专题1 函数的概念 解析式及构成(原卷版)
专题1函数-重难点题型(举一反三)(浙教版)(原卷版)
专题5.1 函数-重难点题型【浙教版】y(2)函始时A点与M点重合,让△ABC向右运动,最后A点与N点重合.试写出重叠部分的面积ycm2与MA的长度xcm之间的关系式,并指出其中的常量与变量.【变式1-1】.用同样大小的黑色棋子按如图所示的方式摆图形,按照这样的规律摆下去,则第n个图形的棋子数y =(用含n的代数式表示),其中变量是.【变式1-2】按如图方式摆放餐桌和椅子.用x来表示餐桌的张数,用y来表示可坐人数.(1)题中有几个变量?(2)你能写出两个变量之间的关系吗?【变式1-3】在烧开水时,水温达到100△就会沸腾,下表是某同学做“观察水的沸腾”实验时记录的数据:(1)上表反映了哪两个量之间的关系?哪个是自变量?哪个是因变量?(2)水的温度是如何随着时间的变化而变化的? (3)时间推移2分钟,水的温度如何变化? (4)时间为8分钟,水的温度为多少?你能得出时间为9分钟时,水的温度吗? (5)根据表格,你认为时间为16分钟和18分钟时水的温度分别为多少? (6)为了节约能源,你认为应在什么时间停止烧水?【题型2 判断函数关系】【例2】(2021春•海淀区期末)如图,有一个球形容器,小海在往容器里注水的过程中发现,水面的高度h 、水面的面积S 及注水量V 是三个变量.下列有四种说法:△S 是V 的函数;△V 是S 的函数;△h 是S 的函数,△S 是h 的函数. 其中所有正确结论的序号是( )A .△△B .△△C .△△D .△△【变式2-1】(2021春•开福区校级月考)下列式子中,y 不是x 的函数的是( ) A .y =x 2B .y =|x |C .y =2x +1D .y =±√x (x ≥0)【变式2-2】(2021春•邯郸期末)下列不能表示y 是x 的函数的是( ) A . B . x 0 5 10 15 y33.544.5C .D .【变式2-3】(2021春•贵港期末)下列各曲线中能表示y 不是x 的函数的是( )x 1 3 5 7 y2﹣140.2A .B .C .D .【题型3 函数的关系式】【例3】(2020春•兰州期末)如图所示,在一个边长为12cm 的正方形的四个角都剪去一个大小相等的小正方形,当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化. (1)在这个变化过程中,自变量、因变量各是什么?(2)如果小正方形的边长为xcm ,图中阴影部分的面积为ycm 2,请写出y 与x 的关系式; (3)当小正方形的边长由1cm 变化到5cm 时,阴影部分的面积是怎样变化的?【变式3-1】(2021春•宁津县期末)如图,△ABC 的边BC 长12cm ,乐乐观察到当顶点A 沿着BC 边上的高AD 所在直线上运动时,三角形的面积发生变化.在这个变化过程中,如果三角形的高为x (cm ),那么△ABC 的面积y (cm 2)与x (cm )的关系式是 .【变式3-2】(2021春•垦利区期末)一辆汽车油箱内有油56升,从某地出发,每行驶1千米,耗油0.08升,如果设油箱内剩油量为y (升),行驶路程为x (千米),则y 随x 的变化而变化 (1)在上述变化过程中,自变量是 ;因变量是 .(2)用表格表示汽车从出发地行驶100千米、200千米、300千米、400千米时的剩油量. 请将表格补充完整: 行驶路程x (千米) 100 200 300 400油箱内剩油量y (升)40 24(3)试写出y 与x 的关系式 .(4)这辆汽车行驶350千米时剩油多少升?汽车剩油8升时,行驶了多少千米?【变式3-3】如图,自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm . (1)观察图形填写下表: 链条节数(节) 2 3 4 链条长度(cm )(2)如果x 节链条的总长度是y ,求y 与x 之间的关系式;(3)如果一辆某种型号自行车的链条(安装前)由80节这样的链条组成,那么这根链条完成链接(安装到自行车上)后,总长度是多少cm ?【题型4 求函数的值】【例4】(2020春•万州区期末)若定义f (x )=3x ﹣2,如f (﹣2)=3×(﹣2)﹣2=﹣8.下列说法中:△当f (x )=1时,x =1;△对于正数x ,f (x )>f (﹣x )均成立;△f (x ﹣1)+f (1﹣x )=0;△当且仅当a =2时,f (a ﹣x )=a ﹣f (x ).其中正确的是 .(填序号)【变式4-1】(2021•碑林区校级模拟)变量x ,y 的一些对应值如下表:x … ﹣2﹣1 0 1 23… y…14111419…根据表格中的数据规律,当x =﹣5时,y 的值是( ) A .15B .125C .−15D .−125【变式4-2】(2021•达州)如图是一个运算程序示意图,若开始输入x 的值为3,则输出y 值为 .【变式4-3】(2008•防城港)已知x 为实数.y 、z 与x 的关系如表格所示:根据上述表格中的数字变化规律,解答下列问题:(1)当x 为何值时,y =430?(2)当x 为何值时,y =z ?x y z … … … 3 30×3+70 2×1×8 4 30×4+70 2×2×9 5 30×5+70 2×3×10 6 30×6+70 2×4×11 ………【例5】(2021•三元区校级开学)火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:△火车的长度为120米;△火车的速度为30米/秒;△火车整体都在隧道内的时间为25秒;△隧道长度为750米.其中正确结论的个数有()A.1个B.2个C.3个D.4个【变式5-1】(2021春•番禺区校级期中)小新骑车去学校,骑了一会后车子出了故障,修了一会,然后继续骑车去学校.如果用横坐标表示时间t,纵坐标表示路程s,下列各图能较好地反映s与t之间函数关系的是()A.B.C.D.【变式5-2】(2021春•任城区期末)小华和小明是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校,如图是他们从家到学校已走的路程S(米)和所用时间t(分钟)的关系图,则下列说法中错误的是()A.小明家和学校距离1200米B.小华乘公共汽车的速度是240米/分C.小华乘坐公共汽车后7:50与小明相遇D.小明从家到学校的平均速度为80米/分【变式5-3】(2021•沙坪坝区校级开学)夏季是雷雨高发季节,为缓解暴雨带来的洪灾问题,某村在道路内侧新建了一个排水渠排水(横截面如图),某天突发暴雨,排水渠开始积水,水位上涨,暴雨停歇后,排水渠继续排水至积水全部排出,假设排水速度为5v,进水速度为7v,下列图象中,能反映以上过程排水渠中水位高度h与时间t的关系的大致图象是()A B C.D.【题型6 动点问题的函数图象】【例6】(2021春•济南期中)如图1,在长方形ABCD中,点P从B点出发沿着四边按B→C→D→A方向运动,开始以每秒m个单位匀速运动,a秒后变为每秒2个单位匀速运动,b秒后又恢复为每秒m个单位匀速运动.在运动过程中,△ABP的面积S与运动时间t的函数关系如图2所示,则m、a、b的值分别是()A.m=1,a=5,b=11B.m=1,a=4,b=12C.m=1.5,a=5,b=12D.m=1,a=4,b=11【变式6-1】(2021春•怀安县期末)如图,平行四边形ABCD中,AB=4,BC=3,△DCB=30°,动点E从B点出发,沿B﹣C﹣D﹣A运动至A点停止,设运动的路程为x,△ABE的面积为y,则y与x的函数图象用图象表示正确的是()A.B.C.D.【变式6-2】(2021春•平顶山期末)如图△,四边形ABCD是长方形,动点E从B出发,以1厘米/秒的速度沿着B→C→D→A运动至点A停止.记点E的运动时间为t(秒),△ABE的面积为S(平方厘米),其中S与t的函数关系如图△所示,那么下列说法错误的是()A.AB=3厘米B.长方形ABCD的周长为10厘米C.当t=3秒时,S=3平方厘米D.当S=1.5平方厘米时,t=6秒【变式6-3】(2021春•南海区期末)如图,在正方形ABMF中剪去一个小正方形CDEM,动点P从点A出发,沿A→B→C→D→E→F的路线绕多边形的边匀速运动到点F时停止,则△APF的面积S随着时间t变化的图象大致是()A.B.C.D.。
第7讲函数、一次函数与正比例函数(原卷版)
第7讲函数、一次函数与正比例函数2.初步理解函数的概念,能判断两个变量间的关系,初步形成利用函数的观点认识现实世界的意识3.理解一次函数和正比例函数的概念;4.能根据所给条件写出简单的一次函数表达式.5.了解一次函数两个变量之间的变化规律.在认识一次函数图象的基础上,掌握一次函数图象及其简单性质;6.经历对一次函数图象变化规律的探究过程,学会解决一次函数问题知识精讲1.变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。
2.函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3.函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法用图像表示函数关系的方法叫做图像法。
4.一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。
这时,y 叫做x 的正比例函数。
5.一次函数的图像所有一次函数的图像都是一条直线6.一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。
7.正比例函数的性质一般地,正比例函数kx y =有下列性质:(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大;(2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。
(完整版)高考函数知识点总结(全面)
高考函数总结一、函数的概念与表示 1、函数 (1)函数的定义①原始定义:设在某变化过程中有两个变量x 、y ,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它对应,那么就称y 是x 的函数,x 叫作自变量。
②近代定义:设A 、B 都是非空的数的集合,f :x →y 是从A 到B 的一个对应法则,那么从A 到B 的映射f :A →B 就叫做函数,记作y=f(x),其中B y A x ∈∈,,原象集合A 叫做函数的定义域,象集合C 叫做函数的值域。
B C ⊆(2)构成函数概念的三要素 ①定义域 ②对应法则 ③值域 3、函数的表示方法 ①解析法 ②列表法 ③图象法 注意:强调分段函数与复合函数的表示形式。
二、函数的解析式与定义域1、函数解析式:函数的解析式就是用数学运算符号和括号把数和表示数的字母连结而成的式子叫解析式, 求函数解析式的方法:(1) 定义法 (2)变量代换法 (3)待定系数法(4)函数方程法 (5)参数法 (6)实际问题2、函数的定义域:要使函数有意义的自变量x 的取值的集合。
求函数定义域的主要依据: (1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;如果函数是由一些基本函数通过四则运算而得到的,那么它的定义域是由各基本函数定义域的交集。
3。
复合函数定义域:已知f (x )的定义域为[]b a x ,∈,其复合函数[])(x g f 的定义域应由不等式b x g a ≤≤)(解出。
三、函数的值域 1.函数的值域的定义在函数y=f (x )中,与自变量x 的值对应的y 的值叫做函数值,函数值的集合叫做函数的值域。
2.确定函数的值域的原则①当函数y=f (x )用表格给出时,函数的值域是指表格中实数y 的集合;②当函数y=f (x )用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数y=f(x )用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数y=f (x )由实际问题给出时,函数的值域由问题的实际意义确定。
专题06一次函数(原卷版)
专题06 一次函数知识点1:变量与常量定义:在一个变化过程中,我们称数值发生改变的量为变量,数值始终不变的量为常量. 一般地,在一个变化过程中,如果有两个变量x 和 y ,并且对于 的每一个确定的值, 都有唯一确定的值与其对应,那么我们就说x 是自变量, y 是因变量,y 是x 的函数.如果 当 x=a 时,y=b ,b 那么 a 叫做当自变量 x 的值为a 时的函数值.知识点2:自变量取值范围初中阶段,在一般的函数关系中自变量的取值范围主要考虑以下四种情况: (1)函数关系式为整式形式:自变量取值范围为任意实数; (2)函数关系式为分式形式:分母0 (3)函数关系式含算术平方根:被开方数0; (4)函数关系式含0指数:底数0。
知识点3:函数定义像r 2,40,40s Π===s x y t 这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法,这种式子叫做函数的解析式知识点4:函数的图像 知识点5:正比例函数的定义一般地,形如y=kx(k≠0)函数,叫做正比例函数,其中k叫做比例系数.知识点6:正比例函数图像和性质正比例函数图象与性质用表格概括下:k的符号图像经过象限性质k>0 第一、三象限y随x的增大而增大k<0 第二、四象限y随x的增大而较少知识点7:待定系数法求正比例函数解析式1.正比例函数的表达式为y=kx(k≠0),只有一个待定系数k,所以只要知道除(0,0)外的自变量与函数的一对对应值或图象上一个点的坐标(原点除外)即可求出k的值,从而确定表达式.2.确定正比例函数表达式的一般步骤:(1)设——设出函数表达式,如y=kx(k≠0);(2)代——把已知条件代入y=kx中;(3)求——解方程求未知数k;(4)写——写出正比例函数的表达式知识点8:一次函数的定义如果y=kx+b(k,b是常数,k ≠0 )的函数,叫做一次函数,k叫比例系数。
注意:当b=0时,一次函数y=kx+b 变为y=kx,正比例函数是一种特殊的一次函数。
第1讲 函数的定义域、解析式及分段函数 - 学生版
D.[-1,1)∪(1,2 015] )
5.若函数 y=f(x)的定义域是[0,2],则函数 g(x)= A.[0,1] B.[0,1) C.[0,1)∪(1,4]
角度 3:已知定义域求参数问题 【例】 (1)若函数 f(x)=
x 2 2ax a 的定义域为 R,则 a 的取值范围为________.
3.若函数 f(x)= ax2+abx+b的定义域为{x|1≤x≤2},则 a+b 的值为________. 题型 2 函数解析式的求法
求函数解析式的常见方法 待定系数法 若已知函数的类型(如一次函数、二次函数),根据函数类型设出函数解析式,根 据题设条件,列出方程组,解出待定系数即可 已知 f(h(x))=g(x), 求 f(x)时, 往往可设 h(x)=t, 从中解出 x, 代入 g(x)进行换元, 求出 f(t)的解析式,再将 t 替换为 x 即可 已知 f(h(x))=g(x), 求 f(x)的问题, 往往把右边的 g(x)整理构造成只含 h(x)的式子, 用 x 将 h(x)替换 已知 f(x)满足某个等式,这个等式除 f(x)是未知量外,还有其他未知量,如 f(- 函数方程法 1 x ), f x , 则可根据已知等式再构造其他等式组成方程组, 通过解方程组求出 f(x)
)
fx2-1 (2)已知函数 y=f(x)的定义域是[0,8],则函数 g(x)= 的定义域为________. 2-log2x+1
第 2 页 共 11 页
万家学子教育
黄金数学工作室
【对应训练】 1.(2017·唐山模拟)已知函数 f(x)的定义域是[0,2],则函数 g(x)=f 是________. 2.已知函数 f(x)的定义域为[0,1],值域为[1,2],则函数 f(x+2)的定义域为________,值域为 ________. 1 ,2 3.若函数 y=f(2x)的定义域为 2 ,则 y=f(log2x)的定义域为________. fx+1 4.若函数 y=f(x)的定义域是[1,2 016],则函数 g(x)= 的定义域是( x-1 A.[0,2 015] B.[0,1)∪(1,2 015] C.(1,2 016] f2x 的定义域是( ln x D.(0,1) ) x+ 1 1 x- + f 2 2 的定义域
专题05 函数 5.1函数的三要素 题型归纳讲义-2022届高三数学一轮复习(原卷版)
专题四《函数》讲义5.1函数的三要素知识梳理.函数的概念1.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的三种表示法解析法图象法列表法就是把变量x,y之间的关系用一个关系式y=f(x)来表示,通过关系式可以由x的值求出y的值.就是把x,y之间的关系绘制成图象,图象上每个点的坐标就是相应的变量x,y的值.就是将变量x,y的取值列成表格,由表格直接反映出两者的关系.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.题型一.定义域考点1.具体函数定义域1.函数f(x)=(1﹣)−12+(2x﹣1)0的定义域是()A.(﹣∞,1]B.(−∞,12)∪(12,1)C.(﹣∞,1)D.(12,1)2.函数op=M,g(x)=ln(x2+3x+2)的定义域为N,则M∪∁R N=A.[﹣2,1)B.(﹣2,1)C.(﹣2,+∞)D.(﹣∞,1)考点2.抽象函数定义域3.若函数f(3﹣2x)的定义域为[﹣1,2],则函数f(x)的定义域是.4.函数y=f(x)的定义域为[﹣1,2],则函数y=f(1+x)+f(1﹣x)的定义域为()A.[﹣1,3]B.[0,2]C.[﹣1,1]D.[﹣2,2]考点3.已知定义域求参5.已知函数f(x)=lg(ax2+3x+2)的定义域为R,则实数a的取值范围是.6.若函数f(x)=(2a2+5a+3)x2+(a+1)x﹣1的定义域、值域都为R,则实数a满足()A.a=﹣1或a=−32B.−139<<−1C.a≠﹣1或a≠−32D.a=−32题型二.解析式考点1.待定系数法1.已知函数f(x)是一次函数,且f[f(x)]=9x+4,求函数f(x)的解析式.2.已知f(x)是二次函数,且满足f(0)=1,f(x+1)﹣f(x)=2x,则f(x)的解析式是.考点2.换元法3.已知o−1)=−2,则函数f(x)的解析式为.4.已知f(1−1+)=1−21+2,求f(x)的解析式.考点3.凑配法5.(1)已知f(1)=1−2,求f(x)的解析式;(2)已知f(x+1)=x2+12,求f(x).6.已知f(3x)=4x log23+10,则f(2)+f(4)+f(8)+…+f(210)的值等于.考点4.方程组法7.已知函数f(x)满足f(x)+2f(﹣x)=3x,则f(1)=.8.已知函数f(x),g(x)分别是定义在R上的偶函数和奇函数,f(x)+g(x)=2•3x,则函数f(x)=.考点5.求谁设谁9.已知函数f(x)为奇函数,当x∈(0,+∞)时,f(x)=log2x,(1)求f(x)的解析式;(2)当f(x)>0时.求x的取值范围.10.定义域为R的函数f(x)满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x2﹣x,则当x∈(﹣1,0]时,f(x)的值域为()A.[−18,0]B.[−14,0]C.[−18,−14]D.[0,14]考点6.利用对称求解析式11.下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x)C.y=ln(1+x)D.y=ln(2+x)12.设函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,且f(﹣2)+f(﹣4)=1,则a=()A.﹣1B.1C.2D.4题型三.值域考点1.利用单调性求值域1.下列函数中,与函数op=(15)的定义域和值域都相同的是()A.y=x2+2x,x>0B.y=|x+1|C.y=10﹣x D.=+12.已知函数f(x)=log3(x﹣2)的定义域为A,则函数g(x)=(12)2﹣x(x∈A)的值域为()A.(﹣∞,0)B.(﹣∞,1)C.[1,+∞)D.(1,+∞)考点2.换元法3.函数=2+41−的值域为()A.(﹣∞,﹣4]B.(﹣∞,4]C.[0,+∞)D.[2,+∞)4.函数f(x)=log2(x2﹣2x+3)的值域为()A.[0,+∞)B.[1,+∞)C.R D.[2,+∞)考点3.分离常数5.函数=2r1r1在x∈[0,+∞)上的值域是.6.已知函数op=2+4,则该函数在(1,3]上的值域是()A.[4,5)B.(4,5)C.[133,5)D.[133,5] 7.函数=2+2r2r1的值域是.8.下列求函数值域正确的是()A.函数=5K14r2,x∈[﹣3,﹣1]的值域是{U≠54}B.函数=2−3r1的值域是{U≤−1,≥−15}C.函数=sB+1K2,∈[2,2)∪(2,p的值域是{U≤4K4,≥1K2} D.函数=+1−2的值域是{U−1≤≤2}课后作业.函数的三要素1.函数op=−2+9+10−2B(K1)的定义域为()A.[1,10]B.[1,2)∪(2,10]C.(1,10]D.(1,2)∪(2,10]2.已知函数f(x)=l2,>03,<0,则no14)]的值为()A.19B.13C.﹣2D.3 3.已知o p=2−2,则函数f(x)的解析式为()A.f(x)=x4﹣2x2(x≥0)B.f(x)=x4﹣2x2C.op=−2o≥0)D.op=−24.已知函数f(x)满足2f(x﹣1)+f(1﹣x)=2x﹣1,求:f(x)解析式.5.已知f(x)=(1−2p+3o<1)Bo≥1)的值域为R,那么a的取值范围是()A.(﹣∞,﹣1]B.(﹣1,12)C.[﹣1,12)D.(0,1)6.用min{a,b,c}表示a,b,c三个数中的最小值设f(x)=min{2x,x+2,10﹣x}(x≥0),则f(x)的最大值为.。
专题1第一章集合与函数的概念知识点与基础巩固题(原卷版)高一数学复习巩固练习(人教A版)
专题1人教A 版集合与函数的概念知识点与基础巩固题——寒假作业1(原卷版)集合部分考点一:集合的定义及其关系 基础知识复习 (1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅).(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.考点二:集合的基本运算 基础知识复习1.交集的定义:一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A,B 的交集.记作A ∩B(读作”A 交B ”),即A ∩B={x|x ∈A ,且x ∈B}.2、并集的定义:一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A,B 的并集。
记作:A ∪B(读作”A 并B ”),即A ∪B={x|x ∈A ,或x ∈B}.3、交集与并集的性质:A ∩A = A ,A ∩φ= φ, A ∩B = B ∩A ,A ∪A = A ,A ∪φ= A , A ∪B = B ∪A.4、全集与补集(1)全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。
通常用U 来表示。
(2)补集:设S 是一个集合,A 是S 的一个子集(即A ⊆S ),由S 中 所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集)。
专题-函数的表示(原卷版)
专题3.2 函数的表示知识点一表示函数的三种方法解析法用数学表达式表示两个变量之间的对应关系列表法列出表格来表示两个变量之间的对应关系图象法用图象表示两个变量之间的对应关系知识点二分段函数1.一般地,分段函数就是在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系的函数.2.分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.3.作分段函数图象时,应分别作出每一段的图象.函数的图象的画法(1)若y =f (x )是已学过的函数,则描出图象上的几个关键点,直接画出图象即可,有些可能需要根据定义域进行取舍. (2)若y =f (x )不是所学过的函数之一,则要按:①列表;②描点;③连线三个基本步骤作出y =f (x )的图象. 【例1】作出下列函数的图象并求出其值域. (1)y x =-,{0x ∈,1,2-,3}; (2)2y x=,[2x ∈,)+∞;(3)22y xx =+,[2x ∈-,2).【变式训练1】作出下列各函数的图象: (1)21y x =+,{1x ∈-,0,1,2,3}; (2)2y x =-,[0x ∈,2].【变式训练2】作出下列函数的图象. (1)2y x =,{2x ∈-,1-,0,1,2}; (2)21y x =-,{|11}x x x ∈-<<; (3)||y x =,x R ∈; (4)2y x=,{|14}x x x ∈<<;(5)|5|2y x =-+,x R ∈.【变式训练3】作出下列函数的图象并求出其值域. (1)21y x =+,[0x ∈,2]; (2)2y x=,[2x ∈,)+∞;.(3)22y xx =+,[2x ∈-,2].求函数的解析式(1)换元法:设t =g (x ),解出x ,代入f (g (x )),求f (t )的解析式 (2)配凑法:对f (g (x ))的解析式 (3)待定系数法:若已知f (x )的解析式(4)方程组法(或消元法):当同一个对应关系中的两个之间有互为相反数或互为倒数关系时,可构造方程组求解. 【例2】已知()f x 满足下列条件,分别求()f x 的解析式. (1)已知(1)2f x x x =-()f x ;(2)已知()f x 为二次函数,(0)0f =,(1)()1f x f x x +=++,求()f x ; (3)已知()f x 满足1()2()1f x f x x+-=+,求()f x ; 【变式训练1】(1)已知()f x 是一次函数,且()()()()21323,2101f f f f +=--=-,求()f x 的解析式;(2)已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式.【变式训练2】求下列函数解析式: (1)已知22131(1)x f x x x++=+,求函数()f x 的解析式; (2)已知1(1)2(3)f x f x x x++-=+,求函数()f x 的解析式;(3)已知()f x 是二次函数,且2(1)(1)244f x f x xx ++-=-+,求函数()f x 的解析式.【变式训练3】求下列函数()f x 的解析式. (1)已知1()21x f x x-=+,求()f x ;(2)已知221(12)x f x x --=,求()f x ;(3)已知1()2()59f x f x x+=+,求()f x ;(4)已知()f x 为二次函数,且(0)2f =,(1)()1f x f x x +-=-,求()f x .分段函数求值(1)分段函数求值的方法①先确定要求值的自变量属于哪一段区间. ②然后代入该段的自变量的值(2)已知分段函数的函数值求对应的自变量的值,可分段利用函数【例3】设2,10()[(6)],10x x f x f f x x -⎧=⎨+<⎩,则()5f 的值为( ) A .10 B .11C .12D .13【变式训练1】若函数1,(0)()(2),(0)x x f x f x x +⎧=⎨+<⎩,则(3)f -的值为( ) A .5B .1-C .7-D .2【例4】已知函数1(1)()3(1)x x f x x x +⎧=⎨-+>⎩,则5[()]2f f 的值为( ) A .52B .32C .12D .12-【变式训练1】若2,(0)(),(0)x x f x x x ⎧=⎨-<⎩,则[(2)](f f -=) A .2B .3C .4D .5【例5】设函数2,0(),0x x f x x x -⎧=⎨>⎩,若()9f α=,则α= . 【变式训练1】已知函数21(0)2(0)x x y x x ⎧+=⎨>⎩,若f(a )10=,则a 的值是( ) A .3或3-B .3-或5C .3-D .3或3-或5【变式训练2】已知函数21,0()2,0x x f x x x ⎧+=⎨->⎩,若()5f x =,则x 的值是()A .2-B .2或52-C .2或2-D .2或2-或52-【例6】已知211,0()2(1),0x x f x x x ⎧+⎪=⎨⎪-->⎩使()1f x -成立的x 的取值范围是()A .[4-,2)B .[4-,2]C .(0,2]D .(4-,2]【例7】已知函数21,2()2,2221,2x x f x x x x x x +-⎧⎪=+-<<⎨⎪-⎩(1)(5)f -,(3)f -,5(())2f f -的值.(2)若f (a )3=,求实数a 的值. (3)若()f m m >,求实数m 的取值范围.【变式训练1】已知函数21,2()2,2221,2x x f x x x x x x +-⎧⎪=+-<<⎨⎪-⎩.(1)求5(5),(3),2f f f f⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦的值; (2)若()3f a =,求实数a 的值.【变式训练2】已知函数225,0()2,0x x f x x x x -⎧=⎨+<⎩.(1)求(f f (1))的值;(2)若(|1|)3f a -<,求实数a 的取值范围.分段函数图象的画法(1)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.(2)作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.【例8】已知函数()|24||1|f x x x =+--.(1)画出函数()f x 的图象;(2)若a ,0b >,函数()f x 的最小值为M ,且0a b M ++=,求222a b +的最小值.【例9】给定函数()1f x x =-+,2()(1)g x x =-,x R ∈.(1)画出函数()f x ,()g x 的图象;(2)x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为(){()m x min f x =,()}g x ,请分别用图象法和解析法表示函数()m x .【变式训练1】已知函数()|21|f x x =-,2()3g x x x =--+,x R ∈.(1)在图1中画出函数()f x ,()g x 的图象;(2)定义:x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为(){()m x min f x =,()}g x ,请分别用图象法和解析式法表示函数()m x ; (注:图象法请在图2中表示,本题中的单位长度请自己定义且标明.)(3)写出函数()m x 的单调区间和函数的值域.【变式训练2】已知函数2()43f x x x =-+,()1g x x =-,x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为(){()m x min f x =,()}g x . (1)写出函数()m x 的解析式,并画出它的图象;(2)当[0x ∈,](0)n n >时,若函数()m x 的最大值为1324n -,求实数n的取值集合.分段函数的实际应用(1)当目标在不同区间有不同的计算表达方式时,往往需要用分段函数模型来表示两变量间的对应关系,而分段函数图象也需要分段画.(2)分段函数模型应用的关键是确定分段的各分界点,即明确自变量的取值区间,对每一个区间进行分类讨论,从而写出相应的函数【例10】如图所示,等腰梯形ABCD 的两底分别为2AD a =,BC a =,45∠=︒,作直线MN AD⊥交AD于M,交折线ABCD于N.设AM x=,BAD试将梯形ABCD位于直线MN左侧的面积y表示为x的函数.则y=.【变式训练1】如图,OAB∆位∆是边长为2的正三角形,记OAB于直线(0)=>左侧的图形的面积为()f t.x t t(1)求函数()f t解析式;(2)画出函数()=的图象;y f t(3)当函数()()=-有且只有一个零点时,求a的值.g t f t at【变式训练2】《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额,此项税款按下表分段累计计算:全月应纳税所得额税率(%)不超过1500元的部分3超过1500元至4500元的部分10超过4500元至9000元的部分20(1)若某人全月工资、薪金所得为(012500)元,应纳税为yx x元,写出y与x的函数关系式;(2)若某人一月份纳税145元,那么他当月的工资、薪金所得是多少元.【变式训练3】星期天,刘先生到电信局打算上网开户,经询问,记录了可能需要的三种方式所花费的费用资料,现将资料整理如下:①163普通:上网资费2元/小时;②163A:每月50元(可上网50小时),超过50小时的部分资费2元/小时;③ADSLD:每月70元,时长不限(其他因素忽略不计).请你用所学的函数知识对上网方式与费用问题作出研究:(1)分别写出三种上网方式中所用资费与时间的函数解析式;(2)在同一坐标系内分别画出三种方式所需资费与时间的函数图象;(3)根据你的研究,请给刘先生一个合理化的建议.1.设函数11(0)2()1(0)x x f x x x⎧-⎪⎪=⎨⎪<⎪⎩,若f(a )a =,则实数a 的值为()A .1±B .1-C .2-或1-D .1±或2-2.已知实数0a ≠,函数2,1()2,1x a x f x x a x +<⎧=⎨--⎩,若(1)(1)f a f a -=+,则a 的值为( ) A .34-B .34C .35-D .353.已知函数2(0)()3(0)x x f x x x ⎧=⎨+<⎩,若0(())4f f x =,则0x 的值等于()A .5-或1B .1-C 2D 21-二.填空题(共1小题) 4.设函数22(2)()2(2)x x f x x x ⎧+=⎨>⎩,若0()8f x =,则0x =.三.解答题(共8小题)5.作出函数:函数(3)||y x x =--的图象,并写出函数的单调区间.(用格尺作图)6.依法纳税是每个公民应尽的义务,国家征收个人所得税是分段计算,扣除三险一金后月总收入不超过3500元,免征个人所得税,超过3500元的部分需征税.设全月应纳税所得额为x 元,则x =扣除三险一金后全月总收入3500-元,税率见下表: 级数全月应纳税所得额税率1 不超过1500元的部分 3% 2超过1500元至4500元的部分10%3 超过4500元至9000元的部分20%4 超过9000元至35000元的部分25%5 超过35000元至55000元的部分30%6 超过55000元至80000元的部分35%7 超过80000元的部分45%(Ⅰ)若应纳个人所得税为()f x ,试用分段函数表示1~3级个人所得税()f x 的计算公式;(Ⅱ)某人2012年5月扣除三险一金后总收入为5500元,试求该人此月份应缴纳个人所得税多少元?(Ⅲ)某人六月份应缴纳此项税款500元,则他当月扣除三险一金后总收入为多少元? 7.设函数()|1|()f x kx k R =-∈.(Ⅰ)若不等式()2f x 的解集为1|13x x ⎧⎫-⎨⎬⎩⎭,求k 的值; (Ⅱ)若f (1)f +(2)5<,求k 的取值范围.8.已知()f x 是R 上的偶函数,且当0x 时,2()21f x x x =++.(1)求()f x 的解析式; (2)画出函数()f x 的图象. 9.已知函数()f x 是定义在R 上的偶函数,且当0x时,2()2f x x x =+.现已画出函数()f x 在y 轴左侧的图象,如图所示,请根据图象完成下列各小题. (1)补全函数图象.(2)写出函数()()f x x R ∈的解析式.(3)若函数()()22([1g x f x ax x =-+∈,2]),求函数()g x 的最小值.10.已知函数()f x 是定义在R 上的偶函数,当0x 时,2()2f x x x =+.(1)求函数()f x 的解析式; (2)画出函数()f x 的图象;(3)根据图象写出()f x 的单调区间和值域.11.给定函数()1f x x =+,2()(1)g x x =+,x R ∈,(1)在同一直角坐标系中画出函数()f x ,()g x 的图象; (2)x R ∀∈,用()M x 表示()f x ,()g x 中的较大者,记为(){M x max f=()x ,()}g x .12.已知函数2()|2|f x x x =-+.(1)去掉绝对值,写出()f x 的分段解析式; (2)画出()f x 的图象,并写出值域.21。
2022年高考数学函数的微专题复习专题01 函数图象的识别与辨析(解析版)
2022年高考数学函数的微专题复习专题01函数图象的识别与辨析题型一、由函数的解析式识别图象函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项例1、【2020年天津卷】.函数241xy x =+的图象大致为()A.C.变式1、【2020年浙江卷】.函数y =x cos x +sin x 在区间[–π,+π]的图象大致为()A. B.C. D.变式2、(江苏省连云港市2021届高三调研)函数3ln |2|()(2)-=-x f x x 的部分图象大致为().A .B .C .D .变式3、(2021·山东德州市·高三期末)函数22sin 3()cos x xf x x x +=+在[,]-ππ的图象大致为()A .B .C .D .题型二、由函数的图象辨析函数的解析式由函数的图象确定解析式,首先要观察函数的图象,可以从以下几个方面入手:(1)观察函数的对称性,判断函数的奇偶性;(2)观察图象所在象限,判断函数的定义域和值域;(3)从图象中观察一些特殊位置以及图象的发展趋势;结合上面的信息进行对函数解析式的排除。
(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项例2、(山东省2020-2021学年高三调研)已知函数()y f x =的图象如图所示,则此函数可能是()A .()2e e 2x xf x x x --=+-B .()2e e 2x xf x x x --=+-C .()22e e x xx x f x -+-=-D .()22e e x xx x f x -+-=-变式1、(2021·江苏苏州市·高三期末)在数学的研究性学习中,常利用函数的图象研究函数的性质,也利用函数的解析式研究函数的性质,下列函数的解析式(其中 2.71828e =⋅⋅⋅为自然对数的底数)与所给图象最契合的是()A .22sin 1x y x =+B .221xy x =+C .x xxx e e y e e ---=+D .x xxxe e y e e --+=-变式2、(山东省青岛市2020-2021学年高三模拟)已知函数()f x 的部分图象如下所示,则()f x 可能为()A .cos 1()22x xx f x -+=+B .cos sin ()22x xx x x f x -+=+C .cos sin ()22x xx x x f x -+=-D .cos sin ()22x xx x x f x -+=+题型三、情景问题中解析式情景问题中的解析式问题关键要从问题情景中挖掘有用的信息,从情景中理解所给的函数解析式所具有的特点,然后再结合具体的解析式研究性质等问题。
函数专题1函数的概念及解析式的一般构成
《必修1》函数专题一、函数的概念及其解析式的一般构成『知识与方法梳理』☟1.函数的概念:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一 确定的数f(x )和它对应,那么就称f:A →B 为从集合A 到集合B 的一个函数.相关词: (1)定义域: A ; (2)值域: {y | y =f(x ), x ∈A } .2.映射的概念:设A ,B 是两个集合,如果按照某种对应关系f ,对于集合A 中的_任何一个_元素,在集合B 中都有唯一确定的元素和它对应,那么这样的_对应_(包括集合A ,B ,以及集合A 到集合B 的对应关系f)叫做集合A 到集合B 的映射,记作:“ f :A →B ”.3. 几种常见初等函数的解析式函 数 解析式 参数 定义域 常函数 y = b b ∈R R 绝对值 y=a|x| a ≠0 R反比例 y = k xk ≠0 (- ∞, 0) ∪(0, +∞)一次函数y = a x + b a ≠0 R二次函数y = a x 2 + b x + ca ≠0 Ry =a(x - h)2+ k 顶点:(h,k) y = a(x -x 1)(x -x 2)零点: x 1, x 2 指数函数 y = a x a ≠1,a>0 R 对数函数y = log a xa ≠1,a>0 (0,+∞) 幂函数y = x αα为正整数 Rα为负整数 (- ∞, 0) ∪(0, +∞)α为正分数 [0, +∞) α为负分数(0, +∞)4.函数解析式的特殊构成:(1)分段函数:定义域分成几段,每段解析式不同.(2)复合函数:形如f[g(x )],内函数g(x )的函数值作为外函数f(x )的自变量取值,计算外函数的值即为复合函数值.(4)变换函数:经过平移或伸缩及对称等变换得到的函数.(3)合成函数:由几个已知函数(初等或其复合与变换函数)通过加减乘除等基本运算形成的函数.(5)周期函数:存在非零常数T ,使得对函数定义域内的任意数x 都有f(x +T)=f(x )成立.5.解析式运算性质: (1)根式运算性质:()n n a = a (n 为偶数时a ≥0,否则无意义); nn a =⎩⎨⎧为偶数)为奇数)n a n a ( ||( .(n ∈N*)(2)分数指数幂与根式换算:(m,n ∈N*,n>1))m na (a ≥0) = n a m ; mn a -(a >0) = 1n am. (3)指数式与对数式互化(a>0, a ≠1,b>0):a m= b ⇔ log a b=m (4)指数式运算性质(a>0, b>0) a r a s =a r+s (a r )s =a rs (ab)r = a r b ra r a s =a r-s (ab )r = arbr(5)对数式运算性质(m,a,b>0,a,m ≠1,M>0, N>0)log a (M ⋅N )= log a M+log a N, log a M N =log a M - log a N, log m blog ma =log a b,log a M n = n log a M , a log a M = M, log a 1= 0, log a a= 1.6.常识知识与方法:(1)分数指数幂的底:负数不能像正数那样定义分数指数幂(否则会造成运算矛盾),.零只能定义正的分数指数幂。
中考数学:一次函数的性质与应用问题真题+模拟(原卷版北京专用)
中考数学一次函数的性质与应用问题【方法归纳】(1)一次函数与方程、不等式之间的关系:利用待定系数法确定一次函数的解析式,一次函数与x轴和y轴交点、不等式的解集、一次函数的平移、参数的确定等、(2)一次函数与几何图形的面积问题:首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(3)一次函数的优化问题:通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(4)用函数图象解决实际问题:从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.2.一次函数的应用(1)分段函数问题:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.(2)函数的多变量问题:解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.(3)常见题型:行程问题、表格问题、图象问题、最大利润问题、方案问题常用的解题思路:①建立函数模型的方法;②分段函数思想的应用.【典例剖析】【例1】(2022·北京·中考真题)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点(4,3),(−2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.【例2】(2021·北京·中考真题)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图x的图象向下平移1个单位长度得到.象由函数y=12(1)求这个一次函数的解析式;(2)当x>−2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.【真题再现】必刷真题,关注素养,把握核心1.(2016·北京·中考真题)如图,在平面直角坐标系xOy中,过点A(−6,0)的直线l1与直线l2:y= 2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.2.(2019·北京·中考真题)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=−k分别交于点A,B,直线x=k与直线y=−k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.3.(2020·北京·中考真题)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.【模拟精练】一、解答题1.(2022·北京房山·二模)已知,在平面直角坐标系xOy中,直线l:y=ax+b(a≠0)经过点A(1,2),与x轴交于点B(3,0).(1)求该直线的解析式;(2)过动点P(0,n)且垂直于y轴的直线与直线l交于点C,若PC≥AB,直接写出n的取值范围.2.(2022·北京朝阳·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=2x的图象平移得到,且经过点(2,2).(1)求这个一次函数的表达式;(2)当x<2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.3.(2022·北京东城·二模)如图,在平面直角坐标系xOy中,双曲线y=k(k≠0)经过点xA(2,−1),直线l:y=−2x+b经过点B(2,−2).(1)求k,b的值;(2)过点P(n,0)(n>0)作垂直于x轴的直线,与双曲线y=k(k≠0)交于点C,与直线l交于点xD.①当n=2时,判断CD与CP的数量关系;②当CD≤CP时,结合图象,直接写出n的取值范围.4.(2022·北京北京·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=−x的图象平移得到,且经过点(1,1).(1)求这个一次函数的表达式;(2)当x>−1时,对于x的每一个值,函数y=mx−1(m≠0)的值小于一次函数y=kx+b的值,直接写出m的取值范围.5.(2022·北京丰台·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移4个单位长度得到.(1)求这个一次函数的解析式;(2)一次函数y=kx+b的图象与x轴的交点为A,函数y=mx(m<0)的图象与一次函数y= kx+b的图象的交点为B,记线段OA,AB,BO围成的区域(不含边界)为W,横、纵坐标都是整数的点叫做整点,若区域W内恰有2个整点,直接写出m的取值范围.6.(2022·北京密云·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点A(0,−3)和点B(5,2).(1)求这个一次函数的表达式;(2)当x≥2时,对于x的每一个值,函数y=mx+2(m≠0)的值小于一次函数y=kx+b的值,直接写出m的取值范围.7.(2022·北京西城·二模)在平面直角坐标系xOy中,一次函数y=−x+b的图象与x轴交于点(4,0),且与反比例函数y=m的图象在第四象限的交点为(n,−1).x(1)求b,m的值;<y p<4,连接OP,结(2)点P(x p,y p)是一次函数y=−x+b图象上的一个动点,且满足mx p合函数图象,直接写出OP长的取值范围.8.(2022·北京平谷·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由x平移得到,且过点(0,−1).函数y=12(1)求这个一次函数y=kx+b(k≠0)的表达式;(2)当x>−2时,对于x的每一个值,函数y=mx+1的值大于一次函数y=kx+b(k≠0)的值,求m的取值范围.9.(2022·北京东城·一模)对于平面直角坐标系xOy中的点C及图形G,有如下定义:若图形G上存在A,B两点,使得△ABC为等腰直角三角形,且∠ABC=90°,则称点C为图形G的“友好点”.(1)已知点O(0,0),M(4,0),在点C1(0,4),C2(1,4),C3(2,−1)中,线段OM的“友好点”是_______;(2)直线y=−x+b分别交x轴、y轴于P,Q两点,若点C(2,1)为线段PQ的“友好点”,求b 的取值范围;(3)已知直线y=x+d(d>0)分别交x轴、y轴于E,F两点,若线段EF上的所有点都是半径为2的⊙O的“友好点”,直接写出d的取值范围.10.(2022·北京昌平·二模)在平面直角坐标系xOy中,直线y=kx+b(k≠0)与直线y=x平行,且过点(2,1).(1)求这个一次函数的解析式;(2)直线y=kx+b(k≠0)分别交x,y轴于点A,点B,若点C为x轴上一点,且S△ABC=2,直接写出点C的坐标.11.(2022·北京顺义·一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象平x,且经过点A(2,2).行于直线y=12(1)求这个一次函数的表达式;(2)当x<2时,对于x的每一个值,一次函数y=kx+b(k≠0)的值大于一次函数y=mx−1(m≠0)的值,直接写出m的取值范围.x+b与直线l2:y=2x 12.(2022·北京石景山·一模)在平面直角坐标系xOy中,直线l1:y=12交于点A(m,n).(1)当m=2时,求n,b的值;(2)过动点P(t,0)且垂直于x轴的直线与l1,l2的交点分别是C,D.当t≤1时,点C位于点D上方,直接写出b的取值范围.13.(2022·北京市十一学校二模)在平面直角坐标系xOy中,已知点P(1,2),Q(−2,2),函.数y=mx(1)当函数y=m的图象经过点Q时,求m的值并画出直线y=-x-m.x(2)若P,Q两点中恰有一个点的坐标(x,y)满足不等式组{y>mxy<−x−m(m<0),求m的取值范围.14.(2022·北京丰台·一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=2x的图象平移得到,且经过点(2,1).(1)求这个一次函数的解析式;(2)当x>0时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.15.(2022·北京·东直门中学模拟预测)如图,在平面直角坐标系xOy中,点A(1,4),B(3,m).(1)如果点A,B均在反比例函数y1=kx的图象上,求m的值;(2)如果点A,B均在一次函数y2=ax+b的图象上,①当m=2时,求该一次函数的表达式;②当x≥3时,如果不等式mx−1>ax+b始终成立,结合函数图象,直接写出m的取值范围.16.(2022·北京一七一中一模)在平面直角坐标系xOy中,直线l与双曲线y=kx(k≠0)的两个交点分别为A(−3,−1),B(1,m).(1)求k和m的值;(2)求直线l的解析式;(3)点P为直线l上的动点,过点P作平行于x轴的直线,交双曲线y=k(k≠0)于点Q.当点Q位x于点P的左侧时,求点P的纵坐标n的取值范围.17.(2022·北京市燕山教研中心一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0) x的图象向上平移3个单位长度得到.的图象由函数y=12(1)求这个一次函数的解析式;(2)当x>2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.18.(2022·北京平谷·一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点(﹣1,0),(0,2).(1)求这个一次函数的表达式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值小于一次函数y=kx+b(k≠0)的值,直接写出m的取值范围.19.(2022·北京门头沟·一模)我们规定:在平面直角坐标系xOy中,如果点P到原点O的距离为a,点M到点P的距离是a的整数倍,那么点M就是点P的k倍关联点.(1)当点P1的坐标为(−1.5,0)时,①如果点P1的2倍关联点M在x轴上,那么点M的坐标是;②如果点M(x,y)是点P1的k倍关联点,且满足x=−1.5,−3≤y≤5.那么k的最大值为________;(2)如果点P2的坐标为(1,0),且在函数y=−x+b的图象上存在P2的2倍关联点,求b的取值范围.20.(2022·北京朝阳·一模)在平面直角坐标系xOy中,对于直线l:y≡kx+b,给出如下定义:若直线l与某个圆相交,则两个交点之间的距离称为直线l关于该圆的“圆截距”.(1)如图1,⊙O的半径为1,当k=1,b=1时,直接写出直线l关于⊙O的“圆截距”;(2)点M的坐标为(1,0),①如图2,若⊙M的半径为1,当b=1时,直线l关于⊙M的“圆截距”小于4√5,求k的取值5范围;②如图3,若⊙M的半径为2,当k的取值在实数范围内变化时,直线l关于⊙M的“圆截距”的最小值为2,直接写出b的值.21.(2022·北京房山·一模)如图1,一次函数y=kx+4k(k≠0)的图象与x轴交于点A,与y 轴交于点B,且经过点C(2,m).(1)当m=9时,求一次函数的解析式并求出点A的坐标;2(2)当x>-1时,对于x的每一个值,函数y=x的值大于一次函数y=kx+4k(k≠0)的值,求k 的取值范围.22.(2022·北京房山·一模)如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P,Q两点(Q在P,H之间).我们把点P称为⊙I关于直线a的“远点”,把PQ·PH 的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4),半径为1的⊙O与两坐标轴交于点A,B,C,D.①过点E作垂直于y轴的直线m﹐则⊙O关于直线m的“远点”是点__________________(填“A”,“B”,“C”或“D”),⊙O关于直线m的“特征数”为_____________;②若直线n的函数表达式为y=√3x+4,求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy、中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,√3为半径作⊙F.若⊙F与直线l相离,点N(–1,0)是⊙F关于直线l的“远点”,且⊙F关于直线l的“特征数”是6√6,直接写出直线l的函数解析式.23.(2022·北京·中国人民大学附属中学分校一模)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1−x2|⩾|y1−y2|,则点P1与点P2的“非常距离”为|x1−x2|;若|x1−x2|<|y1−y2|,则点P1与点P2的“非常距离”为|y1−y2|.(1)已知点A(−1,0),B为y轴上的一个动点,2①若点A与点B的“非常距离”为4,直接写出点B的坐标:;②求点A与点B的“非常距离”的最小值;(2)已知C是直线y=1x+2上的一个动点,2①若点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②若点E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.24.(2022·北京市第一六一中学分校一模)在平面直角坐标系xOy中,直线l1:y=﹣2x+6与y轴交于点A,与x轴交于点B,二次函数的图象过A,B两点,且与x轴的另一交点为点C,BC=2;(1)求点C的坐标;(2)对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2>2时,总有y1>y2.①求二次函数的表达式;②设点A在抛物线上的对称点为点D,记抛物线在C,D之间的部分为图象G(包含C,D两点).若一次函数y=kx﹣2(k≠0)的图象与图象G有公共点,结合函数图象,求k的取值范围.25.(2022·北京通州·一模)已知一次函数y1=2x+m的图象与反比例函数y2=k(k>0)的x图象交于A,B两点.(1)当点A的坐标为(2,1)时.①求m,k的值;②当x>2时,y1______y2(填“>”“=”或“<”).(2)将一次函数y1=2x+m的图象沿y轴向下平移4个单位长度后,使得点A,B关于原点对称,求m的值26.(2022·北京西城·xOy中,直线l1:y=kx+b与坐标轴分别交于A(2,0),B(0,4)两点.将直线l1在x轴上方的部分沿x轴翻折,其余的部分保持不变,得到一个新的图形,这个图形与直线l2:y=m(x−4)(m≠0)分别交于点C,D.(1)求k,b的值;(2)横、纵坐标都是整数的点叫做整点.记线段AC,CD,DA围成的区域(不含边界)为W.①当m=1时,区域W内有______个整点;②若区域W内恰有3个整点,直接写出m的取值范围.27.(2022·北京海淀·一模)在平面直角坐标系xOy中,二次函数y=ax2−2ax(a≠0)的图象经过点A(−1,3).(1)求该二次函数的解析式以及图象顶点的坐标;(2)一次函数y=2x+b的图象经过点A,点(m,y1)在一次函数y=2x+b的图象上,点(m+4,y2)在二次函数y=ax2−2ax的图象上.若y1>y2,求m的取值范围.28.(2022·北京十一学校一分校一模)在平面直角坐标系xOy中,函数y=k的图象与直线yx=mx交于点A(2,2).(1)求k,m的值;(2)点P的横坐标为n,且在直线y=mx上,过点P作平行于x轴的直线,交y轴于点M,交(x>0)的图象于点N.函数y=kx①n=1时,用等式表示线段PM与PN的数量关系,并说明理由;②若0<PN≤3PM,结合函数的图象,直接写出n的取值范围.29.(2022·北京·东直门中学模拟预测)在平面直角坐标系xOy中,对于点P(x1,y1),给出如下定义:当点Q(x2,y2)满足x1+x2=y1+y2时,称点Q是点P的等和点.已知点P(2,0).(1)在Q1(0,2),Q2(−2,−1),Q3(1,3)中,点P的等和点有______;(2)点A在直线y=−x+4上,若点P的等和点也是点A的等和点,求点A的坐标;(3)已知点B(b,0)和线段MN,对于所有满足BC=1的点C,线段MN上总存在线段PC上每个点的等和点.若MN的最小值为5,直接写出b的取值范围.30.(2022·北京市第五中学分校模拟预测)在平面直角坐标系xOy中,直线l1:y=ax(a≠0)过点A(﹣2,1),直线l2:y=mx+n过点B(﹣1,3).(1)求直线l的解析式;(2)用含m的代数式表示n;(3)当x<2时,对于x的每一个值,函数y=ax的值小于函数y=mx+n的值,求m的取值范围.。
3.1.1 函数的概念(教材完美复刻)课件 人教A版2019版必修一 原创精品
例2已知函数f ( x) x 3 1 , x2
(1) 求函数的定义域;
(2) 求f (3),
f
2 3
的值;
(3) 当a 0时,求f (a), f (a 1)的值.
(1) 使根式 x 3有意义的实数x的集合是{ x | x ≥ 3},
吗?如果是,你会用怎样的语言来刻画这个函数?
这里, y的取值范围是数集A4 {2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015};根据恩格尔系数的定义可知, r的取值范围是数集 B4 {r | 0 r ≤1}. 对于数集A4中的任意一个年份y, 根据表3.1 1所给定 的对应关系, 在数集B4中都有唯一确定的恩格尔系数r与之对应. 所以, r是y的函数.
且炮弹据地面的高度h(单位:m)与时间t(单位:s)的关系为:
h 130t 5t 2
①
求①所表示的函数的定义域与值域, 并用函数定义描述
定义域为A {t | 0 ≤ t ≤ 26}, 值域为B {h | 0 ≤ h ≤ 845},
从问题的实际意义可知, 对于数集A中的任意一个时间t, 按照对应关系,
你能根据图3.1-1找到中午12时的AQI的值吗?
问题4 国际上常用恩格尔系数r
r
食物支出金额 总支出金额
反映一个地区人民
生活质量的高低, 恩格尔系数越低, 生活质量越高. 表3.1 1是我国某省
城镇居民恩格尔系数变化情况, 从中可以看出, 该省城镇居民的生活质
量越来越高.
表3.1-1 我国某省城镇居民恩格尔系数变化情况
(完整版)高三一轮复习函数专题1---函数的基本性质
函数专题1、函数的基本性质复习提问:1、如何判断两个函数是否属于同一个函数。
2、如何求一个函数的定义域(特别是抽象函数的定义域问题)3、如何求一个函数的解析式。
(常见方法有哪些)4、如何求函数的值域。
(常见题型对应的常见方法)5、函数单调性的判断,证明和应用(单调性的应用中参数问题)6、函数的对称性(包括奇偶性)、周期性的应用7、利用函数的图像求函数中参数的范围等其他关于图像问题 知识分类一、函数的概念:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. 1、试判断以下各组函数是否表示同一函数?(1)f (x )=2x ,g (x )=33x ;(2)f (x )=x x ||,g (x )=⎩⎨⎧<-≥;01,01x x(3)f (x )=1212++n n x ,g (x )=(12-n x )2n -1(n ∈N *);(4)f (x )=x1+x ,g (x )=x x +2;(5)f (x )=x 2-2x -1,g (t )=t 2-2t -1.二、函数的定义域(请牢记:凡是说定义域范围是多少,都是指等式中变量x 的范围) 1、求下列函数的定义域:(1)y=-221x +1(2)y=422--x x (3)x x y +=1 (4)y=241+-+-x x(5)y=3142-+-x x (8)y=3-ax (a为常数)2、(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域; (2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;3、若函数)(x f y =的定义域为[ 1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 5、已知函数682-+-=k x kx y 的定义域为R ,求实数k 的取值范围。
八年级数学下册期中期末-专题01 一次函数的概念与图像(真题测试)(原卷版)
专题01 一次函数的概念与图像【真题测试】一、选择题1.(松江2018期中13)下列函数中,是一次函数的是( ) A.11y x=+; B.2y x =-; C.()y kx b k b =+、是常数; D.22y x =+. 2.(奉贤2018期末1)下列函数中,一次函数是( ) A. B. C.11y x =+ D.22y x =-3.(浦东四署2018期中1)下列函数中,是一次函数的是( )(A )21+=xy ; (B )2+=x y ; (C )22y x =+; (D )y kx b =+ 4.(长宁2018期末1)函数y =(k -2)x +3是一次函数,则k 的取值范围是( )A. B. C. D.5.(松江2018期中14)如图,一次函数y kx b =+的图像经过(1,3),(2,0)两点,那么当3y >时,x 的取值范围是( )A.0x <;B.2x <;C.1x >;D.1x <.2yx O P (1,3)6. (长宁2018期末2)函数y =2x -1的图象经过( )A. 一、二、三象限;B. 二、三、四象限;C. 一、三、四象限;D. 一、二、四象限;7. (松江2019期中2)一次函数y=﹣2x+1的图象不经过下列哪个象限( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 8.(闵行2018期末1)一次函数y =3x ﹣2的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限9.(嘉定2019期末1)直线23y x =-的截距是( )A. – 3;B. – 2;C. 2;D. 3.10. (松江2019期中5)一次函数的图像大致是( ) A. B. C. D.11.(松江2018期中17)一次函数12y ax b y bx a =+=+与在同一坐标系中的图像可能是( )C D O x y y x O O x y yx OB A12.(浦东四署2018期中6)如图,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,把AOB △绕点A 顺时针旋转90°后得到AO B ''△,则点B '的坐标是 ( ) (A )(3,4) (B )(4,5) (C )(7,4) (D )(7,3)二、填空题13. (长宁2018期末7)已知函数f (x )=+1,则f ()=______. 14.(长宁2019期末6)已知函数224(5)1m y m x m -=-++,若它是一次函数,则m = .15.(普陀2018期中7)函数y =-2x +3在y 轴上的截距为______.16.(崇明2018期中6)一次函数26y x =-在y 轴上的截距是 .17.(松江2019期中8)一次函数的图像在y 轴上的截距是_____________.18.(闵行2018期末7)已知一次函数y =2(x ﹣2)+b 的图象在y 轴上的截距为5,那么b = .19.(黄浦2018期中15)如果一次函数y =-3x +m -1的图象不经过第一象限,那么m 的取值范围是______20. (奉贤2018期末9)一次函数y =kx +3的图象不经过第3象限,那么k 的取值范围是______21.(金山2018期中9)将直线21y x =--向上平移4个单位,所得直线的表达式是 .22.(浦东四署2019期中11)将直线31y x =--沿y 轴向下平移3个单位,所得直线的表达式为 .23.(普陀2018期末10)将直线y =﹣2x ﹣2向上平移5个单位后,得到的直线为 .24.(青浦2018期末8)把函数y =2x 的图象向右平移1个单位长度,得到的函数图象解析式为 .25.(浦东四署2019期末11)如果将直线112y x =+平移,使其经过点(0,2),那么平移后所得直线的表达式是 .26. (杨浦2019期中3)直线b kx y +=与15+-=x y 平行,且经过点(2,1),则k= b= .27. (普陀2018期中10)已知直线y =kx +b 如图所示,当y <0时,x 的取值范围是______.28. (杨浦2019期中4)已知,一次函数b kx y +=的图像经过点A (2,1)(如下图所示),当1y ≥时,x 的取值范围是 .21O A (2,1)XY29.(嘉定2019期末8)已知函数37y x =-+,当2x >时,函数值y 的取值范围是 .30.(杨浦2019期中1)一次函数72--=x y 与x 轴的交点是 .31.(崇明2018期中10)直线334y x =-与x 轴和y 轴的交点分别为A 、B ,那么线段AB 的长为 .32.(浦东四署2018期中9一次函数的图像经过点(0,2)、(–2,0),这个一次函数的解析式是 . 33. (松江2019期中16)函数y kx b =+(k 、b 为常数)的图象如图所示,则关于x 的不等式0kx b +>的解集是 .34. (长宁2018期末10)如图,一次函数y =kx +b (k ≠0)的图象经过点(2,0),则关于x 的不等式kx +b >0的解集是______.35. (普陀2018期中17)如图,在直角坐标系xOy 中,点A 的坐标是(2,0)、点B 的坐标是(0,2)、点C 的坐标是(0,3),若直线CD 的解析式为y =-x +3,则S △ABD 为______.三、解答题36.(闵行2018期末22)已知直线y =kx +b 经过点A (﹣20,5)、B (10,20)两点.(1)求直线y =kx +b 的表达式;(2)当x 取何值时,y >5.37. (松江2019期中23)已知一次函数y=kx+b (k 、b 是常数)的图像平行于直线3y x =-,且经过点(2,-3).(1)求这个一次函数的解析式;(2)求这个一次函数与两坐标轴所围成的图形面积.38. (浦东2018期末21)已知直线y =kx +b 与直线13y x k =-+都经过点A (6,-1),求这两条直线与x 轴所围成的三角形面积.39.(金山2018期中23)已知一次函数的图像经过点A (-3,2),且平行于直线41y x =+.(1)求这个函数解析式;(2)求该一次函数的图像与坐标轴围成的图形面积.40.(崇明2018期中28)已知:如图,在直角坐标平面中,点A 在x轴的负半轴上,直线y kx =+点A ,与y 轴相交于点M ,点B 是点A 关于原点的对称点,过点B 的直线BC x ⊥轴,交直线y kx =+于点C ,如果60MAO ∠=︒.(1)求直线AC 的表达式;(2)如果点D 在直线AC 上,且ABD ∆是等腰三角形,请求出点D 的坐标.41.(松江2018期中27)如图,直线y =+与x 轴相交于点A,与直线y =相交于点P.(1)求点P 的坐标;(2)请判断OPA ∆的形状并说明理由;(3)动点E 从原点O 出发,以每秒1个单位的速度沿着O P A →→的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF x ⊥轴于F ,EB y ⊥轴于B ,设运动t 秒时,矩形EBOF 与OPA ∆重叠部分的面积为S ,求S 与t 之间的函数关系式.42.(浦东四署2018期中26)将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形(也称为直线的坐标三角形).如图,一次函数y=kx-7的图像与x、y轴分别交于点A、B,那么△ABO为此一次函数的坐标三角形(也称为直线AB的坐标三角形).(1)如果点C在x轴上,将△ABC沿着直线AB翻折,使点C落在点D(0,18)上,求直线BC的坐标三角形的面积;(2)如果一次函数y=kx-7的坐标三角形的周长是21,求k值;(3)在(1)(2)条件下,如果点E的坐标是(0,8),直线AB上有一点P,使得△PDE周长最小,且点P正好落在某一个反比例函数的图像上,求这个反比例函数的解析式.。
考点09 一次函数的应用-备战2023届中考数学一轮复习考点梳理(原卷版)
考点09 一次函数的应用一次函数的实际应用在中考中更多的是以简答题的形式出题,选择题、填空题多考察一次函数图象的理解和信息提取,并且多考行程类实际应用题。
简答题在出题时也多和方程、不等式结合,考察对象的方案设计和决策等。
在考生复习此考点时,需要多注意一次函数图象具体意义的,熟练掌握根据已知条件确定一次函数的表达式的方法,并能根据一次函数的性质解决简单的实际问题。
一、一次函数图象信息类问题二、利用一次函数进行方案设计与决策三、一次函数与几何的结合问题考向一:一次函数图象信息类问题一.一次函数图象与性质的应用解题要点:1.明确题目中图象的横、纵坐标表示的意义;2.理解并能准确应用图象中的拐点的意义;3.理解函数图象的变化趋势、倾斜程度各表示什么意义;二.分段函数图象问题解题要点:1.读懂每段图象的意义,从图象中获取信息,2.注意图象中的一些特殊点的实际意义;1.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是( )A.两车同时到达乙地B.轿车行驶1.3小时时进行了提速C.货车出发3小时后,轿车追上货车D.两车在前80千米的速度相等2.已知张老师家、超市、书店在同一条直线上.下面的图象反应的过程是:张老师晚饭后从家里散步到超市,在超市停留了一会儿后又去书店看书,看会儿书觉得有点晚了,就快步走回家.图中x表示张老师离开家的时间,y表示张老师离开家的距离.根据图象提供的信息,下列说法错误的是( )A.张老师家离超市1.5kmB.张老师在书店停留了30minC.张老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D.张老师从书店到家的平均速度是10km/h3.公路旁依次有A,B,C三个村庄,小明和小红骑自行车分别从A村、B村同时出发匀速前往C村(到了C村不继续往前骑行,也不返回),如图所示,l1,l2分别表示小明和小红与B村的距离s(km)和骑行时间t(h)之间的函数关系,下列结论:①A,B两村相距12km;②小明每小时比小红多骑行8km;③出发1.5h后两人相遇;④图中a=1.65.其中正确的是( )A.②④B.①③④C.①②③D.①②③④4.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x的函数关系图象如图所示:(1)根据图象,求出y1,y2关于x的函数关系式.(2)若设两车间的距离为S(km),请写出S关于x的函数关系式.(3)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.考向二:利用一次函数进行方案设计与决策一次函数与方程(组)、不等式的实际应用解题要点:1.利用图象交点的意义及图象关系将实际问题转化为一次函数问题2.在解题中要分清图象所对应的实际问题中的参量,同时要注意自变量的取值范围3.利用一次函数的性质进行方案设计与决策,一般先求出函数表达式,结合不等式求出自变量的取值范围,然后再利用函数的增减性或函数图象进行决策。
第一节 函数的概念及表示 【高考文数专题--函数的概念与基本初等函数】
5.已知函数f(x)=ax3-2x的图象过点(-1,4),则f(2)=________. 解析:∵函数f(x)=ax3-2x的图象过点(-1,4), ∴4=-a+2,∴a=-2,即f(x)=-2x3-2x, ∴f(2)=-2×23-2×2=-20. 答案:-20
三、“基本思想”很重要 1.(整体代换)已知f(2x+1)=4x2+3x+2,则f(x)=________.
[过关训练] 1.已知f( x+1)=x-2 x,则f(x)=________.
解析:法一:换元法 令t= x+1,则t≥1,x=(t-1)2, 代入原式有f(t)=(t-1)2-2(t-1)=t2-4t+3, 所以f(x)=x2-4x+3(x≥1). 法二:配凑法 f( x+1)=x+2 x+1-4 x-4+3 =( x+1)2-4( x+1)+3, 因为 x+1≥1,所以f(x)=x2-4x+3(x≥1). 答案:x2-4x+3(x≥1)
=f(2-3)=f(-1)=(-1)2-2-1
=12.
[答案] D
[解题方略] 求分段函数的函数值的方法
先确定要求值的自变量的取值属于哪一段区间,然后代入该段的解析式 求值.当出现f(f(a))的形式时,应从内到外依次求值.
题点(二) 与方程结合求参数
[例 2] 已知函数 f(x)=2xx2+ +1a, x,x<x≥1,1, 若 f(f(0))=4a,则实数 a= (
答案:A
()
3.(好题分享——新人教A版必修第一册P72T1改编) 函数f(x)=x3+x4+ 16-x2的定义域是________. 答案:(-4,4]
4.已知函数f(x)=2x-3,x∈{x∈N |1≤x≤5},则函数f(x)的值域为______. 解析:∵x=1,2,3,4,5,∴f(x)=2x-3=-1,1,3,5,7. ∴f(x)的值域为{-1,1,3,5,7}. 答案:{-1,1,3,5,7}
第4章《一次函数》(原卷版)
20222023学年北师大版数学八年级上册章节考点精讲精练第4章《一次函数》知识点01:函数的相关概念一般地,在一个变化过程中. 如果有两个变量 与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说 是自变量,是的函数.是的函数,如果当=时=,那么叫做当自变量为时的函数值. 函数的表示方法有三种:解析式法,列表法,图象法.知识点02:一次函数的相关概念x y x y x y x y x x a y b b a 知识互联网知识导航一次函数的一般形式为,其中、是常数,≠0.特别地,当=0时,一次函数即(≠0),是正比例函数.知识点03:一次函数的图象及性质1、函数的图象如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.细节剖析:直线可以看作由直线平移||个单位长度而得到(当>0时,向上平移;当<0时,向下平移).说明通过平移,函数与函数的图象之间可以相互转化. 2、一次函数性质及图象特征掌握一次函数的图象及性质(对比正比例函数的图象和性质)细节剖析:理解、对一次函数的图象和性质的影响:y kx b =+k b k b y kx b =+y kx =k y kx b =+y kx =b b b y kx b =+y kx=k b y kx b =+(1)决定直线从左向右的趋势(及倾斜角的大小——倾斜程度),决定它与轴交点的位置,、一起决定直线经过的象限.(2)两条直线:和:的位置关系可由其系数确定:与相交;,且与平行; ,且与重合;(3)直线与一次函数图象的联系与区别一次函数的图象是一条直线;特殊的直线、直线不是一次函数的图象.知识点04:用函数的观点看方程、方程组、不等式方程(组)、不等式问题函 数 问 题从“数”的角度看从“形”的角度看求关于、的一元一次方程=0(≠0)的解为何值时,函数的值为0?确定直线与轴(即直线=0)交点的横坐标求关于、的二元一次方程组的解.为何值时,函数与函数的值相等?确定直线与直线的交点的坐标求关于的一元一次不等式>0(≠0)的解集为何值时,函数的值大于0?确定直线在轴(即直线=0)上方部分的所有点的横坐标的范围考点01:一次函数图象与几何变换1.(2021春•大同期末)对于一次函数y =﹣2x +4,下列结论正确的是( )k y kx b =+αb y k b y kx b =+1l 11y k x b =+2l 22y k x b =+12k k ≠⇔1l 2l 12k k =12b b ≠⇔1l 2l 12k k =12b b =⇔1l 2l x a =y b =x y ax b +a x y ax b =+y ax b =+x y x y 1122=+⎧⎨=+⎩,.y a x b y a x b x 11y a x b =+22y a x b =+11y a x b =+22y a x b =+x ax b +a x y ax b =+y ax b =+x y 考点提优练A.函数的图象与y轴的交点坐标是(4,0)B.函数的图象不经过第三象限C.函数的图象向上平移4个单位长度得y=﹣2x的图象D.若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1<y22.(2020秋•碑林区校级期中)将直线y=﹣3x沿着x轴向右平移2个单位,所得直线的表达式为()A.y=﹣3x+6 B.y=﹣3x﹣6 C.y=﹣3x+2 D.y=﹣3x﹣23.(2021秋•溧水区期末)如图,正比例函数y=kx(k≠0)的图象经过点A(2,4),AB⊥x轴于点B,将△ABO绕点A逆时针旋转90°得到△ADC,则直线AC的函数表达式为.4.(2020秋•盱眙县期末)将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为.5.(2022春•宁陵县期末)因为一次函数y=kx+b与y=﹣kx+b(k≠0)的图象关于y轴对称,所以我们定义:函数y=kx+b与y=﹣kx+b(k≠0)互为“镜子”函数.(1)请直接写出函数y=3x﹣2的“镜子”函数:;(2)如果一对“镜子”函数y=kx+b与y=﹣kx+b(k≠0)的图象交于点A,且与x轴交于B、C两点,如图所示,若△ABC是等腰直角三角形,∠BAC=90°,且它的面积是16,求这对“镜子”函数的解析式.6.(2021•北京模拟)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)请在所给平面直角坐标系中画出这个一次函数的图象并求该一次函数的解析式;(2)当x>1时,对于x的每一个值函数y=mx(m≠0)的值大于一次函数y=kx+b的值,求出m的取值范围.7.(2022秋•海淀区校级期中)在平面直角坐标系xOy中,对于任意图形G及直线l1,l2,给出如下定义:将图形G先沿直线l1翻折得到图形G1,再将图形G1沿直线l2翻折得到图形G2,则称图形G2是图形G的<l1,l2>双反图形.例如:点P(1,2)的<x轴,y轴>双反图形是点P'(﹣1,﹣2).(1)点Q(3,﹣2)的<x轴,y轴>双反图形点Q'的坐标为;(2)已知A(t,1),B(t﹣4,1),C(t,3),直线m经过点(﹣1,﹣1).①当t=﹣2,且直线m与y轴平行时,点C的<x轴,m>双反图形点C'的坐标为;②当直线m经过原点时,若△ABC的<x轴,m>双反图形上只存在两个与x轴的距离为1的点,直接写出t的取值范围.8.(2017秋•邗江区期末)在直角坐标系中画出一次函数y=2x﹣4的图象,并完成下列问题:(1)此函数图象与坐标轴围成的三角形的面积是;(2)观察图象,当0≤x≤4时,y的取值范围是;(3)将直线y=2x﹣4平移后经过点(﹣3,1),求平移后的直线的函数表达式.考点02:待定系数法求一次函数解析式9.(2022•灞桥区校级模拟)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴距离为4,则直线OM的表达式是()A.y=B.y=﹣C.y=D.y=﹣10.(2021秋•襄都区校级月考)如图,在平面直角坐标系中,已知点A(2,4),B(1,2),C(5,2),直线l经过B,C两点的中点,则直线l的表达式为()注:点A(x A,y A),点B(x B,y B)两点的中点坐标公式是(,).A.y=﹣2x+6 B.y=﹣2x+8 C.y=2x+8 D.y=﹣x+611.(2021秋•无锡期末)当光线射到x轴进行反射,如果反射的路径经过点A(0,1)和点B(3,4),则入射光线所在直线的解析式为.12.(2021秋•任城区期末)如图,在平面直角坐标系中,已知点A(0,4),B(﹣1,2),C(3,2),直线l经过点A,它将△ABC分成面积相等的两部分,则直线l的表达式为.13.(2022秋•市中区期中)如图,已知点A(6,0)、点B(0,4).(1)求直线AB的函数表达式;(2)着C为直线AB上一动点,当△OBC的面积为3时,求点C的坐标.14.(2022秋•无为市月考)在平面直角坐标系内有三点A(0,4),B(﹣3,1),C(1,6).(1)求过其中两点的直线的函数表达式(选一种情形作答).(2)判断A,B,C三点是否在同一直线上,并说明理由.15.(2022•陕西)如图,是一个“函数求值机”的示意图,其中y是x的函数.下面表格中,是通过该“函数求值机”得到的几组x与y的对应值.输入x…﹣6 ﹣4 ﹣2 0 2 …输出y…﹣6 ﹣2 2 6 16 …根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.考点03:一次函数与一元一次方程16.(2019秋•宁德期末)如图,已知一次函数y=ax﹣1与y=mx+4的图象交于点A(3,1),则关于x的方程ax﹣1=mx+4的解是()A.x=﹣1 B.x=1 C.x=3 D.x=417.(2021秋•包河区期末)已知直线y=x+b和y=ax+2交于点P(3,﹣1),则关于x的方程(a﹣1)x=b﹣2的解为.18.(2021春•呼和浩特期末)已知一次函数y=kx﹣b(k、b为常数且k≠0,b≠0)与y=x的图象相交于点M(a,),则关于x的方程(k﹣)x=b的解为x=.19.(2021春•汉阴县期末)如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,则关于x的方程3x+b=ax﹣2的解为x=.20.(2017秋•芷江县校级月考)一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=4的解为多少?21.(2021秋•永登县校级期中)已知一次函数y=kx﹣6的图象如图(1)求k的值;(2)在图中的坐标系中画出一次函数y=﹣3x+3的图象(要求:先列表,再描点,最后连线);(3)根据图象写出关于x的方程kx﹣6=﹣3x+3的解.考点04:根据实际问题列一次函数关系式22.(2021春•遂宁期末)等腰三角形周长为20cm,底边长ycm与腰长xcm之间的函数关系是()A.y=20﹣2x B.y=20﹣2x(5<x<10)C.y=10﹣0.5x D.y=10﹣0.5x(10<x<20)23.(2013秋•岱岳区期末)油箱中有油20升,油从管道中匀速流出,100分钟流完.油箱中剩油量Q(升)与流出的时间t(分)间的函数关系式是()A.Q=20﹣5t B.Q=t+20 C.Q=20﹣t D.Q=t24.(2021•饶平县校级模拟)一个弹簧不挂重物时长10cm,挂上重物后伸长的长度与所挂重物的质量成正比,如果挂上1kg的物体后,弹簧伸长3cm,则弹簧总长y(单位:cm)关于所挂重物x(单位:kg)的函数关系式为(不需要写出自变量取值范围)25.(2021春•漳平市月考)某工人生产一种零件,完成定额20个,每天收入28元,如果超额生产一个零件,增加收入1.5元.写出该工人一天的收入y(元)与他生产的零件x(个)的函数关系式.26.(2019春•城固县期末)一盘蚊香长105cm,点燃时每小时缩短10cm.(1)请写出点燃后蚊香的长y(cm)与蚊香燃烧时间t(h)之间的函数关系式;(2)该蚊香可点燃多长时间?27.(2018秋•桐城市期末)已知等腰三角形的周长是20cm,设底边长为y,腰长为x,求y与x的函数关系式,并求出自变量x的取值范围.考点05:一次函数的应用28.(2022春•镇平县月考)甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是()A.两车同时到达乙地B.轿车行驶1.3小时时进行了提速C.货车出发3小时后,轿车追上货车D.两车在前80千米的速度相等29.(2022秋•定远县校级月考)八(1)班同学参加社会实践活动,在王伯伯的指导下,要围一个如图所示的长方形菜园ABCD,莱园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为12m,设边BC的长为xm,边AB的长为ym(x>y).则y与x之间的函数表达式为()A.y=﹣2x+12(0<x<12)B.y=﹣x+6(4<x<12)C.y=2x﹣12(0<x<12)D.y=x﹣6(4<x<12)30.(2022秋•罗湖区校级期中)小刚从家出发步行去学校,几分钟后发现忘带作业,于是掉头原速返回并立即打给爸爸,挂断后爸爸立即跑步去追小刚,同时小刚以原速的两倍跑步回家,爸爸追上小刚后以原速的0.5倍原路步行回家,而小刚则以原跑步速度赶往学校,并在从家出发23分钟后到校(小刚被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小刚从家出发到学校的时间x(分钟)之间的函数关系如图所示,则小刚的步行速度为m/min.31.(2021秋•长清区期末)甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人间的距离y(米)与乙出发的时间x(秒)之间的函数关系如图所示,则下列结论正确的是(填序号).①乙的速度为5米/秒;②离开起点后,甲、乙两人第一次相遇时,距离起点60米;③甲、乙两人之间的距离为40米时,甲出发的时间为55秒和90秒;④乙到达终点时,甲距离终点还有80米.32.(2021秋•九龙坡区校级月考)某自动贩卖机售卖A、B两种盲盒,B种盲盒的价格比A种盲盒价格的6倍少60元,该贩卖机存储的A种盲盒不低于22个,B种盲盒的数量不少于A种的2倍,且最多可存储两种盲盒100个,某天上午售卖后,工作人员及时补货,将售卖机装满,该天下午,由于系统bug,B种盲盒的价格变为原来A种的价格,而A种的价格变为原来价格的5倍少50元后再打了个六折,下午A种盲盒的销量变为上午的2倍,而B种盲盒的销量不变,结果上午的销售额比下午多390元,其中两种盲盒的价格均为整数,则下午贩卖的盲盒的销售额最多可为元.33.(2022春•沙坪坝区校级月考)“最是一年春好处”,小墩和小融约定好从各自家里出发,自驾去近郊踏青赏花,小墩家、小融家以及他们的目的地在同一条直线上,小墩从家出发1小时之后,小融才从家出发,先到的人在目的地等待,他们二人与小墩家的距离y(千米)与小墩行驶的时间x(小时)之间的关系如图所示,请根据图象回答下列问题:(1)小墩的速度为千米/小时,小融的速度为千米/小时;(2)当小融追上小墩时,他们与目的地的距离为多少千米?(3)小融从家里出发后,当两人相距10千米时,一辆花车沿同一路线从后面追上他们其中一人,已知这辆花车的速度为90千米/小时,当花车继续前行追上前方另一人时,求前一个被花车追上的人此时与目的地的距离.34.(2022•无棣县一模)一列快车和一列慢车同时从甲地出发,分别以速度v1、v2(单位:km/h,且v1>2v2)匀速驶向乙地.快车到达乙地后停留了2h,沿原路仍以速度v1匀速返回甲地,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示从慢车出发至慢车到达乙地的过程中,y与x之间的函数关系.(1)甲乙两地相距km;点A实际意义:;(2)求a,b的值;(3)慢车出发多长时间后,两车相距480km?35.(2021秋•锡山区期末)某兴趣小组利用计算机进行电子虫运动实验.如图1,在相距100个单位长度的线段AB上,电子虫甲从端点A出发,匀速往返于端点A、B之间,电子虫乙同时从端点B出发,设定不低于甲的速度匀速往返干端点B、A之间,他们到达端点后立即转身折返,用时忽略不计.兴趣小组成员重点探究了甲、乙迎面相遇的情况,这里的“迎面相遇”包括面对面相遇、在端点处相遇这两种.设甲、乙第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第二次迎面相遇时,相遇地点与点A之间的距离为y个单位长度.【观察】请直接写出:当x=20时,y的值为;当x=40时,y的值为;【发现】兴趣小组成员发现了y与x的函数关系,并画出了部分函数图象(如图2中的线段OM,但不包括点O,因此点O用空心画出)①请直接写出:a=;②分别求出各部分图象对应的函数解析式,并在图2中补全函数图象,标出关键点的坐标;【拓展】设甲、乙第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第三次迎面相遇时,相遇地点与点A之间的距离为z个单位长度.若z不超过40,则x的取值范围是(直接写出结果).考点06:一次函数综合题36.(2020秋•福田区校级期中)已知直线l1:y=kx+b与直线l2:y=﹣x+m都经过C(﹣,),直线l1交y轴于点B(0,4),交x轴于点A,直线l2交y轴于点D,P为y轴上任意一点,连接PA、PC,有以下说法:①方程组的解为;②△BCD为直角三角形;③S△ABD=6;④当PA+PC的值最小时,点P的坐标为(0,1).其中正确的说法是()A.①②③B.①②④C.①③④D.①②③④37.(2020•深圳模拟)八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y=x+B.y=x+C.y=x+D.y=x+38.(2022•苏州一模)如图,正方形ABCD的边长为2,A为坐标原点,AB和AD分别在x轴、y轴上,点E 是BC边的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为.39.(2019•站前区校级一模)如图,平面直角坐标系中,已知点P(2,2),C为y轴正半轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线OP交于点A,且BD=4AD,直线CD与直线OP交于点Q,则点Q的坐标为.40.(2022秋•定远县校级月考)如图,已知直线y=kx+b经过点B(1,4),与x轴交于点A(5,0),与直线y=2x﹣4交于点C(3,m).(1)求直线AB的函数表达式及m的值;(2)根据函数图象,直接写出关于x的不等式组2<kx+b<4的解集:;(3)现有一点P在直线AB上,过点P作PQ∥y轴交直线y=2x﹣4于点Q,若点C到线段PQ的距离为1,求点P的坐标和点Q的坐标.41.(2022秋•南山区期中)如图,在平面直角坐标系中,直线y=2x+6与x轴,y轴分别交于点A,C,经过点C的直线与x轴交于点B(6,0).(1)求直线BC的解析式;(2)点G是线段BC上一动点,若直线AG把△ABC的面积分成1:2的两部分,请求点G的坐标;(3)直线AC上有一个点P,过P作x轴的垂线交直线BC于点Q,当PQ=OB时,求点P坐标.(4)在x轴上找一点M,使△MAC是等腰三角形,求点M的坐标(直接写结果).42.(2022秋•天桥区期中)如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2与x轴交于点A,与y轴交于点B(0,3),与l1交于点C(2,m).(1)求出直线l2的函数关系式;(2)在y轴右侧有一动直线平行于y轴,分别与l1、l2交于点M、N,①当点M在点N的上方,且满足MN=OB时,请求出点M与点N的坐标;②当点M在点N的下方时,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.。
专题19.3一次函数的图象与性质(举一反三)(人教版)(原卷版)
专题19.3 一次函数的图象与性质【十大题型】【人教版】【题型1 判定一次函数的图像】 (2)【题型2 根据一次函数解析式判断其经过的象限】 (4)【题型3 根据函数经过的象限判断参数取值范围】 (4)【题型4 一次函数的图像与坐标轴的交点问题】 (5)【题型5 一次函数的平移问题】 (5)【题型6 判断一次函数的增减性】 (6)【题型7 根据一次函数的增减性求参数或最值】 (7)【题型8 根据一次函数的增减性判断自变量的变化情况】 (7)【题型9 比较一次函数值的大小】 (7)【题型10 一次函数的规律探究问题】 (8)【题型1 判定一次函数的图像】【例1】(2022春•牡丹江期末)直线y1=mx+n2+1和y2=﹣mx﹣n的图象可能是()A.B.C.D.【变式11】(2022春•喀什地区期末)直线y=kx+b的图象如图所示,则直线y=bx﹣k的图象是()A.B.C.D.【变式12】(2022春•安阳县期末)一次函数y=mx+n的图象如图所示,则y=﹣2mx+n的图象可能是()A.B.C.D.【变式13】(2022•萧山区模拟)若实数a ,b ,c 满足a +b +c =0,且a <b <c ,则函数y =﹣cx ﹣a 的图象可能是( )A .B .C .D .【题型2 根据一次函数解析式判断其经过的象限】【例2】 (2022•海门市校级模拟)已知关于x 的一次函数为y =mx +4m +3,那么这个函数的图象一定经过( ) A .第一象限B .第二象限C .第三象限D .第四象限【变式21】(2022春•集贤县期末)一次函数y =2(x +1)﹣1不经过第( )象限. A .一B .二C .三D .四【变式22】(2022秋•九龙坡区校级期末)如图,点A ,B 在数轴上分别表示数﹣2a +3,1,则一次函数y =(1﹣a )x +a ﹣2的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【变式23】(2022•萧山区一模)已知y ﹣3与x +5成正比例,且当x =﹣2时,y <0,则y 关于x 的函数图象经过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【题型3 根据函数经过的象限判断参数取值范围】【例3】(2022•黄州区校级自主招生)已知过点(2,3)的直线y =ax +b (a ≠0)不经过第四象限,设s =a ﹣2b ,则s 的取值范围是( ) A .32≤s <6B .﹣3<s ≤3C .﹣6<s ≤32D .32≤s ≤5【变式31】(2022春•丰都县期末)若关于x 的不等式组{5x −k >0x −3≤0有且只有四个整数解,且一次函数y =(k +2)x +k +3的图象不经过第一象限,则符合题意的整数k 的和为( ) A .﹣12B .﹣14C .﹣9D .﹣15【变式32】(2022•泰兴市一模)过点(﹣1,2)的直线y=mx+n(m≠0)不经过第三象限,若p=3m﹣n,则p的范围是()A.﹣10≤p≤﹣2B.p≥﹣10C.﹣6≤p≤﹣2D.﹣6≤p<﹣2【变式33】(2022•辽宁)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2的图象分别为直线l1和直线l2,下列结论正确的是()A.k1•k2<0B.k1+k2<0C.b1﹣b2<0D.b1•b2<0【题型4 一次函数的图像与坐标轴的交点问题】【例4】(2022春•镇巴县期末)已知直线l1:y=﹣x+b与x轴交于点(1,0),直线l2与直线l1关于y轴对称,则关于直线l2,下列说法正确的是()A.y的值随着x的增大而减小B.函数图象经过第二、三、四象限C.函数图象与x轴的交点坐标为(1,0)D.函数图象与y轴的交点坐标为(0,b)【变式41】(2022春•双阳区月考)若直线y=kx﹣k(k>0)与两个坐标轴所围成的三角形的面积为4,则k=.【变式42】(2022春•卧龙区期中)若一次函数y=(k+2)x﹣k﹣3与y轴的交点在x轴的下方,则k的取值范围是.x+12【变式43】(2022•遵义模拟)平面直角坐标系xOy中,点P的坐标为(3m,﹣4m+4),一次函数y=43的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,则m的取值范围为()A.m>一1或m<0B.﹣3<m<1C.﹣1<m<0D.﹣1≤m≤1【题型5 一次函数的平移问题】【例5】(2022秋•宣州区校级期中)将直线y=2x+3平移后经过点(2,﹣1),求:(1)平移后的直线解析式;(2)沿x轴是如何平移的.x+1,它的图象与x轴交于点A,与y轴交于【变式51】(2022秋•雁塔区校级月考)已知一次函数y=−12点B.(1)点A的坐标为,点B的坐标为;(2)画出此函数图象;(3)画出该函数图象向下平移3个单位长度后得到的图象;x+1图象向下平移3个单位长度后所得图象对应的表达式.(4)写出一次函数y=−12【变式52】.(2022春•安岳县期中)已知直线y=(m+1)x|m|﹣1+(2m﹣1),当x1>x2时,y1>y2,求该直线的解析式.并求该直线经过怎么的上下平移就能过点(2,5)?【变式53】(2022春•武昌区期末)已知一次函数y=kx+b的图象过点A(﹣4,﹣2)和点B(2,4)(1)求直线AB的解析式;(2)将直线AB平移,使其经过原点O,则线段AB扫过的面积为.【题型6 判断一次函数的增减性】【例6】(2022秋•射阳县期末)下列一次函数中,y随x增大而增大的是()A.y=﹣3x B.y=x﹣2C.y=﹣2x+3D.y=3﹣x【变式61】(2022春•巴州区校级期中)一次函数y=4x﹣2的函数值y随自变量x值的增大而(填“增大”或“减小”).【变式62】(2022春•柳南区校级期末)正比例函数y=﹣k2x(k≠0),下列结论正确的是()A.y>0B.y随x的增大而增大C.y<0D.y随x的增大而减小【变式63】(2022春•马山县期末)已知正比例函数y=kx(k≠0)的图象经过点(﹣6,2),那么函数值y随自变量x的值的增大而.(填“增大”或“减小”)【题型7 根据一次函数的增减性求参数或最值】【例7】(2022•潮南区模拟)已知一次函数y=﹣0.5x+2,当1≤x≤4时,y的最大值是()A.1.5B.2C.2.5D.﹣6【变式71】(2022•萧山区模拟)已知正比例函数y=(m+1)x+m2﹣4,若y随x的增大而减小,则m的值是.【变式72】(2022春•饶平县校级期末)若正比例函数y=(2﹣m)x|m﹣2|,y随x的增大而减小,则m的值是.【变式73】(2022秋•沭阳县校级期末)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则k的值是.【题型8 根据一次函数的增减性判断自变量的变化情况】【例8】(2022•兴平市模拟)在平面直角坐标系中,若一次函数y=kx+3的y值随x的增大而减小,则该一次函数的图象可能经过的点的坐标是()A.(1,1)B.(1,3)C.(1,4)D.(1,5)【变式81】(2022•连山区一模)一次函数y=kx+3(k≠0)的函数值y随x的增大而减小,它的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【变式82】(2022•东坡区模拟)若一次函数y=(2m+1)x﹣1的值随x的增大而增大,则常数m的取值范围.【变式83】(2022春•巨野县期末)已知一次函数y=(m+2)x﹣(m+3),y随x的增大而减小,且图象与y轴的交点在x轴下方,则实数m的取值范围是.【题型9 比较一次函数值的大小】【例9】(2022春•芜湖期末)已知直线y=﹣2022x+2021经过点(﹣2,y1),(﹣1,y2),(1,y3),则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y2【变式91】(2022秋•南山区校级期中)在函数y=kx(k>0)的图象上有点A1(x1,y1),A2(x2,y2),已知x1<x2,则下列各式中正确的是()A.y1<y2B.y2<y1C.y2=y1D.y1=y2=0【变式92】(2022春•同江市期末)若点A(x1,﹣1),B(x2,﹣2),C(x3,3)在一次函数y=﹣2x+m (m是常数)的图象上,则x1,x2,x3的大小关系是()A.x1>x2>x3B.x2>x1>x3C.x1>x3>x2D.x3>x2>x1【变式93】(2022•绍兴)已知(x1,y1),(x2,y2),(x3,y3)为直线y=﹣2x+3上的三个点,且x1<x2<x3,则以下判断正确的是()A.若x1x2>0,则y1y3>0B.若x1x3<0,则y1y2>0C.若x2x3>0,则y1y3>0D.若x2x3<0,则y1y2>0【题型10 一次函数的规律探究问题】【例10】(2022秋•市南区期末)如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…,直线l n⊥x轴于点(n,0)(其中n为正整数).函数y=x的图象与直线l1,l2,l3,…,l n分别交于点A1,A2,A3,…A n;函数y=2x的图象与直线l1,l2,l3,…,l n分别交于点B1,B2,B3,…,B n,如果△OA1B1的面积记作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…,四边形A n﹣1A n B n B n﹣1的面积记作S n,那么S2022=.【变式101】(2022春•巴中期末)如图,直线l1:y=x+1与直线l2:y=x2+12相交于点P,直线l1与y轴交于点A,一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,B2020,A2020……则A2022B2022的长度为()A.22021B.22022C.2022D.4044【变式102】(2022春•石家庄期中)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示方式放置,点A1,A2,A3,…和C1,C2,C3,…分别在直线y=x+1和x轴上,则点B4的坐标是,B2020的纵坐标是.【变式103】(2022春•庆云县期末)如图,在平面直角坐标系中,点A1(1,1)在直线y=x图象上,过A1点作y轴平行线,交直线y=﹣x于点B1,以线段A1B1为边在右侧作正方形A1B1C1D1,C1D1所在的直线交y=x的图象于点A2,交y=﹣x的图象于点B2,再以线段A2B2为边在右侧作正方形A2B2C2D2…依此类推.按照图中反映的规律,则点A n的坐标是;第2020个正方形的边长是.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、函数的概念及其解析式的一般构成
(一)函数概念的理解与应用
1.函数对应关系解析式的判断
■题型结构特征:判断对应关系解析式的合理性,或两种表示是否等价.
【例题1】下列函数中,表示同一函数的是(
)
A .y =5
x 5与y =x
2 B.y =lne x 与y=e lnx
C.y =(x-1)(x+3)x-1与y=x+3
D.y =x 0与y=1x
2.函数对应关系图像的判断■题型结构特征:判断图像表示的对应关系的合理性.【例题2】若函数f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)图象只可能是()
(二)函数的定义域
1.求函数定义域
■题型结构特征:已知函数解析式求其定义域.
【例题3】函数f (x )=1
2-|x |
+x 2-1+(x -4)0的定
义域为__________.
2.函数f(x +2)的定义域为[-1,2],求函数f(x)的定义域.
〖错解〗因为函数f(x +2)的定义域为[-1,2],所以–1≤x +2≤2,则–3≤x ≤0
∴函数f(x)的定义域为[-3,0].
2-2x
y O
A 2-2x
y O B 2y 2-2x
O
C 22-2x
y O
D
2
2.逆用函数定义域
■题型结构特征:已知函数定义域求解析式中相关参数.
【例题4】若函数f (x )=2x 2+2ax -a 的定义域为R ,则实数a 的取值范围为______________.
x
的取值范围是(三)函数式的运算与求值
1.根式及分数指数幂的运算
■题型结构特征:含有根式或分数指数幂式子的运算问题.
★判断识真☆
2.指数式的运算
■题型结构特征:含有指数式的运算问题.
【例题5】设f(x )=4x
4x +2
,若0<a<1.
求f(a)+f(1–a)的值;
求f(12016)+f(22016+f(32016)+⋅⋅⋅+f(20152016)的值.
3.对数式的运算
■题型结构特征:含有对数式的运算问题.【例题6】
已知()ln(1)ln(1)f x x x =+--,(1,1)x ∈-,
证明:(1)()()f x f x -=-;(2)2(
)2()x
f f x =+.4.指数与对数式的混合运算
■题型结构特征:同时含有指数式与对数式相关的运算问题.
★判断识真☆
已知y x ,为正实数,则()
A.y
x y x lg lg lg lg 222+=+ B.y
x y x lg lg )lg(222⋅=+C .y
x y x lg lg lg lg 222+=⋅ D.y
x xy lg lg )lg(222⋅=【例题7】[2016浙江高考]已知a >b >1.若log a b +log b a =52
,a b =b a ,则a =,b =.
5.抽象函数值的计算问题
■题型结构特征:没有解析式,但常常给出函数具有的某种性质(如恒等关系式)等已知条件,进而求函数值.
【例题8】已知f (x )是定义在(0,+∞)上的函数,
对任意x >0,y >0都有f (x
y
)=f (x )-f (y ).若f (3)=1,则
f (9)=____.
A.②(四)分段函数1.分段函数求值
■题型结构特征:无参分段求值.【例题9】[2015新课标
2]函数
211log (2),1,()2,1,
x x x f x x -+-<⎧=⎨≥⎩则2(2)(log 12)f f -+=(
)
A .3
B .6
C .9
D .12
2.分段函数求参
■题型结构特征:分段式含参或分段点含参或等式含参.确定参数值.
【例题10】已知函数f (x )-x ,x ≤0,
x
,x >0,
若f (1)
=f (-1),则实数a 的值等于().A
.1B .2C .3D .4
【例题11】已知实数a≠0,函数2,1
()2,1
x a x f x x a x +<⎧=⎨--≥⎩,若
f (1-a )=f (1+a ),则a 的值为
.
3.分段函数求解析式
■题型结构特征:已知某段函数求未知段函数.
【例题12】定义在R 上的函数f(x )满足f(x +1)=2f(x ).若当0≤x ≤1时.f(x )=x (1-x ),则当-1≤x ≤0时,f(x )=__________.
※解法辩伪※已知奇函数f(x),当x>0时,f(x)=x 2+2x,求x<0时f(x)的解析式.
〖错解〗∵f(x)是奇函数,∴f(-x)=-f(x),∴当x<0时,f(x)=-(x 2+2x).
4.解分段函数不等式
■题型结构特征:无参分段求值.※解法辩伪※
函数2 x 0,
()|-1| 0x x f x x x ⎧-≥=⎨<⎩
,解不等式f(x)<2.
〖错解〗由x 2-x<2解得-1<x <2,
由|x -1|<2解得-1<x <3,
综上不等式f(x)<2的解为-1<x<3.
【例题13】设函数()⎪⎩⎪⎨⎧≥-<+=0
,0
,22x x x x x x f 若()()2≤a f f ,则
实数a 的取值范围是
.
【例题14】[2017全国新课标3文16]设函数
10()20x x x f x x +≤⎧=⎨>⎩,,,,
则满足f(x)+f(x -12)>1的x 的取值范
围是__________.
5.分段函数的单调性
■题型结构特征:分段函数与单调性的综合.【例题15】已知函数f (x )=⎩⎨
⎧>≤--.
1,log 1,1)2(x x ,
x x a a 若f (x )
在(-∞,+∞)上单调递增,则实数a 的取值范围为________.
【例题16】已知函数f (x )=ax 2+bx +1(a ,b 为实数),
x ∈R ,F (x )x )(x >0),
f (x )(x <0).
(1)若f (-1)且函数f (x )的值域为[0,+∞),求F (x )的表达式;
(2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围;
(3)设mn <0,m +n >0,a >0且f (x )为偶函数,判断F (m )+F (n )能否大于零?
6.分段函数的最值
■题型结构特征:分段函数最值要分段考察.
【例题17】[2015浙江理10]已知函数
223,1()lg(1),1x x f x x x ⎧
+-≥⎪=⎨⎪+<⎩
,则((3))f f -=
,()f x 的最小
值是.
A.[ C.[。