08.材料力学-应力状态
高等材料力学课件第二章应力状态
应变与应力之间的关系
应变和应力之间存在着密切的关系。应变是材料变形程度的度量,而应力是 材料受力的表现。了解应变与应力之间的关系可以帮助我们更好地分析和控 制材料的行为。
应力的平面转动
应力的平面转动是指在不同的坐标系下,应力分量的变化。通过对应力的平 面转动进行研究,我们可以更好地理解材料在不同坐标系下的受力情况应力。掌握主应力和主应力方 向的概念可以帮助我们识别和分析材料的受力情况。
应力状态的分类
应力状态可以分为三种基本形式:平面应力、轴对称应力和空间应力。通过分类应力状态,我们可以更好地理解材 料在不同条件下的受力行为。
平面应力和轴对称应力
平面应力是指只存在于某一平面上的应力,而轴对称应力是指具有旋转对称 性的应力。通过研究平面应力和轴对称应力,我们可以更好地分析材料在不 同维度上的受力情况。
平面应力下的摩尔-库仑方程
摩尔-库仑方程是描述平面应力下材料力学行为的重要方程。通过掌握摩尔-库仑方程,我们可以更好地分析和预测 材料在平面应力下的受力行为。
高等材料力学课件第二章 应力状态
在本章中,我们将深入探讨应力的概念和定义,重点介绍主应力和主应力方 向的概念,以及应力状态的分类以及平面应力和轴对称应力的特点。
应力的定义和概念
了解应力是理解材料行为的关键。应力是材料内部的力,是单位面积上的力。通过深入研究应力的定义和概念,我 们可以更好地理解材料的力学行为。
大学课程材料力学第八章_复杂应力状态强度问题(中)课件
a
M max Iz
h 2
119.5
MPa
单向拉伸与纯剪 切组合应力状态
a
F max Sz ( )
Izt
F b (h )
max
46.4 MPa
2Izt
如果采用第三强度理论:
r3
2 a
4
2 a
151.3
MPa
[ ]
a
12
材料力学 第八章 复杂应力状态强度问题
4. 结论
•上下翼缘处: max
低碳钢拉伸断口
• 三向等压 脆 塑
• 高速加载 塑 • 金属低温 塑
脆
脆
岩层扭曲
8
材料力学 第八章 复杂应力状态强度问题
六、一种常见平面应力状态(单向与纯剪切组合)的相当应力
单向与纯剪切组合
max min
1 (
2
2 4 2 )
1 3
1 2
(
2 0
2 4 2 )
根据第三强度理论: r3 2 4 2 [ ]
FS max 140 kN, M max 5.6104 N m
10
材料力学 第八章 复杂应力状态强度问题
危险点: (a) 横截面上下边缘——弯曲正应力最大
(b) 中性轴处——弯曲切应力最大
(c) 腹板翼缘交界处——弯曲正应力和切应力均较大
2. 上下边缘max与中性轴处max强度校核:
max
M max Wz
M maxh 133.3
2Iz
MPa
[
]
[] = 160MPa
max
F max Sz,max ( )
Izt
F max
8Izt
bh2
材料力学第8章应力状态分析
点。设想以A点为中心,用相互垂直的6个截面截取一个边长无限小的立方
体,我们将这样的立方体称为单元体。取决于截取平面的倾角变化,围绕同 一个点,可以截取出无数个不同的单元体,
图8.1(b)为依附着杆件横截面所截取单元体(图8.1(c)为其平面图形式),而 图8.1(d)为依附着45°斜截面所截取的单元体。由于杆件轴向拉伸时,横 截面上只有正应力,且与杆件轴向平行的截面没有应力,因此,图8.1(b) 中的单元体只在左右两个面上有正应力作用。对于图8.1(d)中的单元体, 根据拉压杆斜截面应力分析(2.3节)可知,其4个面上既有正应力又有切应 力。
又有切应力。围绕A,B,C三点截取单元体如图8.2(d)所示,单元体的前后
两面为平行于轴线的纵向截面,在这些面上没有应力,左右两面为横截面的 一部分,根据切应力互等定理,单元体B和C的上下两面有与横截面数值相等
的切应力。至此,单元体各面上的应力均已确定。注意到图8.2(d)各单元
体前后面上均无应力,因此也可用其平面视图表示(见图8.2(e))。
图8.2
从受力构件中截取各面应力已知的单元体后,运用截面法和静力平衡条件, 可求出单元体任一斜截面上的应力,从而可以确定出极值应力。
围绕构件内一点若从不同方向取单元体,则各个截面的应力也各不相同。其
中切应力为零的截面具有特殊的意义,称为主平面;主平面上的正应力称为 主应力。一般情况下,过构件内任一点总能找到3个互相垂直的主平面,因
图8.3
运用截面法可以求出与 z 截面垂直的任意斜截面 ac 上的应力(见图 8.3
( a ))。设斜截面 ac 的外法线 n 与 x 轴的夹角为 α (斜截面 ac 称 为 α 截面),并规定从 x 轴正向逆时针转到斜截面外法线 n 时 α 角为正
材料力学应力状态分析
y
对上述方程消参数(2),得:
o
x
x
x
x y 2 2 x y 2 2 ( ) ( ) xy 2 2
这个方程恰好表示一个圆,这个圆称为应力圆
圆心:
y
(
x y
2
,0)
半径:
R (
x y
2
) xy
2
2
应力圆:
y
x
x
B2
C
D( x , xy )
x
x
o
B1
o
y
( y , yx ) D’
三、证明:
OC OB1 B1C OB1 OB2 OB1 2 x y x y x 2 2
证得圆心位置:
2 1
A2 B2
C
D ( x , xy )
A1 B1
xy
x
D
A
R (
x y
2
)2 2 xy
x
R
c
D (x ,xy)
(y ,yx)
x y
2
D’
绘制步骤:
1、取直角坐标系—— o
x y x y 2 2 xy 2 2
30
单位:MPa 1 、 2、 3 ?
0 45 ;
0
空间应力状态: y y
x
z
x 40, y 60, xy 40, z 100(MPa)
z
xy 平面内的主应力:
x
max 80.7MPa, min 60.7MPa
材料力学:第八章-应力应变状态分析
正负符号规定:
切应力 t - 使微体沿顺时针 旋转为正 方位角 a - 以 x 轴为始边、逆时针旋转 为正
斜截面应力公式推导 设α斜截面面积为dA, 则eb侧面和bf 底面面积分别为dAcosα, dAsinα
由于tx 与 ty 数值相等,同时
sa+90 ,ta+90
E
sa+90 ,ta+90
结论: 所画圆确为所求应力圆
应力圆的绘制与应用3
应力圆的绘制
已知 sx , tx , sy ,
画相应应力圆
t
先确定D, E两点位置, 过此二点画圆即为应力圆
Ds x ,t x , E s y ,t y
t
C OE
s 2 , 0
s 1 , 0
应力圆绘制 作D, E连线中垂线,与x轴相交即为应力圆圆心
tb sb
t
sa
O
C
ta
D
sa ,ta
t
s
E
sb ,tb
O
D
sa ,ta
C
s
E
sb ,tb
由|DC|=|CE|,可得sC值:
sC
s
2 β
+
t
2 β
s
2 α
+
t
2 α
2 sα sβ
点、面对应关系
转向相同, 转角加倍 互垂截面, 对应同一直径两端
应变状态
构件内一点处沿所有方位的应变总况或集合, 称为该点处的 应变状态
研究方法
环绕研究点切取微体, 因微体边长趋于零, 微体趋于所研究 的点, 故通常通过微体, 研究一点处的应力与应变状态
材料力学应力状态分析
材料力学应力状态分析材料力学是研究物质内部力学性质和行为的学科,其中应力状态分析是材料力学中的重要内容之一。
应力状态分析是指对材料内部受力情况进行分析和研究,以揭示材料在外力作用下的应力分布规律和应力状态特征,为工程设计和材料选用提供依据。
本文将从应力状态的基本概念、分类和分析方法等方面展开讨论。
首先,我们来介绍一下应力状态的基本概念。
应力是指单位面积上的力,是描述物体内部受力情况的物理量。
在材料力学中,通常将应力分为正应力和剪应力两种基本类型。
正应力是指垂直于截面的应力,而剪应力是指平行于截面的应力。
在实际工程中,材料往往同时受到多种应力的作用,因此需要对应力状态进行综合分析。
其次,我们将对应力状态进行分类。
根据应力的作用方向和大小,可以将应力状态分为拉应力状态、压应力状态和剪应力状态三种基本类型。
拉应力状态是指材料内部受到拉力作用的状态,压应力状态是指材料内部受到压力作用的状态,而剪应力状态是指材料内部受到剪切力作用的状态。
这三种应力状态在工程实践中都具有重要的意义,需要我们进行深入的分析和研究。
接下来,我们将介绍应力状态分析的方法。
应力状态分析的方法有很多种,常用的有应力分析法、应变分析法和能量方法等。
应力分析法是通过应力分布的计算和分析来揭示应力状态的特征,应变分析法则是通过应变分布的计算和分析来揭示应力状态的特征,而能量方法则是通过能量原理和平衡条件来揭示应力状态的特征。
这些方法各有特点,可以根据具体情况选择合适的方法进行分析。
最后,我们需要注意的是,在进行应力状态分析时,需要考虑材料的本构关系、边界条件和载荷情况等因素,以确保分析结果的准确性和可靠性。
同时,还需要注意应力状态分析的结果对工程实践的指导意义,以便更好地指导工程设计和材料选用。
总之,材料力学应力状态分析是一个复杂而重要的课题,需要我们进行深入的研究和分析。
只有深入理解应力状态的特征和规律,才能更好地指导工程实践,为实际工程问题的解决提供科学依据。
材料力学 第八章:应力状态分析
2 )2
材料力学
整理可得:
(
x
2
y
)2
2
(
x
2
y
)2
x2
(3)
(3)式为以 、为变量的圆方程。
圆心坐标
(
x
y
,0)
横坐标为平均应力
2
半径
(
x
2
y
)2
2 x
为最大剪应力
材料力学
x x
y
x y
2
(
x
2
y
)2
2 x
材料力学
方法一:
27.5
x
2
y
x
y
2
cos(2 27.5) x
sin(2 27.5)
70 70 cos55 50sin 55 22
96MPa
96MPa
27.5
70MPa
62.5 50MPa 26MPa
117.5
x
上的应力对应-坐标系中的Dy点。Dy
点的横坐标
OF
、纵坐标
y
FDy
y
;连接
Dx、Dy与轴的交点C为圆心 , CDx 或
CDy 为半径画一圆,这个圆是该单元
体所对应的应力圆。
材料力学
n
y
x
y
x
x
y
F o
Dy
(y,y)
Dx(x,x) CK
材料力学
证明:
DxCK DyCF (对顶角) Dy FC DxKC (直角)
材料力学-第8章应力状态与强度理论
第8章 应力状态与强度理论及其工程应用
强度理论概述
关于脆性断裂的强度理论
第8章 应力状态与强度理论及其工程应用
关于脆性断裂的强度理论
零件或构件在载荷作用下,没有明显的破坏 前兆(例如明显的塑性变形)而发生突然破坏的 现 象 , 称 为 断 裂 失 效 ( failure by fracture or rupture)。
Mechanics of materials
材料力学
材料力学
第 8章
基础篇之八
应力状态与强度理论 及其工程应用(B)
第8章 应力状态与强度理论及其工程应用
什么是“失效”;怎样从众多的失效现象中寻找失效 规律;假设失效的共同原因,从而利用简单拉伸实验结果, 建立一般应力状态的失效判据,以及相应的设计准则,以 保证所设计的工程构件或工程结构不发生失效,并且具有 一定的安全裕度。这些就是本章将要涉及的主要问题。
2 1 3
max 1 ( 1 0)
= b
o max b
失效判据 强度条件
1 b
1
b
nb
第8章 应力状态与强度理论及其工程应用
关于脆性断裂
第二强度理论又称为最大拉应变准则(maximum tensile strain criterion),它也是关于无裂纹脆性材 料构件的断裂失效的理论。
第8章 应力状态与强度理论及其工程应用
关于脆性断裂的强度理论
根据第二强度理论,无论材料处于什么应力状态, 只要发生脆性断裂,其共同原因都是由于微元的最大 拉应变达到了某个共同的极限值。
max
o max
(1 0)
第8章 应力状态与强度理论及其工程应用
材料力学-应力状态分析
+
σ x σ y
2
cos 2α τ x sin 2α
sin 2α + τ x cos 2α
注意: 的正负号, 注意:1)σx 、σy 、τx 和 α的正负号, 2) 公式中的切应力是τx ,而非τy, 而非 的正负号。 3) 计算出的σα和τα 的正负号。
τα τ α>0
τα τ α<0
图示圆轴中, 已知圆轴直径d=100mm, 轴向拉 例 : 图示圆轴中 , 已知圆轴直径 , 力 F=500kN,外力矩Me=7kNm。求 C点α = 30°截 , 外力矩 。 点 ° 面上的应力。 面上的应力。 y
σy
τ
D
x
τx τy
σx
o A2
C
A1
σ
D
y
σ1 =
σ x +σ y
2
σ x +σ y + 2
2 +τ x
2
2
σ2 =
σ x +σ y
2
σ x +σ y 2 +τ x 2
σy
τ
D
x
τx τy
σx
o A2
2α0
C
A1
σ
D
y
2τ x 2α 0 = arctan σ x σ y
σ x σ y R= 2
+τ x2
2
σ x +σ y σ α 2
σy
σ x σ y 2 2 + τα = +τ x 2 τ
2 2
D
x
τx τy
σx
o
C D
y
σ
50MPa
应力状态-材料力学 经典
将0值代入,得:
一点的应力状态
x y x - y 2 2 ( ) xy 2 2 x y x - y 2 2 - ( ) xy 2 2
应力状态/应力圆
主应力排序:
12 3
a
o 2
d
c
2qp
1
3 o
应力状态/应力圆
利用应力圆确定主应力
y
D
xy
A
x
a
yx
o B1 d
c
2q p
A 1
x y x - y 2 2 0c cA ( ) xy oA 1 1 2 2 x y x - y 2 2 oB1 0c - cB1 - ( ) xy 2 2 一点的应力状态
x
-
yx
xy
y
即又一次证明了剪应力的互等定理。
一点的应力状态
应力状态/应力圆
三、应 力 圆
(Mohr’s Circle for Stresses)
1、应力圆方程
x y x - y cos 2 - xy sin 2 2 2
5 4
FP 2
S平面
5 4 3 2
1
3
2 1
Mz x1 Wz
FP l Mz 4
2
3
x2
2
1
2
3
一点的应力状态
应力状态/应力状态的概念及其描述
主平面:单元体上剪应力为零的平面
主应力:主平面上的正应力
通过任意的受力构件中任意一点,总可以找到三个
材料力学-应力状态与应变状态分析
s2 引起 1 s 2 E 2 s 2 E 3 s 2 E
s3 引起 1 s 3 E 2 s 3 E 3 s 3 E
小变形 i i i i i 1,2,3
1
1 E
s1
(s 2
s 3 )
广
2
1 E
s 2
(s 3
s1 )
义 虎 克 定
3
1 E
s 3
(s 1
s 2)
t T = 1 πD3 (1-a4) 16
1
=
1 E
[s1-
(s2+s3)]
=
1+
E
t
T=8.38 kN·m
二、体积应变
单元体边长:dx、dy、dz
体积:V0 = dx·dy·dz
dy
dx → dx +△dx = dx + 1dx = (1 + 1) dx
dy → dy +△dy = dy + 2dy = (1 + 2) dy
体积的绝对增量:△V = V-V0 = V0 (1+ 2+ 3)
单位体积增量:
V V0
1 2
3
体积应变 体积的相对增量
1 2
E
(s1
s2
s
3)
讨论:
V V0
1 2
E
(s1 s 2
s 3)
⒈ 若 s1 + s2 + s3>0,
则 >0 →△V >0,即体积增大;
若 s1 + s2 + s3<0,
s2
s3 dsz 1
dx
dz → dz +△dz = dz + 3dz = (1 + 3) dz
材料力学-第8章应力状态与强度理论及其工程应用(A)
应力的面的概念——过同一点 不同方向面上的应力各不相同
第8章 应力状态与强度理论及其工程应用
应力状态的基本概念
受力之前,表面的正方形
FP
FP
受拉后,正方形变成了矩形,直角没有改变。
第8章 应力状态与强度理论及其工程应用
应力状态的基本概念
受力之前,表面斜置的正方形
FP
2
2
x
2
3
3
3
第8章 应力状态与强度理论及其工程应用
应力状态的基本概念
例题2
l
FP
S
a
第8章 应力状态与强度理论及其工程应用
应力状态的基本概念
y
1 例题2 4 2 3
z
x S平面
第8章 应力状态与强度理论及其工程应用
应力状态的基本概念
y
1
FQy
1
4
4 2
3
Mz
x
z
Mx
3
2
第8章 应力状态与强度理论及其工程应用
应力的点的概念——同一截面上 不同点的应力各不应力状态的基本概念
FQ F Nx
Mz
横截面上的正应力分布 横截面上的剪应力分布
横截面上正应力分析和剪应力分析的结果表明: 同一面上不同点的应力各不相同,此即应力的点的 概念。
第8章 应力状态与强度理论及其工程应用
应力状态的基本概念
描述一点应力状态的方法
第8章 应力状态与强度理论及其工程应用
应力状态的基本概念
描述一点应力状态的基本方法
微元(Element)
微元及其各面上一点 应力状态的描述
dx
dz
dy
材料力学:应力状态
p
n
图(d)研究对象的剖面图,其上的外力为压强 p。
n n
p
n (C)
研究对象
n n (d)
压强 p的合力为 F 。则横截面上只有正应力 。 假设 正应力沿壁厚均匀分布。
n
n p
F
n
研究对象
n n (d)
(C)
F
D
4
2
n
.p
p F 4 ' D 2 A 2 ( D 2t ) 4 4
平面和空间应力状态称为复杂应力状态
10
梁上取单元体
11
图(a)为汽包的剖面图。内壁受压强 p 的作用 。 图(b)给出尺寸。
y
t p z
D
(a)
(b)
解:
包围内壁任一点,沿直径方向
取一单元体,单元体的侧面为 横截面,上,下面为含直径的 纵向截面,前面为内表面。 包含直径的纵向截面
横截面
内表面
(1)横截面上的应力 假想地,用一垂直于轴线的平面将汽包分成两部分,取右边为研 究对象。n— n面为横截面 。
包含直径的纵向平面
直径平面
研究对象
R 是外力在 y 轴上的投影, 包含直径的纵截面上的内力为轴力 FN 。 该截面上的应力为正应力 ”,且 假设为均匀分布。
FN FN
p R
O
y t
FN
R 2
FN
d O
FN
取圆心角为 d 的微元面积,其 弧上为 ds
ds R
D ds d 2
包含直径的纵向截面
σ p
'''
横截面
内表面
=
材料力学应力状态分析和强度理论
材料力学应力状态分析和强度理论材料力学是一门研究物质内部各个部分之间的相互作用关系的科学。
在材料力学中,应力状态分析和强度理论是非常重要的概念和方法,用来描述和分析材料的力学行为和变形性能。
材料的应力状态是指在外力作用下,物体内部各个部分所受到的力的分布情况。
应力有三个分量:法向应力、剪应力和旋转应力。
法向应力是垂直于物体表面的作用力,剪应力是平行于物体表面的作用力,旋转应力则是物体受到扭转力产生的应力分量。
应力状态的描述可以用应力矢量来表示。
应力状态分析的目的是确定材料内部各个部分的应力分布情况,进而推导出物体的变形和破坏行为。
常用的应力状态分析方法有平面应力问题、平面应变问题和三维应力问题。
平面应力问题是指在一个平面上的应变为零,而垂直于该平面的应力不为零;平面应变问题是指在一个平面上的变形为零,而垂直于该平面的应力不为零;三维应力问题则是指在空间中3个方向的应力都不为零。
强度理论是指根据材料的内部应力状态来评估其抗拉强度、抗压强度和抗剪强度等,以判断材料是否能够承受外力而不发生破坏。
常见的强度理论有最大正应力理论、最大剪应力理论和最大扭转应力理论。
最大正应力理论是指在材料的任何一个点,其法向应力都不能超过材料的抗拉强度;最大剪应力理论则是指剪应力不能超过材料的抗剪强度;最大扭转应力理论则是指旋转应力不能超过材料的极限扭转强度。
实际应用中,强度理论通常与材料的断裂理论结合起来,以评估材料的破坏行为。
材料断裂的主要原因是应力超过了材料的强度极限,从而导致材料的破坏。
为了提高材料的强度和抗拉性能,可以通过选择合适的材料、改变材料的结构和制造工艺等方法来实现。
综上所述,材料力学应力状态分析和强度理论是描述和分析材料力学行为和变形性能的重要理论和方法。
通过深入研究应力状态、应力分析和强度理论,可以为材料的设计和制造提供指导和支持,从而提高材料的强度和抗拉性能。
材料力学课件——应力状态理论和强度理论
Me B
Me
B Me/Wn
P Me
C Me
C
第二节 二向应力状态下斜截面上的应力
目的 — 用一点某个微元上的应力表示其它
无限多微元上的应力 伴随结果
•应力极值 — 主应力状态 •从一个斜截面的应力构造一个单元体的应力
• 分析方法:1 解析法
•
2 图解法
二向应力状态下斜截面上的应力(续)
正应力符号规定
τα M τβ
σβ (c)
cos2
1
2
sin 2
cos2
1 sin 2
2
应力状态理论(续)
P
B
A
max A
max
M W
y
y
B
B
My
I
QS
Ib
应力状态理论(续)
P
P
A
A P/A
a) 一对横截面,两对纵截面
b)横截面,周向面,直径面 各一对
c) 同b),但从上表面截取
应力
要指明
哪一点?
•那个面在
• 在哪一个面上?
哪个方位?
• 一点的应力状态:过一点不同方向面上应力的集合
•
称之为这一点的应力状态
•
State of the Stresses of a Given
Point
应力状态理论(续)
三向(空间)应力状态
Three-Dimensional State of Stresses
第七章 应力状态理论和强度理论
Theory of Stress State and Intensity
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节
材料力学之应力状态知识讲解
1
m main =xx 2y
(x 2y)2x2y=
26MPa 96MPa
1=26 MP , a2=0, 3=96 MPa
26
例题 5 图示单元体。
已知: x =-40MPa ,y =60MPa ,xy=-50MPa 。 试求: ef 截面上的应力情况及主应力和主单元体的方位。
(1) 求 ef 截面上的应力
P A
B
C
A A
A
B B C
C
C C
从A、B、C三点截取 7
例题 1 画出如图所示梁 S 截面的应力状态单元体.
F
S平面
l/2 l/2
5 4 3 2
1
8
5
S平面
5
4
4
3
3
2
2
1
1
x1
1
x1 x2
2
x2
2
2
3
3
3
9
例题2 画出如图所示梁的危险截面上, 危险点的应力状态
yy
单元体。
1
4
FS
2
z
3
z2 xT 3
45°
所以 0= -45°与 max 对应
1
(2)求主应力
m m= a in x x 2y(x 2y)2x 2= y
1 = , 2 = 0 , 3 = - 30
§8-3 平面应力状态分析-图解法
一.莫尔圆
将斜截面应力计算公式改写为
= xx 2 2yys=i2n x 2yxcycoo22 s sxysi2n
把上面两式等号两边平方, 然后相加便可消去 , 得
(x 2y)2 2=( x 2y)2x 2y
材料力学应力分析
= 1 2 x-y2+4x 2y
=1- 3
2
这就是Ⅱ组方向面内的最大切应力。
材料力学
§2 平面应力状态分析
应力状态
在平行于主应力σ3方向的任意方 向面Ⅲ上,正应力和切应力都与σ3无 关。因此,当研究平行于σ 的这一组
3
方向面上的应力时,所研究的应力状 态可视为一平面应力状态:
§2 平面应力状态分析
应力状态
过一点所有方向面中的最大切应力
考察单元体三 对面上分别作用着 三个主应力
( σ1>σ2>σ30 )
的应力状态。
材料力学
§2 平面应力状态分析
应力状态
在平行于主应力σ1方向的任意方向面Ⅰ上,正应 力和切应力都与σ1无关。因此,当研究平行于σ1的这 一组方向面上的应力时,所研究的应力状态可视为一 平面应力状态:
e
n
x
xy
a
dA
y
f
yx
dA·sin
材料力学
t
x
பைடு நூலகம்
xy
n
yx
y
§2 平面应力状态分析
应力状态
Ft 0-dA+x (dAcos) sin+xy (dAcos) cos
-yx (dAsin) sin - y (dAsin) cos 0
dA·cos t
x- 2ysi2n +xyco2s
e
n
x
xy
max
=1-3
2
图解法
应力状态
材料力学
§2 平面应力状态分析
1、应力圆方程
应力状态
材料力学
材料力学应力状态
关键词:单元体的取法,莫尔应力圆的前提有那么一个单元体后〔单元体其中的一对截面上主应力=0〔平面〕或平衡〔空间〕,也就是单元体的一对截面为主平面〕,才有这么一个隔离体,才有那么一个莫尔应力圆和表达式也就是:取的单元体不同,则单元体的应力特点不一样,从而用截面法求任意截面上的应力取隔离体列平衡方程时,隔离体的受力特点不同,从而球出来的表达式也不同,只有这种表达式才适合莫尔应力圆。
因此拿到一个单元体后,不要急着应用莫尔应力圆,要先看它的特点适合不适合莫尔应力圆,也就是σα和τα的表达式球出来以后还是不是下面的这个公式。
特别还要记住,这个公式里的夹角α是斜截面的外法线与σx 作用平ατασσσσσα2sin 2cos 22x yx yx --++=ατασσσσσα2sin 2cos 22x yx yx --=+-222222x y x y x τσστσσσαα+⎪⎪⎭⎫ ⎝⎛-=+⎪⎪⎭⎫ ⎝⎛+-ατασστα2cos 2sin 2x yx +-=222x y x τσσ+⎪⎪⎭⎫ ⎝⎛-σy的形式。
比方,面的外法线之间的夹角,这样公式中才是σx—当α表示的是斜截面的外法线与σ1所在平面的夹角,那么公式就是σ1—σ2的形式;不管是谁减谁,应力圆的性状都不变;1.首先,先有主平面和主应力的概念,剪应力为0的平面为主平面,主平面上的正应力为主应力;2.然后,由于构件受力情况的不同,各点的应力状态也不一样,可以按三个主应力中有几个不等于零而将一点处的应力状态划分为三类:•单向应力状态:只有一个主应力不等于零,如受轴向拉伸和压缩的直杆及纯弯曲的直杆内各点的应力状态。
•二向应力状态(平面应力状态):有两个主应力不等于零,如受扭的圆轴,低压容器器壁各点的应力状态。
•三向应力状态:三个主应力都不等于零,如高压容器器壁内各点的应力状态。
3.然后,根据受力宏观判断是单轴应力状态还是平面应力状态还是三轴应力状态,取单元体关键,单元体取的不同,单元体上的应力也不同,做莫尔圆的繁简程度也不同,对于平面应力状态,当然要用主应力=0的那个截面参与单元体截取;4.单轴应力状态、平面应力状态、三轴应力状态是由主应力等于零的个数决定的,不受单元体取法的影响,也不是看单元体的三对截面上是否都存在正应力;比方单轴应力状态下,也可以取出一个单元体,让这个单元体的各平面上都有正应力和切应力,但是它仍然是单轴应力状态;同样,平面应力状态下,也可以取出一个单元体,让其各平面上都有正应力和剪应力,但它仍然是平面应力状态;5.按不同方位截取的单元体,尽管作用在这些单元体上的应力不同,但是在它们之间却存在着一定的关系:因为二者表示的是同一点的应力状态,因而可以从一个单元体上的应力求出另一个与其方向不同的单元体上的应力。
材料力学应力状态知识点总结
材料力学应力状态知识点总结材料力学是研究物体在外力作用下的力学性质和变形规律的学科。
而材料的应力状态是材料力学中的重要概念,它描述了材料内部的力学状态和应力分布情况。
本文将对材料力学应力状态的相关知识点进行总结和讨论。
一、概述材料力学中的应力状态描述了材料受到力的情况,主要包括应力的类型、作用面以及应力的大小和方向等。
常见的应力类型有正应力、剪应力和法向应力等。
二、正应力正应力是指材料内部单位截面上的内力除以该截面的面积所得到的值。
正应力的作用面垂直于该面,并且指向该面。
根据正应力的作用面,可以将正应力分为法向应力和切应力。
1. 法向应力法向应力是指与作用面垂直的应力,主要包括拉应力和压应力两种类型。
拉应力是指作用面上的拉力对单位面积的分布情况,用正值表示;压应力则是指作用面上的压力对单位面积的分布情况,用负值表示。
2. 切应力切应力是指作用面上的切力对单位面积的分布情况。
切应力的方向沿着作用面的切向,它可以使物体出现剪切变形。
切应力常常与正应力相互作用,共同影响材料的力学行为。
三、剪应力剪应力是指作用在材料内部引起切变形的内力作用于单位面积的横截面积。
在材料内部的应力矢量图中,剪应力是与作用面方向垂直的应力分量。
四、应力的大小和方向应力的大小和方向对材料的力学性质和变形规律具有重要影响。
在材料受到外力作用时,应力的大小会决定材料的强度和变形能力;应力的方向则会影响材料的断裂方向和裂纹扩展方向。
根据材料力学的原理和实际应用,可以通过引入应力变换理论和应力变形关系来具体分析和计算材料内部的应力状态。
应力变换理论可以将复杂的应力状态转化为简单的应力状态,并通过研究力的平衡条件和变形规律,求解出具体的应力分布情况。
总结:材料力学应力状态是研究材料受力情况的重要内容。
正应力包括法向应力和切应力,它们分别描述了材料受到的拉应力、压应力和剪应力;而剪应力则是引起切变形的内力作用于单位面积的横截面积。
应力大小和方向对材料力学性质和变形规律具有重要影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、单元体:
单元体——构件内的点的代表物,是包围被研究点的无限小
的几何体,常用的是正六面体。
sy
单元体的性质—a、平行面上,应力均布; b、平行面上,应力相等。
y
sz
z
txy
sx
x
四、剪应力互等定理
过一点的两个正交面上,如果有与相交边垂直的剪应力分
量,则两个面上的这两个剪应力分量一定等值、方向相对或相
y x O x
txy
z
sx
txy
sy sx
y
1、任意斜截面上的应力 规定:s 截面外法线同向为正;
txy
x
图1
t 绕研究对象顺时针转为正;
逆时针为正。 设斜截面面积为S,由分离体平衡得:
O
s
sx
y
sy
x
tyx
图2
t
F 0
n
n
s S s x S cos2 t xy S cos sin
y
sy sx
主单元体(Principal bidy): 各侧面上剪应力均为零的单元体。 主平面(Principal Plane):
sz
z x
剪应力为零的截面。
主应力(Principal Stress ):
s2 s1
主平面上的正应力。
主应力排列规定:按代数值大小,
s3
s 1s 2 s 3
2、应力状态类型 (1)、三向应力状态( Three—Dimensional State of Stress):
对上述方程消去参数(2),得:
sx
y O
sy
x
txyx
t
s x s y s x s y 2 2 s t t xy 2 2 n
2 2
此方程曲线为圆—应力圆(或莫尔圆 由德国工程师:Otto Mohr引入)
t
主应力分别是
s 1 s max 39 MPa,s 2 0,s 3 s min 89 MPa
3、应力圆( Stress Circle)
sy
sx
y O x
txy
s
s x s y s x s y cos2 t xy sin2 s 2 2 t s x s y sin2 t cos2 xy 2
B A 20MPa
s3
2s0
C
O s2
s1
s
(MPa)
解法2—解析法:分析——建立坐标系如图
25 3
45
150°
95
60°
s x s y 2 2 s 1 s x s y ( )t xy 2 2 s 2
25 3
s y 45MP a t yx 25 3MP at xy
s x ?
y O x
s 60 95MP a
0
t 60 25 3MP a
0
t
s x s y
2
sin2 t xy cos2
§8.3
1、空间应力状态 y
三向应力状态
s1 s2 s3
x
t
s
z
s3
s2
s1
2、三向应力分析 y s
1
t
t max
s2 s3
x z
图a
s
s3
s2
s1
图b
弹性理论证明,图a单元体内任意一点任意截面上的应力都
s t
坐标面内,按选定的比例尺,由坐标
(120,–30)和(40,30)分别确定D、E两点(图b)),以DE为直径
作圆即得所求应力圆。该圆与x轴交于A、B两点。量得OA= 130 MPa、OB=30 MPa。由此可知单元体处于三向应力状态。
三个主应力为:
s1
=130 MPa、s 2 =30 MPa、s 3 = –30 MPa
s y Ssin 2 t yx Ssin cos 0
O
t
sy sx
y
考虑剪应力互等和三角变换,得:
txy
x
图1
s
sx s y
2
s x s y
2
cos 2 t xy sin 2
同理:
O
s
sx
y
sy
x
tyx
图2
t
s x s y t sin 2 t xy cos 2 2
t yx
C M C
解:确定危险点并画其原
始单元体
t xy
s x s y 0
txy
Mn t xy t WP
求极值应力
tyx
y O
s x s y 2 2 s 1 s x s y ( ) t xy 2 2 s 2
2 t xy t
x
s1 t;s 2 0;s 3 t
o
s 109.33
o
可见在由 0 19.33o
25 (75) 25 (75) cos 218.66o (40) sin 218.66o 89 MPa 2 2
确定的主平面,作用着主应力
s max 39 MPa;在由 0 109.33o 确定的主平面,作用着主 应力 s min 89 MPa。按照主应力的大小排列,单元体的三个
两半径夹角2 ;
s
B(sy ,tyx)
3、在应力圆上标出极值应力
t
t max
21 O C B(sy ,tyx) 20
x A(sx ,txy)
s 1 OC R半径 s 3
s x s y
2
(
s x s y
2
s3 s2
s1
s
2 2 )t xy
t min
t max s max s min R半径 2 t min
t
sx s y
2
sin 2 t x cos 2
50 30 sin 60o 20 cos 60o 18.7 MPa 2
2、极值应力
ds 令: d
0
s x s y sin 2 0 2t xy cos 2 0 0
tg2 0 2t xy
且偏向于sx 及sy较大的一侧。 y
sy
s2
sx
txy s 1
x
dt 令: d
0
1
s x s y tg21 2t xy
O
sx sy 2 2 tmax ± ( )tx y 2 tmin
0 1
4 , 即极值剪应力面与主平面成450
[例3] 分析受扭构件的破坏规律。
二、图解法
1、应力圆的画法
sy
n
建立应力坐标系,如下图所示, (注意选好比例尺)
s
t
y
O x
sx
txy
在坐标系内画出点A(s x,txy)和 B(sy,tyx) AB与s 轴的交点C便是圆心。 以C为圆心,以AC为半径画
圆——应力圆;
sy s t
y
n
sx
txy
t n D( s , t
tg2 0
2t xy
s x s y
0 45
s x s y 2 2 t max ( ) t xy t 2 t min
破坏分析
s x s y tg21 0 1 00 2t xy
低碳钢 s 240 : s MPa;t s 200MPa
s x s y 2 2 ( )t xy 2
[例5] 求图示单元体的主应力及主平面的位置。(单位:MPa) 解法1——图解法: 主应力坐标系如图 在坐标系内画出点
A(95,25 3)
25 3
s2
45 B
150°
95
A
0
25 3
s1
B(45,25 3)
t (MPa)
B A 20MPa
离。
证明 单元体平衡 :
sy
y
M
z
0
(t xydydz)dx(t yxdzdx)dy0
sz
z
txy
sx
x
xy t yx t
§8.2
[例1] P
二向应力状态
画出下列图中的A、B、C点的已知单元体。 A P
sx
A
sx t yx
y
B P M
sx
tzx
B
C
z
x
ቤተ መጻሕፍቲ ባይዱ
txz
sx
C
t xy
1、主单元体、主平面、主应力:
灰口铸铁s Lb 98~280MPa :
低碳钢
s yb 640 960MPa;t b 198 300MPa ~ ~
铸铁
[例4] 平面位置。
单元体的应力状态如图所示。试求主应力并确定主
解:已知 s x 25MPa ,s y 75MPa ,t x 40MPa 将其代入公式,可得 2t x 2 (40) tan 2 0 0.8 s x s y 25 (75)
2 C O
x
O
x
A(sx ,txy)
s
B(sy ,tyx)
21
sy
s t
y
n
2、单元体与应力圆的对应关系 面上的应力(s ,t ) 应力圆上一点(s ,t )
sx
txy
面的法线
x t n D( s , t 2 C O O x
应力圆的半径
A(sx ,txy)
两面夹角 且转向一致。
由此得两个驻点:
01、( 01 )和两个极值:
2