福建福州市鼓楼区2017年中考数学模拟试卷(含答案)
福建福州市鼓楼区延安中学 2017年九年级数学中考模拟试卷(含答案)
2017年九年级数学中考模拟试卷一、选择题:1.下面说法中正确的是()A.“向东5米”与“向西10米”不是相反意义的量B.如果气球上升25米记作+25米,那么-15米的意义就是下降-15米C.如果气温下降6 ℃记作-6 ℃,那么+8 ℃的意义就是零上8 ℃D.若将高1米设为标准0,高1.20米记作+0.20,那么-0.05所表示的高是0.95米2.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°3.下列计算中,正确的个数有()①3x3•(﹣2x2)=-6x5;②4a3b÷(-2a2b)=-2a;③(a3)2=a5;④(-a)3÷(-a)=-a2.A.1个B.2个C.3个D.4个4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1B.0.2C.0.3D.0.45.如图是一个正方体的表面展开图,相对面上两个数互为相反数,则x+y= ().A.6 B.-5 C.7 D.-66.下列算式中,你认为正确的是()7.在一个不透明的盒子中装有n个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n大约是( )A.10B.14C.16D.408.如图,平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE等于()A.20°B.25°C.30°D.35°9.下列平面图形中,不是轴对称图形的是( )10.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A. =1B. =1C. =1D. =1二、填空题:11.地球的表面积约为510000000km2,数510000000用科学记数法表示应为 km212.分解因式:x3﹣6x2+9x= .13.小强同学在“百度”搜索引擎中输入“益阳”,能找到相关结果约为70300000个,这个数用科学记数法表示为.14.一个不透明的袋子中装有仅颜色不同的3个红球和2个白球,从中随机摸出1个球不放回,再随机摸出1个球,则摸到的2个球颜色相同的概率为.15.已知扇形的半径为6cm,圆心角的度数为120°,则此扇形的弧长为 cm.16.如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为.三、计算题:17.计算:sin60°+|﹣5|﹣(4015﹣π)0+(﹣1)2017+()﹣1.18.解不等式组:四、解答题:19.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.20.为了解中考体育科目训练情况,某区从九年级学生中抽取了部分学生进行了一次中考体育科测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该区九年级有学生4000名,如果全部参加这次体育测试,请估计不及格的人数为;(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树状图的方法求出选中小明的概率.21.如图,已知D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.22.如图,延长平行四边形ABCD的边DC到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.(1)求证:BF=CF;(2)若AB=2,AD=4,且∠AFC=2∠D,求平行四边形ABCD的面积.23.如图,已知直线PA交⊙0于A、B两点,AE是⊙0的直径.点C为⊙0上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB的长度.五、综合题:24.如图,抛物线y=ax2-3ax-2与x轴交于A,B,与y轴交于C,连AC、BC,∠ABC=∠ACO.(1)求抛物线的解析式.(2)设P为线段OB上一点,过P作PN∥BC交OC于N,设线PN为y=kx+m,将△PON沿PN折叠,得△PNM,点M 恰好落在第四象限的抛物线上,求m的值.(3)CE平分∠ACB交抛物线的对称轴于E,连AE,在抛物线上是否存在点P,使∠APC>∠AEC,若存在,求出点P的横坐标x p的取值范围,若不存在,请说明理由.25.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(Ⅰ)如图①,若α=90°,求AA′的长;(Ⅱ)如图②,若α=120°,求点O′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)参考答案1.D2.B3.B4.A5.D6.D7.A8.A9.A10.B11.答案为:5.1×108;12.答案为:x(x﹣3)2.13.答案为:7.03×107.14.答案为:0.4.15.答案为:4π.16.答案为:3或.17.解:原式=3.5.18.略19.【解答】证明;(1)∵△ABC≌△ABD,∴∠ABC=∠ABD,∵CE∥BD,∴∠CEB=∠DBE,∴∠CEB=∠CBE.(2))∵△ABC≌△ABD,∴BC=BD,∵∠CEB=∠CBE,∴CE=CB,∴CE=BD∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.20.解:(1)12÷30%=40(人);故答案为:40人;(2)∠α的度数=360°×0.15=54°;故答案为:54°;40×35%=14(人);把条形统计图补充完整,如图所示:(3)4000×0.2=800(人),故答案为:800人;(4)根据题意画树形图如下:共有12种情况,选中小明的有6种,则P(选中小明)=0.5.21.∵AC=BC=BD,AD=AE,DE=CE∴∠A=∠B∠ADE=∠AED=∠BDC=∠BCD,∠EDC=∠ECD∵∠A+∠B+∠ECD+∠BCD=180°,∠ADE+∠EDC+∠BDC=180°∴∠A+∠B=∠ADE∴在三角形ADE中,∠A+2∠A+2∠A=180°∴∠B=∠A=36°22.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,BC=AD,∵CE=DC,∴AB=EC,AB∥EC,∴四边形ABEC是平行四边形,∴BF=CF;(2)解:∵由(1)知,四边形ABEC是平行四边形,∴FA=FE,FB=FC.∵四边形ABCD是平行四边形,∴∠ABC=∠D.又∵∠AFC=2∠D,∴∠AFC=2∠ABC.∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四边形ABEC是矩形,∴∠BAC=90°,∵BC=AD=4,∴AC===2,∴平行四边形ABCD的面积=AB•AC=2×2=4.∵点C在⊙0上,0A=OC,∴∠OCA=∠OAC,∵CD⊥PA,∴∠CDA=90°,有∠CAD+∠DCA=90°,∵AC平分∠PAE,∴∠DAC=∠CAO。
福建福州市鼓楼区铜盘中学 2017年九年级数学中考模拟试卷(含答案)
福州市鼓楼区铜盘中学 2017年九年级数学中考模拟试卷一、选择题:1.某商店以每套80元的进价购进8套服装,并以90元左右的价格卖出.如果以90元为标准,超过标准的售价记为正数,不足标准的售价记为负数,出售价格记录如下:+2,﹣3,+5,+1,﹣2,﹣1,0,﹣5(单位:元).其它收支不计,当商店卖完这8套服装后( )A.盈利B.亏损C.不盈不亏D.盈亏不明2.如图,已知∠1=∠2,若要∠3=∠4,则须()A.∠1=∠3B.∠2=∠3C.∠1=∠4D.AB∥CD3.下列运算正确的是()A.(x﹣2)2=x2﹣4B.(x2)3=x6C.x6÷x3=x2D.x3•x4=x124.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()A.18户B.20户C.22户D.24户5.如图是由几个相同的小立方块组成的几何体的三视图,小立方块的个数是()A.3B.4C.5D.66.下列分式中,属于最简分式的是()7.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除一张,那么小易抽到杀手牌的概率是()A. B. C. D.8.如图,任意四边形ABCD各边中点分别是E、F、G、H,若对角线AC、BD的长都为20cm,则四边形EFGH的周长是( )A.80cmB.40cmC.20cmD.10cm9.下列图形是轴对称图形的是()A. B. C. D.10.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A型陶笛比B型陶笛的单价低20元,用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,设A型陶笛的单价为x元,依题意,下面所列方程正确的是()A. =B. =C. =D. =二、填空:11.如图是一个数值转换器.若输入x的值是3,则输出的值是.12.分解因式:2x2﹣4x+2= .13.2016年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为.14.一个不透明的袋子中装有3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,摸出的球是黄球的概率是.15.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm.16.如图,AB是⊙O的直径且AB=4,点C是OA的中点,过点C作CD⊥AB交⊙O于D点,点E是⊙O上一点,连接DE,AE交DC的延长线于点F,则AE•AF的值为.三、计算题:17.先化简,再求代数式的值,其中,.18.解不等式组:,并把解集在如图数轴上表示出来.四、解答题:19.准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,AB=3,求菱形BFDE的面积.20.今年4月,我市某中学举行了“爱我中国•朗诵比赛”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了如下两种不完整的统计图.根据图中提供的信息,回答下列问题:(1)参加朗诵比赛的学生共有人,并把条形统计图补充完整;(2)扇形统计图中,m= ,n= ;C等级对应扇形的圆心角为度;(3)学校准备从获A等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树形图法,求获A21.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.22.如图,四边形BFCD为平行四边形,点E是AF的中点.(1)求证:CF=AD;(2)若∠ACB=90°,试判断四边形BFCD的形状,并说明理由.23.如图,点P为⊙O上一点,弦AB=cm,PC是∠APB的平分线,∠BAC=30°.(Ⅰ)求⊙O的半径;(Ⅱ)当∠PAC等于多少时,四边形PACB有最大面积?最大面积是多少?(直接写出答案)五、综合题:24.如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是﹣2.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?25.如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.(1)求证:四边形ABCD是正方形;(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.(3)若EG=4,GF=6,BM=3,求AG、MN的长.参考答案1.A2.D3.B4.D5.C6.B7.C8.B9.B10.D11.答案为:﹣4.12.解:2x2﹣4x+2=2(x2﹣2x+1)=2(x﹣1)2.13.答案为:4.51×107.14.答案为:.15.答案:5cm.16.答案为:12.17.解:原式=,当,原式=.18.答案为:2<x<319.20.21.解:∵DE=EB∴设∠BDE=∠ABD=x,∴∠AED=∠BDE+∠ABD=2x,∵AD=DE,∴∠AED=∠A=2x,∴∠BDC=∠A+∠ABD=3x,∵BD=BC,∴∠C=∠BDC=3x,∵AB=AC,∴∠ABC=∠C=3x,在△ABC中,3x+3x+2x=180°,解得x=22.5°,∴∠A=2x=22.5°×2=45°.22.(1)证明∵AE是DC边上的中线,∴AE=FE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS),∴CF=DA.(2)解:四边形BFCD是菱形;理由如下:∵CD是△ABC的中线,∴D是AB的中点,∴AD=BD,∵△ADE≌△FCE,∴AD=CF,∴BD=CF,∵AB∥CF,∴BD∥CF,∴四边形BFCD是平行四边形,∵∠ACB=90°,∴△ACB是直角三角形,∴CD=0.5AB,∵BD=0.5AB,∴BD=CD,∴四边形BFCD是菱形.23.解:(Ⅰ)如图1,连接OA,OC,∵∠ABC=30°,∴∠AOC=60°,∵PC是∠APB的平分线,∴∠APC=∠BPC,∴,∴AD=BD=,OC⊥AB,∴OA=1,∴⊙O的半径为1;(Ⅱ)如图2,∵PC平分∠APB,∴∠APC=∠BPC,∴AC=BC,由AB=cm,求得AC=BC=1,∵S四边形PACB=S△ABC+S△PAB,S△ABC为定值,当S△PAB最大时,四边形PACB面积最大,由图可知四边形PACB由△ABC和△PAB组成,且△ABC面积不变,故要使四边形PACB面积最大,只需求出面积最大的△PAB即可,在△PAB中,AB边不变,其最长的高为过圆心O与AB垂直(即AB的中垂线)与圆O交点P,此时四边形PACB 面积最大.此时△PAB为等边三角形,此时PC应为圆的直径∠PAC=90°,∵∠APC=∠BAC=30°,∴PC=2AC=2,∴四边形PACB的最大面积为×=(cm2).24.解:(1)∵点A是直线与抛物线的交点,且横坐标为﹣2,∴y=×(﹣2)2=1,A点的坐标为(﹣2,1),设直线的函数关系式为y=kx+b,将(0,4),(﹣2,1)代入得,解得,∴直线y=x+4,∵直线与抛物线相交,∴x+4=x2,解得:x=﹣2或x=8,当x=8时,y=16,∴点B的坐标为(8,16);(2)如图1,连接AC,BC,∵由A(﹣2,1),B(8,16)可求得AB2=325.设点C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m﹣8)2+162=m2﹣16m+320,①若∠BAC=90°,则AB2+AC2=BC2,即325+m2+4m+5=m2﹣16m+320,解得:m=﹣;③若∠ABC=90°,则AB2+BC2=AC2,即m2+4m+5=m2﹣16m+320+325,解得:m=32;∴点C的坐标为(﹣,0),(0,0),(6,0),(32,0)(3)设M(a, a2),如图2,设MP与y轴交于点Q,在Rt△MQN中,由勾股定理得MN==a2+1,又∵点P与点M纵坐标相同,∴+4=a2,∴x=,∴点P的横坐标为,∴MP=a﹣,∴MN+3PM=+1+3(a﹣)=﹣a2+3a+9,∴当a=﹣=6,又∵﹣2≤6≤8,∴取到最大值18,∴当M的横坐标为6时,MN+3PM的长度的最大值是18.25.。
2017年福建省中考数学试卷含答案
(1)写出 a,b 的值;
(2)已知该校有 5 000 名师生,且 A 品牌共享单车投放该校一天的费用为 5 800 元.试
估计:收费调整后,此运营商在该校投放 A 品牌共享单车能否获利?说明理由.
无
效
数学试卷第 5页(共 18页)数学试卷第 6页(共 18页)
24.(本小题满分 12 分) 如图,矩形 ABCD 中, AB 6, AD 8 , P, E 分别是线段 AC, BC 上的点,且四边形 PEFD 为矩形. (1)若 △PCD 是等腰三角形,求 AP 的长; (2)若 AP 2 ,求 CF 的长.
上,∠CAD 45 . (1)若 AB 4 ,求 CD 的长; (2)若 BC AD, AD AP ,求证: PD 是 O 的切线.
数学试卷第 3页(共 18页)数学试卷第 4页(共 18页)
毕业学校_____________姓名________________ 考生号________________ ________________ _____________
方形,故选 B。 【考点】简单组合体的三视图。 3.【答案】B 【解析】136 000 1.36 105 ,故选 B。
【提示】科学记数法的表示形式为 a 10n 的形式,其中1 a 10 , n 为整数,其关键 要正确确定 a 的值以及 n 的值。
【考点】科学计数法。 4.【答案】C 【解析】 (2 x)2 22 x2 4 x2 ,故选 C。 【提示】积的乘方等于各因式乘方的积。 【考点】积的乘方。 5.【答案】A 【解析】圆、线段和菱形既是轴对称图形,又是中心对称图形;正三角形是轴对称图形, 但不是中心对称图形,故选 A。 【提示】轴对称图形和中心对称图形的概念是解题的关鍵。 【考点】图形的对称性。
2017福建中考省考初三数学一模考试模拟试卷(含答案)
福建省2017年初三数学一模考试模拟试题(试卷满分:150分 考试时间:120分钟)姓名: 得分:一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1. 下列几何体的主视图与众不同的是()A .B .C .D . 2. 计算3.8×107-3.7×107,结果用科学记数法表示为( )A .0.1×107B .0.1×106C .1×107D .1×1063. 如图,点E 在四边形ABCD 的边BC 的延长线上,则下列两个角是同位角的是( ) A .∠BAC 和∠ACB B .∠B 和∠DCE C .∠B 和∠BAD D .∠B 和∠ACDEB第3题图 第5题图4. 有一张矩形纸片ABCD ,AB =2.5,AD =1.5,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AC 与BC 交于点F (如下图),则CF 的长为( )AA . 0.5B . 0.75C . 1D .1.2 5. 如图,在⊙O 中,弦AB ,CD 相交于点P ,若∠A =40°,∠APD =75°,则∠B =( ) A .35° B .40° C .75° D .15°6. 若关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥0x -3<0有3个整数解,则a 的值可以是( )7.如图是某种水杯横断面示意图,若对这水杯以固定的流量注水,则水的最大高度h与注水时间t之间的函数图象大致是( )第7题图A.B.C.D.8.已知某校女子田径队23人年龄的平均数和中位数都是15岁,但是后来发现其中一位同学的年龄登记错误,将16岁写成17岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是( )A.a>15,b=15B.a<15,b<15C.a>15,b< 15D.a<15,b=159.象棋在中国有着三千多年的历史,属于二人对抗性游戏的一种,由于用具简单,趣味性强,成为流行极为广泛的棋艺活动,如图是一方的棋盘,如果“马”的坐标是(﹣2,2),它是抛物线y=ax2(a≠0)上的一点,那么下面哪个棋子在该抛物线上( )A.帥B.卒C.炮D.仕A B第9题图第10题图10.如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为( )A.13B.223C.24D.35二、填空题(本大题有6小题,每小题4分,共24分)11.在一个不透明的布袋中装有2个白球和n个黄球,它们除了颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是45,则n=.12. 多项式m2-4,m2+m-6的公因式是.14. 如图,四边形ABCD 中,AD ∥BC ,∠B =∠ACD =90°,AB =2,DC =3,则△ABC 与△DCA 的面积比是 .第14题图15. 已知关于x 的一元二次方程ax 2-2(a -1)x +a -2=0(a >0),设方程的两个实数根分别为x 1,x 2(其中x 1>x 2),若y 是关于a 的函数,且y =x 1-ax 2,若y >0,则a 的取值范围是 16. 若[]x 表示不超过x 的最大整数(如[]3322,3-=⎥⎦⎤⎢⎣⎡-=π等),则+++= _________________。
【鼓楼区】2016-2017学年下学期中考二模数学试卷及答案
D.用一根绳子围成一个平面图形,正方形的面积最大
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解答过程,请把答案直 接填写在答.题.卡.相.应.位.置.上) 7. 2 的相反数是 ▲ , 2 的倒数是 ▲ . 8.若△ABC∽△DEF,请写出 1 个正确的结论: ▲ .
P
Aα
βC
B
Q
D
23.(8 分)
(第 22 题)
命题:有两个角相等的三角形是等腰三角形(简称“等角对等边”).
已知:如图,△ABC 中,∠B=∠C.
求证:AB=AC.
三位同学作出了三种不同的辅助线,并完成了命题的证明. 小刚的方法:作∠BAC 的平分线 AD,可证△ABD≌△ACD,得 AB=AC; 小亮的方法:作 BC 边上的高 AD,可证△ABD≌△ACD,得 AB=AC; 小莉的方法:作 BC 边上的中线 AD.
三、解答题(本大题共 11 小题,共 88 分.请在答.题.卡.指.定.区.域.内作答,解答时应写出文 字说明、证明过程或演算步骤)
17.(6 分)先化简,再求值: x2-1 + x2-2x ÷x,其中 x=3. x2-2x+1 x-2
18.(7 分)(1)解不等式 x - x - 1 ≤1,并把它的解集在数轴上表示出来;
y
且∠CBP=60°.
①求∠OBD 的度数; ②求点 P 的坐标.
AO
Bx
D
(第 26 题)
27.(12 分)
【问题提出】
我们借助学习“图形的判定”获得的经验与方法对“平行四边形的判定”进一步探究.
【初步思考】
A
D
在一个四边形中,我们把“一组对边平行、一组对边相等、
2017年中考数学二模试卷(福州市有答案和解释)
2017年中考数学二模试卷(福州市有答案和解释)2017年福建省福州市中考数学二模试卷一、选择题(共10小题,每题4分,共40分) 1.(4分)下列运算结果为正数的是()A.1+(�2) B.1�(�2) C.1×(�2) D.1÷(�2) 2.(4分)若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是() A.圆柱 B.圆锥 C.球 D.正方体 3.(4分)数轴上点A,B表示的数分别是a,b,这两点间的距离是()A.|a|+|b| B.|a|�|b| C.|a+b| D.|a�b| 4.(4分)两个全等的正六边形如图摆放,与△ABC面积不同的一个三角形是()A.△ABD B.△ABE C.△ABF D.△ABG 5.(4分)如图,O为直线AB上一点,∠AOC=α,∠BOC=β,则β的余角可表示为()A.(α+β) B.α C.(α�β) D.β 6.(4分)在一个不透明的袋子中装有4个红球,2个白球,每个球只有颜色不同,从中任意摸出3个球,下列事件为必然事件的是() A.至少有1个球是红球 B.至少有1个球是白球 C.至少有2个球是红球 D.至少有2个球是白球 7.(4分)若m,n均为正整数且2m•2n=32,(2m)n=64,则mn+m+n的值为() A.10 B.11 C.12 D.13 8.(4分)如图,△ABC中,∠ABC=50°,∠C=30°,将△ABC绕点B逆时针旋转α(0°<α≤90°)得到△DBE,若DE∥AB,则α为()A.50° B.70° C.80° D.90° 9.(4分)在平面直角坐标系中,已知点A(1,2),B(2,1),C(�1,�3).D(�2,3),其中不可能与点E(1,3)在同一函数图象上的一个点是() A.点A B.点B C.点C D.点D 10.(4分)P是抛物线y=x2�4x+5上一点,过点P作PM⊥x轴,PN⊥y轴,垂足分别是M,N,则PM+PN的最小值是() A. B. C.3 D.5 二、填空题(共6小题,每题4分,共24分) 11.(4分)二次根式有意义,则x的取值范围是. 12.(4分)2017年5月12日是第106个国际护士节,从数串“2017512”中随机抽取一个数字,抽到数字2的概率是. 13.(4分)计算:40332�4×2016×2017=. 14.(4分)如图,矩形ABCD中,AB=2,点E在AD边上,以E为圆心EA长为半径的⊙E与BC相切,交CD于点F,连接EF.若扇形EAF的面积为π,则BC的长是. 15.(4分)对于锐角α,tanαsinα.(填“ >”,“<”或“=”) 16.(4分)如图,四边形ABCD 中,∠ABC=∠ADC=90°,BD平分∠ABC,∠DCB=60°,AB+BC=8,则AC的长是.三、解答题(共9小题,满分86分) 17.(8分)化简:(�)• . 18.(8分)求证:等腰三角形底边中点到两腰的距离相等(要求画图,写已知、求证、然后证明) 19.(8分)已知关于x的一元二次方程x2+mx+1=0,写出一个无理数m,使该方(8分)如图,在Rt△ABC中,∠C=90°,程没有实数根,并说明理由. 20.BC=1,AC=2,以点B为圆心,BC长为半径画弧交AB于点D;以点A为圆心AD长为半径画弧,交AC于点E,保留作图痕迹,并求的值. 21.(8分)请根据下列图表信息解答问题:年份 2011 2012 2013 2014 2015 2016 年增长率 31% 27% 32% 35% 52% (1)表中空缺的数据为;(精确到1%)(2)求统计表中增长率的平均数及中位数;(3)预测2017年的观影人次,并说明理由. 22.(10分)如图,大拇指与小拇指尽量张开时,两指间的距离称为指距.某项研究表明,一般情况下人的身高(ycm)是指距(xcm)的一次函数.下表是测得的一组数据:指距x(cm) 19 20 21 身高y(cm) 151 160 169 (1)求y与x的函数关系式;(不要求写出x的取值范围)(2)如果李华的指距为22cm,那么他的身高的为多少? 23.(10分)如图,锐角△A BC内接于⊙O,E为CB延长线上一点,连接AE交⊙O于点D,∠E=∠BAC,连接BD.(1)求证:∠DBE=∠ABC;(2)若∠E=45°,BE=3,BC=5,求△AEC的面积. 24.(12分)如图,▱ABCD中,AD=2AB,点E在BC边上,且CE= AD,F为BD的中点,连接EF.(1)当∠ABC=90°,AD=4时,连接AF,求AF的长;(2)连接DE,若DE⊥BC,求∠BEF 的度数;(3)求证:∠BEF= ∠BCD. 25.(14分)已知抛物线y=x2+bx+c (bc≠0).(1)若该抛物线的顶点坐标为(c,b),求其解析式;(2)点A(m,n),B(m+1, n),C(m+6,n)在抛物线y=x2+bx+c上,求△ABC的面积;(3)在(2)的条件下,抛物线y=x2+bx+c的图象与x轴交于D(x1,0),E(x2,0)(x1<x2)两点,且0<x1+ x2<3,求b的取值范围.2017年福建省福州市中考数学二模试卷参考答案与试题解析一、选择题(共10小题,每题4分,共40分) 1.(4分)下列运算结果为正数的是() A.1+(�2) B.1�(�2) C.1×(�2)D.1÷(�2)【分析】分别根据有理数的加、减、乘、除运算法则计算可得.【解答】解:A、1+(�2)=�(2�1)=�1,结果为负数; B、1�(�2)=1+2=3,结果为正数; C、1×(�2)=�1×2=�2,结果为负数; D、1÷(�2)=�1÷2=�,结果为负数;故选:B.【点评】本题主要考查有理数的混合运算,熟练掌握有理数的四则运算法则是解题的关键. 2.(4分)若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是() A.圆柱 B.圆锥C.球 D.正方体【分析】利用三视图都是圆,则可得出几何体的形状.【解答】解:主视图、俯视图和左视图都是圆的几何体是球.故选C.【点评】本题考查了由三视图确定几何体的形状,学生的思考能力和对几何体三种视图的空间想象能力. 3.(4分)数轴上点A,B表示的数分别是a,b,这两点间的距离是() A.|a|+ |b| B.|a|�|b| C.|a+b| D.|a�b| 【分析】直接根据数轴上两点间的距离公式解答即可.【解答】解:∵数轴上点A,B表示的数分别是a,b,∴这两点间的距离是|a�b|.故选:D.【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键. 4.(4分)两个全等的正六边形如图摆放,与△ABC面积不同的一个三角形是() A.△ABD B.△ABE C.△ABF D.△ABG 【分析】由题意AB∥CD,AB∥FG,且AB与CD之间的距离等于AB与FG之间的距离,推出S△ABC=S△ABD=S△ABF=S△ABG,由此即可判断.【解答】解:由题意AB∥CD,AB∥FG, AB与CD之间的距离等于AB与FG之间的距离,∴S△ABC=S△ABD=S△ABF=S△ABG,∵△ABE 的面积≠△ABC的面积,故选B.【点评】本题考查正多边形与圆、平行线的性质、三角形的面积、等高模型等知识,解题的关键是掌握六边形的性质,灵活应用所学知识解决问题,属于中考基础题. 5.(4分)如图,O为直线AB上一点,∠AOC=α,∠BOC=β,则β的余角可表示为() A.(α+β) B.αC.(α�β)D.β【分析】根据补角的性质,余角的性质,可得答案.【解答】解:由邻补角的定义,得∠α+∠β=180°,两边都除以2,得(α+β)=90°,β的余角是(α+β)�β= (α�β),故选:C.【点评】本题考查了余角和补角,利用余角、补角的定义是解题关键. 6.(4分)在一个不透明的袋子中装有4个红球,2个白球,每个球只有颜色不同,从中任意摸出3个球,下列事件为必然事件的是() A.至少有1个球是红球 B.至少有1个球是白球 C.至少有2个球是红球 D.至少有2个球是白球【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:在一个不透明的袋子中装有4个红球,2个白球,每个球只有颜色不同,从中任意摸出3个球,下列事件为必然事件的是至少有一个是红球,故选:A.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 7.(4分)若m,n均为正整数且2m•2n=32,(2m)n=64,则mn+m+n的值为() A.10 B.11 C.12 D.13 【分析】根据同底数幂的运算法则即可求出答案.【解答】解:∵2m•2n=32,∴2m+n=25,∴m+n=5,∵(2m)n=64,∴2mn=26,∴mn=6,∴原式=6+5=11,故选(B )【点评】本题考查幂的运算,解题的关键是正确运用幂的乘方以及同底数幂的乘法,本题属于基础题型. 8.(4分)如图,△ABC中,∠ABC=50°,∠C=30°,将△ABC 绕点B逆时针旋转α(0°<α≤90°)得到△DBE,若DE∥AB,则α为() A.50° B.70° C.80° D.90° 【分析】根据旋转的性质,可得,∠CBE即为旋转角α,∠C=∠E=30°,根据平行线的性质,可得∠ABE=∠E=30°,据此可得旋转角α的度数.【解答】解:由旋转可得,∠CBE即为旋转角α,∠C=∠E=30°,∵DE∥AB,∴∠ABE=∠E=30°,∵∠ABC=5 0°,∴∠CBE=30°+50°=80°,∴α=80°,故选:C.【点评】本题主要考查了旋转的性质以及平行线的性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角. 9.(4分)在平面直角坐标系中,已知点A(1,2),B(2,1),C(�1,�3).D(�2,3),其中不可能与点E(1,3)在同一函数图象上的一个点是() A.点A B.点B C.点C D.点D 【分析】根据“对于x的每一个确定的值,y都有唯一的值与其对应”,可知点A不可能与E在同一函数图象上.【解答】解:根据函数的定义可知:点A(1,2)不可能与点E(1,3)在同一函数图象上,故选A.【点评】本题考查了函数的概念,明确函数的定义是关键,尤其要正确理解:对于x的每一个确定的值,y都有唯一的值与其对应. 10.(4分)P是抛物线y=x2�4x+5上一点,过点P作PM⊥x轴,PN⊥y轴,垂足分别是M,N,则PM+PN的最小值是()A. B. C.3 D.5 【分析】根据x+y,可得二次函数,根据二次函数的性质,可得答案.【解答】解:由题意,得 x2�3x+5=(x�)2+ ,当x= 时,最小值是,故选:B.【点评】本题考查了二次函数图象上点的坐标特征,利用x+y得出二次函数是解题关键.二、填空题(共6小题,每题4分,共24分) 11.(4分)二次根式有意义,则 x的取值范围是x≥3.【分析】二次根式的被开方数x�3≥0.【解答】解:根据题意,得 x�3≥0,解得,x≥3;故答案为:x≥3.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义. 12.(4分)2017年5月12日是第106个国际护士节,从数串“2017512”中随机抽取一个数字,抽到数字2的概率是.【分析】直接利用2的个数除以总字总个数得出抽到数字2的概率.【解答】解:由题意可得,从数串“2017512”中随机抽取一个数字,抽到数字2的概率是:.故答案为:.【点评】此题主要考查了概率公式,正确掌握概率求法是解题关键. 13.(4分)计算:40332�4×2016×2017= 1 .【分析】原式变形后,利用完全平方公式化简即可得到结果.【解答】解:原式=(2017+2016)2�4×2016×2017=(2017�2016)2=1,故答案为:1 【点评】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键. 14.(4分)如图,矩形ABCD中,AB=2,点E在AD边上,以E为圆心EA长为半径的⊙E与BC相切,交CD于点F,连接EF.若扇形EAF的面积为π,则BC的长是 3 .【分析】设∠AEF=n°,由题意 = π,解得n=120,推出∠AEF=120°,在Rt△EFD中,求出DE即可解决问题.【解答】解:设∠AEF=n°,由题意 = π,解得n=120,∴∠AEF=120°,∴∠FED=60°,∵四边形ABCD是矩形,∴BC=AE,∠D=90°,∴∠EFD=30°,∴DE= EF=1,∴BC=AD=2+1=3,故答案为3.【点评】本题考查切线的性质、矩形的性质、扇形的面积公式、直角三角形30度角性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 15.(4分)对于锐角α,tanα>sinα.(填“>”,“<”或“=”)【分析】用α的正弦和余弦表示出正切,然后判断即可.【解答】解:tanα= ,∵α是锐角,∴0<cosα<1,∴ >sinα,∴tanα>sinα.故答案为:>.【点评】本题考查了锐角三角函数的增减性,理解正余弦和正切之间的转换方法是解题的关键. 16.(4分)如图,四边形ABCD中,∠ABC=∠ADC=90°,BD平分∠ABC,∠DCB=60°,AB+BC=8,则AC的长是.【分析】设点O是AC的中点,以O为圆心,OA为半径作圆O,然后根据圆周角定理以及勾股定理即可求出答案.【解答】解:设点O是AC的中点,以O为圆心,OA为半径作圆O,∵∠ABC=∠ADC=90°,∴由圆周角定理可知:点D与B在圆O上,∵BD平分∠ABC,∴AD=CD,∴∠DCA=45°,∴∠ACB=∠DCB�∠DCA=15°,连接OB,过点E作BE⊥AC于点E,∴由圆周角定理可知:∠AOB=2∠ACB=30° ∴OB=2BE,∴AC=2OB=4BE,设AB=x,∴BC=8�x ∵AB•BC=BE•AC,∴4BE2=x (8�x)∴AC2=16BE2=4x(8�x)由勾股定理可知:AC2=x2+(8�x)2 ∴4x(8�x)=x2+(8�x)2 ∴解得:x=4± 当x=4+ 时,∴BC=8�x=4�∴AC= = 当x=4�时, BC=8�x=4+ 时,∴AC= = 故答案为:【点评】本题考查圆周角定理,解题的关键是作出圆O,然后熟练运用圆周角定理和勾股定理,本题综合运用所学知识,属于难题.三、解答题(共9小题,满分86分) 17.(8分)化简:(�)• .【分析】原式括号中利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式= • =2(a�1)=2a�2.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键. 18.(8分)求证:等腰三角形底边中点到两腰的距离相等(要求画图,写已知、求证、然后证明)【分析】根据题意画出图形,写出已知与求证,然后证明:连接AD,由AB=AC,D为BC中点,利用等腰三角形的“三线合一”性质得到AD为顶角的平分线,由DE 与AB垂直,DF与AC垂直,根据角平分线上的点到角两边的距离相等即可得到DE=DF,得证.【解答】已知:如图,△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F,求证:DE=DF.证明:连接AD,∵AB=AC,D是BC中点,∴AD为∠BAC的平分线(三线合一的性质),又∵DE⊥AB,DF⊥AC,∴DE=DF(角平分线上的点到角的两边相等).【点评】本题主要考查等腰三角形的性质的应用,关键是掌握等腰三角形的腰相等且底边上的两个角相等,及角平分线上的点到角两边的距离相等. 19.(8分)已知关于x的一元二次方程x2+mx+1=0,写出一个无理数m,使该方程没有实数根,并说明理由.【分析】由方程没有实数根即可找出关于m的一元二次不等式,解之即可得出m的取值范围,取其内的任意一无理数即可.【解答】解:∵关于x的一元二次方程x2+mx+1=0没有实数根,∴△=m2�4<0,∴�2<m<2.∵�2<<2,且为无理数,∴当m= 时,方程x2+mx+1=0没有实数根.【点评】本题考查了根的判别式以及无理数,熟练掌握“当△<0时,方程无实数根”是解题的关键. 20.(8分)如图,在Rt△ABC中,∠C=90°,BC=1,AC=2,以点B为圆心,BC长为半径画弧交AB于点D;以点A为圆心AD长为半径画弧,交AC于点E,保留作图痕迹,并求的值.【分析】根据题意得出BD,AD的长,进而得出AE的长,即可得出答案.【解答】解:如图所示:由题意可得,BD=BC=1,∵∠C=90°,BC=1,AC=2,∴AB= = ,∴AE=AD= �1,∴ = .【点评】此题主要考查了复杂作图以及勾股定理,正确得出AE的长是解题关键. 21.(8分)请根据下列图表信息解答问题:年份 2011 2012 2013 2014 2015 2016 年增长率 31% 27% 32% 35% 52% (1)表中空缺的数据为9% ;(精确到1%)(2)求统计表中增长率的平均数及中位数;(3)预测2017年的观影人次,并说明理由.【分析】(1)根据折线统计图可以得到2016年的年增长率;(2)根据平均数与中位数的定义求解;(3)根据条象形统计图和扇形统计图可以解答本题.【解答】解:(1)由题意可得, 20 16年的年增长率是:(13.72�12.60)÷12.60×100%≈9%,故答案为:9%;(2)统计表中增长率的平均数为:(31%+27%+32%+35%+52%+9%)÷6=31%;将它们按从小到大的顺序排列为:9%,27%,31%,32%,35%,52%,所以中位数是(31%+32%)÷2=31.5%;(3)2017年的观影人次为:13.72×(1+31%)≈17.97(人次),预估的理由是:由折线统计图和表格可知,最近6年增长率的平均数为31%,故预估2016年的增长率为31%.【点评】本题考查条形统计图、中位数与平均数,解题的关键是明确题意,找出所求问题需要的条件. 22.(10分)如图,大拇指与小拇指尽量张开时,两指间的距离称为指距.某项研究表明,一般情况下人的身高(ycm)是指距(xcm)的一次函数.下表是测得的一组数据:指距x(cm) 19 20 21 身高y(cm) 151 160 169 (1)求y与x的函数关系式;(不要求写出x的取值范围)(2)如果李华的指距为22cm,那么他的身高的为多少?【分析】(1)设y与x的函数关系式为y=kx+b,运用待定系数法求出解析式再将数值代入解析式;(2)将x=22代入解析式求出其y的值即可.【解答】解:(1)设y与x的函数关系式为y=kx+b,由题意,得,解得:,∴一次函数的解析式为:y=9x�20;(2)当x=22时,9×22�20=178,答:他的身高的为178cm.【点评】本题考查了运用待定系数法求一次函数的解析式的运用,运用函数值求自变量的值的运用,解答时求出一次函数的解析式是关键. 23.(10分)如图,锐角△ABC内接于⊙O,E为CB延长线上一点,连接AE交⊙O于点D,∠E=∠BAC,连接BD.(1)求证:∠DBE=∠ABC;(2)若∠E=45°,BE=3,BC=5,求△AEC的面积.【分析】(1)连接BD,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据相似三角形的性质得到AC=2 ,过C作CF⊥AE 于F,根据等腰直角三角形的性质得到CF=EF=4 ,由勾股定理得到AF= =2 ,得到AE=6 ,根据三角形的面积公式即可得到结论.【解答】(1)证明:连接BD,∴∠DBE=∠DAC,∵∠ABC=∠E+∠DAB,∵∠E=∠BAC,∴∠ABC=∠CAB+∠DAB=∠DAC,∴∠DBE=∠ABC;(2)解:∵∠E=∠BAC,∠C=∠C,∴△ACE∽△BCA,∴ ,即 = ,∴AC=2 ,过C作CF⊥AE于F,∵∠E=45°,∴△CEF是等腰直角三角形,∴C F=EF=4 ,∵AF= =2 ,∴AE=6 ,∴S△ACE= AE•CF= 6 ×4 =24.【点评】本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,三角形面积的计算,正确的作出辅助线是解题的关键. 24.(12分)如图,▱ABCD中,AD=2AB,点E在BC边上,且CE= AD,F为BD的中点,连接EF.(1)当∠ABC=90°,AD=4时,连接AF,求AF的长;(2)连接DE,若DE⊥BC,求∠BEF的度数;(3)求证:∠BEF= ∠BCD.【分析】(1)如图1中,首先证明四边形ABCD是矩形,利用勾股定理求出BD,再利用直角三角形斜边的中线的性质即可解决问题;(2)如图2中,由题意 = = ,由∠C=∠C,推出△DCE∽△BCD,推出∠BDC=∠DEC=90°, = = ,推出sin∠DBE= ,可得∠DBE=30°,由此即可解决问题;(3)如图3中,作∠BCD的平分线CH交BD于H.则易知 = =2,想办法证明EF∥CH 即可;【解答】(1)解:如图1中,∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,∴∠BAD=90°,∵AD=4,AD=2AB,∴AB=2,BD= =2 ,∵BF=DF,∴AF= BD= .(2)解:如图2中,∵ED⊥BC,∴∠DEC=90°,由题意 = = ,∵∠C=∠C,∴△DCE∽△BCD,∴∠BDC=∠DEC=90°, = = ,∴sin∠DBE= ,∴∠DBE=30°,∵BF=DF,∴EF=BF=DF,∴∠BEF=∠DBE=30°.(3)证明:如图3中,作∠BCD的平分线CH交BD于H.则易知 = =2,∵BF=DF,∴BH:FH=3:1,∵EC= AD,AD=BC,∴BC=4CE,∴BE:EC=3:1,∴ = ,∴EF∥CH,∴∠BEF=∠BCH= ∠BCD.【点评】本题考查平行四边形的性质、直角三角形斜边中线的性质、锐角三角函数、平行线的判定.角平分线的性质定理等知识,解题的关键灵活运用所学知识解决问题,属于中考压轴题. 25.(14分)已知抛物线y=x2+bx+c(bc≠0).(1)若该抛物线的顶点坐标为(c,b),求其解析式;(2)点A(m,n),B(m+1, n),C(m+6,n)在抛物线y=x2+bx+c上,求△ABC的面积;(3)在(2)的条件下,抛物线y=x2+bx+c的图象与x轴交于D(x1,0),E(x2,0)(x1<x2)两点,且0<x1+ x2<3,求b的取值范围.【分析】(1)根据抛物线的顶点式和顶点坐标(c,b)设解析式,与已知的解析式列等式可求得b和c的值,写出抛物线的解析式;(2)由A与C的纵坐标相等可得:m和m+6是方程x2+bx+c=n的两根,根据根与系数的关系列方程组可得b和c 的值,把B的坐标代入抛物线的解析式中,再把b 和c的值代入可得n的值,表示A、B、C三点的坐标,可求△ABC的面积;(3)先根据(2)求出方程的两根,代入已知0<x1+ x2<3中,并将m换成关于b的式子,解不等式可得b的取值范围.【解答】解:(1)∵抛物线的解析式为:y=x2+bx+c,∴抛物线解析式中二次顶的系数为1,设抛物线的解析式为:y=(x�c)2+b,∴(x�c)2+b=x2+bx+c,∴ ,∴ ,∴抛物线的解析式为:y=x2�6x+3;(2)如图1,∵点A(m,n),C(m+6,n)在抛物线y=x2+bx+c上,∴m 和m+6是方程x2+bx+c=n的两根,即x2+bx+c�n=0,∴ ,解得:,∵B(m+1, n)在抛物线y=x2+bx+c上,∴(m+1)2+b(m+1)+c= n,将b、c代入得:(m+1)2�2(m+3)(m+1)+m2+6m+n= n,即n�5= n, n=8,∴A(m,8),B(m+1,3),C(m+6,8),∴AC=6,过B 作BG⊥AC于G,则BG=8�3=5,∴S△ABC= ×6×5=15;(3)由题意得:x1+x2=�b=2m+6①,x1•x2=c=m2+6m+8②,∵x1<x2,由①和②得,∵0<x1+ x2<3,∴0<3x1+x2<9, 0<3(m+2)+m+4<9, 0<4m+10<9,∵b=�2m�6,∴2m=�b�6,∴0<�2b�12+10<9,∴�5.5<b<�1.【点评】本题考查了抛物线的顶点式、对称点的特点、三角形的面积、二次函数与一元二次方程根与系数的关系、抛物线与x轴的交点,第二问利用抛物线上的点:纵坐标相等的点是对称点,与方程相结合,得到m和m+6是方程x2+bx+c=n的两根是关键,第三问有难度,注意第1问的结论不能应用2、3问.。
2017年福州市初中毕业班质量检测数学试卷
2017年福州市初中毕业班质量检测数 学 试 卷一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1. 下列运算结果为正数的是( )A .()21-+B .()21--C .()21-⨯D .()21-÷2. 若一个几何体的主视图、左视图、俯视图都是半径相等的圆,则这个几何体是( )A .圆柱B .圆锥C .球D .正方体3. 数轴上点A 、点B 表示的数分别是a ,b ,这两点间的距离是( )A .b a +B .b a -C .b a +D .b a -4. 两个全等的正六边形如图摆放,与△ABC 面积不同的一个三角形是( )A .△ABDB .△ABEC .△ABFD .△ABG5. 如图,O 为直线AB 上一点,∠AOC =α,∠BOC =β,则β的余角可表示为( ) A .()βα+21B .α21C .()βα-21 D .β216. 在一个不透明的袋子中装有4个红球,2个白球,每个球只有颜色不同,从中任意摸出3个球,下列事件为必然事件的是( ) A .至少有1个球是红球 B .至少有1个球是白球 C .至少有2个球是红球D .至少有2个球是白球7. 若m ,n 均为正整数,且()642,3222==⋅nm nm,则mn+m+n 的值为( )A .10B .11C .12D .138. 如图,△ABC 中,∠ABC=50°,∠C=30°,将△ABC 绕点B 逆时针旋转()︒≤︒900αα ,得到△DBE ,若DE ∥BC ,则α为( ) A .50°B .70°C .80°D .90°ACBβα AD CB F GE第5题 第4题ADCBE第8题9. 在平面直角坐标系中,已知点A (1,2),B (2,1),C (3,1--),D (3,2-),其中不可能与点E (1,3)在同一函数图像上的一个点是( ) A .点AB .点BC .点CD .点D10. P 是抛物线542+-=x x y 上一点,过点P 作PM ⊥x 轴,PN ⊥y 轴,垂足分别是M ,N ,则PM+PN的最小值是( )A .45B .411 C .3 D .5二、填空题(本大题有10小题,每小题4分,共24分) 11. 若二次根式3-x 有意义,则x 的取值范围是____________.12. 2017年5月12日是第106个国际护士节,从数串 “2 017 512”中随机抽取一个数字,抽到数字2的概率是____________.13. 计算:=⨯⨯-20172016440332_____________.14. 如图,矩形ABCD 中,AB=2,点O 在AB 边上,以O 为圆心OB长为半径的⊙O 与CD 相切,交AD 于点F ,连接OF ,若扇形OBF的面积为π34,则CD 的长是__________.15. 对于锐角α,tan α_______sin α(填“>”,“<”或“=”)。
2017年福建省中考数学试卷(后附答案解析)
2017年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)3的相反数是()A.﹣3 B.﹣ C.D.32.(4分)如图,由四个正方体组成的几何体的左视图是()A.B. C.D.3.(4分)用科学记数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×1064.(4分)化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x5.(4分)下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形6.(4分)不等式组:的解集是()A.﹣3<x≤2 B.﹣3≤x<2 C.x≥2 D.x<﹣37.(4分)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,158.(4分)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD9.(4分)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.610.(4分)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是()A.1区 B.2区 C.3区 D.4区二、填空题:本题共6小题,每小题4分,共24分.11.(4分)计算|﹣2|﹣30=.12.(4分)如图,△ABC中,D,E分别是AB,AC的中点,连接DE.若DE=3,则线段BC的长等于.13.(4分)一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是.14.(4分)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是.15.(4分)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于度.16.(4分)已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD的面积为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)先化简,再求值:(1﹣)•,其中a=﹣1.18.(8分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.19.(8分)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)20.(8分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.21.(8分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.22.(10分)小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.23.(10分)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数012345(含5次以上)累计车费00.50.9a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数012345人数51510302515(Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.24.(12分)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.25.(14分)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.2017年福建省中考数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)(2017•长春)3的相反数是()A.﹣3 B.﹣ C.D.3【分析】根据相反数的定义即可求出3的相反数.【解答】解:3的相反数是﹣3故选A.【点评】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.2.(4分)(2017•福建)如图,由四个正方体组成的几何体的左视图是()A.B. C.D.【分析】直接利用三视图的画法,从左边观察,即可得出选项.【解答】解:图形的左视图为:,故选B.【点评】此题主要考查了三视图的画法,正确掌握三视图观察的角度是解题关键.3.(4分)(2017•福建)用科学记数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示136 000,其结果是1.36×105,【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2017•福建)化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.【解答】解:(2x)2=4x2,故选:C.【点评】此题主要考查了积的乘方,关键是掌握计算法则.5.(4分)(2017•福建)下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、圆既是轴对称图形,又是中心对称图形,故A符合题意;B、正三角形既是轴对称图形,不是中心对称图形,故B不符合题意;C、线段是轴对称图形,是中心对称图形,故C不符合题意;D、菱形是中心对称图形,是轴对称图形,故D符合题意;故选:A.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(4分)(2017•福建)不等式组:的解集是()A.﹣3<x≤2 B.﹣3≤x<2 C.x≥2 D.x<﹣3【分析】求出每个不等式的解集,再求出不等式组的解集,【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣3,∴不等式组的解集为:﹣3<x≤2,【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.(4分)(2017•福建)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,15【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:10、13、15、15、20,最中间的数是15,则这组数据的中位数是15;15出现了2次,出现的次数最多,则众数是15.故选:D.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.(4分)(2017•福建)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD【分析】由圆周角定理得出∠ACB=∠ACD+∠BCD=90°,∠BCD=∠BAD,得出∠ACD+∠BAD=90°,即可得出答案.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故选:D.【点评】本题考查了圆周角定理;熟记圆周角定理是解决问题的关键.9.(4分)(2017•福建)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.6【分析】根据题意列方程组得到k=n﹣4,由于0<k<2,于是得到0<n﹣4<2,即可得到结论.【解答】解:依题意得:,∴k=n﹣4,∵0<k<2,∴0<n﹣4<2,∴4<n<6,故选C.【点评】考查了一次函数的图象与系数的关系,注重考察学生思维的严谨性,易错题,难度中等.10.(4分)(2017•福建)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是()A.1区 B.2区 C.3区 D.4区【分析】根据旋转的性质连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,从而得出线段AB和点P是绕着同一个该点逆时针旋转90°,据此可得答案.【解答】解:如图,连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,由图可知,线段AB和点P绕着同一个该点逆时针旋转90°,∴点P逆时针旋转90°后所得对应点P′落在4区,故选:D.【点评】本题主要考查旋转,熟练掌握旋转的性质得出图形的旋转中心及旋转方向是解题的关键.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)(2017•福建)计算|﹣2|﹣30=1.【分析】首先利用零指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:原式=2﹣1=1.故答案为:1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(4分)(2017•福建)如图,△ABC中,D,E分别是AB,AC的中点,连接DE.若DE=3,则线段BC的长等于6.【分析】直接根据三角形的中位线定理即可得出结论.【解答】解:∵△ABC中,D,E分别是AB,AC的中点,∴DE是△ABC的中位线.∵DE=3,∴BC=2DE=6.故答案为:6.【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.13.(4分)(2017•福建)一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是红球.【分析】根据已知条件即可得到结论.【解答】解:∵这三种颜色的球被抽到的概率都是,∴这三种颜色的球的个数相等,∴添加的球是红球,故答案为:红球.【点评】本题考查了概率公式,熟练掌握概率的概念是解题的关键.14.(4分)(2017•福建)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是7.【分析】先利用点A、B表示的数计算出AB,再计算出BC,然后计算点C到原点的距离即可得到C点表示的数.【解答】解:∵点A,B表示的数分别是1,3,∴AB=3﹣1=2,∵BC=2AB=4,∴OC=OA+AB+BC=1+2+4=7,∴点C表示的数是7.故答案为7.【点评】本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)15.(4分)(2017•福建)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于108度.【分析】根据多边形的内角和,可得∠1,∠2,∠3,∠4,根据等腰三角形的内角和,可得∠7,根据角的和差,可得答案.【解答】解:如图,由正五边形的内角和,得∠1=∠2=∠3=∠4=108°,∠5=∠6=180°﹣108°=72°,∠7=180°﹣72°﹣72°=36°.∠AOB=360°﹣108°﹣108°﹣36°=108°,故答案为:108.【点评】本题考查了多边形的内角与外角,利用多边形的内角和得出每个内角是解题关键.16.(4分)(2017•福建)已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A 的横坐标是2,则矩形ABCD的面积为.【分析】先根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A(2,),再根据B(,2),D(﹣,﹣2),运用两点间距离公式求得AB和AD的长,即可得到矩形ABCD的面积.【解答】解:如图所示,根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A(2,),根据矩形和双曲线的对称性可得,B(,2),D(﹣,﹣2),由两点间距离公式可得,AB==,AD==,∴矩形ABCD的面积=AB×AD=×=,故答案为:.【点评】本题主要考查了反比例函数图象上点的坐标特征以及矩形的性质的综合应用,解决问题的关键是画出图形,依据两点间距离公式求得矩形的边长.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)(2017•福建)先化简,再求值:(1﹣)•,其中a=﹣1.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=﹣1时原式=•==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.(8分)(2017•福建)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【分析】证明BC=EF,然后根据SSS即可证明△ABC≌△DEF,然后根据全等三角形的对应角相等即可证得.【解答】证明:如图,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).∴∠A=∠D.【点评】本题考查了全等三角形的判定与性质,证明线段相等常用的方法是证明所在的三角形全等.19.(8分)(2017•福建)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)【分析】根据角平分线的性质作出BQ即可.先根据垂直的定义得出∠ADB=90°,故∠BPD+∠PBD=90°.再根据余角的定义得出∠AQP+∠ABQ=90°,根据角平分线的性质得出∠ABQ=∠PBD,再由∠BPD=∠APQ可知∠APQ=∠AQP,据此可得出结论.【解答】解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠BAC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.20.(8分)(2017•福建)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.【分析】设鸡有x只,兔有y只,根据等量关系:上有三十五头,下有九十四足,可分别得出方程,联立求解即可得出答案.【解答】解:设鸡有x只,兔有y只,鸡有一个头,两只脚,兔有1个头,四只脚,结合上有三十五头,下有九十四足可得:,解得:.答:鸡有23只,兔有12只.【点评】此题考查了二元一次方程的知识,解答本题的关键是仔细审题,根据等量关系得出方程组,难度一般.21.(8分)(2017•福建)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.【分析】(Ⅰ)连接OC,OD,由圆周角定理得到∠COD=2∠CAD,∠CAD=45°,于是得到∠COD=90°,根据弧长公式即可得到结论;(Ⅱ)由已知条件得到∠BOC=∠AOD,由圆周角定理得到∠AOD=45°,根据等腰三角形的性质得到∠ODA=∠OAD,求得∠ADP=CAD=22.5°,得到∠ODP=∠ODA+∠ADP=90°,于是得到结论.【解答】解:(Ⅰ)连接OC,OD,∵∠COD=2∠CAD,∠CAD=45°,∴∠COD=90°,∵AB=4,∴OC=AB=2,∴的长=×π×2=π;(Ⅱ)∵=,∴∠BOC=∠AOD,∵∠COD=90°,∴∠AOD=45°,∵OA=OD,∴∠ODA=∠OAD,∵∠AOD+∠ODA=∠OAD=180°,∴∠ODA=67.5°,∵AD=AP,∴∠ADP=∠APD,∵∠CAD=∠ADP+∠APD,∠CAD=45°,∴∠ADP=CAD=22.5°,∴∠ODP=∠ODA+∠ADP=90°,∴PD是⊙O的切线.【点评】本题考查了切线的判定,圆内接四边形的性质,弧长的计算,正确的作出辅助线是解题的关键.22.(10分)(2017•福建)小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.【分析】(1)将α=30°代入,根据三角函数值计算可得;(2)设∠A=α,则∠B=90°﹣α,根据正弦函数的定义及勾股定理即可验证.【解答】解1:(1)当α=30°时,sin2α+sin2(90°﹣α)=sin230°+sin260°=()2+()2=+=1;(2)小明的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°﹣α,∴sin2α+sin2(90°﹣α)=()2+()2===1.【点评】本题主要考查特殊锐角的三角函数值及正弦函数的定义,熟练掌握三角函数的定义及勾股定理是解题的关键.23.(10分)(2017•福建)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数012345(含5次以上)累计车费00.50.9a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数012345人数51510302515(Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.【分析】(Ⅰ)根据收费调整情况列出算式计算即可求解;(Ⅱ)先根据平均数的计算公式求出抽取的100名师生每人每天使用A品牌共享单车的平均车费,再根据用样本估计总体求出5000名师生一天使用共享单车的费用,再与5800比较大小即可求解.【解答】解:(Ⅰ)a=0.9+0.3=1.2,b=1.2+0.2=1.4;(Ⅱ)根据用车意愿调查结果,抽取的100名师生每人每天使用A品牌共享单车的平均车费为:×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),所以估计5000名师生一天使用共享单车的费用为:5000×1.1=5500(元),因为5500<5800,故收费调整后,此运营商在该校投放A品牌共享单车不能获利.【点评】考查了样本平均数,用样本估计总体,(Ⅱ)中求得抽取的100名师生每人每天使用A品牌共享单车的平均车费是解题的关键.24.(12分)(2017•福建)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.【分析】(Ⅰ)先求出AC,再分三种情况讨论计算即可得出结论;(Ⅱ)方法1、先判断出OC=ED,OC=PF,进而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判断出△ADP∽△CDF,得出比例式即可得出结论.方法2、先判断出∠CEF=∠FDC,得出点E,C,F,D四点共圆,再判断出点P也在此圆上,即可得出∠DAP=∠DCF,此后同方法1即可得出结论.【解答】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,∵S△ADC=AD•DC=AC•DQ,∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP=4或5或;(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法2、如图,∵四边形ABCD和DPEF是矩形,∴∠ADC=∠PDF=90°,∴∠ADP=∠CDF,∵∠DGF+∠CDF=90°,∴∠EGC+∠CDF=90°,∵∠CEF+∠CGE=90°,∴∠CDF=∠FEC,∴点E,C,F,D四点共圆,∵四边形DPEF是矩形,∴点P也在此圆上,∵PE=DF,∴,∴∠ACB=∠DCF,∵AD∥BC,∴∠ACB=∠DAP,∴∠DAP=∠DCF,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AP=,∴CF=.【点评】此题是四边形综合题,主要考查了矩形的性质,勾股定理,等腰三角形的性质,相似三角形的判定和性质,解(Ⅰ)的关键是分三种情况讨论计算,解(Ⅱ)的关键是判断出△ADP ∽△CDF ,是一道中考常考题.25.(14分)(2017•福建)已知直线y=2x +m 与抛物线y=ax 2+ax +b 有一个公共点M (1,0),且a <b .(Ⅰ)求抛物线顶点Q 的坐标(用含a 的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N .(ⅰ)若﹣1≤a ≤﹣,求线段MN 长度的取值范围;(ⅱ)求△QMN 面积的最小值.【分析】(Ⅰ)把M 点坐标代入抛物线解析式可得到b 与a 的关系,可用a 表示出抛物线解析式,化为顶点式可求得其顶点坐标;(Ⅱ)由直线解析式可先求得m 的值,联立直线与抛物线解析式,消去y ,可得到关于x 的一元二次方程,再判断其判别式大于0即可;(Ⅲ)(i )由(Ⅱ)的方程,可求得N 点坐标,利用勾股定理可求得MN 2,利用二次函数性质可求得MN 长度的取值范围;(ii )设抛物线对称轴交直线与点E ,则可求得E 点坐标,利用S △QMN =S △QEN +S △QEM 可用a 表示出△QMN 的面积,再整理成关于a 的一元二次方程,利用判别式可得其面积的取值范围,可求得答案.【解答】解:(Ⅰ)∵抛物线y=ax2+ax+b过点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点Q的坐标为(﹣,﹣);(Ⅱ)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0(*)∴△=(a﹣2)2﹣4a(﹣2a+2)=9a2﹣12a+4,由(Ⅰ)知b=﹣2a,且a<b,∴a<0,b>0,∴△>0,∴方程(*)有两个不相等的实数根,∴直线与抛物线有两个交点;(Ⅲ)联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0,即x2+(1﹣)x﹣2+=0,∴(x﹣1)[x﹣(﹣2)]=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),(i)由勾股定理可得MN2=[(﹣2)﹣1]2+(﹣6)2=﹣+45=20(﹣)2,∵﹣1≤a≤﹣,∴﹣2≤≤﹣1,∴MN2随的增大而减小,∴当=﹣2时,MN2有最大值245,则MN有最大值7,当=﹣1时,MN2有最小值125,则MN有最小值5,∴线段MN长度的取值范围为5≤MN≤7;(ii)如图,设抛物线对称轴交直线与点E,∵抛物线对称轴为x=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),且a <0,设△QMN 的面积为S ,∴S=S △QEN +S △QEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=﹣﹣,∴27a 2+(8S ﹣54)a +24=0(*),∵关于a 的方程(*)有实数根,∴△=(8S ﹣54)2﹣4×27×24≥0,即(8S ﹣54)2≥(36)2, ∵a <0,∴S=﹣﹣>, ∴8S ﹣54>0,∴8S ﹣54≥36,即S ≥+, 当S=+时,由方程(*)可得a=﹣满足题意,∴当a=﹣,b=时,△QMN 面积的最小值为+. 【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、勾股定理、三角形的面积等知识.在(1)中由M 的坐标得到b 与a 的关系是解题的关键,在(2)中联立两函数解析式,得到关于x 的一元二次方程是解题的关键,在(3)中求得N 点的坐标是解题的关键,在最后一小题中用a 表示出△QMN 的面积是解题的关键.本题考查知识点较多,综合性较强,难度较大.。
2017年福州中考数学模拟试卷及答案
2017年福州中考数学模拟试题一、选择题(本题共12个小题,每小题3分,共36分)1.方程2x2﹣6x﹣5=0的二次项系数、一次项系数、常数项分别为( )A.6、2、5B.2、﹣6、5C.2、﹣6、﹣5D.﹣2、6、52.tan60°的值等于( )A. B. C. D.3.下列汽车标志中既是轴对称图形又是中心对称图形的是( )A. B. C. D.4.,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若OE=3,则AB的长是( )A.4B.6C.8D.105.,在⊙O中,弦AC与半径OB平行,若∠BOC=50°,则∠B的大小为( )A.25°B.30°C.50°D.60°6.下列事件中,必然发生的事件是( )A.明天会下雪B.小明下周数学考试得99分C.明年有370天D.今天是星期一,明天就是星期二7.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是奇数的概率为( )A. B. C. D.8.是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )A. B. C. D.9.,已知△ABC与△ADE中,∠C=∠AED=90°,点E在AB上,那么添加下列一个条件后,仍无法判定△ABC∽△DAE的是( )A.∠B=∠DB. =C.AD∥BCD.∠BAC=∠D10.,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是( )A. cmB. cmC. cmD.1cm11.,点A是反比例函数y= 的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是( )A.3B.﹣3C.6D.﹣612.,直线y= 与y轴交于点A,与直线y=﹣交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是( )A.﹣2B.﹣2≤h≤1C.﹣1D.﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.一元二次方程x2﹣2x=0的解是.14.若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是.15.已知反比例函数的图象在第二、四象限,则m的取值范围是.16.,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是.17.,△ABC中,AD⊥BC,垂足为D,AD=BD=3,CD=2,点E从点B出发沿线段BA的方向移动到点A停止,连接CE.若△ADE与△CDE的面积相等,则线段DE 的长度是.18.在平面直角坐标系中,已知点 A(3,0),B(0,4),将△BOA绕点A按顺时针方向旋转得△CDA,使点B在直线CD上,连接OD交AB于点M,直线CD的解析式为.三、解答题(本大题共7小题,共66分)19.解方程:(1)2x2﹣4x﹣1=0(配方法)(2)(x+1)2=6x+6.20.某数学兴趣小组的同学在一次数学活动中,为了测量某建筑物AB的高,他们来到与建筑物AB在同一平地且相距12米的建筑物CD上的C处观察,测得某建筑物顶部A的仰角为30°、底部B的俯角为45°.求建筑物AB的高(精确到1米).(可供选用的数据:≈1.4,≈1.7).21.(1)(1),△ABC内接于⊙O,AB为直径,∠CAE=∠B,试说明AE与⊙O 相切于点A.(2)在图(2)中,若AB为非直径的弦,∠CAE=∠B,AE还与⊙O相切于点A 吗?请说明理由.22.一个不透明的口袋中有3个小球,上面分别标有数字1,2,3,每个小球除数字外其他都相同,甲先从口袋中随机摸出一个小球,记下数字后放回;乙再从口袋中随机摸出一个小球记下数字,用画树状图(或列表)的方法,求摸出的两个小球上的数字之和为偶数的概率.23.,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在线段BC上任取一点E,连接DE,作EF⊥DE,交直线AB于点F.(1)若点F与B重合,求CE的长;(2)若点F在线段AB上,且AF=CE,求CE的长.24.,等边△OAB和等边△AFE的一边都在x轴上,反比例函数y= (x>0)经过边OB的中点C和AE中点D,已知等边△OAB的边长为8.(1)求反比例函数的解析式;(2)求等边△AFE的周长.25.在平面直角坐标系中,平行四边形ABOC放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线经过点C、A、A′,求此抛物线的解析式;(2)在(1)的情况下,点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)在(1)的情况下,若P为抛物线上一动点,N为x轴上的一动点,点Q 坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.2017年福州中考数学模拟试题答案一、选择题(本题共12个小题,每小题3分,共36分)1.方程2x2﹣6x﹣5=0的二次项系数、一次项系数、常数项分别为( )A.6、2、5B.2、﹣6、5C.2、﹣6、﹣5D.﹣2、6、5【考点】一元二次方程的一般形式.【分析】一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的a、b、c 分别是二次项系数、一次项系数、常数项.【解答】解:方程2x2﹣6x﹣5=0的二次项系数、一次项系数、常数项分别为2、﹣6、﹣5;故选C.2.tan60°的值等于( )A. B. C. D.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值,可得答案.【解答】解:tan60°= ,故选:B.3.下列汽车标志中既是轴对称图形又是中心对称图形的是( )A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】逐一分析四个选项中的图形,可那个图形既是轴对称图形又是中心对称图形,由此即可得出结论.【解答】解:A、是轴对称图形不是中心对称图形;B、既不是轴对称图形又不是中心对称图形;C、既是轴对称图形又是中心对称图形;D、是轴对称图形不是中心对称图形.故选C.4.,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若OE=3,则AB的长是( )A.4B.6C.8D.10【考点】垂径定理;勾股定理.【分析】连接OA,根据勾股定理求出AE的长,进而可得出结论.【解答】解:连接OA,∵OC⊥AB,OA=5,OE=3,∴AE= = =4,∴AB=2AE=8.故选C.5.,在⊙O中,弦AC与半径OB平行,若∠BOC=50°,则∠B的大小为( )A.25°B.30°C.50°D.60°【考点】圆周角定理.【分析】由弦AC与半径OB平行,若∠BOC=50°,可求得∠C的度数,继而求得∠AOC的度数,继而求得∠AOB的度数,然后由等腰三角形的性质,求得答案.【解答】解:∵弦AC∥OB,∠BOC=50°,∴∠C=∠BOC=50°,∵OA=OC,∴∠OAC=∠C=50°,∴∠AOC=80°,∴∠AOB=∠AOC+∠BOC=130°,∵OA=OB,∴∠B=∠OAB=25°.故选A.6.下列事件中,必然发生的事件是( )A.明天会下雪B.小明下周数学考试得99分C.明年有370天D.今天是星期一,明天就是星期二【考点】随机事件.【分析】由于必然事件指在一定条件下一定发生的事件,利用这个定义即可判定.【解答】解:A、明天会下雪是随机事件;B、小明下周数学考试得99分是随机事件;C、明年有370天是不可能事件;D、今天是星期一,明天就是星期二是必然事件.故选D.7.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是奇数的概率为( )A. B. C. D.【考点】概率公式.【分析】由在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,直接利用概率公式求解即可求得答案.【解答】解:∵在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,∴从中随机摸出一个小球,其标号是奇数的概率为: .8.是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )A. B. C. D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形.下面一层左边有1个正方形,故选A.9.,已知△ABC与△ADE中,∠C=∠AED=90°,点E在AB上,那么添加下列一个条件后,仍无法判定△ABC∽△DAE的是( )A.∠B=∠DB. =C.AD∥BCD.∠BAC=∠D【考点】相似三角形的判定.【分析】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.【解答】解:∵∠C=∠AED=90°,∠B=∠D,∴△ABC∽△ADE,故A选项不能证明相似;∵∠C=∠AED=90°,,∴△ABC∽△DAE,故选项B可以证明相似;∵AD∥BC,∴∠B=∠DAE,∵∠C=∠AED=90°,∴△ABC∽△DAE,故选项C可以证明相似;∵∠BAC=∠D,∠C=∠AED=90°,∴△ABC∽△DAE,故选项D可以证明相似;10.,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是( )A. cmB. cmC. cmD.1cm【考点】正多边形和圆.【分析】连接AC,作BD⊥AC于D;根据正六边形的特点求出∠ABC的度数,再由等腰三角形的性质求出∠BAD的度数,由特殊角的三角函数值求出AD的长,进而可求出AC的长.【解答】解:连接AC,过B作BD⊥AC于D;∵AB=BC,∴△ABC是等腰三角形,∴AD=CD;∵此多边形为正六边形,∴∠ABC= =120°,∴∠ABD= =60°,∴∠BAD=30°,AD=AB•cos30°=2× = ,∴a=2 cm.故选A.11.,点A是反比例函数y= 的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是( )A.3B.﹣3C.6D.﹣6【考点】反比例函数系数k的几何意义.【分析】连结OA,,利用三角形面积公式得到S△OAB=S△CAB=3,再根据反比例函数的比例系数k的几何意义得到 |k|=3,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB= |k|,∴ |k|=3,∵k<0,∴k=﹣6.故选D.12.,直线y= 与y轴交于点A,与直线y=﹣交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是( )A.﹣2B.﹣2≤h≤1C.﹣1D.﹣1【考点】二次函数综合题.【分析】将y= 与y=﹣联立可求得点B的坐标,然后由抛物线的顶点在直线y=﹣可求得k=﹣,于是可得到抛物线的解析式为y=(x﹣h)2﹣ h,由图形可知当抛物线经过点B和点C时抛物线与菱形的边AB、BC均有交点,然后将点C和点B的坐标代入抛物线的解析式可求得h的值,从而可判断出h的取值范围.【解答】解:∵将y= 与y=﹣联立得:,解得: .∴点B的坐标为(﹣2,1).由抛物线的解析式可知抛物线的顶点坐标为(h,k).∵将x=h,y=k,代入得y=﹣得:﹣ h=k,解得k=﹣,∴抛物线的解析式为y=(x﹣h)2﹣ h.1所示:当抛物线经过点C时.将C(0,0)代入y=(x﹣h)2﹣ h得:h2﹣ h=0,解得:h1=0(舍去),h2= .2所示:当抛物线经过点B时.将B(﹣2,1)代入y=(x﹣h)2﹣ h得:(﹣2﹣h)2﹣ h=1,整理得:2h2+7h+6=0,解得:h1=﹣2,h2=﹣ (舍去).综上所述,h的范围是﹣2≤h≤ .故选A.二、填空题(本大题共6小题,每小题3分,共18分)13.一元二次方程x2﹣2x=0的解是x1=0,x2=2 .【考点】解一元二次方程﹣因式分解法.【分析】本题应对方程左边进行变形,提取公因式x,可得x(x﹣2)=0,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0.”,即可求得方程的解.【解答】解:原方程变形为:x(x﹣2)=0,x1=0,x2=2.故答案为:x1=0,x2=2.14.若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是k<﹣1 .【考点】根的判别式.【分析】根据关于x的一元二次方程x2﹣2x﹣k=0没有实数根,得出△=4+4k<0,再进行计算即可.【解答】解:∵一元二次方程x2﹣2x﹣k=0没有实数根,∴△=(﹣2)2﹣4×1×(﹣k)=4+4k<0,∴k的取值范围是k<﹣1;故答案为:k<﹣1.15.已知反比例函数的图象在第二、四象限,则m的取值范围是m<﹣2 .【考点】反比例函数的性质.【分析】反比例函数的图象在二四象限,让比例系数小于0列式求值即可.【解答】解:∵反比例函数的图象在第二、四象限,∴m+2<0,解得m<﹣2,故答案为m<﹣2.16.,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是.【考点】锐角三角函数的定义;坐标与图形性质.【分析】根据正切函数是对边比邻边,可得答案.【解答】解:,tanα= =故答案为: .17.,△ABC中,AD⊥BC,垂足为D,AD=BD=3,CD=2,点E从点B出发沿线段BA的方向移动到点A停止,连接CE.若△ADE与△CDE的面积相等,则线段DE 的长度是.【考点】相似三角形的判定与性质;平行线之间的距离;三角形的面积.【分析】当△ADE与△CDE的面积相等时,DE∥AC,此时△BDE∽△BCA,利用相似三角形的对应边成比例进行解答即可.【解答】解:在直角△ACD中,AD=3,CD=2,则由勾股定理知AC= = = .∵依题意得,当DE∥AC时,△ADE与△CDE的面积相等,此时△BDE∽△BCA,所以 = ,因为AD=BD=3,CD=2,所以 = ,所以DE= .故答案是: .18.在平面直角坐标系中,已知点 A(3,0),B(0,4),将△BOA绕点A按顺时针方向旋转得△CDA,使点B在直线CD上,连接OD交AB于点M,直线CD的解析式为y=﹣ x+4 .【考点】坐标与图形变化﹣旋转.【分析】由旋转的性质得到三角形BOA与三角形CDA全等,再由已知角相等,以及公共角,得到三角形AOM与三角形AOB相似,确定出OD与AB垂直,再由OA=DA,利用三线合一得到AB为角平分线,M为OD中点,利用SAS得到三角形AOB 与三角形ABD全等,得出AD垂直于BC,进而确定出B,D,C三点共线,求出直线OD解析式,与直线AB解析式联立求出M坐标,确定出D坐标,设直线CD解析式为y=mx+n,把B与D坐标代入求出m与n的值,即可确定出解析式.【解答】解:∵△BOA绕点A按顺时针方向旋转得△CDA,∴△BOA≌△CDA,∵∠DOA=∠OBA,∠OAM=∠BAO,∴△AOM∽△ABO,∴∠AMO=∠AOB=90°,∴OD⊥AB,∵AO=AD,∴∠OAM=∠DAM,在△AOB和△ABD中,,∴△AOB≌△ABD(SAS),∴OM=DM,∴△ABD≌△ACD,∴∠ADB=∠ADC=90°,∴B,D,C三点共线,设直线AB解析式为y=kx+b,把A与B坐标代入得:,解得:,∴直线AB解析式为y=﹣ x+4,∴直线OD解析式为y= x,联立得:,解得:,即M( , ),∵M为线段OD的中点,∴D( , ),设直线CD解析式为y=mx+n,把B与D坐标代入得:,解得:m=﹣,n=4,则直线CD解析式为y=﹣ x+4.故答案为:y=﹣ .三、解答题(本大题共7小题,共66分)19.解方程:(1)2x2﹣4x﹣1=0(配方法)(2)(x+1)2=6x+6.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法. 【分析】(1)先把方程整理为x2﹣2x= ,然后利用配方法解方程; (2)先把方程变形为(x+1)2﹣6(x+1)=0,然后利用因式分解法解方程. 【解答】解:(1)x2﹣2x= ,x2﹣2x+1= ,(x﹣1)2= ,x﹣1=± =± ,所以x1=1+ ,x2=1﹣ ;(2)(x+1)2﹣6(x+1)=0,(x+1)(x+1﹣6)=0,x+1=0或x+1﹣6=0,所以x1=﹣1,x2=5.20.某数学兴趣小组的同学在一次数学活动中,为了测量某建筑物AB的高,他们来到与建筑物AB在同一平地且相距12米的建筑物CD上的C处观察,测得某建筑物顶部A的仰角为30°、底部B的俯角为45°.求建筑物AB的高(精确到1米).(可供选用的数据:≈1.4,≈1.7).【考点】解直角三角形的应用﹣仰角俯角问题.【分析】过点C作AB 的垂线,垂足为E,根据题意可得出四边形CDBE是矩形,再由CD=12m,∠ECB=45°可知BE=CE=12m,由AE=CE•tan30°得出AE的长,进而可得出结论.【解答】解:过点C作AB 的垂线,垂足为E,∵CD⊥BD,AB⊥BD,∴四边形CDBE是矩形,∵CD=12m,∠ECB=45°,∴BE=CE=12m,∴AE=CE•tan30°=12× =4 (m),∴AB=4 +12≈19(m).答:建筑物AB的高为19米.21.(1)(1),△ABC内接于⊙O,AB为直径,∠CAE=∠B,试说明AE与⊙O 相切于点A.(2)在图(2)中,若AB为非直径的弦,∠CAE=∠B,AE还与⊙O相切于点A 吗?请说明理由.【考点】切线的判定.【分析】(1)根据圆周角定理由AB为直径得∠ACB=90°,所以∠B+∠BAC=90°,由于∠CAE=∠B,则∠CAE+∠BAC=90°,所以OA⊥AE,则可根据切线的判定定理得到AE与⊙O相切于点A;(2)作直径AD,根据圆周角定理得到∠B=∠D,则可与(1)中的证明方法一样得到AE与⊙O相切于点A.【解答】证明:(1)∵AB为直径,∴∠ACB=90°,∴∠B+∠BAC=90°,而∠CAE=∠B,∴∠CAE+∠BAC=90°,即∠BAE=90°,∴OA⊥AE,∴AE与⊙O相切于点A;(2)AE还与⊙O相切于点A.理由如下:作直径AD,2,∴∠D+∠DAC=90°,∵∠B=∠D,而∠CAE=∠B,∴∠CAE+∠DAC=90°,即∠DAE=90°,∴OA⊥AE,∴AE与⊙O相切于点A.22.一个不透明的口袋中有3个小球,上面分别标有数字1,2,3,每个小球除数字外其他都相同,甲先从口袋中随机摸出一个小球,记下数字后放回;乙再从口袋中随机摸出一个小球记下数字,用画树状图(或列表)的方法,求摸出的两个小球上的数字之和为偶数的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸出的两个小球上的数字之和为偶数的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,摸出的两个小球上的数字之和为偶数的有5种情况,∴摸出的两个小球上的数字之和为偶数的概率为: .23.,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在线段BC上任取一点E,连接DE,作EF⊥DE,交直线AB于点F.(1)若点F与B重合,求CE的长;(2)若点F在线段AB上,且AF=CE,求CE的长.【考点】相似三角形的判定与性质;矩形的判定与性质;梯形.【分析】(1)根据题意画出图形,得出矩形ABEC求出BE,即可求出CE;(2)过D作DM⊥BC于M,得出四边形ABMD是矩形,推出AD=BM=9,AB=DM=7,CM=12﹣9=3,设AF=CE=a,则BF=7﹣a,EM=a﹣3,BE=12﹣a,求出∠BFE=∠DEM,∠B=∠DME,证△FBE∽△EMD,得出比例式 = ,求出a即可.【解答】解:(1)当F和B重合时,∵EF⊥DE,∵DE⊥BC,∵∠B=90°,∴AB⊥BC,∴AB∥DE,∵AD∥BC,∴四边形ABED是平行四边形,∴AD=EF=9,∴CE=BC﹣EF=12﹣9=3;(2)过D作DM⊥BC于M,∵∠B=90°,∴AB⊥BC,∴DM∥AB,∵AD∥BC,∴四边形ABMD是矩形,∴AD=BM=9,AB=DM=7,CM=12﹣9=3,设AF=CE=a,则BF=7﹣a,EM=a﹣3,BE=12﹣a,∵∠FEC=∠B=∠DMB=90°,∴∠FEB+∠DEM=90°,∠BFE+∠FEB=90°,∴∠BFE=∠DEM,∵∠B=∠DME,∴△FBE∽△EMD,∴ = ,∴ = ,a=5,a=17,∵点F在线段AB上,AB=7,∴AF=CE=17(舍去),即CE=5.24.,等边△OAB和等边△AFE的一边都在x轴上,反比例函数y= (x>0)经过边OB的中点C和AE中点D,已知等边△OAB的边长为8.(1)求反比例函数的解析式;(2)求等边△AFE的周长.【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;等边三角形的性质.【分析】(1)过C作CM⊥OA,根据锐角三角函数的定义求出CM及OM的长,代入反比例函数的解析式即可得出结论;(2)过点D作DH⊥AF,垂足为点H,设AH=a(a>0).在Rt△D AH中,根据30°的角所对的直角边等于斜边的一半可得出AD=2AH=2a,由勾股定理得出DH的长,再根据点D在第一象限,可得出D点坐标,再由点D在反比例函数y= 的图象上,可以把把x=8+a,y= a代入反比例函数解析式求出a的值,再根据点D是AE 中点即可得出结论.【解答】解:(1)过C作CM⊥OA,∵△OAB为边长为8的等边三角形,C为OB中点,∴OC=4,∠BOA=60°,在Rt△OCM中,CM=OC•sin60°=2 ,OM=OC•cos60°=2,∴C(2,2 ),代入反比例解析式得:k=4 ,则反比例解析式为y= ;(2)过点D作DH⊥AF,垂足为点H,设AH=a(a>0).在Rt△DAH中,∵∠DAH=60°,∴∠ADH=30°.∴AD=2AH=2a,由勾股定理得:DH= a.∵点D在第一象限,∴点D的坐标为(8+a, a).∵点D在反比例函数y= 的图象上,∴把x=8+a,y= a代入反比例函数解析式,解得 a=2 ﹣4 (a=﹣2 ﹣4<0不符题意,舍去).∵点D是AE中点,∴等边△AFE的边长为8 ﹣16,∴△AEF的周长=24 ﹣48.25.在平面直角坐标系中,平行四边形ABOC放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线经过点C、A、A′,求此抛物线的解析式;(2)在(1)的情况下,点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)在(1)的情况下,若P为抛物线上一动点,N为x轴上的一动点,点Q 坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.【考点】二次函数综合题.【分析】(1)由平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),可求得点A′的坐标,然后利用待定系数法即可求得经过点C、A、A′的抛物线的解析式;(2)首先连接AA′,设直线AA′的解析式为:y=kx+b,利用待定系数法即可求得直线AA′的解析式,再设点M的坐标为:(x,﹣x2+3x+4),继而可得△AMA′的面积,继而求得答案;(3)分别从BQ为边与BQ为对角线去分析求解即可求得答案.【解答】解:(1)∵平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),∴点A′的坐标为:(4,0),∵点A、C的坐标分别是(0,4)、(﹣1,0),抛物线经过点C、A、A′,设抛物线的解析式为:y=ax2+bx+c,∴ ,解得:,∴此抛物线的解析式为:y=﹣x2+3x+4;(2)连接AA′,设直线AA′的解析式为:y=kx+b,∴ ,解得:,∴直线AA′的解析式为:y=﹣x+4,设点M的坐标为:(x,﹣x2+3x+4),则S△AMA′= ×4×[﹣x2+3x+4﹣(﹣x+4)]=﹣2x2+8x=﹣2(x﹣2)2+8,∴当x=2时,△AMA′的面积最大,最大值S△AMA′=8,∴M的坐标为:(2,6);(3)设点P的坐标为(x,﹣x2+3x+4),当P,N,B,Q构成平行四边形时,∵平行四边形ABOC中,点A、C的坐标分别是(0,4)、(﹣1,0),∴点B的坐标为(1,4),∵点Q坐标为(1,0),P为抛物线上一动点,N为x轴上的一动点,①当BQ为边时,PN∥BQ,PN=BQ,∵BQ=4,∴﹣x2+3x+4=±4,当﹣x2+3x+4=4时,解得:x1=0,x2=3,∴P1(0,4),P2(3,4);当﹣x2+3x+4=﹣4时,解得:x3= ,x4= ,∴P3( ,﹣4),P4( ,﹣4);②当BQ为对角线时,BP∥QN,BP=QN,此时P与P1,P2重合;综上可得:点P的坐标为:P1(0,4),P2(3,4),P3( ,﹣4),P4( ,﹣4);2,当这个平行四边形为矩形时,点N的坐标为:(0,0)或(3,0).。
【解析版】福建省福州市中考数学模拟试卷(二)
福建省福州市中考数学模拟试卷(二)一、选择题(共10小题,每题3分,满分30分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.不等式1﹣x>0的解集在数轴上表示正确的是()A. B. C.D.2.如图,已知AB∥CD,与∠1是同位角的角是()A.∠2 B.∠3 C.∠4 D.∠53.下列交通标志图案是轴对称图形的是()A. B. C. D.4.数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是()A. 1 B. 3 C. 1.5 D. 25.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A. B. 3 C. 2 D. 46.若代数式x2+ax可以分解因式,则常数a不可以取()A.﹣1 B. 0 C. 1 D. 27.下列计算正确的是()A. 2a+5a=7a B. 2x﹣x=1 C. 3+a=3a D. x2•x3=x68.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.9.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小10.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A. B. C. D.πr2二、填空题(共6小题,每题4分,满分24分)11.要使代数式有意义,则实数a的取值范围是.12.将直线y=2x+1平移后经过点,则平移后的直线解析式为.13.已知==3,==10,==15,…观察以上计算过程,寻找规律计算=.14.一个扇形的弧长是20πcm,半径是24cm,则此扇形的圆心角是度.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为.16.若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是.三、解答题(共10小题,满分96分)17.计算:+|﹣4|+(﹣1)0﹣()﹣1.18.先化简,再求值:﹣,其中a=+1,b=﹣1.19.解方程:x2+2x﹣3=0.20.如图,点A,C,D在同一条直线上,BC与AE交于点F,AE=AC,AD=BC,FA=FC.求证:∠B=∠D.21.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.时间 1小时左右 1.5小时左右 2小时左右 2.5小时左右人数 50 80 120 50根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)22.乔丹体育用品商店开展“超级星期六”促销活动:运动服8折出售,运动鞋每双减20元.活动期间,标价为480元的某款运动服装(含一套运动服和一双运动鞋)价格为400元.问该款运动服和运动鞋的标价各是多少元?23.已知钝角三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,AC=,根据题意画出示意图,并求tanD的值.24.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;若CF=5,cos∠A=,求BE的长.25.如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.26.如图,在平面直角坐标系xOy中,已知抛物线y=a(x﹣1)(x﹣5)与x轴交于B、C两点,与y轴交于点A(0,4),抛物线的对称轴l与x轴相交于点M.(1)则a=;该抛物线的对称轴为;连接AC,在直线AC下方的抛物线上是否存在一点N,使△NAC的面积为14?若存在,请你求出点N的坐标;若不存在,请说明理由;(3)设P(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以A、O、M、P为顶点的四边形的四条边的长度是四个连续的正整数,求点P的坐标.福建省福州市中考数学模拟试卷(二)参考答案与试题解析一、选择题(共10小题,每题3分,满分30分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.不等式1﹣x>0的解集在数轴上表示正确的是()A. B. C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.分析:根据解不等式的方法,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.解答:解;1﹣x>0,解得x<1,故选:A.点评:本题考查了在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.如图,已知AB∥CD,与∠1是同位角的角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角的定义得出结论.解答:解:∠1与∠5是同位角.故选:D.点评:本题主要考查了同位角的定义,熟记同位角,内错角,同旁内角,对顶角是关键.3.下列交通标志图案是轴对称图形的是()A. B. C. D.考点:轴对称图形.专题:常规题型.分析:根据轴对称的定义结合选项所给的特点即可得出答案.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是()A. 1 B. 3 C. 1.5 D. 2考点:中位数;算术平均数.分析:根据平均数的计算公式求出x的值,再把这组数据从小到大排列,根据中位数的定义即可得出答案.解答:解:∵数据0,1,1,x,3,4的平均数是2,∴(0+1+1+x+3+4)÷6=2,解得:x=3,把这组数据从小到大排列0,1,1,3,3,4,最中间两个数的平均数是(1+3)÷2=2,则这组数据的中位数是2;故选:D.点评:此题考查了中位数和平均数,根据平均数的计算公式求出x的值是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).5.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A. B. 3 C. 2 D. 4考点:垂径定理;圆周角定理;解直角三角形.专题:计算题.分析:如图,首先证得OA⊥BC;然后由圆周角定理推知∠C=30°,通过解直角△ACD可以求得CD的长度.则BC=2CD.解答:解:如图,设AO与BC交于点D.∵∠AOB=60°,,∴∠C=∠AOB=30°,又∵AB=AC,∴=∴AD⊥BC,∴BD=CD,∴在直角△ACD中,CD=AC•cos30°=2×=,∴BC=2CD=2.故选:C.点评:本题考查了解直角三角形,圆周角定理等知识点.推知△OAB是等边三角形是解题的难点,证得AD⊥BC是解题的关键.6.若代数式x2+ax可以分解因式,则常数a不可以取()A.﹣1 B. 0 C. 1 D. 2考点:因式分解-提公因式法.分析:利用提取公因式法分解因式的方法得出即可.解答:解:∵代数式x2+ax可以分解因式,∴常数a不可以取0.故选:B.点评:此题主要考查了提取公因式法分解因式,理解提取公因式法分解因式的意义是解题关键.7.下列计算正确的是()A. 2a+5a=7a B. 2x﹣x=1 C. 3+a=3a D. x2•x3=x6考点:同底数幂的乘法;合并同类项.分析:根据合并同类项、同底数幂的运算法则计算.解答:解:A、符合合并同类项法则,故本选项正确;B、2x﹣x=x≠1,故本选项错误;C、3和a不是同类项,故本选项错误;D、x2•x3≠x6=x5,故本选项错误.故选:A.点评:本题考查了同底数幂的乘法与合并同类项,熟悉合并同类项法则是解题的关键.8.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.考点:作图—复杂作图.分析:要使PA+PC=BC,必有PA=PB,所以选项中只有作AB的中垂线才能满足这个条件,故D 正确.解答:解:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC故选:D.点评:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出PA=PB.9.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小考点:反比例函数的性质.专题:常规题型.分析:根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x的增大而减小.解答:解:A、把点(1,1)代入反比例函数y=得2≠1不成立,故A选项错误;B、∵k=2>0,∴它的图象在第一、三象限,故B选项错误;C、图象的两个分支关于y=﹣x对称,故C选项错误.D、当x>0时,y随x的增大而减小,故D选项正确.故选:D.点评:本题考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.10.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A. B. C. D.πr2考点:扇形面积的计算;等边三角形的性质;切线的性质.专题:计算题;压轴题.分析:过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则在Rt△ADO1中,可求得.四边形ADO1E的面积等于三角形ADO1的面积的2倍,还可求出扇形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.解答:解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则Rt△ADO1中,∠O1AD=30°,O1D=r,.∴.由.∵由题意,∠DO1E=120°,得,∴圆形纸片不能接触到的部分的面积为=.故选:C.点评:本题考查了面积的计算、等边三角形的性质和切线的性质,是基础知识要熟练掌握.二、填空题(共6小题,每题4分,满分24分)11.要使代数式有意义,则实数a的取值范围是a≠﹣1.考点:分式有意义的条件.专题:计算题.分析:使代数式有意义的条件为a+1≠0,就可求得a的取值范围.解答:解:根据题意得:a+1≠0,所以a≠﹣1.故答案为a≠﹣1.点评:此题主要考查了分式的意义,要求掌握.只要令分式中分母不等于0,求得a的取值范围即可.12.将直线y=2x+1平移后经过点,则平移后的直线解析式为y=2x﹣3.考点:一次函数图象与几何变换.分析:根据平移不改变k的值可设平移后直线的解析式为y=2x+b,然后将点代入即可得出直线的函数解析式.解答:解:设平移后直线的解析式为y=2x+b.把代入直线解析式得1=2×2+b,解得 b=﹣3.所以平移后直线的解析式为y=2x﹣3.故答案为:y=2x﹣3.点评:本题考查了一次函数图象与几何变换及待定系数法去函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.13.已知==3,==10,==15,…观察以上计算过程,寻找规律计算=56.考点:规律型:数字的变化类.分析:对于C a b(b<a)来讲,等于一个分式,其中分母是从1到b的b个数相乘,分子是从a开始乘,乘b的个数.解答:解:∵==3,==10,==15,∴==56.故答案为:56.点评:此题主要考查了数字的变化规律,利用已知得出分子与分母之间的规律是解题关键.14.一个扇形的弧长是20πcm,半径是24cm,则此扇形的圆心角是150度.考点:弧长的计算.分析:直接利用弧长公式l=即可求出n的值,计算即可.解答:解:根据l===20π,解得:n=150,故答案为:150.点评:本题考查了扇形弧长公式计算,注意公式的灵活运用是解题关键.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为1.考点:三角形中位线定理.分析:根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.解答:解:∵DE为△ABC的中位线,∠AFB=90°,∴DE=BC,DF=AB,∵AB=6,BC=8,∴DE=×8=4,DF=×6=3,∴EF=DE﹣DF=4﹣3=1.故答案为:1.点评:本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.16.若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是0<m<2.考点:二次函数的图象;反比例函数的图象.专题:压轴题;图表型.分析:首先作出分段函数y=的图象,根据函数的图象即可确定m的取值范围.解答:解:分段函数y=的图象如图:故要使直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,常数m的取值范围为0<m<2,故答案为:0<m<2.点评:本题考查了二次函数的图象及反比例函数的图象,首先作出分段函数的图象是解决本题的关键,采用数形结合的方法确定答案是数学上常用的方法之一.三、解答题(共10小题,满分96分)17.计算:+|﹣4|+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+4+1﹣2=6.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.先化简,再求值:﹣,其中a=+1,b=﹣1.考点:分式的化简求值.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分得到最简结果,将a与b的值代入计算即可求出值.解答:解:原式===a+b,当a=+1,b=﹣1时,原式=+1+﹣1=2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.解方程:x2+2x﹣3=0.考点:解一元二次方程-因式分解法.专题:计算题.分析:观察方程x2+2x﹣3=0,可因式分解法求得方程的解.解答:解:x2+2x﹣3=0∴(x+3)(x﹣1)=0∴x1=1,x2=﹣3.点评:解方程有多种方法,要根据实际情况进行选择.20.如图,点A,C,D在同一条直线上,BC与AE交于点F,AE=AC,AD=BC,FA=FC.求证:∠B=∠D.考点:全等三角形的判定与性质.专题:证明题.分析:根据三角形全等得到对应角相等即可得出结论.解答:证明:∵FA=FC,∴∠FAC=∠FCA,在△ABC和△EDA中,,∴△ABC≌△EDA,∴∠B=∠D.点评:本题考查了全等三角形的判定与性质,找准对应边和对应角是解题的关键.21.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.时间 1小时左右 1.5小时左右 2小时左右 2.5小时左右人数 50 80 120 50根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)考点:加权平均数;用样本估计总体;频数(率)分布直方图;扇形统计图.专题:压轴题;图表型.分析:(1)先求出喝红茶的百分比,再乘总数.先让总数减其它三种人数,再根据数值画直方图.(3)用加权平均公式求即可.解答:解:(1)冰红茶的百分比为100%﹣25%﹣25%﹣10%=40%,冰红茶的人数为400×40%=160(人),即七年级同学最喜欢喝“冰红茶”的人数是160人;补全频数分布直方图如右图所示.(3)(小时).答:九年级300名同学完成家庭作业的平均时间约为1.8小时.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.乔丹体育用品商店开展“超级星期六”促销活动:运动服8折出售,运动鞋每双减20元.活动期间,标价为480元的某款运动服装(含一套运动服和一双运动鞋)价格为400元.问该款运动服和运动鞋的标价各是多少元?考点:二元一次方程组的应用.分析:设运动服、运动鞋的标价分别为x元/套、y元/双,根据标价为480元的某款运动服装价格为400元,列方程组求解.解答:解:设运动服、运动鞋的标价分别为x元/套、y元/双,由题意得,,解得:.答:运动服、运动鞋的标价分别为300元/套、180元/双.点评:本题考查了二元一次方程的应用,解题的关键是读懂题意,设出未知数,找到题目当中的等量关系,列方程求解.23.已知钝角三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,AC=,根据题意画出示意图,并求tanD的值.考点:解直角三角形.分析:首先根据题意画出示意图,根据三角形外角的性质得出∠ACB=∠D+∠CAD,而∠ACB=2∠D,那么∠CAD=∠D,由等角对等边得到CA=CD,再根据等角的余角相等得出∠B=∠BAC,则AC=CB,BD=2AC=2×=3.然后解Rt△ABD,运用勾股定理求出AB==,利用正切函数的定义求出tanD==.解答:解:如图,∵∠ACB=∠D+∠CAD,∠ACB=2∠D,∴∠CAD=∠D,∴CA=CD.∵∠DAB=90°,∴∠B+∠D=90°,∠BAC+∠CAD=90°,∴∠B=∠BAC,∴AC=CB,∴BD=2AC=2×=3.在Rt△ABD中,∵∠DAB=90°,AD=2,∴AB==,∴tanD==.点评:本题考查了三角形外角的性质,等腰三角形的判定,余角的性质,解直角三角形,勾股定理,正切函数的定义,难度适中.求出BD的值是解题的关键.24.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;若CF=5,cos∠A=,求BE的长.考点:切线的判定.专题:几何综合题.分析:(1)连结OD.先证明OD是△ABC的中位线,根据中位线的性质得到OD∥AB,再由DE⊥AB,得出OD⊥EF,根据切线的判定即可得出直线EF是⊙O的切线;先由OD∥AB,得出∠COD=∠A,再解Rt△DOF,根据余弦函数的定义得到cos∠FOD==,设⊙O的半径为R,解方程=,求出R=,那么AB=2OD=,解Rt△AEF,根据余弦函数的定义得到cos∠A==,求出AE=,然后由BE=AB﹣AE即可求解.解答:(1)证明:如图,连结OD.∵CD=DB,CO=OA,∴OD是△ABC的中位线,∴OD∥AB,AB=2OD,∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线;解:∵OD∥AB,∴∠COD=∠A.在Rt△DOF中,∵∠ODF=90°,∴cos∠FOD==,设⊙O的半径为R,则=,解得R=,∴AB=2OD=.在Rt△AEF中,∵∠AEF=90°,∴cos∠A===,∴AE=,∴BE=AB﹣AE=﹣=2.点评:本题考查了切线的判定,解直角三角形,三角形中位线的性质知识点.要证某线是圆的切线,已知此线过圆上某点,连结圆心与这点(即为半径),再证垂直即可.25.如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.考点:相似形综合题.专题:压轴题.分析:(1)过点C作CE⊥AB于E,根据CE=BC•sin∠B求出CE,再根据AD=CE即可求出AD;若以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似,则△PCB必有一个角是直角.分两种情况讨论:①当∠PCB=90°时,求出AP,再根据在Rt△ADP中∠DPA=60°,得出∠DPA=∠B,从而得到△ADP∽△CPB,②当∠CPB=90°时,求出AP=3,根据≠且≠,得出△PCB与△ADP不相似.(3)先求出S1=π•,再分两种情况讨论:①当2<x<10时,作BC的垂直平分线交BC于H,交AB于G;作PB的垂直平分线交PB于N,交GH于M,连结BM,在Rt△GBH中求出BG、BN、GN,在Rt△GMN中,求出MN=(x﹣1),在Rt△BMN中,求出BM2=x2﹣x+,最后根据S1=π•BM2代入计算即可.②当0<x≤2时,S2=π(x2﹣x+),最后根据S=S1+S2=π(x﹣)2+π即可得出S的最小值.解答:解:(1)过点C作CE⊥AB于E,在Rt△BCE中,∵∠B=60°,BC=4,∴CE=BC•sin∠B=4×=2,∴AD=CE=2.存在.若以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似,则△PCB必有一个角是直角.①当∠PCB=90°时,在Rt△PCB中,BC=4,∠B=60°,PB=8,∴AP=AB﹣PB=2.又由(1)知AD=2,在Rt△ADP中,tan∠DPA===,∴∠DPA=60°,∴∠DPA=∠CPB,∴△ADP∽△CPB,∴存在△ADP与△CPB相似,此时x=2.②∵当∠CPB=90°时,在Rt△PCB中,∠B=60°,BC=4,∴PB=2,PC=2,∴AP=8.则≠且≠,此时△PCB与△ADP不相似.(3)如图,因为Rt△ADP外接圆的直径为斜边PD,则S1=π•()2=π•,①当2<x<10时,作BC的垂直平分线交BC于H,交AB于G;作PB的垂直平分线交PB于N,交GH于M,连结BM.则BM为△PCB外接圆的半径.在Rt△GBH中,BH=BC=2,∠MGB=30°,∴BG=4,∵BN=PB=(10﹣x)=5﹣x,∴GN=BG﹣BN=x﹣1.在Rt△GMN中,∴MN=GN•tan∠MGN=(x﹣1).在Rt△BMN中,BM2=MN2+BN2=x2﹣x+,∴S2=π•BM2=π(x2﹣x+).②∵当0<x≤2时,S2=π(x2﹣x+)也成立,∴S=S1+S2=π•+π(x2﹣x+)=π(x﹣)2+π.∴当x=时,S=S1+S2取得最小值π.点评:此题考查了相似形综合,用到的知识点是相似三角形的性质与判定、二次函数的最值、勾股定理,关键是根据题意画出图形构造相似三角形,注意分类讨论.26.如图,在平面直角坐标系xOy中,已知抛物线y=a(x﹣1)(x﹣5)与x轴交于B、C两点,与y轴交于点A(0,4),抛物线的对称轴l与x轴相交于点M.(1)则a=;该抛物线的对称轴为x=3;连接AC,在直线AC下方的抛物线上是否存在一点N,使△NAC的面积为14?若存在,请你求出点N的坐标;若不存在,请说明理由;(3)设P(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以A、O、M、P为顶点的四边形的四条边的长度是四个连续的正整数,求点P的坐标.考点:二次函数综合题.分析:(1)首先把x=0,y=4代入y=a(x﹣1)(x﹣5),求出a的值是多少;然后求出B、C两点的坐标,确定出该抛物线的对称轴即可.首先过点N作NG∥y轴交AC于G,求出直线AC的解析式为:y=﹣x+4,设N点的横坐标是t,则此时点N(t,t2﹣+4)(0<t<5);然后求出△CAN面积的最大值为多少,判断出是否存在一点N,使△NAC的面积为14即可.(3)首先判断出以A、O、M、P为顶点的四边形有两条边:AO=4,OM=3,判断出以1、2、3、4为边或以2、3、4、5为边都不符合题意,所以四条边的长只能是3、4、5、6一种情况,然后证明以A、O、M、P为顶点的四边形的四条边的长是3、4、5、6成立,并求出P的坐标是多少即可.解答:解:(1)把x=0,y=4代入y=a(x﹣1)(x﹣5),可得a×(﹣1)×(﹣5)=4,解得a=;∵B、C两点的坐标分别是(1,0)、(5,0),∴该抛物线的对称轴为x=(5+1)÷2=3,即该抛物线的对称轴为x=3.如图1,过点N作NG∥y轴交AC于G,,抛物线y=(x﹣1)(x﹣5)=x2+4,由点A(0,4)和点C(5,0),可得直线AC的解析式为:y=﹣x+4,设N点的横坐标是t,则此时点N(t,t2﹣+4)(0<t<5),把x=t代入y=﹣x+4,可得G(t,﹣t+4),此时NG=﹣t+4﹣(t2﹣+4)=﹣t2+5t,∴S△ACN=S△ANG+S△CGN=×(﹣t2+5t)=﹣2+,∴当t=时,△CAN面积的最大值为:,∴存在一点N,使△NAC的面积为14.(3)如图2,,以A、O、M、P为顶点的四边形有两条边:AO=4,OM=3,又∵点P的坐标中x>5,∴MP>2,AP>2,∴以1、2、3、4为边或以2、3、4、5为边都不符合题意,∴四条边的长只能是3、4、5、6一种情况.在Rt△AOM中,AM==5,∵抛物线的对称轴过点M,∴在抛物线x>5的图象上有关于点A的对称点与M的距离为5,即PM=5,此时点P横坐标为6,即AP=6,∴以A、O、M、P为顶点的四边形的四条边的长是3、4、5、6成立,即P(6,4).故答案为:、x=3.点评:(1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力;此题还考查了三角形的面积的求法,以及数形结合方法的应用,要熟练掌握.。
2017年福州市数学科中考质检试卷word版(含答案)
福州市2017年初中毕业班质量检测数学试卷参考答案及评分标准一、选择题(每小题4分,共40分)1.B 2.C 3.D 4.B 5.C 6.A 7.B 8.C 9.A 10.B二、填空题(每小题4分,共24分)11.x≥312.13.1 14.3 15.>16.三、解答题(满分86分)17.解:原式 ............................................................................................................................ 4分...................................................................................................... 6分. ........................................................................................................ 8分18.已知:如图,△ABC中,,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E,F.......................................................................................... 2分求证:. .................................................................................................................................... 3分证明:连接AD.............. 4分∵,D是BC的中点,∴AD平分∠BAC. ............. 6分∵DE⊥AB,DF⊥AC,∴. ...................................................................................................................................................... 8分19.解:(m满足<m<2的无理数均可)............................................................................................. 2分理由如下:当时,方程为, .................................................................................................................................. 4分∵<0. ................................................................................................................................................ 7分∴当时,方程无实数根. .................................................................................................................. 8分20.解:如图所示. .................................................................................................................................. 3分∵在Rt△ABC中,,,∴. .............................................. 4分由作图知:...................................... 5分∴..................................................................................................................................................... 7分∴..................................................................................................................................................... 8分21.解:(1)9%;..................................................................................................................................... 3分(2)年增长率的平均数. ................................................................................................................ 5分年增长率的中位数. ................................................................................................................ 6分(3)预测2017年全国观影人数约为17.97亿(答案从14.84~20.85均可).理由如下:按每年增长率的平均数进行估算,答案为:≈17.97.(答案不唯一,言之有理即可得分) ........................................................................................ 8分22.解:(1)设身高y与指距x之间的函数关系式为...................................................................... 1分将与代入上式得:. ........................................................................................................................................................ 3分解得 .................................................................................................................................................... 5分∴y与x之间的函数关系式为.…①.............................................................................................. 6分将代入①也符合.(2)当时,. ...................................................................................................................................... 9分因此,李华的身高大约是178 cm................................................................................................. 10分23.解:(1)∵四边形ADBC为⊙O的内接四边形,∴....................................................................................................................................................... 1分∵,∴....................................................................................................................................................... 2分∵,∴. ...................................................................................................................................................... 3分∴. ...................................................................................................................................................... 4分(2)过点A作AH⊥BC,垂足为H................................................................................................ 5分∵,∴.∴.∵,,∴△ABC∽△EAC............... 6分∴.即. ...................................................................................................................................................... 7分设,则,.在Rt△AHC中:,即. ...................................................................................................................................................... 8分解得:,.当时,EH<BE,∴点H在BE上.∴∠ABC>(不合题意,舍去).∴. ...................................................................................................................................................... 9分∴. ...................................................................................................................................................... 10分24.解:(1)如图,∵四边形ABCD为平行四边形,∴,,AD∥BC................................................................................................................................... 1分(写出一个结论即给1分)∴.∴.∵,,∴.∴. ...................................................................................................................................................... 2分∵F为BD中点,∴. ...................................................................................................................................................... 3分(2)如图,∵,,,,∴,.∴. ........................................................................................................................................................ 4分∵,∴△DCE∽△BCD................ 5分∴.∵在Rt△CDE中,,∴. ........................................................................................................................................................ 6分∵F为BD中点,∴.∴. ........................................................................................................................................................ 7分(3)在BC边上取中点G,连接FG. ............................................................................................... 9分则FG∥CD.∴,. .................................................................................................................................................... 10分∵,,∴.∴. ...................................................................................................................................................... 11分∴.∵∴. .................................................................................................................................................... 12分25.解:(1)∵依题意得:抛物线的对称轴是,∴. ...................................................................................................................................................... 1分∴抛物线的解析式可化为.∵抛物线过顶点(c,),∴. ...................................................................................................................................................... 2分化简得.解得:(不合题意,舍去),.∴. ...................................................................................................................................................... 3分∴抛物线的解析式为. ...................................................................................................................... 4分(2)依题意得:抛物线的对称轴为直线........................................................................................ 6分∴设抛物线的顶点为(,).则抛物线的解析式为. .................................................................................................................... 7分∵抛物线过A(m,n),B(,)两点,∴.解得. .................................................................................................................................................. 8分∴. ...................................................................................................................................................... 9分(3)由(2)可知:抛物线的解析式为. ...................................................................................... 10分令,得.∵<,∴,. .................................................................................................................................................. 11分∵0<<3,∴0<<3. ........................................................................................................................................ 12分解得:<m<. ................................................................................................................................. 13分∵,∴<b<. .......................................................................................................................................... 14分。
福建省2017年中考数学试题(含答案)
数学试题第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.3的相反数是( ) A .-3 B .13-C .13D .3 2.如图,由四个正方体组成的几何体的左视图是( )A .B .C .D .3.用科学计数法表示136 000,其结果是( )A .60.13610⨯ B .51.3610⨯ C .313610⨯ D .613610⨯ 4.化简2(2)x 的结果是( )A .4x B .22x C . 24x D .4x 5.下列关于图形对称性的命题,正确的是( ) A .圆既是轴对称性图形,又是中心对称图形 B .正三角形既是轴对称图形,又是中心对称图形 C .线段是轴对称图形,但不是中心对称图形 D .菱形是中心对称图形,但不是轴对称图形 6. 不等式组:⎩⎨⎧>+≤-0302x x 的解集是( )A .32x -<≤B .32x -≤<C . 2x ≥D .3x <-7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,158.如图,AB 是O e 的直径,,C D 是O e 上位于AB 异侧的两点.下列四个角中,一定与ACD ∠互余的角是( )A .ADC ∠B .ABD ∠C . BAC ∠D .BAD ∠9.若直线1y kx k =++经过点(,3)m n +和(1,21)m n +-,且02k <<,则n 的值可以是( ) A .3 B .4 C .5 D .610.如图,网格纸上正方形小格的边长为1.图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段A B ''和点P ',则点P '所在的单位正方形区域是( )A .1区B .2区C .3区D .4区第Ⅱ卷(共90分)二、填空题:本题共6小题,每小题4分,共24分.11.计算023--= .12. 如图,ABC ∆中,,D E 分别是,AB AC 的中点,连线DE ,若3DE =,则线段BC 的长等于 .13.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是 . 14.已知,,A B C 是数轴上的三个点,且C 在B 的右侧.点,A B 表示的数分别是1,3,如图所示.若2BC AB =,则点C 表示的数是 .15.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.16. 已知矩形ABCD 的四个顶点均在反比例函数1y x=的图象上,且点A 的横坐标是2,则矩形ABCD 的面积为 .三、解答题 :本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17. 先化简,再求值:1)11(2-⋅-a a a ,其中12-=a . 18. 如图,点,,,B E C F 在一条直线上,,,AB DE AC DF BE CF ===.求证: A D ∠=∠.19.如图,ABC ∆中,90,BAC AD BC ∠=⊥o ,垂足为D .求作ABC ∠的平分线,分别交,AD AD 于P ,Q 两点;并证明AP AQ =.(要求:尺规作图,保留作图痕迹,不写作法)20.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.21.如图,四边形ABCD 内接于O e ,AB 是O e 的直径,点P 在CA 的延长线上,45CAD ∠=o.(Ⅰ)若4AB =,求弧CD 的长;(Ⅱ)若弧BC =弧AD ,AD AP =,求证:PD 是O e 的切线. 22.小明在某次作业中得到如下结果:2222sin 7sin 830.120.990.9945+≈+=o o , 2222sin 22sin 680.370.93 1.0018+≈+=o o , 2222sin 29sin 610.480.870.9873+≈+=o o , 2222sin 37sin 530.600.80 1.0000+≈+=o o ,2222sin 45sin 45((122+≈+=o o .据此,小明猜想:对于任意锐角α,均有22sin sin (90)1αα+-=o . (Ⅰ)当30α=o时,验证22sin sin (90)1αα+-=o 是否成立;(Ⅱ)小明的猜想是否成立?若成立,若成立,请给予证明;若不成立,请举出一个反例.23.自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A 品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:(Ⅱ)已知该校有5000名师生,且A 品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A 品牌共享单车能否获利? 说明理由.24.如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长;(Ⅱ)若AP =,求CF 的长.25.已知直线m x y +=2与抛物线2Y ax ax b =++有一个公共点(1,0)M ,且a b <. (Ⅰ)求抛物线顶点Q 的坐标(用含a 的代数式表示); (Ⅱ)说明直线与抛物线有两个交点; (Ⅲ)直线与抛物线的另一个交点记为N .(ⅰ)若211-≤≤-a ,求线段MN 长度的取值范围; (ⅱ)求QMN ∆面积的最小值.。
2017年福州市初中毕业班质量检测数学试卷
2017年福州市初中毕业班质量检测数学试卷一、选择题〔本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确〕1. 下列运算结果为正数的是〔 〕A .()21-+B .()21--C .()21-⨯D .()21-÷2. 若一个几何体的主视图、左视图、俯视图都是半径相等的圆,则这个几何体是〔 〕A .圆柱B .圆锥C .球D .正方体3. 数轴上点A 、点B 表示的数分别是a,b,这两点间的距离是〔 〕A .b a +B .b a -C .b a +D .b a -4. 两个全等的正六边形如图摆放,与△ABC 面积不同的一个三角形是〔 〕A .△ABDB .△ABEC .△ABFD .△ABG5. 如图,O 为直线AB 上一点,∠AOC =α,∠BOC =β,则β的余角可表示为〔 〕 A .()βα+21B .α21C .()βα-21 D .β21 6. 在一个不透明的袋子中装有4个红球,2个白球,每个球只有颜色不同,从中任意摸出3个球,下列事件为必然事件的是〔 〕 A .至少有1个球是红球 B .至少有1个球是白球 C .至少有2个球是红球D .至少有2个球是白球7. 若m,n 均为正整数,且()642,3222==⋅nm nm,则mn+m+n 的值为〔 〕A .10B .11C .12D .138. 如图,△ABC 中,∠ABC=50°,∠C=30°,将△ABC 绕点B 逆时针旋转()︒≤︒900αα ,得到△DBE,若DE ∥BC,则α为〔 〕 A .50°B .70°C .80°D .90°AO CBβα AD CB F GE第5题第4题ADCBE第8题9. 在平面直角坐标系中,已知点A 〔1,2〕,B 〔2,1〕,C 〔3,1--〕,D 〔3,2-〕,其中不可能与点E〔1,3〕在同一函数图像上的一个点是〔 〕 A .点AB .点BC .点CD .点D10. P 是抛物线542+-=x x y 上一点,过点P 作PM ⊥x 轴,PN ⊥y 轴,垂足分别是M,N,则PM+PN的最小值是〔 〕A .45B .411 C .3 D .5二、填空题〔本大题有10小题,每小题4分,共24分〕 11. 若二次根式3-x 有意义,则x 的取值范围是____________.12. 2017年5月12日是第106个国际护士节,从数串"2 017 512"中随机抽取一个数字,抽到数字2的概率是____________.13. 计算:=⨯⨯-20172016440332_____________.14. 如图,矩形ABCD 中,AB=2,点O 在AB 边上,以O 为圆心OB长为半径的⊙O 与CD 相切,交AD 于点F,连接OF,若扇形OBF的面积为π34,则CD 的长是__________.15. 对于锐角α,tan α_______sin α〔填">","<"或"="〕. 16. 如图,四边形ABCD 中,∠ABC=∠ADC=90°,BD 平分∠ABC,∠DCB=60°,AB+BC=8,则AC 的长是_____________. 三、解答题〔共9小题,满分86分〕17. 〔8分〕化简:a a a a a a 11132-⋅⎪⎭⎫ ⎝⎛+-+ 18. 求证:等腰三角形底边中点到两腰距离相等.19. 〔8分〕已知关于x 的一元二次方程012=++mx x ,写出一个无理数m,使该方程没有实数根,并说明理由.20. 〔8分〕如图,在Rt △ABC 中,∠C=90°,BC=1,AC=2,以点B 为圆心,BC 长为半径画弧交AB于点D,以点A 为圆心AD 长为半径画弧,交AC 于点E,保留作图,并求ACAE的值. 21. 〔8分〕请根据下列图表信息解答问题:2010~2016年电影行业观影人次统计图CABA DB第16题第14题人次/亿2011~2016年电影行业观影人次年增长率统计表〔1〕表中空缺的数据为_________;〔精确到1%〕 〔2〕统计表中年增长率的平均数与中位数; 〔3〕预测2017年的观影人次,并说明理由.22. 〔10分〕如图,大拇指与小拇指尽量张开时,两指间的距离成为指距.某项研究表明,一般情况下人的身高〔y cm 〕是指距〔x cm 〕的一次函数,下表是测得的一组数据:(2) 如果李华的指距为22cm,那么他的身高约为多少?23. 〔10分〕如图,锐角△ABC 内接于⊙O,E 为CB 延长线上一点,连接AE 交⊙O 于点D,∠E=∠BAC,连接BD.(1) 求证:∠DBE=∠ABC ;(2) 若∠E=45°,BE=3,BC=5,求△AEC 的面积.24. 如图,□ABCD 中,AD=2AB,点E 在BC 边上,且CE=AD 41,F 为(1) 当∠ABC=90°,AD=4时,连接AF,求AF 的长; (2) 连接DE,若DE ⊥BC,求∠BEF 的度数;(3) 求证:∠BEF=21∠BCD.25. 〔14分〕已知抛物线()02≠++=bc c bx x y . EF CADBEF CADB第24题 备用图E(1) 若该抛物线的顶点坐标为〔c,b 〕,求其解析式;(2) 点A 〔m,n 〕,B 〔m+1,83n 〕,C 〔m+6,n 〕在抛物线c bx x y ++=2上,求△ABC 的面积;(3) 在〔2〕的条件下,抛物线c bx x y ++=2的图像与x 轴交于D 〔1x ,0〕,E 〔2x ,0〕〔21x x <〕两点,且0<2131x x +<3,求b 的取值范围. 福州市2017年初中毕业班质量检测 数学试卷参考答案与评分标准一、选择题〔每小题4分,共40分〕1.B 2.C 3.D 4.B 5.C 6.A 7.B 8.C 9.A10.B 二、填空题〔每小题4分,共24分〕11.x ≥3 12.72 13.1 14.3 15.> 16.638三、解答题<满分86分>17.解:原式aa a a a )1)(1(12-+⨯+= .......................................................................................................................... 4分 )1(2-=a .................................................................................................................................................................... 6分 22-=a .8分18.已知:如图,△ABC 中,AC AB =,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ........................................................................................................................................................................................ 2分 求证:DF DE =. ................................................................................................................................................. 3分证明:连接AD . .................................................................................................................................................... 4分∵AC AB =,D 是BC 的中点,∴AD 平分∠BAC . ................................................................................................................................................ 6分 ∵DE ⊥AB ,DF ⊥AC ,∴DF DE =. .......................................................................................................................................................... 8分 19.解:2=m 〔m 满足2-<m <2的无理数均可〕 .................................................................................. 2分理由如下:当2=m 时,方程为0122=++x x , .............................................................................................................. 4分 ∵24)2(422-=-=-=∆ac b <0. ............................................................................................................ 7分 ∴当2=m 时,方程012=++mx x 无实数根. ........................................................................................... 8分 20.解:如图所示. ...................................................................................................................................................... 3分∵在Rt △ABC 中,1=BC ,2=AC ,∴52122=+=AB . ...................................................................................................................................... 4分由作图知:1==BC BD . .................................................................................................................................. 5分∴15-==AD AE . .......................................................................................................................................... 7分∴215-=AC AE . ................................................................................................................................................... 8分 A BCDEF AB CD E21.解:〔1〕9%;......................................................................................................................................................... 3分〔2〕年增长率的平均数%316%9%52%35%32%27%31=+++++=. ............................................ 5分年增长率的中位数%5.312%32%31=+=. ........................................................................................ 6分〔3〕预测2017年全国观影人数约为17.97亿〔答案从14.84~20.85均可〕.理由如下:按每年增长率的平均数进行估算,答案为:%)311(72.13+⨯≈17.97. 〔答案不唯一,言之有理即可得分〕8分22.解:〔1〕设身高y 与指距x 之间的函数关系式为b kx y +=. ........................................................... 1分将⎩⎨⎧==15119y x 与⎩⎨⎧==16020y x 代入上式得:⎩⎨⎧=+=+1602015119b k b k . ..................................................................................................................................................... 3分 解得⎩⎨⎧-==209b k ............................................................................................................................................................ 5分∴y 与x 之间的函数关系式为209-=x y . …① ....................................................................................... 6分 将⎩⎨⎧==16921y x 代入①也符合.〔2〕当22=x 时,178********=-⨯=-=x y . ....................................................................................... 9分因此,李华的身高大约是178 cm . .................................................................................................................... 10分 23.解:〔1〕∵四边形ADBC 为⊙O 的内接四边形,∴︒=∠+∠180EAC DBC .1分 ∵︒=∠+∠180DBC EBD ,∴BAC BAE EAC DBE ∠+∠=∠=∠.2分 ∵BAC E ∠=∠,∴BAC BAE BAE E ABC ∠+∠=∠+∠=∠.3分 ∴ABC DBE ∠=∠.4分〔2〕过点A 作AH ⊥BC ,垂足为H .5分 ∵︒=∠45E , ∴︒=∠45EAH . ∴EH AH =.∵C C ∠=∠,BAC E ∠=∠, ∴△ABC ∽△EAC .6分∴ECAC AC BC =. 即40)35(52=+⨯=⋅=EC BC AC .7分 设x AH =,则x EH =,x HC -=8.E在Rt △AHC 中:222AC HC AH =+, 即40)8(22=-+x x .8分 解得:6=x ,2=x . 当2=x 时,EH <BE , ∴点H 在BE 上.∴∠ABC >︒90〔不合题意,舍去〕. ∴6=AH .9分 ∴24682121△=⨯⨯=⋅=AH EC S AEC .10分 24.解:〔1〕如图,∵四边形ABCD 为平行四边形,∴CD AB =,BC AD =,AD ∥BC .1分 〔写出一个结论即给1分〕 ∴︒=∠+∠180ABC BAD .∴︒=︒-︒=∠-︒=∠9090180180ABC BAD . ∵AB AD 2=,4=AD , ∴2=AB .∴52422222=+=+=AD AB BD .2分 ∵F 为BD 中点, ∴521==BD AF .3分 〔2〕如图,∵BC AD =,CD AB =,AD CE 41=,AB AD 2=, ∴CE CD 2=,CD BC 2=. ∴21==BC CD CD CE .4分 ∵C C ∠=∠,∴△DCE ∽△BCD .5分 ∴CDE CBD ∠=∠. ∵在Rt △CDE 中,21sin ==∠CD CE EDC , ∴︒=∠=∠30CDE CBD .6分 ∵F 为BD 中点, ∴BF BD EF ==21. ∴︒=∠=∠30DBE BEF .7分〔3〕在BC 边上取中点G ,连接FG .9分ABDEFAB CDEF则FG ∥CD . ∴C BGF ∠=∠,BC CD FG 4121==.10分 ∵BC AD CE 4141==,BC CG 21=, ∴BC EC CG GE 41=-=. ∴GE FG =.11分 ∴GFE BEF ∠=∠.∵BEF CFE BEF BGF ∠=∠+∠=∠2∴BEF C ∠=∠2. .................................................................................................................................................. 12分 25.解:〔1〕∵依题意得:抛物线的对称轴是c bx =-=2, ∴c b 2-=.1分∴抛物线的解析式可化为c cx x y +-=22. ∵抛物线过顶点〔c ,c 2-〕, ∴c c c c 2222-=+-.2分 化简得032=-c c .解得:01=c 〔不合题意,舍去〕,32=c . ∴62-=-=c b .3分∴抛物线的解析式为362+-=x x y .4分〔2〕依题意得:抛物线的对称轴为直线3+=m x .6分 ∴设抛物线的顶点为〔3+m ,k 〕.则抛物线的解析式为k m x y +--=2)3(.7分∵抛物线过A 〔m ,n 〕,B 〔1+m ,n 83〕两点,∴⎪⎩⎪⎨⎧=+=+n k nk 8349.解得⎩⎨⎧=-=81n k .8分 ∴1556218521△=⨯⨯=⋅=n AC S ABC .9分 〔3〕由〔2〕可知:抛物线的解析式为1)3(2---=m x y .10分 令0=y ,得01)3(2=---m x .∵1x <2x ,∴21+=m x ,42+=m x .11分 ∵0<2131x x +<3, ABCEFG D∴0<)4(312+++m m <3.12分 解得:25-<m <41-.13分 ∵32+=-m b ,∴211-<b <1-.14分。
2017年福建省福州市鼓楼区延安中学、屏东中学中考数学模拟试卷(解析版)
2017年福建省福州市鼓楼区延安中学、屏东中学中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,共40分)1.a的绝对值是()A.﹣a B.C.|a|D.2.随着移动互联网的不断普及,线上支付已经成为人们的生活方式和习惯,数据显示:截止2016年1月支付宝实名用户数量已经高达4.5亿,将这个数用科学记数法表示为()A.4.5×107B.4.5×108C.4.5×109D.4.5×10103.一个关于x的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是()A.﹣2<x<1 B.﹣2<x≤1 C.﹣2≤x<1 D.﹣2≤x≤14.如图是一几何体的三视图,这个几何体可能是()A.三棱柱B.三棱锥C.圆柱D.圆锥5.一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为()A.cm B.cm C.3cm D.cm6.一组数据:a﹣1,a,a,a+1,若添加一个数据a,下列说法错误的是()A.平均数不变B.中位数不变C.众数不变D.方差不变7.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210° D.270°8.如图,△ABC中,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.EF=6,BE=4,则CF的长为()A.6 B.4 C.2 D.59.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A.B.2﹣2 C.2﹣D.﹣210.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.2 B.﹣2 C.4 D.﹣4二、填空题(本大题共6小题,每小题4分,共24分)11.要使有意义,则x的取值范围是.12.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数.从中任意抽出一张卡片,卡片上的数是3的倍数的概率是.13.若关于x的方程9x2﹣6x+m=0有两个相等的实数根,则m的值为.14.如图,△ABC的顶点都在方格纸的格点上,则sinA=.15.若关于x的一元二次方程x2+mx+n=0有一个解是x=﹣2,则抛物线y=x2+mx+n﹣5一定过一个定点,它的坐标是.16.如图,在菱形ABCD中,∠B=60°,AB=a,点E,F分别是边AB,AD上的动点,且AE+AF=a,则线段EF长度的范围是.三、解答题(本大题共9小题,共86分)17.计算:(﹣2017)0﹣sin60°﹣()﹣1+.18.先化简,再求值:(1+)•,其中a=﹣1.19.如图,在△ABC中,AB=4cm,AC=6cm.(1)作图:作BC边的垂直平分线分别交与AC,BC于点D,E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结BD,求△ABD的周长.20.为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C跑步,D跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中的学生人数是.扇形统计图中C所在扇形的圆心角度数为,并补全条形统计图;(2)参加跳绳的30名同学中,有4名女生,现将这30名学生分成两组进行对抗练习,且4名女生每组分两人,求小红和美美能分在同一组的概率.21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?22.如图,在平面直角坐标系中,点A(2,n),B(6,n),D(p,q)(q<n),点B,D在直线y= x+1上.四边形ABCD的对角线AC,BD相交于点E(a,3),且AB∥CD,CD=4,求证:四边形ABCD 是矩形.23.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(1)若D为AC的中点,证明DE是⊙O的切线;(2)若OA=,CE=1,求△ABC的面积.24.如图①,AD为等腰直角△ABC的高,点A和点C分别在正方形DEFG的边DG和DE上,连接BG,AE.(1)直接写出线段BG与AE的数量关系:.(2)如图②所示将正方形DEFG绕点D旋转,当线段EG经过点A时,求证:BG⊥GE;(3)设DG与AB交于点M,在(2)的条件下,若AG:AE=3:4,求的值.25.已知抛物线C:y1=a(x﹣h)2﹣1,直线l:y2=kx﹣kh﹣1.(1)求证:直线l恒过抛物线C的顶点;(2)当a=1,2≤x≤m时,y1≤x﹣3恒成立,求m的最大值;(3)当0<a≤1,k>0时,若在直线l下方的抛物线C上至少存在三个横坐标为整数的点,求k的取值范围.2017年福建省福州市鼓楼区延安中学、屏东中学中考数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.a的绝对值是()A.﹣a B.C.|a|D.【考点】28:实数的性质.【分析】根据绝对值的定义进行选择正确选项即可.【解答】解:a的绝对值是|a|,故选C.2.随着移动互联网的不断普及,线上支付已经成为人们的生活方式和习惯,数据显示:截止2016年1月支付宝实名用户数量已经高达4.5亿,将这个数用科学记数法表示为()A.4.5×107B.4.5×108C.4.5×109D.4.5×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4.5亿=450000000=4.5×108,故选B.3.一个关于x的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是()A.﹣2<x<1 B.﹣2<x≤1 C.﹣2≤x<1 D.﹣2≤x≤1【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式解集的表示方法即可判断.【解答】解:该不等式组的解集是:﹣2≤x<1.故选C.4.如图是一几何体的三视图,这个几何体可能是()A.三棱柱B.三棱锥C.圆柱D.圆锥【考点】U3:由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选A.5.一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为()A.cm B.cm C.3cm D.cm【考点】MN:弧长的计算.【分析】利用弧长公式和圆的周长公式求解.【解答】解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr=,r=cm.故选:A.6.一组数据:a﹣1,a,a,a+1,若添加一个数据a,下列说法错误的是()A.平均数不变B.中位数不变C.众数不变D.方差不变【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】根据方差、众数、平均数、中位数的概念求解.【解答】解:一组数据:a﹣1,a,a,a+1,平均数为a,中位数为a,众数为a,若添加一个数据a后,平均数为a,中位数为a,众数为a,但方差改变,故选D7.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210° D.270°【考点】JA:平行线的性质.【分析】根据两直线平行,同旁内角互补求出∠B+∠C=180°,从而得到以点B、点C为顶点的五边形的两个外角的度数之和等于180°,再根据多边形的外角和定理列式计算即可得解.【解答】解:∵AB∥CD,∴∠B+∠C=180°,∴∠4+∠5=180°,根据多边形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=360°﹣180°=180°.故选B.8.如图,△ABC中,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.EF=6,BE=4,则CF的长为()A.6 B.4 C.2 D.5【考点】KJ:等腰三角形的判定与性质;JA:平行线的性质.【分析】如图,证明BE=OE,此为解题的关键性结论;证明CF=OF,即可解决问题.【解答】解:如图,∵BO平分∠ABC,∴∠ABO=∠CBO;∵EO∥BC,∴∠EOB=∠OBC,∴∠EOB=∠EBO,∴BE=OE;同理可证CF=OF;∵EF=6,BE=4,∴OF=EF﹣OE=EF﹣BE=2,∴CF=OF=2,故选C.9.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A.B.2﹣2 C.2﹣D.﹣2【考点】MI:三角形的内切圆与内心;KH:等腰三角形的性质;MA:三角形的外接圆与外心.【分析】由于直角三角形的外接圆半径是斜边的一半,由此可求得等腰直角三角形的斜边长,进而可求得两条直角边的长;然后根据直角三角形内切圆半径公式求出内切圆半径的长.【解答】解:∵等腰直角三角形外接圆半径为2,∴此直角三角形的斜边长为4,两条直角边分别为2,∴它的内切圆半径为:R=(2+2﹣4)=2﹣2.故选B.10.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.2 B.﹣2 C.4 D.﹣4【考点】S9:相似三角形的判定与性质;G6:反比例函数图象上点的坐标特征.【分析】要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到:===2,然后用待定系数法即可.【解答】解:过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D,设点A的坐标是(m,n),则AC=n,OC=m,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC,∵∠BDO=∠ACO=90°,∴△BDO∽△OCA,∴==,∵OB=2OA,∴BD=2m,OD=2n,因为点A在反比例函数y=的图象上,则mn=1,∵点B在反比例函数y=的图象上,B点的坐标是(﹣2n,2m),∴k=﹣2n•2m=﹣4mn=﹣4.故选D.二、填空题(本大题共6小题,每小题4分,共24分)11.要使有意义,则x的取值范围是x≥3.【考点】72:二次根式有意义的条件.【分析】根据二次根式的性质知,被开方数大于或等于0,据此可以求出x的范围.【解答】解:根据题意得:x﹣3≥0,解得:x≥3;故答案是:x≥3.12.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数.从中任意抽出一张卡片,卡片上的数是3的倍数的概率是.【考点】X4:概率公式.【分析】分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可.【解答】解:∵从1到6的数中3的倍数有3,6,共2个,∴从中任取一张卡片,P(卡片上的数是3的倍数)==.故答案为:.13.若关于x的方程9x2﹣6x+m=0有两个相等的实数根,则m的值为1.【考点】AA:根的判别式.【分析】关于x的方程9x2﹣6x+m=0有两个相等的实数根,则△=0,据此列出关于m的新方程,通过解新方程即可求得m的值.【解答】解:∵关于x的方程9x2﹣6x+m=0有两个相等的实数根,则△=62﹣4×9m=0,即36﹣36m=0,解得,m=1,故答案为:1.14.如图,△ABC的顶点都在方格纸的格点上,则sinA=.【考点】T1:锐角三角函数的定义.【分析】在直角△ABD中利用勾股定理求得AD的长,然后利用正弦的定义求解.【解答】解:在直角△ABD中,BD=1,AB=2,则AD===,则sinA===.故答案是:.15.若关于x的一元二次方程x2+mx+n=0有一个解是x=﹣2,则抛物线y=x2+mx+n﹣5一定过一个定点,它的坐标是(﹣2,﹣5).【考点】HA:抛物线与x轴的交点;H5:二次函数图象上点的坐标特征.【分析】由二次函数与一元二次方程的关系得出抛物线y=x2+mx+n与x轴的有一个交点坐标为(﹣2,0),由平移的性质得出抛物线y=x2+mx+n﹣5一定过一个定点(﹣2,﹣5)即可.【解答】解:∵关于x的一元二次方程x2+mx+n=0有一个解是x=﹣2,∴抛物线y=x2+mx+n与x轴的有一个交点坐标为(﹣2,0),∵抛物线y=x2+mx+n向下平移5个单位得到抛物线y=x2+mx+n﹣5,∴抛物线y=x2+mx+n﹣5一定过一个定点(﹣2,﹣5);故答案为:(﹣2,﹣5).16.如图,在菱形ABCD中,∠B=60°,AB=a,点E,F分别是边AB,AD上的动点,且AE+AF=a,则线段EF长度的范围是a≤EF≤a.【考点】L8:菱形的性质.【分析】由在边长为a的菱形ABCD中,易得△ABC、△CAD都是边长为a的正三角形,继而证得△ACE≌△DCF,继而证得△CEF是正三角形,继而可得当动点E运动到点B或点A时,CE的值最大,当CE⊥AB,即E为AB的中点时,EF的值最小.【解答】解:连接AC、CE、CF,如图所示:∵四边形ABCD是边长为a的菱形,∠B=60°,∴△ABC、△CAD都是边长为a的正三角形,∴AB=BC=CD=AC=AD,∠CAE=∠ACB=∠ACD=∠CDF=60°,∵AE+AF=a,∴AE=a﹣AF=AD﹣AF=DE,在△ACE和△DCF中,,∴△ACE≌△DCF(SAS),∴∠ACE=∠DCF,∴∠ACE+∠ACF=∠DCF+∠ACF,∴∠ECF=∠ACD=60°,∴△CEF是正三角形,∴EF=CE=CF,当动点E运动到点B或点A时,CE的最大值为a,当CE⊥AB,即E为BD的中点时,CE的最小值为a,∵EF=CE,∴a≤EF≤a.三、解答题(本大题共9小题,共86分)17.计算:(﹣2017)0﹣sin60°﹣()﹣1+.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂,特殊角的三角函数值,以及二次根式性质计算即可得到结果.【解答】解:原式=1﹣﹣2+2=﹣1.18.先化简,再求值:(1+)•,其中a=﹣1.【考点】6D:分式的化简求值.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:(1+)•,=•,=.当a=﹣1时,原式==.19.如图,在△ABC中,AB=4cm,AC=6cm.(1)作图:作BC边的垂直平分线分别交与AC,BC于点D,E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结BD,求△ABD的周长.【考点】N3:作图—复杂作图.【分析】(1)运用作垂直平分线的方法作图,(2)运用垂直平分线的性质得出BD=DC,利用△ABD的周长=AB+BD+AD=AB+AC即可求解.【解答】解:(1)如图1,(2)如图2,∵DE是BC边的垂直平分线,∴BD=DC,∵AB=4cm,AC=6cm.∴△ABD的周长=AB+BD+AD=AB+AC=4+6=10cm.20.为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C跑步,D跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中的学生人数是150.扇形统计图中C所在扇形的圆心角度数为144°,并补全条形统计图;(2)参加跳绳的30名同学中,有4名女生,现将这30名学生分成两组进行对抗练习,且4名女生每组分两人,求小红和美美能分在同一组的概率.【考点】X4:概率公式;VB:扇形统计图;VC:条形统计图.【分析】(1)根据A项目的人数及其百分比可得总人数,用360°乘以C项目的百分比可得其圆心角度数,总人数乘以C项目的百分比可得其人数;(2)列出所有等可能结果,根据概率公式可得答案.【解答】解:(1)本次调查中的学生人数是15÷10%=150(人),扇形统计图中C所在扇形的圆心角度数为360°×(1﹣10%﹣30%﹣20%)=144°,C项目的人数为150×(1﹣10%﹣30%﹣20%)=60,补全图象如下:故答案为:150,144;(2)记这四位同学分别为A、B、C、D,其中C表示小红,D表示美美,两人一组有如下6种情况:AB、AC、AD、BC、BD、CD,其中小红和美美能分在同一组的有AB、CD两种可能结果,∴小红和美美能分在同一组的概率为=.21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【考点】GA:反比例函数的应用;FH:一次函数的应用.【分析】(1)分别利用正比例函数以及反比例函数解析式求法得出即可;(2)利用y=4分别得出x的值,进而得出答案.【解答】解:(1)当0≤x≤4时,设直线解析式为:y=kx,将(4,8)代入得:8=4k,解得:k=2,故直线解析式为:y=2x,当4≤x≤10时,设反比例函数解析式为:y=,将(4,8)代入得:8=,解得:a=32,故反比例函数解析式为:y=;因此血液中药物浓度上升阶段的函数关系式为y=2x(0≤x≤4),下降阶段的函数关系式为y=(4≤x≤10).(2)当y=4,则4=2x,解得:x=2,当y=4,则4=,解得:x=8,∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.22.如图,在平面直角坐标系中,点A(2,n),B(6,n),D(p,q)(q<n),点B,D在直线y=x+1上.四边形ABCD的对角线AC,BD相交于点E(a,3),且AB∥CD,CD=4,求证:四边形ABCD 是矩形.【考点】F8:一次函数图象上点的坐标特征;LC:矩形的判定.【分析】由点B,D在直线y=x+1上,利用一次函数图象上点的坐标特征可求出a、n的值,由AB ∥CD、AB=CD可得出四边形ABCD为平行四边形,根据平行四边形的性质可得出BE=DE、AE=CE,由此可得出点C、D的坐标,根据点A、B、C、D的坐标可得出AD∥y轴、AB∥x轴,进而可得出∠BAD=90°,再根据“有一个角是直角的平行四边形是矩形”可证出四边形ABCD是矩形.【解答】证明:∵点B,D在直线y=x+1上,∴n=×6+1,3=a+1,解得:n=4,a=4,∴点A(2,4),点B(6,4),点E(4,3).∵点A(2,n),B(6,n),∴AB=6﹣2=4=CD.又∵AB∥CD,∴四边形ABCD为平行四边形,∴BE=DE,AE=CE,∴点D(2,2),点C(6,2).∴AD∥y轴,AB∥x轴,∴∠BAD=90°,∴四边形ABCD是矩形.23.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(1)若D为AC的中点,证明DE是⊙O的切线;(2)若OA=,CE=1,求△ABC的面积.【考点】ME:切线的判定与性质.【分析】(1)连接AE,OE,∠AEB=90°,∠BAC=90°,在Rt△ACE中,D为AC的中点,则DE=AD=CD= AC,得出∠DEA=∠DAE,由OA=OE,得出∠OAE=∠OEA,则∠DEO=∠DEA+∠OEA=∠DAE+∠OAE=∠BAC=90°,即可得出结论;(2)AB=2AO=2,由△BCA∽△BAE,得出=,求出BE=3,BC=4,由勾股定理得AC==2,则S△ABC=AB•AC代入即可得出结果.【解答】(1)证明:连接AE,OE,如图所示:∵AB是⊙O的直径,∴∠AEB=90°,∵AC是⊙O的切线,∴∠BAC=90°,∵在Rt△ACE中,D为AC的中点,∴DE=AD=CD=AC,∴∠DEA=∠DAE,∵OA=OE,∴∠OAE=∠OEA,∴∠DEO=∠DEA+∠OEA=∠DAE+∠OAE=∠BAC=90°,∴OE⊥DE,∵OE为半径,∴DE是⊙O的切线;(2)解:∵AO=,∴AB=2AO=2,∵∠CAB=∠AEB=90°,∠B=∠B,∴△BCA∽△BAE,∴=,即AB2=BE•BC=BE(BE+EC),∴(2)2=BE2+BE,解得:BE=3或BE=﹣4(不合题意,舍去),∴BE=3,∴BC=BE+CE=3+1=4,∴在Rt△ABC中,AC===2,=AB•AC=×2×2=2.∴S△ABC24.如图①,AD为等腰直角△ABC的高,点A和点C分别在正方形DEFG的边DG和DE上,连接BG,AE.(1)直接写出线段BG与AE的数量关系:BG=AE.(2)如图②所示将正方形DEFG绕点D旋转,当线段EG经过点A时,求证:BG⊥GE;(3)设DG与AB交于点M,在(2)的条件下,若AG:AE=3:4,求的值.【考点】SO:相似形综合题.【分析】(1)根据等腰直角三角形的性质得到BD=AD,根据正方形的性质得到GD=ED,∠ADE=∠BDG=90°,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到∠BGD=∠AED,根据垂直的定义即可得到结论;(3)设AG=3x,AE=4x,则GE=7x,根据三角函数的定义得到DG=GE•cos45°=7x•=x,根据全等三角形的性质得到BG=AE=4x,由勾股定理得到AB==5x根据相似三角形的性质即可得到结论.【解答】解:(1)BG=AE,理由:∵AD为等腰直角△ABC的高,∴BD=AD,∵四边形DEFG是正方形,∴GD=ED,∠ADE=∠BDG=90°,在△BDG与△ADE中,,∴△BDG≌△ADE,∴BG=AE;故答案为:BG=AE;(2)∵△BDG≌△ADE,∴∠BGD=∠AED,在Rt△GDE中,∠AED+∠AGD=180°﹣∠GDE=90°,∴∠BGD+∠AGD=90°,∴BG⊥GE;(3)设AG=3x,AE=4x,则GE=7x,∴DG=GE•cos45°=7x•=x,∵△BDG≌△ADE,∴BG=AE=4x,∴AB==5x,∵△ABD是等腰直角三角形,∴∠ABD=45°,BD=cos45°•AB=x,∵∠DGB=∠AGB﹣∠AGD=45°,∴∠DBM=∠DGB,∠MDB=∠BDG,∴△BDM∽△DGB,∴,即x:x=DN:x,∴DN=x,∴GM=DG﹣DM=x,∴==.25.已知抛物线C:y1=a(x﹣h)2﹣1,直线l:y2=kx﹣kh﹣1.(1)求证:直线l恒过抛物线C的顶点;(2)当a=1,2≤x≤m时,y1≤x﹣3恒成立,求m的最大值;(3)当0<a≤1,k>0时,若在直线l下方的抛物线C上至少存在三个横坐标为整数的点,求k的取值范围.【考点】H5:二次函数图象上点的坐标特征;F8:一次函数图象上点的坐标特征;H7:二次函数的最值.【分析】(1)由抛物线的解析式可知抛物线的顶点坐标为(h,﹣1),然后证明点(h,﹣1)符合直线y2=kx﹣kh﹣1的解析式即可;(2)令y3=x﹣3,依据抛物线的解析式可得到抛物线的顶点在直线y=﹣1上,由2≤x≤3时,y1≥x ﹣3恒成立可得到抛物线的顶点坐标为(2,﹣1),然后找出抛物线y1=a(x﹣2)2﹣1位于直线y3=x ﹣3上方时自变量x的取值范围,从而可确定出m的最大值;(3)由(1)可知抛物线C与直线l都过点A(h,﹣1).当0<a≤1时,k>0,在直线l下方的抛物线C上至少存在三个横坐标为整数点,即当x=h+3时,y2>y1恒成立,然后由y2>y1可得到关于k的不等式不等式,从而可求得k的取值范围.【解答】解:(1)抛物线C的顶点坐标为(h,﹣1),当x=h 时,y2=kh﹣kh﹣1=﹣1,所以直线l恒过抛物线C的顶点;(2)当a=1时,抛物线C解析式为y1=(x﹣h)2﹣1,不妨令y3=x﹣3如图1所示:抛物线C的顶点在直线y=﹣1上移动,x﹣3恒成立,当2≤x≤3时,y1≤则可知抛物线C的顶点为(2,﹣1),设抛物线C与直线y3=x﹣3 除顶点外的另一交点为M,此时点M的横坐标即为m的最大值,由,解得:x=2,x=3,所以m的最大值为3.(3)如图2所示:由(1)可知:抛物线C与直线l都过点A(h,﹣1).当0<a≤1时,k>0,在直线l下方的抛物线C上至少存在三个个横坐标为整数点,即当x=h+3时,y2>y1恒成立.所以k(h+3)﹣kh﹣1>a(h+3﹣h)2﹣1,整理得:k>3a.又因为0<a≤1,所以0<3a≤3,所以k>3.。
2017年福建省中考数学试卷(含答案解析)
绝密★启用前福建省2017年初中毕业和高中阶段学校招生考试数 学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.3的相反数是( )A .3-B .13-C .13D .32.如图,由四个正方体组成的几何体的左视图是( )ABC D 3.用科学计数法表示136 000,其结果是( )A .60.13610⨯B .51.3610⨯C .313610⨯ D .613610⨯ 4.化简2(2)x 的结果是( )A .4xB .22xC .24x D .4x 5.下列关于图形对称性的命题,正确的是( )A .圆既是轴对称图形,又是中心对称图形B .正三角形既是轴对称图形,又是中心对称图形C .线段是轴对称图形,但不是中心对称图形D .菱形是中心对称图形,但不是轴对称图形6.不等式组20,30x x -⎧⎨+⎩≤>的解集是( )A .32x -<≤B .32x -≤<C .2x ≥D .3x <-7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------位数和众数分别是 ( )A .10,15B .13,15C .13,20D .15,158.如图,AB 是O 的直径,,C D 是O 上位于AB 异侧的两点.下列四个角中,一定与ACD ∠互余的角是 ( ) A .ADC ∠ B .ABD ∠ C .BAC ∠D .BAD ∠9.若直线1y kx k =++经过点(,3)m n +和(1,21)m n +-,且02k <<,则n 的值可以是( ) A .3B .4C .5D .610.如图,网格纸上正方形小格的边长为1.图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段A B ''和点P ',则点P '所在的单位正方形区域是 ( )A .1区B .2区C .3区D .4区第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上)11.计算0|2|3--= .12.如图,ABC △中,,D E 分别是,AB AC 的中点,连线DE ,若3DE =,则线段BC 的长等于 .13.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是 . 14.已知,,A B C 是数轴上的三个点,且C 在B 的右侧.点,A B 表示的数分别是1,3,如图所示.若2BC AB =,则点C 表示的数是 .15.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度. 16.已知矩形ABCD 的四个顶点均在反比例函数1y x=的图象上,且点A 的横坐标是2,则矩形ABCD 的面积为 .三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)先化简,再求值:21(1)1aa a --,其中1a .18.(本小题满分8分)如图,点,,,B E C F 在一条直线上,,,AB DE AC DF BE CE ===.求证:A D =∠∠.19.(本小题满分8分)如图,ABC △中,90BAC =︒∠,AD BC ⊥,垂足为D .求作ABC ∠的平分线,分别交AD ,AC 于,P Q 两点;并证明AP AQ =.(要求:尺规作图,保留作图痕迹,不写作法)20.(本小题满分8分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只.”试用列方程(组)解应用题的方法求出问题的解.21.(本小题满分8分)如图,四边形ABCD 内接于O ,AB 是O 的直径,点P 在CA 的延长线上,45CAD =︒∠. (1)若4AB =,求CD 的长;(2)若,BC AD AD AP ==,求证:PD 是O 的切线.22.(本小题满分10分)小明在某次作业中得到如下结果:2222sin 7sin 830.12+0.99=0.9945︒+︒≈, 2222sin 22sin 680.37+0.93=1.0018︒+︒≈, 2222sin 29sin 610.48+0.87=0.9873︒+︒≈, 2222sin 37sin 530.60+0.80=1.0000︒+︒≈,-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------2222sin 45sin 45()+(=122︒+︒≈. 据此,小明猜想:对于任意锐角α:均有22sin sin (90)1αα+︒-=. (1)当30α=︒时,验证22sin sin (90)1αα+︒-=是否成立;(2)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.23.(本小题满分10分)自2016年国庆后,许多高校均投放了使用手机就可随取随用的共享单车.某运营商为提高其经营的A 品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,同时,(1)写出,a b (2)已知该校有5000名师生,且A 品牌共享单车投放该校一天的费用为5 800元.试估计:收费调整后,此运营商在该校投放A 品牌共享单车能否获利?说明理由.24.(本小题满分12分)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段,AC BC 上的点,且四边形PEFD 为矩形. (1)若PCD △是等腰三角形,求AP 的长;(2)若AP ,求CF 的长.25.(本小题满分14分)已知直线2y x m =+与抛物线2y ax ax b =++有一个公共点(1,0)M ,且a b <. (1)求抛物线顶点Q 的坐标(用含a 的代数式表示); (2)说明直线与抛物线有两个交点; (3)直线与抛物线的另一个交点记为N . (ⅰ)若112a -≤≤-,求线段MN 长度的取值范围; (ⅱ)求QMN △面积的最小值.福建省2017年初中毕业和高中阶段学校招生考试数学答案解析第Ⅰ卷一、选择题1.【答案】A【解析】3的相反数是-3,故选A 。
福州市鼓楼区2017届九年级上期末数学模拟试卷含答案解析
A.△ABC 绕点 C 顺时针旋转 90°,再向下平移 3 B.△ABC 绕点 C 顺时针旋转 90°,再向下平移 1 C.△ABC 绕点 C 逆时针旋转 90°,再向下平移 1 D.△ABC 绕点 C 逆时针旋转 90°,再向下平移 3 8.若二次函数 y=(m+1)x2▱m x+m2▱2m ▱3 的图象经过原点,则 m 的值必为 () A.▱1 或 3 B.▱1 C.3 D.▱3 或 1 9.圆的面积公式 S=πR2 中,S 与 R 之间的关系是( ) A.S 是 R 的正比例函数 B.S 是 R 的一次函数 C.S 是 R 的二次函数 D.以上答案都不对
⑤当 x<0 时,y 随 x 增大而增大
其中结论正确的个数是( )
A.4 个 B.3 个 C.2 个 D.1 个
(▱1,a). (1)求 a,m 的值; (2)求该双曲线与直线 y=▱2x+2 另一个交点 B 的坐标.
21.如图所示,正方形网格中,△ABC 为格点三角形(即三角形的顶点都在格 点上). (1)把△ABC 沿 BA 方向平移后,点 A 移到点 A1 ,在网格中画出平移后得到的 △A 1B 1C1; (2)把△A 1B1C1 绕点 A1 按逆时针方向旋转 90°,在网格中画出旋转后的△ A1 B2 C2 ; (3)如果网格中小正方形的边长为 1,求点 B 经过(1)、(2)变换的路径总 长.
2016-2017 学年福建省福州市鼓楼区九年级(上)期末数学模 拟试卷
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个 选项中,只有一个选项是符合题目要求的) 1.若反比例函数 y=▱ 的图象经过点 A(3,m),则 m 的值是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年九年级数学中考模拟试卷
一、选择题:
1.某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,
例如:9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为( )
A.3
B.-3
C.-2.5
D.-7.45
2.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有()
A.5个
B.4个
C.3个
D.2个
3.下列运算正确的是()
A.a2﹣a4=a8
B.(x﹣2)(x﹣3)=x2﹣6
C.(x﹣2)2=x2﹣4
D.2a+3a=5a
4.下列调查中,最适合采用全面调查(普查)的是()
A.对重庆市居民日平均用水量的调查
B.对一批LED节能灯使用寿命的调查
C.对重庆新闻频道“天天630”栏目收视率的调查
D.对某校九年级(1)班同学的身高情况的调查
5.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是()
6.下列各式中,计算正确的是()
A.3﹣1=﹣3
B.3﹣3=﹣9
C.3﹣2=
D.30=0
7.下列事件中,必然发生的是()
A.某射击运动射击一次,命中靶心 B.抛一枚硬币,落地后正面朝上
C.掷一次骰子,向上的一面是6点 D.通常加热到100℃时,水沸腾
8.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()
A.4
B.8
C.10
D.12
9.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()
10.从甲地到乙地有两条公路,一条是全长450公里的普通公路,一条是全长330公里的高速公路,某客车在
高速公路上行驶的平均速度比在普通公路上快35公里/小时,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半.如果设该客车由高速公路从甲地到乙地所需时间为x小时,那么x满足的分式方程是()
A. =×2
B. =﹣35
C.﹣=35
D.﹣=35
二、填空题:
11.某同学在计算11+x的值时,误将“+”看成了“﹣”,计算结果为20,那么11+x的值应为________.
12.分解因式:x2﹣4x= .
13.小强同学在“百度”搜索引擎中输入“益阳”,能找到相关结果约为70300000个,这个数用科学记数法表示为.
14.现有四张分别标有数字﹣3,﹣2,1,2的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上所标的数字都是非负数的概率为.
15.若圆锥的高是8cm,母线长是10cm,则这个圆锥的侧面积是 cm2(结果保留π).
BP= .
三、计算题:
17.计算:
18.解不等式组:,并在数轴上表示不等式组的解集.
四、解答题:
19.已知正方形ABCD,E、F分别为边BC、CD上的点,DE=AF.求证:AF⊥DE.
20.八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小
说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:
(1)计算m= ;
(2)在扇形统计图中,“其他”类所占的百分比为;
(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.
21.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长.
22.如图,E、F、 G、H分别为四边形ABCD四边之中点.
(1)求证:四边形EFGH为平行四边形;
(2)当AC、BD满足时,四边形EFGH为菱形;
当AC、BD满足时,四边形EFGH为矩形;
当AC、BD满足时,四边形EFGH为正方形.
23.如图,AB为⊙O的直径,点C在⊙O上,且∠CAB=30°,点D为弧AB的中点,AC=4.求CD的长.
五、综合题:
24.如图①,在平面直角坐标系中,点A的坐标为(8,6),连结OA,动点P从点O出发,以每秒5个单位长度的
速度沿OA向终点A运动.以P为顶点的抛物线y=(x﹣h)2+k与y轴交于点B,过点B作BC∥x轴交抛物线于另一点C,动点Q从点A出发,以每秒5个单位长度的速度沿AO向终点O运动,以Q为顶点,作边长为4的正方形QDEF.使得DQ∥x轴,且点D在点Q左侧,点F在点Q的下方.点P、Q同时出发,设运动时间为t.
(1)用含有t的代数式表示点P的坐标(,)
(2)当四边形BCFE为平行四边形时,求t的值.
(3)当点C落在线段DE或QF上时,求t的值.
(4)如图②,以OB、BC为邻边作矩形OBCG,当点Q在矩形OBCG内部时,设矩形OBCG与正方形QDEF重叠部分图形的周长为L,求L与t之间的函数关系式.
25.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC
上且OD=1.25.
(1)求直线AC的解析式.
(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)抛物线y=-x2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴正半轴上),且△ODE沿DE 折叠后点O落在边AB上O/处?
参考答案
1.B
2.B
3.D
4.D
5.D
6.C
7.D
8.B
9.B
10.D
11.答案为:2;
12.答案为:x(x﹣4).
13.答案为:7.03×107.
14.答案为:1/6.
15.答案为60π.
16.答案为:1或4.
17.略
18.答案为:-2<x≤1.
19.证明:∵四边形ABCD为正方形,∴AD=DC,∠ADC=∠C=90°,
在Rt△ADF与Rt△DCE中,AF=DE,AD=CD,∴Rt△ADF≌Rt△DCE(HL)∴∠DAF=∠EDC 设AF与ED交于点G,∴∠DGF=∠DAF+∠ADE=∠EDC+∠ADE=∠ADC=90°∴AF⊥DE.
20.
21.(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,
∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);
(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,
∵∠B=30°,∴BD=2DE=2.
22.略
23.【解答】解:作AE⊥CD于E,连接BD,
∵点D为弧AB的中点,∴∠ACD=45°,∴AE=CE=AC×
=2,
由圆周角定理得,∠ADB=90°,∠CDB=∠CAB=30°,∴∠ADC=60°,
∴DE==2,∴CD=DE+CE=2+2
.
24.解:(1)∵点A的坐标为(8,6),∴OA=10,
∵OP=5t,∴
=,∴
x=4t,y=3t,∴点P的坐标为:(4t,3t);故答案为:4t,3t;
(2)∵P(4t,3t),∴抛物线的解析式为:y=(x﹣4t)2+3t,由对称性可得:BC=8t,
∵BC∥x轴,EF∥x轴,∴BC∥EF,
∴当BC=EF时,四边形BCFE为平行四边形,∴8t=4,解得:t=;
(3)当x=8t时,y=(8t﹣4t)2+3t=16t2+3t,∴点C的坐标为(8t,16t2+3t),
根据题意得:点Q的坐标为:(8﹣4t,6﹣3t),点E的坐标为(4﹣4t,2﹣3t),
令8t=4﹣4t,解得:t=,此时:8t=8×
=,6﹣3t=6﹣
3×=5,2﹣3t=2﹣3×
=1,
∵1<<5,∴当
t=时,点C落在DE上,令8t=8﹣4t,解得:
t=,
此时:8t=8×
=,6﹣3t=6﹣
3×=4,2﹣3t=2﹣3×
=0,
∵0<4<,∴当
t=时,点C不落在DE上;综上可得:点C落在线段DE或QF 上时,t=.
(4)如图①,当点Q在CG上时,8t=8﹣4t,解得:t=;
如图②,当点E在y轴上时,4﹣4t=0,解得:t=1;
如图③,当<t<1时,QM=6﹣3t,DQ=4,则y=2QM+2DQ=2(6
﹣3t+4)=20﹣6t;
如图④,当1≤t<2时,QN=8﹣4t,QM=6﹣3t,y=2QN+2QM=2(8﹣4t+6﹣3t)=28﹣14t.
25.略。