M M,①点C与23,M M在同一直线,是经过点C与AB平行的直线,设其直线的解析式为34y x b=+,将()4.5,0C-代入34y x b=+中,得()34.504b⨯-+=,解得278b=,∴CM所在的直线的解析式为32748y x=+;②∵四边形1ACBM是平行四边形,∴11//,=AC BM AC BM.()()()12,0,0,9, 4.5,0A B C--,()17.5,9M∴-.设直线1CM的解析式为y mx n=+,将1( 4.5,0),(7.5,9)C M--代入解析式中得4.507.59m nm n-+=⎧⎨-+=⎩解得3272mb=-⎧⎪⎨=-⎪⎩∴直线1CM解析式为2732y x=--,综上所述,CM所在的直线的解析式为32748y x=+或2732y x=--.【点睛】本题主要考查一次函数与几何综合,平行四边形的判定与性质,掌握待定系数法及数形结合是解题的关键. 23.33a a -+,原式=-5; 【解析】【分析】先把除法运算转化为乘法运算,再把分子分母运用完全平方公式和平方差公式因式分解,约去公因式,化成最简形式,再把a 的值代入求值.【详解】原式()()()()()211331113a a a a a a a +-+-=⋅⋅+-+ 33a a -=+, 当2a =-时,原式5=-.【点睛】这道求代数式值的题目,不应考虑把a 的值直接代入,通常做法是先把代数式化简,把除法转换为乘法,约去分子分母中的公因式,然后再代入求值.24.(1)6m <且2m ≠;(2)12x =-,243x =-【解析】【分析】(1)根据题意可得20m -≠且()()()22423m m m ∆=--+()460m >=--,由此即可求得m 的取值范围;(2)在(1)的条件下求得m 的值,代入解方程即可.【详解】(1)关于x 的一元二次方程()22230m x mx m -+++=有两个不相等的实数根, 20m ∴-≠且()()()22423m m m ∆=--+()460m >=--. 解得6m <且2m ≠.m ∴的取值范围是6m <且2m ≠.(2)在6m <且2m ≠的范围内,最大整数为5.此时,方程化为231080x x ++=.解得12x =-,243x =-. 【点睛】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.25.方法见解析.【解析】【分析】观察可知8+3=6+5,因此可以利用两数平方进行比较进而得出答案.【详解】 22211=+=+ 22211=+=+∵1111+<+,∴22<,0>,0> ,+< 【点睛】本题考查了实数大小比较,二次根式的运算,理解题意,并且根据式子的特点确定出合适的方法是解题的关键.。

相关文档
最新文档