高考数学总复习.集合的概念与运算课件文人教A版
高中数学(新人教A版)必修第一册:集合的基本运算【精品课件】
的交集仍存在,此时A∩B=∅.
(三)交集
【做一做】
【探究2】
已知集合A={0,2},B={-2,-1,0,1,2},
则A∩B=(
)
A.{0,2}
C.{0}
B.{1,2}
D.{-2,-1,0,1,2}
交集的性质:
[答案]
A
①A∩B=B∩A;②A∩A=A;
③A∩∅=∅; ④若A⊆B,则A∩B=A;
(四)集合的交并运算
【巩固练习1】
(1) 已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则集合A∪B是(
A.{-1,2,3}
B.{-1,-2,3}
C.{1,-2,3}
D.{1,-2,-3}
(2) 若集合A={x|-2≤x<3},B={x|0≤x<4},则A∪B=________.
⑤(A∩B)⊆A;(A∩B)⊆B.
(四)集合的交并运算
1.集合的并集运算
例1.
(1)设集合M={x| 2 +2x=0,x∈R},N={x| 2 -2x=0,x∈R},则M∪N=(
A.{0}
B.{0,2} C.{-2,0} D.{-2,0,2}
(2)已知A={x|x≤-2,或x>5},B={x|1<x≤7},求A∪B。
(2)在解决问题时,用到了哪些数学思想?
第一章 集合与常用逻辑用语
1.3 集合的基本运算(第2课时)
教材分析
本小节内容选自:
《普通高中数学必修第一册》
人教A版(2019)
第一课时
课时内容
集合的并集、交集运算
集合的补集、综合运算
所在位置
教材第10页
高考数学总复习 第一章 第一节集合的概念与运算课件 理
第十七页,共35页。
考点(kǎo 集合(jíhé)的基本关系及空集的妙用 diǎn)三
【例3】 设集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m -1},若B⊆A,求实数(shìshù)m的取值范围.
思路点拨:考查集合间的包含、相等关系,关键搞清A,B两 集合谁是谁的子集.若B⊆A,说明B是A的子集,即集合B中元素 都在集合A中,注意B是∅的情况;同样若A⊆B,说明A是B的子集, 此时注意B是不是∅;若A=B,说明两集合元素完全相同.
A.A=B B.B=C C.C=E D.B=E
思路点拨:要注意分辨各集合的代表元素是什么,如果性质 相同,但代表元素不同,则它们所表示的集合也是不一样的.因此 对于集合问题(wèntí),要首先确定它属于哪类集合(数集、点集或某 类图形).
第十五页,共35页。
解析:集合 A 是用列举法表示,它只含有一个元 素,即函数 y=x2+2,集合 B,C,E 中的元素都是数, 即这三个集合都是数集,集合 B 表示的是函数 y=x2 +2 的值域2,+∞,集合 C 表示的是函数 y=x2+2 的 定 义 域 R, 集 合 E 是不 等 式 x - 2≥0 的 解集 2,+∞,集合 D 的元素则是平面上的点,此集合是 函数 y=x2+2 的图象上所有点所组成的集合.故只有 B=E.故选 D.
第七页,共35页。
2.并集. (1)定义: 由所有属于集合A或集合B的元素组成的集合,称 为(chēnɡ w集éi)合__(_j_íh_é_)_A_与__集__合__(_j_íh的é)并B集,记作___A__∪__B_____(读作 “A并B”).即 A∪B={ x|x∈A,或x∈B}. (2)性质:
高考数学一轮复习第一章集合与常用逻辑用语1集合的概念与运算课件新人教A版(文)
D.a>-1
(3)已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3}.若B⊆A,则实数
(-∞,-4)∪(2,+∞) .
a的取值范围为
思考若集合中的元素含有参数,求集合中的参数有哪些技巧?
-24考点1
考点2
考点3
解析:(1)由A∪B=A得B⊆A,则m∈A,
故有 m=√或 m=3,即 m=3 或 m=1 或 m=0.
中的元素是离散的,则紧扣集合运算的定义求解;若集合中的元素
是连续的,则常结合数轴进行集合运算;若集合中的元素是抽象的,
则常用Venn图法进行求解.
-15考点1
考点2
考点3
考点 1
集合的基本概念
例1(1)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M
中的元素个数为(
(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.( × )
(3)A⊆B⇔A∩B=A⇔A∪B=B;(A∩B)⊆(A∪B).( √ )
(4)若A∩B=A∩C,则B=C. ( × )
(5)(教材习题改编P5T2(3))直线y=x+3与y=-2x+6的交点构成的集
合是{1,4}.( × )
符号
N
N*(或N+)
、
Venn图法
.
整数集 有理数集 实数集
Z
Q
R
-5知识梳理
双基自测
1
2
3
4
5
2.集合间的基本关系
关系 自然语言
符号表示
集合A 中的所有元素都在
高三数学一轮复习 第1单元 1.1 集合的概念与运算课件 理 新人教A版
1.集合元素的三个特征:确定性、互异性、 无序性 . 2.集合的表示法:列举法、 描述法 、图示法.
提示:(1)注意集合表示的列举法与描述法在形式上的区别,列举法一般适合 于有限集,而描述法一般适合于无限集.
(2)注意集合中元素的互异性:集合{x|x2-2x+1=0}可写为{1},但不可写为 {1,1}. 3.元素与集合的关系有:属于和不属于,分别用符号∈ 和 ∉ 表示.
结合思想方法的运用.
二、集合的运算 1.两个集合的交、并、补的运算分别与逻辑联结词且、或、非对应,但不能等同
和混淆. 2.数形结合的思想方法在集合的运算中也是常见的,对于一般的集合运算时可用
文氏图直观显示,例如若A⊆S,B⊆S,则全集S最多被四个集合A∩B,A∩(∁SB), B∩(∁SA)和∁U(A∪B)所划分;对于可以用区间表示的数集可以利用数轴进行集合 的运算.
【例2】 (2010·衡水中学调研)已知集合A={x|x2+ x+1=0},B={y|y=x2+a,
x∈R},若A∩B≠∅,则a的取值范围是( )
A.(-∞,- ] B.
C.
D.(-∞,-2]
解析:由x2+ x+1=0得(2x+1)(x+2)=0,则x=- ,或x=-2,
既A= ≤- .
. 又B={y|y=x2+a,x∈R}=[a,+∞).由A∩B≠∅,知a
1.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩 (Venn)图是( )
解析:N={x|x2+x=0}={-1,0},则N M,故选B. 答案:B
2. 已知集合A={-1,2},B={x|mx+1=0},若A∩B=B,则所有实数m的值组 成的集合是( ) A.{-1,2} B.{1,- } C.{1,0,- } D.{-1,0, } 解析:∵A∩B=B,即B⊆A,若m=0,B=∅⊆A; 若m≠0,B={x|x=- };由B⊆A得:- =-1或- =2, ∴m=1或m=- .综上选C. 答案:C
集合的概念 教学课件-人教A版(2019)高中数学必修第一册
3.[ 变条件] 已知集合 A 含有两个元素 1 和 a2,若“a∈A”, 求实数 a 的值.
解:由 a∈A 可知, 当 a=1 时,此时 a2=1,与集合元素的互异性矛盾, 所以 a≠1. 当 a=a2 时,a=0 或 1(舍去). 综上可知,a=0.
解题方法(根据集合中元素的特性求解字母取值(范围)的3个步骤)
[点睛] 对元素和集合之间关系的两点说明 (1)符号“∈”“∉”刻画的是元素与集合之间的关系.对 于一个元素 a 与一个集合 A 而言,只有“a∈A”与“a∉A”这 两种结果. (2)∈和∉具有方向性,左边是元素,右边是集合,形如 R ∈0 是错误的.
3.常用的数集及其记法
常用的 自然数 正整
数集 集
数集
记法
N N*或 N+
整数 集
Z
有理 数集
Q
实数集
R
[小试身手]
1.判断(正确的打“√”,错误的打“×”)
(1)你班所有的姓氏能组成集合.
(√ )
(2)新课标数学人教 A 版必修 1 课本上的所有难题.( × )
(3)一个集合中可以找到两个相同的元素.
(× )
2.下列元素与集合的关系判断正确的是
人教A版 必修 第一册
第一章 集合与常用逻辑用语
1.1 集合的概念
课程目标
1. 了解集合的含义;理解元素与集合的“属于”与“不属 于”关系;熟记常用数集专用符号. 2. 深刻理解集合元素的确定性、互异性、无序性;能 够用其解决有关问题. 3. 会用集合的两种表示方法表示一些简单集合。感受 集合语言的意义和作用。
[ 跟踪训练二] 2.已知集合 A 中有四个元素 0,1,2,3,集合 B 中有三个元素 0,1,2,
第1讲 集合的概念与运算 讲义--高一上学期数学人教A版(2019)必修第一册
第1讲集合的概念与运算1.元素与集合的概念(1)集合:研究的对象统称为元素,把一些元素组成的总体叫作集合.(2)集合元素的特性:确定性、互异性.2.元素与集合的关系关系概念记法读法属于如果a是集合A的元素,就说a属于集合A a∈A a属于集合A不属于如果a不是集合A中的元素,就说a不属于集合A a∉A a不属于集合A 3.集合的分类(1)空集:不含任何元素的集合,记作∅.(2)非空集合:①有限集:含有有限个元素的集合.②无限集:含有无限个元素的集合.4.常用数集的表示符号名称自然数集正整数集整数集有理数集实数集符号N N+或N*Z Q R5.列举法把有限集合中的所有元素都列举出来,写在花括号“{__}”内表示这个集合的方法.6.描述法(1)集合的特征性质如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有性质p(x),则性质p(x)叫做集合A的一个特征性质.(2)特征性质描述法集合A可以用它的特征性质p(x)描述为{x∈I|p(x)},它表示集合A是由集合I中具有性质p(x)的所有元素构成的.这种表示集合的方法,叫做特征性质描述法,简称描述法.7.集合间的基本关系关系自然语言符号语言V enn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)A⊆B(或B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A B(或B A)集合相等集合A,B中元素完全相同或集合A,B互为子集A=B子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.8.集合的运算(1)如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U表示;集合的并集集合的交集集合的补集图形符号A∪B={x|x∈A,或x∈B}A∩B={x|x∈A,且x∈B}∁U A={x|x∈U,且x∉A}例1(大纲全国,1) 设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.6例2 已知集合A={m+2,2m2+m},若3∈A,则m的值为________.[玩转跟踪]1.(新课标全国,1)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B 中所含元素的个数为()A.3B.6C.8D.102.已知集合A是由a-2,2a2+5a,12三个元素组成的,且-3∈A,求实数a.3.(探究与创新)设A为实数集,且满足条件:若a∈A,则11-a∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.题型二集合的表示方法例3 下面三个集合:A={x|y=x2+1};B={y|y=x2+1};C={(x,y)|y=x2+1}. 问:(1)它们是不是相同的集合?(2)它们各自的含义是什么?例4 已知集合A ={x ∈R |ax 2+2x +1=0},其中a ∈R .若1是集合A 中的一个元素,请用列举法表示集合A .1.已知x ,y 为非零实数,则集合M =⎩⎨⎧m |m =x |x |+y |y |+⎭⎬⎫xy |xy |为( )A.{0,3}B.{1,3}C.{-1,3}D.{1,-3}2.(探究与创新)已知集合A ={x |ax 2-3x -4=0,x ∈R }: (1)若A 中有两个元素,求实数a 的取值范围; (2)若A 中至多有一个元素,求实数a 的取值范围.题型三 集合间的基本关系例5 集合{-1,0,1}共有________个子集. 例6 设集合⎭⎬⎫⎩⎨⎧∈+==Z k k x x M ,412|,⎭⎬⎫⎩⎨⎧∈+==Z k k x x N ,421|,则( ) A .N M =B .NM C .MN D .=N M ∅例7 已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A . 求实数m 的取值范围.1.设M 为非空的数集,M ⊆{1,2,3},且M 中至少含有一个奇数元素,则这样的集合M 共有( ) A .6个B .5个C .4个D .3个2.(2016·山东北镇中学、莱芜一中、德州一中4月联考)定义集合A -B ={x |x ∈A 且x ∉B },若集合M ={1,2,3,4,5},集合N ={x |x =2k -1,k ∈Z },则集合M -N 的子集个数为( ) A.2 B.3C.4D.无数个3.已有集合A ={x |x 2-4x +3=0},B ={x |mx -3=0},且B ⊆A ,求实数m 的集合.题型四 集合的基本运算例8 设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( ) A.⎝⎛⎭⎫-3,-32 B.⎝⎛⎭⎫-3,32 C.⎝⎛⎭⎫1,32 D.⎝⎛⎭⎫32,3 例9 (2015·四川,1)设集合A ={x |(x +1)(x -2)<0},集合B ={x |1<x <3},则A ∪B =( ) A .{x |-1<x <3} B .{x |-1<x <1} C .{x |1<x <2} D .{x |2<x <3} 例10 (1)设全集U =R ,A ={x |x (x +3)<0},B ={x |x <-1},则图中阴影部分表示的集合为( )A .{x |-3<x <-1}B .{x |-3<x <0}C .{x |-1≤x <0}D .{x |x <-3}(2).若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x -2x ≤0,则A ∩B =( )A.{x |-1≤x <0}B.{x |0<x ≤1}C.{x |0≤x ≤2}D.{x |0≤x ≤1}例11 已知A ={x |2a ≤x ≤a +3},B ={x |x <-1,或x >5},若A ∩B =∅,求实数a 的取值范围.[玩转跟踪]1.若集合P ={x ||x |<3,且x ∈Z },Q ={x |x (x -3)≤0,且x ∈N },则P ∩Q 等于( ) A.{0,1,2} B.{1,2,3} C.{1,2} D.{0,1,2,3}2.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( )A.(M ∩P )∩SB.(M ∩P )∪SC.(M ∩P )∩(∁I S )D.(M ∩P )∪(∁I S )3.(探究与创新)已知集合A ={x |-2≤x ≤5},B ={x |2a ≤x ≤a +3},若A ∪B =A ,求实数a 的取值范围.1.已知集合A ={y |y =|x |-1,x ∈R },B ={x |x ≥2},则下列结论正确的是( ) A .-3∈A B .3∉B C .A ∩B =BD .A ∪B =B2.设集合M ={-1,1},N =⎩⎨⎧⎭⎬⎫x ⎪⎪1x<2,则下列结论中正确的是( ) A .N M B .M N C .N ∩M =∅D .M ∪N =R3.(2018·全国Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( ) A .9 B .8 C .5 D .44.(2018·济南模拟)设全集U =R ,集合A ={x |x -1≤0},集合B ={x |x 2-x -6<0},则右图中阴影部分表示的集合为( )A .{x |x <3}B .{x |-3<x ≤1}C .{x |x <2}D .{x |-2<x ≤1}5.(2018·潍坊模拟)设集合A =N ,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x x -3≤0,则A ∩B 等于( ) A .[0,3) B .{1,2} C .{0,1,2}D .{0,1,2,3}6.(2017·全国Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B 等于( ) A .{1,-3} B .{1,0} C .{1,3} D .{1,5}7.已知集合A ={x |-1<x <0},B ={x |x ≤a },若A ⊆B ,则a 的取值范围为( ) A .(-∞,0] B .[0,+∞) C .(-∞,0)D .(0,+∞)8.满足{a ,b }∪B ={a ,b ,c }的集合B 的个数是________.9.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a 的值为________.10.已知集合M={-2,3x2+3x-4,x2+x-4},若2∈M,则满足条件的实数x组成的集合为________.11.已知全集I={2,3,a2+2a-3},若A={b,2},∁I A={5},求实数a,b.12.已知A={x|x2-3x+2=0},B={x|ax-2=0},且A∪B=A,求实数a组成的集合C.13.设全集为R,集合A={x|3≤x<6},B={x|2<x<9}.(1)分别求A∩B,(∁R B)∪A;(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值构成的集合.14.已知集合A={x|0<x-a≤5},B={x|-a2<x≤6}.(1)若A∩B=A,求a的取值范围;(2)若A∪B=A,求a的取值范围.。
人教A版高考总复习一轮文科数学精品课件 第1章 集合与常用逻辑用语 第1节 集合的概念与运算
A∪B={x|x∈A,或 x
合 B 的元素所组成的集合
∈B}
由全集 U 中不属于集合 A 的
∁UA={x|x∈U,且
x∉A}
所有元素组成的集合
Venn 图
微点拨1.求集合A的补集的前提是“A是全集U的子集”,集合A其实是给定的
条件.从全集U中取出集合A的全部元素,剩下的元素构成的集合即为∁UA.
2.集合运算的基本性质
2.集合间的基本关系
关系
自然语言
集合 A 中 任意一个元素 都是集合 B
子集
中的元素
若 x∈A,则 x∈B
符号
表示
A⊆B
(或B⊇A)
真子
如果集合 A⊆B,但存在元素x∈B,且
A⫋B
集
x∉A,就称集合 A 是集合 B 的真子集
(或B⫌A)
Venn 图
或
关系
符号
自然语言
如果集合 A 是集合 B 的 子集
5.理解两个集合的并集与交集的含义,会求两个简
单集合的并集与交集.
6.理解在给定集合中一个子集的补集的含义,会求
给定子集的补集.
7.能使用Venn图表达集合的关系及运算.
衍生考点
核心素养
1.集合的含
义与表示
2.集合间的
1.直观想象
基本关系
2.逻辑推理
3.集合的基
3.数学运算
本运算
4.集合的新
定义问题
(3)A={x|x2+6x+8≤0}={x|-4≤x≤-2},B={x|x<a},因为A⊆B,所以实数a的取值
范围是(-2,+∞).
规律方法 集合间基本关系的两种判定方法和一个关键
1.1集合的概念(第1课时集合的概念与几种常见的数集)课件高一上学期数学人教A版
1 2 3 4 5 6 7 8 9 10 11
B级
关键能力提升练
7.给出下列说法:①在一个集合中可以找到两个相同的元素;②好听的歌能
组成一个集合;③高一(1)班所有姓氏能构成集合;④把1,2,3三个数排列,共
有6种情况,因此由这三个数组成的集合有6个.其中正确的个数为( B )
(2)互异性是判断能否组成集合的另一标准,也是最容易被忽视的性质.例
如:“组成good中的字母集合的元素是g,o,o,d”这句话是不对的,因为在这个单
词中,字母“o”虽然出现了两次,但如果归入集合中只能算作一个元素.根据互
异性,正确的说法应为“单词good中的字母组成集合的元素有3个,分别为
g,o,d”.
当方程无解时,只需Δ=4-4a<0,即a>1.
因此A中至多有一个元素时,a=0或a≥1.
规律方法
求解一类关于x的方程ax2+bx+c=0的解集
关于x的方程ax2+bx+c=0的解集类问题,实质是通过对二次项系数a的讨论
来考查思维的严谨性.当a≠0时,该方程是关于x的一元二次方程;当a=0,b≠0
时,是关于x的一元一次方程.求解此类方程的解集问题,要注意根据二次项
素.若集合A和集合B是相等的,则b-a=( A )
A.2
B.-1 C.1
D.-2
解析 由已知,a≠0,故a+b=0,则
=-1,所以a=-1,b=1,所以b-a=2.
,b3个元
规律方法
集合中的元素除了确定性外,还有互异性、无序性.在涉及含字
高中数学人教A版必修1课件:1、1、1集合的含义与表示
2.集合表示方法的恰当选择。
3
自主学习:
根据自学提纲(知识点),自学P2~3页。 1、元素、集合的概念? 2、集合中元素的三大特征? 3、集合与元素间的关系,符号表示? 4、一些常用的数集及其记法?
4
学生展示:
1、集合、元素的概念 元素 ——我们把研究的对象统称为元素;
平面内两直线的 位置关系有几种?
交集的性质:
A
A B
B
1.A∩A= A ; 2.A∩∅=∅∩A= ∅ ; 3. A∩B ⊆ A,A∩B ⊆B; 4. 如果A⊆B,则A∩B= A反之,
如果 A∩B=A,则 A⊆B .
P11 练习1~3
4.A={(x,y)|4x+y=6}, B={(x,y)|3x+2y=7},求A∩B。
即 A∪B= {x | x∈A,或x∈B}
AB
A
A
BB
例4 设A={4,5,6,8}, B={3,5,7,8},求A∪B. 提示:利用韦恩图
A
46
58 37
B
解: A∪B={4,5,6,8}∪{3,5,7,8} ={3,4,5,6,7,8}
例5 设集合A={x|-1<x<2},集合B={x|1<x<3},
思考2:集合{1,2}与集合{(1,2)}相同吗?
集合{y | y x2, x R} 与集合 {y x2} 相同吗? 思考3: 集合{(x, y) | y x2, x R} 的几何意义如何?
y y x2
x o
课堂小结
1.元素与集合的概念:一般地,我们把研究对象统称为 元素,把一些元素组成的总体叫做集合(简称为集); 2.集合元素的三大特征:确定性、互异性、无序性; 3.元素与集合之间的关系:属于(∈)或 不属于(∉) ; 4.数集及有关符号:N、N﹡、N₊、Z、Q、R; 5. 集合的分类:有限集、无限集、空集; 6. 集合的表示方法:列举法、描述法、 Venn图。
集合的概念课件——高一上学期数学人教A版(2019)必修第一册
02
集合
例:
自然数集(非负整数集)
自然数的英文Natural number
整数集
德语中的整数Zahlen
正整数集
/
有理数集
商的英文Quotient
实数集
实数的英文Real number
用∈或∉填空:
∉
∈
∈
∈
03
集合的表示
列举法:
把集合的所有元素一 一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.
1,1,2,3
3. 无序性:集合中的元素没有先后顺序,每个元素地位都是相同的.
集合A中的元素为2,4,6,8,10,1,3,5,7,9,集合B中的元素为1~10之间的所有整数,则
集合A与集合B表示的是同一个集合.
根据集合的特征,判断下列元素的全体是否组成集合:
(1)与定点
距离相等的点;
(2)高中学生中的游泳能手.
03
集合的表示
描述法:假设是一个集合,我们把集合中所有具有共同特征()的元素所组成的集合表
示为{ ∈ |()}这种集合表示方法称为描述法.
:集合元素的代表形式
:元素的取值范围,范围明确时可省略
():集合中元素的共同特征
例:
03
集合的表示
例:请你用描述法表示以下四个集合
(1)不等式
答:(1){-1,-2}
{(2,3)}与{2,3}有什么区别?
(2){3,4,5,6,7}
日}
(4){(2,3)}
集合元素为有限个,且数量较少.
(3){周一,周三,周四,周六,周
03
集合的表示
以下三个集合能用列举法来表示吗?
(1)不等式
高考数学总复习课件--集合
第一章 · §1.1
第 8页
表示 关系
文字语言 A 中任意一个元素均为 B
符号语言
真子集
中的元素,且 B 中至少有 A B 或 B A 一个元素不是 A 中的元素
空集
空集是任何集合的子集, 是任何非空集合的真子集
∅⊆B,∅ B(B≠∅)
高中新课标 人教A版 · 数学(理)
第一章 · §1.1
第 9页
解:A 中不等式的解集应分三种情况讨论: ①若 a=0,则 A=R; ②若 a<0,则 ③若 a>0,则
1 4 A=x|a≤x<-a; 1 4 A=x|-a<x≤a.
当 a=0 时,若 A⊆B,此种情况不存在. 当 a<0 时,如图,若 A⊆B,
图形 表示 {x|x∈A,或 x {x|x∈A,且 x ∈B} ∈B} ∁UA= {x|x∈U,且 x∉A}
高中新课标 人教A版 · 数学(理)
第一章 · §1.1
第11页
并集
交集
补集 补集的性质:
并集的性质: 交集的性质: A ∪ ( ∁ UA) = U , A∪∅=A, 含 A∪A=A, A∩ ∅ = ∅ , A∩(∁UA)=∅, A∩A=A, ∁U(∁UA)=A,
高中新课标 人教A版 · 数学(理)
第一章 · §1.1
第27页
2 . 已 知 集 合 A = {x|0<ax + 1≤5} , 集 合 B =
1 x|- <x≤2.若 2
A⊆B,求实数 a 的取值范围.
高中新课标 人教A版 · 数学(理)
第一章 · §1.1
第28页
高中新课标 人教A版 · 数学(理)
人教A版高中数学必修1第一章1.1集合的概念与运算课件
人教A版高中数学必修1第一章1.1集合 的概念 与运算 课件
5.集合分类:
按集合中元素个数的多少可分为:有限集和无限集. 含有有限个元素的集合叫做有限集. 含有无限个元素的集合叫做无限集. 若按集合中元素属性来分:数集,点集 高中数学主要研究数集和点集.
人教A版高中数学必修1第一章1.1集合 的概念 与运算 课件
列举法:把集合中的元素一一列举出来,并用 花括号{ }括起来表示集合的方法叫做列举法.
注意:对含有较多元素的集合,如果构成该集 合的元素具有明显的规律,可用列举法表 示,但是必须把元素间的规律显示清楚后, 才能用省略号表示.
x2 x
人教A版高中数学必修1第一章1.1集合 的概念 与运算 课件
人教A版高中数学必修1第一章1.1集合 的概念 与运算 课件
P4 思考?
人教A版高中数学必修1第一章1.1集合 的概念 与运算 课件
人教A版高中数学必修1第一章1.1集合 的概念 与运算 课件
描述法:用集合所含元素的共同特征
表示集合的方法称为描述法.
可分为:
(1)文字描述法——用文字把元素所具有的属性 描述出来,如﹛自然数﹜
(2)符号描述法——用符号把元素所具有 的属性 描述出来,即{x| P(x)} 或{x∈A| P(x)},{(x,y)|f(x,y)=0}等。
其中能构成集合的有: (1) 不能构成集合的有: (2)(3)(4)
人教A版高中数学必修1第一章1.1集合 的概念 与运算 课件
人教A版高中数学必修1第一章1.1集合 的概念 与运算 课件
在我们要了解集合的特征前,先看看这 些具有代表性的问题。 (1)A={1,3},问3,5哪个是A的元素? (2)A={素质好的人}能否表示成集合? (3)A={2,2,4 }表示是否正确? (4)A={太平洋,大西洋},
高中数学 1.1.3 集合的基本运算(第2课时)课件 新人教A版必修1
③把集合S和A表示在数轴上,如图所示. 由图知∁SA={x|-4≤x<-1或x=1}.
第四十页,共41页。
点评 (1)用不等式表示的集合的交、并、补运算,往往用 数轴直观显示.
(2)用数轴解题时,要特别注意端点的值是否符合题意.
第四十一页,共41页。
【解析】 U={1,2,3,4,5,6,7,8,9},在图中将1,2,3,4,5,6,7,8,9 分别填入到相应位置中去,
则由A∩B={2}, ∁U(A∪B)=(∁UA)∩(∁UB)={1,9}, ∁UA∩B={4,6,8},∴A∩(∁UB)={3,5,7}. 这样A={2,3,5,7},B={2,4,6,8}.
第十四页,共41页。
【讲评】 补集是在全集的范围内来求的,若题中未指出 全集,则本题不能求其补集.
探究1 求补集时,首先要正确理解全集及子集中所含的元 素,找出其联系与差异,然后准确写出补集.
第十五页,共41页。
思考题1 设全集U={1,2,3,4,5,6,7},集合A={1,3,5,7},B
={3,5},则正确的是( )
第二十八页,共41页。
探究4 本题借助韦恩图更加形象直观,只需根据题中所给 条件,把集合中的元素填入相应的图中,可得集合A,B.
思考题4 已知集合I={a,b,c,d,e,f,g,h},(∁IA)∪ (∁IB)={a,b,c,e,f,h},(∁IA)∩(∁IB)={a,e},(∁IA)∩B= {c,f}.求集合A.
答案 3
第三十七页,共41页。
6.若集合A=[-1,1),当S分别取下列集合时,求∁SA. ①S=R;②S=(-∞,2];③S=[-4,1].
第三十八页,共41页。
解析 ①把集合S和A表示在数轴上如图所示.
高中数学 1.1.3集合的概念与运算课件1 新人教A版必修1
(1)A B
(2)A C
悟一悟
(1)若已知x∈A∪B,那么它包含三种情形: ①x∈A且x∉B; ②x∈B且x∉A; ③x∈A且x∈B,这在解决与并集有关问题
时应引起注意.
(2)若已知x∈A∩B :
①若已知x∈A∩B,就可以断定x∈A且x∈B. ②要搞清两集合的公共元素是什么及两者间
解:
A
B
0
5
X
A B {x | 0 x 5}
解: B UC
B
C
0
10
X
B UC x x>0
解: A B C
A
B
0
5
10
C
X
ABC ∅
4.学校开运动会,设A={x|x是参加一百米跑的 同学},B={x|x是参加二百米跑的同学}, C= {x|x是参加四百米跑的同学},学校规定, 每个参加上述比赛的同学最多只能参加两项,
A∪B={x | x是等腰或直角三角形}
2.已知 S {x | 2x 1 0},T {x | 3x 5 0},
求 S T,S T ?
解: S {x | x 1},T {x | x 5},
2
3
S T {x | 1 x 5}, S T R
2
3
试一试
3.A {x | x 5}, B {x | x 0},C {x | x 10}, 则 A B, B C, A B C 分别是什么?
的关系;
比一比
并集的性质
1.AU B B U A
2.A U A A 3.A U A
交集的性质
1.A B B A
2.A A A
3.A