淮安贝思特实验学校“半角”模型旋转变换几何练习

合集下载

最新初中数学几何专题讲解训练----几何旋转题型(解析版)(20200708192546)

最新初中数学几何专题讲解训练----几何旋转题型(解析版)(20200708192546)

最新初中数学几何专题讲解训练----几何旋转题型一.半角模型“半角”旋转模型,经常会出现在等腰直角三角形、正方形中,在一般的等腰三角形中也会有涉及.二.等腰三角形旋转模型等腰三角形的旋转模型比较多,此模型需要注意的是利用“全等三角形”的性质进行边与角的转化,证明的基本思想“SAS”.1.一般等腰三角形的旋转共顶点等腰三角形的旋转2.等边三角形的旋转共顶点等边三角形的旋转3.等腰直角三角形的旋转共顶点等腰直角三角形的旋转三.对角互补模型四边形对角互补模型多数题目给出的条件会以四边形或三角形等旋转为载体.四.旋转相似模型共顶点相似的一般三角形模型:如图,图中ABD ACE ∽,得到AB AD BD AC AE CE,ABD ACE ,ADB AEC ,BAD CAE ,则有ABC ADE ∽.一.考点:1.旋转全等模型;2.旋转相似模型;3.旋转中的轨迹与最值问题;二.重难点:1.这类题的关键是找到题目中所给的特殊条件,结合问题所要证明或者求解的边长角度问题,再去选择是要构造旋转全等还是通过已经得到的旋转全等的性质进一步证明.2.观察图形发现旋转得到的相似;3.通过添加辅助线构造旋转相似或者去挖掘隐含的相似图形.三.易错点:1.在利用旋转构造全等的时候注意辅助线的做法问题;2.构造旋转全等时候一定要有相等边长的条件.3.全等是相似的一个特例,旋转有时候也会出现全等,注意和旋转全等的区别和联系.题模一:旋转与全等例1.1.1已知四边形ABCD 中,AB=BC ,∠ABC=120°,∠MBN=60°,∠MBN 绕B 点旋转,它的两边分别交AD ,DC (或它们的延长线)于E ,F .。

半角模型专题训练含解析

半角模型专题训练含解析

半角模型专题训练一、解答题1.(探索发现)如图①,四边形ABCD 是正方形,M ,N 分别在边CD 、BC 上,且45MAN=∠︒,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法.如图①,将ADM ∆绕点A 顺时针旋转90︒,点D 与点B 重合,得到ABE ∆,连接AM 、AN 、MN .(1)试判断DM ,BN ,MN 之间的数量关系,并写出证明过程.(2)如图②,点M 、N 分别在正方形ABCD 的边BC 、CD 的延长线上,45MAN=∠︒,连接MN ,请写出MN 、DM 、BN 之间的数量关系,并写出证明过程.(3)如图③,在四边形ABCD 中,AB=AD ,120BAD=∠︒,180B+D=∠∠︒,点N ,M 分别在边BC ,CD 上,60MAN=∠︒,请直接写出线段BN ,DM ,MN 之间的数量关系.2.如图,等腰直角三角形ABC 中,∠BAC = 90°,AB =AC ,点M ,N 在边BC 上,且∠MAN =45°.若BM = 1,CN =3,求MN 的长.3.问题背景:如图1,在四边形ABCD 中,90BAD ︒∠=,90BCD ︒∠=,BA BC =,120ABC ︒∠=,60MBN ︒∠=,MBN ∠绕B 点旋转,它的两边分别交AD 、DC 于E 、F .探究图中线段,,AE CF EF 之间的数量关系.小李同学探究此问题的方法是:延长FC 到G ,使CG AE =,连接BG ,先证明BCG BAE △≌△,再证明BGF BEF △≌△,可得出结论,他的结论就是______________;探究延伸:如图2,在四边形ABCD 中,BA BC =,180BAD BCD ︒∠+∠=,2ABC MBN ∠=∠,MBN ∠绕B 点旋转,它的两边分别交AD 、DC 于E 、F .上述结论是否仍然成立?并说明理由.实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E 、F 处,且指挥中心观测两舰艇视线之间的夹角为70°,试求此时两舰艇之间的距离.4.如图,AB AD BC DC ===,90C D ABE BAD ∠=∠=∠=∠=︒,点E 、F 分别在边BC 、CD 上,45EAF ∠=︒,过点A 作GAB FAD ∠=∠,且点G 在CB 的延长线上.(1)GAB ∆与FAD ∆全等吗?为什么?(2)若2DF =,3BE =,求EF 的长.5.如图,在四边形ABCD 中,90B D ∠=∠=︒,E ,F 分别是BC ,CD 上的点,连接AE ,AF ,EF .(1)如图①,AB AD =,120BAD ∠=︒,60EAF ∠=︒.求证:EF BE DF =+;(2)如图②,120BAD ∠=︒,当AEF 周长最小时,求AEF AFE +∠∠的度数; (3)如图③,若四边形ABCD 为正方形,点E 、F 分别在边BC 、CD 上,且45EAF ∠=︒,若3BE =,2DF =,请求出线段EF 的长度.6.如图,ABC 是边长为2的等边三角形,BDC 是顶角为120°的等腰三角形,以点D 为顶点作60MDN ∠=︒,点M 、N 分别在AB 、AC 上.(1)如图①,当//MN BC 时,则AMN 的周长为______;(2)如图②,求证:BM NC MN +=.7.问题背景如图①,在四边形ABCD 中,AB AD =,120BAD ∠=︒,90B ADC ∠=∠=︒,点E ,F 分别是BC ,CD 上的点,且60EAF ∠=︒,连接EF ,探究线段BE ,EF ,DF 之间的数量关系.探究发现(1)小明同学的方法是将ABE △绕点A 逆时针旋转120︒至ADG 的位置,使得AB 与AD 重合,然后再证明AFE AFG △≌△,从而得出结论:______;拓展延伸(2)如图②,在四边形ABCD 中,AB AD =,180B D ∠+∠=︒,点E ,F 分别是边BC ,CD 上的点,且12EAF BAD ∠=∠,连接EF .(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图③,在正方形ABCD 中,点E ,F 分别是边BC ,CD 上的点,且45EAF ∠=︒,连接EF ,已知3BE =,2DF =,求正方形ABCD 的边长.8.如图,ABC 是边长为3的等边三角形,BDC 是等腰三角形,且120BDC ∠=︒,以D 为顶点作一个60︒角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,求AMN 的周长.9.如图,已知:正方形ABCD ,点E ,F 分别是BC ,DC 上的点,连接AE ,AF ,EF ,且45EAF ∠=︒,求证:BE DF EF +=.10.(1)如图1,在四边形ABCD 中,AB =AD ,∠BAD =100°,∠B =∠ADC =90°.E ,F 分别是BC ,CD 上的点.且∠EAF =50°.探究图中线段EF ,BE ,FD 之间的数量关系.小明同学探究的方法是:延长FD 到点G ,使DG =BE ,连接AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论是 (直接写结论,不需证明); (2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E ,F 分别是BC ,CD 上的点,且2∠EAF =∠BAD ,上述结论是否仍然成立,若成立,请证明,若不成立,请说明理由;(3)如图3,四边形ABCD 是边长为7的正方形,∠EBF =45°,直接写出△DEF 的周长.11.如图,正方形ABCD中,E、F分别在边BC、CD上,且∠EAF=45°,连接EF,这种模型属于“半角模型”中的一类,在解决“半角模型”问题时,旋转是一种常用的分析思路.例如图中△ADF与△ABG可以看作绕点A旋转90°的关系.这可以证明结论“EF =BE+DF”,请补充辅助线的作法,并写出证明过程.(1)延长CB到点G,使BG=,连接AG;(2)证明:EF=BE+DF12.(2019秋•东台市期末)在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC 的周长L的关系.(1)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时QL;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.参考答案1.(1)MN DM BN =+,证明见解析;(2)MN BN DM =-,证明见解析;(3)MN DM BN =+.【分析】(1)根据正方形的性质和旋转的性质可证ADM ≌ABE ,利用SAS 可证AMN AEN ≌,则可得:MN DM BN =+;(2)根据正方形的性质和旋转的性质可证ADM ≌ABE ,利用SAS 可证AMN AEN ≌,则可得:MN BN DM =-;(3)根据正方形的性质和旋转的性质可证ADM ≌ABE ,利用SAS 可证AMN AEN ≌,则可得:MN DM BN =+;【详解】证明:(1)如图①,∵四边形ABCD 是正方形∴AB=AD ,ABC ADC BAD =90将ADM 绕点A 顺时针旋转90︒,得到ABE∴ADM ≌ABE∴AM AE,DMBE,MAD EAB MAE BAD 90 ∵MAN 45EANMAN 45 在AMN 和AEN 中AMAE MANEAN AN ANAMN AEN SAS ≌MN EN∵EN EB BN DM BN =+=+,∴MN BN DM =+(2)如图②,将ADM 绕点A 顺时针旋转90,得到ABE∵四边形ABCD是正方形∴AB=AD,ABC ADC BAD=90∵ADM绕点A顺时针旋转90,得到ABE ∴ADM≌ABE∴AM AE,DM BE,MAD EABMAE BAD90,∵MAN45EAN MAN45在AMN和AEN中AM AEMAN EANAN AN≌AMN AEN SASMN EN∵BN EB EN DM MN,=-;即:MN BN DM(3)如图,∵AB AD =,BAD 120∠=,B D 180,将ADM 绕点A 顺时针旋转120,得到ABE∴ADM ≌ABE∴AM AE,DMBE,MAD EAB MAE BAD 120 MAN 60EANMAN 60 在AMN 和AEN 中AMAE MANEAN AN ANAMN AEN SAS ≌MN EN ENBE BN MN DM BN ;【点睛】本题主要考查正方形的性质及全等三角形的判定和性质等知识,利用旋转法构造全等三角形是解题的关键是学会.2【分析】过点C 作CE ⊥BC ,垂足为点C ,截取CE ,使CE =BM .连接AE 、EN .通过证明△ABM ≌△ACE (SAS )推知全等三角形的对应边AM =AE 、对应角∠BAM =∠CAE ;然后由等腰直角三角形的性质和∠MAN =45°得到∠MAN =∠EAN =45°,所以△MAN ≌△EAN (SAS ),故全等三角形的对应边MN =EN ;最后由勾股定理得到EN 2=EC 2+NC 2即MN 2=BM 2+NC 2.【详解】解:如图,过点C 作CE ⊥BC ,垂足为点C ,截取CE ,使CE =BM .连接AE 、EN .∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中AB ACB ACE BM CE⎧∠⎪∠⎪⎨⎩===,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中AM AEMAN EAN AN AN⎪∠⎪⎩∠⎧⎨===,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN.【点睛】本题主要考查全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理的综合应用,掌握三角形的全等的判定定理是解题关键.=+;探究延伸:成立,理由见解析;实际应用:210海里3.问题背景:EF AE CF【分析】问题背景:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,即可得出结论:EF=AE+CF;探究延伸1:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论:EF=AE+CF;探究延伸2:延长DC到H,使得CH=AE,连接BH,先证明△BCH≌△BAE,即可得到BE=HB,∠ABE=∠HBC,再证明△HBF≌△EBF,即可得出EF=HF=HC+CF=AE+CF;实际应用:连接EF,延长BF交AE的延长线于G,根据题意可转化为如下的数学问题:在四边形GAOB中,OA=OB,∠A+∠B=180°,∠AOB=2∠EOF,∠EOF的两边分别交AG,BG于E,F,求EF的长.再根据探究延伸2的结论:EF=AE+BF,即可得到两舰艇之间的距离.【详解】解:问题背景:如图1,延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论:EF=AE+CF;故答案为:EF=AE+CF;探究延伸1:上述结论仍然成立,即EF=AE+CF,理由如下:如图2,延长FC到G,使CG=AE,连接BG,∵CG=AE,∠BCG=∠A=90°,BC=BA,∴△BCG≌△BAE(SAS),∴BG=BE,∠ABE=∠CBG,∵∠ABC=2∠EBF,∴∠ABE+∠CBF=∠EBF,即∠CBG+∠CBF=∠EBF,∴∠GBF=∠EBF,又∵BF=BF,∴△BFG≌△BFE(SAS),∴GF=EF,即GC+CF=EF,∴AE+CF=EF∴可得出结论:EF=AE+CF;探究延伸2:上述结论仍然成立,即EF=AE+CF,理由:如图3,延长DC到H,使得CH=AE,连接BH,∵∠BAD+∠BCD=180°,∠BCH+∠BCD=180°,∴∠BCH=∠BAE,∵BA=BC,CH=AE,∴△BCH≌△BAE(SAS),∴BE=HB,∠ABE=∠HBC,∴∠HBE=∠ABC,又∵∠ABC=2∠MBN,∴∠EBF=∠HBF,∴△HBF≌△EBF(SAS),∴EF=HF=HC+CF=AE+CF;实际应用:如图4,连接EF,延长BF交AE的延长线于G,因为舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B处,所以∠AOB=140°,因为指挥中心观测两舰艇视线之间的夹角为70°,所以∠EOF=70°,所以∠AOB=2∠EOF.依题意得,OA=OB,∠A=60°,∠B=120°,所以∠A+∠B=180°,因此本题的实际的应用可转化为如下的数学问题:在四边形GAOB中,OA=OB,∠A+∠B=180°,∠AOB=2∠EOF,∠EOF的两边分别交AG,BG于E,F,求EF的长.根据探究延伸2的结论可得:EF=AE+BF,根据题意得,AE=75×1.2=90(海里),BF=100×1.2=120(海里),所以EF=90+120=210(海里).答:此时两舰艇之间的距离为210海里.【点睛】本题属于四边形综合题,主要考查了全等三角形的判定和性质,解题的关键是正确作出辅助线构造全等三角形,解答时注意类比思想的灵活应用.4.(1)△GAB≌△F AD,理由见解析;(2)EF=5【分析】(1)由题意可得∠ABG=∠D=90°,进一步即可根据ASA证得△GAB≌△F AD;(2)由(1)的结论可得AG=AF,GB=DF,易得∠BAE+∠DAF=45°,进而可推出∠GAE=∠EAF,然后利用SAS即可证明△GAE≌△F AE,可得GE=EF,进一步即可求出结果.解:(1)∵90D ABE ∠=∠=︒,点G 在CB 的延长线上,∴∠ABG =∠D =90°,在△GAB 和△F AD 中,∵GAB FAD ∠=∠,AB =AD ,∠ABG =∠D ,∴△GAB ≌△F AD (ASA );(2)∵△GAB ≌△F AD ,∴AG =AF ,GB =DF ,∵90BAD ∠=︒,45EAF ∠=︒,∴∠BAE +∠DAF =45°,∴∠BAE +∠GAB =45°,即∠GAE =45°,∴∠GAE =∠EAF ,在△GAE 和△F AE 中,∵AG =AF ,∠GAE =∠EAF ,AE =AE ,∴△GAE ≌△F AE (SAS ),∴GE =EF ,∵GE =GB +BE =DF +BE =2+3=5,∴EF =5.【点睛】本题主要考查了全等三角形的判定和性质,属于常考题型,熟练掌握全等三角形的判定和性质是解题的关键.5.(1)见解析;(2)AEF AFE +∠∠120=︒;(3)5EF =.【分析】(1)延长FD 到点G,使DG BE =,连接AG ,首先证明ABE ADG ≌,则有AE AG =,BAE DAG ∠=∠,然后利用角度之间的关系得出60EAF FAG ∠=∠=︒,进而可证明EAF GAF △≌△,则EF FG DG DF ==+,则结论可证;(2)分别作点A 关于BC 和CD 的对称点A ',A '',连接A A ''',交BC 于点E ,交CD 于点F ,根据轴对称的性质有A E AE '=,A F AF ''=,当点A '、E 、F 、A ''在同一条直线上时,A A '''即为AEF 周长的最小值,然后利用AEF AFE EA A EAA FAD A ''''∠+∠=∠+∠+∠+∠求解即可;(3)旋转ABE △至ADP △的位置,首先证明PAF EAF ≌△△,则有EF FP =,最后利用EF PF PD DF BE DF ==+=+求解即可.【详解】(1)证明:如解图①,延长FD 到点G ,使DG BE =,连接AG ,在ABE △和ADG 中,,,,AB AD ABE ADG BE DG =⎧⎪∠=∠⎨⎪=⎩()ABE ADG SAS ∴≌.AE AG ∴=,BAE DAG ∠=∠,120BAD ∠=︒,60EAF ∠=︒,60BAE FAD DAG FAD ∴∠+∠=∠+∠=︒.60EAF FAG ∴∠=∠=︒,在EAF △和GAF 中,,,,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩()EAF GAF SAS ∴≌.EF FG DG DF ∴==+,EF BE DF ∴=+;(2)解:如解图,分别作点A 关于BC 和CD 的对称点A ',A '',连接A A ''',交BC 于点E ,交CD 于点F .由对称的性质可得A E AE '=,A F AF ''=,∴此时AEF 的周长为AE EF AF A E EF A F A A '''''++=++=.∴当点A '、E 、F 、A ''在同一条直线上时,A A '''即为AEF 周长的最小值.120DAB ∠=︒,18012060AA E A ''∴∠'︒︒+∠=-=︒.,EA A EAA FAD A ''''∠=∠∠=∠,,EA A EAA AEF FAD A AFE ''''∠+∠=∠∠+∠=∠, AEF AFE EA A EAA FAD A ''''∴∠+∠=∠+∠+∠+∠=()2260120AA E A '''∠+∠=⨯︒=︒;(3)解:如解图,旋转ABE △至ADP △的位置,90PAE DAE PAD DAE EAB ∴∠=∠+∠=∠+∠=︒,AP AE =,PAF PAE EAF ∠=∠-∠904545EAF =︒-︒=︒=∠.在PAF △和EAF △中,,,,AP AE PAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩()PAF EAF SAS ∴≌△△.EF FP ∴=.325EF PF PD DF BE DF ∴==+=+=+=.【点睛】本题主要考查全等三角形的判定及性质,轴对称的性质,掌握全等三角形的判定及性质是解题的关键.6.(1)4;(2)见解析【分析】(1)首先证明△BDM ≌△CDN ,进而得出△DMN 是等边三角形,∠BDM=∠CDN=30°,NC=BM=12DM=12MN ,即可解决问题; (2)延长AC 至点E ,使得CE BM =,连接DE ,首先证明BDM CDE △≌△,再证明MDN EDN △≌△,得出MN NE =,进而得出结果即可.【详解】解:(1)∵ABC 是等边三角形,//MN BC ,60AMN ABC ∴∠=∠=︒,60ANM ACB ∠=∠=︒∴AMN 是等边三角形,AM AN ∴=,则BM NC =,∵BDC 是顶角120BDC ∠=︒的等腰三角形,30DBC DCB ∴∠=∠=︒,90DBM DCN ∴∠=∠=︒,在BDM 和CDN △中,,,,BM CN MBD DCN BD CD =⎧⎪∠=∠⎨⎪=⎩()BDM CDN SAS ∴△≌△,DM DN ∴=,BDM CDN ∠=∠,∵60MDN ∠=︒,∴DMN 是等边三角形,30BDM CDN ∠=∠=︒,1122NC BM DM MN ∴===,MN MB NC ∴=+, ∴AMN 的周长4AB AC =+=.(2)如图,延长AC 至点E ,使得CE BM =,连接DE ,∵ABC 是等边三角形,BDC 是顶角120BDC ∠=︒的等腰三角形,60ABC ACB ∴∠=∠=︒,30DBC DCB ∠=∠=︒,90ABD ACD ∠∴∠==︒,90DCE ∴∠=︒,在BDM 和CDE △中,,,,BD CD MBD ECD BM CE =⎧⎪∠=∠⎨⎪=⎩()BDM CDE SAS ∴△≌△,MD ED ∴=,MDB EDC ∠=∠,120120MDE MDB EDC ∴∠=︒-∠+∠=︒,∵60MDN ∠=︒,60NDE ∴∠=︒,在MDN △和EDN △中,,60,,MD ED MDN NDE DN DN =⎧⎪∠=∠=︒⎨⎪=⎩()MDN EDN SAS ∴△≌△.MN NE ∴=,又∵NE NC CE NC BM =+=+,BM NC MN ∴+=.【点睛】本题考查了全等三角形的判定与性质及等边三角形的性质及等腰三角形的性质,掌握全等三角形的性质与判定,等边三角形及等腰三角形的性质是解题的关键.7.(1)EF BE DF =+;(2)(1)中的结论EF BE DF =+仍然成立.证明见解析;(3)正方形ABCD 的边长为6.【分析】(1)证明AEF AGF ≌,可得EF FG =,即可得出结论;(2)要探究BE ,EF ,DF 之间的数量关系,方法同(1)即可得出结论;(3)根据(1)(2)的结论和勾股定理,即可求出正方形ABCD 的边长.【详解】(1)解:由旋转得:AE=AG ,∠BAE=∠DAG ,BE=DG ,∵120BAD ∠=︒,∴∠EAG=120°,∵60EAF ∠=︒,∴∠GAF=60EAF ∠=︒,又∵AF=AF ,∴AFE AFG △≌△,∴EF=GF ,∵GF=DG+DF ,∴EF BE DF =+,故答案为:EF BE DF =+;(2)解:(1)中的结论EF BE DF =+仍然成立.证明:如解图,将ABE △绕点A 逆时针旋转至ADG 的位置,使AB 与AD 重合.则ADG B ∠=∠,DG BE =,AG AE =,BAE DAG ∠=∠,又∵180B ADC ∠+∠=︒,∴180ADG ADC ∠+∠=︒,∴C ,D ,G 三点共线. ∵12FAD DAG FAD BAE BAD EAF BAD ∠+∠=∠+∠=∠-∠=∠,∴FAG EAF ∠=∠,又∵AF AF =,∴AEF AGF ≌,∴EF FG =,又∵FG DG DF BE DF =+=+,∴EF BE DF =+;(3)解:由(1)(2)可知325EF BE DF =+=+=.设正方形ABCD 的边长为x ,则3CE x =-,2CF x =-,在Rt CEF 中,222EF CE CF =+,∴()()222532x x =-+-,解得16x =,21x =-(不合题意,舍去),故正方形ABCD 的边长为6.【点睛】此题考查了旋转的性质,全等三角形的判定及性质,勾股定理的运用,正方形的性质,解题中注意类比方法的运用,同样的类型题可以运用同样的思路及方法进行证明.8.AMN 的周长为6.【分析】要求△AMN 的周长,根据题目已知条件无法求出三条边的长,只能把三条边长用其它已知边长来表示,所以需要作辅助线,延长AB 至F ,使BF=CN ,连接DF ,通过证明△BDF ≌△CDN ,及△DMN ≌△DMF ,从而得出MN=MF ,△AMN 的周长等于AB+AC 的长.【详解】解:∵△BDC 是等腰三角形,且∠BDC=120°∴∠BCD=∠DBC=30°∵△ABC 是边长为3的等边三角形∴∠ABC=∠BAC=∠BCA=60°∴∠DBA=∠DCA=90°延长AB 至F ,使BF=CN ,连接DF ,在Rt △BDF 和Rt △CND 中,BF=CN ,DB=DC∴△BDF ≌△CDN ,∴∠BDF=∠CDN ,DF=DN∵∠MDN=60°∴∠BDM+∠CDN=60°∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN ,DM 为公共边 ∴△DMN ≌△DMF ,∴MN=MF∴△AMN 的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.【点睛】此题主要利用等边三角形和等腰三角形的性质来证明三角形全等,构造另一个三角形是解题的关键.9.见解析.【分析】将△ABE 绕点A 逆时针旋转90°得到△ADG ,根据旋转的性质可得GD=BE ,AG=AE ,∠DAG=∠BAE ,然后求出∠FAG=∠EAF ,再利用“边角边”证明△AEF 和△AGF 全等,根据全等三角形对应边相等可得EF=FG ,即可得出结论.【详解】如解图,将ABE △绕点A 逆时针旋转90︒至ADG 的位置,使AB 与AD 重合.∴AG AE =,,DAG BAE DG BE ∠=∠=.∵45EAF ∠=︒.∴904545GAF DAG DAF BAE DAF BAD EAF ∠=∠+∠=∠+∠=∠-∠=︒-︒=︒, ∴EAF GAF ∠=∠.在AGF 和AEF 中,,AG AE GAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴()AGF AEF SAS △≌△.∴EF GF =.∵GF DG DF BE DF =+=+,∴BE DF EF +=.【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,难点在于利用旋转变换作出全等三角形.10.(1)EF =BE +DF ;(2)成立,理由详见解析;(3)14.【分析】(1)延长FD 到点G .使DG =BE .连结AG ,由“SAS ”可证△ABE ≌△ADG ,可得AE =AG ,∠BAE =∠DAG ,再由“SAS ”可证△AEF ≌△AGF ,可得EF =FG ,即可解题;(2)延长EB 到G ,使BG =DF ,连接AG ,即可证明△ABG ≌△ADF ,可得AF =AG ,再证明△AEF ≌△AEG ,可得EF =EG ,即可解题;(3)延长EA 到H ,使AH =CF ,连接BH ,由“SAS ”可证△ABH ≌△CBF ,可得BH =BF ,∠ABH =∠CBF ,由“SAS ”可证△EBH ≌△EBF ,可得EF =EH ,可得EF =EH =AE +CF ,即可求解.【详解】证明:(1)延长FD 到点G .使DG =BE .连结AG ,在△ABE 和△ADG 中,90AB AD ABE ADG BE DG ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△ABE ≌△ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠BAD =100°,∠EAF =50°,∴∠BAE +∠F AD =∠DAG +∠F AD =50°,∴∠EAF =∠F AG =50°,在△EAF 和△GAF 中,∵AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△GAF (SAS ),∴EF =FG =DF +DG ,∴EF =BE +DF ,故答案为:EF =BE +DF ;(2)结论仍然成立,理由如下:如图2,延长EB 到G ,使BG =DF ,连接AG ,∵∠ABC +∠D =180°,∠ABG +∠ABC =180°,∴∠ABG =∠D ,∵在△ABG 与△ADF 中,AB=AD ABG=D BG=DF ⎧⎪∠∠⎨⎪⎩,∴△ABG ≌△ADF (SAS ),∴AG =AF ,∠BAG =∠DAF ,∵2∠EAF =∠BAD ,∴∠DAF +∠BAE =∠BAG +∠BAE =12∠BAD =∠EAF , ∴∠GAE =∠EAF ,又AE =AE ,∴△AEG≌△AEF(SAS),∴EG=EF.∵EG=BE+BG.∴EF=BE+FD;(3)如图,延长EA到H,使AH=CF,连接BH,∵四边形ABCD是正方形,∴AB=BC=7=AD=CD,∠BAD=∠BCD=90°,∴∠BAH=∠BCF=90°,又∵AH=CF,AB=BC,∴△ABH≌△CBF(SAS),∴BH=BF,∠ABH=∠CBF,∵∠EBF=45°,∴∠CBF+∠ABE=45°=∠HBA+∠ABE=∠EBF,∴∠EBH=∠EBF,又∵BH=BF,BE=BE,∴△EBH≌△EBF(SAS),∴EF=EH,∴EF=EH=AE+CF,∴△DEF的周长=DE+DF+EF=DE+DF+AE+CF=AD+CD=14.【点睛】本题是四边形的综合题,考查了全等三角形的判定和性质,正方形的性质,添加恰当辅助线构造全等三角形是本题的关键.11.(1)DF;(2)见解析【分析】(1)由于△ADF 与△ABG 可以看作绕点A 旋转90°的关系,根据旋转的性质知BG=DF ,从而得到辅助线的做法;(2)先证明△ADF ≌△ABG ,得到AG=AF ,∠GAB=∠DAF ,结合∠EAF =45°,易知∠GAE=45°,再证明△AGE ≌△AFE 即可得到EF =GE=BE+GB=BE +DF【详解】解:(1)根据旋转的性质知BG=DF ,从而得到辅助线的做法:延长CB 到点G ,使BG=DF ,连接AG ;(2)∵四边形ABCD 为正方形,∴AB=AD ,∠ADF=∠ABE=∠ABG=90°,在△ADF 和△ABG 中AD AB ADF ABG DF BG =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△ABG (SAS ),∴AF=AG ,∠DAF=∠GAB ,∵∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠GAB+∠EAB=45°,∴∠GAE=∠EAF =45°,在△AGE 和△AFE 中0AG AF GAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△ABG (SAS ),∴GE=EF ,∴EF =GE=BE+GB=BE +DF【点睛】本题属于四边形综合题,主要考查正方形的性质及全等三角形的判定和性质等知识,解题的关键是学会利用旋转方法提示构造全等三角形,属于中考常考题型.12.(1)BM +NC =MN ,23;(2)结论仍然成立,详见解析;(3)NC ﹣BM =MN ,详见解析【分析】(1)由DM=DN,∠MDN=60°,可证得△MDN是等边三角形,又由△ABC是等边三角形,CD=BD,易证得Rt△BDM≌Rt△CDN,然后由直角三角形的性质,即可求得BM、NC、MN之间的数量关系BM+NC=MN,此时23QL=;(2)在CN的延长线上截取CM1=BM,连接DM1.可证△DBM≌△DCM1,即可得DM=DM1,易证得∠CDN=∠MDN=60°,则可证得△MDN≌△M1DN,然后由全等三角形的性质,即可得结论仍然成立;(3)首先在CN上截取CM1=BM,连接DM1,可证△DBM≌△DCM1,即可得DM=DM1,然后证得∠CDN=∠MDN=60°,易证得△MDN≌△M1DN,则可得NC﹣BM=MN.【详解】(1)如图1,BM、NC、MN之间的数量关系BM+NC=MN.此时23QL=.理由:∵DM=DN,∠MDN=60°,∴△MDN是等边三角形,∵△ABC是等边三角形,∴∠A=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠MBD=∠NCD=90°,∵DM=DN,BD=CD,∴Rt△BDM≌Rt△CDN,∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,∴MN=2BM=2CN=BM+CN;∴AM=AN,∴△AMN是等边三角形,∵AB=AM+BM,∴AM:AB=2:3,∴23QL=;(2)猜想:结论仍然成立.证明:在NC的延长线上截取CM1=BM,连接DM1.∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N=M1C+NC=BM+NC,∴△AMN的周长为:AM+MN+AN=AM+BM+CN+AN=AB+AC,∴23QL=;(3)证明:在CN上截取CM1=BM,连接DM1.∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N.∴NC﹣BM=MN.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知等边三角形的性质及全等三角形的判定定理.。

中考数学旋转模型及例题

中考数学旋转模型及例题

旋转的模型及例题 (一)夹半角模型已知:正方形ABCD 中,∠EAF=45°,求证:(1)BE+DF=EF ;(2)△EFC 周长等于2倍边长;方法:将△ADF 绕A 点顺时针旋转90°,使得AD 与AB 重合,然后证△AEF ≌△AEG ;证得BE+DF=EF例题:已知∠BAC=45°BD=4,CD=6,求△ABC 的面积解析:将△ABD 和△ADC 分别关于AB 、AC 对称,构造夹半角模型例题:如图1 ,正方形ABCD 中,M N ,分别是BC CD ,边上的两点,且45MAN ∠=˚, 连结MN ,请写出BM MN DN ,,之间的熟练关系并证明;如图2,ABC △中,90AB AC BAC =∠=,˚,M N ,为BC 上两点,且45MAN ∠=˚,请写出线段BM MN CN ,,之间的数量关系,并证明;(3) 如图3,在(1)中,若点M 在CB 延长线上,N 在DC 延长线上,其他条件不变,(1)中的结论变化吗(4) 如图4,在(2)中若点M 在CB 的延长线上,其它条件不变,(2)中的结论还成立吗请证明你的结论;解析:都是通过旋转得来!推广:一般的夹半角模型ADBN例题:边长为2m 的等边ABC △的两边AB AC 、上分别有两点M N 、,点D 为平面内 一点,60MDN ∠=︒,120BDC BD CD ∠=︒=,.当点M 在线段AB 上运动时,探索AMN △的周长与ABC △边长的关系.⑴ 如图1,当点D 在ABC △外时,AMN △的周长是否发生变化请证明你的结论. ⑵ 如图2,当点D 在ABC △内时,⑴中的结论是否成立若成立,请求出此时AMN △的周长;若不成立,请说明理由.⑶ 如图3,ABC △是满足60BAC ∠=︒的任意三角形,其中BC a AC b AB c ===,,.D 是ABC ∠ 与ACB ∠平分线的交点,M N 、分别在AB AC 、上,且60MDN ∠=︒.当点M 在线段AB 上运动时,猜想AMN △的周长是否发生变化若不变,请直接写出AMN △的周长(用条件:AB=AD ,∠B+∠D=180°,2∠MAN=∠BAD结论:BM+DN=MNMN条件:△ABC 是等边三角形,BD=CD ,∠BDC=120°∠MDN=60°结论:BM+CN=MN △AMN 的周长=2倍边长a b c ,,表示,不需要化简);若变化,请说明理由. 图3图2图1ABCDMNNMDBANM DCBA(二)手拉手模型等边三角形结论:(1) △BGC ≌△DEC (2) BG=DE,BG ⊥DE 结论:(1) △BGC ≌△DEC (2) BG=DE,BG ⊥DE例题:如图,已知四边形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,AB=2,BC= 2(1)以线段BD、AB、BC作为三角形的三边,○1则这个三角形为___________三角形,(锐角、直角、钝角)○2求BD边所对的角的度数。

半角模型训练

半角模型训练

半角模型半角模型:指的是一个大角夹着一个度数为它一半的角。

条件:四边形ABCD中,E、F分别在BC、CD(或延长线上),具备下列三个条件:①AB=AD(共顶点等线段);①①BAD=2①EAF;(共顶点的倍半角)①①B+①ADC=180°(或①BAD+①BCD=180°)(对角互补四边形)结论:EF=BE+DF (延长线上为EF=BE-DF);AE平分∠BEF,AF平分∠EFD。

情形一:角内含半角(补短)情形二:角外含半角(截长)模型一:90°夹45°例1、如图,点E、F分别是正方形BC、CD上的点,①EAF=45°,求证:(1)DF+BE=EF;(2)AE平分∠BEF,AF平分∠EFD证明:延长CB至点G,使得BG=DF(在CD上补BE亦可)△ABG≌△ADF(SAS)△AEG≌△AEF(SAS)90°外夹45°例2、如图,在正方形ABCD中,E、F为CB、DC延长线上点,且∠EAF=45°,探究线段EF、BE、DF之间的数量关系,并证明。

类型二、120°角夹60°例3、如图,在四边形ABCD中,AB=AD,∠BAD=120°,E,F分别为BC,CD上的点,∠EAF=∠C=60°,求证(1)EF=BE+DF;(2)点A在∠BCD的平分线上.练习:1.如图,四边形ABCD中,∠A=∠BCD=60°,∠ADC=60°,AB=BC,E、F分别在AD、DC延长线上,且∠EBF=60°,求证:AE=EF+CF例4、在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时=;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.任意角夹半角例5、已知,如图,在四边形ABCD中,∠B+∠D=180°,AB=AD,E,F分别是线段BC,CD上的点,且BE+FD=EF.求证:∠EAF=∠BAD.练习(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD 上的点,且∠EAF=∠BAD.求证:EF=BE+FD;(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD 上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.例6、(1)如图1,已知正方形ABCD中,∠MAN=45°,猜想线段MN、BM与DN之间有怎样的关系?并证明.(2)如图2,已知四边形ABCD中,AB⊥BC于点B,AD⊥CD于点D,AB=AD,∠BAD =120°,∠MAN=60°,(1)中线段BM与DN之间的关系还成立吗?如果成立,请证明;如果不成立,请说明理由.(3)张大爷有一块五边形的土地,如图3,已知AB=AE=6,BC=4,DE=3,∠BAE =2∠CAD,AB⊥BC于点B,AE⊥DE于点E,请你帮助张大爷计算这块土地的面积.课后练习1.如图,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC、DC于点E、F,连结EF.若EF=5,DF=2,则BE的长为.(第1题) (第2题)2.如图,△ABC为等边三角形,BD=CD,∠BDC=120°,BC=2,M、N分别在边AB,AC上,且∠MDN=60°,则△AMN的周长等于.3.在四边形ABCD中,∠B+∠D=180°,CB=CD.以点C为顶点的∠ECF在四边形ABCD 的内部绕点C旋转,角的两边分别与AB、AD交于点E、F,∠ECF=∠BCD.(1)若∠BCD=120°,①如图1,当∠B=90°,∠BCE=30时,求证:EF=BE+DF;②如图2,当∠B≠90时,①中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;③在∠ECF绕点C旋转的过程中,①中的结论是否仍然成立,请直接写出你的结论;(2)如图3,若∠BCD为任意的一个角(0°<∠BCD<180°),在∠ECF绕点C旋转的过程中,①中的三条线段BE,DF,EF之间的数量关系是否发生变化?若变化,请说明理由;若不变,请直接写出你的结论.4.如图1,四边形ABCD,将顶点为A的∠EAF绕着顶点A顺时针旋转,角的一条边与DC 的延长线交于点F,角的另一边与CB的延长线交于点E,连接EF.(1)如果四边形ABCD为正方形,当∠EAF=45°时,有EF=DF﹣BE.请你思考如何证明这个结论(只需思考,不必写出证明过程);(2)如图2,如果在四边形ABCD中,AB=AD,∠ABC=∠ADC=90°,当∠EAF=∠BAD时,EF与DF、BE之间有怎样的数量关系?请写出它们之间的关系式(3)如图3,如果在四边形ABCD中,AB=AD,∠ABC与∠ADC互补,当∠EAF=∠BAD时,EF与DF、BE之间有怎样的数学关系?请写出它们之间的关系式并给予证明;(4)在(3)中,若BC=4,DC=7,CF=2,求△CEF的周长(直接写出结果即可).5.已知正方形ABCD,一等腰直角三角板的一个锐角顶点与A重合,将此三角板绕A点旋转时,两边分别交直线BC、CD于M、N.(1)当M、N分别在边BC、CD上时(如图1),求证:BM+DN=MN;(2)当M、N分别在边BC、CD所在的直线上时(如图2),线段BM、DN、MN之间又有怎样的数量关系,请直接写出结论;(不用证明)(3)当M、N分别在边BC、CD所在的直线上时(如图3),线段BM、DN、MN之间又有怎样的数量关系,请写出结论并写出证明过程.6.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G,使DG=BE.连结AG,先证明△ABE ≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(2)探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍成立,并说明理由;(3)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(点O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以45海里/时的速度前进,同时,舰艇乙沿北偏东50°的方向以60海里/时的速度前进,2小时后,指挥中心观察到甲、乙两舰艇分别到达E、F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.7.如图,△ABC和△DEF是两个等腰直角三角形,∠BAC=∠DFE=90°,AB=AC,FD =FE,△DEF的顶点E在边BC上移动,在移动过程中,线段DE与线段AB相交于点P,线段EF与线段CA相交于点Q.(1)如图1,当E为BC中点,且BP=CQ时,求证:△BPE≌△CQE;(2)如图2,当ED经过点A,且BE=CQ时,求∠EAQ的度数;(3)如图3,当E为BC中点,连接AE、PQ,若AP=3,AQ=4,PQ=5,求AC的长.11。

中考数学专题训练-旋转模型几何变换的三种模型手拉手、半角、对角互补.docx

中考数学专题训练-旋转模型几何变换的三种模型手拉手、半角、对角互补.docx

几何变换的三种模型手拉手、半角、对角互补⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎨⎨⎩⎪⎪⎧⎪⎨⎪⎩⎪⎪⎩等腰三角形手拉手模型等腰直角三角形(包含正方形)等边三角形(包含费马点)特殊角旋转变换对角互补模型一般角特殊角角含半角模型一般角等线段变换(与圆相关)【练1】在ABC△中,AB AC=,BACα∠=(060α︒<<︒),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出ABD∠的大小(用含α的式子表示);(2)如图2,15060BCE ABE∠=︒∠=︒,,判断ABE△的形状并加以证明;(3)在(2)的条件下,连结DE,若45DEC∠=︒,求α的值.专题3:手拉手模型:全等和相似包含:等腰三角形、等腰直角三角形(正方形)、等边三角形伴随旋转出全等,处于各种位置的旋转模型,及残缺的旋转模型都要能很快看出来(1)等腰三角形旋转模型图(共顶点旋转等腰出伴随全等)(2)等边三角形旋转模型图(共顶点旋转等边出伴随全等)(3)等腰直角旋转模型图(共顶点旋转等腰直角出伴随全等)例题精讲真题演练知识关联图(4)不等边旋转模型图(共顶点旋转不等腰出伴随相似)1.等边三角形共顶点等边△ABC 与等边△DCE ,B 、C 、E 三点共线.连结BD 、AE 交于点F ,BD 交AC 于点G ,AE 交DC 于点H ,连结CF 、GH ,则: (1)△BCD ≌△ACE ; (2)AE =BD ;(3)∠AFB =∠DFE =60°; (4)FC 平分∠BFE ;(5)BF =AF +FC ,EF =DF +FC ; (6)△CGH 为等边三角形 2.等腰直角三角形共顶点等腰Rt △ABC 与等腰Rt △DCE 中,∠ACB =∠DCE =90°.如图1,连结BD 、AE 交于点F ,连结FC 、AD 、BE ,则: (1)△BCD ≌△ACE ; (2)AE =BD ; (3)AE ⊥BD ; (4)FC 平分∠BFE ; (5)AB 2+DE 2=AD 2+BE 2(6)BF =AF FC ,EF =DF FC ;(7)如图2,若G 、I 分别为BE 、AD 的中点,则GC ⊥AD 、IC ⊥BE (反之亦然); (8)S △ACD =S △BCE3.等腰三角形共顶点等腰△ACB 与等腰△DCE 中,AC =BC ,DC =CE ,且∠ACB =∠DCE .连结BD ,AE 交于点F ,则: (1)△BCD ≌△ACE ; (2)AE =BD ; (3)∠AFB =∠ACB ; (4)FC 平分∠BFE . 4.相似三角形共顶点△ACB 与△ECD 中,AC BCECDC,∠ACB =∠EC D .连结BD ,AE 交于点F ,则: (1)△BCD ∽△ACE ;H GF ED CBA图1ABCD EFJI图2ABCD EHFEDCBAGA BC DEF(2)∠AFB =∠AC B .进阶训练1.已知四边形和四边形都是正方形 ,且.(1)如图,连接、.求证:; (2)如图,如果正方形,将正方形绕着点旋转到某一位置时恰好使得,.①求的度数;②请直接写出正方形的边长的值.2.四边形ABCD 是正方形,BEF ∆是等腰直角三角形,90BEF ∠=︒,BE EF =,连接DF ,G 为DF 的中点,连接EG ,CG ,EC 。

中考数学专题复习之半角旋转模型强化训练试题

中考数学专题复习之半角旋转模型强化训练试题

半角旋转模型,三垂直模型,以及旋转相似模型【1】 探究:(1)如图1,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,试判断BE 、DF 与EF 三条线段之间的数量关系,直接写出判断结果:;(2)如图2,若把(1)问中的条件变为“在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF=21∠BAD”,则(1)问中的结论是否仍然成立?若成立,请给出证明,若不成立,请说明理由;(3)在(2)问中,若将△AEF 绕点A 逆时针旋转,当点分别E 、F 运动到BC 、CD 延长线上时,如图3所示,其它条件不变,则(1)问中的结论是否发生变化?若变化,请给出结论并予以证明..小伟遇到这样一个问题:如图1,在正方形ABCD 中,点E 、F 分别为DC 、BC 边上的点,∠EAF =45°,连结EF ,求证:DE +BF =EF .小伟是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段集中到同一条线段上.他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题.他的方法是将△ADE 绕点A 顺时针旋转90°得到△ABG (如图2),此时GF 即是DE +BF .请回答:在图2中,∠GAF 的度数是 .参考小伟得到的结论和思考问题的方法,解决下列问题:(1)如图3,在直角梯形ABCD 中,AD ∥BC (AD >BC ),F ED AB C B EDA G F D AB C C图1图2图3CDAOBx y 图4F E D A BCB EDA GF ED A BCCCD AOBxy∠D=90°,AD=CD=10,E是CD上一点,若∠BAE=45°,DE=4,则BE= .(2)如图4,在平面直角坐标系xOy中,点B是x轴上一动点,且点A(3-,2),连结AB和AO,并以AB为边向上作正方形ABCD,若C(x,y),试用含x的代数式表示y,则y= .已知:正方形ABCD中,45MAN∠=,绕点A顺时针旋转,它的两边分别交CB、DC (或它们的延长线)于点M、N.(1)如图1,当MAN∠绕点A旋转到BM DN=时,有BM DN MN+=.当MAN∠绕点A旋转到BM DN≠时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当MAN∠绕点A旋转到如图3的位置时,线段BM DN,和MN之间有怎样的等量关系?请写出你的猜想,并证明.【2】如图1,在等腰直角△ABC中,∠BAC=90°,AB=AC=2,点E是BC边上一点,∠DEF=45°且角的两边分别与边AB,射线CA交于点P,Q.(1)如图2,若点E为BC中点,将∠DEF绕着点E逆时针旋转,DE与边AB交于点P,EF与CA的延长线交于点Q.设BP为x,CQ为y,试求y与x的函数关系式,并写出自变量x的取值范围;CDOAB图4xy(2)如图3,点E在边BC上沿B到C的方向运动(不与B,C重合),且DE始终经过点A,EF与边AC交于Q点.探究:在∠DEF运动过程中,△AEQ能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由.【3】如图1,两个等腰直角三角板ABC和DEF有一条边在同一条直线l上,2DE=,1AB=.将直线EB绕点E逆时针旋转45︒,交直线AD于点M.将图1中的三角板ABC 沿直线l向右平移,设C、E两点间的距离为k.图1 图2 图3解答问题:(1)①当点C与点F重合时,如图2所示,可得AMDM的值为;②在平移过程中,AMDM的值为(用含k的代数式表示);(2)将图2中的三角板ABC绕点C逆时针旋转,原题中的其他条件保持不变.当点A落在线段DF上时,如图3所示,请补全图形,计算AMDM的值;(3)将图1中的三角板ABC绕点C逆时针旋转α度,0α<≤90,原题中的其他条件保持不变.计算AMDM的值(用含k的代数式表示).图1 图2 图3 图4【4】. 阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC 内有一点P ,且P A =3 ,PB =4,PC =5,求∠APB 的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP C ',连接PP ',得到两个特殊的三角形,从而将问题解决.PCBAABC PP 'D PACBABC DP FE请你回答:图1中∠APB 的度数等于 . 参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD 内有一点P ,且P A=,PB =1,PD,则∠APB 的度数等于 ,正方形的边长为 ;(2)如图4,在正六边形ABCDEF 内有一点P ,且P A =2,PB =1,PF∠APB 的度数等于 ,正六边形的边长为 .【5】如图所示,在平面直角坐标系xOy 中,正方形PABC 的边长为1,将其沿x 轴的正方向连续滚动,即先以顶点A 为旋转中心将正方形PABC 顺时针旋转90°得到第二个正方形,再以顶点D 为旋转中心将第二个正方形顺时针旋转90°得到第三个正方形,依此方法继续滚动下去得到第四个正方形,…,第n 个正方形.设滚动过程中的点P 的坐标为(,)x y .(1)画出第三个和第四个正方形的位置,并直接写出第三个正方形中的点P 的坐标;。

(完整版)半角模型专题专练.doc

(完整版)半角模型专题专练.doc

半角模型例题已知,正方形 ABCD中,∠ EAF两边分别交线段 BC、 DC于点 E、F,且∠ EAF﹦45°结论 1:BE﹢ DF﹦EF结论 2:S△ABE﹢ S△ADF﹦S△AEF结论 3:AH﹦ AD结论 4:△ CEF的周长﹦ 2 倍的正方形边长﹦ 2AB结论 5:当 BE﹦DF时,△ CEF的面积最小22 2结论 6:BM﹢DN﹦MN结论 7:三角形相似,可由三角形相似的传递性得到结论 8:EA、 FA是△ CEF的外角平分线结论 9:四点共圆结论 10:△ANE和△ AMF是等腰直角三角形(可通过共圆得到)结论 11: MN﹦√2 EF(可由相似得到)2结论 12: S△ AEF﹦2S△ AMN(可由相似的性质得到)结论 5 的证明:设正方形 ABCD的边长为 1则S△AEF﹦1﹣S1﹣S2﹣ S3﹦1﹣1 x﹣1y﹣1 (1 ﹣x)(1 ﹣y)22 2﹦1﹣1 xy22所以当 x﹦y 时,△ AEF的面积最小结论 6 的证明:将△ ADN顺时针旋转 90°使 AD与 AB重合′∴DN﹦ BN′易证△ AMN≌△ AMN′∴MN﹦ MN′在 Rt△BMN中,由勾股定理可得:2′ 2′2BM﹢BN ﹦MN22 2即 BM﹢DN﹦MN结论 7 的所有相似三角形:△ AMN∽△ DFN△AMN∽△ BME△AMN∽△ BAN△ AMN∽△ DMA△AMN∽△ AFE结论 8 的证明:因为△ AMN∽△ AFE∴∠ 3=∠ 2因为△ AMN∽△ BAN∴∠ 3=∠ 4∴∠ 2=∠ 4因为 AB∥CD∴∠ 1=∠ 4∴∠ 1=∠ 2结论 9 的证明:因为∠ EAN﹦∠ EBN= 45°∴A、B、E、N 四点共圆(辅圆定理:共边同侧等顶角)同理可证 C、E、N、F 四点共圆A、M、 F、 D 四点共圆C、E、 M、 F 四点共圆**必会结论 -------- 图形研究正方形半角模型已知:正方形 ABCD ,E、F分别在边 BC 、 CD 上,且 EAF45 ,AE、AF分别交BD于H、 G ,连EF.一、全等关系()求证:① 2 2 2 平分,平分DF BE EF ;②DG﹢ BH﹦ HG;③AE BEF AF DFE .1二、相似关系(2)求证:①CE 2DG ;② CF 2 BH ;③ EF 2HG .(3)求证:④AB2 BG DH ;⑤ AG 2 BG HG ;⑥BEDF 1 . CE CF 2三、垂直关系(4)求证:①AG EG ;②AH FH ;③tan HCF AB .(5) 、和差关系BE 求证:① BG DG 2 BE ;② AD DF 2DH ;③ | BE DF | 2 | BH DG | .例1、在正方形 ABCD中,已知∠ MAN﹦ 45°,若 M、N 分别在边CB、 DC的延长线上移动,①.试探究线段 MN、BM 、 DN之间的数量关系 .②.求证: AB=AH.例2、在四边形 ABCD中,∠ B+∠ D﹦ 180°,AB=AD,若 E、F 分别在边 BC、 CD上,且满足 EF=BE +DF.求证:∠ EAF=1∠BAD2例3、在△ ABC中, AB=AC,∠ BAC=2∠ DAE=120°,若 BD=5,CE=8,求 DE的长。

初中几何半角模型经典例题

初中几何半角模型经典例题

中考几何模型之半角模型【模型由来】半角模型是指:共顶点的两个一大一小的角,其中小角是大角的一半。

如下图中:若小角∠EAD等于大角∠BAC的一半,我们习惯上称之为“半角模型”。

【模型思想】通过旋转变化后构造全等三角形,实线边的转化。

【基本模型】类型一、90°中夹45°(正方形中的半角模型)条件:在正方形ABCD中,E、F分别是BC、CD边上的点,∠EAF=45°,BD为对角线,交AE于M点,交AF于N点。

结论①:图1、2中,EF=BE+FD;证明:如图3中,将AF绕点A顺时针旋转90°,F点落在F’处,连接BF’,∴∠EAF’=90°-∠EAF=90°-45°=45°=∠EAF,且AE=AE,AF=AF’,∴△FAE≌△F’AE(SAS),∴EF=EF’,又∠D=∠ABF’=90°,∠ABE=90°,∴∠ABE+∠ABF’=90°+90°=180°,∴F’、B、E三点共线,∴EF’=BE+BF’=BE+DF。

结论②:图2中MN²=BM²+DN²;证明:如图4中,将AN绕点A顺时针旋转90°,N点落在N’处,连接AN’、BN’、MN’,∴∠N’AM=90°-∠EAF=90°-45°=45°=∠MAN,且AM=AM,AN=AN’,∴△MAN’≌△MAN(SAS),∴MN=MN’,又∠ADN=45°=∠ABN ’,∠ABD=45°,∴∠MBN ’=∠ABD+∠ABN ’=45°+45°=90°,∴在Rt △MBN ’中,MN ’²=BM ²+BN ’²,即MN ²=BM ²+BN ’²。

结论③:图1、2中EA 平分∠BEF ,FA 平分∠DFE 。

半角模型旋转变换几何练习

半角模型旋转变换几何练习

考点五:角含半角、等腰三角形的(绕顶点)旋转重合法核心母题如图,在正方形ABCD中・E、F分别是BC.CD边上的点.ZEAF列5°•求证:EF二BE+DF.CW2XE明题.【分析如囹,作辅助首先证明厶人△好G,遊而得到EF二FG问题即可解决.CKS1E明:VAB=A D P•••把厶A耽绕点人逆时针施转90。

至△AUG,可使AB与刈重合,如圉:VZBAD =90° , ZEAF二45。

,ZBAE + ZDAF=45° , •••ZEAXZFAG, V ZADC = ZB=90'& ,ZFDG=180°,点F . IK G共线. 在AAFE和2UFG中,!A£ = A(r jz£.lF=ZZJG,\AF-AF•••△AFEW△人FG (SAS) ••••EF 二FG.即;EF二BE+DF【空评於査正方形的性质、全等三角形的判走及其性歸为核心构査而成;鯛题的关龍是作辅助线,构渣全等三甬形. 变式一:如图.E. F分别是边长为1的正方形ABCD的边BC、CD ±的点,若AECF的周长是2,求,EAF的度数?【考点整等三甬形的判走与性质;正方形的性质.【分析JE长CD至使得DH=BE5连接人比得出△ABE^AkDM.可得FH二EF.即可证明213 E^AATHi 可得ZEAF二ZHAF,根tgZHAE=ZBAII=90o即可網題.【笛咅潮:延长CD至}G使fgDH=BE ,连接MBVCE+CF+ED=25 BC+CD=2,/. ET=EE+FD,-A ADH是A ABE逆时针选转go度°形成,AABE^AADH,••・ ZDA2NBAE, AE=AH, BE=DH,FK=DF+DH=DF+BE=EF, ZKAE= Z BAB=90°■AE+H•••在ZkAFE和AAFH中,• EF・FH ,AF^AFAAFE^AAFH, (SSS)••• ZEAy = ZHA.F,•・• ZMAE 二90°•/. ZEAF=45° .【点评苹题考查了全等三角形的判走,考察了全等三角形对应角相等的性质,本题中求证AAJE^AkFK是解题的关健. 变式二:如图,在正方形ABCD中,E、F分别是BC、CD边上的点,ZEAF=45°, AG丄EF, 求证:AG=AB.【考点就转的性质,全等三角形的判走与性质,正方形的性质•【专題证明题.【分析洗根据正方形的性质箒吩AD, ZBAT=90°,则可杷△ADE续点晰时軒施转90。

中考数学专题训练旋转模型几何变换三种模型手拉手半角 对角互补

中考数学专题训练旋转模型几何变换三种模型手拉手半角 对角互补

几何变换的三种模型手拉手、半角、对角互补【练1】 (2013北京中考)在ABC △中,AB AC =,BAC α∠=(060α︒<<︒),将线段BC 绕点B 逆时针旋转60°得到线段BD .(1)如图1,直接写出ABD ∠的大小(用含α的式子表示);(2)如图2,15060BCE ABE ∠=︒∠=︒,,判断ABE △的形状并加以证明; (3)在(2)的条件下,连结DE ,若45DEC ∠=︒,求α的值.【练2】 (2012年北京中考)在ABC △中,BA BC BAC α=∠=,,M 是AC 的中点,P是线段上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ . (1)若α=60︒且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数;(2)在图2中,点P 不与点B M ,重合,线段CQ 的延长线与射线BM 交于点D ,猜想CDB ∠的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ QD =,请直接写出α的范围.真题演练知识关联图例题精讲考点1:手拉手模型:全等和相似包含:等腰三角形、等腰直角三角形(正方形)、等边三角形伴随旋转出全等,处于各种位置的旋转模型,及残缺的旋转模型都要能很快看出来(1)等腰三角形旋转模型图(共顶点旋转等腰出伴随全等)(2)等边三角形旋转模型图(共顶点旋转等边出伴随全等)(3)等腰直角旋转模型图(共顶点旋转等腰直角出伴随全等)(4)不等边旋转模型图(共顶点旋转不等腰出伴随相似)【例1】(14年海淀期末)已知四边形ABCD和四边形CEFG都是正方形,且>.AB CE(1)如图1,连接BG、DG.求证:BG DE=;(2)如图2,如果正方形ABCD,将正方形CEFG绕着点C旋转到某一位置时恰好使得CG BD=.∥,BG BD①求BDE∠的度数;②请直接写出正方形CEFG的边长的值.【例2】 (2014年西城一模) 四边形ABCD 是正方形,BEF ∆是等腰直角三角形,90BEF ∠=︒,BE EF =,连接DF ,G 为DF 的中点,连接EG ,CG ,EC 。

中考数学专题训练 旋转模型几何变换的三种模型手拉手、半角、对角互补

中考数学专题训练 旋转模型几何变换的三种模型手拉手、半角、对角互补

几何变换的三种模型手拉手、半角、对角互补【练1】(2013北京中考)在ABC △中,AB AC =,BAC α∠=(060α︒<<︒),将线段BC 绕点B 逆【练2】 ,请补全(2CDB ∠的(3知识关联图真题演练考点1:手拉手模型:全等和相似包含:等腰三角形、等腰直角三角形(正方形)、等边三角形伴随旋转出全等,处于各种位置的旋转模型,及残缺的旋转模型都要能很快看出来(1)等腰三角形旋转模型图(共顶点旋转等腰出伴随全等)(2)等边三角形旋转模型图(共顶点旋转等边出伴随全等)例题精讲>.【例1】(14年海淀期末)已知四边形ABCD和四边形CEFG都是正方形,且AB CE(1)如图1,连接BG、DG.求证:BG DE=;(2)如图2,如果正方形ABCD,将正方形CEFG绕着点C旋转到某一位置时恰好使得CG BD=.∥,BG BD①求BDE∠的度数;②请直接写出正方形CEFG的边长的值.【例2】 (2014年西城一模) 四边形ABCD 是正方形,BEF ∆是等腰直角三角形,90BEF ∠=︒,BE EF =,连接DF ,G 为DF 的中点,连接EG ,CG ,EC 。

(1)如图24-1,若点E 在CB 边的延长线上,直接写出EG 与GC 的位置关系及EC GC 的值; (2)将图24-1中的BEF ∆绕点B 顺时针旋转至图24-2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;【例3】 (2015年海淀九上期末)如图1,在ABC △ 中,4BC =,以线段AB 为边作ABD △,使得AD BD =, 连接DC ,再以DC 为边作CDE △,使得DC DE =,CDE ADB α∠=∠=. (1)如图2 ,当45ABC ∠=︒且90α=︒时,用等式表示线段AD DE ,之间的数量关系;【例4】(13年房山一模)(1)如图1,ABC△都是等边三角形,且B、C、D三点共线,联结AD、BE相△和CDE交于点P,求证:BE AD=.(2)如图2,在BCD△中,120△外部作等边BCD∠<,分别以BC、CD和BD为边在BCD△和等边BDFABC△、等边CDE△,联结AD、BE和CF交于点P,下列结论中正确的是_______(只填序号即可)①AD BE CF∠=∠;③60==;②B E C A D C∠=∠=∠=;DPE EPC CPA (3)如图2,在(2)的条件下,求证:PB PC PD BE++=.考点2:角含半角模型:全等秘籍:角含半角要旋转:构造两次全等【例1】(2012年西城期末)已知:如图,正方形ABCD的边长为a,BM,DN分别平分正方形的两个外角,且满足45MAN∠=︒,连结MC,NC,MN.猜想线段BM,DN和MN之间的等量关系并证明你的结论.【例2】 (2014年平谷一模)(1)如图1,点E F 、分别是正方形ABCD 的边BC CD 、上的点,45EAF ∠=︒,连接EF , 则EF BE FD 、、之间的数量关系是:EF BE FD =+.连结BD ,交AE AF 、于点M N 、,且 MN BM DN 、、满足222DN BM MN +=,请证明这个等量关系;(2)在ABC △中, AB AC =,点D E 、分别为BC 边上的两点.①如图2,当60BAC ∠=︒,30DAE ∠=︒时,BD DE EC 、、应满足的等量关系是__________________;都是【例2】 已知:点P 是MON ∠的平分线上的一动点,射线PA 交射线OM 于点A ,将射线PA 绕点P 逆时针旋转交射线ON 于点B ,且使180APB MON ∠+∠=.(1)利用图1,求证:PA PB =;(2)如图1,若点C 是AB 与OP 的交点,当3POB PCB S S ∆∆=时,求PB 与PC 的比值;图1 图2ABC(【练1】 (2015年昌平九上期末)如图,已知ABC 和ADE 都是等腰直角三角形, 90BAC DAE ∠=∠=︒,AB AC =,AD AE =.连接BD 交AE 于M ,连接CE 交AB 于N ,BD 与CE 交点为F ,连接AF .(1)如图1,求证:BD CE ⊥;(2)如图1,求证:AF 是CFD ∠的平分线; 全能突破【练2】 (2014西城九上期末)已知:ABC △,DEF △都是等边三角形,M 是BC 与EF 的中点,连接AD ,BE .(1)如图1,当EF 与BC 在同一条直线上时,直接写出AD 与BE 的数量关系和位置关系; (2)ABC △固定不动,将图1中的DEF 绕点M 顺时针旋转α(o 0≤α≤o 90)角,如图2所示,判断(1)中的结论是否仍然成立,若成立,请加以证明;若不成立,说明理由;(3)△ABC 固定不动,将图1中的DEF 绕点M 旋转α(o 0≤α≤o 90)角,作DH BC⊥【练3】 (2014年朝阳一模24题)在ABC △中,AC BC =,在AED △中,AD ED =,点D 、E 分别在CA 、AB 上,(1)图①,若90ACB ADE ∠=∠=︒,则CD 与BE 的数量关系是______________; (2)若120ACB ADE ∠=∠=︒,将AED △绕点A 旋转至如图②所示的位置,则CD 与BE 的数量关系是______________;(3)若2(090)ACB ADE αα∠=∠=<<︒,将AED △绕点A 旋转至如图③所示的位置,探究线段CD 与BE 的数量关系,并加以证明(用含α的式子表示)【练4】 , ACF ,连接45DAE ︒=,可证FAE DAE ≌,得.解FCE ,可求得EF (即DE 的长.的度数是_________________Rt ABC ____参考小辉思考问题的方法,解决问题:【练5】 A、点(1)在BAC ∠的旋转过程中,AEQ ∠的大小是否改变,若不变写出它的度数,若改变,写出它的变化范围(直接在答题卡上写出结果,不必证明);(2)探究APQ ∆与AEF ∆的面积的数量关系,写出结论并加以证明.E C【练6】 (2015年延庆九上期末)已知:ABC △是O 的内接三角形,AB AC =,在BAC ∠所对弧AC上,任取一点D ,连接AD BD CD ,,,(1)如图1,BAC α∠=,直接写出ADB ∠的大小(用含α的式子表示);(2)如图2,如果∠60BAC =︒,求证:BD CD AD +=;(3)如图3,如果∠120BAC =︒,那么BD CD +与AD 之间的数量关系是什么?写出猜测并加以证明;(4)如果BAC α∠=,直接写出BD CD +与AD 之间的数量关系.【练7】 (1)如图,在四边形ABCD 中,90AB AD B D =∠=∠=︒,,E F 、分别是边BC CD 、上的点, 且12EAF =BAD ∠∠.求证:EF BE FD =+;(2) 如图在四边形ABCD 中,180AB AD B+D =∠∠=︒,,E F 、分别是边BC CD 、上的点,且12EAF BAD ∠=∠, (1)中的结论是否仍然成立?不用证明. (3) 如图,在四边形ABCD 中,AB AD =,180B ADC ∠+∠=︒,E F ,分别是边BC CD ,延长线上的点,且1EAF BAD ∠=∠, (1)中的结论是否仍然成立?若成立,请证明;若不成【练ABC 中,PA PB PC 、、APC 绕点,得到EDC ,连接的长即为所求.)请你写出图2中,________; 【练9】 (2014年西城二模)在ABC ,BAC ∠为锐角,AB AC >, AD 平分BAC ∠交BC 于点D .(1)如图1,若ABC 是等腰直角三角形,直接写出线段AC ,CD ,AB 之间的数量关系;(2)BC 的垂直平分线交AD 延长线于点E ,交BC 于点F .①如图2,若60ABE ∠=︒,判断AC ,CE ,AB 之间有怎样的数量关系并加以证明;【练10】 (2014年1月西城八年级期末试题—附加题) 已知:如图,MAN ∠为锐角,AD 平分MAN ∠,点B ,点C 分别在射线AM 和AN 上, AB AC =.(1)若点E 在线段CA 上,线段EC 的垂直平分线交直线AD 于点F ,直线BE 交直线AD 于点G ,求证:EBF CAG ∠=∠;(2)若(1)中的点E 运动到线段CA 的延长线上,(1)中的其它条件不变,猜想EBF ∠与CAG∠的数量关系并证明你的结论.【练11】 (2014海淀一模)在ABC △中,AB AC =,将线段AC 绕着点C 逆时针旋转得到线段CD ,旋转角为α,且0180α︒<<︒,连接AD ,BD .(1)如图1,当100BAC ∠=︒,60α=︒时,CBD ∠的大小为__________;(2)如图2,当100BAC ∠=︒,20α=︒时,求M 的大小;(3)已知BAC ∠的大小为m (60120m ︒<<︒),若M 的大小与(2)中的结果相同,请直接写出α的大小.1234。

中考数学专题训练 旋转模型几何变换三种模型手拉手 半角 对角互补

中考数学专题训练 旋转模型几何变换三种模型手拉手 半角 对角互补

几何变换的三种模型手拉手、半角、对角互补【练1】 (2013北京中考)在ABC △中,AB AC =,BAC α∠=(060α︒<<︒),将线段BC 绕点B 逆时针旋转60°得到线段BD .(1)如图1,直接写出ABD ∠的大小(用含α的式子表示);(2)如图2,15060BCE ABE ∠=︒∠=︒,,判断ABE △的形状并加以证明; (3)在(2)的条件下,连结DE ,若45DEC ∠=︒,求α的值.【练2】 (2012年北京中考)在ABC △中,BA BC BAC α=∠=,,M 是AC 的中点,P 是线段上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ .(1)若α=60︒且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数;(2)在图2中,点P 不与点B M ,重合,线段CQ 的延长线与射线BM 交于点D ,猜想CDB ∠的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ QD =,请直接写出α的范围.真题演练知识关联图例题精讲考点1:手拉手模型:全等和相似包含:等腰三角形、等腰直角三角形(正方形)、等边三角形伴随旋转出全等,处于各种位置的旋转模型,及残缺的旋转模型都要能很快看出来(1)等腰三角形旋转模型图(共顶点旋转等腰出伴随全等)(2)等边三角形旋转模型图(共顶点旋转等边出伴随全等)(3)等腰直角旋转模型图(共顶点旋转等腰直角出伴随全等)(4)不等边旋转模型图(共顶点旋转不等腰出伴随相似)>.【例1】(14年海淀期末)已知四边形ABCD和四边形CEFG都是正方形,且AB CE (1)如图1,连接BG、DG.求证:BG DE=;(2)如图2,如果正方形ABCD,将正方形CEFG绕着点C旋转到某一位置时恰好使得CG BD=.∥,BG BD①求BDE∠的度数;②请直接写出正方形CEFG的边长的值.【例2】 (2014年西城一模) 四边形ABCD 是正方形,BEF ∆是等腰直角三角形,90BEF ∠=︒,BE EF =,连接DF ,G 为DF 的中点,连接EG ,CG ,EC 。

半角旋转问题[1]

半角旋转问题[1]

几何变换中的半角旋转问题例题:已知:△ ABC是等腰直角三角形,/ACB = 90°, M , N为斜边AB上两点,如果/ MCN = 45°.求证:AM2+ BN2 = MN2A变式1:由此问题可以产生如下问题.N为斜边AB上两点,满足△ ABC是等腰直角三角形,/ ACB = 90°, M ,AM2+ BN2= MN2.求/ MCN 的度数.是上面例2的逆问题,建议利用图形的旋转.变式2:正方形ABCD中,边长为4,点E在射线BC上,且CE=2,射线AM交射线BD于N点,且/EAN=45。

,则BN的长为—3或5 或Ex方法1:图1:正方形的边长为4,BD=4 ,AE=2 ,由^ AODsA BOE ,相似比为2: 1,2 2 2贝U B0二,设 ON=x , DN= -x ,由旋转得:OB +DN =ON ,二 x=图2图3方法同上方法2:用旋转相似来解变式3:如图1,在同一平面内,将两个全等的等腰直角三角形△ 一起,A 为公共顶点,/ BACM AGF=90 ,它们的斜边长为 △ AFG 绕点A 旋转,AF,AG 与边BC 的交点分别为 D E (点D不与点B 重合,点E 不与点C 重合),设BE=m ,CD=n.(1) 求m 与 n 的函数关系式,直接写出自变量 n 的取值范围;(2) 以^ ABC 的斜边BC 所在直线为x 轴,BC 边上的高所在直线为 平面直角坐标系(如图2)。

在边BC 上找一点D ,使BD=CE , 坐标,并通过计算验证 BD 2+CE 2=DE 2 ;⑶ 在旋转过程中,(2)中的等量关系BD 2+CE 2=DE 2是否始终成立, 证明,若不成立,请说明理由。

VAABC 和^ AFG 摆放在 2,若^ABC 固定不动, y 轴,建立求出D 点的 若成立,请E E变式2:已知:正方形ABCD 中,边长为4,点E 在射线BC 上,且CE=2,射线AM 交射 线BD 于N 点,且/ EAN=45。

“半角”模型旋转变换几何练习

“半角”模型旋转变换几何练习

考点五:角含半角、等腰三角形的(绕顶点)旋转重合法核心母题如图,在正方形ABCW, E、F分别是BG CD&上的点,Z EAF=45,求证:EF=BE+DF.K专墨蚯明题.[分析如图,作漏助线,首先证明△ME竺AAFG,进而f旱到质"街司题即可钢决.【第吾ME明:・:gu,A ZBAE=ZJAG»■/ ZBAD=90fl, ZEAf=45s,•■•EBAE+NBAFKS,,/■^EAF=JrAG?・,■£ ADCNB二日顷,/. ^FIG=190*,点F、D、G共绣,上把M耽舞点鱼时针祢转汕至AAM,可使雄与M重合,如图:/. AAfE^AAFij (SAS),-*- EF=JG,即:EF=BE+DTt点律麝置正方形的性质、全等三角形的判定及其性所为核心构诰而成m策酬关健是作辅助簸,构造全等三角形.变式一:如图,E、F分别是边长为1的正方形ABCD勺边BG CD上的点,若△ ECF的周长是2,求Z EAF的度数?在AA 也和中CD 边上的点 如图,在正方形 ABCD 户求证:AG=AB. EAF=45 , AC^ EF,[点评期题者查了全等三鬲形的判定,考察了全等三鬲形时应角相等的性而,本题中求证AATEMAAF}!是解题的美裾・【分析11长CD 至m 使得DH=BEi 连接AH,得出△站E 堂四AUK ,可得州云已即可证®AAF E竺AAJH,可itZEXF = ZH^F J 据上也E =』珀即可爆新一CBfrCr+EB=2ji BC+CD=2?EF 二BE 十FD,AAJH 是ZiABE 逆时针送转如度'形成「AABE^AIDH,ZDAK=ZEKE J M2,BE=DH,yH=QF+DM=EF+BE=EF s ZHAE-ZBAD = 90EETH - A ~AAFZSAkFH : (SSS ;ZEkF-rlHAFi ZHA.E-900 , £EAF = 4S 。

旋转中的重要模型 专题讲练

旋转中的重要模型 专题讲练

旋转中的重要模型专题讲练模型1、旋转中的半角模型1)半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半2)思想方法:通过旋转构造全等三角形,实现线段的转化3)基本模型(1)正方形含半角(2)等腰直角三角形含半角图1图2图3图4例1.(2022秋·陕西宝鸡·九年级统考阶段练习)已知,如图1,四边形ABCD是正方形,E,F分别在边BC、CD上,且45∠=︒,我们把这种模型称为“半角模型”,在解决“半角模EAF型”问题时,旋转是一种常用的方法.(1)在图1中,连接EF,为了证明结论“EF BE DF=+”,小亮将ADF∆绕点A顺时针旋转90︒后解答了这个问题,请按小亮的思路写出证明过程;(2)∠绕点A旋转到图2位置时,试探究EF与DF、BE之间有怎样的数量关系?如图2,当EAF变式1.(2022秋·重庆綦江·八年级校考阶段练习)(1)如图1,在四边形ABCD 中,90AB AD B D =∠=∠=︒,,E F 、分别是边BC CD 、上的点,且12EAF BAD ∠=∠.求证:EF BE FD =+;(2)如图2,在四边形ABCD 中,180AB AD B D =∠+∠=︒,,E F 、分别是边BC CD 、上的点,且EF BE FD =+;求证:12EAF BAD ∠=∠,(3)如图3,在四边形ABCD 中,180AB AD B ADC =∠+∠=︒,,E F 、分别是边BC CD 、延长线上的点,且4080EAF BAD ∠=︒∠=︒,,写出EF BE FD 、、之间的数量关系,并证明你的结论.例2.(2022·成都市·八年级期末)如图,在边长为4的正方形ABCD 中,对角线AC ,BD 交于点O ,E 在BD 上,连接CE ,作EF ⊥CE 交AB 于点F ,交AC 于点G ,连接CF 交BD 于点H ,延长CE 交AD 于点M ,连接FM ,则下列结论:①点E 到AB ,BC 的距离相等;②∠FCE =45°;③∠DMC =∠FMC ;④若DM =2,则BF =34.正确的有()个.A .1B .2C .3D .4变式2.(2023·广东·八年级专题练习)如图,正方形ABCD 中,点E 、F 分别在线段BC 、CD 上运动,且满足∠EAF =45°,AE 、AF 分别与BD 相交于点M 、N ,下列说法中:①BE +DF =EF ;②点A 到线段EF 的距离一定等于正方形的边长;③BE =2,DF =3,则S △AEF =15;④若AB =BM =3,则MN =5.其中结论正确的个数是()A .4B .3C .2D .1例3.(2022春·山东烟台·八年级校考期中)如图,正方形ABCD 的边长为6,点E ,F 分别在边AB ,BC 上,若F 是BC 的中点,且∠EDF =45°,则DE 的长为_____.变式3.(2022秋·江苏·八年级期中)如图,在Rt △ABC 和Rt △BCD 中,∠BAC =∠BDC =90°,BC =8,AB =AC ,∠CBD =30°,BD =M ,N 分别在BD ,CD 上,∠MAN =45°,则△DMN 的周长为_____例4.(2022秋·山西吕梁·八年级统考期末)(1)如图①,在四边形ABCD 中,AB AD =,90B D ∠=∠=︒,E ,F 分别是边BC ,CD 上的点,且12EAF BAD ∠=∠.请直接写出线段EF ,BE ,FD 之间的数量关系:__________;(2)如图②,在四边形ABCD 中,AB AD =,180B D ∠+∠=︒,E ,F 分别是边BC ,CD 上的点,且12EAF BAD ∠=∠,(1)中的结论是否仍然成立?请写出证明过程;(3)在四边形ABCD 中,AB AD =,180B D ∠+∠=︒,E ,F 分别是边BC ,CD 所在直线上的点,且12EAF BAD ∠=∠.请画出图形(除图②外),并直接写出线段EF ,BE ,FD 之间的数量关系.变式4.(2022秋·湖北武汉·九年级校考阶段练习)如图,在△ABC 中,AB =AC =∠BAC =120°,点D ,E 都在边BC 上,∠DAE =60°,若BD =2CE ,求DE 的长.模型2、旋转中的对角互补模型1)对角互补模型概念:四边形或构成的几何图形中,相对的角互补。

专题1 全等三角形几何模型(半角模型)(专项练习)八年级数学上册专题突破讲与练

专题1 全等三角形几何模型(半角模型)(专项练习)八年级数学上册专题突破讲与练

专题1.11全等三角形几何模型(半角模型)(专项练习)1.如图,已知:正方形ABCD ,点E ,F 分别是BC ,DC 上的点,连接AE ,AF ,EF ,且45EAF ∠=︒,求证:BE DF EF +=.2.如图,正方形ABCD 中,E 、F 分别在边BC 、CD 上,且∠EAF =45°,连接EF ,这种模型属于“半角模型”中的一类,在解决“半角模型”问题时,旋转是一种常用的分析思路.例如图中△ADF 与△ABG 可以看作绕点A 旋转90°的关系.这可以证明结论“EF =BE +DF ”,请补充辅助线的作法,并写出证明过程.(1)延长CB 到点G ,使BG =,连接AG ;(2)证明:EF =BE +DF3.(2020九年级·全国·专题练习)如图,ABC V 是边长为3的等边三角形,BDC 是等腰三角形,且120BDC ∠=︒,以D 为顶点作一个60︒角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,求AMN 的周长.4.(23-24八年级上·江苏连云港·期中)在四边形ABDC 中,AC AB =,DC DB =,60CAB ∠=︒,120CDB ∠=︒,E 是AC 上一点,F 是AB 延长线上一点,且CE BF =.(1)在图1中,试说明:DE DF =;(2)在图2中,若G 在AB 上且60EDG ∠=︒,试猜想CE EG BG 、、之间的数量关系并证明所归纳结论;(3)若题中条件“60CAB ∠=︒且120CDB ∠=︒”改为CAB α∠=,180CDB α∠=︒-,G 在AB 上,EDG ∠满足什么条件时,(2)中结论仍然成立?(只写结果不要证明).5.(2023·吉林松原·模拟预测)【问题引领】问题1:如图①,在四边形ABCD 中,CB CD =,90B ADC ∠=∠=︒,120BCD ∠=︒.E 、F 分别是AB ,AD 上的点.且60ECF ∠=︒BE ,EF ,FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G .使DG BE =.连接CG ,先证明CBE CDG ≌△△,再证明CEF CGF ≌.他得出的正确结论是.【探究思考】问题2:如图②,若将问题1的条件改为:四边形ABCD 中,CB CD =,180ABC ADC ∠+∠=︒,12ECF BCD ∠=∠,问题1的结论是否仍然成立?请说明理由.6.(2020九年级·全国·专题练习)如图,ABC V 是边长为2的等边三角形,BDC 是顶角为120°的等腰三角形,以点D 为顶点作60MDN ∠=︒,点M 、N 分别在AB 、AC 上.(1)如图①,当//MN BC 时,则AMN 的周长为______;(2)如图②,求证:BM NC MN +=.7.(11-12九年级上·黑龙江绥化·期末)已知:正方形ABCD 中,45MAN ∠= ,MAN ∠绕点A 顺时针旋转,它的两边分别交CB DC ,(或它们的延长线)于点M N ,.当MAN ∠绕点A 旋转到BM DN =时(如图1),易证BM DN MN +=.(1)当MAN ∠绕点A 旋转到BM DN ≠时(如图2),线段,BM DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明.(2)当MAN ∠绕点A 旋转到如图3的位置时,线段,BM DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想.8.(2020九年级·全国·专题练习)如图,在四边形ABCD 中,90B D ∠=∠=︒,E ,F 分别是BC ,CD 上的点,连接AE ,AF ,EF .(1)如图①,AB AD =,120BAD ∠=︒,60EAF ∠=︒.求证:EF BE DF =+;(2)如图②,120BAD ∠=︒,当AEF △周长最小时,求AEF AFE +∠∠的度数;(3)如图③,若四边形ABCD 为正方形,点E 、F 分别在边BC 、CD 上,且45EAF ∠=︒,若3BE =,2DF =,请求出线段EF 的长度.9.(21-22八年级上·浙江绍兴·期中)问题情境在等边△ABC 的两边AB ,AC 上分别有两点M ,N ,点D 为△ABC 外一点,且∠MDN =60°,∠BDC =120°,BD =DC .特例探究如图1,当DM =DN 时,(1)∠MDB =度;(2)MN 与BM ,NC 之间的数量关系为;归纳证明(3)如图2,当DM ≠DN 时,在NC 的延长线上取点E ,使CE =BM ,连接DE ,猜想MN 与BM ,NC 之间的数量关系,并加以证明.拓展应用(4)△AMN 的周长与△ABC 的周长的比为.10.(21-22九年级上·黑龙江齐齐哈尔·期末)综合与实践(1)如图1,在正方形ABCD 中,点M 、N 分别在AD 、CD 上,若∠MBN =45°,则MN ,AM ,CN 的数量关系为.(2)如图2,在四边形ABCD 中,BC ∥AD ,AB =BC ,∠A +∠C =180°,点M 、N 分别在AD 、CD 上,若∠MBN =12∠ABC ,试探索线段MN 、AM 、CN 有怎样的数量关系?请写出猜想,并给予证明.(3)如图3,在四边形ABCD 中,AB =BC ,∠ABC +∠ADC =180°,点M 、N 分别在DA 、CD 的延长线上,若∠MBN =12∠ABC ,试探究线段MN 、AM 、CN 的数量关系为.11.(21-22八年级下·浙江舟山·期末)已知:边长为4的正方形ABCD ,∠EAF 的两边分别与射线CB 、DC 相交于点E 、F ,且∠EAF =45°,连接EF .求证:EF =BE +DF .思路分析:(1)如图1,∵正方形ABCD 中,AB =AD ,∠BAD =∠B =∠ADC =90°,∴把△ABE 绕点A 逆时针旋转90°至△ADE ',则F 、D 、E '在一条直线上,∠E 'AF =度,……根据定理,可证:△AEF ≌△AE 'F .∴EF =BE +DF .类比探究:(2)如图2,当点E 在线段CB 的延长线上,探究EF 、BE 、DF 之间存在的数量关系,并写出证明过程;拓展应用:(3)如图3,在△ABC 中,AB =AC ,D 、E 在BC 上,∠BAC =2∠DAE .若S △ABC =14,S △ADE =6,求线段BD 、DE 、EC 围成的三角形的面积.12.(22-23八年级上·江西宜春·期中)问题背景:“半角模型”问题.如图1,在四边形ABCD 中,AB AD =,120BAD ∠=︒,90B ADC ∠=∠=︒,点E ,F 分别是,BC CD 上的点,且60EAF ∠=︒,连接EF ,探究线段BE EF DF ,,之间的数量关系.(1)探究发现:小明同学的方法是延长FD 到点G .使DG BE =.连结AG ,先证明ABE ADG ≌△△,再证明AEF AGF △△≌,从而得出结论:_____________;(2)拓展延伸:如图2,在四边形ABCD 中,AB AD =,180B D ∠+∠=︒,E 、F 分别是边,BC CD 上的点,且12EAF BAD ∠=∠,请问(1)中的结论是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由.(3)尝试应用:如图3,在四边形ABCD 中,AB AD =,180B ADC ∠+∠=︒,E 、F 分别是边,BC CD 延长线上的点,且12EAF BAD ∠=∠,请探究线段BE EF DF ,,具有怎样的数量关系,并证明.13.(18-19七年级上·山东威海·期末)(1)如图1,在四边形ABCD 中,AB AD =,90B D ∠=∠=︒,E 、F 分别是边BC 、CD 上的点,若12EAF BAD ∠=∠,可求得EF 、BE 、FD 之间的数量关系为________.(只思考解题思路,完成填空即可,不必书写证明过程)(2)如图2,在四边形ABCD 中,AB AD =,180B ADC ∠+∠=︒,E 、F 分别是边BC 、CD 延长线上的点,若12EAF BAD ∠=∠,判断EF 、BE 、FD 之间的数量关系还成立吗,若成立,请完成证明,若不成立,请说明理由.14.(19-20八年级上·湖北黄石·期中)如图,四边形ABCD为正方形(各边相等,各内角为直角),E是BC 边上一点,F是CD上的一点.(1)若△CFE的周长等于正方形ABCD的周长的一半,求证:∠EAF=45°;(2)在(1)的条件下,若DF=2,CF=4,CE=3,求△AEF的面积.15.(20-21八年级下·吉林白城·期末)【感知】如图①,点M是正方形ABCD的边BC上一点,点N是CD 延长线上一点,且MA⊥AN,易证△ABM≌△ADN,进而证得BM=DN(不要求证明)【应用】(1)如图②,在正方形ABCD中,点E、F分别在边BC、CD上,且∠EAF=45°.求证:BE+DF=EF.【拓展】(2)如图③,在四边形ABCD中,AB=AD,∠BAD=90°,∠ABC+∠ADC=180°,点E、F分别在边BC、CD上,且∠EAF=45°,若=3.5,EF=2,则四边形BEFD的周长为.16.(21-22八年级上·江苏宿迁·期中)(1)如图①,在正方形ABCD 中,E 、F 分别是BC 、DC 上的点,且45EAF ∠=︒,连接EF ,探究BE 、DF 、EF 之间的数量关系,并说明理由;(2)如图②,在四边形ABCD 中,AB AD =,180B D ∠+∠=︒,E 、F 分别是BC 、DC 上的点,且12EAF BAD ∠=∠,此时(1)中的结论是否仍然成立?请说明理由.17.(21-22八年级上·黑龙江齐齐哈尔·期末)【问题背景】如图1:在四边形ABCD 中,AB AD =,120BAD ∠=︒,E 、F 分别是BC 、CD 上的点,且60EAF ∠=︒,小王同学探究此问题的方法是:延长FD 到点G ,使DG BE =,连接AG ,再证明AEF AGF ≅△△,可得出结论.【探索延伸】如图2,若在四边形ABCD 中,AB AD =,E 、F 分别是BC ,CD 上的点12BAD ,上述结论是否仍然成立【学以致用】如图3,四边形ABCD 是边长为5的正方形,45EBF ∠=︒,求DEF 的周长.18.(21-22七年级下·广东揭阳·期末)【问题提出】(1)如图1,在四边形ABCD 中,AB AD =,120BAD ∠=︒,90B ADC ∠=∠=︒,E 、F 分别是BC 、CD 上的点,探究当EAF ∠为多少度时,使得BE DF EF +=成立.小亮同学认为:延长FD 到点G ,使DG BE =,连接AG ,先证明ABE ADG ≌△△,再证明AEF AGF △△≌,则可求出∠EAF 的度数为______;【问题探究】(2)如图2,在四边形ABCD 中,AB AD =,180B D ∠+∠=︒,E 、F 分别是BC 、CD 上的点,当∠EAF 与∠BAD 满足怎样的数量关系时,依然有BE DF EF +=成立,并说明理由.【问题解决】(3)如图3,在正方形ABCD 中,45EBF ∠=︒,若DEF 的周长为8,求正方形ABCD 的面积.19.(23-24八年级上·山东临沂·期中)【基本模型】(1)如图1,ABCD 是正方形,45EAF ∠=︒,当E 在BC 边上,F 在CD 边上时,请你探究BE 、DF 与EF 之间的数量关系,并证明你的结论.【模型运用】(2)如图2,ABCD 是正方形,45EAF ∠=︒,当E 在BC 的延长线上,F 在CD 的延长线上时,请你探究BE 、DF 与EF 之间的数量关系,并证明你的结论.20.(21-22九年级上·山西·期末)阅读以下材料,并按要求完成相应的任务:从正方形的一个顶点引出夹角为45︒的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:如图1,在正方形ABCD 中,以A 为顶点的45EAF ∠=︒,AE 、AF 与BC 、CD 边分别交于E 、F 两点.易证得EF BE FD =+.大致证明思路:如图2,将ADF △绕点A 顺时针旋转90︒,得到ABH ,由180HBE ∠=︒可得H 、B 、E 三点共线,45HAE EAF ∠=∠=︒,进而可证明AEH AEF ≌,故EF BE DF =+.任务:如图3,在四边形ABCD 中,AB AD =,90B D ∠=∠=︒,120BAD ∠=︒,以A 为顶点的60EAF ∠=︒,AE 、AF 与BC 、CD 边分别交于E 、F 两点.请参照阅读材料中的解题方法,你认为结论EF BE DF =+是否依然成立,若成立,请写出证明过程;若不成立,请说明理由.21.(22-23八年级上·江西宜春·阶段练习)(1)如图1,在四边形ABCD 中,AB AD =,90B ADF ∠=∠=︒,120BAD ∠=︒,E 、F 分别是BC 、CD 上的点,且60EAF ∠=︒,小王同学探究此问题的方法是:延长FD 到点G ,使DG BE =,连接AG ,证明AEF AGF ≅△△.请直接写出EF 、BE 、DF 条线段之间的数量关系.(2)如图2,若在四边形ABCD 中,AB AD =,B ∠与D ∠互补,E 、F 分别是BC ,CD 上的点,12EAF BAD ∠=∠EF 、BE 、DF 是否还存在上述关系,若存在,请证明;若不存在,请说明理由.(3)如图3,四边形ABCD 是边长为5的正方形,45EBF ∠=︒,求DEF 的周长.22.(2024·宁夏银川·模拟预测)(1)特例探究:如图①,在正方形ABCD 中,E ,F 分别为BC ,CD 上的点,45EAF ∠=︒,探究BE ,EF DF 之间的数量关系.小明是这么思考的:延长FD ,截取DG BE =,连接AG ,易证ADG ABE ≌,从而得到AG AE =,再由“SAS ”证明AGF AEF △≌△,从而得出结论:__________________________.(2)一般探究:如图②,在四边形ABCD 中,AD AB =,B ∠与D ∠互补,E ,F 分别是BC ,CD 上的点,且满足12EAF BAD ∠=∠,探究BE ,EF ,DF 之间的数量关系.(3)实际应用:如图③,在四边形ABCD 中,AB AD =,6AC =,90DAB DCB ∠=∠=︒,则四边形ABCD 的面积为.23.(23-24八年级上·陕西安康·期中)八年级的数学课堂上,老师布置了以下两个任务.任务一:自主探究,再合作交流展示.如图1,在四边形ABCD 中,12090AB AD BAD B ADC E F =∠=︒∠=∠=︒,,,,分别是BC CD ,上的点,且60EAF ∠=︒,连接EF ,探究BE EF DF ,,之间的数量关系.经过小组交流讨论,最后给出的解决方案是:延长FD 到点G ,使DG BE =,连接AG ,先证明ABE ADG △≌△,再证明AEF AGF ≌,最后得到结论:EF BE DF =+.任务二:问题解决.如图2,在四边形ABCD 中,180AB AD B D E F =∠+∠=︒,,,分别是边BC CD ,上的点,且12EAF BAD ∠=∠,试探究BE EF DF ,,之间的数量关系.24.(23-24八年级上·四川德阳·阶段练习)【问题背景】如图1,在四边形ABCD 中,AB AD =,120BAD ∠=︒,90B ADC ∠=∠=︒,E 、F 分别是BC CD 、上的点,且60EAF ∠=︒,试探究图1中线段BE EF FD 、、之间的数量关系.(1)【初步探索】小亮同学认为:如图1,延长FD 到点G ,使DG BE =,连接AG ,先证明ABE ADG △≌△,再证明AEF AGF ≌,则可得到BE EF FD 、、之间的数量关系是.(2)【探索延伸】在四边形ABCD 中如图2,180AB AD B D =∠+∠=︒,,E 、F 分别是BC CD 、上的点,12EAF BAD ∠=∠,上述结论是否仍然成立?说明理由.(3)【结论运用】如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30︒的A处,舰艇乙在指挥中心南偏东70︒的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以40海里/小时的速度前进,舰艇乙沿北偏东50︒的方向以60海里/小时的速度前进1.5小时后,指挥中心观测到∠)为70︒,试求此时两舰艇之间的距离.甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角(EOF15。

中考数学专题训练旋转模型几何变换的三种模型手拉手、半角、对角互补

中考数学专题训练旋转模型几何变换的三种模型手拉手、半角、对角互补

知识关联图几何变换的三种模型手拉手、半角、对角互补[■等腰三角形手拉手模型J等腰直角三角形(包含正方形).等边三角形(包含费马点)特殊角旋转变换对角互补模型一般角角含半角模型!特殊角一般角等线段变换(与圆相关)真题演练【练1】(2013北京中考)在A ABC中,AB二AC,BAC = (0 :::—: 60 ),将线段BC绕点B逆时针旋转60。

得到线段BD .(1)如图1,直接写出/ABD的大小(用含:-的式子表示);(2)如图2,./BCE =150 , ABE =60,判断△ABE的形状并加以证明;(3)在(2)的条件下,连结DE,若.DEC =45,求〉的值.【练2】(2012年北京中考)在厶ABC中,BA=BC , BAC = :• , M是AC的中点,P是线段上的动点,将线段PA绕点P顺时针旋转2得到线段PQ •(1 )若且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D , 请补全图形,并写出.CDB的度数;(2)在图2中,点P不与点B , M重合,线段CQ的延长线与射线想.CDB的大小(用含:-的代数式表示),并加以证明;(3)对于适当大小的:•,当点P在线段BM上运动到某一位置(不与点B , M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ =QD,请直接写出:-的范围.(1) (2) (3) 等腰三角形旋转模型图(共顶点旋转等腰出伴随全等)等边三角形旋转模型图(共顶点旋转等边出伴随全等)等腰直角旋转模型图(共顶点旋转等腰直角出伴随全等)不等边旋转模型图(共顶点旋转不等腰出伴随相似)包含:等腰三角形、等腰直角三角形(正方形)、等边三角形伴随旋转出全等,处于各种 位置的旋转模型,及残缺的旋转模型都要能很快看出来 考点1 :手拉手模型:全等和相似例题精讲【例1】(14年海淀期末)已知四边形ABCD和四边形CEFG都是正方形,且AB . CE •(1)如图1,连接BG、DG •求证:BG =DE ;(2)如图2,如果正方形ABCD的边长为.2,将正方形CEFG绕着点C旋转到某一位置时恰好使得CG // BD , BG二BD •①求.BDE的度数;②请直接写出正方形CEFG的边长的值.【题型总结】手拉手模型是中考中最常见的模型,突破口常见的有哪些信息?常见的考试方法有哪些?【例2】(2014年西城一模)四边形ABCD是正方形,:BEF是等腰直角三角形,.BEF =90 , BE =EF,连接DF , G 为DF 的中点,连接EG , CG , EC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点五:角含半角、等腰三角形的(绕顶点)旋转重合法
核心母题如图,在正方形ABCD中,E、F分别是BC、CD边上的点,∠EAF=45°,求证:EF=BE+DF.
变式一:如图,E、F分别是边长为 1的正方形ABCD的边BC、CD上的点,若△ECF的周长是
2,求∠EAF的度数?
变式二:如图,在正方形ABCD中,E、F分别是BC、CD边上的点,∠EAF=45°,AG⊥EF,求证:AG=AB.
综合:在正方形ABCD 中,若M 、N 分别在边BC 、CD 上移动,且满足MN=BM +DN , 求证:①.∠MAN=②.③.AM 、AN 分别平分∠BMN 和∠DNM.
45AB C CMN 2=

练习
1、如图,在四边形ABCD中,AB=BC,∠A=∠C=90°,∠B=135°,K、N分别是AB、BC上的点,若△BKN的周长是AB的2倍,求∠KDN的度数?
2、已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.
(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;
(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.
3、如图,在四边形ABCD中,AB=AD,,∠B+∠D=180°,E、F分别是边BC、CD上的点,且2∠EAF=∠BAD,
(1)求证:EF=BE+FD
(2)如果E、F分别是边BC、CD延长线上的点,其他条件不变,结论是否仍然成立?说明理由。

5、如图所示,在五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°求证:AD平分∠CDE.
6、如图,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,求五边形ABCDE的面积.
7、如图1.在四边形ABCD中.AB=AD,∠B+∠D=180゜,E、F分别是边BC、CD 上的点,且∠BAD=2∠EAF.
(1)求证:EF=BE+DF;
(2)在(1)问中,若将△AEF绕点A逆时针旋转,当点E、F分别运动到BC、CD延长线上时,如图2所示,
试探究EF、BE、DF之间的数量关系.
8、如图,在△ABC 中,∠ACB=90°,AC=BC ,P 是△ABC 内一点,且PA=3,PC=2,PB=1.求∠BPC 的度数
半角模型 条件:
思路:(
1)
、延长其中一个补角的线段
(延长CD 到E ,使ED=BM ,连AE 或延长CB 到F ,使FB=DN ,连AF )
.
1802
10=+=γθβα且
结论:①MN=BM+DN ② ③AM 、AN
分别平分∠BMN 和∠DNM
(2)对称(翻折)
思路:分别将△ABM 和△ADN 以AM 和AN 为对称轴翻折,但一
定要证明
M 、P 、N 三点共线.(∠B+∠D =且AB=AD )
例题应用:例1、在正方形ABCD 中,若M 、N 分别在边BC 、CD 上移动,且满足MN=BM +DN ,求证:①.∠MAN=
②.
③.AM 、AN 分别平分∠BMN 和∠DNM.
思路同上略.
AB C CMN 2=
∆0
180 45AB C CMN 2=

例1拓展:在正方形ABCD
中,已知∠MAN=,若
M 、N 分别在边
CB 、DC 的延长线上移动,
①.试探究线段MN 、BM 、DN 之间的数量关系. ②.求证:AB=AH.
提示如图:
例2.在四边形ABCD
中,∠B+∠D =,AB=AD ,若E 、F 分别在边
BC 、CD 上,且满足EF=BE +DF.求证:
提示:
练习巩固:如图,在四边形ABCD 中,∠B=∠D =,AB=AD ,若
E 、
F 分别在边BC 、CD 上的点,且
. 求证:EF=BE +DF.
45
180.21
BAD EAF ∠=

90
.21
BAD EAF ∠=

提示:。

相关文档
最新文档