高二数学考试模拟
2023-2024学年黑龙江省高二下学期期中考试数学模拟试题
2023-2024学年黑龙江省高二下学期期中考试数学模拟试题一、单选题1.设集合{}2log 2A x x =<,{}29B x x =<,则A B = ()A .()0,3B .()3,3-C .()0,4D .()3,4-【正确答案】A【分析】解出集合A 、B ,利用交集的定义可求得集合A B ⋂.【详解】因为{}{}2log 204A x x x x =<=<<,{}{}2933B x x x x =<=-<<,因此,()0,3A B = .故选:A.2.命题“x ∀∈R ,210x x +->”的否定是()A .x ∃∈R ,210x x +-<B .x ∃∈R ,210x x +-≤C .x ∀∈R ,210x x +-≤D .x ∃∈R ,210x x +-≥【正确答案】B【分析】利用全称量词命题的否定可得出结论.【详解】命题“x ∀∈R ,210x x +->”为全称量词命题,该命题的否定为“x ∃∈R ,210x x +-≤”.故选:B.3.甲、乙、丙3人站到共有5级的台阶上(每级台阶足够长,可站多人),同一级台阶上的人不区分站的位置,则不同的站法种数是()A .35B .105C .125D .4854【正确答案】C【分析】分析可知甲、乙、丙3人每人都有5种选法,结合分步乘法计数原理可得结果.【详解】由题意可知,甲、乙、丙3人每人都有5种选法,由分步乘法计数原理可知,不同的站法种数是35125=种.故选:C.4.有10件产品,其中3件是次品,从中任取两件,若X 表示取得次品的件数,则(2)P X <=()A .715B .815C .1415D .1516【正确答案】C【分析】根据超几何分布的定义计算即可.【详解】由题意知X 的可能取值为0,1,2,X 服从超几何分布,所以()()211773221010C C C 770,1C 15C 15P X P X ======,所以()()7714(2)01151515P X P X P X <==+==+=.故选:C 项.5.云计算是信息技术发展的集中体现,近年来,我国云计算市场规模持续增长.已知某科技公司2018年至2022年云计算市场规模数据,且市场规模y 与年份代码x 的关系可以用模型21e c xy c =(其中e为自然对数的底数)拟合,设ln z y =,得到数据统计表如下:年份2018年2019年2020年2021年2022年年份代码x12345云计算市场规模/y 千万元7.4112036.655ln z y=22.43.03.64.0由上表可得经验回归方程0.52z x a =+,则2025年该科技公司云计算市场规模y 的估计值为()A . 5.08e B . 5.6e C . 6.12e D . 6.5e 【正确答案】B【分析】求出x 、z 的值,代入回归方程求出a 的值,可得出z 关于x 的回归方程,然后在回归方程中令8x =可得出z 的值,即可求得y 的值,即可得解.【详解】由题意可得1234535x ++++==,2 2.43 3.6435z ++++==,将33x z =⎧⎨=⎩代入回归方程0.52z x a =+可得330.52 1.44a =-⨯=,所以,z 关于x 的回归方程为0.52 1.44z x =+,当8x =时,0.528 1.44 5.6ln z y =⨯+==,此时, 5.6e y =.故选:B.6.某学校选派甲,乙,丙,丁,戊共5位优秀教师分别前往,,,A B C D 四所农村小学支教,用实际行动支持农村教育,其中每所小学至少去一位教师,甲,乙,丙不去B 小学但能去其他三所小学,丁,戊四个小学都能去,则不同的安排方案的种数是()A .72B .78C .126D .240【正确答案】B【分析】分组讨论结合组合排列关系计算即可.【详解】要求每所小学至少去一位教师,则需要将5人分成4组,则①甲,乙,丙中有2位教师去同一所学校有:222332C A A 36=种情况,②甲,乙,丙中有1位教师与丁去同一所学校有:113323C A A 36=种情况,③丁,戊两人选择同一所学校有:33A 6=种情况,所以满足题意的情况为:3636678++=,故选:B.7.三国时期数学家赵家为了证明勾股定理,创制了一幅如图所示的“弦图”,后人称之为“赵爽弦图”,它由四个全等的直角三角形和一个正方形构成.现对该图进行涂色,有5种不同的颜色可供选择,相邻区域所涂颜色不同.在所有的涂色方案中随机选择一种方案,该方案恰好只用到四种颜色的概率是()A .320B .17C .47D .57【正确答案】C【分析】先求出所有的涂色方案种数,然后求出只用到四种颜色的涂色种数,利用古典概型的概率公式可求得所求事件的概率.【详解】先考虑所有的涂色方案种数:区域⑤有5种涂色方法,区域①有4种涂色方法,区域②有3种涂色方法.若区域③和区域①同色,则区域④有3种涂色方法;若区域③和区域①异色,则区域③有2种涂色方法,区域④有2种涂色方法.综上所述,所有的涂色方法种数为()5431322420⨯⨯⨯⨯+⨯=种.接下来考虑只用到四种颜色的涂色方案种数:先从5种颜色选择4种颜色,共45C 种,区域⑤有4种涂色方法,则区域①③同色或区域②④同色,若区域①③同色,则区域②④异色;若区域②④同色,则区域①③异色.此时,不同的涂色方案种数为41125232C 4C C A 240⨯⨯⨯⨯=种.因此,该方案恰好只用到四种颜色的概率是24044207P ==.故选:C.8.甲乙两人进行乒乓球赛,现采用三局两胜的比赛制度,规定每局比赛都没有平局(必须分出胜负),且每一局甲赢的概率都是p ,随机变量X 表示最终的比赛局数,若103p <<,则()A .()52E X =B .()218E X >C .()14D X >D .()2081D X <【正确答案】D【分析】结合二项分布可计算随机变量X 的分布列,再利用公式可求()E X 、()D X ,最后利用二次函数的性质可求其范围.【详解】随机变量X 可能的取值为2,3.()()202222221221P X C p C p p p ==+-=-+.()()()()11222311122P X C p p p C p p p p p ==-+--=-,故X 的分布列为:X23P2221p p -+222p p -故()()()2222152221322222222E X p p p p p p p ⎛⎫=⨯-++⨯-=-++=--+⎪⎝⎭因为103p <<,故()2229E X <<,而2252221,9298<<,故A 、B 错误.而()()()()22224221922222D X p p p p p p =⨯-++⨯---++,令221122222t p p p ⎛⎫=-=--+ ⎪⎝⎭,因为11032p <<<,故409t <<,此时()()()222041920,81D X t t t t t ⎛⎫=⨯-+-+=-+∈ ⎪⎝⎭,()14D X <必成立,故C 错误,D 正确.故选:D.本题考查离散型随机变量的分布列、期望、方差的计算以及函数的值域的求法,计算分布列时可借助常见的分布列(如二项分布等)来计算,估计方差的范围时,注意利用换元法把高次函数的值域问题转化为二次函数的值域问题.二、多选题9.下列结论正确的是()A .若a b >,则22a b >B .若22ac bc <,则a b <C .若a b >,c d >,则a c b d +>+D .若a b >,c d >,则ac bd>【正确答案】BC【分析】根据不等式的性质,结合特殊值判断.【详解】A.取特殊值,1a =-,2b =-,显然不满足结论;B.由22ac bc <可知,20c >,由不等式性质可得a b <,结论正确;C.由同向不等式的性质知,a b >,c d >可推出a c b d +>+,结论正确;D.取3,0,1,2a b c d ===-=-,满足条件,显然ac bd >不成立,结论错误.故选:BC.10.随机变量X 服从两点分布,若()104P X ==,则下列结论正确的有()A .()314P X ==B .()316D X =C .()3212E X +=D .()3214D X +=【正确答案】ABD【分析】根据两点分布的定义以及期望,方差的性质即可解出.【详解】因为随机变量X 服从两点分布,()104P X ==,所以()314P X ==,故()()3313,44416E X D X ==⨯=,因此,()()3521212142E X E X +=+=⨯+=,()()332144164D X D X +==⨯=,所以正确的是ABD .故选:ABD .11.廉江红橙是广东省廉江市特产、中国国家地理标志产品.设廉江地区某种植园成熟的红橙单果质量M (单位:g )服从正态分布()2165,N σ,且()1620.15P M <=,()1651670.3P M <<=.下列说法正确的是()A .若从种植园成熟的红橙中随机选取1个,则这个红橙的质量小于167g 的概率为0.7B .若从种植园成熟的红橙中随机选取1个,则这个红橙的质量在167g ~168g 的概率为0.05C .若从种植园成熟的红橙中随机选取600个,则质量大于163g 的个数的数学期望为480D .若从种植园成熟的红橙中随机选取600个,则质量在163g ~168g 的个数的方差为136.5【正确答案】BCD【分析】A.由()2165,M N σ~求解判断;B.由()()1651681621650.50.150.35P M P M <<=<<=-=求解判断;C.由质量大于163g 的个数()600,0.8X B ~求解判断;D.由质量在163g ~168g 的个数()600,0.65Y B ~求解判断.【详解】解:因为()2165,M N σ~,所以()1670.50.30.8P M <=+=,所以A 错误.因为()()1651681621650.50.150.35P M P M <<=<<=-=,所以()1671680.350.30.05P M <<=-=,所以B 正确.()()1631670.8P M P M >=<=,若从种植园成熟的红橙中随机选取600个,则质量大于163g 的个数()600,0.8X B ~.所以()6000.8480E X =⨯=,所以C 正确.因为()1651670.3P M <<=,所以()1631650.3P M <<=,又因为()1620.15P M <=,所以()162163P M <<()()()165163165162P M P M P M =<-<<-<0.50.30.150.05=--=,则()1671680.05P M <<=,所以()163168P M <<()()()163165165167167168P M P M P M =<<+<<+<<0.30.30.050.65=++=0.65=,若从种植园成熟的红橙中随机选取600个,则质量在163g ~168g 的个数()600,0.65Y B ~,所以()()6000.6510.65136.5D Y =⨯⨯-=,所以D 正确.故选:BCD12.一个不透明的袋子里,装有大小相同的3个红球和4个蓝球,每次从中不放回地取出一球,则下列说法正确的是()A .取出1个球,取到红球的概率为37B .取出2个球,在第一次取到蓝球的条件下,第二次取到红球的概率为12C .取出2个球,第二次取到红球的概率为13D .取出3个球,取到红球个数的均值为97【正确答案】ABD【分析】根据古典概型概率公式可求得A 正确;根据条件概率公式可求得B 正确;将第二次取到红球分为两种情况,将概率加和可求得C 错误;记取到的红球数为X ,计算可得X 每个取值对应的概率,根据均值求法可求得D 正确.【详解】对于A ,取出1个球,取到红球的概率1317C 3C 7p ==,A 正确;对于B ,记第一次取到蓝球为事件A ,第二次取到红球为事件B ,则()432767P AB =⨯=,()47P A =,()()()217427P AB P B A P A ∴===,B 正确;对于C ,若第一次取到红球,第二次也取到红球,则概率为321767⨯=;若第一次取到蓝球,第二次取到红球,则概率为432767⨯=;∴第二次取到红球的概率123777p =+=,C 错误;对于D ,记取到的红球数为X ,则X 所有可能的取值为0,1,2,3,()432244076521035P X ∴==⨯==,()34343343310818176576576521035P X ==⨯⨯+⨯⨯+⨯⨯==,()3243424327212276576576521035P X ==⨯⨯+⨯⨯⨯⨯==,()32161376521035P X ==⨯⨯==;∴取到红球个数的均值为418121459012335353535357⨯+⨯+⨯+⨯==,D 正确.故选:ABD.三、填空题13.空间中有7个点,其中任何4个点不共面,过每3个点作一个平面,可以作__________个平面.(用数字作答)【正确答案】35【分析】利用组合计数原理可得结果.【详解】空间中有7个点,其中任何4个点不共面,过每3个点作一个平面,能作的平面的个数为37C 35=个.故答案为.3514.101(2)(1)x x x--展开式中的常数项为__________.【正确答案】10【分析】根据给定条件,确定展开式常数项的构成形式,再借助二项式定理求解作答.【详解】101(2)(1)x x x --展开式中的常数项是10(1)x -展开式的含x 的项与1x-相乘的积,10(1)x -展开式的通项公式11010C ()(1)C ,N,10rrrrrr T x x r r +=-=-∈≤,当1r =时,1210C ()10T x x =-=-,所以101(2)(1)x x x--展开式中的常数项为110(10x x -⋅-=.故1015.有一批同规格的产品,由甲、乙、丙三家工厂生产,其中甲、乙、丙工厂分别生产2000件、3000件、5000件,而且甲、乙、丙工厂的次品率依次为6%、5%、5%,现从这批产品中任取一件,则取到次品的概率为__________.【正确答案】0.052【分析】记事件1A 、2A 、3A 分别表示所抽取的产品由甲、乙、丙工厂生产,记事件B 为“所抽的产品为次品”,利用全概率公式可求得所求事件的概率.【详解】记事件1A 、2A 、3A 分别表示所抽取的产品由甲、乙、丙工厂生产,记事件B 为“所抽的产品为次品”,则()10.2P A =,()20.3P A =,()30.5P A =,()10.06P B A =,()()230.05P B A P B A ==,由全概率公式可得()()()310.20.060.30.050.50.050.052k k k P B P A P B A ===⨯+⨯+⨯=∑.故答案为.0.05216.南宋数学家杨辉所著的《详解九章算法》一书中画了一张表示二项式展开式的系数构成的三角形数阵(如图所示),在“杨辉三角”中,第20行所有数字的平方和等于__________.(用一个组合数作答)【正确答案】2040C 【分析】把40(1)x +写成2020(1)(1)x x +⋅+,再利用二项式定理求出20x 项的系数作答.【详解】依题意,在“杨辉三角”中,第20行所有数字的平方和等于02122220220202020(C )(C )(C )(C )++++ ,可视为20(1)x +按x 升幂展开与20(1)x +按x 降幂展开的两个多项式乘积展开式的含20x 项的系数,即202001222020020119218202020202020202020(1)(1)(C C C C )(C C C C )x x x x x x x x +⋅+=++++++++ 展开式含20x 项的系数,而202040(1)(1)(1)x x x +⋅+=+,40(1)x +展开式中含20x 项的系数为2040C ,所以()()()22201200201192002020202020202020202040C C C C C C C C C =C +++=+++ .故答案为.2040C 四、解答题17.2022年卡塔尔世界杯是第二十二届世界杯足球赛,是历史上首次在卡塔尔和中东国家境内举行,也是继2002年韩日世界杯之后时隔二十年第二次在亚洲举行的世界杯足球赛,某中学高二年级共300人,其中男生150名,女生150名,学校团委对是否喜欢观看该世界杯进行了问卷调查,男生喜欢观看的人数为90,女生喜欢观看的人数为60.(1)根据题意补全2×2列联表:喜欢观看不喜欢观看合计男生150女生150合计300(2)依据小概率值0.001α=的独立性检验,能否认为该校学生喜欢观看世界杯与性别有关?参考临界值表:α0.10.050.010.0050.001x α2.7063.8416.6357.87910.828()()()()()22n ad bc a b c d a c b d χ-=++++,n a b c d =+++.【正确答案】(1)2×2列联表见解析;(2)能认为该校学生喜欢观看世界杯与性别有关.【分析】(1)根据题设数据确定男女生喜欢、不喜欢观看球赛的人数,即可完成列联表;(2)应用卡方公式求卡方值,根据独立检验的基本思想即可得结论.【详解】(1)依题设,喜欢观看的男生有90人,不喜欢观看的男生有1509060-=人;喜欢观看的女生有60人,不喜欢观看的女生有1506090-=人,列联表如下图示:喜欢观看不喜欢观看合计男生9060150女生6090150合计150150300(2)由22300(90906060)1210.828150150150150χ⨯⨯-⨯==>⨯⨯⨯,所以依据小概率值0.001α=的独立性检验,能认为该校学生喜欢观看世界杯与性别有关.18.已知函数()()ln ,0,1f x x ax a =-∈.(1)若12a =时,求()f x 的单调区间;(2)求()f x 在[]1,2上的最小值.【正确答案】(1)递增区间为(0,2),递减区间为(2,)+∞;(2)答案见解析.【分析】(1)把12a =代入,利用导数求出()f x 的单调区间作答.(2)利用导数分段讨论函数()f x 在[]1,2上的单调性,再求出最小值作答.【详解】(1)当12a =时,()1ln 2f x x x =-的定义域为(0,)+∞,求导得11()2f x x '=-,当02x <<时,()0f x '>,当2x >时,()0f x '<,即函数()f x 在(0,2)上单调递增,在(2,)+∞上单调递减,所以函数()f x 的递增区间为(0,2),递减区间为(2,)+∞.(2)01a <<,函数()ln f x x ax =-,求导得1()f x a x'=-,由[1,2]x ∈,得11[,1]2x ∈,当102a <≤时,()0f x '≥,当12,2x a ==时取等号,因此函数()f x 在[]1,2上单调递增,min ()(1)f x f a ==-,当112a <<时,由()0f x '>,得11x a ≤<,由()0f x '<,得12x a<≤,于是函数()f x 在1[1,)a 上单调递增,在1(,2]a上单调递减,(1),(2)ln 22f a f a =-=-,由(1)(2)ln 20f f a -=-=,得ln 2a =,当1ln 22a <<时,min ()(1)f x f a ==-,当ln 2a =时,min ()(1)(2)ln 2f x f f ===-,当ln 21a <<时,min ()(2)ln 22f x f a ==-,所以当0ln 2a <≤时,函数()f x 的最小值为a -,当ln 21a <<时,函数()f x 的最小值为ln 22a -.19.已知公差不为零的等差数列{}n a 满足2a 是14,a a 的等比中项,5611a a +=.(1)求数列{}n a 的通项公式;(2)从下面两个条件选择一个作为已知条件,求数列{}n b 的前n 项和n S .①2n an n b a =⋅;②()()222121nn n n a b a a =-+.注:如果选择多个条件分别解答,则按第一个解答计分.【正确答案】(1)n a n =;(2)答案见解析【分析】(1)先利用题给条件求得等差数列{}n a 的首项与公差,进而求得数列{}n a 的通项公式;(2)选①利用错位相减法即可求得数列{}n b 的前n 项和n S ;选②利用裂项相消法即可求得数列{}n b 的前n 项和nS 【详解】(1)等差数列{}n a 满足2a 是14,a a 的等比中项,2214a a a ∴=,即()()21113.a d a a d +=+由5611a a +=,可得()()114511.a d a d +++=由()()()()211111345110a d a a d a d a d d ⎧+=+⎪+++=⎨⎪≠⎩,可得111a d =⎧⎨=⎩1(1)n a a n d n ∴=+-=.(2)若选①:2nn b n =⋅,则1212222n n S n =⨯+⨯++⋅ .231212222n n S n +=⨯+⨯++⋅ ()12322222n n n S n +∴=⋅--+++ ()()11121222212(1)2212n n n n n n n n +++-=⋅-=⋅+-=-+-;若选②.()()242121n n b n n =-+111111(21)(21)22121n n n n ⎛⎫=+=+- ⎪-+-+⎝⎭1111111112335572121n S n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴=+-+-+-++-⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.2112212212121n n nn n n n n +⎛⎫=+-=+= ⎪+++⎝⎭.20.“绿色出行,低碳环保”已成为新的时尚,近几年国家相继出台了一系列的环保政策,在汽车行业提出了重点扶持新能源汽车的政策,为新能源汽车行业的发展开辟了广阔的前景.某公司对A 充电桩进行生产投资,所获得的利润有如下统计数据,并计算得()()6130i i i x x y y =--=∑.A 充电桩投资金额x /万元3467910所伏利润y /百万元1.5234.567(1)已知可用一元线性回归模型拟合y 与x 的关系,求其经验回归方程;(2)若规定所获利润y 与投资金额x 的比值不低于23,则称对应的投入额为“优秀投资额”.记2分,所获利润y 与投资金额x 的比值低于23且大于12,则称对应的投入额为“良好投资额”,记1分,所获利润y 与投资金额x 的比值不超过12,则称对应的投入额为“不合格投资额”,记0分,现从表中6个投资金额中任意选2个,用X 表示记分之和,求X 的分布列及数学期望.附.()()()1122211ˆˆˆ,n niii ii i nni ii i x x y y x y nxyba y bxx x xnx ====---===---∑∑∑∑【正确答案】(1)ˆ0.8 1.2y x =-;(2)分布列见解析,53.【分析】(1)利用给定的数表求出,x y ,再利用最小二乘法公式求解作答.(2)求出X 的可能值,及对应的概率,列出分布列并求出期望作答.【详解】(1)由数表知,3467910 1.523 4.5676.5,466x y ++++++++++====622222221()(3 6.5)(4 6.5)(6 6.5)(7 6.5)(9 6.5)(10 6.5)37.5ii x x =-=-+-+-+-+-+-=∑,因此11662)()ˆ0.83)(307.5(iii ii x x y y bx x ==--===-∑∑,ˆˆ40.8 6.5 1.2a y bx=-=-⨯=-,所以所求经验回归方程为ˆ0.8 1.2yx =-.(2)由数表知,1.52313462===,1 4.5627279310<<=<,因此“优秀投资额”有2个,“良好投资额”有1个,“不合格投资额”有3个,X 的可能值为0,1,2,3,4,21113332222666C C 1C 3131322(0),(1),(2)C 155C 155C 155C P X P X P X ⨯⨯============,12222266C 1C 21(3),(4)C 15C 15P X P X ⨯======,所以X 的分布列为:X01234P151525215115数学期望112215()0123455515153E X =⨯+⨯+⨯+⨯+⨯=.21.设()ln 1f x ax x =++.(1)当1a =时,求函数()f x 在1x =处的切线方程;(2)若对任意的0x >,()2e xf x x ≤恒成立,求实数a 的取值范围.【正确答案】(1)2y x =(2)(],2-∞【分析】(1)当1a =时,求出()1f 、()1f '的值,利用导数的几何意义可得出所求切线的方程;(2)分离参数得到2ln 1e x x a x +≤-,构造函数()2ln 1e (0)xx m x x x+=->,求导确定函数的最小值即可得到a 的取值范围.【详解】(1)解:当1a =时,()ln 1f x x x =++,则()11f x x'=+,所以,()()112f f '==,所以,当1a =时,求函数()f x 在1x =处的切线方程为()221y x -=-,即2y x =.(2)解:因为()ln 1f x ax x =++,所以对任意的0x >,()2e xf x x ≤恒成立,等价于2ln 1e xx a x+≤-在()0,∞+上恒成立.令()()2ln 1e 0xx m x x x +=->,则()2222e ln x x xm x x '+=.再令()222e ln x n x x x =+,则()()2214e 0xn x x x x=++>',所以()222e ln xn x x x =+在()0,∞+上单调递增.因为12ln2048n ⎛⎫=-< ⎪⎝⎭,()10n >,所以()222e ln xn x x x =+有唯一零点0x ,且0114x <<.所以当00x x <<时,()0m x '<,当0x x >时,()0m x '>.所以函数()m x 在()00,x 上单调递减,在()0,x +∞上单调递增.因为022002e ln 0x x x +=,即02020ln e2x x x =-,即02000112e ln x x x x =,因为0114x <<,则0114x <<,令()ln h x x x =,其中1x >,则()ln 10h x x '=+>,所以,函数()h x 在()1,+∞上为增函数,由02000112e ln x x x x =可得0220011e ln e ln x x x x =,即()0201e x h h x ⎛⎫= ⎪⎝⎭,因为02e1x >,011x >,所以,0201e x x =,可得00012ln ln x x x ==-,所以()()02000000ln 121e21x x x m x m x x x x +-≥=-+=-=,则2a ≤.所以a 的取值范围为(],2-∞.关键点点睛:本题关键点在于对()()2ln 1e 0xx m x x x+=->求导后,把导数构造成新的函数再次求导,借助隐零点求出()()2ln 1e 0xx m x x x+=->的最小值,进而借助恒成立的内容进行解答.22.某企业对生产设备进行优化升级,升级后的设备控制系统由()21k k *-∈N 个相同的元件组成,每个元件正常工作的概率均为()01p p <<,各元件之间相互独立.当控制系统有不少于k 个元件正常工作时,设备正常运行,否则设备停止运行,记设备正常运行的概率为k p (例如:2p 表示控制系统由3个元件组成时设备正常运行的概率;3p 表示控制系统由5个元件组成时设备正常运行的概率).(1)若23p =,当2k =时,求控制系统中正常工作的元件个数X 的分布列和数学期望,并求3p ;(2)已知设备升级前,单位时间的产量为a 件,每件产品的利润为1元,设备升级后,在正常运行状态下,单位时间的产量是原来的4倍,且出现了高端产品,每件产品成为高端产品的概率为14,每件高端产品的利润是2元.记设备升级后单位时间内的利润为Y (单位:元).(i )请用k p 表示()E Y ;(ii )设备升级后,在确保控制系统中元件总数为奇数的前提下,分析该设备能否通过增加控制系统中元件的个数来提高利润.【正确答案】(1)分布列见解析,()2E X =,36481p =(2)(i )()5k E Y ap =,(ii )答案见解析【分析】(1)由题意可知23,3X B ⎛⎫⎪⎝⎭,利用二项分布求解即可求得期望,根据互斥事件的和事件的概率公式求解3p ;(2)(i )先写出升级改造后单位时间内产量的分布列congestion 求出设备升级后单位时间内的利润,即为()E Y ;(ii )分类讨论求出1k p +与k p 的关系,做差比较大小即可得出结论.【详解】(1)因为2k =,所以控制系统中正常工作的元件个数X 的可能取值为0,1,2,3;因为每个元件的工作相互独立,且正常工作的概率均为23p =,所以23,3XB ⎛⎫ ⎪⎝⎭,所以()03032110C 3327P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()12132121C 339P X ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭()21232142C 339P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()30332183C 3327P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,所以控制系统中正常工作的元件个数X 的分布列为X0123P1272949827控制系统中正常工作的元件个数X 的数学期望为()2323E X =⨯=,324153453555212121C C C 333333P ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭8080321926424324324324381=++==;(2)(i )升级改造后单位时间内产量的分布列为产量4a 0设备运行概率kp 1kp -所以升级改造后单位时间内产量的期望为4k ap ;所以产品类型高端产品一般产品产量(单位:件)kap 3kap 利润(单位:元)21设备升级后单位时间内的利润为235k k k ap ap ap +=,即()5k E Y ap =;(ii )因为控制系统中元件总数为奇数,若增加2个元件,则第一类:原系统中至少有1k +个元件正常工作,其概率为()()1211C 1k k k k k p p p p --=--;第二类:原系统中恰好有k 个元件正常工作,新增2个元件中至少有1个正常工作,其概率为()()()()()121122212C 111C 12k k k kk k k k p p p p p p p --+--⎡⎤=-⋅--=--⎣⎦;第三类:原系统中有1k -个元件正常工作,新增2个元件全部正常工作,其概率为()()()1121121213C 1C 1kkk k k k k k p pp p p p ---+--=-⋅=-;所以()()()()111111212121C 1C 12C 1k k kk k k k k k k k k k k p p p p p p p p p --+-++---=--+--+-()()21C 121kk kk k p p p p -=+--,则()()121C 121kk k k k k p p p p p +--=--,所以当12p >时,10k k p p +->,k p 单调递增,即增加元件个数设备正常工作的概率变大,当12p ≤时,10k k p p +-≤,即增加元件个数设备正常工作的概率没有变大,又因为()5k E Y ap =,所以当12p >时,设备可以通过增加控制系统中元件的个数来提高利润;当12p ≤时,设备不可以通过增加控制系统中元件的个数来提高利润.关键点点睛:分析增加2个元件后,分三类求解,求出()()()()111111212121C 1C 12C 1k k kk kk k k k k k k k k p p p p pp p p p --+-++---=--+--+-是解题的难点与关键.。
高二数学第一次月考模拟(基础卷)(空间向量与立体几何+直线方程)(解析版)
2024-2025学年高二上学期第一次月考模拟(基础卷)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(23-24高二上·重庆·月考)已知A 1,2,-3 ,则点A 关于xOy 平面的对称点的坐标是()A.-1,2,-3B.-1,-2,3C.-1,2,3D.1,2,3【答案】D【解析】点A 关于xOy 平面的对称点的坐标是(1,2,3),故选:D .2.(23-24高二上·河南·月考)若直线经过A 1,0 ,B 2,3 两点,则直线AB 的倾斜角为()A.30°B.45°C.60°D.135°【答案】C【解析】由直线经过A 1,0 ,B 2,3 两点,可得直线的斜率为3-02-1=3,设直线的倾斜角为θ,有tan θ=3,又0°≤θ<180°,所以θ=60°.故选:C .3.(23-24高二上·广东湛江·月考)已知a =1,2,-y ,b =x ,1,2 ,且a +2b ∥2a -b ,则()A.x =13,y =1 B.x =2,y =14C.x =12,y =-4 D.x =1,y =-1【答案】C【解析】向量a =1,2,-y ,b =x ,1,2 ,则a +2b =1+2x ,4,4-y ,2a -b =2-x ,3,-2y -2 ,因a +2b ⎳2a -b ,于是得1+2x 2-x =43=4-y -2y -2,解得x =12,y =-4,所以x =12,y =-4.故选:C .4.(23-24高二上·福建福州·期中)两条平行直线2x -y +3=0和ax -3y +6=0间的距离为d ,则a ,d 的值分别为()A.a =6,d =63B.a =-6,d =63C.a =-6,d =55D.a =6,d =55【答案】D【解析】由已知可得,2×-3 --1 ×a =0,解得a =6.代入ax -3y +6=0化简可得,2x -y +2=0.根据两条平行线之间的距离公式可得,d =3-222+-1 2=55.故选:D .5.(23-24高二上·黑龙江哈尔滨·期中)如图,空间四边形OABC 中,OA =a ,OB =b ,OC =c,点M在OA 上,且OM =23OA ,点N 为BC 中点,则MN等于()A.12a +12b -12c B.-23a +12b +12cC.-23a +23b -12cD.23a +23b -12c【答案】B【解析】由题意可得,MN =ON -OM =12OB +OC -23OA =-23a +12b +12c.故选:B6.(23-24高二上·山东·月考)过点P 0,-1 作直线l ,若直线l 与连接A -2,1 ,B 23,1 两点的线段总有公共点,则直线l 的倾斜角范围为()A.π4,π6B.π6,3π4C.0,π6∪3π4,πD.π6,π2 ∪3π4,π 【答案】B【解析】设直线l 的斜率为k ,倾斜角为θ,0≤θ<π,k P A =-1-10--2 =-1,k PB =1--1 23-0=33,因为直线l 经过点P 0,-1 ,且与线段AB 总有公共点,所以k ∈-∞,-1 ∪33,+∞ ,因为0≤θ<π,所以π6≤θ≤3π4.故选:B .7.(23-24高二上·天津河西·月考)以下各组向量中的三个向量,不能构成空间基底的是()A.a =1,0,0 ,b =0,2,0 ,c =12,-2,0 B.a =1,0,0 ,b =0,1,0 ,c=0,0,2C.a =1,0,1 ,b =0,1,1 ,c=2,1,2D.a =1,1,1 ,b =0,1,0 ,c=1,0,2【答案】A【解析】若空间三个向量a ,b ,c 能构成空间的基底,则向量a ,b ,c 不共面,反之亦然,对于A ,由a =1,0,0 ,b =0,2,0 ,c =12,-2,0 ,得c =12a -22b,即向量a ,b ,c共面,不能构成空间基底;对于B ,令c =xa +yb ,则(0,0,2)=(x ,y ,0),不成立,即a ,b ,c不共面,可构成基底;对于C ,令c =xa +yb ,则(2,1,2)=(x ,y ,x +y ),即x =2y =1x +y =2 无解,即a ,b ,c不共面,可构成基底;对于D ,令c =xa +yb ,则(1,0,2)=(x ,x +y ,x ),即x =1x +y =1x =2无解,即a ,b ,c不共面,可构成基底.故选:A8.(23-24高二上·江苏南京·月考)点P (-2,-1)到直线l :(1+3λ)x +(1+λ)y -2-4λ=0(λ∈R )的距离最大时,其最大值以及此时的直线方程分别为()A.13;3x +2y -5=0B.11;3x +2y -5=0C.13;2x -3y +1=0D.11;2x -3y +1=0【答案】A【解析】将直线l :(1+3λ)x +(1+λ)y -2-4λ=0(λ∈R )变形得x +y -2+λ(3x +y -4)=0,由x +y -2=03x +y -4=0 ,解得x =1y =1 ,因此直线l 过定点A (1,1),当AP ⊥l 时,点P (-2,-1)到直线l :(1+3λ)x +(1+λ)y -2-4λ=0(λ∈R )的距离最大,最大值为AP =(-2-1)2+(-1-1)2=13,又直线AP 的斜率k AP =-1-1-2-1=23,所以直线l 的方程为y -1=-32(x -1),即3x +2y -5=0.故选:A二、多选选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.(23-24高二上·浙江嘉兴·月考)已知AB =(-2,1,4),AC =(4,2,0),AP =(1,-2,1),AQ=(0,4,4),则下列说法正确的是()A.AP是平面ABC 的一个法向量B.A ,B ,C ,Q 四点共面C.PQ ∥BCD.BC =53【答案】AD【解析】AP ⋅AB =(-2)×1+1×(-2)+4×1=0,AP ⋅AC=1×4+(-2)×2+1×0=0,所以AP ⊥AB ,AP ⊥AC ,AB ∩AC =A ,AB ,AC ⊂平面ABC ,所以AP ⊥平面ABC ,所以AP是平面ABC 的一个法向量,故A 正确;设AB =λAC +μAQ,则-2=4λ1=2λ+4μ4=4μ,无解,所以A ,B ,C ,Q 四点不共面,故B 错误;PQ =AQ -AP =(-1,6,3),BC =AC -AB =(6,1,-4),-16≠61≠3-4,所以PQ 与BC 不平行,故C 错误;|BC|=62+12+(-4)2=53,故D 正确;故选:AD .10.(23-24高二上·河北保定·月考)已知直线l 1:x +a -1 y +1=0,直线l 2:ax +2y +2=0,则下列结论正确的是()A.l 1在x 轴上的截距为-1B.l 2过定点0,-1C.若l 1⎳l 2,则a =-1或a =2D.若l 1⊥l 2,则a =23【答案】ABD【解析】由l 1:x +a -1 y +1=0易知y =0⇒x =-1,故A 正确;由l 2:ax +2y +2=0⇒x =0,y =-1,故B 正确;若两直线平行,则有1×2=a a -1 且1×2≠a ×1,解得a =-1,故C 错误;若两直线垂直,则有a ×1+2×a -1 =0⇒a =23,故D 正确.故选:ABD11.(24-25高二上·湖南邵阳·开学考试)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点P 是正方体的上底面A 1B 1C 1D 1内(不含边界)的动点,点Q 是棱BC 的中点,则以下命题正确的是()A.三棱锥Q -PCD 的体积是定值B.存在点P ,使得PQ 与AA 1所成的角为60°C.直线PQ 与平面A 1ADD 1所成角的正弦值的取值范围为0,22D.若PD 1=PQ ,则P 的轨迹的长度为354【答案】ACD【解析】对于A ,三棱锥Q -PCD 的体积等于三棱锥P -QCD 的体积,V 三棱锥P -QCD =13S △QCD ×AA 1=13×12×2×1×2=23是定值,A 正确;以A 1为坐标原点,A 1B 1,A 1D 1,AA 1分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则Q (2,1,-2),设P (x ,y ,0)(0<x <2,0<y <2),则QP=(x -2,y -1,2)对于B ,AA 1=(0,0,2),使得PQ 与AA 1所成的角α满足:cos α=QP ⋅AA 1 QP ⋅AA 1 =2×2x -2 2+y -1 2+4×2,因为0<x <2,0<y <2,故0<x -2 2+y -1 2<5,故cos α∈23,1,而cos60°=12∉23,1 ,B 错误;对于C ,平面A 1ADD 1的法向量n=(1,0,0),所以直线PQ 与平面A 1ADD 1所成角β的正弦值为:sin β=x -2(x -2)2+(y -1)2+4,因为0<x <2,0<y <2,故-2<x -2<0故x -2 (x -2)2+5<x -2 (x -2)2+(y -1)2+4≤x -2(x -2)2+4,而x -2 (x -2)2+5=11+5(x -2)2∈0,23 ,x -2 (x -2)2+4=11+4(x -2)2∈0,22,故0<x -2(x -2)2+(y -1)2+4<22即sin β的取值范围为0,22,C 正确;对于D ,D 1(0,2,0),D 1P=(x ,y -2,0),由PD 1=PQ ,可得x 2+(y -2)2=(x -2)2+(y -1)2+4,化简可得4x -2y -5=0,在xA 1y 平面内,令x =0,得y =32,令y =0,得x =54,则P 的轨迹的长度为2-54 2+32 2=354,D 正确;故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12.(23-24高二上·山东德州·月考)已知a =-2,1,3 ,b =-1,2,1 ,则a与b 夹角的余弦值为.【答案】216/1621【解析】∵a =-2,1,3 ,b =-1,2,1 ,∴cos <a ,b >=a ⋅b a b=2+2+314×6=216.13.(23-24高二下·江苏扬州·月考)在空间直角坐标系中,点M 0,0,1 为平面ABC 外一点,其中A 1,0,0 、B 0,2,1 ,若平面ABC 的一个法向量为1,y 0,-1 ,则点M 到平面ABC 的距离为.【答案】233/233【解析】因为A 1,0,0 、B 0,2,1 ,所以AB=-1,2,1 ,记平面ABC 的一个法向量为n=1,y 0,-1 ,则n ⋅AB=-1 ×1+2y 0+1×-1 =0,解得y 0=1,故平面ABC 的一个法向量为n=1,1,-1 .因为M 0,0,1 ,所以MA=1,0,-1 ,所以点M 到平面ABC 的距离为d =MA ⋅n n=1+0+1 1+1+1=233.14.(23-24高二上·四川达州·月考)直线l 1:x +m +1 y -2m -2=0与直线l 2:m +1 x -y -2m -2=0相交于点P ,对任意实数m ,直线l 1,l 2分别恒过定点A ,B ,则P A +PB 的最大值为【答案】4【解析】直线l 1:x +m +1 y -2m -2=0化为x +y -2+m y -2 =0,当y -2=0x +y -2=0,得x =0y =2 ,即直线l 1恒过点0,2 ,即点A 0,2 ,直线l 2:m +1 x -y -2m -2=0化为x -y -2+m x -2 =0,当x -y -2=0x -2=0,得x =2y =0 ,即直线l 2恒过点2,0 ,即点B 2,0 ,且两条直线满足1×m +1 +m +1 ×-1 =0,∴l 1⊥l 2,即P A ⊥PB ,∴P A 2+PB 2=AB 2=22+22=8,∴P A +PB ≤2P A 2+PB 2 =4,当且仅当P A =PB 时,等号成立,∴P A +PB 的最大值为4.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(23-24高二上·广东湛江·月考)已知点P -2,0,2 ,Q -1,1,2 ,R -3,0,4 ,设a =PQ ,b =PR ,c=QR .(1)若实数k 使ka +b 与c垂直,求k 值.(2)求a 在b上的投影向量.【答案】(1)k =2;(2)15,0,-25.【解析】(1)依题意,a =(1,1,0),b =(-1,0,2),c =(-2,-1,2),ka +b=(k ,k ,0)+(-1,0,2)=(k -1,k ,2),由ka +b 与c 垂直,得(ka +b )⋅c =-2(k -1)-k +2×2=0,解得k =2,所以k =2.(2)由(1)知,a ⋅b =-1,|b |=5,所以a 在b 上的投影向量为a ⋅b |b |2b =-15b =15,0,-25 .16.(23-24高二上·江苏南京·月考)已知△ABC 的三个顶点为A 4,0 ,B 0,2 ,C 2,6 .(1)求AC 边上的高BD 所在直线的方程;(2)求BC 边上的中线AE 所在直线的方程.【答案】(1)x -3y +6=0;(2)4x +3y -16=0.【解析】(1)因为△ABC 的三个顶点为A 4,0 ,B 0,2 ,C 2,6 ,所以直线AC 的斜率为k AC =6-02-4=-3,所以AC 边上的高BD 所在直线的斜率为k BD =13,所以直线BD 的方程为y -2=13x ,化为一般式方程为x -3y +6=0;(2)因为B 0,2 ,C 2,6 ,所以BC 的中点为E 1,4 ,又因为A 4,0 ,E 1,4 ,所以直线AE 的斜率为k =-43,所以直线AE 的点斜式方程为y -0 =-43x -4 ,化为一般式为4x +3y -16=0.17.(23-24高二上·安徽安庆·月考)已知平行六面体ABCD -A 1B 1C 1D 1,底面是正方形,AD =AB =2,AA 1=1,∠A 1AB =∠DAA 1=60°,A 1C 1 =3NC 1 ,D 1B =2MB ,设AB =a ,AD =b ,AA 1 =c.(1)试用a ,b ,c表示AN ;(2)求MN 的长度.【答案】(1)AN =AA 1 +A 1N =23a +23b +c ;(2)MN =296【解析】(1)AN =AA 1 +A 1N =AA 1 +23(A 1B 1 +A 1D 1 )=c +23(a +b )=23a +23b +c.(2)AM =AB +12BD 1 =AB +12(BA +AD +DD 1 )=12a +12b +12c ,NM =AM -AN =12a +12b +12c -23a +23b +c =-16a -16b -12c ,所以|NM |=-16a -16b -12c 2=136a 2+136b 2+14c 2+118a ∙b +16a ∙c +16b ∙c=136×4+136×4+14×1+16×2×1×12+16×2×1×12=296.所以MN =296.18.(23-24高二上·湖北武汉·月考)已知直线l 过点P 4,1 且与x 轴、y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,(1)求三角形OAB 面积取最小值时直线l 的方程;(2)求OA +OB 取最小值时直线l 的方程.【答案】(1)x +4y -8=0;;(2)x +2y -6=0.【解析】(1)由题意设A a ,0 ,B (0,b ),其中a ,b 为正数,可设直线的方程为xa +y b=1,因为直线l 过点P 4,1 ,所以4a +1b =1,由基本不等式可得1=4a +1b ≥24a ⋅1b =4ab,所以ab ≥4,ab ≥16,当且仅当4a +1b =14a=1b即a =8b =2时,ab 取得最小值16,所以△AOB 面积S =12ab ≥8,所以当a =8,b =2时,△AOB 面积最小,此时直线l 的方程为x8+y 2=1,即x +4y -8=0,(2)因为4a +1b=1,a >0,b >0 ,所以OA +OB =a +b =a +b 4a +1b =5+4b a +ab ≥5+24b a ⋅a b=5+2×2=9,当且仅当4ba =ab 4a+1b =1即a =6b =3时等号成立,所以当a =6,b =3时,OA +OB 的值最小,此时直线l 的方程为x6+y 3=1,即x +2y -6=0.19.(24-25高二上·安徽阜阳·开学考试)如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,∠ADC =∠BCD =90°,BC =1,CD =3,PD =2,∠PDA =60°,∠P AD =30°,且平面P AD ⊥平面ABCD ,在平面ABCD 内过B 作BO ⊥AD ,交AD 于O ,连PO .(1)求证:PO ⊥平面ABCD ;(2)求二面角A -PB -C 的正弦值;(3)在线段P A 上存在一点M ,使直线BM 与平面P AD 所成的角的正弦值为277,求PM 的长.【答案】(1)证明见解析;(2)77;(3)32.【解析】(1)因为BO ⊥AD ,因为BC ⎳AD ,∠ADC =∠BCD =90°,所以四边形BODC 为矩形,在△PDO 中,PD =2,DO =BC =1,∠PDA =60°,则PO =PD 2+OD 2-2PD ⋅OD cos60°=3,∴PO 2+DO 2=PD 2,∴PO ⊥AD ,且平面P AD ⊥平面ABCD ,PO ⊂平面P AD 平面P AD ∩平面ABCD =AD ,∴PO ⊥平面ABCD ;(2)以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,∵PO =3,∠P AD =30°,可得AO =3,则O (0,0,0),A (3,0,0),P 0,0,3 ,B 0,3,0 ,C -1,3,0 ,设平面APB 的法向量为m=(x ,y ,z ),P A =3,0,-3 ,PB =0,3,-3 ,由P A ⋅m=3x -3z =0PB ⋅m =3y -3z =0,取m =1,3,3 .设平面CPB 的法向量为n=(a ,b ,c ),PC =-1,3,-3 ,由n ⋅PB=3b -3c =0n ⋅PC =-a +3b -3c =0,取n =(0,1,1),cos m ,n =m ⋅n m n=237×2=427.∵二面角A -PB -C 是钝角,∴二面角A -PB -C 的正弦值为77.(3)设AM =λAP ,则BM =BA +AM =3,-3,0 +λ-3,0,3 =3-3λ,-3,3λ ,又平面P AD 的法向量为OB=0,3,0 ,直线BM 与平面P AD 所成的角的正弦值为cos OB ,BM =33×(3-3λ)2+3+3λ2=27,解得λ=34,∴PM =14AP =14PO 2+OA 2=32.。
2023-2024学年陕西省高二上学期第一次月考数学质量检测模拟试题(A)(含解析)
2023-2024学年陕西省高二上册第一次月考数学模拟试题(A)一、单选题1.已知集合{}2Z 230A x x x =∈--<,{}2,1,0,1,2B =--,则A B ⋂等于()A .{}2,1--B .{}1,2C .{}2,1,0--D .{}0,1,2【正确答案】D【分析】求出集合A ,利用交集运算可求得结果.【详解】{}{}{}2230130,1,2A x x x x x =∈--<=∈-<<=Z Z ,{}2,1,0,1,2B =--,{}0,1,2A B ∴⋂=.故选:D.2.经过直线20x y -=与60x y +-=的交点,且与直线210x y +-=垂直的直线方程为()A .280x y +-=B .260x y --=C .2100x y +-=D .260x y -+=【正确答案】D【分析】根据题意,联立方程组交点为(2,4)P ,设所求直线方程为20x y m -+=,把点P 代入直线20x y m -+=,求得6m =,即可求解.【详解】由题意,联立方程组2060x y x y -=⎧⎨+-=⎩,解得2,4x y ==,即交点为(2,4)P ,设与直线210x y +-=垂直的直线方程为20x y m -+=,把点(2,4)P 代入20x y m -+=,即280-+=m ,解得6m =,即所求直线方程为260x y -+=.故选:D.3.函数3()xx f x e=的图象大致是()A .B .C .D .【正确答案】C【分析】根据题意,由33()()()xxx x f x f x ee---==-=-,可知()f x 为奇函数,图象关于原点对称,排除A ,B ;令()0f x =,可知0x =,可知图象与x 轴只有一个交点,据此分析可得答案.【详解】解:由33()()()xxx x f x f x ee---==-=-,可知()f x 为奇函数,所以图象关于原点对称,排除A ,B ;令()0f x =,可知0x =,可知图象与x 轴只有一个交点,排除D ,故选:C.本题考查函数的图象分析,注意分析选项中函数图象的异同,利用排除法分析.属于中档题.4.已知0a >,且1a ≠,函数log ,0()21,0a x x a x f x x +>⎧=⎨-≤⎩,若()3f a =,则()f a -=()A .34-B .78-C .3D .7【正确答案】A【分析】根据分段函数的解析式和()3f a =求出a 的值,然后代入即可求解.【详解】因为()3f a =,又0a >,所以()log 13a f a a a a =+=+=,解得:2a =,所以2log 2,0()21,0x x x f x x +>⎧=⎨-≤⎩,则()23(2)214f a f --=-=-=-,故选.A5.某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A .8B .62C .10D .82【正确答案】C【详解】在正方体中画出该三棱锥,如图所示:易知:各个面均是直角三角形,且4AB =,14AA =,3BC =,∴6ABC S = ,18A AB S = ,110A AC S = ,162A BC S = 所以四个面中面积最大的是10,故选C .点睛:1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.6.已知直线1:210l mx y m -+-=过定点P ,若点P 在直线2:20l Ax By ++=上,且0AB >,则12A B+的最小值为()A .1B .2C .3D .4【正确答案】D【分析】先求出定点(2,1)P --,然后利用点P 在直线2l 上得到22A B +=,再利用基本不等式即可求解.【详解】因为直线1:210l mx y m -+-=可化为:(2)(1)0m x y +-+=,令2010x y +=⎧⎨+=⎩,解得:21x y =-⎧⎨=-⎩,所以定点(2,1)P --,又因为点P 在直线2:20l Ax By ++=上,所以22A B +=,则12112141(2)((4)(44222B A A B A B A B A B +=++=⨯++≥⨯+=,当且仅当4B AA B =,即1,12A B ==时取等号,所以12A B+的最小值为4,故选.D7.若直线l 将圆()()22129x y -++=平分,且在两坐标轴上的截距相等,则直线l 的方程为()A .10x y ++=或20x y +=B .10x y -+=或20x y +=C .10x y -+=或20x y -=D .10x y --=或20x y -=【正确答案】A【分析】分两种情况讨论:(1)直线l 过原点;(2)直线l 在两坐标轴上的截距非零,且相等.分别求出两种情况下直线l 的方程,即可得解.【详解】由题意可知,直线l 过圆心()1,2-,分以下两种情况讨论:(1)直线l 过原点,则该直线的斜率为20210k --==--,此时直线l 的方程为2y x =-,即20x y +=;(2)直线l 在两坐标轴上的截距非零且相等,可设直线l 的方程为()0x y a a +=≠,则有121a =-=-,此时,直线l 的方程为10x y ++=.综上所述,直线l 的方程为10x y ++=或20x y +=.故选:A.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若22coscos 212A BC +-=,4sin 3sin B A =,1a b -=,则c 的值为()A B .7C .37D .6【正确答案】A【分析】利用余弦的降幂公式,化简已知条件求得C ;再利用正弦定理将角化边结合已知求得,a b ,再用余弦定理即可求得c .【详解】由22coscos 212A BC +-=得221cos()(2cos 1)22cos cos 1A B C C C ++--=--=,即22cos cos 10C C +-=,解得1cos 2C =或cos 1C =-(舍去).由4sin 3sin B A =及正弦定理,得43b a =,结合1a b -=,得4,3a b ==.由余弦定理,知2222212cos 43243132c a b ab C =+-=+-⨯⨯⨯=,所以c =.故选:A9.函数f (x )=A cos(ωx +φ)(ω>0)的部分图象如图所示,给出以下结论:①f (x )的最小正周期为2;②f (x )图象的一条对称轴为直线12x =-;③f (x )在132,244k k ⎛⎫-+ ⎪⎝⎭,k ∈Z 上是减函数;④f (x )的最大值为A .则正确结论的个数为()A .1B .2C .3D .4【正确答案】B【分析】由题图可知,函数的最小正周期为2,函数过点1(,0)4和5(,0)4,可得对称轴x 3+4=k (k ∈Z )和单调减区间2k -14≤x ≤2k +34(k ∈Z )时,即可得出结果.【详解】由题图可知,函数f (x )的最小正周期T =2×51()44-=2,故①正确;因为函数f (x )的图象过点1(,0)4和5(,0)4,所以函数f (x )图象的对称轴为直线x =1513(+24424⋅=kT +k (k ∈Z ),故直线x =12-不是函数f (x )图象的对称轴,故②不正确;由图可知,当144-T +kT ≤x ≤+1+44T +kT (k ∈Z ),即2k -14≤x ≤2k +34(k ∈Z )时,f (x )是减函数,故③正确;若A >0,则最大值是A ,若A <0,则最大值是-A ,故④不正确.综上知正确结论的个数为2.故选:B本题考查了三角函数图形的性质,考查了计算能力和逻辑推理能力,属于一般题目.10.已知点P 在直线21y x =+上,过点P 作圆22:(2)1C x y -+=的切线,切点为A ,则||PA 的最小值为()AB .2C D .3【正确答案】B求出PC 的最小值,由切线长公式可结论.【详解】圆半径为1r =,PA =,因为P 在直线21y x =+即210x y -+=上,圆心(2,0)C 到P 点的最小值为d =所以min 2PA =.故选:B .本题考查切线长公式,属于基础题.11.已知点(7,3)P ,Q 为圆22:210250M x y x y +--+=上一点,点S 在x 轴上,则||||SP SQ +的最小值为()A .7B .8C .9D .10【正确答案】C【分析】本题目是数形结合的题目,根据两点之间线段最短的原则,可以将SP 转换为'SP ,连接'MP ,找到S 点的位置,从而求出线段和的最小值【详解】将圆方程化为标准方程为:()()22151x y -+-=,如下图所示:作点(7,3)P 关于x 轴的对称点'(7,3)P -,连接'MP 与圆相交于点Q ,与x 轴相交于点S ,此时,||||SP SQ +的值最小,且'''||||||||SP SQ SP SQ P Q P M r +=+==-,由圆的标准方程得:M 点坐标为()1,5,半径1r =,所以'366410P M +=,'9P M r -=,所以||||SP SQ +最小值为9故选:C12.在ABC 中,90A ∠=︒,34AB AC ==,,动点P 在ABC 的内切圆上若BP AB AC λμ=+,则λμ+的最大值为()A .2B .1C .0D .12【正确答案】C由题意,以A 为原点,以AB 、AC 所在直线分别为x 轴、y 轴建立直角坐标系,设(),P x y ,求出内切圆方程,再根据直线与圆的位置关系即可求出最值.【详解】解:由题意,以A 为原点,以AB 、AC 所在直线分别为x 轴、y 轴建立直角坐标系,则()0,0A ,()3,0B ,()0,4C ,∵,3,42A AB AC π===,∴5BC =,∵ABC 的面积为13462S =⨯⨯=,∴ABC 的内切圆半径()6113452r ==++,∴内切圆圆心()1,1M ,∵点P 在ABC 的内切圆上,设(),P x y ,∴()()22111x y -+-=,由BP AB AC λμ=+得()()3,3,4x y λμ-=,即334x y λμ-⎧=⎪⎪⎨⎪=⎪⎩,∴令334x yz λμ-=+=+,即4443y x z =-++,即4312120x y z +--=,由几何知识,当直线4443y x z =-++与圆M 相切时334x yz -=+有最值,此时4312121z +--=,解得0z =,或65z =-,∴λμ+的最大值为0,故选:C .关键点睛:本题主要考查直线与圆的位置关系,通过题意建立以A 为原点,以AB 、AC 所在直线分别为x 轴、y 轴的直角坐标系求出内切圆的方程,利用点到直线的距离公式求解是解决本题的关键.二、填空题13.经过点(,3),(1,)P m Q m -的直线的倾斜角为135︒,则实数m 的值为___________.【正确答案】1【分析】由直线的倾斜角和斜率公式可得结果.【详解】由题意可知:3tan1351m m-︒=+,解得1m =,故1.14.已知P 为圆22(1)1x y ++=上任意一点,A ,B 为直线3470x y +-=上的两个动点,且||2AB =,则PAB 面积的最大值是___________.【正确答案】3【分析】直接利用直线和圆的位置关系,利用点到直线的距离公式和三角形的面积公式的应用求出结果.【详解】解:根据圆的方程,圆心(1,0)-到直线3470x y +-=的距离2d ,所以圆上的点P 到直线的最大距离213max d =+=,此时最大面积13232PAB S =⨯⨯=△.故3.15.过点(2,4)P 引圆22(1)(1)1x y -+-=的切线,则切线方程为__________.【正确答案】2x =或4340x y -+=【详解】圆心坐标(1,1),半径1r =,∵直线与圆相切,∴圆心到直线距离1d r ==,若直线无斜率,其方程为2x =符合题意,若直线存在斜率,设其方程为4(2)y k x -=-,即420kx y k -+-=,1d =,解得43k =,∴切线方程为2x =或4340x y -+=,故答案为2x =或4340x y -+=.点睛:本题主要考查了直线与圆的位置关系之相切,属于基础题;求过某点的圆的切线问题时,应首先确定点与圆的位置关系,若点在圆上(即为切点),则过该点的切线只有一条;若点在圆外,则过该点的切线有两条,此时应注意斜率不存在的切线.16.方程()21sin 10x x π-+=在区间[]2,4-内的所有解之和等于______.【正确答案】8【详解】因为2sin y x π=与11y x =--的图像都关于点()1,0成中心对称,共8个交点,所以,其和为8.三、解答题17.已知等差数列{}n a 的公差d 不为0,11a =,2a 是1a 与6a 的等比中项.(1)求数列{}n a 的通项公式;(2)记11n n n b a a +=,求数列{}n b 的前n 项和n S .【正确答案】(1)32n a n =-;(2)31n nS n =+.(1)由题得()()21115a d a a d +=⋅+,化简即得3d =和数列{}n a 的通项;(2)利用裂项相消法求数列{}n b 的前n 项和n S .【详解】(1)由已知得2216a a a =⋅,∴()()21115a d a a d +=⋅+,化简得23d d =,∵0d ≠,∴3d =,∴32n a n =-.(2)由(1)知()()1111323133231n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,∴11111111113447323133131n n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-= ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.本题主要考查等差数列的通项的求法,考查等比中项的应用,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平.18.某景区对2018年1-5月的游客量x 与利润y 的统计数据如表:月份12345游客量(万人)46578利润(万元)1934264145(1)根据所给统计数据,求y 关于x 的线性回归方程y bx a =+$$$;(2)据估计6月份将有10万游客光临,请你判断景区上半年的总利润能否突破220万元?(参考数据:511057i i i x y ==∑,521190i i x ==∑)()()()1122211nni ii ii i n niii i x x yyx y nx ybx x xnx====---==--∑∑∑∑ ,a y bx =-$$.【正确答案】(1)ˆ 6.77.2yx =-;(2)能,理由见解析.【分析】(1)由已知结合公式即可求得y 关于x 的线性回归方程;(2)在(1)中的线性回归方程中,取10x =,求得y 值,进一步求得景区上半年的估计总利润得答案.【详解】(1)6,33x y == ,515221510575633ˆ 6.71905365i i i i i x y x yb xx ==-⋅-⨯⨯∴===-⨯-∑∑,ˆˆ33 6.767.2ay bx ∴=-=-⨯=-,ˆ 6.77.2yx ∴=-(2)当10x =时,ˆ 6.7107.259.8y=⨯-=,上半年景区总利润为:193426414559.8224.8220+++++=>万元,据估计景区上半年的总利润能突破220万元.19.已知函数()22cos 212sin 3f x x x π⎛⎫=-+- ⎪⎝⎭.(1)求()f x 的单调增区间;(2)设a ,b ,c 为△ABC 内角A ,B ,C 的对边,已知()12f A =,a =8+=b c ,求△ABC 的面积.【正确答案】(1)πππ,π()36k k k ⎡⎤-+∈⎢⎥⎣⎦Z(2)【分析】(1)将函数利用两角差的余弦公式、二倍角的余弦公式和两角和的正弦公式化简,然后利用正弦函数的单调增区间即可求解;(2)先根据条件求出角A ,再利用余弦定理和题中条件得到8bc =,然后利用三角形面积公式即可求解.【详解】(1)因为函数()22π1cos(2)12sin cos 2sin 2cos 2322f x x x x x x =-+-=-++1πcos 2sin 2sin(2)226x x x =+=+,令πππ2π22π,262k x k k -≤+≤+∈Z ,解得:ππππ,36k x k k -≤≤+∈Z ,所以函数()f x 的单调增区间为πππ,π()36k k k ⎡⎤-+∈⎢⎥⎣⎦Z .(2)由(1)可知:()π1sin(262f A A =+=,因为(0,π)A ∈,所以ππ13π2(,)666A +∈,则π5π266A +=,解得:π3A =,又a =8+=b c ,由余弦定理可得:22222()2cos 22b c a b c bc a A bc bc+-+--==,也即16424022bc bc --=,解得:8bc =,所以11sin 8222ABC S bc A ==⨯⨯=△20.已知圆C 经过两点()1,3P --,()3,1Q -,且圆心C 在直线240x y +-=上,直线l 的方程为()12530k x y k -++-=.(1)求圆C 方程;(2)证明:直线l 与圆C 一定有交点;(3)求直线l 被圆C 截得的弦长的取值范围.【正确答案】(1)22(2)(1)25x y -+-=;(2)证明见解析;(3).【分析】(1)先求得PQ 的中垂线方程,由24011(2)2x y y x +-=⎧⎪⎨+=+⎪⎩求得圆心即可;(2)将直线l 的方程化为(3)(25)0k x x y ----=,令30250x x y -=⎧⎨--=⎩得到定点(3,1)M -,转化为点与圆的位置关系求解;(3)设圆心C 到直线l 的距离为d,由弦长L ==d 的范围求解.【详解】(1)因为(1,3),(3,1)P Q ---,所以PQ 的中垂线为11(2)2y x +=+上,由24011(2)2x y y x +-=⎧⎪⎨+=+⎪⎩,解得21x y =⎧⎨=⎩,所以圆心为()2,1C ,又半径||5r PC ==,∴圆C 的方程为22(2)(1)25x y -+-=.(2)直线l 的方程可化为(3)(25)0k x x y ----=,令30250x x y -=⎧⎨--=⎩可得3x =,1y =-,∴直线l 过定点(3,1)M -,由22(32)(11)25-+--<可知M 在圆内,∴直线l 与圆C 一定相交.(3)设圆心C 到直线l 的距离为d ,弦长为L ,则L ==,∵0||d CM ≤≤,即0d ≤≤∴10L ≤≤,即弦长的取值范围是.21.n S 为数列{}n a 的前n 项和.已知0n a >,2243n n n a a S +=+.(1)求{}n a 的通项公式;(2)设12n n n a b -=,求数列{}n b 的前n 项和.【正确答案】(1)n a =21n +;(2)125102n n -+-.【分析】(1)先用数列第n 项与前n 项和的关系求出数列{}n a 的递推公式,再由等差数列的定义写出数列{}n a 的通项公式;(2)根据(1)数列{}n b 的通项公式,再由错位相减法求其前n 项和.【详解】(1)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3,当2n ≥时,221122n n n n a a a a --+--=14343n n S S -+--=4na 即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以12n n a a --=,所以数列{n a }是首项为3,公差为2的等差数列,所以n a =21n +;(2)由(1)知,n b =1212n n -+,所以数列{n b }前n 项和为0213572+12222n n n T -=++++ ,23113572121222222n n nn n T --+∴=+++++ ,两式相减得,23112222213222222n n nn T -+=+++++- 即231111112132()222222n n n n T -+=+++++- 112122321212n n n -+=+⨯--2552nn +=-,125102n n n T -+∴=-.22.已知圆1C 与圆()()222:124C x y +++=关于直线1y x =+对称.(1)求圆1C 的方程及圆1C 与圆2C 的公共弦长;(2)设过点()0,3A 的直线l 与圆1C 交于M 、N 两点,O 为坐标原点,求OM ON ⋅ 的最小值及此时直线l 的方程.【正确答案】(1)圆1C 的方程为()2234x y ++=,公共弦长为(2)OM ON ⋅的最小值为14-,此时直线l的方程为)13y x =+.(1)设点()1,C a b ,由题意可知,两圆圆心关于直线1y x =+对称,可得出关于a 、b 的方程组,解出这两个未知数的值,可求得圆1C 的方程,求得两圆的公共弦方程,求出公共弦截圆1C 所得弦长,即可得解;(2)由题意可知直线l 的斜率存在,设点()11,M x y 、()22,N x y ,设直线l 的方程为3y kx =+,将直线l 的方程与圆1C 的方程联立,列出韦达定理,利用平面向量数量积的坐标运算可得出OM ON⋅ 关于k 的关系式,进而可求得OM ON ⋅ 的最小值以及对应的k 值,即可得出直线l 的方程.【详解】(1)设()1,C a b ,则由题意得2111121022b a a b +⎧⋅=-⎪⎪+⎨--⎪-+=⎪⎩,解得30a b =-⎧⎨=⎩,∴圆1C 的方程为()2234x y ++=.将圆1C 与圆2C 的方程相减得两圆的公共弦所在直线方程为10x y -+=,圆心()13,0C -=,两圆的公共弦长为=(2)若直线l 与y 轴重合,此时直线l 与圆1C 相离,不合乎题意;所以,直线l 的斜率存在,设点()11,M x y 、()22,N x y ,设直线l 的方程为3y kx =+,联立()22334y kx x y =+⎧⎪⎨++=⎪⎩,整理得()()22161140k x k x ++++=,()()()222361561451850k k k k ∆=+-+=-++>,解得9955k -+<<,由韦达定理得()122611k x x k ++=-+,122141x x k =+,所以,()()()2212121212218139231k k OM ON x x y y k x x k x x k +⋅=+=++++=-+ ()218151k k -=-+,其中9955k -+<<.要求OM ON ⋅ 最小值,只需在10k ->的情形下计算.令1k t -=,则218185551492222t OM ON t t t t ⋅=-=-≥--++++当且仅当t =OM ON ⋅取得最小值14-此时1k =,则直线l的方程为)13y x =+.本题考查圆的方程的求解,同时也考查了利用韦达定理求平面向量数量积的最值,考查计算能力,属于中等题.。
2024-2025学年高二上学期期中模拟考试数学试题02(直线与圆 圆锥曲线)含解析
2024-2025学年高二数学上学期期中模拟卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教A版(2019)选择性必修第一册第一章~第三章(空间向量与立体几何+直线与圆+圆锥曲线)。
5.难度系数:0.65。
第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.5.如图,在平行六面体ABCD 则AC'的长为()A.98562+B.【答案】A-'【解析】平行六面体ABCD A故选:A7.已知椭圆的方程为2 9 x+的周长的最小值为()A.8B 【答案】C则由椭圆的中心对称性可知可知12AF BF 为平行四边形,则可得2ABF △的周长为2AF A .0B .【答案】D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.则21242||222y y m HC ++===12||4||22yy p AB HM ++===所以||2sin ||2(HC m HMN HM m ∠==因为20m ≥,所以212(1)m ∈三、填空题:本题共3小题,每小题5分,共15分.则11,22BN BA BD DM =+ 所以1122BN DM BA ⎛⋅=+ ⎝ 1144BA BC BD BC =⋅+⋅-uu r uu u r uu u r uu u r四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知两直线1:20l x y ++=和2:3210l x y -+=的交点为P .(1)直线l 过点P 且与直线310x y ++=平行,求直线l 的一般式方程;(2)圆C 过点()1,0且与1l 相切于点P ,求圆C 的一般方程.【解析】(1)直线l 与直线310x y ++=平行,故设直线l 为130x y C ++=,(1分)联立方程组203210x y x y ++=⎧⎨-+=⎩,解得11x y =-⎧⎨=-⎩.(3分)∴直线1:20l x y ++=和2:3210l x y -+=的交点()11P --,.16.(15分)在正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在线段1CC 上,且14CC CE = ,点F 为BD 中点.(1)求点1D 到直线EF 的距离;(2)求证:1A C ⊥面BDE .【解析】(1)如图,以D 为原点,以,DA DC 正四棱柱111ABCD A B C -()()(10,0,4,0,2,1,1,1,0D E F ∴则点1D 到直线EF 的距离为:17.(15分)18.(17分)如图,在四棱锥P ABCD -中,M 为棱PC 的中点.(1)证明:BM ∥平面PAD ;(2)若5PC =,1AB =,(2)1AB = ,2DC ∴=,又PD 222PC PD DC ∴=+,则PD DC ⊥又平面PDC ⊥平面ABCD ,平面PD ∴⊥平面ABCD ,(7分)19.(17分)416(2)(i )由题意知直线l 的方程为联立221416x y ⎧-=⎪⎨,化简得(4m 2(ii )1212232,41m y y y y m -+=-直线AD 的方程为11y y x =+。
2022-2023学年高二数学下学期期末模拟试卷(选修+必修)(解析版)
绝密★考试结束前2022-2023学年高二下学期期末数学模拟试卷(试卷满分150分,考试用时120分钟)姓名___________ 班级_________ 考号_______________________注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.(2023春·湖南长沙·高二望城一中校考期末)已知集合{|27}A x x =−≤<,2{|1}B x x=≥,则()R A B 为( )A .{|27}x x −≤<B .{|20x x −≤<或27}x <<C .{|20x x −≤≤或27}x <<D .{|20x x −≤<或27}x ≤< 【答案】C【解析】因为2{|1}{|02}Bx x x x=≥=<≤,则{|0R B x x =≤ 或2}x >, 所以(){}|27{|0R A B x x x ∩−≤<∩≤ 或2}x >,{|20x x =−≤≤或27}.x <<故选:C 2.(2023秋·湖北恩施·高二校联考期末)已知()sin ,1a α= ,()1,2cos b α= ,若a b ⊥ ,则πtan 4α−=( )A .3−B .13− C .1− D .3 【答案】D【解析】因为a b ⊥,所以有sin 2cos 0αα+=,即tan 2α , 所以πtan 13tan 341tan 1ααα−−−=== +−.故选:D 3.(2023秋·江西萍乡·高二统考期末)从某班包含甲、乙的5名班干部中选出3人参加学校的社会实践活动,在甲被选中的情况下,乙也被选中的概率为( ) A .12 B .35C .23 D .25【答案】A【解析】令事件A 为甲被选中的情况,事件B 为乙被选中的情况,故()P A 2435C 3C 5=,()1335C 3C 10P AB ==, 故()1(|)()2P AB P B A P A ==.故选:A . 4.(2022春·山东德州·高二校考期末)已知某8个数的期望为5,方差为3,现又加入一个新数据5,此时这9个数的期望记为()E X ,方差记为()D X ,则A .()5,()3E X D X => B .()5,()3E X D X =< C .()5,()3E X D X <> D .()5,()3E X D X << 【答案】B【解析】根据题意可知,58559E X ×+==(),238(55)8()393D X ×+−==<,故选B. 5.(2023秋·山东滨州·高二统考期末)如图,二面角A EF C −−的大小为45 ,四边形ABFE 、CDEF 都是边长为1的正方形,则B 、D 两点间的距离是( )A【答案】B【解析】因为四边形ABFE 、CDEF 都是边长为1的正方形,则AE EF ⊥,DE EF ⊥,又因为二面角A EF C −−的大小为45,即45AED ∠=,则,45EA ED =, 因为DB DE EA AB EA ED AB =++=−+ ,由图易知AB EA ⊥ ,AB ED ⊥,=故选:B.6.(2023秋·广东深圳·高二校考期末)已知定义域为R 的函数()f x 满足()31f x +是奇函数,()21f x −是偶函数,则下列结论错误的是( )A .()f x 的图象关于直线=1x −对称B .()f x 的图象关于点(1,0)对称C .()31f −=D .()f x 的一个周期为8 【答案】C【解析】由题意知()31f x +是奇函数,即()()()()3131,11f x f x f x f x −+=−+∴−+=−+, 即()()2f x f x −+=−,即()()20f x f x +−+=, 故()f x 的图象关于点(1,0)对称,B 结论正确;又()21f x −是偶函数,故()()()()2121,11f x f x f x f x −−=−∴−−=−, 即()()2f x f x −−=,故()f x 的图象关于直线=1x −对称,A 结论正确; 由以上可知()()()22f x f x f x =−−=−−+,即()()22f xf x −=−+,所以()()4f x f x +=−,则()()4()8x x f f f x =−=++, 故()f x 的一个周期为8,D 结论正确;由于()()3131f x f x −+=−+,令0x =,可得(1)(1),(1)0f f f =−∴=, 而()f x 的图象关于直线=1x −对称,故()30f −=,C 结论错误,故选:C 7.(2023秋·陕西西安·高二长安一中校考期末)已知函数()f x 的定义域为ππ,22−,其导函数是()f x ′. 有()()cos sin 0f x x f x x ′+<,则关于x 的不等式()π2cos 3f x f x<的解集为( )A .ππ,32B .ππ,62C .ππ,63−− D .ππ,26 −−【答案】A【解析】构造函数()()cos f x g x x=,其中ππ,22x∈−,则()()()2cos sin 0cos f x x f x xg x x′+′=<,所以,函数()g x 在ππ,22−上单调递减,因为ππ,22x ∈− ,则cos 0x >,由()π2cos 3f x f x < 可得()π3πcos cos 3f f x x<, 即()π3g x g < ,所以,π3ππ22x x >−<< ,解得ππ32x <<, 因此,不等式()πcos 3f x x <的解集为ππ,32.故选:A.8.(2023春·山东济南·高二统考期末)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作圆D 的切线与C 的两支分别交于M ,N 两点,且1245F NF ∠=°,则C 的离心率为( ) AC【答案】D【解析】如图,设双曲线的方程为22221x y a b−=,则AD a =. 设切线MN 与圆D 相切于点A ,过点2F 作2F B MN ⊥,垂足为B ,则2//AD BF .所以,有121212AD DFBF F F ==,所以222BF AD a ==. 又1245F NF ∠=°,2F B MN ⊥,所以2F BN 为等腰直角三角形, 所以22BN BF a ==,根据双曲线的定义可得,122NF NF a −=,所以12NF a =+.在12F NF △中,由余弦定理可得,222121212212cos F F NF NF NF NF F NF =+−⋅∠.所以,()()()2222422212ca a a =++−×+×,所以,223c a =,c =.所以,C 的离心率==c ea.故选:D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.(2022春·河北石家庄·高二统考期末)下列说法正确的是( )A .甲、乙、丙、丁4人站成一排,甲不在最左端,则共有1333C A 种排法B .3名男生和4名女生站成一排,则3名男生相邻的排法共有4343A A 种C .3名男生和4名女生站成一排,则3名男生互不相邻的排法共有4345A A 种D .3名男生和4名女生站成一排,3名男生互不相邻且女生甲不能排在最左端的排法共有1296种【答案】ACD【解析】对于A :先排最左端,有13C 种排法,再排剩余3个位置,有33A 种排法,则共有1333C A 种排法,故A 正确;对于B :3名男生相邻,有33A 种排法,和剩余4名女生排列,相当于5人作排列,有55A 种排法,所以共有5335A A 种排法,故B 错误;对于C :先排4名女生,共有44A 种排法,且形成5个空位,再排3名男生,共有35A 4345A A 种排法,故C 正确;对于D :由C 选项可得3名男生和4名女生站成一排,则3名男生互不相邻的排法共有4345A A 种排法,若女生甲在最左端,且男生互不相邻的排法有3334A A 种排法,所以3名男生互不相邻且女生甲不能排在最左端的排法共有4345A A -3334A A =1296种,故D 正确.故选:ACD10.(2022春·湖北孝感·高二统考期末)已知数列{}n a 的前n 项和为n S ,且()*112,22n n a a S n N +==+∈,下列说法正确的有( )A .数列{}n a 是等比数列B .123n n a −=×C .数列{}n a 是递减数列D .数列{}n a 是递增数列 【答案】ABD【解析】由122n n a S +=+,则()1222n n a S n −+≥ 两式相减可得12n n n a a a +=−,即()132n n a a n +=≥ 由题意21122226a S a =+=+=,满足213a a =所以()*13n n a a n N +=∈,所以数列{}n a 是等比数列,故选项A 正确. 则11123n n n a a q −−==×,故选项B 正确.又1112323430n n n n n a a −−+−=×−×=×>,所以数列{}n a 是递增数列 故故选项C 不正确,故选项D 正确.故选:ABD11.(2022春·山东泰安·高二统考期末)对两个变量y 和x 进行回归分析,得到一组样本数据()()()1122,,,,,,i i x y x y x y 则下列结论正确的是( )A .若求得的经验回归方程为0.60.3y x =−,则变量y 和x 之间具有正的线性相关关系 B .若这组样本数据分别是()()()()1,1,2,1.5,4,3,5,4.5,则其经验回归方程ˆˆˆybx a =+必过点()3,2.25 C .若同学甲根据这组数据得到的回归模型1的残差平方和为11E =.同学乙根据这组数据得到的回归模型2的残差平方和为1 2.1E =,则模型1的拟合效果更好D .若用相关指数2R 来刻画回归效果,回归模型3的相关指数230.41R =,回归模型4的相关指数240.91R =,则模型4的拟合效果更好 【答案】ACD【解析】对于A :因为回归方程为0.60.3y x =−,0.60>, 所以变量y 和x 之间具有正的线性相关关系,故A 正确; 对于B :样本数据()()()()1,1,2,1.5,4,3,5,4.5的样本中心点为()3,2.5,且经验回归方程ˆˆˆy bx a =+必过样本中心点,但()3,2.25不是样本中心点,故B 错误; 对于C :因为残差平方和越小的模型,其拟合效果越好,故C 正确;对于D :相关指数2R 越接近1,说明关系越强,拟合效果越好,D 正确;故选:ACD12.(2023秋·湖南衡阳·高二衡阳市八中校考期末)已知函数()32142f x x x x =+−,则( ) A .1x =是()f x 的极小值点 B .()f x 有两个极值点 C .()f x 的极小值为1 D .()f x 在[]0,2上的最大值为2 【答案】ABD【解析】因为()32142f x x x x =+−,所以()()()234134f x x x x x ′=+−=−+, 当()4,1,3x ∈−∞−+∞时,()0f x >′;当4,13x∈− 时,()0f x <′, 故()f x 的单调递增区间为4,3 −∞−和()1,+∞,单调递减区间为4,13−,则()f x 有两个极值点,B 正确; 且当1x =时,()f x 取得极小值,A 正确; 且极小值为()512f =−,C 错误;又()00f =,()22f =,所以()f x 在[]0,2上的最大值为2,D 正确.故选:ABD.三、填空题:本题共4小题,每小题5分,共20分13.(2023秋·河南南阳·高二统考期末)若232nx x−展开式的二项式系数和为32,则展开式中的常数项为______.(用数字作答) 【答案】40【解析】因为二项式系数和232n =,因此5n =,又()()5521055132C C 2kkk kkk k T x x x −−+ =−=−, 令2k =,常数项为()225C 240−=. 故答案为:40.14.(2022春·河北邯郸·高二大名县第一中学校考期末)已知π3sin()34x −=,且π06x <<,则π2πsin()cos()63x x +−+的值为___________.【解析】令πππ,363t x=−∈,则ππ2π,π623x t x t +=−+=− ∵π3sin()sin 34x t −==,则cos t =()π2ππsin cos sin cos π2cos 632x x t t t+−+=−−−==15.(2022春·湖北·高二统考期末)某地区调研考试数学成绩X 服从正态分布()295,N σ,且(70)0.15P X <=,从该地区参加调研考试的所有学生中随机抽取10名学生的数学成绩,记成绩在[]70,120的人数为随机变量ξ,则ξ的方差为________. 【答案】2.1【解析】由正态分布知,均值95µ=,且(70)0.15P X <=,所以(120)0.15P X >= 每个人的数学成绩在[]70,120的概率为(70120)P X ≤≤=2(0.50.15)0.7×−=, 所以10名学生的数学成绩在[]70,120的人数~(10,0.7)B ξ, 所以()100.70.3 2.1D ξ=××=. 故答案为:2.1.16.(2022春·山东临沂·高二统考期末)若对任意的()12,,x x m ∈+∞,且当12x x <时,都有121212ln ln 3x x x x x x −>−,则m 的最小值是________. 【答案】3【解析】由于当12x x <时,都有121212ln ln 3x x x x x x −>−,所以121212213()33ln ln x x x x x x x x −−<=−,即121233ln ln x x x x +<+, 令3()ln f x x x=+,所以当任意的()12,,x x m ∈+∞,且当12x x <时,都有12()()f x f x <, 所以()f x 在(),m +∞上递增, 因为由22133()0x f x xx x−′=−=>,得3x >, 所以()f x 在(3,)+∞上递增,所以3m ≥,所以m 的最小值是3, 故答案为:3四.解答题:本小题共6小题,共70分。
2024年高二数学秋季开学考试(北京专用)(原卷版)(摸底考试)
2024年高二数学秋季开学考试(北京专用)注意事项:1.本试卷满分150分,考试时间120分钟.2.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()1,a m = ,(),2b m m =- ,若//a b,则m =()A .1或2-B .1-或2C .1或12-D .1-或122.复数2⎝⎭(其中i 为虚数单位)的虚部等于()A .i-B .1-C .1D .03.经过点()1,1M 且斜率为1-的直线方程是()A .0x y -=B .0x y +=C .20x y -+=D .20x y +-=4.斛是我国古代的一种量器,如图所示的斛可视为正四棱台,若该正四棱台的上、下底面边长分别为2,4,侧面积为24,则该正四棱台的体积为()A .56B .2243C D 5.已知一组样本数据1x ,2x ,…,n x (*n ∈N )的方差为1.2,则151x -,251x -,⋯,51n x -的方差为().A .5B .6C .25D .306.袋中装有大小相同的5个小球,其中1个红球,2个白球,2个黑球,从袋中任意取出两个小球,则取到红球的概率为().A .15B .25C .12D .237.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC 的面积为()A .23B .3C .83D .38.有4个大小质地相同的小球,分别标有数字1,2,3,4,从中不放回的随机抽取两次,每次取一个球.甲表示事件“第一次取出的球的数字是奇数”,乙表示事件“第一次取出的球的数字是偶数”,丙表示事件“两次取出的球的数字之和为4”,丁表示事件“两次取出的球的数字之和为5”,则()A .甲和乙相互独立B .甲和丙相互独立C .甲和丁相互独立D .丁和丙相互独立9.已知两个不重合的平面α,β,三条不重合的直线a ,b ,c ,则下列四个命题中正确的是()A .若a b ,b α⊂,则a αP B .若a b ⊥r r,b c ⊥,则a cP C .a β∥,b β∥,a α⊂,b α⊂,则αβ∥D .a α ,a β⊂,b αβ= ,则a b 10.在四边形ABCD 中,//,,45,90AD BC AD AB BCD BAD =∠=︒∠=︒,将ABD △折起,使平面ABD ⊥平面BCD ,构成三棱锥A BCD -,如图,则在三棱锥A BCD -中,下列结论不正确的是()A .CD AB⊥B .CD BD⊥C .平面ADC ⊥平面ABDD .平面ABC ⊥平面BDC二、填空题:本大题共5小题,每小题5分,共25分.11.已知3512a b a b ==⋅=- ,,,则a 在b 上的投影向量为12.过点()1,2-和点()1,2-的直线的斜率为.13.数据:35,54,80,86,72,85,58,53,46,66的第25百分位数为.14.已知三棱锥,,P ABC PA AB PA BC -⊥⊥,30,2,BAC BC PA ∠=== ,则三棱锥-P ABC 的外接球的表面积为.15.“阿基米德多面体”也称半正多面体,是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美.如图是以正方体的各条棱的中点为顶点的多面体,这是一个有八个面为正三角形,六个面为正方形的“阿基米德多面体”,若该多面体的棱长为2,则该多面体外接球的表面积为.三、解答题:本大题共6小题,共85分.解答应写出文字说明、证明过程或演算步骤.16.已知平面向量a ,b ,c ,其中()3,4a =.(1)若c 为单位向量,且//a c,求c 的坐标;(2)若b = 且2a b - 与2a b - 垂直,求向量a ,b夹角的余弦值.17.在ABC 中,角,,A B C 所对的边分别是2222222sin sin ,,,sin A C a b c a b c C a c b-+-=+-.(1)若2,c D =是BC 的中点,且AD =ABC 的面积;(2)若ABC 为锐角三角形,求222a cb +的取值范围.18.为了落实习主席提出“绿水青山就是金山银山”的环境治理要求,某市政府积极鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨),使居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年200位居民每人的月均用水量(单位:吨),将数据按照[)[)[)0,1,1,2,,8,9 分成9组,制成了如图所示的频率分布直方图,其中0.4a b =.(1)求直方图中a ,b 的值;(2)由频率分布直方图估计该市居民用水的平均数(每组数据用该组区间中点值作为代表);(3)若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值,并说明理由.19.甲、乙两人轮流投篮,每人每次投一球.约定甲先投,先投中者获胜,一直到有人获胜或者每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求甲获胜的概率;(2)求投篮结束时,甲只投了2个球的概率;(3)若用投掷一枚质地均匀硬币的方式决定甲、乙两人谁先投篮,求第3次投篮结束后,投篮结束的概率.20.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,,D AD BC CD A ⊥∥,22AD CD BC ===,平面PAD ⊥平面,D,ABCD PA P PA PD ⊥=.(1)求证:CD PA ⊥;(2)求平面APB 与平面PBC 夹角的余弦值;(3)在棱PB 上是否存在点M ,使得DM ⊥平面PAB ?若存在,求PMPB的值;若不存在,说明理由.20.设n 为正整数,集合A =(){}12{|,,,,0,1,1,2,,}n k t t t t k n αα=∈= .对于集合A 中的任意元素()12,,,n x x x α= 和()12,,,n y y y β= ,记M (αβ,)=()()()1111222212n n n n x y x y x y x y x y x y ⎡⎤+--++--+++--⎣⎦ .(Ⅰ)当n =3时,若()1,1,0α=,()0,1,1β=,求M (,αα)和M (,αβ)的值;(Ⅱ)当n =4时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,M (αβ,)是奇数;当,αβ不同时,M (αβ,)是偶数.求集合B 中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,M (αβ,)=0.写出一个集合B ,使其元素个数最多,并说明理由.。
福建省2024-2025学年高二上学期10月月考模拟数学试卷 (解析版)
2024-2025学年福建省高二上学期10月月考模拟数学试卷注 意 事 项1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将案写在答题卡上指定位置上,在其他位置作答一律无效.3.本卷满分为150分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量(0,3,3)a =是直线l 的方向向量,(1,1,0)b − 是平面m 的一个法向量,则直线l与平面m 所成的角为( ) A .π6B .π4C.π3D .π2【答案】A【分析】根据题意,由空间向量的坐标运算,结合线面角的公式即可得到结果. 【详解】设直线l 与平面m 所成的角为θ,由题意可得,1sin cos ,2a θ=< ,即π6θ=.故选:A 2.已知()2,1,3a =−,()1,4,2b =−− ,(),2,4c λ= ,若a ,b ,c共面,则实数λ的值为( )A .1B .2C .3D .4【答案】C【分析】由a,b,c 三向量共面,我们可以用向量a,b作基底表示向量c,进而构造关于λ的方程,解方程即可求出实数λ的值.【详解】 ()2,1,3a =− ,()1,4,2b =−−,∴a与b不平行,又 a,b,c三向量共面,则存在实数x ,y 使c xa yb =+,即242324x y x y x y λ−= −+=−= ,解得213x y λ== =. 故选:C3.如图,在棱长均相等的四面体O ABC −中,点D 为AB 的中点,12CE ED =,设,,OA a OB b OC c === ,则OE =( )A .111663a b c ++B .111333a b c ++C .111663a b c +−D .112663a b c ++【答案】D【分析】根据空间向量的线性运算求得正确答案.【详解】由于12CE ED =, 所以()11113332CE CD CA AD CA AB==+=+ 1136CA AB +, 所以1136OE OC CE OC CA AB =+=++()()1136OC OA OC OB OA =+−+−112112663663OA OB OC a b c =++=++. 故选:D4.设,R x y ∈,向量(),1,1a x = ,()1,,1b y =,()2,4,2c =− 且,//a c b c ⊥,则a b += ( )A.BC .3D .4【答案】C【分析】根据空间向量平行与垂直的坐标表示,求得,x y 的值,结合向量模的计算公式,即可求解.【详解】由向量(),1,1,a x = ()1,,1,= b y ()2,4,2,=−c 且,//a c b c ⊥,可得2420124x y−+== − ,解得1,2x y ==−,所以()1,1,1a = ,()1,2,1b =− ,则()2,1,2a b +− ,所以3a b +=. 故选:C.5.已知三棱锥O ABC −,点M ,N 分别为OA ,BC 的中点,且OA a = ,OB b =,OC c = ,用a ,b ,c表示MN ,则MN 等于( )A .()12b c a +− B .()12a b c +− C .()12a b c −+ D .()12c a b −− 【答案】A【分析】由向量对应线段的空间关系,应用向量加法法则用OA ,OB ,OC 表示出MN即可.【详解】由图知:1111()2222MN MO OC CN OA OC CB OA OC OB OC =++=−++=−++− 1111()2222OA OB OC b c a =−++=+−.故选:A6.已知正三棱柱111ABC A B C −的各棱长都为2,以下选项正确的是( )A .异面直线1AB 与1BC 垂直B .1BC 与平面11AA B BC .平面1ABC 与平面ABCD .点C 到直线1AB【答案】B【分析】建立如图所示的空间直角坐标系,由空间向量法求空间角、距离,判断垂直. 【详解】如图,以AB 为x 轴,1AA 为z 轴,建立如图所示的空间直角坐标系, 则(0,0,0)A ,(2,0,0)B,C ,1(0,0,2)A ,1(2,0,2)B,1C ,11(2,0,2),(2)AB BC −,112420AB BC ⋅=−+=≠ ,1AB 与1BC不垂直,A 错;平面11AA B B 的一个法向量为(0,1,0)m =,111cos ,BC m BC mBC m ⋅==所以1BC 与平面11AA B BB 正确; 设平面1ABC 的一个法向量是(,,)n x y z = ,又(2,0,0)AB =,由100n AB n BC ⋅= ⋅=得2020x x z = −+= ,令2y =得(0,2,n = ,平面ABC 的一个法向量是(0,0,1)p =,cos ,n p =所以平面1ABC 与平面ABCC 错;AC =,12AB AC ⋅=,d 所以点C 到直线1AB的距离为h ===,D 错; 故选:B .7.在正方体1111ABCD A B C D −中,在正方形11DD C C 中有一动点P ,满足1PD PD ⊥,则直线PB 与平面11DD C C 所成角中最大角的正切值为( )A .1 BC D 【答案】D【分析】根据题意,可知P 是平面11DD C C 内,以1DD 为直径的半圆上一点.由BPC ∠即为直线PB 与平面11DD C C 所成的角可知当PC 取得最小值时,PB 与平面11DD C C 所成的角最大.而连接圆心E 与C 时,与半圆的交点为P,此时PC 取得最小值.设出正方体的棱长,即可求得PC ,进而求得tan BPC ∠.【详解】正方体1111ABCD A B C D −中,正方形11DD C C 内的点P 满足1PD PD ⊥ 可知P 是平面11DD C C 内,以1DD 为直径的半圆上一点,设圆心为E,如下图所示:当直线PB 与平面11DD C C 所成最大角时,点P 位于圆心E 与C 点连线上 此时PC 取得最小值.则BPC ∠即为直线PB 与平面11DD C C 所成的角设正方体的边长为2,则1PC EC EP =−−,2BC =所以tan BC BPC PC ∠=【点睛】本题考查了空间中动点的轨迹问题,直线与平面夹角的求法,对空间想象能力要求较高,属于中档题.8.我国古代数学名著《九章算术》中记载的“刍薨”(chumeng )是底面为矩形,顶部只有一条棱的五面体.如下图五面体ABCDEF 是一个刍薨,其中四边形ABCD 为矩形,其中8AB =,AD =ADE 与BCF 都是等边三角形,且二面角E AD B −−与F BC A −−相等,则EF长度的取值范围为( )A .()2,14B .()2,8C .()0,12D .()2,12【答案】A【分析】由题意找到二面角E AD B −−与F BC A −−的两个极端位置,即二面角的平面角为0 和180 时,求得相应EF 的长,集合题意即可得答案.【详解】由题意可知AD =ADE 与BCF 都是等边三角形,故ADE 与BCF 的底边,AD BC 上的高为3=, 因为二面角E AD B −−与F BC A −−相等,故当该二面角的平面角为0 时,此时EF 落在四边形ABCD 内,长度为8232−×=,当该二面角的平面角为180 时,此时EF 落在平面ABCD 上,长度为82314+×=,由于该几何体ABCDEF 为五面体,故二面角E AD B −−与F BC A −−的平面角大于0 小于180 ,故EF 长度的取值范围为()2,14,二、选择题:本题共3小题,每小题6分,共18分。
安徽省2023-2024学年高二下学期普通高中学业水平合格性考试仿真模拟数学试卷
安徽省2023-2024学年高二下学期普通高中学业水平合格性考试仿真模拟数学试卷一、单选题1.已知集合{}{}21,0,1,2,3,230M N x x x =-=--<,则M N =I ( )A .{}1,0,1-B .{}1,0,1,2,3-C .{}0,1,2D .{}1-2.下列图象中,表示定义域和值域均为[0,1]的函数是( )A .B .C .D .3.已知向量()()1,3,3,a b m =-=r r ,若a b r r∥,则m =( ) A .9B .9-C .1D .1-4.已知函数()()222,22,2x x x f x f x x ⎧-++≤⎪=⎨->⎪⎩,则()3f =( )A .1-B .1C .2D .35.若函数()25742xy a a a a =-++-是指数函数,则有( )A .2a =B .3a =C .2a =或3a =D .2a >,且3a ≠6.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点1,12⎛⎫- ⎪⎝⎭,则πtan 4α⎛⎫+= ⎪⎝⎭( )A .3-B .3C .13-D .137.水平放置的ABC V 的斜二测直观图如图所示,已知3,2A C B C ''''==,则ABC V 的面积是( )A .4B .5C .6D .78.命题“21,10x x ∀≥-≤”的否定是( ) A .21,10x x ∃<-> B .21,10x x ∃≥-> C .21,10x x ∀<-≤D .21,10x x ∀-<>9.函数π2sin 26y x ⎛⎫=+ ⎪⎝⎭的图象的一条对称轴是( )A .π6x =- B .π2x =C .2π3x =D .5π6x =10.已知复数z 满足()34i i z +=,则z =( )A .34i 55-B .34i 55+C .43i 55+D .43i 55-11.“今有城,下广四丈,上广二丈,高五丈,袤两百丈.”这是我国古代数学名著《九章算术》卷第五“商功”中的问题.意思为“现有城(如图,等腰梯形的直棱柱体),下底长4丈,上底长2丈,高5丈,纵长200丈(1丈=10尺)”,则该问题中“城”的体积等于( )A .5310⨯立方尺B .5610⨯立方尺C .6610⨯立方尺D .6310⨯立方尺12.抛掷一枚质地均匀的骰子,记随机事件:E =“点数为奇数”,F =“点数为偶数”,G =“点数大于2”,H =“点数小于2”,R =“点数为3”.则下列结论不正确的是( )A .,E F 为对立事件B .,G H 为互斥不对立事件C .,E G 不是互斥事件D .,G R 是互斥事件13.ABC V 的内角,,A B C 的对边分别为,,,a b c ABC V 且π1,3b C ==,则边c =( )A .7B .3C D 14.已知,,αβγ是空间中三个不同的平面,,m n 是空间中两条不同的直线,则下列结论错误的是( )A .若,,m n αβα⊥⊥//β,则m //nB .若,αββγ⊥⊥,则α//γC .若,,m n m n αβ⊥⊥⊥,则αβ⊥D .若α//,ββ//γ,则α//γ15.若不等式2430ax x a -+-<对所有实数x 恒成立,则a 的取值范围为( )A .()(),14,-∞-⋃+∞B .(),1∞--C .(][),14,-∞-⋃+∞D .(],1-∞-16.已知某地区中小学生人数和近视情况分别如图甲和图乙所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的小学生近视人数分别为( )A .100,30B .100,21C .200,30D .200,717.已知向量a r 与b r 的夹角为π,2,16a b ==rr ,则向量a r 与b r 上的投影向量为( )A .b rBC .a rD r18.若函数()22log 3y x ax a =-+在(2,)+∞上是单调增函数,则实数a 的取值范围为A .(,4]-∞B .(,4)-∞C .(4,4]-D .[4,4]-二、填空题19.已知5sin cos 4αα-=,则sin 2α=. 20.已知单位向量a r 与单位向量b r的夹角为120︒,则3a b +=r r .21.某学校举办作文比赛,共设6个主题,每位参赛同学从中随机抽取一个主题准备作文.则甲、乙两位参赛同学抽到的主题不相同的概率为.22.某服装加工厂为了适应市场需求,引进某种新设备,以提高生产效率和降低生产成本.已知购买x 台设备的总成本为()21800200f x x x =++(单位:万元).若要使每台设备的平均成本最低,则应购买设备台.三、解答题23.已知()f x a b =⋅r r,其中向量())()sin2,cos2,R a x x b x ==∈r r ,(1)求()f x 的最小正周期;(2)在ABC V 中,角、、A B C 的对边分别为a b c 、、,若224A f ⎫⎛== ⎪⎝⎭,求角B 的值.24.如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,点D 是AB 的中点.(1)证明:1AC BC ⊥; (2)证明:1//AC 平面1CDB . 25.已知函数()[]()211,1x b f x x x a+-=∈-+是奇函数,且()112f = (1)求,a b 的值;(2)判断函数()f x 在[]1,1-上的单调性,并加以证明;(3)若函数()f x 满足不等式()()12f t f t -<-,求实数t 的取值范围.。
2023-2024学年河南省南阳市高二下册3月月考数学模拟试题(含解析)
2023-2024学年河南省南阳市高二下册3月月考数学模拟试题第I卷(选择题,共60分)一.选择题(共12小题,满分60分,每小题5分)1.在等比数列{a n}中,若a1=27,,则a3=()A.3或﹣3B.3C.﹣9或9D.92.在等差数列{a n}中,已知a10=13,a3+a4+a9+a16=28,则{a n}的前17项和为()A.166B.172C.168D.1703.若数列{}是等差数列,a1=l,a3=﹣,则a5=()A.﹣B.C.D.﹣4.已知等差数列{a n}的前n项和为S n,且S10=310,S20=930,则S30=()A.1240B.1550C.1860D.21705.在等差数列{a n}中,a1+a3=8,a2a4=40,则公差为()A.1B.2C.3D.46.设等差数列{a n}的前n项和为S n,a1=2,S8≥S7≥S9,则公差d的取值范围是()A.B.C.D.7.已知等比数列{a n}的前n项和为S n,若=,则=()A.B.43C.D.418.已知等差数列{a n}的首项a1=2,公差d=8,在{a n}中每相邻两项之间都插入3个数,使它们和原数列的数一起构成一个新的等差数列{b n},则b2023=()A.4044B.4046C.4048D.40509.等差数列{a n}的前n项和是S n,且满足S5=S10,若S n存在最大值,则下列说法正确的是()A.a1+a16>0B.a2+a15<0C.a1+a14<0D.a2+a14>010.已知等比数列{a n}满足:a2+a4+a6+a8=20,a2⋅a8=8,则的值为()A.20B.10C.5D.11.已知数列{a n}满足a n=2n+kn,若{a n}为递增数列,则k的取值范围是()A.(﹣2,+∞)B.(2,+∞)C.(﹣∞,﹣2)D.(﹣∞,2)12.设等差数列{a n},{b n}的前n项和分别为S n,T n,若,则=()A.B.C.D.第Ⅱ卷(非选择题,共90分)二.填空题(共4小题,满分20分,每小题5分)13.等差数列{a n}的前n项和是S n,若S n=3(n+1)2﹣n﹣a,则实数a=.14.若等比数列{a n}的各项均为正数,且,则lna1+lna2+⋯+lna7=.15.在等比数列{a n}中,a5﹣a3=12,a6﹣a4=24,记数列{a n}的前n项和、前n项积分别为S n,T n,则的最大值是.16.首项为正数,公差不为0的等差数列{a n},其前n项和为S n,现有下列4个命题:①若S8<S9,则S9<S10;②若S11=0,则a2+a10=0;③若S13>0,S14<0,则{S n}中S7最大;④若S2=S10,则S n>0的n的最大值为11.使其中所有真命题的序号是.三.解答题(共6小题,满分70分)17.已知等差数列{a n}满足a4=6,a6=10.(1)求数列{a n}的通项公式;(2)设等比数列{b n}各项均为正数,其前n项和T n,若b3=a3,b5=a9,求T n.18.已知等比数列{a n}的前n项和为S n,a5﹣a1=90,S4=90.(1)求数列{a n}的通项公式;(2)已知数列{b n}中,满足b n=a n+log2a n,求数列{b n}的前n项和T n.19.已知各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(1)求数列{a n}的通项公式;(2)设T n为数列的前n项和,求T n.20.已知数列{a n}中,a2=,a n=a n+1+2a n a n+1.(1)求数列{a n}的通项公式;(2)令{}的前n项和为T n,求证:T n<.21.在等差数列{a n}中,已知公差d=2,a2是a1与a4的等比中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足:,求数列{b n}的通项公式;(Ⅲ)令(n∈N*),求数列{c n}的前n项和T n.22.已知数列{a n}的各项均为正数,其前n项和为S n,且满足a1=1,a n+1=2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足b n=,设数列{b n}的前n项和为T n,若∀n∈N*,不等式T n﹣na<0恒成立,求实数a的取值范围.答案与试题解析一.选择题(共12小题)1.解:因为a3是a1和a5的等比中项,则,解得a3=±3,由等比数列的符号特征知a3=3.故选:B.2.解:在等差数列{a n}中,∵a3+a4+a9+a16=4a8=28,∴a8=7,又a10=13,∴S17=.故选:D.3.解:数列{}是等差数列,设其公差为d,则2d=,∴,可得,即a5=.故选:D.4.解:∵等差数列{a n}的前n项和为S n,∴S10,S20﹣S10,S30﹣S20构成等差数列,∴2(S20﹣S10)=S10+S30﹣S20,即2×(930﹣310)=310+S30﹣930,∴S30=1860.故选:C.5.解:等差数列{a n}中,a1+a3=8,a2a4=40,∴,解得a1=1,d=3.故选:C.6.解:∵{a n}为等差数列,a1=2,∴,∴.故选:A.7.解:设S3=x,则S6=7x,由=,可得q≠1,因为{a n}为等比数列,所以S3,S6﹣S3,S9﹣S6仍成等比数列.因为==6,所以S9﹣S6=36x,所以S9=43x,故=.故选:A.8.解:设数列{b n}的公差为d1,由题意可知,b1=a1,b5=a2,b5﹣b1=a2﹣a1=8=4d1,故d1=2,故b n=2n,则b2023=2023×2=4046,故选:B.9.解:因为等差数列S n存在最大项,故等差数列的公差d<0,又S5=S10,即a6+a7+a8+a9+a10=0,即a8=0,则a1+a16<a1+a15=0,故选项A错误;a2+a15<a1+a15=0,故选项B正确;a1+a14>a1+a15=0,故选项C错误;而a2+a14=a1+a15=0,故选项D错误.故选:B.10.解:在等比数列{a n}中,由等比数列的性质可得:a4⋅a6=a2⋅a8=8.所以.故选:D.11.解:若{a n}为递增数列,则a n+1﹣a n>0,则有2n+1+k(n+1)﹣(2n+kn)=2n+1﹣2n+k=2n+k>0,对于n∈N+恒成立.∴k>﹣2n,对于n∈N+恒成立,∴k>﹣2.故选:A.12.解:根据条件:=.故选:A.二.填空题(共4小题)13.解:因为,当n≥2时,,因为{a n}是等差数列,所以当n=1时,a1=11﹣a也符合上式,故a=3.故3.14.解:∵{a n}是各项均为正数的等比数列,∴a2a6=a42,又a42+a2a6=2e6,∴2a42=2e6,又a4>0,∴a4=e3,∴lna1+lna2+•••+lna7=ln(a1a2•••a7)=lna47=7lne3=21.故21.15.解:等比数列{a n}中,a5﹣a3=12,a6﹣a4=24,所以q==2,a1===1,所以数列{a n}的前n项和为S n==2n﹣1,前n项积为T n=1×2×22×...×2n﹣1=2...+...+(n﹣1)=,所以==,当n=2或n=3时,=3,所以的最大值是23=8.故8.16.解:对于①,S8<S9,则a9>0,无法推得a10是否大于0,即S9<S10无法确定,故①错误;对于②,∵S11=0,∴=,即a2+a10=0,故②正确;对于③,S13>0,S14<0,则,即a7>0,,即a7+a8<0,故a7>0,a8<0,公差d<0,首项为正数,故{S n}中S7最大,故③正确;对于④,若S2=S10,则a3+a4+a5+a6+a7+a8+a9+a10=0,即4(a3+a10)=0,故a3+a10=2a1+11d=0,即,∵a1>0,∴d<0,∴==,令S n>0,则0<n<12,n∈N*,故S n>0的n的最大值为11,故④正确.故②③④.三.解答题(共6小题)17.解:(1)设等差数列{a n}的公差为d,∵a4=6,a6=10,∴,解得,故数列{a n}的通项公式a n=a1+(n﹣1)d=2n﹣2;(2)设各项均为正数的等比数列{b n}的公比为q(q>0),∵a n=2n﹣2,则a3=4,a9=16,∵a3=b3,a9=b5,∴b3=4,b5=16,即,解得2或﹣2(舍去),∴.18.解:(1)记等比数列{a n}的公比为q,由a5﹣a1≠0可知q≠1,,,解得a1=6,q=2,所以数列{a n}的通项公式为.(2)∵,∴=3×++n•log23=3×2n+1++n•log23﹣6.19.解:(1)设公差为d,则∵S4=14,且a1,a3,a7成等比数列∴4a1+6d=14,(a1+2d)2=a1(a1+6d)∵d≠0,∴d=1,a1=2,∴a n=n+1(2)=∴T n=﹣+﹣+…+==.20.解:(1)由a2=,a n=a n+1+2a n a n+1,可得a1=a2+2a1a2=+a1,解得a1=1,又对a n=a n+1+2a n a n+1两边取倒数,可得﹣=2,则{}是首项为1,公差为2的等差数列,可得=1+2(n﹣1)=2n﹣1,所以a n=;(2)证明:由(1)可得==(﹣),所以T n=(1﹣+﹣+﹣......+﹣+﹣)=[﹣],因为n∈N*,所以>0,则T n<×=.21.解:(Ⅰ)等差数列{a n}的公差d=2,a2是a1与a4的等比中项,可得a22=a1a4,即(a1+2)2=a1(a1+6),解得a1=2,则a n=a1+(n﹣1)d=2+2(n﹣1)=2n;(Ⅱ)数列{b n}满足:,可得a1=,即b1=8;n≥2时,a n﹣1=++…+,与,相减可得2=,即有b n=2(3n+1),上式对n=1也成立,可得b n=2(3n+1),n∈N*;(Ⅲ)=n(3n+1),则前n项和T n=(1•3+2•32+…+n•3n)+(1+2+…+n),设S n=1•3+2•32+…+n•3n,3S n=1•32+2•33+…+n•3n+1,相减可得﹣2S n=3+32+…+3n﹣n•3n+1=﹣n•3n+1,化简可得S n=,则T n=+n(n+1).22.解:(Ⅰ)由得,故,∵an>0,∴S n>0,∴=+1,(2分)∴数列是首项为,公差为1的等差数列.(3分)∴,∴,…(4分)当n≥2时,,a1=1,…(5分)又a1=1适合上式,∴a n=2n﹣1.…(6分)(Ⅱ)将a n=2n﹣1代入,…(7分)∴…(9分)∵T n﹣na<0,∴,∵n∈N+,∴…(10分)∴,∵2n+1≥3,,,∴.(12分)。
2023-2024学年吉林省长春市高二上册期末数学模拟试题2(含解析)
2023-2024学年吉林省长春市高二上册期末数学模拟试题一、单选题1.一条直线过原点和点()1,1P -,则这条直线的倾斜角是()A .4πB .4π-C .34πD .74π【正确答案】C求出直线的斜率,结合倾斜角的取值范围可求得所求直线的倾斜角.【详解】设这条件直线的倾斜角为θ,则10tan 110θ--==--,0θπ≤<,因此,34πθ=.故选:C.2.抛物线22y x =的准线方程是()A .12x =-B .18x =-C .18y =-D .12y =-【正确答案】C【分析】依题意将抛物线化为标准式,即可求出抛物线的准线;【详解】解:因为抛物线方程为22y x =,即212x y =,所以122p =,即14p =,所以抛物线的准线为18y =-故选:C3.已知椭圆C 的焦点1F ,2F 在x 轴上,过点1F 的直线与C 交于A ,B 两点,若2ABF △周长为8,则椭圆C 的标准方程可能为()A .2211615x y +=B .22187x y +=C .22143x y +=D .22134x y +=【正确答案】C【分析】由椭圆的定义可得2ABF △的周长为48a =,然后可选出答案.【详解】由椭圆的定义可得2ABF △的周长为48a =所以2a =因为椭圆的焦点在x 轴上,所以椭圆C 的标准方程可能为22143x y+=故选:C4.已知等差数列{}n a 的前项和为n S ,若3a 与9a 方程28200x x --=的两个实根,则11S =()A .46B .44C .42D .40【正确答案】B【分析】利用等差数列的性质和前n 项和公式即可求解.【详解】因为3a 与9a 方程28200x x --=的两个实根,所以398a a +=.由等差数列{}n a 的性质可得:119138a a a a +=+=,所以()1111111442a a S +⨯==.故选:B5.经过两条直线23100x y -+=和3420x y +-=的交点,且垂直于直线3240x y -+=的直线方程为()A .2320x y ++=B .3220x y +-=C .2320x y -+=D .2320x y +-=【正确答案】D联立直线方程求出交点坐标,利用两直线垂直的条件求出斜率,点斜式写出直线方程.【详解】由231003420x y x y -+=⎧⎨+-=⎩,解得22x y =-⎧⎨=⎩因为所求直线与直线3240x y -+=垂直所以所求直线方程:2x +3y +c =0,代入点(2,2)-可得2c =-,所以所求直线方程为2320x y +-=故选:D方法点睛:本题考查直线方程,确定直线方程一般有两种途径:1.确定直线上不同的两点,通过直线方程的两点式确定;2.确定直线的斜率和直线上的一点,通过直线方程的点斜式确定.6.等比数列{}n a 的各项均为正数,已知向量()45,a a a = ,()76,b a a = ,且4a b ⋅= ,则2122210log log log (a a a ++⋯+=)A .12B .10C .5D .22log 5+【正确答案】C【分析】利用数量积运算性质、等比数列的性质及其对数运算性质即可得出.【详解】向量a =4a 5a ,b =7a 6a ,且a •b=4,∴47a a +56a a =4,由等比数列的性质可得:110a a =……=47a a =56a a =2,则2122210log log log a a a +++=log 2(12a a 10a )=()5521102log log 25a a ==.故选C .本题考查数量积运算性质、等比数列的性质及其对数运算性质,考查推理能力与计算能力,属于中档题.7.2020年12月17日凌晨1时59分,嫦娥五号返回器携带月球样品成功着陆,这是我国首次实现了地外天体采样返回,标志着中国航天向前又迈出了一大步.月球距离地球约38万千米,有人说:在理想状态下,若将一张厚度约为0.1毫米的纸对折n 次其厚度就可以超过到达月球的距离,那么至少对折的次数n 是()lg 20.3≈lg3.80.6≈A .40B .41C .42D .43【正确答案】C设对折n 次时,纸的厚度为n a ,则{}n a 是以10.12a =⨯为首项,公比为2的等比数列,求出{}n a 的通项,解不等式460.12381010n n a =⨯≥⨯⨯即可求解【详解】设对折n 次时,纸的厚度为n a ,每次对折厚度变为原来的2倍,由题意知{}n a 是以10.12a =⨯为首项,公比为2的等比数列,所以10.1220.12n nn a -=⨯⨯=⨯,令460.12381010n n a =⨯≥⨯⨯,即122 3.810n ≥⨯,所以lg 2lg 3.812n ≥+,即lg 20.612n ≥+,解得:12.6420.3n ≥=,所以至少对折的次数n 是42,故选:C关键点点睛:本题解题的关键是根据题意抽象出等比数列的模型,求出数列的通项,转化为解不等式即可.8.圆22:890C x y x ++-=上有四个点到双曲线()2222:10,0x y E a b a b-=>>的一条渐近线的距离为2,则双曲线E 的离心率的取值范围是().A .41,3⎛⎫⎪⎝⎭B .4,3⎛⎫+∞ ⎪⎝⎭C .1,7⎛⎫ ⎪ ⎪⎝⎭D .7⎛⎫+∞ ⎪ ⎪⎝⎭【正确答案】C【分析】易得双曲线22221x y a b-=的一条渐近线为0bx ay -=和圆的圆心()4,0-,半径为5,根据圆C 上有四个点到0bx ay -=的距离为2,由圆心()4,0-到0bx ay -=的距离523d <-=求解.【详解】双曲线22221x y a b-=的一条渐近线为0bx ay -=,圆22:890C x y x ++-=,圆心()4,0-,半径为5,因为圆C 上有四个点到0bx ay -=的距离为2,所以圆心()4,0-到0bx ay -=的距离523d <-=3<,而222+=a b c ,所以22167c a <,即17e <<故选:C二、多选题9.下列结论中,正确的是()A .sincos33ππ'⎛⎫= ⎪⎝⎭B .若()21f x x =,则()2327f '=-C .()x xe e '=D .()41log ln 4x x '=【正确答案】BCD【分析】根据初等函数的导数逐一判断即可.【详解】A :因为sin32π=,所以'sin 03π⎛⎫= ⎪⎝⎭,因此本选项不正确;B :由()()231'2f x f x x x =⇒=-,所以()2'327f =-,因此本选项正确;C :因为()'x xe e =,所以本选项正确;D :因为()41log 'ln 4x x =,所以本选项正确,故选:BCD10.已知曲线22:0C Ax By Dx Ey F ++++=,下列说法正确的是()A .若A =B =1,则C 是圆B .若A =B =0,220D E +>,则C 是直线C .若A ≠0,B =0,则C 是抛物线D .若AB <0,D =E =0,0F ≠,则C 是双曲线【正确答案】BD【分析】对于A :当A =B =1时,则曲线22:0C x y Dx Ey F ++++=,分22+40D E F -=,22+4>0D E F -,22+40D E F -<,分别讨论可判断;对于B :当A =B =0,则:0C Dx Ey F ++=,且220D E +>,可判断;对于C :当A ≠0,B =0,则2:0C Ax Dx Ey F +++=,分0E =,0E ≠,讨论可判断;对于D :当AB <0,D =E =0,0F ≠,则22:0C Ax By F ++=由此可判断.【详解】已知曲线22:0C Ax By Dx Ey F ++++=,对于A :当A =B =1时,则曲线22:0C x y Dx Ey F ++++=,若22+40D E F -=,则C 是点,22D E ⎛⎫-- ⎪⎝⎭;若22+4>0D E F -,则C 是圆;若22+40D E F -<,则C 不存在,故A 不正确;对于B :当A =B =0,则:0C Dx Ey F ++=,且220D E +>,则C 是直线,故B 正确;对于C :当A ≠0,B =0,则2:0C Ax Dx Ey F +++=,若0E =,则2:0C Ax Dx F ++=表示一元二次方程,若0E ≠,则2:+0C Ax Dx Ex F ++=表示抛物线,故C 不正确,对于D :当AB <0,D =E =0,0F ≠,则22:0C Ax By F ++=表示双曲线,故D 正确,故选:BD.11.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是()A .d <0B .10a <C .当n =5时n S 最小D .0n S >时n 的最小值为8【正确答案】BD【分析】利用等差数列基本量计算以及等差数列前n 项和公式进行判断.【详解】A :因为数列递增,故0d >,故A 错;B :因为753a a =,根据基本量展开,即130a d +=,因为0d >,所以10a <,故B 正确;C :由130a d +=可知40a =,所以前3项均为负数,故n S 最小时,n 为3或4.故C 错;D :()17747702a a S a +===,()()188458402a a S a a +==+>,故当0n S >时,n 最小值为8.故选:BD12.已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为12,焦距为20,左、右焦点分别为12,F F ,下列结论正确的是()A .双曲线C 的离心率为53B .双曲线C 的渐近线方程为34y x=±C .2F 到一条渐近线的距离是8D .过2F 的最短弦长为643【正确答案】AC【分析】依题意可知6a =,10c =,8b =,进而由双曲线的几何性质可依次做出判断.【详解】依题意可知6a =,10c =,所以8b =.离心率53c e a==,故A 正确;渐近线方程为43y x =±,故B 错误;2(10,0)F ,不妨设渐近线为430x y +=,则2F 到渐近线的距离8d =,故C 正确;过2F 的最短弦长为212a =,故D 错误.故选:AC.三、填空题13.已知F 为椭圆22143x y +=的左焦点,P 为椭圆上一点,则PF 的取值范围为_________.【正确答案】[1,3]【分析】设出点P 的坐标,由两点间的距离公式求出||PF ,进而根据点在椭圆上将式子化简,最后求出范围.【详解】由题意,()1,0F -,设(),P x y ,则2222313434x y y x +=⇒=-,所以1|||4|2PF x ==+,因为22x -≤≤,所以||PF 的范围是[]1,3.故答案为.[]1,314.函数()2ln f x x x =+在点(1,(1))f 处的切线方程为__________.【正确答案】320x y --=【分析】求出切点和斜率,代入点斜式即可求出结果.【详解】因为()2ln f x x x =+,所以()11=f ,()1'2f x x x=+,()'1213f =+=所以切线方程为13(1)y x -=-,即320x y --=故320x y --=本题考查的是导数的几何意义,考查了运算求解能力,属于一般题目.15.已知实数4,m ,9构成一个等比数列,则圆锥曲线221x y m+=的离心率为________.【正确答案】6【分析】根据等比中项的性质求得m ,由此对m 进行分类讨论,求得圆锥曲线221xy m+=的离心率.【详解】由于实数4,,9m 成等比数列,所以24936m =⨯=,所以6m =±.当6m =时,2216x y +=为椭圆,6c a c a ===.当6m =-时,2216x y +=-为双曲线,1,1a b c =====.所以锥曲线221x y m +=的离心率为6本小题主要考查等比中项的性质,考查椭圆和双曲线的离心率的求法,考查分类讨论的数学思想方法,属于基础题.16.已知双曲线2222:1,-=x y C a b且圆22(2):1E x y -+=的圆心是双曲线C 的右焦点.若圆E 与双曲线C 的渐近线相切,则双曲线C 的方程为____________.【正确答案】2213x y -=【分析】由已知可得双曲线右焦点坐标为(2,0),再由圆心到渐近线的距离为1,得到,a b 关系,结合2c =,即可求解.【详解】∵2224c a b =⇒+=.①取渐近线0bx ay -=,2213a b =⇒=.②由①②可得23a =,21b =,∴双曲线C 的方程为2213x y -=.故答案为:2213x y -=.本题以圆为背景,考查双曲线的性质,考查计算求解能力,属于基础题.四、解答题17.等差数列{}n a 满足1210a a +=,432a a -=.(1)求{}n a 的通项公式和前n 项和n S ;(2)设等比数列{}n b 满足23b a =,37b a =,求数列{}n b 的前n 项和n T .【正确答案】(1)22n a n =+;23n S n n=+(2)224n n T +=-【分析】(1)利用等差数列的通项公式和前n 项和公式求解即可;(2)根据条件算出14,2b q ==,再由等比数列的前n 项和公式求解即可.【详解】(1)设等差数列{}n a 的公差为d ,由1210a a +=,432a a -=可得,1110,2a a d d ++==,解得:14,2a d ==,可得:()42122n a n n =+-=+,()()12422322n n n a a n n S n n +++===+.(2)设等比数列{}n b 的公比为q ,由足23b a =,37b a =,可得:18b q ⋅=,2116b q ⋅=,解得:14,2b q ==,则数列{}n b 的前n 项和n T 为.()24122412n n n T +-==--18.已知圆22:8120C x y y +-+=,直线:20l ax y a ++=.(1)当直线l 与圆C 相交,求a 的取值范围;(2)当直线l 与圆C 相交于A 、B 两点,且AB =l 的方程.【正确答案】(1)3,4⎛⎫-∞- ⎪⎝⎭;(2)20x y -+=或7140x y -+=.【分析】(1)根据直线与圆的位置关系,利用几何法可得出关于实数a 的不等式,由此可解得实数a 的取值范围;(2)根据勾股定理求出圆心到直线l 的距离,再利用点到直线的距离公式可得出关于实数a 的值,即可求出直线l 的方程.【详解】(1)解:圆C 的标准方程为()2244x y +-=,圆心为()0,4C ,半径为2r =,因为直线l 与圆C 2<,解得34a <-.(2)解:因为AB =,则圆心C 到直线l 的距离为d由点到直线的距离公式可得d =2870a a ++=,解得1a =-或7-.所以,直线l 的方程为20x y -+=或7140x y -+=.19.已知抛物线C :24y x =,坐标原点为O ,焦点为F ,直线l :1y kx =+.(1)若l 与C 只有一个公共点,求k 的值;(2)过点F 作斜率为1的直线交抛物线C 于A 、B 两点,求OAB 的面积.【正确答案】(1)1或0;(2)【分析】(1)将直线方程与抛物线方程联立,由0k =或0∆=即可求解;(2)求出抛物线的焦点坐标,即可得直线方程,设11(,)A x y ,22(,)B x y ,联立直线与抛物线方程,根据121||||2OABSOF y y =⋅-及韦达定理即可求解;【详解】解:(1)依题意214y kx y x=+⎧⎨=⎩消去x 得2114y ky =+,即2440ky y -+=,①当0k =时,显然方程只有一个解,满足条件;②当0k ≠时,2(4)440k ∆=--⨯=,解得1k =;综上,当1k =或0k =时直线与抛物线只有一个交点;(2)抛物线C :24y x =,所以焦点(1,0)F ,所以直线方程为1y x =-,设11(,)A x y ,22(,)B x y ,由214y x y x=-⎧⎨=⎩,消去x 得2440y y --=,所以124y y +=,124y y =-,所以12||y y -==所以1211||||122OABSOF y y =⋅-=⨯⨯=20.已知数列{}n a 的前n 项和为n S ,239n n S a =-.(1)求数列{}n a 的通项公式;(2)若3log n n b a =,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T 【正确答案】(1)()13N n n a n +*=∈(2)24n nT n =+【分析】(1)根据数列公式11,1,2n n n a n a S S n -=⎧=⎨-≥⎩,结合已知得出19a =与()132n n a n a -=≥,即可根据等比数列定义得出答案;(2)根据对数运算结合小问1通项得出1n b n =+,再得出数列11n n b b +⎧⎫⎨⎬⎩⎭的通项公式,即可利用裂项相消法得出答案.【详解】(1)由题意得,当1n =时,1112239S a a ==-,解得19a =,当2n ≥时,由239n n S a =-可得,11239n n S a --=-,两式相减并整理得:13n n a a -=,故数列{}n a 是首项为9,公比为3的等比数列,则数列{}n a 的通项公式为.()11933n n n a n -+*=⨯=∈N (2)由小问1知:133log log 31n n n b a n +===+,则()()111111212n n b b n n n n +==-++++,则12231111n n n T b b b b b b +=+++,111111233412n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,1122n =-+,24n n =+.21.已知椭圆2222:1(0)x y C a b a b +=>>过点31,2⎛⎫-- ⎪⎝⎭,1,24⎛⎫- ⎪⎝⎭(1)求C 的方程;(2)记C 的左顶点为M ,上顶点为N ,点A 是C 上在第四象限的点,AM ,AN 分别与y 轴,x 轴交于P ,Q 两点,试探究四边形MNQP 的面积是否为定值?若是,求出定值;若不是,请说明理由.【正确答案】(1)22143x y +=;(2)是定值,定值【分析】(1)利用代入法进行求解即可;(2)根据直线二点式方程,结合四边形的面积表达式,通过数学运算进行求解判断即可.【详解】解:(1)依题意,2222191,41451,416a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩解得224,3a b ==,故C 的方程为22143x y +=.(2)是定值.理由如下:依题意,(2,0),M N -,设()00,A x y ,则22003412x y +=,所以直线0002:02y x AM y x -+=-+,令0020,2P y x y x ==+,则0000022||22P y y NP y x x +===++;直线000x AN x -=-,令0,Q y x =.则22Q MQ x =+=又易知NP MQ ⊥,所以四边形MNQP 的面积为1||||2S NP MQ =⋅012=00002x y y +-=所以四边形MNQP 的面积为关键点睛:根据四边形的面积表达式,通过熟练的数学运算求解是解题的关键.。
高二数学下学期期中模拟卷01(苏教版2019选择性必修第二册)(解析版)
2022-2023学年高二数学下学期期中模拟卷01一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知2251818C C x x +-=,则2A x =()A .30B .42C .56D .72【答案】B【解析】因为2251818C C x x +-=,故225x x +=-,或22518x x -=++,故7x =,则27A 7642=⨯=.故选B .2.在平行六面体1111ABCD A B C D -中,E ,F 分别是棱11C D ,1BB 的中点,记AB a = ,AD b =,1AA c = ,则EF等于()A .12a b c++ B .3322a b c++ C .1122a b c--D .1122a b c--+【答案】C3.已知离散型随机变量X 的分布列(1,2,3,4,5)5k P X ak k ⎛⎫=== ⎪⎝⎭,则13105P X ⎛⎫<<=⎪⎝⎭()A .1B .23C .15D .13【答案】C4.已知()()311nx x -+的展开式中所有项的系数之和为64,则展开式中含有3x 的项的系数为()A .20B .30C .45D .60【答案】A【解析】令1x =,则2264n ⋅=,解得:5n =;则()1nx +展开式的通项为:55r rC x -,令52r -=,解得:3r =,则5333553330r rxC xC x x -==;令53r -=,解得:2r =,则2335110C x x -⋅=-;∴展开式中含有3x 的项的系数为301020-=.故选A .5.若(2x -3)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5,则a 0+a 2+a 4等于()A .244B .1C .-120D .-121【答案】D6.若单位向量(),,0OA m n = 与向量()1,1,1OB = 的夹角等于π4,则mn =()A .14B .14-C .34D .34-【答案】A【解析】由已知可得,n OB OA m ⋅+=,1OA = ,OB = 又OA 、OB 的夹角为π4,则πcos 4O A OB OB A O ⋅=⋅ ,即62m n +=.又1OA ==uu r ,所以221+=m n .所以()()222212122m n m n mn ⎛⎫+-+==-= ⎪ ⎪⎝⎭,所以14mn =.故选A .7.一名刚入伍的士兵带着一把步枪到练习场地打靶,已知此步枪每次只装3发子弹,若命中目标或子弹打完,则停止练习.新兵第一枪命中靶标的概率为0.7,第二枪命中靶标的概率为0.4,第三枪命中靶标的概率为0.3,则在已知靶标被击中的条件下,士兵开第二枪命中的概率为()A .60437B .200437C .15107D .60473【答案】A【解析】记事件A 为“士兵第一次击中靶标”,B 为“士兵第二次击中靶标”,C 为“士兵第三次击中靶标”,D 为“靶标被击中”,则()()()()()0.70.0.8730.40.30340.6.P D P A B C P A P B P C =++=++=+⨯+⨯⨯=,()0.30.40.12P B =⨯=,所以()()0.1260(|)()()0.874437P BD P B P B D P D P D ====.故选:A .8.如图所示,A ,B 两点共有5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内都通过的最大信息总量为ξ,则()8P ξ≥的值为()A .35B .34C .23D .45【答案】D【解析】由已知得,ξ的可能取值为7,8,9,10,故()8P ξ≥与()7P ξ=是对立事件,所以P (ξ≥8)=1-P (ξ=7)=212235C C 1C -=45.故选D 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知空间中三点A (0,1,0),B (1,2,0),C (-1,3,1),则正确的有()A .AB 与AC是共线向量B .平面ABC 的一个法向量是(1,-1,3)C .AB 与BC 夹角的余弦值是36-D .与AB方向相同的单位向量是(1,1,0)【答案】BC【解析】对A ,(1,1,0)AB = ,(1,2,1)AC =- ,因为1112≠-,显然AB 与AC 不共线,A 错误;对B ,设平面ABC 的法向量(,,)n x y z =,则020AB n x y AC n x y z ⎧⋅=+=⎨⋅=-++=⎩,令1x =,得(1,1,3)n =-,B 正确;对C ,()2,1,1BC =- ,1(2)113cos ,611411AB BC AB BC AB BC⋅==-+⨯++,C 正确;对D ,AB 方向相同的单位向量110110110++++++,即22,,022⎛⎫ ⎪ ⎪⎝⎭,D 错误.故选BC .10.设随机变量X 的可能取值为1,2,,n ⋅⋅⋅,并且取1,2,,n ⋅⋅⋅是等可能的.若()30.4P X <=,则下列结论正确的是()A .5n =B .()10.1P X ==C .()3E X =D .()3D X =【答案】AC【解析】由题意1(),1,2,,P X k k n n=== ,2(3)(1)(2)0.4P X P X P X n <==+===,5n =,A 正确;1(1)0.25P X ===,B 错误;1()(12345)35E X =++++⨯=,C 错误;222221()[(13)(23)(33)(43)(53)]25D X =-+-+-+-+-=.D 错误.故选AC .11.已知2nx⎛⎝的二项展开式中二项式系数之和为64,则下列结论正确的是()A .二项展开式中无常数项B .二项展开式中第3项为3240xC .二项展开式中各项系数之和为63D .二项展开式中二项式系数最大的项为2160x 【答案】BC【解析】因为2nx⎛⎝的二项展开式中二项式系数之和为64,所以264n =,得6n =,所以二项式的通项公式62x⎛⎝为36662166(2)2rr r r r r r T C x C x---+==⋅⋅,对于A ,令3602r -=,则4r =,所以二项式展开式的第5项为常数项,所以A 错误,对于B ,令2r =时,4233362240TCxx=⋅⋅=,所以B 正确,对于C ,令1x =,则二项展开式中各项系数之和为()66213+=,所以C 正确,对于D ,因为二项式展开式中共有7项,所以第4项的二项式的系数最大为33633322462160TCxx-⨯=⋅⋅=,所以D 错误.故选BC .12.现有一款闯关游戏,共有4关,规则如下:在第n 关要抛掷骰子n 次,每次观察向上面的点数并做记录,如果这n 次抛掷所出现的点数之和大于2n n +,则算闯过第n 关,1,2,3,4n =.假定每次闯关互不影响,则()A .直接挑战第2关并过关的概率为712B .连续挑战前两关并过关的概率为524C .若直接挑战第3关,设A =“三个点数之和等于15”,B =“至少出现一个5点”,则()113P A B =D .若直接挑战第4关,则过关的概率是351296【答案】ACD【解析】对于A ,直接挑战第2关,则22226n n +=+=,所以投掷两次点数之和应大于6,故直接挑战第2关并过关的概率为112345676612P +++++==⨯,故选项A 正确;对于B ,闯第1关时,2213n n +=+=,所以挑战第1关通过的概率为212P =,则连续挑战前两关并过关的概率为1217721224P PP ==⨯=,故选项B 错误;对于C ,由题意可知,抛掷3次的基本事件有36216=个,抛掷3次至少出现一个5点的基本事件共有336521612591-=-=个,故91()216P B =,而事件AB 包括:含5,5,5的1个,含4,5,6的有6个,一共有7个,故7()216P AB =,所以()72161(|)()2169113P AB P A B P B ==⨯=,故选C 正确;对于D ,当4n =时,422420n n +=+=,基本事件共有46个,“4次点数之和大于20”包含以下情况:含5,5,5,6的有4个,含5,5,6,6的有6个,含6,6,6,6的有1个,含4,6,6,6的有4个,含5,6,6,6的有4个,含4,5,6,6的有12个,含3,6,6,6的有4个,所以共有4614412435++++++=个,所以直接挑战第4关,则过关的概率是4353566661296P ==⨯⨯⨯,故选项D 正确.故选ACD .三、填空题:本题共4小题,每小题5分,共20分.13.4(2)(3)y x --的展开式中含3x y 项的系数▲.【答案】12-.【解析】444(2)(3)(3)(3)2x x y y x -----=,4(3)y x -的展开式中3x y 项为:()3334C 312y x x y ⋅⋅-=-,4)2(3x --的展开式中没有3x y 项,故4(2)(3)y x --的展开式中含3x y 项的系数为12-.故答案为:12-.14.若1015A 151413m =⨯⨯⨯⨯L ,则正整数m =▲.【答案】6【解析】∵101515!A 15141365!==⨯⨯⨯⨯L ,所以6m =.故答案为:6.15.2022年北京冬奥会即将开幕,某校4名学生报名担任志愿者.将这4名志愿者分配到3个比赛场馆,每个比赛场馆至少分配一名志愿者,则所有分配方案共有______种.(用数字作答)【答案】36【解析】将4名同学按2,1,1分成3组有24C 种方法.再将这3组分配到3个比赛场馆,共有33A 种.则所有分配方案共有234336C A ⋅=种.故答案为36.16.如图,正三棱柱111ABC A B C -为的底面边长为2,侧棱长为2,则1AC 与BC 所成的角的正弦值为▲.【答案】144【解析】正三棱柱111ABC A B C -为的底面边长为2,侧棱长为2,则2AC BC ==,1AC ==,11,CC AC CC AB ⊥⊥,又11AC AC CC =+ ,BC AC AB=-,()()221111122222AC BC AC CC AC AB AC AC AB CC AC CC AB ⋅=+⋅-=-⋅+⋅-⋅=-⨯⨯=,1112cos ,4AC BC AC BC AC BC ⋅∴==,则1AC 与BC 所成的角的正弦值为4=.故答案为4.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)有编号分别为1,2,3,4的四个不同的盒子和四个不同的小球,现把四个小球都逐个随机放入盒子里.(用数字作答)(1)求恰有一个盒子没放球的概率;(2)若四个盒子都有球,且编号为1的小球不能放入编号为1的盒子中,有多少种不同的放法?【解析】(1)每个球都有4种放法,故有4444256⨯⨯⨯=种不同的放法,选出一个盒子为空,再从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列,则共有123443144C C A =种不同的放法,故所求概率为144925616=;…………5分(2)先放1号球,有3种放法,其余三个球在三个位置全排列,133318C A =;……10分18.(12分)请从下列三个条件中任选一个,补充在下面的横线上,并解答问题.①第2项与第3项的二项式系数之比是25;②第2项与第3项的系数之比的绝对值为45;③展开式中有且只有第四项的二项式系数最大.已知在(2x -1x)n (n ∈N *)的展开式中,.(1)求展开式中的常数项,并指出是第几项:(2)求展开式中的所有有理项.(注:如果选择多个方案分别解答,按第一个方案解答计分.)【解析】选择①:(1)因为1222(1)152n nC n n n C n ===--,所以n =6.(2分)展开式的通项为36662166(2)((1)2r r rr r r rr T C x C x ---+==-,令3602r -=得r =4.(4分)所以3464644256(1)260T C x⨯--=-=,所以展开式中的常数项是第5项,并且为60.(6分)(2)根据(1)展开式中的通项得,当r =0,2,4,6时,展开式中对应的项为有理项.(8分)当r =0时,606616264T C x x ==,同理33240T x =,560T =,37T x -=.(10分)所以展开式中的有理项为第1,3,5,7项,分别为664x ,3240x ,60,3x -.(12分)选择②:(1)展开式的通项为321(1)2r n rn rr r nT C x--+=-,所以第2项与第3项的系数分别112n n C --,222n n C -.所以11222244(1)2152n n n nC n n n C n --===--,所以n =6.(2分)以下同选择①.选择③:因为展开式中有且只有第四项的二项式系数最大,即有且只有3n C 最大,所以n =6.(2分)以下同选择①.19.(12分)如图,四棱锥P ﹣ABCD 的底面ABCD 是边长为2的正方形,平面PAD ⊥平面ABCD ,△PAD 是斜边PA的长为的等腰直角三角形,E ,F 分别是棱PA ,PC 的中点,M 是棱BC上一点.(1)求证:平面DFM ⊥平面PBC ;(2)若直线MF 与平面ABCD 所成角的正切值为,求锐二面角E ﹣DM ﹣F 的余弦值.【解析】证明:(1)依题意可得:PD ⊥DA ,DP =DA =DC =2,∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,且PD ⊥AD ,∴PD ⊥平面ABCD ,∵BC ⊂平面ABCD ,∴PD ⊥BC ,又∵BC ⊥DC ,PD ∩DC =D ,DC 、PD ⊂平面PDC ,∴BC ⊥平面PDC ,又DF ⊂平面PDC ,∴BC ⊥DF ,又在Rt △PDC 中,F 是PC 中点,则有DF ⊥PC ,∵DF ⊥BC ,DF ⊥PC ,PC ∩BC =C ,且BC 、PC ⊂平面PBC ,∴DF ⊥平面PBC ,又∵DF ⊂平面DFM ,∴平面DFM ⊥平面PBC ;(2)取CD 的中点N ,连接FN 、MN ,以DA ,DC ,DP 所在直线为x ,y ,z 轴,建立如图所示空间直角坐标系,∵FN ⊥平面ABCD ,∴直线MF 与平面ABCD 所成角为∠FMN ,∵直线MF 与平面ABCD 所成角的正切值为,∴,则MN =,∴CM ==,可得M 是BC 靠近C 的三等分点,则,∴=(﹣1,0,﹣1),=(,2,0),设平面EDM 的法向量为=(x ,y ,z ),则⇒,令x =﹣3,则平面EDM 的法向量为=(﹣3,1,3),同理平面DMF 的法向量,∴,所以锐二面角E ﹣DM ﹣F 的余弦值是.20.(12分)如图,在空间四边形OABC 中,2BD DC =,点E 为AD 的中点,设OA a,OB b,OC c === .(1)试用向量,,a b c表示向量OE;(2)若4,3,60OA OC OB AOC BOC AOB ∠∠∠====== ,求OE AC ⋅的值.【解析】(1)因为点E 为AD 的中点,所以111()222OE OA OD OA OD =+=+,因为2BD DC =,所以13BD BC = ,所以1121()3333OD OB BC OB OC OB OB OC =+=+-=+ ,所以11211111112233236236OE OA OB OC OA OB OC a b c ⎛⎫=++=++=++ ⎪⎝⎭;(2)由(1)得111236OE a b c =++,因为4,3,60OA OC OB AOC BOC AOB ∠∠∠======,AC OC OA c a =-=-,所以()111236OE AC a b c c a⎛⎫⋅=++⋅- ⎪⎝⎭ 22111111223366a c a b c a b c a c =⋅-+⋅-⋅+-⋅221111132336a c abc a b c =⋅-+⋅-⋅+ 221111144cos 60434cos 6034cos 60432336=⨯⨯︒-⨯+⨯⨯︒-⨯⨯︒+⨯11144816326=⨯⨯⨯-+⨯83=-.21.(12分)小张经常在某网上购物平台消费,该平台实行会员积分制度,每个月根据会员当月购买实物商品和虚拟商品(充话费等)的金额分别进行积分,详细积分规则以及小张每个月在该平台消费不同金额的概率如下面的表1和表2所示,并假设购买实物商品和购买虚拟商品相互独立.表1购买实物商品(元)(0,100)[100,500)[500,1000)积分246概率141214表2购买虚拟商品(元)(0,20)[20,50)[50,100)[100,200)积分1234概率13141416(1)求小张一个月购买实物商品和虚拟商品均不低于100元的概率;(2)求小张一个月积分不低于8分的概率;(3)若某个月小张购买了实物商品和虚拟商品,消费均低于100元,求他这个月的积分X 的分布列与均值.【解析】(1)小张一个月购买实物商品不低于100元的概率为12+14=34,购买虚拟商品不低于100元的概率为16,因此所求概率为34×16=18.(2)根据条件,积分不低于8分有两种情况:①购买实物商品积分为6分,购买虚拟商品的积分为2,3,4分;②购买实物商品积分为4分,购买虚拟商品的积分为4分,故小张一个月积分不低于8分的概率为14×+12×16=14.(3)由条件可知X 的可能取值为3,4,5.P (X =3)=1313+14+14=25,P (X =4)=P (X =5)=1413+14+14=310,即X 的分布列如下:X 345P25310310E (X )=3×25+4×310+5×310=3910.22.(12分)在下面两个条件中任选一个,补充在下面问题中的横线上,并完成解答.条件①:“展开式中所有项的系数之和是所有二项式系数之和的256倍”;条件②:“展开式中前三项的二项式系数之和为37”.问题:已知二项式()13nx +,若______(填写条件前的序号),m 、n 为正整数.(1)求()()5131nx x +-展开式中含2x 项的系数;(2)求()13nx +展开式中系数最大的项;(3)写出()13m x +展开式中系数最大项是第几项?(不要求推导过程).【解析】(1)选①,则42562nn =,解得8n =;选②,则012C C C 37n n n ++=,解得8n =;∴()()5131nx x +-=()()85131x x +-中2x 项的系数为:22111225858C (1)C 3C (1)C 310120252142-+⋅⋅-+⋅-+==;(2)()813x +展开式的通项为18C 3r r rr T x +=,设第1r +项系数最大,则11881188C 3C 3C 3C 3r r r r r r r r --++⎧≥⎨≥⎩,解得232744r ≤≤,∵r ∈*N ,∴6r =,∴()813x +展开式中系数最大的项为666678C 320412T x x =⨯⋅=⋅;(3)()13mx +展开式的通项为1C 3km k k k T x +=,设第1k +项系数最大,则1111C 3C 3C 3C 3k k k k m m k k k k m m --++⎧≥⎨≥⎩,则311131k m k m k k ⎧⎪⎪-+⎨⎪⎪-+⎩ ,解得313344m m k -+≤≤,即33331144m m k ++≤+≤+,定义y =[x ]为取整函数,n ∈Z ,当n ≤x <n +1时,[x ]=n ,则当334m +为整数时,()13mx +展开式中系数最大项为第334m +项或3314m ++项;当334m +不为整数时,为第3314m +⎡⎤+⎢⎥⎣⎦项。
高二数学考试模拟试题及答案
高二数学考试模拟试题及答案一、选择题(每题3分,共30分)1. 下列函数中,不是一次函数的是()A. y = 3x + 2B. y = 2x^2 + xC. y = 5x - 1D. y = x2. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B。
A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3}D. {1, 4}3. 如果方程x^2 - 4x + 4 = 0有实数解,则下列哪个选项是正确的?A. Δ < 0B. Δ = 0C. Δ > 0D. 无法确定4. 已知等差数列的前三项分别为a, a+d, a+2d,求该数列的第5项。
A. a + 4dB. a + 3dC. a + 2dD. a + d5. 函数f(x) = x^3 - 3x^2 - 9x + 5的极大值点是()A. x = -1C. x = 3D. x = -36. 已知双曲线x^2/a^2 - y^2/b^2 = 1的焦点在x轴上,且c^2 = a^2 + b^2,求双曲线的离心率。
A. e = 1B. e = √2C. e = √3D. e = 27. 已知点A(1, 2),B(4, 6),求直线AB的斜率。
A. 1B. 2C. 3D. 48. 抛物线y^2 = 4x的准线方程是()A. x = -1B. x = 1C. y = -1D. y = 19. 已知正弦函数y = sin(x)的图像,求其在x = π/6处的值。
A. 1/2B. √2/2C. √3/2D. 2/310. 已知圆的方程为(x - 2)^2 + (y - 3)^2 = 9,求圆心坐标。
A. (0, 0)C. (3, 2)D. (-2, -3)二、填空题(每题4分,共20分)11. 已知等比数列的首项为2,公比为3,求该数列的第5项。
答案:16212. 已知某函数的导数为f'(x) = 2x + 3,求原函数f(x)。
高二数学2022-2023学年第二学期期末模拟卷(含答案)
2022-2023学年高二下学期期末模拟试卷(时间:120分钟,分值:150分,范围:必修二第5章——必修三第6、7、8章)一、单项选择题:本题共8小题,每小题5分,共40分.在每个小题绐岀的四个选项中,只有一项是符合题目要求的.1.下列说法,正确的是()A .对分类变量X 与Y 的独立性检验的统计量2χ来说,2χ值越小,判断“X 与Y 有关系”的把握性越大B .在残差图中,残差点分布在以取值是0的横轴为对称轴的水平带状区域越窄,说明模型的拟合精度越高C .若一组样本数据(),i i x y (1i =,2,…,n )的对应样本点都在直线23y x =-+上,则这组样本数据的相关系数r 为1D .数据-1,1,2,4,5,6,8,9的第25百分位数是22.某校有演讲社团、篮球社团、乒乓球社团、羽毛球社团、独唱社团共五个社团,甲、乙、丙、丁、戊五名同学分别从五个社团中选择一个报名,记事件A 为“五名同学所选项目各不相同”,事件B 为“只有甲同学选篮球”,则()P A B =()A .332B .316C .34D .253.82x x ⎛⎫+ ⎪ ⎪⎝⎭展开式中,二项式系数最大的项是()A .第3项B .第4顶C .第5项D .第6项4.将7个人从左到右排成一排,若甲、乙、丙3人中至多有2人相邻,则不同的站法有()A .1440种B .2880种C .4320种D .3600种5.2023年春,为了解开学后大学生的身体健康状况,寒假开学后,学校医疗部门抽取部分学生检查后,发现大学生的舒张压呈正态分布()270.8,7.02X N ~(单位:mm /Hg ),且()82.80.1P X >=,若任意抽查该校大学生6人,恰好有k 人的舒张压落在()58.8,82.8内的概率最大,则k =()A .3B .4C .5D .66.抛掷三枚质地均匀的硬币一次,在有一枚正面朝上的条件下,另外两枚也正面朝上的概率是()A .18B .78C .17D .677.三名男生和三名女生站成一排照相,男生甲与男生乙相邻,且三名女生中恰好有两名女生相邻,则不同的站法共有A .72种B .108种C .36种D .144种8.若不等式222e ln e ln 2e xaa x x a -+-≥-在[1,2]x ∈-有解,则实数a 的取值范围是()A .21,e 2e ⎡⎤⎢⎥⎣⎦B .221,e e ⎡⎤⎢⎥⎣⎦C .421,e e ⎡⎤⎢⎥⎣⎦D .41,e e ⎡⎤⎢⎥⎣⎦二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知21nx x ⎛⎝的展开式中二项式系数之和为1024,则下列说法正确的()A .展开式中奇数项的二项式系数和为256B .展开式的各项系数之和为1024C .展开式中常数项为45D .展开式中含15x 项的系数为4510.下列说法正确的是()A .在一个2×2列联表中,计算得到2χ的值,则2χ的值越接近1,可以判断两个变量相关的把握性越大B .随机变量()2~,N ξμσ,若函数()()2f x P x x ξ=≤≤+为偶函数,则1μ=C .若回归直线方程为ˆ 1.22yx =+,则样本点的中心不可能为(5,7)D .若甲、乙两组数据的相关系数分别为0.91-和0.89,则甲组数据的线性相关性更强11.一个袋子中有编号分别为1,2,3,4的4个球,除编号外没有其它差异.每次摸球后放回,从中任意摸球两次,每次摸出一个球.设“第一次摸到的球的编号为2”为事件A ,“第二次摸到的球的编号为奇数”为事件B ,“两次摸到的球的编号之和能被3整除”为事件C ,则下列说法正确的是()A .()516P C =B .事件B 与事件C 相互独立C .()12P CA =∣D .事件A 与事件B 互为对立事件12.下列不等关系中正确的是()A 32ln 3<B 344ln 3>C .sin 33sin1cos1<D .sin 33sin1cos1>三、填空题:本题共4小题,每小题5分,共计20分.13.2023年五一节到来之前,某市物价部门对本市5家商场的某种商品一天的销售量及其价格进行调查,5家商场这种商品的售价x (单位:元)与销售量y (单位:件)之间的一组数据如下表所示:价格x 89.5m 10.512销售量y1610865经分析知,销售量y 件与价格x 元之间有较强的线性关系,其线性回归直线方程为 3.544y x =-+,则m =________.14.某城市休闲公园管理人员拟对一块圆环区域进行改造封闭式种植鲜花,该圆环区域被等分为5个部分,每个部分从红、黄、紫三种颜色的鲜花中选取一种进行栽植.要求相邻区域不能用同种颜色的鲜花,总的栽植方案有_________种.15.假设有两箱零件,第一箱内装有10件,其中有3件次品;第二箱内装有20件,其中有2件次品.现从两箱中随意挑选一箱,然后从该箱中随机取1个零件,已知取出的是次品,则它是从第一箱取出的概率为__________.16.已知函数()ln 20()a x x a f x =-≠,若不等式222e ()e cos(())a x x x f x f x ≥+对0x >恒成立,则实数a 的取值范围为__________.四、解答题:本题共6小题,共计70分.解答时应写出文字说明、证明过程或演算步骤.17.(10分)为了解学生对党的“二十大”精神的学习情况,学校开展了“二十大”相关知识的竞赛活动,全校共有1000名学生参加,其中男生450名,采用分层抽样的方法抽取100人,将他们的比赛成绩(满分为100分),分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示的频率分布直方图.其中成绩不低于80分为“优秀”,低于80分为“非优秀”.(1)求实数a 的值,并估算全校1000名学生中成绩优秀的人数;(2)完成下列22⨯列联表,判断是否有95%的把握认为比赛成绩优秀与性别有关.优秀非优秀合计男女10合计附:22()()()()()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.2()P k αχ=≥0.100.050.0100.0050.001k2.7063.8416.6357.87910.82818.(12分)已知()()52601261(1)(1)m x x a a x a x a x +=+-+-++- ,其中R m ∈,且13564a a a ++=,(1)求m 的值;(2)求4a 的值.19.(12分)已知0a >,函数()()2ln ln f x x a a x x e =-+-,其中e 是自然对数的底数.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)当a e =时,求函数()f x 的单调区间;(3)求证:函数()f x 存在极值点,并求极值点0x 的最小值.20.(12分)某校20名学生的数学成绩(1,2,,20)i x i = 和知识竞赛成绩(1,2,,20)i y i = 如下表:学生编号i 12345678910数学成绩i x 100999693908885838077知识竞赛成绩iy 29016022020065709010060270学生编号i 11121314151617181920数学成绩i x 75747270686660503935知识竞赛成绩iy 4535405025302015105计算可得数学成绩的平均值是75x =,知识竞赛成绩的平均值是90y =,并且()20216464i i x x =-=∑,()2021149450ii yy =-=∑,()()20121650i i i x x y y =--=∑.(1)求这组学生的数学成绩和知识竞赛成绩的样本相关系数(精确到0.01).(2)设*N N ∈,变量x 和变量y 的一组样本数据为(){},|1,2,,i i x y i N = ,其中(1,2,,)i x i N = 两两不相同,(1,2,,)i y i N = 两两不相同.记i x 在{},2|1,,n x n N = 中的排名是第i R 位,i y 在{},2|1,,n y n N = 中的排名是第i S 位,1,2,,i N = .定义变量x 和变量y 的“斯皮尔曼相关系数”(记为ρ)为变量x 的排名和变量y 的排名的样本相关系数.(i )记i i i d R S =-,1,2,,i N = .证明:()221611Ni i d N N ρ==--∑.(ii )用(i )的公式求这组学生的数学成绩和知识竞赛成绩的“斯皮尔曼相关系数”(精确到0.01).(3)比较(1)和(2)(ii )的计算结果,简述“斯皮尔曼相关系数”在分析线性相关性时的优势.注:参考公式与参考数据.()()niix x y y r --=∑21(1)(21)6nk n n n k =++=∑31000≈.21.(12分)某商场拟在周年店庆进行促销活动,对一次性消费超过200元的顾客,特别推出“玩游戏,送礼券”的活动,游戏规则如下:每轮游戏都抛掷一枚质地均匀的骰子,若向上点数不超过4点,获得1分,否则获得2分,进行若干轮游戏,若累计得分为9分,则游戏结束,可得到200元礼券,若累计得分为10分,则游戏结束,可得到纪念品一份,最多进行9轮游戏.(1)当进行完3轮游戏时,总分为X ,求X 的分布列和数学期望;(2)若累计得分为i 的概率为()1,2,,9i p i =⋅⋅⋅,初始分数为0分,记01p =(i )证明:数列{}()11,2,,9i i p p i --=⋅⋅⋅是等比数列;(ii )求活动参与者得到纪念品的概率.22.(12分)已知函数()e ln xf x x a x =-在1x =处的切线方程为()()21,R y e x b a b =+-∈(1)求实数a ,b 的值;(2)设函数()()23xg x f x e x =--+,当1,12x ⎡⎤∈⎢⎥⎣⎦时,()g x 的值域为区间()(),,Z m n m n ∈的子集,求n m -的最小值.2022-2023学年高二下学期期末模拟试卷(时间:120分钟,分值:150分,范围:必修二第5章——必修三第6、7、8章)一、单项选择题:本题共8小题,每小题5分,共40分.在每个小题绐岀的四个选项中,只有一项是符合题目要求的.1.下列说法,正确的是()A .对分类变量X 与Y 的独立性检验的统计量2χ来说,2χ值越小,判断“X 与Y 有关系”的把握性越大B .在残差图中,残差点分布在以取值是0的横轴为对称轴的水平带状区域越窄,说明模型的拟合精度越高C .若一组样本数据(),i i x y (1i =,2,…,n )的对应样本点都在直线23y x =-+上,则这组样本数据的相关系数r 为1D .数据-1,1,2,4,5,6,8,9的第25百分位数是2【答案】B【分析】对选项A ,根据独立性检验的定义即可判断A 错误,对选项B ,根据残差图的性质即可判断B 正确,对选项C ,根据题意得到相关系数为1-,故C 错误,对选项D ,根据计算得到第25百分位数是32,即可判断D 错误.【详解】对于A ,由独立性检验可知,2χ值越大,判断“X 与Y 有关系”的把握性越大,故A 错误;对于B ,在残差图中,残差点分布的水平带状区域越窄,说明波动越小,即模型的拟合精度越高,故B 正确;对于C ,样本点都在直线23y x =-+上,说明是负相关,相关系数为1-,故C 错误;对于D ,8个数据从小到大排列,由于80.252⨯=,所以第25百分位数应该是第二个与第三个的平均数12322+=,故D 错误,故选:B 2.某校有演讲社团、篮球社团、乒乓球社团、羽毛球社团、独唱社团共五个社团,甲、乙、丙、丁、戊五名同学分别从五个社团中选择一个报名,记事件A 为“五名同学所选项目各不相同”,事件B 为“只有甲同学选篮球”,则()P A B =()A .332B .316C .34D .25【答案】A【分析】分别求出事件AB 、事件B 的可能的种数,代入条件概率公式()()()P AB P A B P B =即可求解.【详解】事件AB :甲同学选篮球且五名同学所选项目各不相同,所以其他4名同学排列在其他4个项目,且互不相同为44A ,事件B :甲同学选篮球,所以其他4名同学排列在其他4个项目,可以安排在相同项目为44,故()()()44545A 354325P AB P A B P B ===.故选:A .3.8x x ⎛⎫+ ⎪ ⎪⎝⎭展开式中,二项式系数最大的项是()A .第3项B .第4顶C .第5项D .第6项【答案】C【分析】根据二项式确定展开式中二项式系数最大的项即可.【详解】由题设,展开式中二项式1r T +对应二项式系数为8C r ,所以,二项式系数最大的项为4r =,即5T :第5项.故选:C4.将7个人从左到右排成一排,若甲、乙、丙3人中至多有2人相邻,则不同的站法有()A .1440种B .2880种C .4320种D .3600种【答案】C【分析】采用间接法,先求出没有限制的所有站法,再排除不满足条件的站法可求解.【详解】7个人从左到右排成一排,共有77A 5040=种不同的站法,其中甲、乙、丙3个都相邻有3535A A 720=种不同的站法,故甲、乙、丙3人中至多有2人相邻的不同站法有50407204320-=种不同的站法.故选:C5.2023年春,为了解开学后大学生的身体健康状况,寒假开学后,学校医疗部门抽取部分学生检查后,发现大学生的舒张压呈正态分布()270.8,7.02X N ~(单位:mm /Hg ),且()82.80.1P X >=,若任意抽查该校大学生6人,恰好有k 人的舒张压落在()58.8,82.8内的概率最大,则k =()A .3B .4C .5D .6【答案】C【分析】利用正态分布计算出()58.882.8P X <<,然后利用二项分布概率最大可得出关于k 的不等式组,解之即可.【详解】因为()270.8,7.02X N ~,则()()58.882.81282.80.8P X P X <<=->=,由题意知:抽查该校大学生6人,恰好有k 人的舒张压落在()58.8,82.8内的概率为()()()66C 0.20.81,2,,5kkk k -⋅⋅= ,要使此式的值最大,由6171666151664141C C55554141C C 5555kkk kk k kkk kk k -----+-+⎧⎛⎫⎛⎫⎛⎫⎛⎫⋅⋅≥⋅⋅⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎨⎛⎫⎛⎫⎛⎫⎛⎫⎪⋅⋅≥⋅⋅ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩,即()()()()()()6176156!416!41!6!551!7!556!416!41!6!551!5!55k kk kk kk kk k k k k k k k ----+-⎧⎛⎫⎛⎫⎛⎫⎛⎫⋅⋅≥⋅⋅⎪⎪ ⎪ ⎪ ⎪⋅--⋅-⎝⎭⎝⎭⎝⎭⎝⎭⎪⎨⎛⎫⎛⎫⎛⎫⎛⎫⎪⋅⋅≥⋅⋅ ⎪ ⎪ ⎪ ⎪⎪⋅-+⋅-⎝⎭⎝⎭⎝⎭⎝⎭⎩,解得232855k ≤≤,{}1,2,3,4,5k ∈ ,所以,5k =.故选:C.6.抛掷三枚质地均匀的硬币一次,在有一枚正面朝上的条件下,另外两枚也正面朝上的概率是()A .18B .78C .17D .67【答案】C【分析】由题可知,抛掷三枚硬币,则基本事件共有8个,其中有一枚正面朝上的基本事件有7个,分别求出“有一枚正面朝上”和“三枚都正面朝上”的概率,最后根据条件概率的计算公式,即可求出结果.【详解】解:根据题意,可知抛掷三枚硬币,则基本事件共有8个,其中有一枚正面朝上的基本事件有7个,记事件A 为“有一枚正面朝上”,则()78P A =,记事件B 为“另外两枚也正面朝上”,则AB 为“三枚都正面朝上”,故()18P AB =,故()()()118778P AB P B A P A ===.即在有一枚正面朝上的条件下,另外两枚也正面朝上的概率是17.故选:C.【点睛】本题考查条件概率的计算公式的应用,考查分析和计算能力.7.三名男生和三名女生站成一排照相,男生甲与男生乙相邻,且三名女生中恰好有两名女生相邻,则不同的站法共有A .72种B .108种C .36种D .144种【答案】D【分析】根据题意,利用捆绑法和插空法,再利用分布乘法原理,即可求出结果.【详解】解:先将男生甲与男生乙“捆绑”,有22A 种方法,再与另一个男生排列,则有22A 种方法,三名女生任选两名“捆绑”,有23A 种方法,再将两组女生插空,插入男生3个空位中,则有23A 种方法,利用分步乘法原理,共有22222233144A A A A =种.故选:D .【点睛】本题考查乘法原理的运用和排列知识,还运用了捆绑法和插空法解决相邻和不相邻问题,考查学生分析解决问题的能力.8.若不等式222e ln e ln 2e xaa x x a -+-≥-在[1,2]x ∈-有解,则实数a 的取值范围是()A .21,e 2e ⎡⎤⎢⎥⎣⎦B .221,e e ⎡⎤⎢⎥⎣⎦C .421,e e ⎡⎤⎢⎥⎣⎦D .41,e e ⎡⎤⎢⎥⎣⎦【答案】D【分析】先得到0a >,不等式变形得到()22e ln 21e exx a a ⎛⎫≥- -⎪⎝⎭,换元后令()()21ln 22e f t t t =--+,问题转化为存在2,e e t a a ⎡⎤∈⎢⎥⎣⎦,使得()0f t ≥,求导后得到()f t 的单调性,结合()()21e 0f f ==,得到当21e t ≤≤时,()0f t ≥,比较端点值得到答案.【详解】由ln a 有意义可知,0a >,222e ln e ln 2e x a a x x a -+-≥-变形为()()22e ln 2e1x aa x --≥-,即()22e ln 21eexx a a⎛⎫≥- -⎪⎝⎭,令e xt a =,即有()2e 1ln 220t t --+≥,因为[1,2]x ∈-,所以2,e e e x t a a a ⎡=⎤∈⎢⎥⎣⎦,令()()21ln 22e f t t t =--+,问题转化为存在2,e e t a a ⎡⎤∈⎢⎥⎣⎦,使得()0f t ≥,因为()22e 1212e t f t t t---'=-=,令()0f t '<,即20e 21t --<,解得2e 12t ->,令()0f t '>,即20e 21t -->,解得2e 102t -<<,所以()f t 在2e 10,2⎛⎫- ⎪⎝⎭上单调递增,在2e 1,2⎛⎫-+∞ ⎪⎝⎭上单调递减,又()()()222210,e e 1ln e 2e 20f f ==--+=,而221e e 1<2-<,所以当21e t ≤≤时,()0f t ≥,若存在2,e e t a a ⎡⎤∈⎢⎥⎣⎦,使得()0f t ≥成立,只需22e e a ≤且e 1a ≥,解得4e 1e ,a ⎡⎤∈⎢⎥⎣⎦.故选:D【点睛】对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知21nx x ⎛⎝的展开式中二项式系数之和为1024,则下列说法正确的()A .展开式中奇数项的二项式系数和为256B .展开式的各项系数之和为1024C .展开式中常数项为45D .展开式中含15x 项的系数为45【答案】BCD【分析】先由已知条件得21024n =求出n 的值,然后求出二项式展开式的通项公式,再逐个分析判断即可【详解】解:因为2nx x ⎛⎝的展开式中二项式系数之和为1024,所以21024n =,得10n =,所以二项式展开式的通项公式为5202102110101()rr rrr r T C x C xx --+==⋅,对于A ,展开式中奇数项的二项式系数和为110245122⨯=,所以A 错误,对于B ,因为2nx x ⎛⎝的展开式中二项式系数之和与展开式的各项系数之和相等,所以展开式的各项系数之和为1024,所以B 正确,对于C ,令52002r -=,解得8r =,所以展开式中常数项为81045C =,所以C 正确,对于D ,令520152r -=,解得2r =,所以展开式中含15x 项的系数为21045C =,所以D 正确,故选:BCD10.下列说法正确的是()A .在一个2×2列联表中,计算得到2χ的值,则2χ的值越接近1,可以判断两个变量相关的把握性越大B .随机变量()2~,N ξμσ,若函数()()2f x P x x ξ=≤≤+为偶函数,则1μ=C .若回归直线方程为ˆ 1.22yx =+,则样本点的中心不可能为(5,7)D .若甲、乙两组数据的相关系数分别为0.91-和0.89,则甲组数据的线性相关性更强【答案】BCD【分析】由独立性检验的相关知识可判断A ;根据偶函数的对称性可判断B ;根据回归直线过样本点的中心可判断C ;根据线性相关性与相关系数的关系可判断D.【详解】对于A ,在一个2×2列联表中,由计算得2χ的值(可大于1),2χ的值越大,两个变量相关的把握越大,故A 错误;对于B ,()()2f x P x x ξ=≤≤+为偶函数,则()()f x f x -=,即()()22P x x P x x ξξ-≤≤-+=≤≤+,故可得212x x μ-++==,故B 正确;对于C ,7 1.252≠⨯+,所以样本点的中心不可能为()5,7,C 正确;对于D ,具有线性相关关系的两个变量x ,y 的相关系数为r ,则r 越接近于1,x 和y 之间的线性相关程度越强,D 正确.故选:BCD.11.一个袋子中有编号分别为1,2,3,4的4个球,除编号外没有其它差异.每次摸球后放回,从中任意摸球两次,每次摸出一个球.设“第一次摸到的球的编号为2”为事件A ,“第二次摸到的球的编号为奇数”为事件B ,“两次摸到的球的编号之和能被3整除”为事件C ,则下列说法正确的是()A .()516P C =B .事件B 与事件C 相互独立C .()12P CA =∣D .事件A 与事件B 互为对立事件【答案】AC【分析】对于选项A ,由古典概型的概率公式得()516P C =,所以该选项正确;对于选项B ,由题得()()()P BC P B P C ≠⋅,事件B 与事件C 不相互独立,所以该选项错误;对于选项C,()12P C A =∣,所以该选项正确;对于选项D,举例说明事件A 与事件B 不是对立事件,所以该选项错误.【详解】对于选项A ,两次摸到的球的编号之和能被3整除的基本事件有(1,2),(2,1),(2,4),(4,2),(3,3),共5个,由古典概型的概率公式得()554416P C ==⨯,所以该选项正确;对于选项B ,由题得241()442P B ⨯==⨯,21()448P BC ==⨯,所以()()()P BC P B P C ≠⋅,事件B 与事件C 不相互独立,所以该选项错误;对于选项C,()()21()142P AC P CA P A ===⨯∣,所以该选项正确;对于选项D,如果第一次摸到编号为1的球,第二次摸到编号为4的球,则事件A 和B 都没有发生,所以事件A 与事件B 不是对立事件,所以该选项错误.故选:AC12.下列不等关系中正确的是()A 2ln 3<B 4>C .sin 33sin1cos1<D .sin 33sin1cos1>【答案】BC【分析】根据函数值的特征,构造函数()ln xf x x=,求出其导数,判断函数的单调性,可判断AB ;同理构造函数()sin xg x x=,判断CD.【详解】令()ln x f x x=,则()21ln xf x x -'=,当0e x <<时,()0f x ¢>,当e x >时,()0f x '<所以函数()f x 在()0,e 上单调递增,在()e,+∞上单调递减,所以()2f f>,即ln22>2ln 3>=,故A 错误,又ln 42ln 2=,所以ln 4ln242=>44ln >B 正确;令()sin x g x x =,π()0,x ∈,则2cos sin ()x x xg x x -'=,令()cos sin u x x x x =-,则()cos sin u x x x x =--'cos sin 0x x x =-<在(0,π)上恒成立,所以()u x 在(0,π)上单调递减,所以()(0)0u x u <=,所以()0g x '<在(0,π)上恒成立,所以()g x 在(0,π)上单调递减,所以(2)(3)g g >,即sin 2sin 323>,即3sin 2sin 32<=3sin1cos1,故C 正确,D 错误,故选:BC .【点睛】关键点点睛:构造函数()ln xf x x=和()sin x g x x =,π()0,x ∈,是解决本题的关键.三、填空题:本题共4小题,每小题5分,共计20分.13.2023年五一节到来之前,某市物价部门对本市5家商场的某种商品一天的销售量及其价格进行调查,5家商场这种商品的售价x (单位:元)与销售量y (单位:件)之间的一组数据如下表所示:价格x 89.5m 10.512销售量y1610865经分析知,销售量y 件与价格x 元之间有较强的线性关系,其线性回归直线方程为 3.544y x =-+,则m =________.【答案】10【分析】计算变量的平均值,x y ,根据变量y 与x 之间有较强的线性关系,结合回归直线的性质即可求得m 的值.【详解】变量x 的平均值为89.510.512855m m x ++++==+,变量y 的平均值为161086595y ++++==,又销售量y 件与价格x 元之间有较强的线性关系,所以其线性回归直线方程 3.544y x =-+经过点(),x y ,所以9 3.58445m ⎛⎫=-⨯++ ⎪⎝⎭,解得10m =.故答案为:10.14.某城市休闲公园管理人员拟对一块圆环区域进行改造封闭式种植鲜花,该圆环区域被等分为5个部分,每个部分从红、黄、紫三种颜色的鲜花中选取一种进行栽植.要求相邻区域不能用同种颜色的鲜花,总的栽植方案有_________种.【答案】30【分析】依颜色为出发点,分析可得必用3种颜色的鲜花,先安排1,2位置,再讨论第三种颜色的可能位置,分析运算即可.【详解】若只用两种颜色的鲜花,则1,3位置的颜色相同,2,4位置的颜色相同,即可得1,4位置的颜色不同,则5位置无颜色可选,不合题意;故必用3种颜色的鲜花,则1,2的栽植方案有23A 6=种,已用两种颜色,第三种颜色可能在3,4,5,可得:(i )若第三种颜色在3或5,有如下两种可能:①3,5的颜色相同,则4的颜色有两种可能,栽植方案有12C 2=种;②3,5的颜色不相同,则4的颜色必和1的颜色相同,栽植方案有12C 2=种;栽植方案共有224+=种;(ⅱ)若第三种颜色在4,则3的颜色必和1的颜色相同,5的颜色必和2的颜色相同,栽植方案共有1种;综上所述:总的栽植方案有()64130⨯+=种.故答案为:30.15.假设有两箱零件,第一箱内装有10件,其中有3件次品;第二箱内装有20件,其中有2件次品.现从两箱中随意挑选一箱,然后从该箱中随机取1个零件,已知取出的是次品,则它是从第一箱取出的概率为__________.【答案】0.75/34【分析】利用条件概率求取出的是次品,求它是从第一箱取出的概率.【详解】设事件i A 表示从第(1,2)i i =箱中取一个零件,事件B 表示取出的零件是次品,则121122()()()()(|)()(|)P B P A B P A B P A P B A P A P B A =+=⋅+⋅131241*********=⨯+==,所以已知取出的是次品,求它是从第一箱取出的概率为1113()3210(|)4()420P A B P A B P B ⨯===.故答案为:34.16.已知函数()ln 20()a x x a f x =-≠,若不等式222e ()e cos(())a x x x f x f x ≥+对0x >恒成立,则实数a 的取值范围为__________.【答案】(0,2e]【分析】将不等式等价转化,构造函数()e 2cos t g t t t =--,并探讨其性质,再利用导数分类讨论()t f x =的值域即可求解作答.【详解】ln 2()22()cos[()]e 2()cos[()]0e 2()cos[()]0eaa x x f x x x f x f x f x f x f x f x --≥⇔--≥⇔--≥,令()t f x =,则()e 2cos t g t t t =--,()e 2sin t g t t '=-+,设()e 2sin t h t t =-+,则()e cos t h t t '=+,当0t ≤时,e 1,sin 1t t ≤≤,且等号不同时成立,则()0g t '<恒成立,当0t >时,e 1,cos 1t t >≥-,则()0h t '>恒成立,则()g t '在(0,)+∞上单调递增,又因为(0)1,(1)e 2sin10g g ''=-=-+>,因此存在0(0,1)t ∈,使得()00g t '=,当00t t <<时,()0g t '<,当0t t >时,()0g t '>,所以函数()g t 在()0,t -∞上单调递减,在(0t ,)∞+上单调递增,又(0)0g =,作出函数()g t的图像如下:函数()ln 2(0)f x a x x a =-≠定义域为(0,)+∞,求导得2()2a a x f x x x-'=-=,①当a<0时,()0f x '<,函数()f x 的单调递减区间为(0,)+∞,当01x <<时,ln y a x =的取值集合为(0,)+∞,而2y x =-取值集合为(2,0)-,因此函数()f x 在(0,1)上的值域包含(0,)+∞,当1x ≥时,ln y a x =的取值集合为(,0]-∞,而2y x =-取值集合为(,2)-∞-,因此函数()f x 在[1,)+∞上无最小值,从而函数()f x 的值域为R ,即()R t f x =∈,()00g t <,不合题意,②当0a >时,由()0f x '<得2a x >,由()0f x '<得02a x <<,函数()f x 在(0,)2a上单调递增,在(,)2a +∞上单调递减,max ()()ln 22a af x f a a ==-,当01x <≤时,ln y a x =的取值集合为(,0]-∞,而2y x =-取值集合为(2,0]-,因此函数()f x 在(0,1]上的值域包含(,0]-∞,此时函数()f x 的值域为(,ln ]2aa a -∞-,即()(,ln ]2a t f x a a =∈-∞-,当ln 02aa a -≤时,即当02e a <≤时,()0g t ≥恒成立,符合题意,当ln02a a a ->时,即当2e a >时,10min ln ,2a t a a t ⎧⎫=-⎨⎬⎩⎭,结合图象可知,()10g t <,不合题意,所以实数a 的取值范围为(0,2e].故答案为:(0,2e]【点睛】关键点睛:函数不等式恒成立求参数范围问题,结合已知,利用换元法构造新函数,用导数探讨函数的性质,借助数形结合的思想推理求解.四、解答题:本题共6小题,共计70分.解答时应写出文字说明、证明过程或演算步骤.17.(10分)为了解学生对党的“二十大”精神的学习情况,学校开展了“二十大”相关知识的竞赛活动,全校共有1000名学生参加,其中男生450名,采用分层抽样的方法抽取100人,将他们的比赛成绩(满分为100分),分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示的频率分布直方图.其中成绩不低于80分为“优秀”,低于80分为“非优秀”.(1)求实数a 的值,并估算全校1000名学生中成绩优秀的人数;(2)完成下列22⨯列联表,判断是否有95%的把握认为比赛成绩优秀与性别有关.优秀非优秀合计男女10合计附:22()()()()()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.2()P k αχ=≥0.100.050.0100.0050.001k2.7063.8416.6357.87910.828【答案】(1)0.020a =,250(人)(2)填表见解析;没有【分析】(1)根据频率和为1求得a ,进而根据频率估计成绩优秀的人数;(2)根据题意结合分层抽样完善列联表,求2χ,并与临界值对比分析.【详解】(1)由题意可得:(0.0050.0150.0300.0250.005)101a +++++⨯=,解得0.020a =,样本中成绩优秀的频率为:0.0200.0051025(.)0+⨯=,以样本估计总体,全校1000名学生中成绩优秀的人数为:0.251000250⨯=(人).(2)由题意,采用分层抽样,男生抽取人数450100451000⨯=人,女生抽取1004555-=人,且样本中优秀的人数为1000.2525⨯=人,故22⨯列联表如下:优秀非优秀合计男153045女104555合计2575100可得22100(15453010)1003.0304555257533χ⨯⨯-⨯==≈⨯⨯⨯,因为3.030 3.841<,故没有95%的把握认为比赛成绩优秀与性别有关18.已知()()52601261(1)(1)m x x a a x a x a x +=+-+-++- ,其中R m ∈,且13564a a a ++=,(1)求m 的值;(2)求4a 的值.【答案】(1)2(2)25【分析】(1)分别令0x =,2x =,然后两式相减求结合13564a a a ++=即可得解;(2)()52x x +化为()()53111x x ⎡⎤⎡⎤+--+⎣⎦⎣⎦,求出()511x ⎡⎤-+⎣⎦展开式的通项,令()1x -的指数等于4和3即可得解.【详解】(1)当0x =时,()012345600m a a a a a a a +⋅=-+-+-+,①当2x =时,()5012345622m a a a a a a a +⋅=++++++,②②-①得,()()5135222m a a a +⋅=++,因为13564a a a ++=,所以()()5135222128m a a a +⋅=++=,解得2m =;(2)()()()5523111x x x x ⎡⎤⎡⎤+=+--+⎣⎦⎣⎦,()511x ⎡⎤-+⎣⎦展开式的通项为()515C 1kk k T x -+=-,令54k -=,则1k =,令53k -=,则2k =,所以124553C C 25a =+=.19.已知0a >,函数()()2ln ln e f x x a a x x =-+-,其中e 是自然对数的底数.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)当e a =时,求函数()f x 的单调区间;(3)求证:函数()f x 存在极值点,并求极值点0x 的最小值.【答案】(1)()212e e 0x y --+=(2)单调增区间为(e,)+∞,单调减区间为(0,e)(3)证明见解析,0x 的最小值是e .【分析】(1)先求()f x 的导函数,再点斜式求曲线()y f x =在点()()1,1f 处的切线方程(2)先求()f x 的导函数,根据()f x '的正负判定函数的增减即可;(3)根据导数的分母正,需要分子有变号零点,转变为双变量函数的恒成立和有解问题,利用导数再次确定新函数单调性和最值即可求解.【详解】(1)当1a =时,()()2ln e f x x x =-+-,()()()221ln11e 1e f ==-+--,()()12e f x x x'=-+-,()()1121e 12e f '=-+-=-,曲线()y f x =在点()()1,1f 处的切线方程()()()21e 12e 1y x --=--,切线方程()212e e 0x y --+=.(2)当e a =时,2()eln (e)f x x x x =-+-,则2e 2(12e)e (21)(e)()12(e),(0)x x x x f x x x x x x+--+-+-='=-=>令()0f x '>,得e x >;令()0f x '<,得e x <;所以,函数()y g x =的单调增区间为(e,)+∞,单调减区间为(0,e).(3)22(ln 2e)()ln 2(e)a x a x af x a x x x+--=-+'-=令2()2(ln 2e)0t x x a x a =+--=,因为2(ln 2e)80a a ∆=-+>,所以方程22(ln 2e)0x a x a +--=,有两个不相等的实根()1212,x x x x <,又因为1202ax x =-<,所以120x x <<,令02x x =,列表如下:x ()00,x 0x ()0,x +∞()f x '-0+()f x 减极小值增所以()f x 存在极值点0x .所以存在0x 使得2002(ln 2e)0x a x a +--=成立,所以存在0x 使得200022e ln x x a x a -=-,所以存在0x 使得2000ln 22e a x a x x -=-对任意的0a >有解,因此需要讨论等式左边的关于a 的函数,记0()ln u t t x t =-,所以0()1x u t t=-',当00t x <<时,()0,()u t u t <'单调递减;当0t x >时,()0,()u t u t >'单调递增.所以当0t x =时,0()ln u t t x t =-的最小值为()0000ln u x x x x =-.所以需要200000022e ln ln x x a x a x x x -=-≥-,即需要200002(2e 1)ln 0x x x x -++≥,即需要002(2e 1)ln 0x x -++≥,即需要002ln (2e 1)0x x -+≥+因为()2ln (2e 1)v t t t =+-+在(0,)+∞上单调递增,且()0()0v x v e ≥=,所以需要0e x ≥,故0x 的最小值是e .20.某校20名学生的数学成绩(1,2,,20)i x i = 和知识竞赛成绩(1,2,,20)i y i = 如下表:学生编号i 12345678910数学成绩i x 100999693908885838077知识竞赛成绩iy 29016022020065709010060270学生编号i 11121314151617181920数学成绩i x 75747270686660503935知识竞赛成绩iy 4535405025302015105计算可得数学成绩的平均值是75x =,知识竞赛成绩的平均值是90y =,并且()20216464i i x x =-=∑,()2021149450ii yy =-=∑,()()20121650i i i x x y y =--=∑.(1)求这组学生的数学成绩和知识竞赛成绩的样本相关系数(精确到0.01).(2)设*N N ∈,变量x 和变量y 的一组样本数据为(){},|1,2,,i i x y i N = ,其中(1,2,,)i x i N = 两两不相同,(1,2,,)i y i N = 两两不相同.记i x 在{},2|1,,n x n N = 中的排名是第i R 位,i y 在{},2|1,,n y n N = 中的排名是第i S 位,1,2,,i N = .定义变量x 和变量y 的“斯皮尔曼相关系数”(记为ρ)为变量x 的排名和变量y 的排名的样本相关系数.。
浙江省县域教研联盟2023-2024学年高二下学期学业水平模拟考试数学试题(原卷版)
2023~2024学年第二学期浙江省县域教研联盟学业水平模拟考试数学考生须知:1.本卷满分100分,考试时间80分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场、座位号及准考证号并核对条形码信息;3.所有答案必须写在答题卷上,写在试卷上无效,考试结束后,只需上交答题卷;4.学生可关注“启望教育”公众号查询个人成绩分析.选择题部分一、单项选择题(本大题共12小题,每小题3分,共36分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.设全集{0,1,2,4}U =,{1,4}A =,则U A =ð()A.{0,4}B.{0,2}C.{1,2}D.{2,4}2.已知角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边过点11,22P ⎛⎫-⎪⎝⎭,则sin α=()A.12-B.12C.22 D.22-3.命题“0x ∀>,96x x+≥”的否定是()A.00x ∃≤,0096x x +≥ B.00x ∃>,0096x x +≥C.00x ∃≤,0096x x +< D.00x ∃>,0096x x +<4.下列各组函数表示同一函数的是()A.y x =和2y =B.y =和y =C.y x =和,0.,0.x x y x x ≥⎧=⎨-<⎩ D.1y x =-与21xy x=-5.已知复数2i12iz -+=-(i 为虚数单位),则z =()A.1B.2C.D.6.某数学兴趣小组20名成员在规定时间内独立解答6个数学问题,最终结果如下:有1人解出1个问题,有1人解出2个问题,有4人解出3个问题,有4人解出4个问题,有5人解出5个问题,有5人解出6个问题,则解出问题个数的第三四分位数为()A.3B.4.5C.5D.5.57.如图,一根棒棒糖其顶部可近似看成一个直径为2cm 的球,下面通过一个底面直径为0.2cm ,高为6cm 的圆柱体(裸露部分)加以支撑,则这根棒棒糖的体积约为()A.3209πcm 150⎛⎫⎪⎝⎭B.3818πcm 75⎛⎫⎪⎝⎭C.31609πcm 150⎛⎫⎪⎝⎭D.3118πcm 75⎛⎫⎪⎝⎭8.若某次乒乓球练习中,乒乓球发球后先后击中已方桌面O 和对方桌面A ,且OA 长为60英寸,球在OA中点B 处到达最高点,高度为OA 上靠近A 的三等分点C 处,网高为6英寸,球恰好沿着网的上边界越过,其轨迹图象如下:则最合适拟合轨迹图象的函数模型为()A.π()60f x x ⎛⎫=⎪⎝⎭ B.π()30f x x ⎛⎫=⎪⎝⎭C.2()22515f x x x =-+ D.239()20010f x x x =-+9.已知ABC 的边长均为1,点D 为边AB 的中点,点E 为边BC 上的动点,则AD AE ⋅的取值范围是()A .11,84⎡⎤⎢⎥⎣⎦B.11,42⎡⎤⎢⎥⎣⎦C.1,12⎡⎤⎢⎥⎣⎦D.1,14⎡⎤⎢⎥⎣⎦10.已知16log 8a =-,55log 6log 4b =⋅,0.694c ⎛⎫= ⎪⎝⎭,则()A.c b a<< B.c a b<< C.b<c<aD.b a c<<11.已知正方体1111ABCD A B C D -的棱长为1,在以1A 、C 为球心,1为半径的两个球在正方体内的公共部分所构成的几何体中,被平行于平面1BDC 的平面所截得的截面面积的最大值为()A.3π4B.π2C.π4D.π812.已知函数2()1f x x ax ax =---,若()12f x ≥-对任意实数x 恒成立,则实数a 的取值范围为()A.,88⎡-⎢⎣⎦B.,66⎡-⎢⎣⎦C.,33⎡-⎢⎣⎦D.,22⎡-⎢⎣⎦二、多项选择题(本大题共4小题,每小题4分,共16分.每小题列出的四个备选项中有多项是符合题目要求的,全部选对得4分,部分选对且没选错得2分,不选、错选得0分)13.已知函数21()cos sin 22f x x x =+,则()A.函数()f x 的解析式可化成π1()sin 2242f x x ⎛⎫+ ⎪⎝⎭=+B.函数()f x 在[0,π]上有2个零点C.函数()f x 的图象关于点π,02⎛⎫⎪⎝⎭对称 D.函数()f x 在π0,2⎡⎤⎢⎣⎦上的最大值为12214.已知向量(1,2)a =,(3,)b m = .下列选项正确的是()A .若//a b r r,则6m =-B.若a b ⊥,则32m =-C.若向量a 与b的夹角为锐角,则32m >-D.若1m =-,则向量a在向量b上的投影向量为110b 15.已知随机事件A ,B 的概率都大于0,A 表示事件A 的对立事件,则()A.当()()1P A P B +=时,B A=B .当A B ⊆时,()()P A P B ≥C.当()()()P AB P A P B =⋅时,A ,B 相互独立D.当()0P AB >时,()()P AB P B ≤16.已知定义域为R 的函数()f x 在区间(0,1)上单调递增,且()(2)2f x f x ++=,若函数()(1)1g x f x =+-是奇函数,则()A.4是()f x 的一个周期B.(3)0f =C.函数()f x 是偶函数D.函数()f x 在(3,4)上单调递减非选择题部分三、填空题(本大题共4小题,每空3分,共15分)17.已知函数1,1,()1ln(2), 1.x x f x x x x -⎧<-⎪=+⎨⎪+≥-⎩若()1f a =,则=a __________.18.若一组数据12,,,n x x x 的方差是5,则数据1231,31,,31n x x x --⋯-的方差是__________.19.已知正实数x ,y 满足23936x xy x y +++=,则43x y +的最小值为__________.20.已知向量21,e e为互相垂直的两个单位向量,若向量123(1)32a t e te =-+ ,1233(1)(1)42b t e t e =-++ ()t ∈R ,则当t =__________时,||a取到最小值;此时,1212||||||a e b e e e λμλμ-+-+-(,)λμ∈R 的最小值是__________.四、解答题(本大题共3小题,共33分.解答应写出必要的文字说明、证明过程或演算步骤)21.已知ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c,且sin 2cos 0a C c C ⋅--+=.(1)求角A ;(2)求2cos sin sin 2cos B CB C-+的取值范围.22.如图,在三棱锥-P ABC 中,45APC BPC ︒∠=∠=,BPA △是正三角形.(1)求证:平面PBC ⊥平面PAC ;(2)若1AB =,528PC =,求AP 与平面ABC 所成角的正弦值.23.已知函数()2()log 2xf x t x =+-.(1)若(2)0f <,求t 的取值范围;(2)若()f x x =有两个不相等的实根12,x x ,且12x x <①求t 的取值范围;②证明:()()12111f x f x ++-<-.。
高二数学上学期期中模拟试卷(空间向量与立体几何、直线与圆、椭圆)(解析版)
高二数学上学期期中模拟试卷(试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.(2022·福建福州·高二期中)直线20x y --=的倾斜角是()A.30°B.45°C.60°D.75°【答案】B【解析】直线20x y --=的斜率为1,倾斜角为45°,故选:B.2.(2022·江苏·南京市大厂高级中学高二期中)已知圆22:68100C x y x y +---=,则()A.圆C 的圆心坐标为()3,4--B.圆C 的圆心坐标为()4,3C.圆C D.圆C 的半径为35【答案】C【解析】圆C 的方程可化为()()223435x y -+-=,则圆心坐标为()3,4C.3.(2022·安徽滁州·高二期中)已知椭圆221259x y +=的焦点为1F 、2F ,P 为椭圆上的一点,若1260F PF ∠=︒,则12F PF △的面积为()A.3B.9C.D.【答案】C【解析】根据椭圆的定义有1210,4PF PF c +==,①根据余弦定理得221212642cos 60PF PF PF PF =+-︒,②结合①②解得1212PF PF =,所以12F PF △的面积12113sin 6012222S PF PF =︒=⨯⨯=4.(2022·福建·柘荣县第一中学高二期中)如图,在平行六面体1111ABCD A B C D -中,M为11AC 与11B D 的交点,若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是()A.1122a b c-++B.1122++a b cC.1122--+a b c D.1122-+a b c【答案】A【解析】11BM BB B M =+,()1111112=+-AA A D A B ()112=+-AA AD AB ,1122a b c =-++,故选;A5.10y +-=与直线30my ++=平行,则它们之间的距离是()A.1B.54C.3D.4【答案】B10y +-=与直线30my ++=平行,可得0=,解之得2m =10y +-=与直线230y ++=54=,故选:B 6.(2022·江苏常州·高二期中)直三棱柱111ABC A B C -中,11111π,,,2BCA AC BC CC A M MB A N NC ∠=====,则BM 与AN 所成的角的余弦值为()A.10B.22C.110D.25【答案】A【解析】如图所示,以C 为原点,以1,,CA CB CC 分别为,,x y z 轴,建立空间直角坐标系,设12AC BC CC ===,可得()2,0,0A ,()0,2,0B ,()1,1,2M ,()1,0,2N .()1,0,2AN ∴=-,()1,1,2BM =-cos ,10AN BM AN BM AN BM⋅∴==故BM 与AN7.(2022·河南·洛宁县第一高级中学高二阶段练习)若直线y x b =+与曲线x =有一个公共点,则b 的取值范围是()A.⎡⎣B.⎡-⎣C.(-D.(]{1,1-⋃【答案】D【解析】由曲线x =2210x y x +=≥(),表示以原点为圆心,半径为1的右半圆,y x b =+是倾斜角为4π的直线与曲线x =一个公共点有两种情况:①直线与半圆相切,根据d r =,所以1d ==,结合图象可得b =②直线与半圆的上半部分相交于一个交点,由图可知11b -<≤.综上可知:11b -<≤或b =.故选:D.8.(2022·福建泉州·高二期中)已知椭圆22122:1(0)x y C a b a b +=>>与圆22224:5b C x y +=,若在椭圆1C 上存在点P ,使得由点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是()A.⎛ ⎝⎭B.⎛ ⎝⎭C.⎫⎪⎪⎣⎭D.⎫⎪⎪⎣⎭【答案】D【解析】由题意,如图,若在椭圆1C 上存在点P ,使得由点P 所作的圆2C 的两条切线互相垂直则只需90APB ∠≤︒,即45APO α=∠≤︒,sin sin 45α=≤︒,即2285b a ≤,因为222a b c =+,解得:2238a c ≤.238e ∴≥,即e ≥,而01e <<,1e <,即e ⎫∈⎪⎪⎣⎭.故选:D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2022·江苏·连云港高中高二期中)给出下列命题,其中是真命题的是()A.若直线l 的方向向量()1,1,2a =-,直线m 的方向向量12,1,2⎛⎫=- ⎪⎝⎭r b ,则l 与m 垂直B.若直线l 的方向向量()0,1,1a =-,平面α的法向量()1,1,1n =--r,则l α⊥C.若平面α,β的法向量分别为()10,1,3=u r n ,()21,0,2=u u rn ,则αβ⊥D.若存在实数,,x y 使,=+MP xMA yMB 则点,,,P M A B 共面【答案】AD【解析】对于A:因为直线l 的方向向量()1,1,2a =-,直线m 的方向向量12,1,2⎛⎫=- ⎪⎝⎭r b ,且()12,1,21101,1,22a b ⎛⎫-=--= ⎪⎝⎭⋅=-⋅,所以a b ⊥,所以l 与m 垂直.故A 正确;对于B:因为直线l 的方向向量()0,1,1a =-,平面α的法向量()1,1,1n =--r,且a n λ≠,所以l α⊥不成立.故B 不正确;对于C:因为平面α,β的法向量分别为()10,1,3=u r n ,()21,0,2=u u rn ,且2100660n n =++≠⋅=,所以12,n n 不垂直,所以αβ⊥不成立.故C 不正确;对于D:若,MA MB 不共线,则可以取,MA MB 为一组基底,由平面向量基本定理可得存在实数,,x y 使,=+MP xMA yMB 则点,,,P M A B 共面;若,MA MB 共线,则存在实数,,x y 使,=+MP xMA yMB 所以,,,P M A B 共线,则点,,,P M A B 共面也成立.综上所述:点,,,P M A B 共面.故D 正确.故选:AD10.(2022·广东·汕头市潮南区陈店实验学校高二期中)已知直线:0l x y +=与圆22:(1)(1)4C x y -++=,则()A.直线l 与圆C 相离B.直线l 与圆C 相交C.圆C 上到直线l 的距离为1的点共有2个D.圆C 上到直线l 的距离为1的点共有3个【答案】BD【解析】由圆22:(1)(1)4C x y -++=,可知其圆心坐标为(1,1)-,半径为2,圆心(1,1)-到直线:0l x y +=的距离1d =,所以可知选项B,D 正确,选项A,C 错误.故选:BD11.(2022·湖北恩施·高二期中)如图,在棱长为1的正方体ABCD A B C D ''''-中,M 为BC 的中点,则下列结论正确的有()A.AM 与D B ''所成角的余弦值为10B.C 到平面DA C ''C.过点A ,M ,D ¢的平面截正方体ABCD A B C D ''''-所得截面的面积为92D.四面体A C BD ''内切球的表面积为π3【答案】ABD【解析】对于A,构建如图①所示的空间直角坐标系,则(0,0,1)A ,1(,1,1)2M ,(0,1,0)B ',(1,0,0)D ',1(,1,0)2AM ∴=,(1,1,0)D B ''=-,112cos ,10AM D B AM D B AM D B -+''⋅''∴=='',故A 正确;对于B,方法1:如图②,连接AC ,由正方体几何特征得://AC A C '',又AC ⊄面A C D '',A C ''⊂面A C D '',//AC ∴面A C D '',设C 到平面DA C ''的距离为d ,即点A 到平面A DC ''的距离,C A DC A DA C V V ''''--=,即11131113234⨯⨯⨯⨯=,求得33d =.方法2:根据图①,()1,0,1D ,()1,1,0C ',()1,0,1A D '∴=,()1,1,0A C ''=,设平面DA C ''的法向量(,,)m x y z =,则00A D m A C m '''⎧⋅=⎨⋅=⎩,即00x z x y +=⎧⎨+=⎩,令1z =-得:11x y =⎧⎨=-⎩,∴平面DA C ''的一个法向量为(1,1,1)m =--,(1,0,0)AD =,设C 到平面''DA C 的距离为d,则||AD m d m ⋅=B 正确;对于C,取CC '的中点N ,连接MN ,D N ',AD ',则MN //AD ',如图②所示,则梯形AMND '为过点A ,M ,D ¢的平面截正方体ABCD A B C D ''''-所得的截面,易知2MN =,AD '=2AM D N '==,可得梯形AMND '则梯形AMND '的面积1928S ==,故C 错误;对于D,易知四面体A C BD ''的体积111141323V =-⨯⨯⨯=,因为四面体A C BD ''1π4sin 23S =⨯=设四面体A C BD ''内切球的半径为r,则1133⨯=,解得r =所以四面体AMND '内切球的表面积为2π4π3r =,故D 正确.故选:ABD.12.(2022·江苏·淮阴中学高二期中)已知椭圆22:14x M y +=,若P 在椭圆M 上,1F 、2F 是椭圆M 的左、右焦点,则下列说法正确的有()A.若12PF PF =,则1230PF F ∠=B.12F PF △C.12PF PF -的最大值为D.满足12F PF △是直角三角形的点P 有4个【答案】ABC【解析】在椭圆M 中,2a =,1b =,c =12F F =对于A 选项,当12PF PF =时,则122PF PF a ===,由余弦定理可得222112212112cos 2PF F F PF PF F PF F F +-∠==⋅因为120180PF F <∠<,所以,1230PF F ∠=,A 对;对于B 选项,当点P 为椭圆M 的短轴顶点时,点P 到x 轴的距离最大,所以,12F PF △面积的最大值为122c b bc ⨯⨯==对;对于C 选项,因为2a c PF a c -≤≤+,即222PF ≤+所以,()12222222PF PF a PF a a c c -=-≤--==,C 对;对于D 选项,当112PF F F ⊥或212PF F F ⊥时,12PF F 为直角三角形,此时满足条件的点P 有4个,当P 为直角顶点时,设点()00,P x y ,则220044x y =-,()100F P x y =+,()200F P x y =-,222120003130F P F P x y y ⋅=-+=-=,所以,0y =,03x =±,此时,满足条件的点P 有4个,综上所述,满足12F PF △是直角三角形的点P 有8个,D 错.故选:ABC.三、填空题:本题共4小题,每小题5分,共20分13.(2022·全国·高二期中)已知直线1:20l ax y +=,直线()2:10l a x y --=,若12l l ⊥,则实数a 的值为______.【答案】2a =或1a =-【解析】因为12l l ⊥,所以(1)2(1)0a a -+⨯-=,解得2a =或1a =-,故答案为:2a =或1a =-14.(2022·江苏常州·高二期中)已知P 是ABC 所在平面外一点,2=PM MC ,且BM x AB y AC z AP =++,则实数x y z ++的值为____________.【答案】0【解析】因为2=PM MC ,则()2BM BP BC BM -=-,所以,()()121221333333BM BP BC AP AB AC AB AB AC AP =+=-+-=-++,所以,1x =-,23y =,13z =,因此,0x y z ++=.故答案为:0.15.(2022·上海金山·高二期中)求过点()13M -,的圆224x y +=的切线方程__________.【答案】y =+y =+【解析】过点()13M -,的斜率不存在的直线为:1x =-,圆心到直线的距离为1,与圆相交,不是切线;当斜率存在,设其为k ,则切线可设为()31y k x -=+.2=,解得:33k +=或33k -=.所以切线方程为:y =+y =+故答案为:y =+y =+.16.(2022·湖北恩施·高二期中)已知1F ,2F 分别是椭圆2222:1(0,0)x y C a b a b+=>>的左、右焦点,点P 在椭圆上,且在第一象限,过2F 作12F PF ∠的外角平分线的垂线,垂足为A ,O为坐标原点,若||OA =,则该椭圆的离心率为______.【答案】63【解析】如图所示:延长2F A ,交1PF 于点Q ,∵PA 是12F PF ∠的外角平分线,2||AQ AF ∴=,2||PQ PF =,又O 是12F F 的中点,1QF AO ∴∥,且12||QF OA ==.又1112||2QF PF PQ PF PF a =+=+=,2a ∴=,222233()a b a c ∴==-,∴离心率为c a四、解答题:本小题共6小题,共70分。
2023-2024学年上海市高二上册期中数学质量检测模拟试题(含解析)
2023-2024学年上海市高二上册期中数学质量检测模拟试题一、填空题1.空间内,两异面直线所成角的取值范围是______.(用区间表示)【正确答案】π(0,2【分析】利用异面直线所成角的定义直接写出范围作答.【详解】由异面直线所成角的定义知,两异面直线所成角的取值范围是π(0,]2.故π(0,]22.已知底面边长为4的正三棱柱侧面积为9,则其体积为______.【正确答案】【分析】根据侧面积可求正三棱柱的高,进而可求体积.【详解】设正三棱柱的高为h ,则349h ⨯=,解得34h =,所以体积21π4sin 23V Sh h ==⨯⨯⨯=故答案为.3.圆柱的底面半径为1,高为2,则其表面积为______.【正确答案】6π【分析】直接利用表面积公式计算得到答案.【详解】表面积22π2π2π4π6πS r rh =+=+=.故6π4.在两平面平行的判定定理中,假设,αβ为两不同平面,,l m 为两不同直线,若要得到//αβ,则需要在条件“,,//,//l m l m αββ⊂”之外补充条件______.【正确答案】l m ≠∅【分析】确定,l m 为平面α内的两条相交直线,//,//l m ββ,故//αβ,得到答案.【详解】因为一个平面内两条相交直线平行于另一个面,则这两个面平行,所以要证//αβ,需要,l m α⊂,//,//l m ββ,以及l m ≠∅ ,共五个条件,所以需要在条件“,,//,//l m l m αββ⊂”之外补充条件是l m ≠∅ .故答案为.l m ≠∅5.{}n a 为等差数列,n S 为其前n 项和,若344S a =,则10a =______.【正确答案】0【分析】根据等差数列的性质及通项公式计算即可得解.【详解】因为334S a =,所以2434a a =,即2234(2)a a d =+,所以280a d +=,所以10280a a d =+=.故06.记等比数列{}n a 的前n 项和为n S ,若58327S S S =-,则该等比数列的公比q =______.【正确答案】13【分析】排除1q ≠,由等比数列求和公式代入方程求得公比.【详解】因为58327S S S =-,易得1q ≠,所以()()()51831111271111a q qa q a q q q--=-----,解得q =13.故答案为.137.在正方体1111ABCD A B C D -中,,E F 分别是线段1,BC C D 的中点,则直线1A B 与直线EF 的位置关系是______.(从相交,平行,异面中选填)【正确答案】相交【分析】连接111,,BD CD CD 与1C D 交于点F ,易得11A BCD 是平行四边形,根据平面的基本性质即可判断直线1A B 与直线EF 的位置关系.【详解】如图所示:连接111,,BD CD CD 与1C D 交于点F ,由题意,易得四边形11A BCD 是平行四边形,在平行四边形11A BCD 中,,E F 分别是线段1,BC CD 的中点,∴1//EF BD ,又11A B BD B ⋂=且1,,,A B E F 共面,则直线1A B 与直线EF 相交.故相交.8.如图的四面体OABC 中,所以棱长均相等,每个面都是全等的正三角形,,M N 分别是棱,OA BC 的中点,则直线OA 与平面CMN 所成角的大小为______.【正确答案】2π【分析】由题意得,四面体OABC 为正四面体,进而可以证明OA ⊥平面CMN ,求出线面角.【详解】如图,连接,CM BM ,由题意得,四面体OABC 为正四面体,所以CM OA ⊥,BM OA ⊥,因为CM BM 与点M ,CM ⊂平面CMN ,BM ⊂平面CMN ,所以OA ⊥平面CMN ,所以直线OA 与平面CMN 所成角的大小为π2.故答案为.π29.已知等差数列{}n a 满足,253,9a a ==,等比数列{}n b 的公比111,55q b ==,令*,N ,n n n c a b n =∈{}n c 的前n 项和为n S ,若“0n n ≥”是“1010412021n n S c +->”的充分条件,则正整数0n 的最小值为______.【正确答案】6【分析】计算21n a n =-,15n n b ⎛⎫= ⎪⎝⎭,得到()1215nn n n c a b n ⎛⎫==- ⎪⎝⎭,利用错位相减得到()111141121255nn n S n -⎡⎤⎛⎫=+---⨯ ⎪⎢⎥⎣⎦⎝⎭,代入不等式解得答案.【详解】213a a d =+=,5149a a d =+=,11a =,2d =,故21n a n =-;15n n b ⎛⎫= ⎪⎝⎭,故()1215nn n n c a b n ⎛⎫==- ⎪⎝⎭,()()211111323215555n nn S n n -⎛⎫⎛⎫⎛⎫=+⨯++-⨯+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()231111113232155555nn n S n n +⎛⎫⎛⎫⎛⎫⎛⎫=+⨯++-⨯+-⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭两式相减得()231411111221555555n n n S n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++--⨯⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,所以()111141121255nn n S n -⎛⎫⎛⎫=+---⨯ ⎪ ⎪⎝⎭⎝⎭,因为1010412021n n S c +->,所以()()111111010112121125552021nnn n n -⎛⎫⎛⎫⎛⎫+---⨯+-⨯->⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,整理得到510105n >,553125=,6515625=,N n *∈,所以6n ≥.正整数0n 的最小值为6.故610.如图,曲线1C 是一个圆心位于()1,0,半径为1得四分之一圆弧,2C 是直线:L y x =上的线段,两者交于()1,1,1C ,2C 与x 轴共同构造一个封闭区域G ,将G 绕y 轴旋转一周得到几何体Ω,现已知:过点()0,y 作Ω的水平截面,所得的截面积S 与y 之间的函数关系式为())22π2π01S y y y =-+≤≤,利用()S y 的表达式与祖暅原理,考虑一个长方体,一个四棱锥和一个平放的半圆柱,计算几何体Ω的体积为______.【正确答案】24ππ32+【分析】利用祖暅原理,通过一个长方体减去一个四棱锥加上一个半圆柱的组合体,使其与Ω的水平截面表达式相等,算出构造的组合体体积即可.【详解】如图,取一个宽2AB =,长πAD =,高1AM =的长方体ABCD MLON -挖空一个四棱锥D MLON -,再加12个半径1XH =,高πEF =的圆柱,当高()01AQ XK y y ==≤≤时,水平截面(阴影部分)面积QRSP VUTP IHGJ S S S S =-+矩形矩形矩形,由1PV DP PT yNM DN NO ===,可得22πVUTP S y =矩形,由2IH KH ==,可得IHGJ S =矩形,则此组合体水平截面面积S 与y 之间的函数关系式为())22π2π01S y y y =-+≤≤,所以此组合体体积与几何体Ω的体积相等,1=2ABCD MLON BEFC D MLON V V V V Ω---+长方体圆柱棱锥22114ππ=2π12π1π1π3232⨯⨯-⨯⨯⨯+⨯⨯⨯=+.故答案为.24ππ32+二、单选题11.如图所示,用符号语言可表述为()A .m αβ= ,n ⊂α,m n A =B .m n m n Aαβα⋂=∈⋂=,,C .m n A mA n αβα⋂=⊂⊂⊂,,,D .m n A m A n αβα⋂=∈∈∈,,,【正确答案】A【分析】由题可知两平交于直线m ,直线n 在平面α内,两直线交于点A ,从而可得答案.【详解】由题可知平,αβ交于直线m ,直线n 在平面α内,两直线,m n 交于点A ,所以用符号语言可表示为m αβ= ,n ⊂α,m n A = ,故选:A.12.已知一个圆锥的底面半径1r =,若其体积V 与侧面积S 侧之间满足9S V =侧,则该圆锥的母线长度为()A BCD .2【正确答案】C【分析】设圆锥的高为h ,根据体积和表面积公式得到21π9π3r h =⨯,解得218h =,再计算母线长得到答案.【详解】设圆锥的高为h ,则12ππ2S r =⨯=侧21π3V r h =,9S V =侧,即21π9π3r h =⨯,解得218h =,4==.故选:C.13.如图是一棱长为1的正方体,则异面直线1A B 与11B D 之间的距离为()A 3B .33C .12D .22【正确答案】B【分析】建立空间直角坐标系,求出与11D B 和1A B uuu r垂直的向量坐标,求出异面直线间的距离.【详解】以D 为原点,DA ,DC ,1DD 分别为x ,y ,z轴,建立如图空间直角坐标系,则11(1,1,0)D B = ,1(0,1,1)A B =- ,设(,,)n x y z =与11D B 和1A B uuu r 都垂直,则11100D B n A B n ⎧⋅=⎪⎨⋅=⎪⎩ ,即00x y y z +=⎧⎨-=⎩,取(1,1,1)n =--r ,又因为11(1,0,0)D A = ,所以异面直线11D B 和1A B 间的距离为11333D A n n⋅= 故选:B.14.空间内水平放置的两个封闭图形分别为(i )长为3、宽为2的矩形;(ii )边长为3的正三角形,记(i )中原图形面积为1S ,斜二测画法得到的直观图面积为1S ',(ii )中原图形面积为2S ,斜二测画法得到的直观图面积为2S ',对以下两个命题:①1124S S '=;②2224S S '=,以下判断正确的是()A .①为真命题,②为假命题B .①为假命题,②为真命题C .①为真命题,②为真命题D .①为假命题,②为假命题【正确答案】C【分析】根据斜二测画法的知识求得正确答案.【详解】①,长为3、宽为2的矩形:原图:直观图:所以原图面积为1326S =⨯=,直观图的面积为11π13sin 2242S ⎛⎫'=⨯⨯⨯⨯= ⎪⎝⎭,所以1124S S '=,①为真命题.②,边长为3的正三角形:原图:直观图:所以原图面积为21π9333sin 234S =⨯⨯⨯=,直观图的面积为21333π6sin 2224416S ⎛⎫'=⨯⨯⨯⨯= ⎪ ⎪⎝⎭,所以2224S S '=,②为真命题.故选:C.三、解答题15.如图,1AC 为长方体1111ABCD A B C D -的体对角线,(1)写出所在直线与直线1AA 异面的所有棱;(2)若2,3DA DC ==,且长方体的表面积为22,求异面直线1AC 与BC 所成的角大小.【正确答案】(1)1111,,,BC B C DC D C ;(2)147.【分析】(1)根据异面直线的概念即得;(2)连接1AB ,则11AC B ∠即可判断出为所求的角,解三角形即可.【详解】(1)由异面直线的性质得1111,,,BC B C DC D C 与直线1AA 异面;(2)连接1AB ,因为11//BC B C,所以11AC B ∠即为所求角,因为2,3DA DC ==,且长方体的表面积为22,所以()11222AD DC AD DD DC DD =⨯+⨯+⨯,所以11DD =,易得1AC =,由题可知11B C ⊥平面11ABB A ,1AB ⊂平面11ABB A ,所以11B C ⊥1AB ,即11AC B 为直角三角形,所以11111cos B C AC B AC ∠==所以异面直线1AC 与BC所成的角大小为.16.数列{}n a 的前n 项和为n S ,已知()2112,322n n n a S a n +*+==-+∈N .(1)n *∈N 时,写出1n a +与n a 之间的递推关系;(2)求{}n a 的通项公式.【正确答案】(1)1142n n n a a ++=+(2)42n nn a =-【分析】(1)根据n a 与n S 之间的关系分析运算,注意分2n ≥和1n =两种情况讨论;(2)根据题意利用构造法结合等比数列求通项公式.【详解】(1)因为21322n n n S a ++=-+①,所以当2n ≥时,11322n n n S a +-=-+②,-①②得:()11322n n n n a a a n ++=--≥,即1142(2)n n n a a n ++=+≥,在①中:令1n =得322113221242a a a =+-==+,也符合上式,所以1142n n n a a ++=+.(2)因为1142n n n a a ++=+,则()11242n n n n a a +++=+,且1240a +=≠所以数列{}2n n a +是以4为首项,4为公比的等比数列,所以24n n n a +=,故42n n n a =-.17.如图,四棱锥P ABCD -的底面为矩形,PD ⊥平面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PDB ;(2)若6PD DC ==,求该四棱锥的体积.【正确答案】(1)证明见解析(2)【分析】(1)利用线面垂直的性质定理得到PD AM ⊥,然后利用线面垂直的判定定理即可得到AM ⊥平面PDB ,即可得证;(2)以D 为原点,分别以,,DA DC DP 为,,x y z 轴建立空间直角坐标系,得到,6,02x AM ⎛⎫=- ⎪⎝⎭,(),6,0DB x = ,利用AM BD ⊥可求出x =【详解】(1)因为PD ⊥平面ABCD ,AM ⊂平面ABCD ,所以PD AM ⊥,又因为PB AM ⊥,PD PB P = ,PD ⊂平面PDB ,PB ⊂平面PDB ,所以AM ⊥平面PDB ,因为AM ⊂平面PAM ,所以平面PAM ⊥平面PDB ;(2)以D 为原点,分别以,,DA DC DP 为,,x y z 轴建立空间直角坐标系,设DA x =,则()(),0,0,,,6,02x A x M B x ⎛⎫ ⎪⎝⎭,所以,6,02x AM ⎛⎫=- ⎪⎝⎭,(),6,0DB x = ,由AM ⊥平面PDB ,BD ⊂平面PDB 可得AM BD ⊥,所以AM BD ⊥ ,即3602x x -⨯+=,解得x =所以四棱锥的体积为1133ABCD V S PD DC DA PD =⨯=⨯⨯=18.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直.点M在AC 上移动,点N 在BF 上移动,若(0CM BN a a ==<.(1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小.【正确答案】(1)MN a =<(2)当a =MN (3)1πarccos 3-【分析】(1)作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,则MNQP 是平行四边形,根据MN =PQ ,即可求出MN 的长;(2)根据(1)的结果,结合二次函数的性质,即可求出MN 的最小值;(3)取MN 的中点G ,由题意知AG ⊥MN ,BG ⊥MN ,根据二面角的平面角的定义可知∠AGB 即为二面角的平面角,在三角形AGB 中利用余弦定理求解即可.【详解】(1)作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连接PQ ,依题意可得MP ∥NQ ,且MP =NQ ,即MNQP 是平行四边形,∴MN =PQ .由已知,CM =BN =a ,CB =AB =BE =1,∴AC =BF ,11CP BQ ==CP BQ =MN PQ ∴==a =<<.(2)由(1)得,MN =0a <<,所以,当2a =时,MN 的长取最小值2.即当M 、N 分别为AC 、BF 的中点时,MN .(3)取MN 的中点G ,连接AG 、BG ,由(2)可得2AM AN BM BN ====∵G 为MN 的中点,∴AG ⊥MN ,BG ⊥MN ,则∠AGB 即为所求二面角的平面角α,又AG =BG所以由余弦定理有2211cos 3α+-=-,故所求二面角1πarccos 3α=-.19.已知数列{}n a 有递推关系1191069,,,5655n n n n a a n a a a *+-⎛⎫=∈≠= ⎪-⎝⎭N (1)记,n n a b k =+若数列{}n b 的递推式形如(1,,n n n rb b p q r pb q +=∈+R 且),0p r ≠,也即分子中不再含有常数项,求实数k 的值;(2)求{}n a 的通项公式.【正确答案】(1)1或2(2)()4141nn n n a =+--【分析】(1)根据题意整理可得()219551510556n n n k b k k b b k +--+-=+-,即2515100k k -+-=,运算求解即可;(2)取1k =,可得1451n n n b b b +=-,利用构造法结合等比数列求通项公式.【详解】(1)因为n n a b k =+,且191056n n n a a a +-=-,所以()()()211910955151056556n n n n n n b k k b k k b a k k b k b k +++---+-=-==+-+-,则2515100k k -+-=,解得1k =或2;(2)由(1)可得:当1k =时,则1n n a b =+,且1451n n n b b b +=-,可得1511115444n n n n b b b b +-==-⨯+,则1111114n n b b +⎛⎫-=-- ⎪⎝⎭,且111104b -=≠,故数列11n b ⎧⎫-⎨⎬⎩⎭是以14为首项,14-为公比的等比数列,∴()111111444n n n n b --⎛⎫-=⨯-=- ⎪⎝⎭,则()441nn n n b =--,故()4141nn n n a =+--.20.无穷数列{}n a 和{}n b 满足:①{}0,1,2,;n a n N *∈∈②()111,24n n n n n b a a n N b *++=--∈,记{}n b 的前n 项积为n T ,(1)是否存在1234,,,,a a a a 使得{}n b 的前四项依次成等差数列?若存在则写出一组这样的1234,,,,a a a a 若不存在,则说明理由;(2)若11b =,求2021T 的最大值.【正确答案】(1)不存在,理由见解析(2)102010012⎛⎫ ⎪⎝⎭【分析】(1)假设存在,对1b 正负进行讨论,找出矛盾得出结论;(2)根据(1)分析出41424340,0,0,0n n n n b b b b ---<<>>,进而对112,,,n n n n a a a a +++的取值进行讨论,最终得到结果.【详解】(1)假设存在,设n b 的前四项公差为d ,当10b >时,易得2340,0,0b b b <<>,所以21430,0d b b d b b =-=-,矛盾;同理10b <时,也矛盾,故不存在;(2)因为110b =>,由(1)得41424340,0,0,0n n n n b b b b ---<<>>,设10n n n b q b +=>,则1113,,,,124424n n n n a a q q +⎧⎫=-∈⎨⎬⎩⎭,所以21n n n n b q q b ++=⋅⋅,又因为1n n q q +⋅的值从大到小依次为3911,,,4162①若11n n q q +⋅=,则111n n q q +=⎧⎨=⎩,则112(,)(2,0)(,)(2,0)n n n n a a a a +++=⎧⎨=⎩,1n a +不能同时存在,故不成立;②若134n n q q +⋅=,则1134n n q q +=⎧⎪⎨=⎪⎩或1341n n q q +⎧=⎪⎨⎪=⎩,此时112(,)(2,0)(,)(2,1)n n n n a a a a +++=⎧⎨=⎩或112(,)(2,1)(,)(2,0)n n n n a a a a +++=⎧⎨=⎩,1n a +不能同时存在,故不成立;③若1916n n q q +⋅=,则13434n n q q +⎧=⎪⎪⎨⎪=⎪⎩,则112(,)(2,1)(,)(2,1)n n n n a a a a +++=⎧⎨=⎩,1n a +不能同时存在,故不成立;所以112n n q q +⋅≤,此时112(,)(2,0)(,)(0,2)n n n n a a a a +++=⎧⎨=⎩或112(,)(0,2)(,)(2,0)n n n n a a a a +++=⎧⎨=⎩可取到,所以2112n n n n n b q q b b ++=⋅⋅≤,所以112111122n n n b b ---⎛⎫⎛⎫≤= ⎪ ⎝⎭⎝⎭,111221111222n n n n b b b ---⎛⎫⎛⎫⎛⎫≤≤≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以20211232021132021242020T b b b b b b b b b b =⋅⋅=⋅⋅ 210102100910201001111111112222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫≤⨯⨯⨯⨯⨯⨯⨯⨯⨯= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ,此时{}n a 为2,0,2,0,因为20210T >,所以1020100202112T ⎛⎫≤ ⎪⎝⎭,即2021T 的最大值为102010012⎛⎫ ⎪⎝⎭.分类讨论思想是高中数学一项重要的考查内容.分类讨论思想要求在不能用统一的方法解决问题的时候,将问题划分成不同的模块,通过分块来实现问题的求解,体现了对数学问题的分析处理能力和解决能力.。
河北省承德市2023-2024学年高二数学上学期12月联考模拟试题(含答案)
河北省承德市2023-2024学年高二数学上学期12月联考模拟试题注意事项:1.答题前,先将自己的姓名、考号等填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用签字笔直接写在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 抛物线()20y ax a=<的焦点坐标是()A.1,04a⎛⎫⎪⎝⎭ B.10,4a⎛⎫⎪⎝⎭C.10,16a-⎛⎫⎪⎝⎭ D.1,016a⎛⎫⎪⎝⎭2. 已知向量(),0,1a m=,()1,0,4b=-,且//a b,则实数m=()A. 2-B. 4-C.12-D.14-3. 两平行直线3210x y-+=和6430x y--=间的距离是()D.4. 双曲线()222210,0x ya ba b-=>>,则其渐近线方程为()A.12y x=±B.2y x=±C. 4y x=± D. 8y x=±5. 过点()2,3P引圆222440x y x y+--+=的切线,其方程是()A. 2x =B. 12590x y -+=C. 2x =或3y = D. 3x =或2y =6. 如图,已知四边形ABCD 、ABEF 都是正方形,若二面角D AB F --为60︒,则异面直线AC 与BF所成角的正切值为()B.D. 7. 古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.如图,1F ,2F 为椭圆E :()222210,0x y a b a b +=>>的左、右焦点,中心为原点,椭圆E,直线4x =上一点P 满足12F PF △是等腰三角形,且12120F F P ∠=︒,则E的离心率为()C. 15D. 258. 已知直线与抛物线C :28y x =交于A 、B 两点,F 为抛物线的焦点,O 为坐标原点,且OA OB ⊥,直线AB 的倾斜角为ππ,42α⎡⎤∈⎢⎥⎣⎦,OD AB ⊥交AB 于点D ,若P 为拋物线上任意一点,则PF PD+的最小值为()A. 2B. 4C. 6D. 10二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9. 已知直线l20y +=,则下列说法正确的有()A. l的一个方向向量为(1,k =B. l1+=C. 若l 与直线()40R x ay a -+=∈互相垂直,则a =D. 点()1,0-到l 的距离为110. 已知曲线C :221mx ny +=,则()A. 若0m n =>,则C 是圆 B. 若0m n >>,则C 是椭圆C. 若0mn <,则C 是双曲线 D. 若0m =,0n >,则C 是两条射线11. 如图,在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长都为1,且1DAB DAA ∠=∠=160BAA ∠=︒,则()A.1AC BD ⊥B. 1BD =C. BD ⊥平面1ACC D. 直线1BD 与AC12. 椭圆1C :()222210x y a b a b +=>>的右焦点(),0F c ,抛物线2C :24y cx =,1C ,2C 交于点P ,过F 作x 轴垂线交1C 于A 、B ,交2C 于C 、D ,下列结论正确的是()A .若AB CD>,则1C11e <<B .若AB CD<,则1C11e -<<C. 若43CD AB =,则1C 离心率12e =D. 若5PF =,则()225a c a c +=+三、填空题(本题共4小题,每小题5分,共20分)13. 双曲线22221124x y m m -=+-的焦点坐标是______.14. 已知空间向量()1,,2a n = ,()2,1,2b =- .若a b+ 与b垂直,则a =r ______.15. 已知圆1C :222440x y x y +---=和圆2C :22441616310x y x y +--+=,则这两个圆的位置关系为______.16. 中国古代数学名著《九章算术》中,将四个面都为直角三角形的三棱锥称之为“鳖臑”,若三棱锥-P ABC 为鳖臑,PA ⊥平面ABC ,3PA =,2AC BC ==,则结论正确的序号是______.(填写序号即可)①BC⊥平面PAB ;②直线PA 与平PBC③二面角A PB C --④三棱锥-P ABC 外接球的表面积为17π四、解答题(本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17. 已知点()2,4A ,()4,2B ,直线l 的方程为:210x y -+=.(1)求直线l 关于点A 对称的直线m 的方程;(2)求经过,A B 两点,且圆心在直线l 上的圆的标准方程.18. 已知圆P 在x 轴上截得线段长为4,在y轴上截得线段长为(1)求圆心P 的轨迹方程;(2)若P 点到直线y x =,求圆P 的标准方程.19. 如图,在棱长为1的正方体OABC O A B C ''''-中,E ,F 分别是棱AB ,BC 上的动点,且AE BF =.(1)求证:A F C E ''⊥;(2)当三棱推B BEF '-的体积取得最大值时,求平面B EF '与平面BEF 的夹角的正弦值.20. 已知双曲线C :()222210,0x y a b a b -=>>经过点(,其中一条渐近线为30y -=,O 为坐标原点.(1)求C 的标准方程;(2)过C 的右焦点F ,且在y 轴上的截距为2-的直线l ,交C 于P ,Q 两点,求OP OQ ⋅的值.21. 已知点F 为抛物线C :()220y px p =>的焦点,过F 且垂直于x 轴的直线截C 所得线段长为4.(1)求p 的值;(2)M 为抛物线C 的准线上任意一点,过点M 作MA ,MB 与C 相切,A ,B 为切点,则直线AB 是否过定点?若过,求出定点坐标;若不过,说明理由.22. 已知椭圆C :()222210x y a b a b +=>>的右顶点到左焦点(),0F c -的距离与左焦点F 到直线2a x c =-的距离相等,过椭圆的焦点且与长轴垂直的弦长为3.(1)求椭圆C 的标准方程;(2)设直线l 过点F ,且与坐标轴不垂直,与椭圆C 相交于P ,H 两点,线段PH 的垂直平分线与x 轴交于点B .①当76BF =时,求直线l 的倾斜角的正弦值;②求证:4PH BF.数学试题答案本试卷共4页,22题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、考号等填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用签字笔直接写在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 抛物线()20y ax a =<的焦点坐标是()A. 1,04a ⎛⎫ ⎪⎝⎭B. 10,4a ⎛⎫ ⎪⎝⎭C. 10,16a -⎛⎫ ⎪⎝⎭ D.1,016a ⎛⎫⎪⎝⎭【正确答案】B【分析】得到抛物线的标准方程,进而得到焦点坐标.【详解】a<0,则抛物线2y ax =的标准方程为:21x y a =,焦点坐标在y 轴上,焦点坐标为10,4a ⎛⎫ ⎪⎝⎭.故选:B .2. 已知向量(),0,1a m =,()1,0,4b =-,且//a b,则实数m =()A. 2-B. 4- C. 12-D. 14-【正确答案】D【分析】根据空间向量共线定理计算即可.【详解】因为//a b,所以存在唯一实数λ,使得a b λ= ,则0014mλλ=-⎧⎪=⎨⎪=⎩,解得1414mλ⎧=-⎪⎪⎨⎪=⎪⎩,故选:D.3. 两平行直线3210x y-+=和6430x y--=间的距离是()D. 【正确答案】C【分析】根据平行线间距离公式进行求解即可.【详解】将直线6430x y--=化为33202x y--=,所以两平行直线3210x y-+=和6430x y--=间的距离为:d.故选:C.4. 双曲线()222210,0x ya ba b-=>>,则其渐近线方程为()A.12y x=±B.2y x=±C. 4y x=± D. 8y x=±【正确答案】B【分析】根据双曲线的离心率可求得ba的值,由此可得出双曲线的渐近线方程.【详解】cea==2222221514b c aea a-∴==-=-=,2ba∴=,渐近线方程为by xa=±,∴渐近线方程为2y x=±.故选:B.5. 过点()2,3P 引圆222440x y x y +--+=的切线,其方程是()A. 2x = B. 12590x y -+=C. 2x =或3y = D. 3x =或2y =【正确答案】C【分析】求出圆心和半径,考虑切线的斜率不存在和存在两种情况,结合圆心到直线距离等于半径,得到方程,求出答案.【详解】根据题意,圆222440x y x y +--+=,即()()22121x y -+-=,其圆心为()1,2,半径1r =;过点()2,3P 引圆222440x y x y +--+=的切线,若切线的斜率不存在,切线的方程为2x =,符合题意;若切线的斜率存在,设其斜率为k ,则有()32y k x -=-,即320kx y k -+-=,1=,解得0k =,此时切线的方程为()302y x -=-,即3y =.综上:切线的方程为2x =和3y =.故选:C .6. 如图,已知四边形ABCD 、ABEF 都是正方形,若二面角D AB F --为60︒,则异面直线AC 与BF所成角的正切值为()B.D. 【正确答案】C【分析】根据题意,由条件可得60EBC ∠=︒,结合空间向量的运算,可得AC BF ⋅,再由空间向量的夹角公式,代入计算,即可得到结果.【详解】根据题意可知,EBC ∠即为二面角D AB F --的平面角,所以60EBC ∠=︒,设正方形边长为1,异面直线AC 与BF 所成的角为θ,AC AB BC =+ ,BF BE EF =+ ,EF BA AB ==-,B A F C ==所以()()()()AC BF AB BC BE EF AB BC BE AB⋅=+⋅+=+⋅- ,即()210111cos 6002AC BF AB BE AB BC BE BC AB ⋅=⋅-+⋅-⋅=+-+⨯⨯︒-=-,所以1cos ,4AC BF AC BF AC BF⋅===- ,即1cos cos ,4F AC B θ==,sin θ=,所以tan 14θ==.故选:C .7. 古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.如图,1F ,2F 为椭圆E :()222210,0x y a b a b +=>>的左、右焦点,中心为原点,椭圆E,直线4x =上一点P 满足12F PF △是等腰三角形,且12120F F P ∠=︒,则E的离心率为()C. 15D. 25【正确答案】B【分析】根据题意,由条件可得12F PF △是以12120F F P ∠=︒为顶角的等腰三角形,列出关于,,a b c 的方程,再由离心率的计算公式,即可得到结果.πab =,即ab =12F PF △是以12120F F P ∠=︒为顶角的等腰三角形,则有:122F F PF =,122130PF F F PF ∠=∠=︒,230F PA ∠=︒,所以()2222482PF AF c c ==-=-,又因为122FF c =,即282c c =-,2c =,可得:2222ab c a b c ⎧=⎪=⎨⎪=+⎩,解得21a c b ⎧=⎪=⎨⎪=⎩,故离心率为c e a ==.故选:B .8. 已知直线与抛物线C :28y x =交于A 、B 两点,F 为抛物线的焦点,O 为坐标原点,且OA OB ⊥,直线AB 的倾斜角为ππ,42α⎡⎤∈⎢⎥⎣⎦,OD AB ⊥交AB 于点D ,若P 为拋物线上任意一点,则PF PD+的最小值为()A. 2B. 4C. 6D. 10【正确答案】C【分析】设出直线AB 的方程与抛物线方程联立,根据一元二次方程的判别式和根的系数关系、抛物线的定义逐一判断即可.【详解】由题意,可设直线AB 的方程为:x my n =+,()0n ≠,()11,A x y ,()22,B x y ,则:28x my n y x =+⎧⎨=⎩,消x 可得:2880y my n --=,由0∆>得220m n +>,则128y y m +=,128y y n ⋅=-,又OA OB ⊥,所以2121280OA OB x x y y n n ⋅=+=-= ,解得0n =(舍)或8n =,所以直线AB 的方程为:8x my =+,过定点()8,0T ,又OD AB ⊥,故点D 在以OT 为直径的圆上,故点D 的轨迹方程为()22416x y -+=,(48,40)x y ≤≤-≤≤,又点D 和点T 在直线AB 上,且AB 的倾斜角为ππ,42α⎡⎤∈⎢⎥⎣⎦,即直线AB 的斜率[)1,DT k ∈+∞,故48D x ≤≤,40D y -≤≤,如下图弧所示,过P ,D 分别作准线2x =-的垂线,垂足分别为H ,I ,根据抛物线的定义知:PF PD PH PD ID+=+≥,当点P 为ID 与抛物线的交点时取等号,又2D ID x =+,当D x 取最小值4时,此时ID 取得最小值6,故PF PD+的最小值为6.故选:C关键点睛:本题的关键是利用抛物线的定义和一元二次方程根与系数的关系.二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9. 已知直线l 20y +=,则下列说法正确的有()A. l 的一个方向向量为(1,k =B. l 1+=C. 若l 与直线()40R x ay a -+=∈互相垂直,则a =D. 点()1,0-到l 的距离为1【正确答案】AD【分析】由直线一般方程写出一个方向向量及截距式判断A 、B ;由垂直关系的判定列方程求参判断C ;应用点线距离公式求距离判断D.【详解】由直线方程知:l 的一个方向向量为(1,k =,A 对;2y +=-1=,B 错;l 与直线()40R x ay a -+=∈11()0a +⨯-=,可得a =C 错;点()1,0-到l1=,D 对.故选:AD10. 已知曲线C :221mx ny +=,则()A. 若0m n =>,则C 是圆 B. 若0m n >>,则C 是椭圆C. 若0mn <,则C 是双曲线 D. 若0m =,0n >,则C 是两条射线【正确答案】ABC【分析】根据圆、椭圆、双曲线、射线的方程特征逐一判断即可.【详解】A 选项,当0m n =>时,222211mx ny x y n +=⇒+=,表示圆,A 选项正确;B 选项,当0m n >>时,22221111x y mx ny m n +=⇒+=11,0m n <<,方程表示焦点在y 轴上的椭圆,B 选项正确;C 选项,当0mn <时,22221111x y mx ny m n +=⇒+=,表示双曲线,C 选项正确;D 选项,当0m =,0n >时,22211mx ny y y n +=⇒=⇒==±表示两条直线,D 选项错误.故选:ABC .11. 如图,在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长都为1,且1DAB DAA ∠=∠=160BAA ∠=︒,则()A.1AC BD⊥B.1BD =C. BD ⊥平面1ACC D. 直线1BD 与AC所成角的正弦值为【正确答案】AC【分析】利用空间向量基本定理,结合空间向量数量积的运算性质和定义、空间向量夹角公式逐一判断即可.【详解】以{}1,,AB AD AA 为空间一组基底,11AC AB AD AA =++,()()111,BD AD AB AC BD AB AD AA AD AB AB AD AD AD AA AD=-⋅=++⋅-=⋅+⋅+⋅ 2211111111111111102222AB AB AD AB AA AB -⋅-⋅-⋅=⨯⨯++⨯⨯--⨯⨯-⨯⨯= ,所以1AC BD⊥,A 选项正确;111A BD D AB AD AA AB =-=+-,所以()2222211111222BD AD AA ABAD AA AB AD AA AA AB AD AB=+-=+++⋅-⋅-⋅ 2221111112112112112222=+++⨯⨯⨯-⨯⨯⨯-⨯⨯⨯=,所以1BD =B 选项错误;依题意可知,四边形ABCD 是菱形,所以BD AC ⊥,且1BD AC ⊥,由于1AC AC A = ,1AC ,AC ⊂平面1ACC ,所以BD ⊥平面1ACC ,C 选项正确;设直线1BD 与AC 所成角为θ,π02θ<≤,11,AC AB AD BD AD AA AB =+=+- ,22221()21211132AC AB AD AB AB AD AD =+=+⋅+=+⨯⨯⨯+=,AC =()11()AC BD AB AD AD AA AB⋅=+⋅+- 11AB AD AB AA AB AB AD AD AD AA AD AB=⋅+⋅-⋅+⋅+⋅-⋅ 221111111111111112222=⨯⨯+⨯⨯-++⨯⨯-⨯⨯=,所以11cos AC BD AC BD θ⋅===⋅,sin θ==D 选项错误.故选:AC .关键点睛:本题的关键是利用空间向量基本定理、空间向量夹角公式.12. 椭圆1C :()222210x y a b a b +=>>的右焦点(),0F c ,抛物线2C :24y cx =,1C ,2C 交于点P ,过F 作x 轴垂线交1C 于A 、B ,交2C 于C 、D ,下列结论正确的是()A .若AB CD>,则1C11e <<B. 若AB CD<,则1C11e -<<C. 若43CD AB =,则1C 离心率12e =D. 若5PF =,则()225a c a c +=+【正确答案】BCD【分析】利用代入法,结合抛物线和椭圆的定义和它们的离心率公式逐一判断即可.【详解】把x c =代入22221x y a b +=中,得2b y a =±,所以22b AB a =,把x c =代入24y cx =中,得2y c =±,所以4CD c =,A :222224,2,b c b ac a c a >∴>∴->22,12,01ac e e e ∴->∴<<-,故A 错误;B :同理可得B 正确;C :22424,233b c b ac a =⨯∴= ,()()222123,213,2a c ac e e e ∴-=∴-=∴=,故C 正确;D :设(,),||5,5,P x y PF x c x =∴+=∴= 25,4(5)c y c c -=⨯-,亦可知点P 到椭圆左焦点的距离为25a -,222(25)()(5a x c y c -=++=-+2)4(5)c c c +⨯-,整理得225()a c a c +=+,故D 正确.故选:BCD.关键点睛:本题的关键是利用代入法求出弦长表达式.三、填空题(本题共4小题,每小题5分,共20分)13. 双曲线22221124x y m m -=+-的焦点坐标是______.【正确答案】()4,0±【分析】求出2212a m =+,224b m =-,得到4c =,求出焦点坐标.【详解】因为2120m +>恒成立,故2212a m =+,224b m =-,所以22216c a b =+=,所以4c =,故焦点坐标为()4,0±.故()4,0±.14. 已知空间向量()1,,2a n =,()2,1,2b =-.若a b + 与b 垂直,则a =r ______.【正确答案】【分析】根据空间向量加法的坐标表示公式、垂直的坐标表示公式、空间向量模的坐标表示公式进行求解即可.【详解】()1,,2a n =,()2,1,2b =-,()1,1,4a b n ∴+=-+.a b + 与b垂直,()a b b ∴+⋅= ,2180n ∴+++=,解得11n =-,()1,11,2a ∴=- ,a ∴==故.15. 已知圆1C :222440x y x y +---=和圆2C :22441616310x y x y +--+=,则这两个圆的位置关系为______.【正确答案】内含【分析】根据圆心距和两圆半径的关系即可判断两圆的位置关系.【详解】因为圆1C :()()22129x y -+-=,圆2C :()()221224x y -+-=,所以圆心距121d C C ===,而两圆半径之差132-512=>,故两个圆内含.故内含16. 中国古代数学名著《九章算术》中,将四个面都为直角三角形的三棱锥称之为“鳖臑”,若三棱锥-P ABC 为鳖臑,PA ⊥平面ABC ,3PA =,2AC BC ==,则结论正确的序号是______.(填写序号即可)①BC⊥平面PAB ;②直线PA 与平PBC③二面角A PB C --④三棱锥-P ABC 外接球的表面积为17π【正确答案】③④【分析】该几何体可以看成是长方体中截出来的三棱锥-P ABC ,建立直角坐标系,结合空间向量的数量积和向量的夹角公式,以及球的截面圆的性质和球的表面积公式,即可求解.【详解】该几何体可以看成是长方体中截出来的三棱锥-P ABC ,建立如图所示的直角坐标系,则()0,0,0A ,()2,2,0B ,()0,2,0C ,()0,0,3P ,可得()2,0,0CB =,()2,2,3BP =--,因为40CB BP ⋅=-≠ ,所以CB 与BP不垂直,BC 与平面PAB 不垂直,所以①错误;设平面PBC 的法向量为(),,n x y z =r,则202230n CB x n BP x y z ⎧⋅==⎪⎨⋅=--+=⎪⎩,令3y =,得平面PBC 的一个法向量为()0,3,2n = ,又由()0,0,3AP =,设PA 与平面PBC 所成角为θ,所以sin cos ,AP θ===n ,所以②错误;设平面PAB 的法向量为()111,,m x y z =r,且()0,0,3AP = ,()2,2,0AB = ,则11130220m AP z m AB x y ⎧⋅==⎪⎨⋅=+=⎪⎩ ,令11x =,得平面PAB 的一个法向量为()1,1,0m =-r,可得cos ,m ,由图可知二面角A PB C --为锐角,所以二面角A PB C --,所以③正确;长方体的体对角线为三棱锥-P ABC 外接球的直径,可得2R PB ===所以,球的表面积为24π17πS R ==,所以④正确.故③④.四、解答题(本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17. 已知点()2,4A ,()4,2B ,直线l 的方程为:210x y -+=.(1)求直线l 关于点A 对称的直线m 的方程;(2)求经过,A B 两点,且圆心在直线l 上的圆的标准方程.【正确答案】(1)2110x y -+=(2)()()221110x y -+-=【分析】(1)设直线m 上任意一点(),P x y 关于点(2,4)A 的对称点为()00,Q x y ,得到0048x xy y =-⎧⎨=-⎩,代入即可求解;(2)设圆心()21,C b b -,根据CA CB=,求得1b =,得到圆心和半径,即可求得圆C 的标准方程.【小问1详解】解:设直线m 上任意一点(),P x y 关于点(2,4)A 的对称点为()00,Q x y ,则0048x x y y =-⎧⎨=-⎩,因为00210x y -+=,所以()42810x y ---+=,整理得2110x y -+=,即直线m 的方程2110x y -+=.【小问2详解】解:设圆心()21,C b b -,由CA CB=,则=1b =,所以圆心为()1,1C ,半径r CA ==,所以圆C 的标准方程为()()221110x y -+-=.18. 已知圆P 在x 轴上截得线段长为4,在y 轴上截得线段长为(1)求圆心P 的轨迹方程;(2)若P 点到直线y x =,求圆P 的标准方程.【正确答案】(1)228y x -=(2)()()221313x y +++=或()()221313x y -+-=【分析】(1)由弦长,半径,圆心到弦的距离之间的关系可知224r y =+,224r y =+,消去2r 即可得到圆心P 的轨迹方程;(2)设()00,P x y ,由点到直线的距离公式得002x y -=,与228y x -=联立即可求出圆心P 与半径r ,即可求出圆P 的标准方程.【小问1详解】设(),P x y ,圆P 的半径为r ,因为圆P 在x 轴上截得的线段长为4,点P 到x 轴的距离为y,所以有2222r y =+,即224r y =+,同理有2212r x =+,即22412y x +=+,即228y x -=故P 点的轨迹方程为228y x -=.【小问2详解】设()00,P x y,所以002x y -=.又()00,P x y 点在双曲线228y x -=上,所以00220028x y y x ⎧-=⎨-=⎩,解得:0013x y =-⎧⎨=-⎩或0013x y =⎧⎨=⎩此时圆的半径2201211213r x =+=+=,故圆P 的方程为()()221313x y +++=或()()221313x y -+-=.19. 如图,在棱长为1的正方体OABC O A B C ''''-中,E ,F 分别是棱AB ,BC 上的动点,且AE BF =.(1)求证:A F C E ''⊥;(2)当三棱推B BEF '-的体积取得最大值时,求平面B EF '与平面BEF 的夹角的正弦值.【正确答案】(1)证明见解析(2【分析】(1)建立空间直角坐标系,利用空间向量数量积的坐标表示公式进行运算证明即可;(2)利用空间向量夹角公式,结合三棱锥的体积公式进行求解即可.【小问1详解】CO 、CB 、CC '两两垂直,∴以C 为原点,CO 、CB 、CC '为x ,y ,z 轴建立空间直角坐标系,则()0,0,0C ,()0,1,0B ,()1,1,0A ,()1,0,0O ,()0,0,1C ',()0,1,1B ',()1,1,1A ',()1,0,1O ',由于AE BF =,设CF a =,则()0,,0F a ,其中01a ≤≤,则(),1,0E a ,所以()1,1,1A F a '=---,(),1,1C E a '=-,则110A F C E a a '⋅=-+-+=',故A F C E ''⊥.【小问2详解】要使三棱锥B BEF '-的体积取得最大值,只要BEF △的面积最大即可,由题意知()22111111112222228BEFS BE BF a a a a a ⎛⎫=⋅=-=-+=--+ ⎪⎝⎭ ,当12a =时,即E ,F 分别为AB ,BC 中点时BEF △的面积最大,则10,,02F ⎛⎫ ⎪⎝⎭,1,1,02E ⎛⎫ ⎪⎝⎭,设平面B EF '的法向量为(),,n x y z =r ,又11,,022EF ⎛⎫=-- ⎪⎝⎭ ,1,0,12EB '⎛⎫=-⎪⎝⎭,则110022110022y x x y EF n z x EB n x z ⎧⎧=---=⎧⎪⎪⋅=⎪⎪⎪⇒⇒⎨⎨⎨=⋅=⎪⎪⎪-+=⎩'⎪⎪⎩⎩ ,令2x =得()2,2,1n =-,又正方体OABC O A B C ''''-中CC '⊥平面BEF ,所以()0,0,1CC '=为平面BEF 的一个法向量,所以11cos ,313n CC n CC CC n '⋅==⨯''=⋅,则sin ,n CC ==' ,所以平面B EF '与平面BEF.20. 已知双曲线C :()222210,0x y a b a b -=>>经过点(,其中一条渐近线为30y -=,O 为坐标原点.(1)求C 的标准方程;(2)过C 的右焦点F ,且在y 轴上的截距为2-的直线l ,交C 于P ,Q 两点,求OP OQ ⋅的值.【正确答案】(1)2213x y -=(2)7【分析】(1)根据渐近线方程以及点的坐标得到关于,a b 的方程组,由此求解出22,a b 即可知C 的标准方程;(2)根据条件先求出l 的方程,然后联立l 与双曲线的方程得到对应坐标的韦达定理形式,再将OP OQ ⋅表示为坐标形式即可求解出结果.【小问1详解】因为双曲线22221x y a b -=的渐近线方程为b y x a =±,所以b a =又因为点(在双曲线上,所以22921a b -=②,①②联立解得223,1a b ==,所以双曲线C 的方程为2213x y -=.【小问2详解】由(1)可知双曲线C 中2224c a b =+=,所以右焦点F 坐标为()2,0,即直线l 的横截距为2,又因为直线l 在y 轴上的截距为2-,所以直线l 的方程为()122x y +=-,即2y x =-,联立22132x y y x ⎧-=⎪⎨⎪=-⎩得2212150x x -+=,设()()1122,,,P x y Q x y ,则1212156,2x x x x +==,所以1212OP OQ x x y y ⋅=+()()121222x x x x =+--()12122247x x x x =-++=.21. 已知点F 为抛物线C :()220y px p =>的焦点,过F 且垂直于x 轴的直线截C 所得线段长为4.(1)求p 的值;(2)M 为抛物线C 的准线上任意一点,过点M 作MA ,MB 与C 相切,A ,B 为切点,则直线AB 是否过定点?若过,求出定点坐标;若不过,说明理由.【正确答案】(1)2p =(2)直线AB 恒过定点()1,0,理由见解析【分析】(1)求出焦点坐标,将2px =代入抛物线方程,得到y p =±,故24p =,求出答案;(2)设直线MA 的方程为()11y k x x y =-+,与24y x =联立,根据Δ0=求出12k y =,()112yy x x =+,同理可得()222yy x x =+,又点()1,M a -在,MA MB ,得到直线AB 的方程为220x ay --=,求出定点坐标.【小问1详解】由题意知,,02pF⎛⎫⎪⎝⎭,将2px=代入抛物线方程得,2222py p p=⋅=,故y p=±,故过F且垂直于x轴的直线截C所得线段长为2p,由24p=可知2p=;【小问2详解】直线AB恒过定点,定点坐标为()1,0,理由如下:设()()() 1122,,,,1,A x yB x y M a-,由题意可知直线,MA MB的斜率均存在,且不为0,120,0y y≠≠,设直线MA的方程为()11y k x x y=-+,与24y x=联立得()211440ky y y kx-+-=,由于直线MA为切线.故()11Δ16160k y kx=--=,又2114y x=,则2211440k y ky-+=,解得12ky=,所以直线()1112:MA y x x yy=-+,即()112yy x x=+,同理直线MB的方程为()222yy x x=+,又点()1,M a-在,MA MB上,所以()()11222121ay xay x⎧=-+⎪⎨=-+⎪⎩,从而直线AB的方程为:()21ay x=-+,即220x ay--=,故直线AB恒过定点() 1,0.圆锥曲线中探究性问题解题策略:(1)先假设存在或结论成立,然后引进未知数,参数并建立有关未知数,参数的等量关系,若能求出相应的量,则表示存在或结论成立,否则表示不存在或结论不成立;(2)在假设存在或结论成立的前提下,利用特殊情况作出猜想,然后加以验证也可.22. 已知椭圆C:()222210x ya ba b+=>>的右顶点到左焦点(),0F c-的距离与左焦点F到直线2axc=-的距离相等,过椭圆的焦点且与长轴垂直的弦长为3.(1)求椭圆C的标准方程;(2)设直线l过点F,且与坐标轴不垂直,与椭圆C相交于P,H两点,线段PH的垂直平分线与x轴交于点B.①当76BF=时,求直线l的倾斜角的正弦值;②求证:4PH BF=.【正确答案】(1)221 43x y+=(2;②证明见解析【分析】(1)根据题意,列出关于,,a b c的方程组,求得,,a b c的值,即可求解;(2)设直线l的方程为()1y k x=+,()()1122,,,P x y H x y,且线段PH的中点为M,联立方程组,得到221212228412,3434k kx x x xk k--+==++,求得22243,3434k kMk k⎛⎫-⎪++⎝⎭,得到线段PH的垂直平分线方程,求得22,034kBk⎛⎫-⎪+⎝⎭,①当67BF=时,列出方程求得1k=±,进而求得直线l的倾斜角的正弦值;②利用弦长公式,分别求得PH和BF的表达式,即可求解.【小问1详解】解:因为椭圆C的右顶点到左焦点(),0F c-的距离与左焦点F到直线2axc=-的距离相等,且过椭圆的焦点且与长轴垂直的弦长为3,可得()2222223a a c c c ba b a c⎧⎛⎫--=---⎪ ⎪⎝⎭⎪⎪⎨=⎪⎪=-⎪⎩,解得2,1a b c ===,所以椭圆C 的方程为22143x y +=.【小问2详解】解:因为直线l 过点()1,0F -,且与坐标轴不垂直,所以设直线l 的方程为()()10y k x k =+≠,()()1122,,,P x y H x y ,且线段PH 的中点为M ,联立方程组()221143y k x x y ⎧=+⎪⎨+=⎪⎩,整理得()22223484120k x k x k +++-=,则Δ0>,所以221212228412,3434k k x x x x k k --+==++,所以线段PH 的中点22243,3434k k M k k ⎛⎫- ⎪++⎝⎭,所以线段PH 的垂直平分线方程为2223143434k k y x k k k ⎛⎫-=-+ ⎪++⎝⎭,令0y =,可得2234k x k -=+,即22,034k B k ⎛⎫- ⎪+⎝⎭,①当67BF =时,则2261347k k -=+,解得1k =±,故倾斜角为π4或3π4,所以直线l的倾斜角的正弦值为π3πsinsin 44==.②证明:因为()22212134k PH x k +=-==+,且22223313434k k BF k k +=-=++,所以4PH BF =.知识方法总结:对于直线与圆锥曲线问题的求解策略:1、求解直线与圆锥曲线交点问题,一般转化为研究直线方程与圆锥曲线方程组,得到一元二次方程,结合根与系数的关系,进而进行求解;2、参数范围问题,①通常利用圆锥曲线的几何性质或联立方程组,转化为方程或利用判别式构造不等关系,从而确定参数的值或取值范围;②利用已知参数的范围,求新参数的范围,解答的核心是建立两个参数之间的等量关系,结合题设中的不等关系建立不等式,从而求得参数的取值范围;③转化为函数,结合函数的值域将待求参数表达为其他变量的函数,求得函数的值域,从而确定参数的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学必修5模块考试试卷
考试时间:120分钟 试卷满分:150分
1、如果a <b <0,那么( ).
A .a -b >0
B .ac <bc
C .
a 1>b
1
D .a 2<b 2
2、四个不相等的正数a ,b,c,d 成等差数列,则( )
A .bc d a >+2
B .bc d a <+2
C .bc d
a =+2
D .bc d a ≤+2 3、不等式
121
3≥--x
x 的解集是( ) A .⎭⎬⎫⎩⎨⎧≤≤243|x x B .⎭⎬⎫⎩⎨⎧<≤243|x x C .⎭⎬⎫⎩⎨⎧≤>432|x x x 或D .{}2|<x x 4、在直角坐标系内,满足不等式022≥-y x 的点),(y x 的集合(用阴影表示)正确的是( )
5、△ABC 中,若2cos c a B =,则△ABC 的形状为( )
A .直角三角形
B .等腰三角形
C .等边三角形
D .锐角三角形 6、已知点(3 , 1)和点(-4 , 6)在直线 3x –2y + m = 0 的两侧,则 ( ) A .m <-7或m >24 B .-7<m <24
C .m =-7或m =24
D .-7≤m ≤ 24
7、某厂去年的产值记为1,计划在今后五年内每年的产值比上年增长10%,则从今年起到第五年,这个厂的总产值为( )
A .4
1.1 B .5
1.1 C .6
10(1.11)⨯- D . 5
11(1.11)⨯-
8、已知数列{a n }的前n 项和S n =n 2
-9n ,第k 项满足5<a k <8,则k =( ).
A .9
B .8
C .7
D .6
9、如果33log log 4m n +=,那么n m +的最小值是( ) A .4
B .34
C .9
D .18
10、若△ABC 的三边长为a ,b ,c ,它的面积为a 2+b 2-c 2
4
,那么内角C 等于( )
A .30°
B .45°
C .60°
D .90°
11、已知等差数列{}n a 满足011321=+++a a a a ,则有( ) A .0111>+a a
B .0102<+a a
C .093=+a a
D .66=a
12、已知平面区域D 由以A (1,3)、B (5,2)、C (3,1)为顶点的三角形内部和外界组成。
若在区域D 内有无穷多个点(x ,y )可使目标函数my x z +=取得最小值,则m=( ) A. 2- B. 1- C. 1 D. 4
二、填空题(每题4分,共16分) 13、已知_______,41
,4=-+-=>x x
x y x 当函数时,函数有最_______值是 . 14、函数)1,0(1=/⋅>=-a a a
y x
的图象恒过定点A ,若点A 在直线ny mx +)0(01>=-mn 上,则
n
m 11+的最小值为._____________
15、在数列{a n }中,其前n 项和S n =3·2n +k ,若数列{a n }是等比数列,则常数k 的值为 . 16、由直线012,02=++=++
y x y x 和y x +201=+围成的三角形区域(包括边界)用不等
式可表示为_____________
高密市第二中学数学必修5模块考试试卷
13、________14、___________15、__________16、______________ 三、解答题(共74分)
17、已知a 、b 、c 分别是ABC ∆的三个内角A 、B 、C 所对的边
【Ⅰ】若ABC ∆面积,60,2,2
3
︒===∆A c S ABC 求a 、b 的值; 【Ⅱ】若B c a cos =,且A c b sin =,试判断ABC ∆的形状.
18.如图,海中小岛A 周围38海里内有暗礁,一船正在向南航行,在B 处测得小岛A 在船的南偏东30°,航行30海里后,在C 处测得小岛A 在船的南偏东45°,如果此船不改变航向,继续向南航行,有无触礁的危险?(sin15°=0.26, cos15°=0.97,
1.414=)
19、某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形的休闲区A 1B 1C 1D 1(阴影部分)和环公园人行道组成。
已知休闲区A
1B 1C 1D 1的面积为4000平方米,人行道的宽分别为4米和10米。
(1)若设休闲区的长11A B x =米,求公园ABCD 所占面积S 关于x 的函数)(x S 的解析式; (2)要使公园所占面积最小,休闲区A 1B 1C 1D 1的长和宽该如何设计?
20、已知等差数列{a n}的前n项的和记为S n.如果a4=-12,a8=-4.
(1)求数列{a n}的通项公式;
(2)求S n的最小值及其相应的n的值;
a,…,构成一个新的数列{b n},求{b n}的前
(3)从数列{a n}中依次取出a1,a2,a4,a8,…,
1
2n-
n项和.
21. 某厂使用两种零件A、B装配两种产品P、Q,该厂的生产能力是月产P产品最多有2500件,月产Q产品最多有1200件;而且组装一件P产品要4个A、2个B,组装一件Q产品要6个A、8个B,该厂在某个月能用的A零件最多14000个;B零件最多12000个。
已知P产品每件利润1000元,Q 产品每件2000元,欲使月利润最大,需要组装P、Q产品各多少件?最大利润多少万元?
22、设{a n }是正数组成的数列,其前n 项和为S n ,并且对于所有的n N +,都有2
)2(8+=n n a S 。
(1)写出数列{a n }的前3项;(2)求数列{a n }的通项公式(写出推证过程);
(3)设14+⋅=
n n n a a b ,n T 是数列{b n }的前n 项和,求使得20
m
T n <对所有n N +都成立的最小正整
数m 的值。