高中数学成才之路必修3.3-3-2
2022-2021学年成才之路·人教B版数学·必修3试题:第三章 概率3.2 第1课时
第三章 3.2 第1课时一、选择题1.从甲、乙、丙 三人中任选两人作为代表去开会,甲未被选中的概率为( ) 导学号67640740 A.12 B .13C.23 D .1[答案] B[解析] 全部的基本大事为:甲、乙,甲、丙,乙、丙,即基本大事共有三个,甲被选中的大事有两个,故P =23.∴甲未被选中的概率为13.2.下列概率模型中,有几个是古典概型( ) 导学号67640741 ①从区间[1,10]内任意取出一个数,求取到1的概率; ②从1~10中任意取出一个整数,求取到1的概率;③向一个正方形ABCD 内投一点P ,求P 刚好与点A 重合的概率; ④向上抛掷一枚不均匀的旧硬币,求正面朝上的概率. A .1个 B .2个 C.3个 D .4个 [答案] A[解析] 第1个概率模型不是古典概型.由于从区间[1,10]内任意取出一个数有很多个对象被取,即试验中全部可能消灭的基本大事有无限个.第2个概率模型是古典概型.在试验中全部可能消灭的结果只有10个,而且每一个数被抽到的可能性相等.第3个概率模型不是古典概型,向正方形内投点,可能结果有无穷多个.第4个概率模型不是古典概型.由于硬币残旧且不均匀,因此两面消灭的可能性不相等.3.(2022·北京文)从甲、乙等5名同学中随机选出2人,则甲被选中的概率为导学号 67640742( ) A.15 B.25 C.825D.925[答案] B[解析] 设5名同学分别为甲、乙、丙、丁、戊,从甲、乙、丙、丁、戊5人中选2人,有(甲、乙),(甲、丙),(甲、丁),(甲、戊),(乙、丙),(乙、丁),(乙,戊),(丙、丁),(丙、戊),(丁,戊),共10种状况,其中甲被选中的状况有(甲,乙),(甲、丙),(甲、丁),(甲、戊),共4种,所以甲被选中的概率为410=25.4.从{1,2,3,4,5}中随机选一个数a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率为( ) 导学号67640743A.45 B .35C.25 D .15[答案] D[解析] 从{1,2,3,4,5}中随机选一个数为a ,从{1,2,3}中随机选取一个数为b ,所得状况有(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3)、(4,1)、(4,2)、(4,3)、(5,1)、(5,2)、(5,3)共15种,b >a 的状况有(1,2)、(1,3)、(2,3),共3种,∴所求的概率为315=15.5.已知集合A ={-1,0,1},点P 坐标为(x ,y ),其中x ∈A ,y ∈A ,记点P 落在第一象限为大事M ,则P (M )=( ) 导学号67640744A.13 B .16C.19 D .29[答案] C[解析] 全部可能的点是(-1,-1)、(-1,0)、(-1,1)、(0,-1)、(0,0)、(0,1)、(1,-1)、(1,0)、(1,1),共9个,其中在第一象限的有1个,因此P (M )=19.6.若第1、3、4、5、8路公共汽车都要停靠在一个站(假定这个站只能停靠一辆汽车),有一位乘客等候第4路或第8路汽车,假定当时各路汽车首先到站的可能性相等,则首先到站正好是这位乘客所需乘的汽车的概率等于( ) 导学号67640745A.12 B .23C.35 D .25[答案] D[解析] 汽车到站共有5种不同状况,恰好是这位乘客所需乘的汽车有2种,故所示概率P =25.二、填空题7.盒子里共有大小相同的3只白球、1只黑球,若从中随机摸出两只球,则它们的颜色不同的概率是________.导学号67640746[答案] 12[解析] 记3只白球分别为A 、B 、C,1只黑球为m ,若从中随机摸出两只球有AB 、AC 、Am 、BC 、Bm 、Cm 有6种结果,其中颜色不同的结果为Am 、Bm 、Cm 有3种结果,故所求概率为36=12.8.4张卡片上分别写有数字1、2、3、4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为____________.导学号67640747[答案] 23[解析] 由题意知,基本大事空间Ω={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},记“取出的2张卡片上的数字之和为奇数”为大事A ,∴A ={(1,2),(1,4),(2,3),(3,4)},∴P (A )=46=23.三、解答题9.小波以玩耍方式打算是去打球、唱歌还是去下棋.玩耍规章为:以O 为起点,再从A 1、A 2、A 3、A 4、A 5、A 6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X ,若X >0就去打球,若X =0就去唱歌,若X <0就去下棋.导学号67640748(1)写出数量积X 的全部可能取值;(2)分别求小波去下棋的概率和不去唱歌的概率. [解析] (1)X 的全部可能取值为-2、-1、0、1. (2)数量积为-2的有OA 2→·OA 5→,共1种;数量积为-1的有OA 1→·OA 5→、OA 1→·OA 6→、OA 2→·OA 4→、OA 2→·OA 6→、OA 3→·OA 4→、OA 3→·OA 5→,共6种; 数量积为0的有OA 1→·OA 3→、OA 1→·OA 4→、OA 3→·OA 6→、OA 4→·OA 6→,共4种; 数量积为1的有OA 1→·OA 2→、OA 2→·OA 3→、OA 4→·OA 5→、OA 5→·OA 6→,共4种. 故全部可能的状况共有15种.所以小波去下棋的概率为p 1=715;由于去唱歌的概率为p 2=415,所以小波不去唱歌的概率p =1-p 2=1-415=1115.10.右面茎叶图中记录了甲组3名同学寒假假期内去图书馆A 学习的次数和乙组4名同学寒假假期中去图书馆B 学习的次数.乙组记录中有一个数据模糊,无法确认,在图中以x 表示.导学号67640749(1)假如x =7,求乙组同学去图书馆B 学习次数的平均数和方差;(2)假如x =9,从学习次数大于8的同学中选两名同学,求选出的两名同学恰好分别在两个图书馆学习且学习的次数和大于20的概率.[解析] (1)当x =7时,由茎叶图可知,乙组同学去图书馆B 学习的次数是7、8、9、12, 所以其平均数为x =7+8+9+124=9,方差为s 2=14[(7-9)2+(8-9)2+(9-9)2+(12-9)2]=72.(2)记甲组3名同学为A 1、A 2、A 3,他们去图书馆A 学习的次数依次为9、12、11;乙组4名同学为B 1、B 2、B 3、B 4,他们去图书馆B 学习的次数依次为9、8、9、12;从学习次数大于8的同学中任选两名同学,全部可能的结果有15个,它们是A 1A 2、A 1A 3、A 1B 1、A 1B 3、A 1B 4、A 2A 3、A 2B 1、A 2B 3、A 2B 4、A 3B 1、A 3B 3、A 3B 4、B 1B 3、B 1B 4、B 3B 4.用C 表示“选出的两名同学恰好在两个图书馆学习且学习的次数和大于20”这一大事,则C 中的结果有5个,它们是A 1B 4、A 2B 4、A 2B 3、A 2B 1、A 3B 4.故选出的两名同学恰好分别在两个图书馆里学习且学习的次数和大于20的概率为P (C )=515=13.一、选择题1.(2021·广东文,7)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有1件次品的概率为( ) 导学号67640750A .0.4B .0.6 C.0.8 D .1[答案] B[解析] 5件产品中有2件次品,记为a ,b ,有3件合格品,记为c ,d ,e ,从这5件产品中任取2件,有10种,分别是(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),(c ,d ),(c ,e ),(d ,e ),恰有一件次品,有6种,分别是(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),设大事A =“恰有一件次品”,则P (A )=610=0.6,故选B.2.已知f (x )=3x -2(x =1,2,3,4,5)的值构成集合A ,g (x )=2x -1(x =1,2,3,4,5)的值构成集合B ,任取x ∈A ∪B ,则x ∈A ∩B 的概率是( ) 导学号67640751A.16 B .14C.13 D .12[答案] B[解析] 依据条件可得A ={1,4,7,10,13},B ={1,2,4,8,16}, 于是A ∪B ={1,2,4,7,8,10,13,16},A ∩B ={1,4}. 故任取x ∈A ∪B ,则x ∈A ∩B 的概率是28=14.3.从全部3位正整数中任取一数,则此数以2为底的对数也是正整数的概率为( )导学号67640752 A.1225 B .1300C.1450 D .以上全不对[答案] B[解析] 三位的正整数共有900个,若以2为底的对数也是正整数(设为n ),则100≤2n≤999,∴n =7、8、9共3个,故P =3900=1300.4.有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有“20”,“12”和“伦敦”的字块,假如婴儿能够排成“20 12 伦敦”或者“伦敦 20 12”,则他们就给婴儿嘉奖.假设婴儿能将字块挨着正排,那么这个婴儿能得到嘉奖的概率是( )导学号67640753 A.12 B .13C.14 D .16[答案] B[解析] 3块字块的排法为“20 12 伦敦”,“20 伦敦 12”,“12 20 伦敦”,“12 伦敦20”,“伦敦 20 12”,“伦敦 12 20”,共6种,婴儿能得到嘉奖的状况有2种,故所求概率P =26=13. 二、填空题5.若以连续掷两次骰子分别得到的点数m ,n 作为P 点的坐标,则点P 落在圆x 2+y 2=16内的概率是____________.导学号67640754[答案] 29[解析] P 点坐标共有36个,落在圆x 2+y 2=16内的点为(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)共8个,故所求概率P =836=29.6.在平面直角坐标系中,从五个点A (0,0)、B (2,0)、C (1,1)、D (0,2)、E (2,2)中任取三个,这三点能构成三角形的概率是________.导学号67640755[答案] 45[解析] 如下图所示,则从这五点中任取三点的全部结果为:ABC 、ABD 、ABE 、ACD 、ACE 、ADE 、BCD 、BCE 、BDE 、CDE ,共10个.而大事M “任取三点构不成三角形”只有ACE 、BCD 2个,故构成三角形的概率P (M )=1-P (M )=1-210=45. 三、解答题7.(2022·四川文,16)一个盒子里装有三张卡片,分别标记有数字1、2、3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a 、b 、c . 导学号67640756(1)求“抽取的卡片上的数字满足a +b =c ”的概率; (2)求“抽取的卡片上的数字a 、b 、c 不完全相同”的概率. [解析] (1)由题意,(a ,b ,c )全部的可能为(1,1,1)、(1,1,2)、(1,1,3)、(1,2,1)、(1,2,2)、(1,2,3)、(1,3,1)、(1,3,2)、(1,3,3)、(2,1,1)、(2,1,2)、(2,1,3)、(2,2,1)、(2,2,2)、(2,2,3)、(2,3,1)、(2,3,2)、(2,3,3),(3,1,1)、(3,1,2)、(3,1,3)、(3,2,1)、(3,2,2)、(3,2,3)、(3,3,1)、(3,3,2)、(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为大事A , 则大事A 包括(1,1,2)、(1,2,3)、(2,1,3),共3种. 所以P (A )=327=19.因此,“抽取的卡片上的数字满足a +b =c ”的概率为19.(2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为大事B , 则大事B 包括(1,1,1)、(2,2,2)、(3,3,3),共3种. 所以P (B )=1-P (B )=1-327=89.因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.8.(2021·福建文,18)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.依据相关报道供应的全网传播2021年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示(1)现从融合指数在[4,5)和[7,8]2家进行调研,求至少有1家的融合指数在[7,8]内的概率;(2)依据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.[解析] 解法一:(1)融合指数在[7,8]内的“省级卫视新闻台”记为A 1、A 2、A 3;融合指数在[4,5)内的“省级卫视新闻台”记为B 1、B 2.从融合指数在[4,5)和[7,8]内的“省级卫视新闻台”中随机抽取2家的全部基本大事是:{A 1,A 2}、{A 1,A 3}、{A 2,A 3}、{A 1,B 1}、{A 1,B 2}、{A 2,B 1}、{A 2,B 2}、{A 3,B 1}、{A 3,B 2}、{B 1,B 2},共10个.其中,至少有1家融合指数在[7,8]内的基本大事是:{A 1,A 2}、{A 1,A 3}、{A 2,A 3}、{A 1,B 1}、{A 1,B 2}、{A 2,B 1}、{A 2,B 2}、{A 3,B 1}、{A 3,B 2},共9个.所以所求的概率P =910.(2)这20家“省级卫视新闻台”的融合指数平均数等于4.5×220+5.5×820+6.5×720+7.5×320=6.05.解法二:(1)融合指数在[7,8]内的“省级卫视新闻台”记为A 1,A 2,A 3;融合指数在[4,5)内的“省级卫视新闻台”记为B 1,B 2.从融合指数在[4,5)和[7,8]内的“省级卫视新闻台”中随机抽取2家的全部基本大事是:{A 1,A 2}、{A 1,A 3}、{A 2,A 3}、{A 1,B 1}、{A 1,B 2}、{A 2,B 1}、{A 2,B 2}、{A 3,B 1}、{A 3,B 2}、{B 1,B 2},共10个.其中,没有1家融合指数在[7,8]内的基本大事是:{B 1,B 2},共1个. 所以所求的概率P =1-110=910.(2)同解法一.9.(2021·安徽太和中学高一期末测试)已知某学校有教职工60名,为了了解教职工的健康状况,对教职工进行了体检.现将全体教职工随机按1~60编号,并用系统抽样的方法从中抽取10(1)若抽出的某职工的号码为26,写出全部被抽出职工的号码;(2)分别统计这10名职工的体重(单位:kg),获得体重数据的茎叶图如图所示,求这10名职工的平均体重;4 95 5 86 1 4 5 8 8 757(3)在(2)的条件下,从10名职工中随机抽取两名体重不低于65 kg 的职工,写出这两名职工体重的全部基本大事,并求体重为77 kg 的职工被抽到的概率.[解析] (1)由题意可知,全部被抽出职工的号码为2、8、14、20、26、32、38、44、50、56. (2)这10名职工的平均体重x =110(75+77+61+64+65+68+68+55+58+49)=64(kg). (3)记“体重为77 kg 的职工被抽到”为大事A .基本大事空间Ω={(65,68),(65,68),(65,75),(65,77),(68,68),(68,75),(68,77),(68,75),(68,77),(75,77)},共有10个基本大事.大事A 包含的基本大事有(65,77)、(68,77)、(68,77)、(75,77)共4个,∴P (A )=410=25.。
【成才之路】高中数学 3.3 三角函数的积化和差与和差化积基础巩固 新人教B版必修4
【成才之路】2014-2015学年高中数学 3.3 三角函数的积化和差与和差化积基础巩固 新人教B 版必修4一、选择题1.sin75°-sin15°的值为( ) A .12 B .22C .32D .-12[答案] B[解析] sin75°-sin 15=2cos 75°+15°2sin 75°-15°2=2×22×12=22.故选B.2.已知cos(α+β)cos(α-β)=13,则cos 2α-sin 2β的值为( )A .-23B .-13C .13D .23[答案] C[解析] 由已知得cos 2αcos 2β-sin 2αsin 2β=13,∴cos 2α(1-sin 2β)-sin 2αsin 2β=13,即cos 2α-sin 2β=13.3.化简cos α-cos3αsin3α-sin α的结果为( )A .tan αB .tan2αC .cot αD .cot2α [答案] B[解析] 原式=-2sin2α-α2cos2αsin α=2sin2αsin α2cos2αsin α=tan2α.4.已知cos 2α-cos 2β=m ,那么sin(α+β)sin(α-β)等于( )A .-mB .mC .-m 2D .m2[答案] A[解析] sin(α+β)sin(α-β)=(sin αcos β+cos αsin β)(sin αcos β-cos αsin β)=sin 2αcos 2β-cos 2αsin 2β=(1-cos 2α)cos 2β-cos 2α(1-cos 2β) =cos 2β-cos 2αcos 2β-cos 2α+cos 2αcos 2β =cos 2β-cos 2α=-m .5.计算sin105°cos75°的值是( ) A .12 B .14 C .-14D .-12[答案] B[解析] sin105°cos75°=12(sin180°+sin30°)=14.6.sin10°+sin50°sin35°·sin55°=( ) A .14 B .12 C .2 D .4 [答案] B [解析]sin10°+sin50°sin35°sin55°=2sin30°cos20°-12-=14cos20°12cos20°=12. 二、填空题7.(2014·河北邯郸市馆陶一中高一第二次调研)在△ABC 中,已知sin B sin C =cos 2A2,则此三角形是________三角形.[答案] 等腰[解析] sin B sin C =cos 2A 2=1+cos A2,∴2sin B sin C =1-cos(B +C ) =1-cos B cos C +sin B sin C , ∴cos B cos C +sin B sin C =1, 即cos(B -C )=1 又-π<A <B <π, ∴A -B =0,∴A =B . 故△ABC 是等腰三角形.8.cos40°+cos60°+cos80°+cos160°=________. [答案] 12[解析] 原式=cos40°+cos80°+cos60°-cos20° =2cos60°·cos(-20°)+cos60°-cos20° =cos60°=12.三、解答题9.求证:sin(α+β)cos α-12[sin(2α+β)-sin β]=sin β.[解析] 解法一:左边=sin(α+β)cos α-12[sin 〔(α+β)+α〕-sin β]=sin(α+β)cos α-12[sin(α+β)cos α+cos(α+β)sin α]+12sin β=12[sin(α+β)cos α-cos(α+β)sin α]+12sin β=12sin[(α+β)-α]+12sin β=sin β=右边. 解法二:左边=sin(α+β)cos α-12⎝ ⎛⎭⎪⎫2cos 2α+β+β2sin 2α+β-β2 =sin(α+β)cos α-cos(α+β)sin α =sin[(α+β)-α]=sin β=右边.一、选择题1.已知sin(α-β)·cos α-cos(α-β)·sin α=m ,且β为第三象限角,则cos β等于( )A .1-m 2B .-1-m 2C .1+m 2D .-m 2-1[答案] B[解析] sin(α-β)cos α-cos(α-β)sin α=sin(-β)=-sin β, ∴sin β=-m .又β为第三象限角, ∴cos β=-1-m 2. 2.若sin α+sin β=33(cos β-cos α)且α∈(0,π),β∈(0,π),则α-β等于( )A .-2π3B .-π3C .π3D .2π3[答案] D[解析] ∵α、β∈(0,π),∴sin α+sin β>0. ∴cos β-cos α>0,∴cos β>cos α,又在(0,π)上,y =cos x 是减函数. ∴β<α∴0<α-β<π,由原式可知:2sin α+β2·cos α-β2=33⎝ ⎛⎭⎪⎫-2sin α+β2·sin β-α2, ∴tan α-β2=3∴α-β2=π3∴α-β=2π3.3.在△ABC 中,若B =30°,则cos A sin C 的取值范围是( ) A .[-1,1] B .[-12,12]C .[-14,34]D .[-34,14][答案] C[解析] cos A sin C =12[sin(A +C )-sin(A -C )]=14-12sin(A -C ),∵-1≤sin(A -C )≤1,∴cos A sin C ∈⎣⎢⎡⎦⎥⎤-14,34. 4.tan70°cos10°(3tan20°-1)等于( ) A .1 B .-1 C .12D .-12[答案] B[解析] 原式=cot20°cos10°(3tan20°-1) =cot20°cos10°3sin20°-cos20°cos20°=cot20°cos10°2sin-cos20°=-2sin10°cos10°cot20°cos20°=-1.二、填空题5.sin 220°+cos 280°+3sin20°·cos80°=________. [答案] 14[解析] 原式=1-cos40°2+1+cos160°2+32sin100°-32sin60°=14-12cos40°-12cos20°+32sin100° =14-12×2cos30°cos10°+32cos10° =14-32cos10°+32cos10°=14. 6.计算1tan10°-4cos10°=________.[答案] 3[解析] 1tan10°-4cos10°=cos10°-2sin20°sin10°=cos10°+-sin10°=2cos30°sin10°sin10= 3.三、解答题7.求函数y =sin 4x +23sin x cos x -cos 4x 的最小正周期和最小值;并写出该函数在[0,π]上的递增区间.[解析] y =sin 4x +23sin x cos x -cos 4x =(sin 2x +cos 2x )(sin 2x -cos 2x )+3sin2x =3sin2x -cos2x =2sin ⎝ ⎛⎭⎪⎫2x -π6.故该函数的最小正周期是π;最小值是-2.递增区间为⎣⎢⎡⎦⎥⎤0,π3,⎣⎢⎡⎦⎥⎤56π,π.8.在△ABC 中,求证:(1)sin 2A +sin 2B -sin 2C =2sin A sin B cos C ; (2)sin A +sin B -sin C =4sin A 2sin B 2cos C2.[解析] (1)左边=sin 2A +1-cos2B 2-1-cos2C2=sin 2A +12(cos2C -cos2B )=sin 2(B +C )+sin(B +C )sin(B -C ) =sin(B +C )[sin(B +C )+sin(B -C )]=sin(B +C )2sin B cos C =2sin A sin B cos C =右边, ∴等式成立.(2)左边=sin(B +C )+2sin B -C2cosB +C2=2sin B +C2cosB +C2+2sinB -C2cosB +C2=2cosB +C 2⎝ ⎛⎭⎪⎫sin B +C 2+sin B -C 2 =4sin A2sin B2cos C2=右边,∴原等式成立. 9.讨论函数f (x )=12cos(2x -2α)+cos 2α-2cos(x -α)·cos x ·cos α的周期、最值、奇偶性及单调区间.[解析] f (x )=12cos(2x -2α)+1+cos2α2-2cos(x -α)cos x ·cos α=12+12[cos(2x -2α)+cos2α]-[2cos(x -α)·cos α]cos x =12+cos x ·co s(x -2α)-cos x [cos x +cos(x -2α)] =12-cos 2x =12-1+cos2x 2=-12cos2x . ∴函数的最小正周期T =2π2=π.f (x )max =12,此时cos2x =-1,即2x =2k π+π,k ∈Z ,x =k π+π2,k ∈Z ;f (x )min =-12,此时cos2x =1,即2x =2k π,k ∈Z ,x =k π,k ∈Z.f (-x )=f (x ),∴f (x )为偶函数.由2k π≤2x ≤2k π+π,k ∈Z ,即k π≤x ≤k π+π2,k ∈Z.∴函数f (x )的增区间为[k π,k π+π2](k ∈Z).由2k π+π≤2x ≤2k π+2π,k ∈Z ,即k π+π2≤x ≤k π+π,k ∈Z.∴函数f (x )的单调减区间为[k π+π2,k π+π],k ∈Z.。
【成才之路】2014-2015学年高中数学 3.3 第1课时 函数的单调性与导数课件 新人教A版选修1-1
∴函数f(x)在(1,+∞)上是增函数. 又f(1)=1-ln1=1>0, 即f(x)>0对x∈(1,+∞)恒成立, ∴x-lnx>0,即x>lnx (x>1).
1 令 f′(x)>0,得 x>2 或 x<2, 1 令 f′(x)<0,得2<x<2, 1 ∴函数 f(x)的单调递增区间为(-∞,2),(2,+∞),单调 1 递减区间为(2,2).
[辨析] 错解的原因是忽视了函数的定义域而导致错误.
[正解] 由已知得 x>0,故函数 f(x)的定义域为(0,+∞). a 2 ∵f′(x)=a+x2-x , 4 a ∴f′(2)=a+4-1=0,∴a=5. 4 4 2 2 ∴f′(x)=5+5x2-x =5x2(2x2-5x+2),
(2)函数 f(x)的定义域为(-∞,0)∪(0,+∞), b b f ′(x)=(x+x )′=1-x2, 1 令 f ′(x)>0,则x2(x+ b)(x- b)>0, ∴x> b,或 x<- b. ∴函数的单调递增区间为(-∞,- b)和( b,+∞). 1 令 f ′(x)<0,则x2(x+ b)(x- b)<0, ∴- b<x< b,且 x≠0. ∴函数的单调递减区间为(- b,0)和(0, b).
∴a≤0.
当a=0时,y=-1不是减函数, ∴a≠0. 故a的取值范围是(0,+∞).
典例探究学案
用导数求函数的单调区间
求下列函数的单调区间: (1)f(x)=x3-3x+1; b (2)f(x)=x+x(b>0).
[解析] (1)函数 f(x)的定义域为 R, f ′(x)=3x2-3,令 f ′(x)>0,则 3x2-3>0. 即 3(x+1)(x-1)>0,解得 x>1 或 x<-1. ∴函数 f(x)的单调递增区间为(-∞,-1)和(1,+∞), 令 f ′(x)<0,则 3(x+1)(x-1)<0,解得-1<x<1. ∴函数 f(x)的单调递减区间为(-1,1).
2021年高中数学 3.3.3-3.3.4直线的交点坐标与距离公式练习 新人教A版必修2
2021年高中数学 3.3.3-3.3.4直线的交点坐标与距离公式练习 新人教A版必修2一、选择题1.已知△ABC 的三个顶点坐标分别为A (2,6),B (-4,3),C (2,-3),则点A 到BC 边的距离为( )A .92B .922C .255D .43[答案] B[解析] BC 边所在直线的方程为y -3-3-3=x +42+4,即x +y +1=0;则d =|2×1+6×1+1|2=922.2.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为( )A .4B .21313C .52613D .72010[答案] D[解析] 3x +y -3=0变形为6x +2y -6=0,可知m =2,则d =|1--6|62+223.若点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为( )A .79B .-13C .-79或-13D .79或13[答案] C[解析] 由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79.4.若点P 在直线3x +y -5=0上,且点P 到直线x -y -1=0的距离为2,则点P 的坐标为( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2)[答案] C[解析] 设点P的坐标为(x 0,y 0),则有⎩⎨⎧3x 0+y 0-5=0|x 0-y 0-1|2=2,解得⎩⎨⎧x 0=1y 0=2或⎩⎨⎧x 0=2y 0=-1.5.与直线2x +y +1=0的距离为55的直线方程为( )A .2x +y =0B .2x +y -2=0C .2x +y =0或2x +y -2=0D .2x +y =0或2x +y +2=0[答案] D[解析] 根据题意可设所求直线方程为2x +y +C =0(C ≠1),因为两直线间的距离等于55,所以|C -1|22+12=55,解得C =0或C =2,所以所求直线方程为2x+y =0或2x +y +2=0.故选D .6.(xx·广东改编)直线l 垂直于直线y =x +1,原点O 到l 的距离为1,且l 与y 轴正半轴有交点,则直线l 的方程是( )A .x +y -2=0B .x +y +1=0C .x +y -1=0D .x +y +2=0 [答案] A[分析] 所求直线l 与直线y =x +1垂直,可以直接设直线l 的方程为y =-x +b ,与y 轴正半轴有交点,确定截距范围,再利用原点到直线的距离等于1求参数,得直线方程.[解析] 因为直线l 与直线y =x +1垂直,所以直接设直线l 的方程为y =-x +b ,又l 与y 轴正半轴有交点,知b >0,即x +y -b =0(b >0)的距离|0+0-b |12+12=1,求得b =2(b =-2舍去),所以所求直线l 的方程为x +y -2=0.二、填空题7.两条直线l 1:3x +4y +1=0和l 2:5x +12y -1=0相交,则其顶点的角平分线所在直线的方程为_________.[答案] 7x -4y +9=0,8x +14y +1=0[解析] 设P (x ,y )是所求直线上的任意一点,则点P 到l 1,l 2的距离相等,即|3x +4y +1|32+42=|5x +12y -1|52+122,整理,得所求直线的方程为7x -4y +9=0,8x+14y +1=0.8.过点A (-3,1)的所有直线中,与原点距离最远的直线方程是_________. [答案] 3x -y +10=0[解析] 当原点与点A 的连线与过点A 的直线垂直时,距离最大.∵k OA =-13,∴所求直线的方程为y -1=3(x +3),即3x -y +10=0. 三、解答题9.已知正方形的中心为直线2x -y +2=0和x +y +1=0的交点,其一边所在直线的方程为x +3y -5=0,求其它三边的方程.[解析] 由⎩⎨⎧2x -y +2=0,x +y +1=0,解得⎩⎨⎧x =-1,y =0,即该正方形的中心为(-1,0).所求正方形相邻两边方程3x -y +p =0和x +3y +q =0. ∵中心(-1,0)到四边距离相等, ∴|-3+p |10=610,|-1+q |10=610,解得p 1=-3,p 2=9和q 1=-5,q 2=7,∴所求方程为3x -y -3=0,3x -y +9=0,x +3y +7=0.10.求经过点P (1,2)的直线,且使A (2,3),B (0,-5)到它的距离相等的直线方程.[分析] 解答本题可先设出过点P 的点斜式方程,注意斜率不存在的情况,要分情况讨论,然后再利用已知条件求出斜率,进而写出直线方程.另外,本题也可利用平面几何知识,先判断直线l 与直线AB 的位置关系,再求l 方程.事实上,l ∥AB 或l 过AB 中点时,都满足题目的要求.[解析] 方法1:当直线斜率不存在时,即x =1,显然符合题意,当直线斜率存在时,设所求直线的斜率为k ,即直线方程为y -2=k (x -1),由条件得|2k -3-k +2|k 2+1=|5-k +2|k 2+1,解得k =4, 故所求直线方程为x =1或4x -y -2=0.方法2:由平面几何知识知l ∥AB 或l 过AB 中点. ∵k AB =4,若l ∥AB ,则l 的方程为4x -y -2=0.若l 过AB 中点(1,-1),则直线方程为x =1, ∴所求直线方程为x =1或4x -y -2=0.规律总结:针对这个类型的题目常用的方法是待定系数法,即先根据题意设出所求方程,然后求出方程中有关的参量.有时也可利用平面几何知识先判断直线l 的特征,然后由已知直接求出直线l 的方程.能力提升一、选择题1.P ,Q 分别为3x +4y -12=0与6x +8y +6=0上任一点,则|PQ |的最小值为( )A .95B .185C .3D .6[答案] C[解析] |PQ |的最小值是这两条平行线间的距离.在直线3x +4y -12=0上取点(4,0),然后利用点到直线的距离公式得|PQ |的最小值为3.2.过两直线x -3y +1=0和3x +y -3=0的交点,并与原点的距离等于1的直线共有( )A .0条B .1条C .2条D .3条[答案] B[解析] 联立方程组⎩⎪⎨⎪⎧x -3y +1=0,3x +y -3=0,解得⎩⎪⎨⎪⎧x =12,y =32,即交点坐标为(12,32),它到原点的距离恰好等于1,故满足条件的直线共有1条.3.到两条直线l 1:3x -4y +5=0与l 2:5x -12y +13=0的距离相等的点P (x ,y )必定满足方程( )A .x -4y +4=0B .7x +4y =0C .x -4y +4=0或4x -8y +9=0D .7x +4y =0或32x -56y +65=0 [答案] D[解析] 结合图形可知,这样的直线应该有两条,恰好是两条相交直线所成角的平分线.由公式可得|3x -4y +5|32+-42=|5x -12y +13|52+-122,即3x -4y +55=±5x -12y +1313,化简得7x +4y =0或32x -56y +65=0.4.点P (x ,y )在直线x +y -4=0上,则x 2+y 2的最小值是( ) A .8 B .22 C . 2 D .16[答案] A[解析] x 2+y 2表示直线上的点P (x ,y )到原点距离的平方,∵原点到直线x +y -4=0的距离为|-4|2=22, ∴x 2+y 2最小值为8.故选A . 二、填空题5.已知点A (1,1),B (2,2),点P 在直线y =12x 上,则当|PA |2+|PB |2取得最小值时点P 的坐标为_________.[答案] (95,910)[解析] 设P (2t ,t ),则|PA |2+|PB |2=(2t -1)2+(t -1)2+(2t -2)2+(t -2)2=10t 2-18t +10=10(t 2-95t +1)=10(t -910)2+1910,当t =910时,|PA |2+|PB 2|取得最小值,即P (95,910).6.已知平面上一点M (5,0),若直线上存在点P 使|PM |=4,则称该直线为“切割型直线”,下列直线是“切割型直线”的是_________.[答案] ②③[解析] 根据题意,看所给直线上的点到定点M 的距离能否取4.可通过求各直线上的点到M 的最小距离,即点M 到直线的距离来分析.①d =5+12=32>4,故直线上不存在点到M 距离等于4,不是“切割型直线”;②d =2<4,所以在直线上可以找到两个不同的点,使之到点M 的距离等于4,是“切割型直线”;③d =2032+42=4,直线上存在一点,使之到点M 距离等于4,是“切割型直线”;④d =115=1155>4,故直线上不存在到M 距离等于4的点,不是“切割型直线”,故填②③.三、解答题7.过点(2,3)的直线l 被两平行直线l 1:2x -5y +9=0与l 2:2x -5y -7=0所截线段AB 的中点恰在直线x -4y -1=0上,求直线l 的方程.[解析] 设线段AB 的中点P 的坐标为(a ,b ),由点P 到直线l 1,l 2的距离相等,得|2a -5b +9|22+-52=|2a -5b -7|22+-52,整理得2a -5b +1=0.又点P 在直线x -4y -1=0上,所以a -4b -1=0.解方程组⎩⎨⎧2a -5b +1=0a -4b -1=0,得⎩⎨⎧a =-3b =-1,即点P 的坐标为(-3,-1).又直线l 过点(2,3),所以直线l 的方程为y --13--1=x --32--3,即4x -5y +7=0.8.在△ABC 中,A (3,2),B (-1,5),点C 在直线3x -y +3=0上,若△ABC 的面积为10,求点C 的坐标.[解析] 由题知|AB |=3+12+2-52=5,∵S △ABC =12|AB |·h =10,∴h =4.设点C 的坐标为(x 0,y 0),而AB 的方程为y -2=-34(x -3),即3x +4y -17=0.∴⎩⎨⎧3x 0-y 0+3=0,|3x 0+4y 0-17|5=4,解得⎩⎨⎧x 0=-1,y 0=0或⎩⎨⎧x 0=53,y 0=8.∴点C 的坐标为(-1,0)或(53,8).35528 8AC8 諈38654 96FE 雾24981 6195 憕m21047 5237 刷30786 7842 硂23726 5CAE 岮^3精品文档28022 6D76 浶24004 5DC4 巄<20601 5079 偹i实用文档。
3-3-2线性规划的概念
第三章
3.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
x-4y+3=0, 解方程组 3x+5y-25=0
得 A 点坐标为(5,2),
第三章
3.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
x=1, 解方程组 x-4y+3=0
得 B 点坐标为(1,1),
所以 zmax=2×5+2=12,zmin=2×1+1=3.
,问题就成
为在此二元一次不等式组限制的范围(区域)内,寻找整数对(x、 y),使目标函数 z=7x+12y 取最大值的问题;
第三章
3.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
画出可行域如下图,
第三章
3.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
9 5 7 3 ∵-4<-4<-12<-10, ∴当直线 l:7x+12y=z 经过直线 3x+10y=300 与 4x+5y =200 的交点 A 时,z 最大,解方程组:
第三章
3.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
解法探讨: 4x+5y<22 ∵2x+y>8 x,y∈N
,欲知 U=2x-3y 的正负,先将 U 用 4x
+5y 及 2x+y 表示出来,然后用不等式性质考察, 设 2x-3y=m(4x+5y)+n(2x+y) =(4m+2n)x+(5m+n)y
解线性规划问题的一般步骤是: (1)设出未知数. (2)列出约束条件, 画出可行域, 必要时求出可行域的顶点. (3)确定目标函数,令目标函数中的 z=0 得直线 l0,平移 l0(即作平行线)使直线与可行域有公共点. (4)求出最优解,把最优解代入目标函数.求出 z 的最值, 并作答.
高中数学 3.3.2两点间的距离公式练习 新人教A版必修2-新人教A版高一必修2数学试题
【成才之路】2015-2016学年高中数学两点间的距离公式练习新人教A版必修2基础巩固一、选择题1.点M(1,2)关于y轴的对称点N到原点的距离为( )A.2 B.1C. 5 D.5[答案] C[解析] N(-1,2),|ON|=-12+22= 5.故选C.2.已知A(2,1),B(-1,b),|AB|=5,则b等于( )A.-3 B.5C.-3或5 D.-1或-3[答案] C[解析] 由两点间的距离公式知|AB|=-1-22+b-12=b2-2b+10,由5=b2-2b+10,解得b=-3或b=5.3.一条平行于x轴的线段长是5个单位,它的一个端点是A(2,1),则它的另一个端点B的坐标为( )A.(-3,1)或(7,1)B.(2,-2)或(2,7)C.(-3,1)或(5,1)D.(2,-3)或(2,5)[答案] A[解析] ∵AB∥x轴,∴设B(a,1),又|AB|=5,∴a=-3或7.4.设点A在x轴上,点B在y轴上,AB的中点是P(2,-1),则|AB|等于( ) A.5 B.4 2C.2 5 D.210[答案] C[解析] 设A(x,0)、B(0,y),由中点公式得x=4,y=-2,则由两点间的距离公式得|AB|=0-42+-2-02=20=2 5.5.△ABC三个顶点的坐标分别为A(-4,-4)、B(2,2)、C(4,-2),则三角形AB边上的中线长为( )A.26 B.65C .29D .13[答案] A[解析] AB 的中点D 的坐标为D (-1,-1). ∴|CD |=-1-42+-1--22=26;故选A .6.已知三点A (3,2),B (0,5),C (4,6),则△ABC 的形状是( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形[答案] C [解析] |AB |=3-02+2-52=32,|BC |=0-42+5-62=17, |AC |=3-42+2-62=17,∴|AC |=|BC |≠|AB |, 且|AB |2≠|AC |2+|BC |2.∴△ABC 是等腰三角形,不是直角三角形,也不是等边三角形. 二、填空题7.已知点M (m ,-1),N (5,m ),且|MN |=25,则实数m =_________. [答案] 1或3 [解析] 由题意得m -52+-1-m2=25,解得m =1或m =3.8.已知A (1,-1),B (a,3),C (4,5),且|AB |=|BC |,则a =_________. [答案] 12[解析] a -12+3+12=4-a2+5-32,解得a =12.三、解答题9.求证:等腰梯形的对角线相等. [证明] 已知:等腰梯形ABCD . 求证:AC =BD .证明:以AB 所在直线为x 轴,以AB 的中点为坐标原点建立如图平面直角坐标系.设A (-a,0)、D (b ,c ),由等腰梯形的性质知B (a,0),C (-b ,c ). 则|AC |=-b +a2+c -02=a -b2+c 2,|BD |=b -a2+0-c2=a -b 2+c 2,∴|AC |=|BD |.即:等腰梯形的对角线相等.10.已知直线l 1:2x +y -6=0和A (1,-1),过点A 作直线l 2与已知直线交于点B 且|AB |=5,求直线l 2的方程.[解析] 当直线l 2的斜率存在时,设其为k ,则⎭⎪⎬⎪⎫l 2:y +1=k x -1又由2x +y -6=0⇒(k +2)x =k +7,而k ≠-2,故解得x =k +7k +2,所以B (k +7k +2,4k -2k +2), 又由|AB |=5,利用两点间距离公式得k +7k +2-12+4k -2k +2+12=5⇒k =-34,此时l 2的方程为3x +4y +1=0.而当l 2的斜率不存在时,l 2的方程为x =1.此时点B 坐标为(1,4),则|AB |=|4-(-1)|=5,也满足条件综上,l 2的方程为3x +4y +1=0或x =1.能力提升一、选择题1.已知点A (2,3)和B (-4,1),则线段AB 的长及中点坐标分别是( ) A .210,(1,2) B .210,(-1,-2) C .210,(-1,2) D .210,(1,-2)[答案] C [解析] |AB |=-4-22+1-32=210,中点坐标为(2-42,3+12),即(-1,2),故选C .2.已知两点P (m,1)和Q (1,2m )之间的距离大于10,则实数m 的X 围是( ) A .-45<m <2B .m <-45或m >2C .m <-2或m >45D .-2<m <45[答案] B[解析] 根据两点间的距离公式|PQ |=m -12+1-2m2=5m 2-6m +2>10⇒5m 2-6m -8>0⇒m <-45或m >2.3.两直线3ax -y -2=0和(2a -1)x +5ay -1=0分别过定点A 、B ,则|AB |等于( ) A .895B .175C .135D .115[答案] C[解析] 易得A (0,-2),B (-1,25).∴|AB |=-1-02+25+22=135. 4.在直线2x -3y +5=0上求点P ,使P 点到A (2,3)距离为13,则P 点坐标是( ) A .(5,5)B .(-1,1)C .(5,5)或(-1,1)D .(5,5)或(1,-1)[答案] C[解析] 设点P (x ,y ),则y =2x +53,由|PA |=13得(x -2)2+(2x +53-3)2=13,即(x -2)2=9,解得x =-1或x =5, 当x =-1时,y =1,当x =5时,y =5,∴P (-1,1)或(5,5). 二、填空题5.已知点A (5,2a -1),B (a +1,a -4),若|AB |取得最小值,则实数a 的值是_________. [答案] 12[解析] 由题意得|AB |=5-a -12+2a -1-a +42=2a 2-2a +25=2a -122+492,所以当a =12时,|AB |取得最小值.6.已知点A (4,12),在x 轴上的点P 与点A 的距离等于13,则点P 的坐标为_________. [答案] (9,0)或(-1,0) [解析] 设P (a,0),则a -42+122=13,解得a =9或a =-1,∴点P 的坐标为(9,0)或(-1,0).三、解答题7.用坐标法证明定理:若四边形ABCD是长方形,则对平面内任一点M,等式AM2+CM2=BM2+DM2成立.[解析] 以一个直角所在的两边为坐标轴,建立直角坐标系.证明:如图,取长方形ABCD的两条边AB、AD所在的直线分别为x轴、y轴建立直角坐标系.设长方形ABCD的四个顶点分别为A(0,0)、B(a,0)、C(a,b)、D(0,b).在平面上任取一点M(m,n),则有AM2+CM2=m2+n2+(m-a)2+(n-b)2,BM2+DM2=(m-a)2+n2+m2+(n-b)2,∴AM2+CM2=BM2+DM2.8.如下图所示,一个矩形花园里需要铺设两条笔直的小路,已知矩形花园的长AD=5 m,宽AB=3 m,其中一条小路定为AC,另一条小路过点D,问是否在BC上存在一点M,使得两条小路AC与DM相互垂直?若存在,则求出小路DM的长.[分析] 建立适当的坐标系,转几何问题为代数运算.[解析] 以B为坐标原点,BC、BA所在直线为x、y轴建立如图所示的平面直角坐标系.因为AD=5 m,AB=3 m,所以C(5,0),D(5,3),A(0,3).设点M的坐标为(x,0),因为AC⊥DM,所以k AC·k DM=-1,即3-00-5·3-05-x=-1.所以x=3.2,即BM=3.2,即点M 的坐标为(3.2,0)时,两条小路AC 与DM 相互垂直. 故在BC 上存在一点M (3.2,0)满足题意. 由两点间距离公式得DM =5-3.22+3-02=3534.。
2014《成才之路》高一数学(人教A版)必修3课件:1-1-2-3 循环结构、程序框图的画法
第一章 1.1 1.1.2 第3课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修3
④循环结构中常量的几个变量: 计数变量:即计数器,用来记录执行循环体的次数,如i =i+1,n=n+1. 累加变量:即累加器,用来计算数据之和,如S=S+i. 累乘变量:即累乘器,用来计算数据之积,如P=P*i. ⑤在程序框图中,一般要根据实际情况先给这些变量赋 初始值.一般情况下,计数变量的初始值为1,累加变量的 初始值为0,累乘变量的初始值为1.
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修3
温故知新 1.下列问题的算法宜用条件结构表示的是( ) A.求点P(-1,3)到直线3x-2y+1=0的距离 B.由直角三角形的两条直角边求斜边 C.解关于x的方程ax+b=0 D.计算100个数的平均数 [答案] C
[解析] A,B,D只需用顺序结构即可.
(1)在循环结构中,每次执行循环体前对控制循环的条件
进行判断,当条件满足时执行循环体,不满足则停止,这样
的循环结构是( )
A.分支型循环
B.直到型循环
C.条件型循环
D.当型循环
[答案] D
第一章 1.1 1.1.2 第3课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修3
思路方法技巧
[答案] (1)81 (2)1005
第一章 1.1 1.1.2 第3课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修3
规纳总结:此类题容易在循环体执行的次数上出错,搞 不清楚最后一个数据到底是多少,做题时希望大家细心.
【成才之路】2014-2015学年高中数学 3.3 第3课时 函数的最大(小)值与导数课件 新人教A版选修1-1
(1)求f(x)在开区间(a,b)内所有极值点; (2) 计算函数 f(x) 在极值点和端点的函数值,其中最大的一
个为最大值,最小的一个为最小值.
2 .正确理解“在闭区间 [a , b] 上连续的函数 f(x) 必有最 值.” (1)给定的区间必须是闭区间, f(x)在开区间上虽然连续但不 1 能保证有最大值或最小值. 如 f(x)=x, x∈(0,1), f(x)在区间(0,1) 连续,但没有最大值和最小值(如图).
当 x 变化时,g(x),g′(x)的变化情况如表: x g′(x) g( x ) 2 (-∞,3) + 2 3 0 68 27-m 2 (3,4) - 4 0 -16- m (4,+∞) +
2 68 则函数 g(x)的极大值为 g(3)=27-m, 极小值为 g(4)=-16 -m.
1 ∴由 y=f(x)的图象与 y=3f′(x)+5x+m 的图象有三个不 同交点, 2 68 g = -m>0 得 3 27 , g4=-16-m<0 68 解得-16<m<27.
2
当 x 变化时,f ′(x),f(x)的变化情况如下表: x f ′(x) f ( x) -2 -1 (-1,0) + 0 0 1 4 (0,3) - 4 3 0 5 -27 4 (3,2) + 1 2
故 f(x)最大值=1,f(x)最小值=-2.
[ 方法规律总结 ] (小)值步骤如下:
1. 求可导函数 y = f(x) 在 [a , b] 上的最大
f ′2=0, ∴ f2=c-16, 12a+b=0, 即 8a+2b+c=c-16. a=1, 解得 b=-12.
12a+b=0, 化简得 4a+b=-8.
(2)由(1)知f(x)=x3-12x+c,f ′(x)=3x2-12, 令f ′(x)=0,得x1=-2,x2=2, 当x∈(-∞,-2)时,f ′(x)>0,f(x)在(-∞,-2)上为增函 数,
2014《成才之路》高一数学(人教A版)必修2能力强化提升:3-3-1 两条直线的交点坐标
一、选择题1.直线3x -y =0与x +y =0的位置关系是( ) A .相交 B .平行 C .重合 D .垂直[答案] A[解析] A 1B 2-A 2B 1=3×1-1×(-1)=3+1≠0,又A 1A 2+B 1B 2=3×1+(-1)×1=3-1≠0,则这两条直线相交,但不垂直.2.直线2x +3y +8=0和直线x -y -1=0的交点坐标是( ) A .(-2,-1) B .(-1,-2) C .(1,2) D .(2,1)[答案] B[解析] 解方程组⎩⎪⎨⎪⎧2x +3y +8=0,x -y -1=0,得⎩⎪⎨⎪⎧x =-1,y =-2,即交点坐标是(-1,-2). 3.直线ax +3y -5=0经过点(2,1),则a 的值等于( ) A .2 B .1 C .0 D .-1[答案] B[解析] 由题意得2a +3-5=0,解得a =1.4.若三条直线2x +3y +8=0,x -y =1,和x +ky =0相交于一点,则k 的值等于( )A .-2B .-12C .2 D.12[答案] B[解析] 由⎩⎪⎨⎪⎧x -y =12x +3y +8=0得交点(-1,-2),代入x +ky =0得k =-12,故选B.5.直线kx -y +1=3k ,当k 变动时,所有直线都通过定点( ) A .(0,0) B .(0,1) C .(3,1) D .(2,1)[答案] C[解析] 方程可化为y -1=k (x -3),即直线都通过定点(3,1). 6.已知点M (0,-1),点N 在直线x -y +1=0上,若直线MN 垂直于直线x +2y -3=0,则N 点的坐标是( )A .(-2,-3)B .(2,1)C .(2,3)D .(-2,-1) [答案] C[解析] 将A 、B 、C 、D 四个选项代入x -y +1=0否定A 、B ,又MN 与x +2y -3=0垂直,否定D ,故选C.7.过两直线3x +y -1=0与x +2y -7=0的交点,并且与第一条直线垂直的直线方程是( )A .x -3y +7=0B .x -3y +13=0C .2x -y +7=0D .3x -y -5=0 [答案] B[解析] 由⎩⎪⎨⎪⎧3x +y -1=0,x +2y -7=0,得交点(-1,4).∵所求直线与3x +y -1=0垂直, ∴所求直线斜率k =13,∴y -4=13(x +1), 即x -3y +13=0.8.已知直线mx +4y -2=0与2x -5y +n =0互相垂直,垂足为(1,p ),则m -n +p 为( )A .24B .20C .0D .-4[答案] B[解析] ∵两直线互相垂直,∴k 1·k 2=-1,∴-m 4·25=-1,∴m =10.又∵垂足为(1,p ),∴代入直线10x +4y -2=0得p =-2,将(1,-2)代入直线2x -5y +n =0得n =-12,∴m -n +p =20. 二、填空题9.过原点和直线l 1:x -3y +4=0与l 2:2x +y +5=0的交点的直线的方程为________.[答案] 3x +19y =0[解析] 由⎩⎪⎨⎪⎧x -3y +4=0,2x +y +5=0,得交点坐标(-197,37), ∴所求方程为y =-319x ,即3x +19y =0.10.在△ABC 中,高线AD 与BE 的方程分别是x +5y -3=0和x +y -1=0,AB 边所在直线的方程是x +3y -1=0,则△ABC 的顶点坐标分别是A ________;B ________;C ________.[答案] (-2,1) (1,0) (2,5)[解析] 高线AD 与边AB 的交点即为顶点A ,高线BE 与边AB 的交点即为顶点B ,顶点C 通过垂直关系进行求解.11.两条直线x +my +12=0,2x +3y +m =0的交点在y 轴上,则m 的值是________.[答案] ±6[解析] 设交点坐标为(0,b ),则有⎩⎪⎨⎪⎧mb +12=0,3b +m =0,解得m =±6.12.已知直线l 1:a 1x +b 1y =1和直线l 2:a 2x +b 2y =1相交于点P (2,3),则经过点P 1(a 1,b 1)和P 2(a 2,b 2)的直线方程是________.[答案] 2x +3y =1[解析] 由题意得P (2,3)在直线l 1和l 2上,所以有⎩⎪⎨⎪⎧2a 1+3b 1=1,2a 2+3b 2=1,则点P 1(a 1,b 1)和P 2(a 2,b 2)的坐标是方程2x +3y =1的解,所以经过点P 1(a 1,b 1)和P 2(a 2,b 2)的直线方程是2x +3y =1. 三、解答题13.判断下列各对直线的位置关系,若相交,求出交点坐标: (1)l 1:2x -y +3=0,l 2:x +2y -1=0; (2)l 1:3x +4y +2=0,l 2:6x +8y +3=0; (3)l 1:x -y +1=0,l 2:2x -2y +2=0.[解析] (1)解方程组⎩⎪⎨⎪⎧ 2x -y +3=0,x +2y -1=0,得⎩⎪⎨⎪⎧x =-1,y =1,所以直线l 1与l 2相交,交点坐标为(-1,1).(2)解方程组⎩⎪⎨⎪⎧3x +4y +2=0, ①6x +8y +3=0, ②①×2-②得1=0,矛盾,方程组无解.所以直线l 1与l 2无公共点,即l 1∥l 2.(3)解方程组⎩⎪⎨⎪⎧x -y +1=0, ①2x -2y +2=0, ②①×2得2x -2y +2=0.因此,①和②可以化为同一个方程,即①和②表示同一条直线,所以直线l 1与l 2重合.14.已知直线x +y -3m =0和2x -y +2m -1=0的交点M 在第四象限,求实数m 的取值范围.[分析] 解方程组得交点坐标,再根据点M 在第四象限列出不等式组,解得m 的取值范围.[解析] 由⎩⎪⎨⎪⎧x +y -3m =0,2x -y +2m -1=0,得⎩⎨⎧x =m +13,y =8m -13.∴交点M 的坐标为(m +13,8m -13). ∵交点M 在第四象限,∴⎩⎨⎧m +13>0,8m -13<0,解得-1<m <18.∴m 的取值范围是(-1,18).15.直线l 过定点P (0,1),且与直线l 1:x -3y +10=0,l 2:2x +y -8=0分别交于A 、B 两点.若线段AB 的中点为P ,求直线l 的方程.[解析] 解法1:设A (x 0,y 0),由中点公式,有B (-x 0,2-y 0),∵A 在l 1上,B 在l 2上,∴⎩⎪⎨⎪⎧ x 0-3y 0+10=0-2x 0+(2-y 0)-8=0⇒⎩⎪⎨⎪⎧x 0=-4y 0=2, ∴k AP =1-20+4=-14,故所求直线l 的方程为:y =-14x +1, 即x +4y -4=0.解法2:设所求直线l 方程为: y =kx +1,l 与l 1、l 2分别交于M 、N .解方程组⎩⎪⎨⎪⎧ y =kx +1x -3y +10=0⇒N (73k -1,10k -13k -1)解方程组⎩⎪⎨⎪⎧y =kx +12x +y -8=0⇒M (7k +2,8k +2k +2)∵M 、N 的中点为P (0,1)则有: 12(73k -1+7k +2)=0⇒∴k =-14. 故所求直线l 的方程为x +4y -4=0.解法3:设所求直线l 与l 1、l 2分别交于M (x 1,y 1)、N (x 2,y 2),P (0,1)为MN 的中点,则有:⎩⎪⎨⎪⎧ x 1+x 2=0,y 1+y 2=2⇒⎩⎪⎨⎪⎧x 2=-x 1,y 2=2-y 1.代入l 2的方程,得:2(-x 1)+2-y 1-8=0即2x 1+y 1+6=0.解方程组⎩⎪⎨⎪⎧x 1-3y 1+10=02x 1+y 1+6=0⇒M (-4,2).由两点式:所求直线l 的方程为x +4y -4=0. 解法4:同解法1,设A (x 0,y 0),⎩⎪⎨⎪⎧x 0-3y 0+10=02x 0+y 0+6=0,两式相减得x 0+4y 0-4=0,(1) 考察直线x +4y -4=0,一方面由(1)知A (x 0,y 0)在该直线上;另一方面,P (0,1)也在该直线上,从而直线x +4y -4=0过点P 、A .根据两点决定一条直线知,所求直线l 的方程为:x +4y -4=0.16.求证:不论m 取什么实数,直线(2m -1)x +(m +3)y -(m -11)=0都经过一个定点,并求出这个定点的坐标.[分析] 题目所给的直线方程的系数中含有字母m ,给定m 一个实数值,就可以得到一条确定的直线,因此所给的方程是以m 为参数的直线系方程,要证明这个直线系中的直线都过一定点,就是证明它是一个共点的直线系,我们可以给出m 的两个特殊值,得到直线系中的两条直线,它们的交点即是直线系中任何直线都过的定点.另一思路是:由于方程对任意的m 都成立,那么就以m 为未知数,整理为关于m 的一元一次方程,再由一元一次方程有无数个解的条件求得定点的坐标.[解析] 证法一:对于方程(2m -1)x +(m +3)y -(m -11)=0, 令m =0,得x -3y -11=0;令m =1,得x +4y +10=0.解方程组⎩⎪⎨⎪⎧x -3y -11=0,x +4y +10=0,得两直线的交点为(2,-3).将点(2,-3)代入已知直线方程左边,得(2m -1)×2+(m +3)×(-3)-(m -11)=4m -2-3m -9-m +11=0.这表明不论m 取什么实数,所给直线都经过定点(2,-3). 证法二:将已知方程以m 为未知数,整理为(2x +y -1)m +(-x +3y +11)=0.因为m 可以取任意实数,所以有⎩⎪⎨⎪⎧2x +y -1=0,-x +3y +11=0,解得⎩⎪⎨⎪⎧x =2,y =-3.所以不论m 取什么实数所给的直线都经过定点(2,-3). 规律总结:(1)分别令参数取两个特殊值得方程组,求出点的坐标,代入原方程满足,则此点为定点.(2)直线过定点,即与参数无关,则参数的同次幂的系数为0,从而求出定点.。
高一数学必修3课件:3-3-2均匀随机数的产生
第三章 3.3
3.3.2
成才之路 ·数学 ·人教A版 · 必修3
规律总结:用随机模拟方法估计几何概型的步骤:① 确定需要产生随机数的组数,如长度、角度型只用一组,面 积型需要两组;②由基本事件空间对应的区域确定产生随机 数的范围;③由事件A发生的条件确定随机数应满足的关系 式;④统计事件A对应的随机数并计算A的频率来估计A的概 率.
第三章 3.3 3.3.2
成才之路 ·数学 ·人教A版 · 必修3
利用随机模拟方法计算图中阴影部分(y=x3和x=2以及x 轴所围成的部分)的面积.
第三章 3.3
3.3.2
成才之路 ·数学 ·人教A版 · 必修3
[分析]
解答本题可先计算与之相应的规则图形的面
积,然后利用随机模拟的方法求出几何概率,并对阴影部分 的面积进行估算.
第三章 3.3
3.3.2
成才之路 ·数学 ·人教A版 · 必修3
自主预习 阅读教材P137-140,回答下列问题: 1.均匀随机数 (1)定义 如果试验的结果是区间[a,b]上的任何一个实数,而且 出现任何一个实数是等可能的,则称这些实数为均匀随机 数.
第三章 3.3
3.3.2
成才之路 ·数学 ·人教A版 · 必修3
求出阴影部分与正方形的面积之比,从而求得阴影部分面积 的近似值.
第三章 3.3
3.3.2
成才之路 ·数学 ·人教A版 · 必修3
[解析]
步骤:(1)利用计算机产生两组[0,1]内的均匀随
机数,a1=RAND,b1=RAND. (2)进行平移和伸缩变换,a=2(a1-0.5),b=2b1,得到 一组[-1,1]内的均匀随机数和一组[0,2]内的均匀随机数. (3)统计试验总数N和落在阴影内的点数N1[满足条件b<2a 的点(a,b)的个数].
成才之路人教B数学必修5课后强化作业:2-3-2《等比数列的性质》.DOC
基 础 巩 固一、选择题1.在等比数列{a n }中,a 4+a 5=10,a 6+a 7=20,则a 8+a 9等于( )A .90B .30C .70D .40[答案] D[解析] ∵q 2=a 6+a 7a 4+a 5=2,∴a 8+a 9=(a 6+a 7)q 2=20q 2=40.2.在等比数列{a n }中,a 2 010=8a 2 007,则公比q 的值为( ) A .2 B .3 C .4 D .8[答案] A[解析] ∵a 2 010=8a 2 007,∴q 3=a 2 010a 2 007=8,∴q =2.3.等比数列{a n }各项为正数,且3是a 5和a 6的等比中项,则a 1·a 2·…·a 10=( )A .39B .310C .311D .312[答案] B[解析] 由已知,得a 5a 6=9,∴a 1·a 10=a 2·a 9=a 3·a 8=a 4·a 7=a 5·a 6=9, ∴a 1·a 2·…·a 10=95=310.4.在等比数列{a n }中,若a 3a 5a 7a 9a 11=243,则a 29a 11的值为( )A .9B .1C .2D .3[答案] D[解析] a 3a 5a 7a 9a 11=a 51q 30=243,∴a 29a 11=(a 1q 8)2a 1q 10=a 1q 6=5243=3. 5.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( )A .2B .4C .8D .16[答案] C[解析] ∵a 3a 11=a 27=4a 7,∵a 7≠0, ∴a 7=4,∴b 7=4,∵{b n }为等差数列, ∴b 5+b 9=2b 7=8.6.在等比数列{a n }中,a n >a n +1,且a 7·a 11=6,a 4+a 14=5,则a 6a 16等于( )A.32B.23C.16D .6[答案] A [解析]∵⎩⎨⎧a 7·a 11=a 4·a 14=6a 4+a 14=5,解得⎩⎨⎧a 4=3a 14=2或⎩⎨⎧a 4=2a 14=3.又∵a n >a n +1,∴a 4=3,a 14=2.∴a 6a 16=a 4a 14=32.二、填空题7.等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5等于________.[答案] 27[解析] 由题意,得a 1+a 2=1,a 3+a 4=(a 1+a 2)q 2=9, ∴q 2=9,又a n >0,∴q =3. 故a 4+a 5=(a 3+a 4)q =9×3=27.8.已知等比数列{a n }的公比q =-13,则a 1+a 3+a 5+a 7a 2+a 4+a 6+a 8等于________.[答案] -3[解析] a 1+a 3+a 5+a 7a 2+a 4+a 6+a 8=a 1+a 3+a 5+a 7a 1q +a 3q +a 5q +a 7q=1q =-3. 三、解答题9.已知数列{a n }为等比数列.(1)若a 1+a 2+a 3=21,a 1a 2a 3=216,求a n ; (2)若a 3a 5=18,a 4a 8=72,求公比q . [解析] (1)∵a 1a 2a 3=216,∴a 2=6, ∴a 1a 3=36.又∵a 1+a 3=21-a 2=15,∴a 1,a 3是方程x 2-15x +36=0的两根3和12. 当a 1=3时,q =a 2a 1=2,a n =3·2n -1;当a 1=12时,q =12,a n =12·(12)n -1. (2)∵a 4a 8=a 3q ·a 5q 3=a 3a 5q 4=18q 4=72, ∴q 4=4,∴q =±2.能 力 提 升一、选择题1.设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230,那么a 3·a 6·a 9·…·a 30等于( )A .210B .220C .216D .215[答案] B[解析] 设A =a 1a 4a 7…a 28,B =a 2a 5a 8…a 29, C =a 3a 6a 9…a 30,则A 、B 、C 成等比数列, 公比为q 10=210,由条件得A ·B ·C =230,∴B =210, ∴C =B ·210=220.2.如果数列{a n }是等比数列,那么( ) A .数列{a 2n }是等比数列 B .数列{2a n }是等比数列 C .数列{lg a n }是等比数列 D .数列{na n }是等比数列 [答案] A[解析] 设b n =a 2n ,则b n +1b n =a 2n +1a 2n =(a n +1a n)2=q 2,∴{b n }成等比数列;2a n +12a n =2a n +1-a n ≠常数;当a n <0时lg a n 无意义;设c n =na n , 则c n +1c n=(n +1)a n +1na n =(n +1)q n ≠常数. 3.在等比数列{a n }中,a 5a 7=6,a 2+a 10=5,则a 18a 10等于( )A .-23或-32 B.23 C.32 D.23或32[答案] D[解析] a 2a 10=a 5a 7=6.由⎩⎨⎧a 2a 10=6a 2+a 10=5,得⎩⎨⎧a 2=2a 10=3或⎩⎨⎧a 2=3a 10=2.∴a 18a 10=a 10a 2=32或23.故选D. 4.已知2a =3,2b =6,2c =12,则a ,b ,c ( )A .成等差数列不成等比数列B .成等比数列不成等差数列C .成等差数列又成等比数列D .既不成等差数列又不成等比数列 [答案] A[解析] 解法一:a =log 23,b =log 26=log 2 3+1, c =log 2 12=log 2 3+2. ∴b -a =c -b .解法二:∵2a ·2c =36=(2b )2,∴a +c =2b ,∴选A. 二、填空题5.公差不为零的等差数列{a n }中,2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.[答案] 16[解析] ∵2a 3-a 27+2a 11=2(a 3+a 11)-a 27 =4a 7-a 27=0,∵b 7=a 7≠0,∴b 7=a 7=4.∴b 6b 8=b 27=16.6.在3和一个未知数间填上一个数,使三数成等差数列,若中间项减去6则成等比数列,则此未知数是__________.[答案] 3或27 [解析]设此三数为3、a 、b ,则⎩⎨⎧2a =3+b(a -6)2=3b,解得⎩⎨⎧a =3b =3或⎩⎨⎧a =15b =27.∴这个未知数为3或27. 三、解答题7.{a n }为等比数列,且a 1a 9=64,a 3+a 7=20,求a 11. [解析] ∵{a n }为等比数列, ∴a 1·a 9=a 3·a 7=64,又a 3+a 7=20, ∴a 3,a 7是方程t 2-20t +64=0的两个根. ∴a 3=4,a 7=16或a 3=16,a 7=4, 当a 3=4时,a 3+a 7=a 3+a 3q 4=20, ∴1+q 4=5,∴q 4=4.当a 3=16时,a 3+a 7=a 3(1+q 4)=20, ∴1+q 4=54,∴q 4=14.∴a 11=a 1q 10=a 3q 8=64或1.8.设{a n }是各项均为正数的等比数列,b n =log 2a n ,若b 1+b 2+b 3=3,b 1·b 2·b 3=-3,求此等比数列的通项公式a n .[解析] 由b 1+b 2+b 3=3, 得log 2(a 1· a 2·a 3)=3, ∴a 1·a 2·a 3=23=8,∵a 22=a 1·a 3,∴a 2=2,又b 1·b 2·b 3=-3,设等比数列{a n }的公比为q ,得log 2(2q )·log 2(2q )=-3. 解得q =4或14,∴所求等比数列{a n }的通项公式为 a n =a 2·q n -2=22n -3或a n =25-2n .9.(2013·全国大纲理,17)等差数列{a n }的前n 项和为S n ,已知S 3=a 22,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.[解析] 设{a n }的公差为d .由S 3=a 22,得3a 2=a 22,故a 2=0或a 2=3. 由S 1,S 2,S 4成等比数列得S 22=S 1S 4.又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,所以d =0,此时S n =0,不合题意; 若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =0或d =2. 因此{a n }的通项公式为a n =3或a n =2n -1.。
两点间的距离公式 课件
互动课堂
第三章 3.3 3.3.2
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
●典例探究
求平面上两点间距离
已知 A(a,3)和 B(3,3a+3)的距离为 5,求 a 的值. [分析] 利用两点间距离公式列方程解得a的值. [解析] ∵|AB|= a-32+3-3a-32=5, 即 5a2-3a-8=0,∴a=-1 或 a=85.
第三章 3.3 3.3.2
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
坐标法的应用
△ABC 中,D 是 BC 边上的任意一点(D 与 B,C 不重合),且|AB|2=|AD|2+|BD|·|DC|.求证:△ABC 为等腰三角形.
[分析]
建立适当 的坐标系
→
设出各点 的坐标
→
根据已知中所 给的边与边之 间的关系
第三章 3.3 3.3.2
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
法二:∵kAB=3--1--11=-2,kAC=0-3--11=12, ∴kAB·kAC=-1, ∴AB⊥AC, ∴△ABC 是以 A 为直角顶点的直角三角形. (2)∵∠A=90°, ∴S△ABC=12|AB|·|AC|=5.
第三章 3.3 3.3.2
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修2
2 . 已 知 点 A(2k , - 1) , B(k,1) , 且 |AB| = , 则 实 数 k 等 于
()
A.±3
B.3
C.-3
D.0
[答案] A
[解析] 由题意得 2k-k2+-1-12= 13, 解得 k=±3.
【成才之路】2014-2015学年高中数学 3.3 第2课时 函数的极值与导数课件 新人教A版选修1-1
极小值 ,并把 x0 称为函数 f(x) 的一个 __________ 极小值点 .极大值 得 _________ 极值 ,极大值点与极小值点统称为_______ 极值点 . 与极小值统称为_____
3.理解极值概念时需注意的几点 (1)函数的极值是一个局部性的概念,是仅对某一点的左右 附近 的点而言的. 两侧________ 定义域内 的点,而函数定义域的端点绝 (2)极值点是函数__________
3. f ′(x0)=0 只是可导 函数 f(x)在 x0 取得极值的必要条件, .. 不是充分条件. 例如: 函数 f(x)=x3, f ′(0)=0 但 x=0 不是 f(x) =x3 的极值点.
设函数f(x)=x3-ax2-9x的导函数为f′(x),且f′(2)=15. (1)求函数f(x)的图象在x=0处的切线方程; (2)求函数f(x)的极值. [解析] (1)∵f′(x)=3x2+2ax-9,
1 令 f ′(x)>0,得 x<-3或 x>1, 1 令 f ′(x)<0,得-3<x<1, ∴f(x)在 x=1 的左侧 f ′(x)<0,右侧 f ′(x)>0, ∴f(x)在 x=1 处取得极小值, 1 1 故 a=3,b=-2,且 f(x)=x3-x2-x. 1 它的单调递增区间是(-∞,-3)和(1,+∞); 1 单调递减区间是(-3,1).
[解题思路探究 ] 第一步,审题.审结论明确解题方向, 求函数f(x)的单调区间与极值,需求f ′(x),然后按单调性和极值
与导数的关系求解;
审条件,发掘解题信息, f(x) 是三次函数, f ′(x) 是二次函 数,由二次方程的根探求极值点和单调区间; f(x) 解析式中含 参数,应分类讨论. 第二步,建联系,找解题途径.
【成才之路】2014-2015学年高中数学(人教A版)必修三同步课件1.3第1课时辗转相除法与更相减损术、秦九韶算
互动课堂
●典例探究
辗转相除法和更相减损术的应用
用辗转相除法求 80 和 36 的最大公约数,并用更 相减损术检验所得结果.
• [分析] 将80作为大数,36作为小数,执行辗 转相除法和更相减损术的步骤即可.
• • • • • •
[解析] 用辗转相除法: 80=36×2+8, 36=8×4+4, 8=4×2+0. 故80和36的最大公约数是4. 用更相减损术检验:
• [解析] f(x)=((((((7x+6)x+5)x+4)x+3)x+ 2)x+1)x,所以有 • v0=7; • v1=7×3+6=27; • v2=27×3+5=86; • v3=86×3+4=262; • v=2369; v6=2369×3+1=7108; v7=7108×3=21324. 故当x=3时,多项式f(x)=7x7+6x6+5x5+4x4 +3x3+2x2+x的值为21324.
• (2)算法步骤: • 第一步,输入多项式的次数n、最高次项的系 数an和x的值. • 第二步,将v的值初始化为an,将i的值初始化 为n-1. i-1 • 第三步,输入i次项的系数ai. 0 • 第四步,v=vx+ai,i=__________. v • 第五步,判断i是否大于或等于_____.若是, 则返回第三步;否则,输出多项式的值_____.
• • • •
• • • • •
改写多项式为: f(x)=anxn+an-1xn-1+…+a1x+a0 =(anxn-1+an-1xn-2+…+a1)x+a0 =((anxn-2+an-1xn-3+…+a2)x+a1)x+a0 =… anx+an-1 =(…((anx+an-1)x+an-2)x+…+a1)x+a0. 设v1=__________, v2=v1x+an-2, vx v3=v2 + ana n- 1 x+ 0 3, - …,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[解析]
(1)利用计算机产生两组[0,1]上的均匀随机数,
a1=RAND,b1=RAND.
人 教 A 版 数 学
第三章
概率
N1 (4)计算频率 , 就是点落在阴影部分的概率的近似值. N (5)设阴影部分面积为 S.由几何概率公式得点落在阴影 S 部分的概率为12. S N1 ∴12≈ N . 12N1 ∴S≈ N 即为阴影部分面积的近似值.
人 教 A 版 数 学
第三章
概率
人 教 A 版 数 学
第三章
概率
可以看到随着试验次数的增多,大多数估计值越接近 概率值,但试验次数多的不一定就是比次数少的精度高,
体现出试验估计值的“随机性”,并且1000次试验得到π
的估计值精确度并不高,由此体会实际实验的时间太长, 因此可采用计算机随机模拟. 例4为求不规则图形的面积,其一般方法为将不规则 图形放在一个规则图形的内部(一般内接)然后利用两图
只与区域的大小有关,而与区域的位置和形状无关,符合 几何概型的条件,用几何概型公式,A=“豆子落在圆内”,
第三章
概率
(2)用模拟方法:可以直接撒豆试验模拟,也可以用计
算机模拟操作步骤如下: 在Excel工作表中: ①选定A1,键入“=(rand( )-0.5)*2”. ②选定A1 ,按“Ctrl+C”键;选定A2 ~A1000 ,B1 ~
人 教 A 版 数 学
形的面积比等于概率,如果概率用频率来近似,则不规则
图形的面积近似等于规则图形的面积乘以频率.其操作步骤 如下:
第三章
概率
人 教 A 版 数 学
第三章
概率
④选定D1,键入“=B1-power(A1,2)”;再选定D1, 按“Ctrl+C”;选定D2~D1000,按“Ctrl+V”,则D列表
人 教 A 版 数 学
随机模拟的用途,应细心体会这样做法的原理,从中学习
研究解决问题的方法.
第三章
概率
例2是用几何概型公式和随机模拟法来计算概率:
(1)解法1:利用几何概型公式. (2)解法2:用随机模拟方法. 用计算机中的Excel软件产生[0,1]上的均匀随机数模拟, 人 教 操作步骤如下: ①在工作表中选定A1,键入函数“=rand( )”. ②选定A1 ,按“Ctrl+C”;选定A2 ~A50 ,B1 ~B50 , 按“Ctrl+V”;此时A1 ~A50 ,B1 ~B50 均为[0,1]上的均匀
0.5)”,E1表示统计D列中小于或等于-0.5的个数,即父亲 在离开家前不能得到报纸的频数. ⑤选定F1,键入“=(50-E1)/50”.F1表示统计50次试 验中父亲在离开家前能得到报纸的频率,多次重复试验得
人 教 A 版 数 学
到的结果与上面可能不同,但总在概率附近波动,从中体
会频率的随机性与相对稳定性. 注意不同的计算机软件,其操作步骤组合键会有所不 同,但原理都是一样的,关键是理解原理.
人 教 A 版 数 学
断,那么剪得两段的长都不小于1m的概率有多大? [解析]
的距离取遍[0,3]内的任意数,并且每一个实数被取到都是
等可能的.因此在任意位置剪断绳子的所有结果(基本事件) 对应[0,3]上的均匀随机数,其中取得的[1,2]内的随机数就 表示剪得两段长都不小于1m.这样取得的[1,2]内的随机数个 数与[0,3]内的个数之比就是事件A发生的频率.
人 教 A 版 数 学
第三章
概率
人 教 A 版 数 学
第三章
概率
1.本节课是在前几节学习过整数随机数和几何概型基
础上,进一步学习均匀随机数的产生方法及如何应用均匀 随机数进行随机模拟试验来求几何概型的概率近似值和不 规则圆形的面积近似值等实际应用问题. 2.本节教材上安排了三个例题分别从不同的方面说明
表示F1~F10中小于等于0.5的个数,也就是前10次试验中, 落到阴影部分的频数;类似地可选定H2~H7,依次键入上 述函数得到前20次,前50次,前100次,前200次,前500次, 前1000次试验中落到阴影部分的频数.
人 教 A 版 数 学
第三章
概率
3.随机模拟试验是研究事件概率的重要方法,用计算 器或计算机模拟试验,首先需要把实际问题转化为可以用 随机数来模拟试验结果的概率模型,也就是怎样用随机数
第三章
概率
①利用计算器的RAND函数可以产生[0,1]上的均匀随
机数,试验结果是区间[0,1]内的任意一个实数,而且出现 任何一个实数是等可能的.
人 教 A 版 数 学
第三章
概率
(2)计算机软件法:几乎所有的高级编程语言都有随机
函数,借助随机函数可以产生一定范围的随机数.如: Java中我们可以使用java.util.Random类来产生一个随机数 发生器;ASP可以用Random类的对象来产生随机数;VB中 的RAN( )函数,VFP、Scilab中的rand( )函数,还有几何
人 教 A 版 数 学
B1000,按“Ctrl+C”,此时,A1~A1000,B1~B1000均为[-
1,1]区间上的均匀随机数.
第三章
概率
③选定D1,键入“=power(A1,2)+power(B1,2)”,再
选定D1 ,按“Ctrl+C”;选定D2 ~D1000 ,按“Ctrl+V”, 则D列表示A2+B2. ④选定F1 ,键入“=IF(D1>1,1,0)”;再选定F1 ,按 “Ctrl+C”;选定F2~F1000,按“Ctrl+V”,则如果D列
示B-A2.
⑤ 选 定 F1 , 键 入 “ = IF(D1>0,0,1) , ” 再 选 定 F1 按 “Ctrl+C”;选定F2~F1000,按“Ctrl+V”,则D列中元 素大于0时,F列中的值为0,否则F列中的值为1.
人 教 A 版 数 学
第三章
概率
⑥选定H1 ,键入“=FREQUENCY(F1∶F10,0.5)”,
第三章
概率
[点评] 用随机数模拟的关键是把实际问题中事件A及
基本事件总体对应的区域转化为随机数的范围.解法2用转 盘产生随机数,这种方法可以亲自动手操作,但费时费力, 试验次数不可能很大;解法1用计算机产生随机数,可以产 生大量的随机数,又可以自动统计试验的结果,同时可以
人 教 A 版 数 学
在短时间内多次重复试验,可以对试验结果的随机性和规
可以求出阴影部分与正方形面积之比,从而求得阴影部分 面积的近似值.
第三章
概率
[解析]
(1)利用计算机产生两组[0,1]上的均匀随机
数,a1=RAND,b1=RAND.
人 教 A 版 数 学
第三章
概率
N1 (4)计算频率 N , 即为点落在阴影部分的概率的近似 值. (5)用几何概率公式求得点落在阴影部分的概率为 S N1 S 4N1 P=4.∴ N =4.∴S≈ N 即为阴影部分面积的近似值.
人 教 A 版 数 学
第三章
概率
[点评] 解决本题的关键是利用随机模拟法和几何概
率公式分别求得几何概率,然后通过解方程求得阴影部分 面积的近似值.
人 教 A 版 数 学
第三章
概率
利用随机模拟的方法近似计算图中阴影部分(y=2-2x
-x2与x轴围成的图形)的面积.
人 教 A 版 数 学
第三章
概率
刻画影响随机事件结果的量,我们主要从以下几个方面来
考虑: (1)由影响随机事件结果的量的个数确定需要产生 的随机数组数.如长度型(一维)只用一组,面积型(二维) 需要用两组.体积型(三维)需要用三组.
人 教 A 版 数 学
第三章
概率
(2)由所有基本事件总体(基本事件空间)对应区
域确定产生随机数的范围. (3)由事件A发生的条件确定随机数所应满足的关
第三章
概率
二、随机数的产生方法
1.实例法 如掷骰子、掷硬币、抽签、从一叠纸牌中抽牌、正多 边形旋转器,或钟表式图形转盘等等. 例如:掷硬币,1表示正面,0表示反面,连掷四枚硬
人 教 A 版 数 学
币就可得到二进制数0000到1111,即十进制0~15.
2.计算器或计算机模拟法 (1)现在的大部分科学计算器都能产生0~1之间的均匀 随机数(实数),例如:
人 教 A 版 数 学
中A2+B2>1,F列中的值为1,否则F列中的值为0.
第三章
概率
⑤选定H1 ,键入“=FREQUENCY(F1F10,0.5)”,表 示F1~F10中,小于或等于0.5的个数,即前10次试验中落在 圆 内 的 豆 子 数 , 类 似 地 , 选 定 H2 , 键 入 “ = FREQUENCY(F1F20,0.5)”表示前20次试验中落到圆内的 豆子数;依此类推可在H3,H4,H5,H6,H7中分别得到前 50次,前100次,前200次,前500次,前1000次试验中落到 圆内的豆子数.
人 教 A 版 数 学
[点评]
解决此题的关键是利用两组均匀随机数分别
表示点的两个坐标,从而确定点的位置.
第三章
概率
人 教 A 版 数 学
第三章
概率
[例3]
利用随机模拟方法计算图中阴影部分(曲线y=
人 教 A 版 数 学
2x与x轴、x=±1围成的部分)的面积.
[分析]
在坐标系中画出正方形,用随机模拟的方法
律性有更深刻的认识.
第三章
概率
[例2] 如图在一个边长为3cm的正方形内部画一个边
长为2cm的正方形,向大正方形内随机投点,求所投的点 落入小正方形内的概率.
人 教 A 版 数 学
第三章
概率
[解析] 记事件A={所投点落入小正方形内}. (1) 用 计 算 机 产 生 两 组 [0,1] 上 的 均 匀 随 机 数 , a1 = RAND,b1=RAND.