2017届北京市大兴区高三下学期第一次综合练习数学(理)试题

合集下载

2017年北京市大兴区高考一模数学试卷(理科)【解析版】

2017年北京市大兴区高考一模数学试卷(理科)【解析版】

2017年北京市大兴区高考数学一模试卷(理科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x|x>0},则∁R A=()A.{x|x<0}B.{x|x≤0}C.{x|x>0}}D.{x|x≥0} 2.(5分)下列函数中,既是偶函数又有零点的是()A.B.y=tan x C.y=e x+e﹣x D.y=ln|x| 3.(5分)执行如图所示的程序框图,输出的S值为()A.4B.5C.6D.74.(5分)已知a∈R,b∈R,则“a>b”是“”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.(5分)某三棱锥的三视图如图所示,该三棱锥体积为()A .B.C.1D .6.(5分)若x,y 满足且z=﹣kx+y有最大值,则k的取值范围为()A.k≤1B.1≤k≤2C.k≥1D.k≥27.(5分)设函数f(x)=sin(2x+φ)(φ是常数),若,则,,之间的大小关系可能是()A .B.f()<f ()<f ()C .D .8.(5分)某公司有4家直营店a,b,c,d,现需将6箱货物运送至直营店进行销售,各直营店出售该货物以往所得利润统计如下表所示.根据此表,该公司获得最大总利润的运送方式有()A.1种B.2种C.3种D.4种二、填空题共6小题,每小题5分,共30分.9.(5分)复数(1+i)2=.10.(5分)设则f(f(﹣1))=.11.(5分)已知双曲线的离心率为2,则b=.12.(5分)在极坐标系中,点到直线ρcosθ=2的距离是.13.(5分)已知圆O:x2+y2=1的弦AB长为,若线段AP是圆O的直径,则=;若点P为圆O上的动点,则的取值范围是.14.(5分)已知数列{a n}满足,k≥2,k∈N*,[a n]表示不超过a n的最大整数(如[1.6]=1),记b n=[a n],数列{b n}的前n项和为T n.①若数列{a n}是公差为1的等差数列,则T4=;②若数列{a n}是公比为k+1的等比数列,则T n=.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)在△ABC中,,b=3,.(Ⅰ)求sin B;(Ⅱ)设BC的中点为D,求中线AD的长.16.(13分)某大型超市拟对店庆当天购物满288元的顾客进行回馈奖励.规定:顾客转动十二等分且质地均匀的圆形转盘(如图),待转盘停止转动时,若指针指向扇形区域,则顾客可领取此区域对应面额(单位:元)的超市代金券.假设转盘每次转动的结果互不影响.(Ⅰ)若x0≠60,求顾客转动一次转盘获得60元代金券的概率;(Ⅱ)某顾客可以连续转动两次转盘并获得相应奖励,当x0=20时,求该顾客第一次获得代金券的面额不低于第二次获得代金券的面额的概率;(Ⅲ)记顾客每次转动转盘获得代金券的面额为X,当x0取何值时,X的方差最小?(结论不要求证明)17.(14分)如图,在三棱柱ABC﹣A1B1C1中,平面BCC1B1⊥平面ABC,四边形BCC1B1为菱形,点M是棱AC上不同于A,C的点,平面B1BM与棱A1C1交于点N,AB=BC=2,∠ABC=90°,∠BB1C1=60°.(Ⅰ)求证:B1N∥平面C1BM;(Ⅱ)求证:B1C⊥平面ABC1;(Ⅲ)若二面角A﹣BC1﹣M为30°,求AM的长.18.(13分)已知函数,且m≠0.(Ⅰ)当m=1时,求曲线y=f(x)在点(0,0)处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数f(x)有最值,写出m的取值范围.(只需写出结论)19.(14分)已知椭圆的短轴端点到右焦点F(1,0)的距离为2.(Ⅰ)求椭圆C的方程;(Ⅱ)过点F的直线交椭圆C于A,B两点,交直线l:x=4于点P,若|P A|=λ1|AF|,|PB|=λ2|BF|,求证:λ1﹣λ2为定值.20.(13分)已知集合A1,A2,…,A n为集合U的n个非空子集,这n个集合满足:①从中任取m个集合都有≠U成立;②从中任取m+1个集合都有=U成立.(Ⅰ)若U={1,2,3},n=3,m=1,写出满足题意的一组集合A1,A2,A3;(Ⅱ)若n=4,m=2,写出满足题意的一组集合A1,A2,A3,A4以及集合U;(Ⅲ)若n=10,m=3,求集合U中的元素个数的最小值.2017年北京市大兴区高考数学一模试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x|x>0},则∁R A=()A.{x|x<0}B.{x|x≤0}C.{x|x>0}}D.{x|x≥0}【解答】解:∵集合A={x|x>0},∴∁R A={x|x≤0}.故选:B.2.(5分)下列函数中,既是偶函数又有零点的是()A.B.y=tan x C.y=e x+e﹣x D.y=ln|x|【解答】解:A.函数的定义域为[0,+∞),为非奇非偶函数,不满足条件.B.函数y=tan x是奇函数,不满足条件.C.y=e x+e﹣x≥2=2,则函数没有零点,不满足条件.D.函数的定义域为{x|x≠0},f(﹣x)=f(x),函数为偶函数,由y=ln|x|=0得x=1,函数存在零点,满足条件.故选:D.3.(5分)执行如图所示的程序框图,输出的S值为()【解答】解:k=0,s=1,模拟程序的运行,可得k=1,s=2,不满足条件k>4,执行循环体,k=2,s=3,不满足条件k>4,执行循环体,k=3,s=4,不满足条件k>4,执行循环体,k=4,s=5,不满足条件k>4,执行循环体,k=5,s=6,满足条件k=5>4,退出循环,输出S的值为6.故选:C.4.(5分)已知a∈R,b∈R,则“a>b”是“”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【解答】解:令a=1,b=﹣1,则a>b,而>,不是充分条件,若,即<0,∴或,即a,b同号时:a>b,a,b异号时:a<b,不是必要条件,故选:D.5.(5分)某三棱锥的三视图如图所示,该三棱锥体积为()【解答】解:根据三视图可知该几何体是一个三棱锥,如图所示;由俯视图和侧视图知,底面是一个直角三角形,两条直角边分别是2、1,由侧视图知,三棱锥的高是1,∴该几何体的体积为V=××2×1×1=.故选:A.6.(5分)若x,y满足且z=﹣kx+y有最大值,则k的取值范围为()A.k≤1B.1≤k≤2C.k≥1D.k≥2【解答】解:作出x,y满足对应的平面区域如图:由z=﹣kx+y得y=kx+z,∴直线的截距最大,对应的z也取得最大值,即平面区域在直线y=kx+z的下方,若k≤0,平移直线y=kx+z,由图象可知,直线在y轴上的截距没有最大值.如果k≥1,当直线y=kx+z经过点B或A时,直线y=kx+z的截距最大,当0<k<1,直线在可行域没有满足题意的点.故选:C.7.(5分)设函数f(x)=sin(2x+φ)(φ是常数),若,则,,之间的大小关系可能是()A.B.f()<f()<f()C.D.【解答】解:函数f(x)=sin(2x+φ)∵,即f(x)的一条对称轴为x=.令x=时,取得最大值,即sin(2×+φ)=1.可得:+φ=,k∈Z.解得:φ=+2kπ.k∈Z.取φ=,则函数f(x)=sin(2x﹣)那么:f()=sin(2×﹣)=0.f()=sin()=1,f()=sin()=.∴f()<f()<f().故选:B.8.(5分)某公司有4家直营店a,b,c,d,现需将6箱货物运送至直营店进行销售,各直营店出售该货物以往所得利润统计如下表所示.根据此表,该公司获得最大总利润的运送方式有()A.1种B.2种C.3种D.4种【解答】解:6箱货物的分配方法有:6,0,0,0;5,1,0,0;4,2,0,0;3,3,0,0;4,1,1,0;2,2,2,0;3,2,1,0;1,1,2,2;1,1,1,3类型.而6,0,0,0;5,1,0,0;4,2,0,0;3,3,0,0;4,1,1,0;2,2,2,0;类型中获利的最大值不超过:16.a,b,c,d;总获利分配货物:1 2 2 1 4+4+5+4=17.1 3 1 1 4+7+2+4=17.2 3 0 1 6+7+0+4=17.该公司获得最大总利润的运送方式有:3种.故选:C.二、填空题共6小题,每小题5分,共30分.9.(5分)复数(1+i)2=2i.【解答】解:原式=1+2i+i2=2i.故答案为:2i.10.(5分)设则f(f(﹣1))=﹣1.【解答】解:∵∴f(﹣1)=,f(f(﹣1))=f()==﹣1.故答案为:﹣1.11.(5分)已知双曲线的离心率为2,则b=.【解答】解:根据题意,双曲线的方程为,其中a=1,则c=,又由该双曲线的离心率e=2,则有==2,又由b>0,解可得b=;故答案为:.12.(5分)在极坐标系中,点到直线ρcosθ=2的距离是1.【解答】解:由x=,y=2sin,可得点的直角坐标为A(1,),直线ρcosθ=2的直角坐标方程为x=2.∴点A(1,)到直线x=2的距离d=2﹣1=1,即点到直线ρcosθ=2的距离是1.故答案为:1.13.(5分)已知圆O:x2+y2=1的弦AB长为,若线段AP是圆O的直径,则=2;若点P为圆O上的动点,则的取值范围是[1﹣,].【解答】解:如图,由题意可得,∠BAP=45°,∴=;由题意得A(1,0),B(0,1),设P(cosθ,sinθ),则,,∴=﹣cosθ+1+sinθ=sinθ﹣cosθ+1=.∴的取值范围是[1﹣,].故答案为:2;[1﹣,].14.(5分)已知数列{a n}满足,k≥2,k∈N*,[a n]表示不超过a n的最大整数(如[1.6]=1),记b n=[a n],数列{b n}的前n项和为T n.①若数列{a n}是公差为1的等差数列,则T4=6;②若数列{a n}是公比为k+1的等比数列,则T n=[(1+k)n﹣nk﹣1].【解答】解:①∵数列{a n}满足,k≥2,k∈N*,[a n]表示不超过a n的最大整数b n=[a n],数列{b n}的前n项和为T n.数列{a n}是公差为1的等差数列,∴=n+,b n=[a n]=n﹣1,∴T4=b1+b2+b3+b4=0+1+2+3=6.②∵数列{a n}是公比为k+1的等比数列,a1=,k≥2,∴a n=•(k+1)n﹣1=•(k n﹣1+•k n﹣2+•k n﹣3+…+•k+),且b n=[a n],∴数列{b n}的前n项和为:T n=0+1+(k+2)+(k2+3k+3)+…+(k n﹣2+•k n﹣3+•k n﹣4+…+)=(1+2+3+…+n﹣1)+(k+k+k+…+k)+(k2+k2+k2+…+k2)+…+k n﹣2=+k+k2+…+k n﹣2=+k+k2+…+k n﹣2=(k2+k3+k4+…+k n)=[(1+k)n﹣nk﹣1].故答案为:①6,②[(1+k)n﹣nk﹣1].三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)在△ABC中,,b=3,.(Ⅰ)求sin B;(Ⅱ)设BC的中点为D,求中线AD的长.【解答】解:(Ⅰ)在△ABC中,.可得sin A=,由正弦定理得,即,∴.(Ⅱ)∵D是BC的中点,∴,在△ABC中,由余弦定理得a2=b2+c2﹣2bc•cos A⇒c=1,或c=﹣3(舍去),在△ADB中,由余弦定理得AD2=AB2+BD2﹣2AB•DB cos B=2,∴AD=.16.(13分)某大型超市拟对店庆当天购物满288元的顾客进行回馈奖励.规定:顾客转动十二等分且质地均匀的圆形转盘(如图),待转盘停止转动时,若指针指向扇形区域,则顾客可领取此区域对应面额(单位:元)的超市代金券.假设转盘每次转动的结果互不影响.(Ⅰ)若x0≠60,求顾客转动一次转盘获得60元代金券的概率;(Ⅱ)某顾客可以连续转动两次转盘并获得相应奖励,当x0=20时,求该顾客第一次获得代金券的面额不低于第二次获得代金券的面额的概率;(Ⅲ)记顾客每次转动转盘获得代金券的面额为X,当x0取何值时,X的方差最小?(结论不要求证明)【解答】解:(I)若x0≠60,顾客转动一次转盘获得60元代金券的概率P==.(II)当x0=20时,转动一下获得20元代金券的概率P1==,顾客第一次获得代金券的面额低于第二次获得代金券的面额的概率为=,∴顾客第一次获得代金券的面额不低于第二次获得代金券的面额的概率为1﹣=.(III)当x0=60时,X的方差最小.17.(14分)如图,在三棱柱ABC﹣A1B1C1中,平面BCC1B1⊥平面ABC,四边形BCC1B1为菱形,点M是棱AC上不同于A,C的点,平面B1BM与棱A1C1交于点N,AB=BC=2,∠ABC=90°,∠BB1C1=60°.(Ⅰ)求证:B1N∥平面C1BM;(Ⅱ)求证:B1C⊥平面ABC1;(Ⅲ)若二面角A﹣BC1﹣M为30°,求AM的长.【解答】解(Ⅰ)∵平面B1BM与棱A1C1交于点N,根据棱柱的性质可得面ABC ∥面A1B1C1,⇒B1N∥BM.又∵BM⊂平面C1BM,B1N⊄平面C1BM,∴B1N∥平面C1BM;(Ⅱ)∵平面BCC1B1⊥平面ABC,平面BCC1B1∩平面ABC=BC,AB⊂面ABC,AB⊥BC,∴AB⊥面BCC1B1.∴AB⊥B1C∵四边形BCC1B1为菱形,∴B1C⊥BC1,且AB∩BC1=B,∴B1C⊥平面ABC1;(Ⅲ)如图,以B为原点,建立空间直角坐标系O﹣xyz.则B(0,0,0),A(2,0,0),C(0,2,0),C1(0,1,),B1(0,﹣1,).,设,λ∈(0,1),则由(Ⅰ)可知面BAC1的法向量为BM的法向量为.设面面C由,可取,∵二面角A﹣BC1﹣M为30°,∴cos=.解得.∴AM=18.(13分)已知函数,且m≠0.(Ⅰ)当m=1时,求曲线y=f(x)在点(0,0)处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数f(x)有最值,写出m的取值范围.(只需写出结论)【解答】解:(Ⅰ)m=1时,f(x)=,f′(x)=,故f′(0)=﹣1,故切线方程是:y﹣0=﹣(x﹣0),即x+y=0;(Ⅱ)f′(x)=,①﹣m>0即m<0时,令f′(x)>0,解得:﹣<x<,令f′(x)<0,解得:x>或x<﹣,故f(x)在(﹣∞,﹣)递减,在(﹣,)递增,在(,+∞)递减;②﹣m<0,即m>0时,f′(x)<0在R恒成立,故f(x)在(﹣∞,),(,+∞)递减;(Ⅲ)由(Ⅱ)得m<0.19.(14分)已知椭圆的短轴端点到右焦点F(1,0)的距离为2.(Ⅰ)求椭圆C的方程;(Ⅱ)过点F的直线交椭圆C于A,B两点,交直线l:x=4于点P,若|P A|=λ1|AF|,|PB|=λ2|BF|,求证:λ1﹣λ2为定值.【解答】解:(Ⅰ)∵椭圆的短轴端点到右焦点F(1,0)的距离为2,∴,∴c=1,a=2,b2=a2﹣c2=3,∴椭圆的方程:.证明:(Ⅱ)设过F点的直线方程为y=k(x﹣1),A(x1,y1),B(x2,y2),P (4,3k),F(1,0),(令x1<x2),=(x1﹣4,y1﹣3k),=(1﹣x1,﹣y1),=(x2﹣4,y2﹣3k),=(1﹣x2,﹣y2),∵|P A|=λ1|AF|,|PB|=λ2|BF|,∴,,联立,得(3+4k2)x2﹣8k2x+4k2﹣12=0,△>0,,,∴λ1﹣λ2=﹣=====﹣2.∴λ1﹣λ2为定值﹣2.20.(13分)已知集合A1,A2,…,A n为集合U的n个非空子集,这n个集合满足:①从中任取m个集合都有≠U成立;②从中任取m+1个集合都有=U成立.(Ⅰ)若U={1,2,3},n=3,m=1,写出满足题意的一组集合A1,A2,A3;(Ⅱ)若n=4,m=2,写出满足题意的一组集合A1,A2,A3,A4以及集合U;(Ⅲ)若n=10,m=3,求集合U中的元素个数的最小值.【解答】解:(Ⅰ)∵集合A1,A2,…,A n为集合U的n个非空子集,这n个集合满足:①从中任取m个集合都有A i1∪A i2∪…∪A im≠U成立,②从中任取m+1个集合都有=U成立.U={1,2,3},n=3,m=1,∴满足题意的一组集合A1={2,3},A2={2,3,6},A3={1,3,5}.(Ⅱ)∵n=4,m=2,∴满足题意的一组集合A1={4,5,6},A2={2,3,6},A3={1,3,5},A4={1,2,4},集合U={1,2,3,4,5,6}.(Ⅲ)∵n=10,m=3,∴集合U中的元素个数的最小值为120个.下面先证明若{i 1,i2,i3}≠{j1,j2,j3},则,,B j≠B i,反证法:假设B j=B i,设i1∉{j1,j2,j3},由假设B i=B j≠∪,设D j=∁U B j,设x∈D j,则x是,,中都没有的元素,x∉B j,∵,,,四个子集的并集为U,∴⊂B i=B j与x∉B j矛盾,∴假设不正确,,i2,i3}≠{j1,j2,j3},且,,B j若{i≠B i成立,则A1,A2,…,A10的3个集合的并集共计有=120个.把集合U中120个元素与A 1,A2,…,A10的3个集合的并集B i=建立一一对应关系,∴集合U中元素个数大于等于120,下面我们构造一个有120个元素的集合U:把与B i=(i=1,2,…,120)对应的元素放在异于,的集合中,∴对于任意一个3个集合的并集,它们都不含与B i对应的元素,∴B i≠U,同时,对于任意的4个集合设为的并集,则由上面的原则与,,对应的元素在集合中,即对于任意的4个集合的并集为全集U.。

北京市大兴区2017届高三下学期第一次综合练习数学(理)试题

北京市大兴区2017届高三下学期第一次综合练习数学(理)试题

2016-2017学年度北京市大兴区高三第一次综合练习数学(理)本试卷共4页,满分150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合{|0}A x x=>,则RC A=().A.{|0}x x<B.{|0}x x…C.{|0}x x>D.{|0}x x…2.下列函数中,既是偶函数又有零点的是().A.12y x=B.tany x=C.x xy e e-=+D.ln||y x=3.执行如图所示的程序框图,输出的S值为().A.4B.5C.6D.74.设a,Rb∈,则“a b>”是“11a b<”的().A.充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件5.某三棱锥的三视图如图所示,该三棱锥体积为( ). A .13B .12C .1D .32俯视图侧左()视图正主()视图6.若x ,y 满足220,20,0,x y x y y ≥≥≥-+⎧⎪-+⎨⎪⎩且z kx y =-+有最大值,则k 的取值范围为( ).A .1k …B .12k 剟C .1k …D .2k …7.设函数()sin(2)f x x ϕ=+(ϕ是常数),若2π(0)3f f ⎛⎫= ⎪⎝⎭,则π12f ⎛⎫⎪⎝⎭,4π3f ⎛⎫ ⎪⎝⎭,π2f⎛⎫⎪⎝⎭之间的大小关系可能是( ). A .π4ππ2312f f f ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .4πππ3212f f f ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .ππ4π2123f f f ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .π4ππ1232f f f ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭8.某公司有4家直营店a ,b ,c ,d ,现需将6箱货物运送至直营店进行销售,各直营店出售该货物以往所得利润统计如下表所示.根据此表,该公司获得最大总利润的运送方式有( ). A .1种B .2种C .3种D .4种第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.复数2(1i)+=_______.10.设22,0()log ,0xx f x x x ⎧⎪=⎨>⎪⎩≤则((1))f f -=________.11.已知双曲线2221y x b-=(0)b >的离心率为2,则b =_______.12.在极坐标系中,点π2,3A ⎛⎫⎪⎝⎭到直线cos 2p θ=的距离是________.13.已知圆22:1O x y +=的弦AB AP 是圆O 的直径,则AP AB⋅=______;若点P 为圆O 上的动点,则AP AB⋅的取值范围是__________.14.已知数列{}n a 满足11a k=,2k ≥,*k N ∈,[]n a 表示不超过n a 的最大整数(如[1.6]1=),记[]n n b a =,数列{}n b 的前n 项和为n T .①若数列{}n a 是公差为1的等差数列,则4T =_______. ②若数列{}n a 是公比为1k +的等比数列,则n T =________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题13分)在ABC △中,a =,3b =,1cos 3A =-.(1)求sin B ;(2)设BC 的中点为D ,求中线AD 的长.16.(本小题13分)某大型超市拟对店庆当天购物满288元的顾客进行回馈奖励.规则如下:顾客转动十二等分且质地均匀的圆形转盘(如图),待转盘停止转动时,若指针指向扇形区域,则顾客可领取此区域对应面额(单位:元)的超市代金券.假设转盘每次转动的结果互不影响.(1)若060x ≠,求顾客转动一次转盘获得60元代金券的概率;(2)某顾客可以连续转动两次转盘并获得相应奖励,当020x =时,求该顾客第一次获得代金券的面额不低于第二次获得代金券的面额的概率;(3)记顾客每次转动转盘获得代金券的面额为X ,当0x 取何值时,X 的方差最小?(结论不要求证明) 17.(本小题14分)如图,在三棱柱111ABC A B C -中,平面11BCC B ⊥平面ABC ,四边形11BCC B 为菱形,点M 是棱AC 上不同于A ,C 的点,平面1B BM 与棱11AC 交于点N ,2AB BC ==,90ABC °∠=,1160BB C °∠=.C 1NMB 1BA 1A(1)求证:1B N ∥平面1C BM ; (2)求证:1B C ⊥平面1ABC ;(3)若二面角1A BC M --为30°,求AM 的长.18.(本小题13分)已知函数22()m x f x x m=-,且0m ≠.(1)若1m =,求曲线()y f x =在点(0,0)处的切线方程; (2)求函数()y f x =的单调区间;(3)若函数()y f x =有最值,写出m 的取值范围.(只需写出结论)19.(本小题14分)已知椭圆2222:1x y C a b +=(0)a b >>的短轴端点到右焦点(1,0)F 的距离为2.(1)求椭圆C 的方程;(2)过点F 的直线交椭圆C 于A ,B 两点,交直线:4l x =于点P ,设1||||PA AF λ=,2||||PB BF λ=,求证:12λλ-为定值.20.(本小题13分)若合集1A ,2A ,⋅⋅⋅,n A 为合集U 的n 个非空子集,这n 个集合满足:①从中任取m 个集合都有12m i i i A A A U ⋅⋅⋅≠ 成立;②从中任取1m +个合计都有121m m j j j j A A A A U +=成立.(1)若{1,2,3}U =,3n =,1m =,写出满足题意得一组集合1A ,2A ,3A ;(2)若4n =,2m =,写出满足题意的一组集合1A ,2A ,3A ,4A 以及集合U ; (3)若10n =,3m =,求集合U 中的元素个数的最小值.大兴区2016-2017学年度第一次综合练习 高三数学(理科)参考答案及评分标准一、选择题(共8小题,每小题5分,共40分)9.2i 10.1-1112.113.2;[114.2(1)16:n k kn k +--注:13、14第一空3分,第二空2分.三、解答题(共6小题,共80分). 15.(共13分)解:(1)由1cos 3A =-知,且0πA <<.所以sin A ..由正弦定理及题设得sin sin a bA B =3sin B=.所以sin B =. (2)因为b a <, 所以B 为锐角.所以cos B =. 因为πA B C ∠+∠+∠=,所以cos cos()cos cos sin sin C A B A B A B =-+=-+.所以1cos 3C =+在ACD △中,D 为BC 的中点,所以CD 由余弦定理及题设得2222cos AD AC CD AC CD C =+-⋅.22323=+-⨯. 2=.所以中线AD16.(共13分)解:(1)设事件A 为“顾客转动一次转盘获得60元代金券”, 由题意知41()123P A ==. (2)设事件B 为“顾客第一次获得代金券面额不低于第二次获得的代金券面额”,设事件C 为“该顾客第i 转动转盘获得的超市代金券面额为60”,1,2i =.由题意知,1()3P C =,1,2i =.因此112()()()P B P C P C C =+. 11111333⎛⎫⎛⎫=+-⨯- ⎪ ⎪⎝⎭⎝⎭.79=. (3)036x =.17.(共14分)解:(1)因为在三棱柱111ABC A B C -中,平面ABC ∥平面111A B C , 平面1B BM 平面ABC BM =, 平面1B BM 平面1111A B C B N =, 所以1BM B N ∥.又因为1B N ⊄平面1C BM ,BM ⊂平面1C BM , 所以1B N ∥平面1C BM .(2)因为90ABC °∠=,所以AB BC ⊥, 又因为平面11BCC B ⊥平面ABC ,所以AB ⊥平面11BCC B . 所以1AB B C ⊥.又因为四边形11BCC B 为菱形,所以11B C BC ⊥. 所以1B C ⊥平面1ABC .(3)取线段11B C 中点D ,因为菱形11BCC B 中,1160BB C °∠=, 所以11BD B C ⊥.又因为11BC B C ∥,所以BD BC ⊥. 又因为AB ⊥平面11BCC B .如图,以B 为原点,建立空间直角坐标系B xyz -,则(2,0,0)A ,(0,0,0)B,1(0,1B -,(0,2,0)C,1(0,1C ,所以1(0,3,BC =1BC =(2,0,0)BA =(2,2,0)AC =-. 设AM AC λ=,(01)λ<<,BM BA AM BA AC λ=+=+(2,0,0)(2,2,0)λλ=+-(22,2,0)λλ=-, 设平面1BC M 的法向量为(,y,z)n x =, 则100n BM n ⎧⋅=⎪⎨⋅=⎪⎩,即0(22)20y x y λλ⎧=⎪⎨-+=⎪⎩,令z ,则3y =-,31x λλ=-.所以3,1n λλ⎛=- -⎝.A由(2)知,1(0,3,BC =是平面 1ABC 的一个法向量.则因为二面角1A BC M --为30°,111cos30cos ,n B C nB C B C n°⋅=<>=⋅=. 解得25λ=,或2λ=-(舍).所以25AM AC ==AM.18.(共13分)解:(1)当 1m =时,由题设知2()1xf x x =-. 因为2221()(1)x f x x +'=--,所以(0)0f =,(0)1f '=-.所以()f x 在0x =处的切线方程为0x y +=. (2)因为22()m x f x x m=-,所以2222()()x m f x m x m +'=--.当0m >时,定义域为(,-∞()+∞. 且2222()0()x mf x m x m +'=-<-. 故()f x的单调递减区间为(,-∞,(,)+∞.当0m <时,定义区域为R .当x 变化时,()f x ',()f x 的变化情况如下表:故()f x 的单调递减区间为(,-∞,)+∞, 单调递增区间为(.综上所述,当0m >时,()f x 的单调递减区间为(,-∞,(,)+∞; 当0m <时,故()f x 的单调递减区间为(,-∞,)+∞, 单调递增区间为(. (3)0m <.19.(共14分)解:(1)由题意有:1c =2=, 所以2a =,2223b a c =-=.所以椭圆C 的方程为22143x y +=.(2)由题意直线AB 过点(1,0)F ,且斜率存在,设方程为(1)y k x =-,将4x =代入得P 点坐标为(4,3k),由22(1)143y k x x y =-⎧⎪⎨+=⎪⎩,消元得 2222(4)84120s k x k x k +-+-=,设11(,y )A x ,22(,y )B x ,则0∆>且2122212283441234k x x k k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩, 方法一:因为1PA AF λ=,所以11141PA x AF x λ-==-. 同理22241PB x BF x λ-==-,且1141x x --与2241x x --异号,所以1212124411x x x x λλ---=+=--12332()11x x --+--, 1212123(2)2()1x x x x x x +-=-+-++,222223(868)2412834k k k k k --=-+--++,0=.所以,12λλ-的定值为0.方法二:由题意,当121x x >>时,(若:不妨设121x x >>,加一分) 有1PA AF λ=,且2PB BF λ=-,所以11111(4,3)(1,)x y k x y λ--=--,且22222(4,3)(1,)x y k x y λ--=---, 所以11141x x λ-=-,同理22241x x λ-=--, 从而1212124411x x x x λλ---=+=--12331111x x ------, 12123(2)2(1)(1)x x x x --=--=--1212123(2)2()1x x x x x x +--+-++,222223(868)2412834k k k k k --=-+--++,0=.当121x x <<时,同理可得120λλ-=. 所以,12λλ-为定值0.方法三:由题意直线AB 过点(1,0)F ,设方程为1x my =+(0)m ≠, 将4x =代入得P 点坐标为34,m ⎛⎫⎪⎝⎭,由221143x my x y =+⎧⎪⎨+=⎪⎩,消元得22(34)690m y my ++-=,设11(,)A x y ,22(,)B x y ,则0∆>且12212263493m y y m y y m -⎧+=⎪⎪+⎨-⎪⋅=⎪⎩,因为1PA AF λ=,所以11111330y PA my m AF y my λ--===-. 同理2223PB my BF my λ-==,且113my my -与223my my -异号,所以12121233my my my my λλ---=+12123()2y y my y +=-, 3(6)20(9)m m ⨯-=-=⨯-.又当直线AB 与x 轴重合时,120λλ-=, 所以,12λλ-为定值0.20.(共13分)解:(1){1,2,3}U =,1{2,3}A =,2{1,3}A =,3{1,2}A =.(2){1,2,3,4,5,6}U =,1{4,5,6}A =,2{2,3,6}A =,3{1,3,5}A =, 4{1,2,4}A =.(3)集合U 中元素个数的最小值为120个. 下面先证明若123123{,,}{,,}i i i j j j ≠,则123j j j j B A A A =,123i i i i B A A A =,j i B B ≠. 反证法:假设j i B B =,不妨设1123{,,}i j j j ∉.由假设i j B B U =≠,设j U j D C B =,设j x D ∈, 则x 是1j A ,2j A ,3j A 中都没有的元素,j x B ∉. 因为1i A , 1j A ,2j A ,3j A 四个子集的并集为U , 所以1i i j x A B B ∈⊂=与j x B ∉矛盾,所以假设不正确.若123123{,,}{,,}i i i j j j ≠,且123j j j j B A A A =,123i i i i B A A A =,j i B B ≠成立.则1A ,2A ,⋅⋅⋅,10A 的3个集合的并集共计有310120C =个.把集合U 中120个元素与1A ,2A ,⋅⋅⋅,10A 的3个集合的并集123i i i i B A A A =建立一一对应关系,所以集合U 中元素的个数大于等于120.下面我们构造一个有120个元素的集合U :把与123i i i i B A A A =(1,2,,120)i =⋅⋅⋅对应的元素放在异于1i A ,2i A ,3i A 的集合中,因此对于任意一个3个集合的并集,它们都不含与i B 对应的元素, 所以i B U ≠.同时对于任意的4个集合不妨为 1i A ,2i A ,3i A ,4i A 的并集, 则由上面的原则与1i A ,2i A ,3i A 对应的元素在集合4i A 中, 即对于任意的4个集合1i A ,2i A ,3i A ,4i A 的并集为全集U .。

北京市2017届高三数学(理)综合练习1 含答案

北京市2017届高三数学(理)综合练习1 含答案

北京市2017届高三综合练习数学(理)一、选择题:本大题共12小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集U=R ,A=(2){|21},{|ln(1)}x x x B x y x -<==-,则右图中阴影部分表示的集合为( )A .{|1}x x ≥B .{|12}x x ≤<C .{|01}x x <≤D .{|1}x x ≤ 2.函数()x x f 2sin =的最小正周期为 ( )A .π B.π2 C 。

π3 D 。

π43.中心在原点,焦点在x 轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为2,则双曲线方程为( )A .x 2-y 2=1B .x 2-y 2=2C .x 2-y 2=2D .x 2-y 2=214.在空间中,有如下命题:①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;②若平面βαβα平面内任意一条直线,则平面平面////m ;③若平面βαβα平面则直线直线内的直线平面的交线为与平面⊥⊥n m n m ,,;④若平面α内的三点A 、B 、C 到平面β的距离相等,则βα//。

其中正确命题的个数为( )个。

A .0 B .1C .2D .35.圆()3122=++y x 绕直线01=--y kx 旋转一周所得的几何体的体积为( )A 。

π36B 。

π12C .π34 D. π46.连续投掷两次骰子得到的点数分别为m 、n ,作向量a =(m,n ).则向量a 与向量b=(1,—1)的夹角成为直角三角形内角的概率是( )A .712B .512C .12347。

定义运算:12122112a a ab a b b b =-,将函数()3sin 1cos x f x x=的图象向左平移t (0t >)个单位,所得图象对应的函数为偶函数,则t 的最小值为( )A . 3π B .6π C .56πD .23π 8.下列结论 ①命题“0,2>-∈∀x xR x ”的否定是“0,2≤-∈∃x x R x ”; ②当),1(+∞∈x 时,函数221,x y x y ==的图象都在直线x y =的上方; ③定义在R 上的奇函数()x f ,满足()()x f x f -=+2,则()6f 的值为0. ④若函数()x x mx x f 2ln 2-+=在定义域内是增函数,则实数m 的取值范围为12m ≥。

北京市2017届高三数学(理)综合练习50 Word版含答案

北京市2017届高三数学(理)综合练习50 Word版含答案

北京市2017届高三综合练习数学(理)第一部分(选择题共40 分)一、选择题(共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合,集合,则=().B.C.D.2.执行如图所示的程序框图,则输出的n的值是().A.7 B.10 C.66 D.1663.设为虚数单位,,“复数是纯虚数”是“”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.已知平面上三点A,B,C,满足,则= ().A.48 B.-48 C.100 D.-1005.已知函数,若对任意的实数x,总有,则的最小值是().A.2 B.4 C.D.26.已知双曲线与抛物线有一个公共的焦点F,且两曲线的一个交点为P.若,则双曲线的渐近线方程为().7.已知函数,若对任意,都有成立,则实数m的取值范围是().8.如图,将一张边长为1的正方形纸ABCD折叠,使得点B始终落在边AD上,则折起部分面积的最小值为().第Ⅱ卷(非选择题共110 分)二、填空题:本小题共6 小题,每小题5 分,共30 分.9.展开式中含项的系数是__________.10.已知圆C的圆心在直线x-y=0上,且圆C与两条直线x+y=0和x+y-12=0都相切,则圆C的标准方程是__________.11.如图,已知圆B的半径为5,直线AMN与直线ADC为圆B的两条割线,且割线AMN 过圆心B.若AM=2,,则AD=__________.12.某四棱锥的三视图如图所示,则该四棱锥的侧面积为__________.13.已知点在函数的图像上,则数列的通项公式为__________;设O为坐标原点,点,则,中,面积的最大值是__________.14.设集合,集合A中所有元素的个数为__________;集合A 中满足条件“”的元素个数为__________.三、解答题:本大题共6 小题,共80 分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题共13分)在梯形ABCD中,(Ⅰ)求AC的长;(Ⅱ)求梯形ABCD的高.16.(本小题共13分)某学科测试中要求考生从A,B,C三道题中任选一题作答,考试结束后,统计数据显示共有600名学生参加测试,选择A,B,C三题答卷数如下表:(Ⅰ)某教师为了解参加测试的学生答卷情况,现用分层抽样的方法从600份答案中抽出若干份答卷,其中从选择A题作答的答卷中抽出了3份,则应分别从选择B,C题作答的答卷中各抽出多少份?(Ⅱ)若在(Ⅰ)问中被抽出的答卷中,A,B,C三题答卷得优的份数都是2,从被抽出的A,B,C三题答卷中再各抽出1份,求这3份答卷中恰有1份得优的概率;(Ⅲ)测试后的统计数据显示,B题的答卷得优的有100份,若以频率作为概率,在(Ⅰ)问中被抽出的选择B题作答的答卷中,记其中得优的份数为X,求X的分布列及其数学期望EX.17.(本小题共14分)如图,在直角梯形ABCD中,.直角梯形ABEF可以通过直角梯形ABCD以直线AB为轴旋转得到,且平面平面ABCD.(Ⅰ)求证:;(Ⅱ)求直线BD和平面BCE所成角的正弦值;(Ⅲ)设H为BD的中点,M,N分别为线段FD,AD上的点(都不与点D重合).若直线平面MNH,求MH的长.18.(本小题共13分)已知点M为椭圆的右顶点,点A,B是椭圆C上不同的两点(均异于点M),且满足直线MA与直线MB斜率之积为14.(Ⅰ)求椭圆C的离心率及焦点坐标;(Ⅱ)试判断直线AB是否过定点:若是,求出定点坐标;若否,说明理由.19.(本小题共14分)已知函数.(Ⅰ)当时,求函数的单调区间;(Ⅱ)若在区间(1,2)上存在不相等的实数成立,求的取值范围;(Ⅲ)若函数有两个不同的极值点,,求证:.20.(本小题共13分)已知数列,是正整数1,2,3,,n的一个全排列.若对每个都有或3,则称为H数列.(Ⅰ)写出满足的所有H数列;(Ⅱ)写出一个满足的数列的通项公式;(Ⅲ)在H数列中,记.若数列是公差为d的等差数列,求证:或.参考答案及评分标准高三数学(理科)三、解答题:15.(本小题共13 分)解:(Ⅰ)在中,因为,所以.由正弦定理得:,即.(Ⅱ)在中,由余弦定理得:,整理得,解得(舍负).过点作于,则为梯形的高.因为,,所以.在直角中,.即梯形的高为.16.(本小题共13 分)解:应分别从题的答卷中抽出份,份.(Ⅱ)记事件:被抽出的三种答卷中分别再任取出份,这份答卷中恰有份得优,可知只能题答案为优,依题意.(Ⅲ)由题意可知,题答案得优的概率为,显然被抽出的题的答案中得优的份数的可能取值为,且.;;;;;.随机变量的分布列为:所以.17.(本小题共14分)证明:(Ⅰ)由已知得,.因为平面平面,且平面平面,所以平面,由于平面,所以.(Ⅱ)由(1)知平面所以,.由已知,所以两两垂直.以为原点建立空间直角坐标系(如图).因为,则,,,,所以,,设平面的一个法向量.所以,即.令,则.设直线与平面所成角为,因为,所以.所以直线和平面所成角的正弦值为.(Ⅲ)在为原点的空间直角坐标系中,,,,,.设,即.,则,,.若平面,则.即..解得.则,.18.(本小题共13分)解:(Ⅰ)椭圆的方程可化为,则,,.故离心率为,焦点坐标为,。

北京市2017届高三数学(理)综合练习10 含答案

北京市2017届高三数学(理)综合练习10 含答案

北京市2017届高三综合练习数学(理)第Ⅰ卷为选择题,共60分;第Ⅱ卷为非选择题共90分。

满分100分,考试时间为120分钟。

第Ⅰ卷(选择题,共60分)一、本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的. 1.已知集合{}0 1 2A =,,,集合{}2B x x =>,则A B =( )A .{}2B .{}0 1 2,,C .{}2x x >D .∅ 2.已知i 是虚数单位,则i i +-221等于( )A .i -B .i -54C .i 5354- D .i3.一个几何体的三视图如图所示,则该几何体的体积为( )A .12B .11C .312D .3114.若数列{}na 的前n 项和为nS ,则下列命题:(1)若数列{}na 是递增数列,则数列{}nS 也是递增数列;(2)数列{}nS 是递增数列的充要条件是数列{}na 的各项均为正数;(3)若{}na 是等差数列(公差0d ≠),则120k S SS ⋅=的充要条件是120.k a a a ⋅=(4)若{}na 是等比数列,则120(2,)k S SS k k N ⋅=≥∈的充要条件是10.n n a a ++=其中,正确命题的个数是( ) A .0个B .1个C .2个D .3个5.如图,长方形的四个顶点为)2,0(),2,4(),0,4(),0,0(C B A O ,曲线xy =经过点B .现将一质点随机投入长方形OABC中,则质点落在图中阴影区域的概率是( ) A .125B .21C .32D .436.已知:命题p :“1=a 是2,0≥+>xa x x 的充分必要条件”;命题q :“02,0200>-+∈∃x x R x”.则下列命题正确的是()A .命题“p ∧q "是真命题B .命题“(┐p )∧q "是真命题C .命题“p ∧(┐q )”是真命题D .命题“(┐p )∧(┐q )”是真命题7.若空间三条直线a 、b 、c 满足,//a b b c ⊥,则直线a c 与( )A .一定平行B .一定相交C .一定是异面直线D .一定垂直8.函数xx y ln = 的图象大致是( )9.如图所示的方格纸中有定点 O P Q E F G H ,,,,,,,则OP OQ +=( ) A .OH B .OG C .FO D .EO10.设22)1(则,3005满足约束条件,y x x y x y x y x ++⎪⎩⎪⎨⎧≤≥+≥+-的最大值为( ) A . 80 B . 45C.25D .17211.若双曲线222(0)xy a a -=>的左、右顶点分别为A 、B ,点P 是第一象限内双曲线上的点。

北京市2017届高三数学(理)综合练习54 Word版含答案

北京市2017届高三数学(理)综合练习54 Word版含答案

北京市2017届高三综合练习数学(理)选择题 (共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1、已知集合{}30<<∈=x x A R ,{}42≥∈=x x B R ,则=B A I A. {}32<<x x B. {}32<≤x x C. {}322<≤-≤x x x 或 D. R2.已知数列{}n a 为等差数列,n S 是它的前n 项和.若21=a ,123=S ,则=4S A .10 B .16 C .20 D .243. 在极坐标系下,已知圆C 的方程为2cos ρθ=,则下列各点在圆C 上的是 A .1,3π⎛⎫- ⎪⎝⎭B . 1,6π⎛⎫⎪⎝⎭C .32,4π⎫⎪⎭D . 52,4π⎫⎪⎭4.执行如图所示的程序框图,若输出x 的值为23,则输入的x 值为A .0B .1C .2D .11 5.已知平面l =I αβ,m 是α内不同于l 的直线,那么下列命题中 错误..的是 A .若β//m ,则l m // B .若l m //,则β//m C .若β⊥m ,则l m ⊥ D .若l m ⊥,则β⊥m6. 已知非零向量,,a b c 满足++=a b c 0,向量,a b 的夹角为120o,且||2||=b a ,则向量a 与c 的夹角为A .︒60B .︒90C .︒120D . ︒1507.如果存在正整数ω和实数ϕ使得函数)(cos )(2ϕω+=x x f (ω,ϕ为常数)的图象如图所示(图象经过点(1,0)),那么ω的值为A .1B .2C . 3 D. 48.已知抛物线M :24y x =,圆N :222)1(r y x =+-(其中r 为常数,21x x =+是否3n ≤1n n =+x输入开始1n =x 输出结束112yOx0>r ).过点(1,0)的直线l 交圆N 于C 、D 两点,交抛物线M 于A 、B 两点,且满足BD AC =的直线l 只有三条的必要条件是A .(0,1]r ∈B .(1,2]r ∈C .3(,4)2r ∈D .3[,)2r ∈+∞非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.复数3i1i-+= . 10.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为1s ,2s ,3s ,则它们的大小关系为 . (用“>”连接)11.如图,A ,B ,C 是⊙O 上的三点,BE 切⊙O 于点B , D 是CE 与⊙O 的交点.若︒=∠70BAC ,则=∠CBE ______;若2=BE ,4=CE , 则=CD .12.已知平面区域}11,11|),{(≤≤-≤≤-=y x y x D ,在区域D 内任取一点,则取到的点位于直线y kx =(k R ∈)下方的概率为____________ .13.若直线l 被圆22:2C x y +=所截的弦长不小于2,则在下列曲线中:①22-=x y ② 22(1)1x y -+= ③ 2212x y += ④ 221x y -=与直线l 一定有公共点的曲线的序号是 . (写出你认为正确的所有序号)14.如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP =x , △CPD 的面积为()f x .则()f x 的定义域为 ; '()f x 的零点是 .CBD乙丙O频率组距0.00020.00040.00080.0006甲三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题共13分)在ABC ∆中,内角A 、B 、C 所对的边分别为,,a b c ,已知1tan 2B =,1tan 3C =,且1c =. (Ⅰ)求tan A ; (Ⅱ)求ABC ∆的面积.16. (本小题共14分)在如图的多面体中,EF ⊥平面AEB ,AE EB ⊥,//AD EF ,//EF BC ,24BC AD ==,3EF =,2AE BE ==, G 是BC 的中点.(Ⅰ) 求证://AB 平面DEG ;(Ⅱ) 求证:BD EG ⊥;(Ⅲ) 求二面角C DF E --的余弦值.17. (本小题共13分)某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为23.现有10件产品,其中6件是一等品,4件是二等品. (Ⅰ) 随机选取1件产品,求能够通过检测的概率;(Ⅱ)随机选取3件产品,其中一等品的件数记为X ,求X 的分布列; (Ⅲ) 随机选取3件产品,求这三件产品都不能通过检测的概率.18. (本小题共13分)已知函数()ln f x x a x =-,1(), (R).ag x a x+=-∈ (Ⅰ)若1a =,求函数()f x 的极值;(Ⅱ)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(Ⅲ)若在[]1,e (e 2.718...=)上存在一点0x ,使得0()f x <0()g x 成立,求a 的取值范围.A DFEB G C19. (本小题共14分)已知椭圆2222:1x y C a b += (0)a b >>经过点3(1,),2M 其离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线1:(||)2l y kx m k =+≤与椭圆C 相交于A 、B 两点,以线段,OA OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点.求OP 的取值范围.20. (本小题共13分)已知每项均是正整数的数列A :123,,,,n a a a a L ,其中等于i 的项有i k 个(1,2,3)i =⋅⋅⋅, 设j j k k k b +++=Λ21 (1,2,3)j =L ,12()m g m b b b nm =+++-L (1,2,3)m =⋅⋅⋅.(Ⅰ)设数列:1,2,1,4A ,求(1),(2),(3),(4),(5)g g g g g ;(Ⅱ)若数列A 满足12100n a a a n +++-=L ,求函数)(m g 的最小值.答案及评分参考选择题 (共40分)一、选择题(本大题共8小题,每小题5分,共40分)非选择题 (共110分)二、填空题(本大题共6小题,每小题5分. 共30分.有两空的题目,第一空3分,第二空2分)9.12i - 10. s 1>s 2>s 3 11. 70o ; 3 12.1213. ① ③ 14. (2,4); 3 三、解答题(本大题共6小题,共80分) 15.(共13分) 解:(I )因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B CB C B C ++=-, …………………1分代入得到,1123tan()111123B C ++==-⨯ . …………………3分因为180A B C =--o , …………………4分所以tan tan(180())tan()1A B C B C =-+=-+=-o . (5)分(II )因为0180A <<o o ,由(I )结论可得:135A =o . …………………7分 因为11tan tan 023B C =>=>,所以090C B <<<o o . …………8分 所以sin 5B =sin 10C =. (9)分 由sin sin a cA C=得a = (11)分 所以ABC∆的面积为:11sin 22ac B =. ………………13分16. (共14分)解:(Ⅰ)证明:∵//,//AD EF EF BC , ∴//AD BC .又∵2BC AD =,G 是BC 的中点, ∴//AD BG ,∴四边形ADGB 是平行四边形,∴ //AB DG . ……………2分 ∵AB ⊄平面DEG ,DG ⊂平面DEG ,∴//AB 平面DEG . …………………4分 (Ⅱ) 解法1证明:∵EF ⊥平面AEB ,AE ⊂平面AEB ,∴EF AE ⊥,又,AE EB EB EF E ⊥=I ,,EB EF ⊂平面BCFE ,∴AE ⊥平面BCFE . ………………………5分过D 作//DH AE 交EF 于H ,则DH ⊥平面BCFE .∵EG ⊂平面BCFE , ∴DH EG ⊥. ………………………6分∵//,//AD EF DH AE ,∴四边形AEHD 平行四边形, ∴2EH AD ==,∴2EH BG ==,又//,EH BG EH BE ⊥,∴四边形BGHE 为正方形,∴BH EG ⊥, ………………………7分又,BH DH H BH =⊂I 平面BHD ,DH ⊂平面BHD ,∴EG ⊥平面BHD . ………………………8分 ∵BD ⊂平面BHD ,∴BD EG ⊥. ………………………9分 解法2∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB ,∴EF AE ⊥,EF BE ⊥,又AE EB ⊥,∴,,EB EF EA 两两垂直. ……………………5分HA DFEB G C以点E 为坐标原点,,,EB EF EA 分别为,,x y z 轴建立如图的空间直角坐标系. 由已知得,A (0,0,2),B (2,0,0),C (2,4,0),F (0,3,0),D (0,2,2), G (2,2,0). …………………………6分∴(2,2,0)EG =u u u r ,(2,2,2)BD =-u u u r,………7分∴22220BD EG ⋅=-⨯+⨯=u u u r u u u r, ………8分∴BD EG ⊥. …………………………9分(Ⅲ)由已知得(2,0,0)EB =u u u r是平面EFDA 的法向量. …………………………10分设平面DCF 的法向量为(,,)x y z =n ,∵(0,1,2),(2,1,0)FD FC =-=u u u r u u u r,∴00FD n FC n ⎧⋅=⎪⎨⋅=⎪⎩u u u r r u u u r r ,即2020y z x y -+=⎧⎨+=⎩,令1z =,得(1,2,1)=-n . …………………………12分 设二面角C DF E --的大小为θ,则cos cos ,6EB =<>==u u u r θn , …………………………13分 ∴二面角C DF E --的余弦值为6- …………………………14分17. (共13分)解:(Ⅰ)设随机选取一件产品,能够通过检测的事件为A …………………………1分事件A 等于事件 “选取一等品都通过检测或者是选取二等品通过检测” ……………2分151332104106)(=⨯+=A p …………………………4分(Ⅱ) 由题可知X 可能取值为0,1,2,3.30463101(0)30C C P X C ===,21463103(1)10C C P X C ===, 12463101(2)2C C P X C ===,03463101(3)6C C P X C ===. (8)分……………9分(Ⅲ)设随机选取3件产品都不能通过检测的事件为B ……………10分事件B 等于事件“随机选取3件产品都是二等品且都不能通过检测” 所以,3111()()303810P B =⋅=. ……………13分18. (共13分)解:(Ⅰ)()f x 的定义域为(0,)+∞, ………………………1分 当1a =时,()ln f x x x =-,11()1x f x-'=-=, ………………………2分………………………3分所以()f x 在1x =处取得极小值1. ………………………4分(Ⅱ)1()ln ah x x a x x+=+-, 22221(1)(1)[(1)]()1a a x ax a x x a h x x x x x +--++-+'=--==………………………6分 ①当10a +>时,即1a >-时,在(0,1)a +上()0h x '<,在(1,)a ++∞上()0h x '>, 所以()h x 在(0,1)a +上单调递减,在(1,)a ++∞上单调递增; ………………………7分 ②当10a +≤,即1a ≤-时,在(0,)+∞上()0h x '>, 所以,函数()h x 在(0,)+∞上单调递增. ………………………8分 (III )在[]1,e 上存在一点0x ,使得0()f x <0()g x 成立,即 在[]1,e 上存在一点0x ,使得0()0h x <,即函数1()ln ah x x a x x+=+-在[]1,e 上的最小值小于零. ………………………9分 由(Ⅱ)可知①即1e a +≥,即e 1a ≥-时, ()h x 在[]1,e 上单调递减,所以()h x 的最小值为(e)h ,由1(e)e 0eah a +=+-<可得2e 1e 1a +>-, 因为2e 1e 1e 1+>--,所以2e 1e 1a +>-; ………………………10分 ②当11a +≤,即0a ≤时, ()h x 在[]1,e 上单调递增,所以()h x 最小值为(1)h ,由(1)110h a =++<可得2a <-; ………………………11分 ③当11e a <+<,即0e 1a <<-时, 可得()h x 最小值为(1)h a +, 因为0ln(1)1a <+<,所以,0ln(1)a a a <+< 故(1)2ln(1)2h a a a a +=+-+>此时,(1)0h a +<不成立. ………………………12分 综上讨论可得所求a 的范围是:2e 1e 1a +>-或2a <-. ………………………13分19. (共14分)解:(Ⅰ)由已知可得222214a b e a -==,所以2234a b = ① ……………1分 又点3(1,)2M 在椭圆C 上,所以221914a b += ② ……………2分 由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. ……………5分 (Ⅱ) 当0k =时,(0,2)P m 在椭圆C上,解得2m =±,所以||OP =……6分 当0k ≠时,则由22,1.43y kx m x y=+⎧⎪⎨+=⎪⎩ 消y 化简整理得:222(34)84120k x kmx m +++-=,222222644(34)(412)48(34)0k m k m k m ∆=-+-=+->③ ……………8分设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则 012012122286,()23434km mx x x y y y k x x m k k=+=-=+=++=++. ……………9分由于点P 在椭圆C 上,所以 2200143x y +=. ……………10分从而222222216121(34)(34)k m m k k +=++,化简得22434m k =+,经检验满足③式. ………11分又||OP ===== ………………………12分因为102k <≤,得23434k <+≤,有2331443k ≤<+,2OP <≤. ………………………13分综上,所求OP的取值范围是. ………………………14分 (Ⅱ)另解:设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、, 由,A B在椭圆上,可得2211222234123412x y x y ⎧+=⎨+=⎩①②………………………6分 ①—②整理得121212123()()4()()0x x x x y y y y -++-+=③ ………………………7分由已知可得OP OA OB=+u u u r u u u r u u u r ,所以120120x x x y y y +=⎧⎨+=⎩④⑤……………………8分 由已知当1212y y k x x -=- ,即1212()y y k x x -=-⑥ ………………………9分把④⑤⑥代入③整理得0034x ky =- ………………………10分与22003412x y +=联立消0x 整理得202943y k =+ ……………………11分 由22003412x y +=得2200443x y =-, 所以222222000002413||4443343OP x y y y y k =+=-+=-=-+ ……………………12分 因为12k ≤,得23434k ≤+≤,有2331443k ≤≤+,故2OP ≤≤. ………………………13分 所求OP的取值范围是. ………………………14分 20. (共13分) 解:(1)根据题设中有关字母的定义,12342,1,0,1,0(5,6,7)j k k k k k j ======L12342,213,2103,4,4(5,6,7,)m b b b b b m ==+==++====L112123123412345(1)412(2)423,(3)434,(4)444,(5)45 4.g b g b b g b b b g b b b b g b b b b b =-⨯=-=+-⨯=-=++-⨯=-=+++-⨯=-=++++-⨯=-(2)一方面,1(1)()m g m g m b n ++-=-,根据“数列A 含有n 项”及j b 的含义知1m b n +≤,故0)()1(≤-+m g m g ,即)1()(+≥m g m g ① …………………7分 另一方面,设整数{}12max ,,,n M a a a =L ,则当m M ≥时必有m b n =,所以(1)(2)(1)()(1)g g g M g M g M ≥≥≥-==+=L L所以()g m 的最小值为(1)g M -. …………………9分 下面计算(1)g M -的值:1231(1)(1)M g M b b b b n M --=++++--L1231()()()()M b n b n b n b n -=-+-+-++-L233445()()()()M M M M k k k k k k k k k k =----+----+----++-L L L L 23[2(1)]M k k M k =-+++-L12312(23)()M M k k k Mk k k k =-++++++++L L123()n M a a a a b =-+++++L123()n a a a a n =-+++++L …………………12分 ∵123100n a a a a n ++++-=L , ∴(1)100,g M -=-∴()g m 最小值为100-. …………………13分说明:其它正确解法按相应步骤给分.。

北京市2017届高三数学(理)综合练习34 Word版含答案

北京市2017届高三数学(理)综合练习34 Word版含答案

北京市2017届高三综合练习数学(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.全卷满分150分, 考试时间为120分钟.第Ⅰ卷(选择题 共40分)一、选择题(本大题共8个小题,每小题5分,共40分;在每个小题给出的四个选项中,有且只有一个是符合题目要求的) 1. 集合⎭⎬⎫⎩⎨⎧∈<<=+Z x x A x ,42211的元素个数有( ) A . 1个B . 2个C .3个D .无数个2. 若()014455513a x a x a x a x ++⋅⋅⋅++=+,则2a 的值为( ) A .270B .2702xC . 90D .902x3. 若a a 3,4,为等差数列的连续三项,则921a a a a +⋅⋅⋅+++的值为( ) A . 1023B .1025C .1062D . 20474. 已知直线m 、n 与平面α、β,下列命题正确的是 ( )A .βα//,//n m 且βα//,则n m //B .βα//,n m ⊥且β⊥α,则n m ⊥C .m n m ⊥=β⋂α,且βα⊥,则α⊥nD .βα⊥⊥n m ,且βα⊥,则n m ⊥ 5.已知命题(1)∃ α∈R ,使sin cos 1αα=成立;(2) ∃ α∈R ,使()β+α=β+αtan tan tan 成立;(3) ∀α,β∈R ,有()βα-β+α=β+αtan tan 1tan tan tan 成立; (4)若B A ,是ABC ∆的内角,则“B A >” 的充要条件是“B A sin sin >”.其中正确命题的个数是 ( ) A . 1B . 2C . 3D .46.已知函数的图像如右图所示,则其函数解析式可能是( )7. 抛掷一枚质地均匀的骰子,所得点数的样本空间为{}654321,,,,,=S .令事件{}5,3,2=A ,事件{}65421,,,,=B ,则()B A P 的值为( ) A . 53B .21 C .52 D .518. 如图抛物线1C : px y 22=和圆2C : 42222p y p x =+⎪⎭⎫ ⎝⎛-,其中0>p ,直线l 经过1C 的焦点,依次交1C ,2C 于,,,A B C D 四点,则CD AB ⋅的值为 ( )A . 42pB . 32pC . 22pD .2p第Ⅱ卷 (非选择题 共110分)二、填空题(本大题共6个小题,每小题5分,共30分) 9. 函数)4sin(cos )4cos(sin ππ+++=x x x x y 的值域是 . 10. 若i 是虚数单位,则832i 8i 3i 2i +⋅⋅⋅+++= . 11.如图,D C B A ,,,为空间四点,ABC △是等腰三角形,且o 90=∠ACB ,∆ADB 是等边三角形.则AB 与CD 所成角的大小为 .12. 如图,PA 与圆O 相切于A ,不过圆心O 的割线PCB 与直径AE 相交于D 点.已知∠BPA =030,2=AD ,1=PC , 则圆O 的半径等于 .13.数列721,,,a a a ⋅⋅⋅中,恰好有5个a ,2个b ()b a ≠,则不相同的数列共有 个.A . ()x x x f ln 2+=B . ()x x x f ln 2-=C .()x x x f ln +=D .()x x x f ln -=DBAAEOBPCD14. 以直角坐标系的原点为极点,x 轴正半轴为极轴建立极坐标系,有下列命题: ①1cos =θρ与曲线y y x =+22无公共点; ②极坐标为 (23,π43)的点P 所对应的复数是-3+3i ; ③圆θ=ρsin 2的圆心到直线01sin cos 2=+θρ-θρ④()04>ρπ=θ与曲线{()3cos 4sin x y θθπθθ≤≤==为参数,0相交于点P ,则点P 坐标是1212(,)55. 其中假命题的序号是 .三、解答题(本大题共6个小题,共80分;解答应写出文字说明,证明过程或演算步骤) 15.(本小题共13分)如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30ο,相距10海里C 处的乙船.(Ⅰ)求处于C 处的乙船和遇险渔船间的距离;(Ⅱ)设乙船沿直线CB 方向前往B 处救援,其方向与成θ角,求()x x x f cos cos sin sin 22θ+θ=()R x ∈的值域.16. (本小题共13分)已知某个几何体的三视图如图(主视图的弧线是半圆),根据图中标出的数据, (Ⅰ)求这个组合体的表面积;(Ⅱ)若组合体的底部几何体记为1111D C B A ABCD -,其中BA B A 11为正方形.(i )求证:D C AB B A 111平面⊥;北2010 A B ••C(ii )设点P 为棱11D A 上一点,求直线AP 与平面D C AB 11所成角的正弦值的取值范围.17. (本小题共13分)在一次考试中共有8道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的.某考生有4道题已选对正确答案,其余题中有两道只能分别判断2个选项是错误的,还有两道题因不理解题意只好乱猜. (Ⅰ) 求该考生8道题全答对的概率;(Ⅱ)若评分标准规定:“每题只选一个选项,选对得5分,不选或选错得0分”,求该考生所得分数的分布列.18. (本小题共13分)设{}n a 是正数组成的数列,其前n 项和为n S ,且对于所有的正整数n ,有12+=n n a S .(I) 求1a ,2a 的值;(II) 求数列{}n a 的通项公式;(III )令11=b ,k k k a b )1(122-+=-,kk k a b 3212+=+(⋅⋅⋅=,3,2,1k ),求数列{}n b 的前12+n 项和12+n T .19. (本小题共14分)已知函数()xxx f ln =. (I )判断函数()x f 的单调性;(Ⅱ)若=y ()x xf +x1的图像总在直线a y =的上方,求实数a 的取值范围; (Ⅲ)若函数()x f 与()3261+-=x m x x g 的图像有公共点,且在公共点处的切线相同,求实数m 的值.20.(本小题共14分)已知0>p ,动点M 到定点F ⎪⎭⎫⎝⎛0,2p 的距离比M 到定直线p x l -=:的距离小2p .(I )求动点M 的轨迹C 的方程;(Ⅱ)设B A ,是轨迹C 上异于原点O 的两个不同点,0OA OB ⋅=uu r uu u r,求AOB ∆面积的最小值;(Ⅲ)在轨迹C 上是否存在两点Q P ,关于直线()02:≠⎪⎭⎫⎝⎛-=k p x k y m 对称?若存在,求出直线m 的方程,若不存在,说明理由.高三数学(理)参考答案及评分标准一、选择题:本大题共8个小题,每小题5分,共40分;在每个小题给出的四个选项中有且仅有一个是符合题目要求的.二、填空题:本大题共有6个小题,每小题5分,共30分.三、解答题:本大题共6个小题,共80分;解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)解:(Ⅰ)连接BC,由余弦定理得2BC =202+102-2×20×10COS120°=700.∴BC =107. ……………………………………5分(Ⅱ)∵710120sin 20sin ︒=θ, ∴sin θ =73∵θ是锐角,∴74cos =θ ()x x x f cos cos sin sin 22θ+θ==()ϕ+=+x x x sin 75cos 74sin 73∴()x f 的值域为⎥⎦⎤⎢⎣⎡-75,75. ……………………………………13分 16. (本题满分13分)(Ⅰ)=表面积S 104421210810828822⨯⨯π+⨯π⨯+⨯+⨯⨯+⨯⨯=π+56368. ………4分(Ⅱ)(i )∵长方体1111D C B A ABCD -∴BA B A AD 11平面⊥ ∵BA B A B A 111平面⊂∴B A AD 1⊥又∵BA B A 11是边长为8的正方形 ∴11AB B A ⊥ ∵A AD AB =⋂1∴D C AB B A 111平面⊥. …………………………9分(ii )建立直角坐标系xyz D -,则()0,0,10A ,()8,0,m P∴()8,0,10-=m ∵D C AB B A 111平面⊥∴()8,8,01-=B A 为平面D C AB 11的法向量()()64102428641064sin 22+-=⋅+-==θm m∵[]10,0∈m∴⎥⎦⎤⎢⎣⎡∈θ22,41822sin . …………………………13分 17. (本题满分13分)解:(Ⅰ)说明另四道题也全答对,相互独立事件同时发生,即:64141412121=⨯⨯⨯.………5分(Ⅱ)答对题的个数为4,5,6,7,8,其概率分别为:()649434321214=⨯⨯⨯==ξP ()64242434121212434321215=⨯⨯⨯⨯+⨯⨯⨯⨯==ξP()64226==ξP ()6487==ξP ()==ξ8P 64141412121=⨯⨯⨯分布列为:……………………………13分18. (本题满分13分)解: (I) 当1=n 时,1211+=a a ,∴()0121=-a ,11=a当2=n 时,11222+=+a a ,∴212=+a ,32=a ;……………3分 (II) ∵12+=n n a S ,∴()214+=n n a S()21114+=--n n a S ,相减得:()()0211=--+--n n n n a a a a∵{}n a 是正数组成的数列,∴21=--n n a a ,∴12-=n a n ; …………………8分(Ⅲ)()[]()()[]()242312111123131++-++++-++=+a a a a b T n +⋅⋅⋅+()nn a 32+=1+()()()()[]nn n S 1113332122-+⋅⋅⋅+-+-++⋅⋅⋅+++=1+()()()()()()111113131322-----+--+nn n =()2182321nn n -++-+. …………………13分 19.(本题满分14分) 解:(Ⅰ)可得'21ln ()xf x x -=. 当0x e <<时,'()0f x >,()f x 为增函数;当e x <时,'()0f x <,()f x 为减函数. ……4分 (Ⅱ)依题意, 转化为不等式xx a 1ln +<对于0>x 恒成立 令1()ln g x x x=+, 则21111()1g x x x x x ⎛⎫'=-=- ⎪⎝⎭当1x >时,因为11()10g x x x ⎛⎫'=-> ⎪⎝⎭,()g x 是(1)+∞,上的增函数, 当()1,0∈x 时,()0<'x g ,()g x 是()1,0上的减函数, 所以 ()g x 的最小值是(1)1g =, 从而a 的取值范围是()1,∞-. …………………8分(Ⅲ)转化为m x x x -+=3261ln 2,x y ln =与m x x y -+=32612在公共点00(,)x y 处的切线相同由题意知⎪⎪⎩⎪⎪⎨⎧+=-+=323113261ln 000200x x m x x x∴解得:01x =,或03x =-(舍去),代人第一式,即有65=m . (4)20.(本题满分14分)解:(Ⅰ)∵动点M 到定点F 与到定直线2px -=的距离相等 ∴点M 的轨迹为抛物线,轨迹C 的方程为:px y 22=. ……………4分(Ⅱ)设()()2211,,,y x B y x A∵0OA OB ⋅=uu r uu u r∴02121=+y y x x ∵2221212,2px y px y == ∴2214p x x = ∴()()222222211221144AOBSOA OB x y x y ∆==++uu r uu u r =()()2221212241px x px x ++ =()()[]21221212214241x x p x x x px x x +++ ≥()[]212212122142241x x p x x x px x x +⋅+=416p ∴当且仅当p x x 221==时取等号,AOB ∆面积最小值为24p . ……………9分(Ⅲ)设()()4433,,,y x Q y x P 关于直线m 对称,且PQ 中点()00,y x D∵ ()()4433,,,y x Q y x P 在轨迹C 上 ∴4243232,2px y px y ==两式相减得:()()()4343432x x p y y y y -=+-∴pk y y x x p y y 22434343-=--=+∴pk y -=0∵()00,y x D 在()02:≠⎪⎭⎫⎝⎛-=k p x k y m 上 ∴020<-=px ,点()00,y x D 在抛物线外 ∴在轨迹C 上不存在两点Q P ,关于直线m 对称. ……………14分。

北京市2017届高三数学(理)综合练习42 Word版含答案

北京市2017届高三数学(理)综合练习42 Word版含答案

北京市2017届高三综合练习数学(理)第I 卷 选择题(共40分)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项,直接涂在答题纸上。

1. n S 是数列{}n a 的前项和,且2,111++=+n n a a a , 则5S =( ) (A)40 (B)35 (C)30 (D) 252.参数方程2cos (sin x y θθθ=⎧⎨=⎩,,为参数)和极坐标方程6cos ρθ=-所表示的图形分别是( )(A) 圆和直线 (B) 直线和直线 (C) 椭圆和直线 (D) 椭圆和圆3.正方形ABCD 的边长为1,||AB BC AC ++u u u r u u u r u u u r=( )(A )22 (B )2 (C )1 (D )22 4.在ABC ∆中,6A π=,1,2a b ==B = ( )(A)4π (B) 43π (C) 4π或43π (D)6π 或65π5.若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≥+-≥+30030x y x y x ,则y x z -=2的最大值为( )(A )9 (B )8 (C )7 (D )66. 如图是某年青年歌手大奖赛中,七位评委为甲乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a 1,a 2,则一定有 ( ) (A )a 1>a 2 (B )a 1<a 2 (C )a 1=a 2 (D )a 1,a 2的大小与m 的值有关7.圆2220x y ax +-+=与直线l 相切于点(3,1)A ,则直线l 的方程为( )(A) 250x y --= (B) 210x y --= (C)20x y --= (D) 40x y +-=8.已知定点(1,2)M ,点P 和Q 分别是在直线l :1y x =-和y 轴上动点,则当△MPQ 的周长最小值时,△MPQ 的面积是( )0795455184464793m甲乙开始(A)45 (B) 56(C) 1 (D) 23第II 卷 非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分。

北京市2017届高三数学(理)综合练习36 含答案

北京市2017届高三数学(理)综合练习36 含答案

北京市2017届高三综合练习数学(理)第I 卷 选择题(共40分)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1。

设全集U={}6<∈*x N x ,集合A={1,3},B={3,5},则U()C A B ⋃=A .{0,4}B .{1,5}C .{2,4}D .{2,5}2. 设nS 为等比数列{}n a 的前n 项和,2580aa +=,则52S S = A .11 B .5 C .8- D .11- 3.在极坐标系中,点()1,0到直线()cos sin 2ρθθ+=的距离为 A .22B .1C 2D .3224. 阅读右图所示的程序框图.若输入a =6,b =1,则输出的结果是A .1B .2C .3D .45。

某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生, 那么不同的选派方案种数为A 。

14 B.24 C.28 D 。

48 简图如下6。

已知函数sin(),(0,||)2y x πωϕωϕ=+><的图, 则ωϕ的值为A 。

6π B.6πC 。

3πD.3π7. 在ABC ∆中,点P 是BC 上的点。

2BP PC =,AB+AC AP λμ=,则A 。

2,1λμ==B. 1,2λμ==C.12,33λμ== D 。

21,33λμ==8.若定义[—2012,2012]上的函数f (x )满足:对于任意12,x x [—2012,2012]有1212()()()2011f x x f x f x +=+-,且0x >时,有()2011f x >,()f x 的最大值、最小值分别为,M N ,则M N +的值为A .2011B .2012C . 4022D . 4024 第Ⅱ卷(非选择题 共110分)二、填空题:本大题共4小题,每小题5分,共20分。

把答案填在题中横线上。

北京市2017届高三数学(理)综合练习64 含答案

北京市2017届高三数学(理)综合练习64 含答案

北京市2017届高三综合练习数学(理)第Ⅰ卷(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合2{|log 1}A x x =<,{|0B x x c =<<,其中0}c >.若A B B =,则c 的取值范围是( ) (A )(0,1](B )[1,)+∞(C)(0,2](D )[2,)+∞2.执行如图所示的程序框图,若输入如下四个函数:①()e xf x =; ②()e xf x =-;③1()f x x x -=+; ④1()f x x x -=-.则输出函数的序号为( ) (A )① (B)② (C)③ (D)④3.椭圆 3cos 5sin x y ϕϕ=⎧⎨=⎩(ϕ是参数)的离心率是( ) (A )35(B)45(C)925(D)16254.已知向量(,1)x =a ,(,4)x =-b ,其中x ∈R .则“2x =”是“⊥a b "的( )(A )充分而不必要条件 (B)必要而不充分条件 (C )充要条件(D)既不充分又不必要条件5.右图是1,2两组各7名同学体重(单位:kg )数据的茎叶图.设1,2两组数据的平均数依次为1x 和2x ,标准差依次为1s 和2s ,那么( )(注:标准差222121[()()()]n s x x x x x x n=-+-++-,其中x为12,,,nx x x 的平均数)(A )12x x >,12s s > (B )12x x >,12ss < (C )12x x <,12ss <(D )12x x <,12ss >6.已知函数()1f x kx =+,其中实数k 随机选自区间[2,1]-.对[0,1]x ∀∈,()0f x ≥的概率是() (A )13(B )12(C)23(D )347.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设这10位乘客的初始“不满意度"均为0,乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S ,则S 的最小值是( ) (A )42(B )41(C )40(D)398.对数列{}n a ,如果*k ∃∈N 及12,,,k λλλ∈R,使1122n k n k n k k n a a a a λλλ++-+-=+++成立,其中*n ∈N ,则称{}na 为k 阶递归数列.给出下列三个结论:① 若{}na 是等比数列,则{}na 为1阶递归数列; ② 若{}na 是等差数列,则{}na 为2阶递归数列; ③ 若数列{}n a 的通项公式为2n a n =,则{}na 为3阶递归数列.其中,正确结论的个数是( ) (A)0(B )1 (C )2 (D )3第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.在△ABC 中,3BC =,2AC =,π3A =,则B = _____.10.已知复数z 满足(1i)1z -⋅=,则z =_____.11.如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D.若PA PE=,∠=,160ABC︒PB=,则PA=_____;PD=,9EC=_____.12.已知函数2f x x bx=++是R上的偶函数,则实数b=_____;不等式()1-<的解集为_____.f x x(1)||13.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,该几何体的体积是_____;若该几何体的所有顶点在同一球面上,则球的表面积是_____.14.曲线C是平面内到定点(0,1)l y=-的距离之和等于4的点F和定直线:1的轨迹,给出下列三个结论:①曲线C关于y轴对称;②若点(,)y≤;P x y在曲线C上,则||2③若点P在曲线C上,则1||4≤≤。

北京市2017届高三数学(理)综合练习40 含答案

北京市2017届高三数学(理)综合练习40 含答案

北京市2017届高三综合练习数学(理)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.已知全集U={一l,0,1,2},集合A={一l,2},B={0,2},则=⋂B A C U)(A .{0}B .{2}C .{0,l,2}D .φ 2.已知i 为虚数单位,2=iz ,则复数=zA .i -1B .i +1C .2iD .-2i3.“a=2"是“直线ax 十2y=0与直线x+y=l 平行”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件4.一个四棱锥的三视图如图所示,其中主 视图是腰长为1的等腰直角三角形,则 这个几何体的体积是A .21B .1C .23 D .25.函数2(sin cos )1y x x =+-是11主视图左视图俯视图否A .最小正周期为π2的奇函数B .最小正周期为π2的偶函数C .最小正周期为π的奇函数D .最小正周期为π的偶函数6.过点π4,2A ⎛⎫- ⎪⎝⎭引圆4sin ρθ=的一条切线,则切线长为A .33B .36C .22D .247.将图中的正方体标上字母, 1111A BC D -, 不 同的标字母方式共有A .24种B .48种C .72种D .144种8.若函数()() y f x x R =∈满足()()2f x f x +=,且[]1,1x ∈-时,()21f x x =-,函数()()()lg 010x x g x x x ⎧>⎪=⎨-<⎪⎩,则函数()()()h x f x g x =-在区间[]5,5-内的零点的个 数为A .5B .7C .8D .10二、填空题:本大题共6小题,每小题5分,满分30分.9.二项式521⎪⎭⎫ ⎝⎛-x x 的展开式中含4是 (用数字作答)10.如图给出的是计算2011151311+⋅⋅⋅+++的值 的一个程序框图,其中判断框内应填入的条件 是 . 11.如图,PAA 为切点,PBC 的割线,且PB PA 3=,则=BCPB . 12. 当(1,2)x ∈时,不等式2(1)log a x x -<恒成立,则实数a 的取值范围为 .13.已知不等式组⎪⎩⎪⎨⎧>-≥-≤+122y y x y x 表示的平面区域为,M 若直线13+-=k kx y 与平面区域M有公共点,则k 的取值范围是 .14.手表的表面在一平面上.整点1,2,…,12这12个数字等间隔地分布在半径为22的圆周上.从整点i 到整点(i +1)的向量记作1+i i t t ,则2111243323221t t t t t t t t t t tt ⋅+⋅⋅⋅+⋅+⋅=.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 15.(本小题满分13分)P在ABC ∆中,a b c 、、分别为角A B C 、、的对边,且满足222b c a bc +-=.(Ⅰ)求角A 的值; (Ⅱ)若a =设角B 的大小为x ,ABC ∆的周长为y ,求()y f x =的最大值.16.(本小题满分14分)如图,在四棱锥S ABCD -底面ABCD是正方形,其他四个侧面都是等边三角形,AC 与BD 的交点为O ,E 为侧棱SC 上一点.(Ⅰ)当E为侧棱SC的中点时,求证:SA∥平面BDE;(Ⅱ)求证:平面BDE⊥平面SAC;(Ⅲ)当二面角E BD C--的大小为45︒时,试判断点E在SC上的位置,并说明理由.17.(本小题满分13分)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(],490,495 (]515510.由此得到样本的频率分布直方图,如图所示:,495,…,(]500,(Ⅰ)根据频率分布直方图,求重量超过505克的产品数量;(Ⅱ)在上述抽取的40个产品中任职2件,设ξ为重量超过505克的产品数量,求ξ的分布列;(Ⅲ)从流水线上任取5件产品,估计其中恰有2件产品的重量超过505克的概率.18.(本小题满分13分)已知xx x g e x x ax x f ln )(],,0(,ln )(=∈-=,其中e 是自然常数,R a ∈.(Ⅰ)讨论1=a 时,()f x 的单调性、极值; (Ⅱ)求证:在(Ⅰ)的条件下,1()()2f xg x >+;(Ⅲ)是否存在实数a ,使()f x 的最小值是3,若存在,求出a 的值;若不存在,说明理由.已知:椭圆12222=+by a x (0>>b a ),过点)0,(a A -,),0(b B 的直线倾斜角为6π,原点到该直线的距离为23. (Ⅰ)求椭圆的方程;(Ⅱ)斜率大于零的直线过)0,1(-D 与椭圆交于E ,F 两点,若DF ED 2=,求直线EF 的方程;(Ⅲ)是否存在实数k ,直线2+=kx y 交椭圆于P ,Q 两点,以PQ 为直径的圆过点)0,1(-D ?若存在,求出k 的值;若不存在,请说明理由.定义:对于任意*n ∈N ,满足条件212nn n aa a +++≤且n a M ≤(M 是与n 无关的常数)的无穷数列{}na 称为T 数列.(Ⅰ)若29nan n =-+(*n ∈N ),证明:数列{}n a 是T 数列;(Ⅱ)设数列{}n b 的通项为3502nn b n ⎛⎫=- ⎪⎝⎭,且数列{}nb 是T 数列,求常数M 的取值范围; (Ⅲ)设数列1npcn=-(*n ∈N ,1p >),问数列{}n c 是否是T 数列?请说明理由.参考答案及评分标准一、选择题:本大题共8个小题;每小题5分,共40分.9.10 10.2011≤i 11.2112.]2,1( 13.)0,31[- 14.936-三、解答题:本大题共6小题,满分80分. 15.(本小题满分13分)在ABC ∆中,a b c 、、分别为角A B C 、、的对边,且满足222b c a bc +-=.(Ⅰ)求角A 的值; (Ⅱ)若a =设角B 的大小为x ,ABC ∆的周长为y ,求()y f x =的最大值.解:(Ⅰ)∵222bc a bc +-=,∴2221cos 22b c a A bc +-==又0A π<<, ∴3A π=;——-————-—--———---——--——---——--—-——————-—-—---—-————-—--——--——5分(Ⅱ)∵Aa xb sin sin =,∴x x x a b sin 2sin 233sin 3sin=⋅=⋅=π同理)32sin(sin sin x C A a c -=⋅=π ∴3)6sin(323)32sin(2sin 2++=+-+=ππx x x y∵320,3ππ<<∴=x A ∴)65,6(6πππ∈+x ,∴62x ππ+=即3x π=时,max y =——-———-——---———-—————-—————13分16.(本小题满分14分)如图,在四棱锥S ABCD -中,底面ABCD是正方形,其他四个侧面都是等边三角形,AC 与BD 的交点为O ,E 为侧棱SC上一点.(Ⅰ)当E 为侧棱SC 的中点时,求证:SA ∥平面BDE ;(Ⅱ)求证:平面BDE ⊥平面SAC ; (Ⅲ)当二面角E BD C --的大小为45︒时,试判断点E 在SC 上的位置,并说明理由. (Ⅰ)证明:连接OE ,由条件可得SA ∥OE 。

北京市2017届高三数学(理)综合练习56 含答案

北京市2017届高三数学(理)综合练习56 含答案

北京市2017届高三综合练习数学(理)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合1Ax x ,Bx x m,且ABR ,那么m 的值可以是(A )1 (B)0 (C)1 (D)2 (2)在等比数列{}na 中,14358aa a a ,,则7a =(A)116(B )18(C)14(D )12(3)在极坐标系中,过点3(2,)2π且平行于极轴的直线的极坐标方程是(A )sin 2ρθ (B)cos 2ρθ(C )sin 2ρθ(D)cos 2ρθ(4)已知向量=(1)=(1)x x ,a b ,,-,若2-a b与b 垂直,则=a(A )2 3 (C )2 (D)4 (5)执行如图所示的程序框图,输出的k 值是(A)4 (B)5 (C )6 (D )7(6)从甲、乙等5个人中选出3人排成一列,则甲不在排头的排法种数是 (A )12 (B )24 (C )36 (D)48 (7)已知函数2,1,()1,1,x ax x f x ax x ⎧-+≤=⎨->⎩ 若1212,,x x x x ∃∈≠R ,使得12()()f x f x =成立,则实2n n =31n n =+开始 n =5,k =0n 为偶数 n =1输出k 结束k =k +1 是 否是否数a 的取值范围是(A )2a (B)2a(C )22a(D )2a或2a(8)在正方体''''ABCD A B C D 中,若点P (异于点B )是棱上一点,则满足BP 与'AC 所成的角为45的点P的个数为(A )0 (B )3 (C )4 (D )6二、填空题:本大题共6小题,每小题5分,共30分,把答案填在题中横线上。

(9)复数2i1ia 在复平面内所对应的点在虚轴上,那么实数a =。

(10)过双曲线221916x y 的右焦点,且平行于经过一、三象限的渐近线的直线方程是 . (11)若1tan 2α,则cos(2)απ2= 。

北京市2017届高三数学(理)综合练习47 Word版含答案

北京市2017届高三数学(理)综合练习47 Word版含答案

北京市2017届高三综合练习数学(理)(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)注意事项:1.答第一部分前,考生务必将自己的姓名、考试科目涂写在答题卡上.考试结束时,将试题卷和答题卡一并交回.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试题卷上.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.若集合2{|, }M y y x x ==∈R ,{|2, }N y y x x ==+∈R ,则M N I 等于(A )[)0,+∞(B )(,)-∞+∞ (C )∅ (D ){(2, 4),(1, 1)-}2.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是 (A )8,8 (B )10,6(C )9,7 (D )12,43.极坐标方程4cos ρθ=化为直角坐标方程是(A )22(2)4x y -+= (B )224x y += (C )22(2)4x y +-= (D )22(1)(1)4x y -+-=4.已知{}n a 是由正数组成的等比数列,n S 表示{}n a 的前n 项的和.若13a =,24144a a =,则10S 的值是 (A )511(B ) 1023 (C )1533 (D )30695.函数)2(cos 2π+=x y 的单调增区间是(A )π(π,π)2k k + k ∈Z (B )π(π, ππ)2k k ++ k ∈Z (C )(2π, π2π)k k +k ∈Z (D )(2ππ, 2π2π)k k ++k ∈Z6.已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形, 则此三棱锥的体积等于(A )12 (B )3 (C )4(D )37.如图,双曲线的中心在坐标原点O ,, A C 分别是双曲线虚轴的上、下顶点,B 是双曲线的左顶点,F 为双曲线的左焦点,直线AB 与FC 相交于点D .若双曲线的离心率为2,则BDF ∠的余弦值是 (A )7(B )7(C ) 14(D )148.定义区间(, )a b ,[, )a b ,(, ]a b ,[, ]a b 的长度均为d b a =-,多个区间并集的长度为各区间长度之和,例如, (1, 2)[3, 5)U 的长度(21)(53)3d =-+-=. 用[]x 表示不超过x 的最大整数,记{}[]x x x =-,其中x ∈R . 设()[]{}f x x x =⋅,()1g x x =-,若用123,,d d d 分别表示不等式()()f x g x >,方程()()f x g x =,不等式()()f x g x <解集区间的长度,则当02011x ≤≤时,有(A )1231, 2, 2008d d d === (B )1231, 1, 2009d d d === (C )1233, 5, 2003d d d === (D )1232, 3, 2006d d d ===正视图俯视图xy OCBAFD第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.复数13i z =+,21i z =-,则12z z 等于 .10.在二项式6(2)x +的展开式中,第四项的系数是 .11.如右图,在三角形ABC 中,D ,E 分别为BC ,AC 的中点,F 为AB 上的点,且B 4A AF =u u u r u u u r . 若AD x AF y AE =+u u u r u u u r u u u r,则实数x = ,实数y = .12.执行右图所示的程序框图,若输入 5.2x =-,则输出y 的值为 .13.如下图,在圆内接四边形ABCD 中, 对角线, AC BD 相交于点E .已知23BC CD ==,2AE EC =,30CBD ∠=o,则CAB ∠= ,AC 的长是 .14.对于各数互不相等的整数数组),,,,(321n i i i i Λ (n 是不小于3的正整数),对于任意的ABC DE · ·F 开始输入x是 ?i ≥5输出y结束x y =|2|y x =-否0, 0y i ==1i i =+,{1,2,3,,}p q n ∈L ,当q p <时有q p i i >,则称p i ,q i 是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,则数组(2,4,3,1)中的逆序数等于 ;若数组123(,,,,)n i i i i L 中的逆序数为n ,则数组11(,,,)n n i i i -L 中的逆序数为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在锐角ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .已知3cos 24C =-. (Ⅰ)求sin C ;(Ⅱ)当2c a =,且b =时,求a .16.(本小题满分13分)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,且//AD BC ,90ABC PAD ∠=∠=︒,侧面PAD ⊥底面ABCD . 若12PA AB BC AD ===. (Ⅰ)求证:CD ⊥平面PAC ;(Ⅱ)侧棱PA 上是否存在点E ,使得//BE 平面PCD ?若存在,指出点E 的位置并证明,若不存在,请说明理由;(Ⅲ)求二面角A PD C --的余弦值.17.(本小题满分13分)在某校教师趣味投篮比赛中,比赛规则是: 每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖. 已知教师甲投进每个球的概率都是23. (Ⅰ)记教师甲在每场的6次投球中投进球的个数为X ,求X 的分布列及数学期望; (Ⅱ)求教师甲在一场比赛中获奖的概率;(Ⅲ)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗? 18.(本小题满分13分)已知函数2()ln 20)f x a x a x=+-> (. (Ⅰ)若曲线()y f x =在点(1,(1))P f 处的切线与直线2y x =+垂直,求函数()y f x =的单调区间;(Ⅱ)若对于(0,)x ∀∈+∞都有()2(1)f x a >-成立,试求a 的取值范围;(Ⅲ)记()()()g x f x x b b =+-∈R .当1a =时,函数()g x 在区间1[, ]e e -上有两个零点,求实数b 的取值范围.19.(本小题满分14分)已知(2, 0)A -,(2, 0)B 为椭圆C 的左、右顶点,F 为其右焦点,P 是椭圆C 上异于A ,B 的动点,且APB ∆面积的最大值为(Ⅰ)求椭圆C 的方程及离心率;(Ⅱ)直线AP 与椭圆在点B 处的切线交于点D ,当直线AP 绕点A 转动时,试判断以BD为直径的圆与直线PF 的位置关系,并加以证明.20.(本小题满分14分)有n 个首项都是1的等差数列,设第m 个数列的第k 项为mk a (,1,2,3,,, 3)m k n n =L ≥,公差为m d ,并且123,,,,n n n nn a a a a L 成等差数列.(Ⅰ)证明1122m d p d p d =+ (3m n ≤≤,12,p p 是m 的多项式),并求12p p +的值; (Ⅱ)当121, 3d d ==时,将数列{}m d 分组如下:123456789(), (,,), (,,,,),d d d d d d d d d L (每组数的个数构成等差数列).设前m 组中所有数之和为4()(0)m m c c >,求数列{2}m cm d 的前n 项和n S .(Ⅲ)设N 是不超过20的正整数,当n N >时,对于(Ⅱ)中的n S ,求使得不等式1(6)50n n S d ->成立的所有N 的值.数学测试题答案(理工类)一、选择题:三、解答题:本大题共6小题,共80分. 15.(本小题满分13分) 解:(Ⅰ)由已知可得2312sin 4C -=-.所以27sin 8C =. 因为在ABC ∆中,sin 0C >,所以sin 4C =. ……………………………………6分(Ⅱ)因为2c a =,所以1sin sin 28A C ==.因为ABC ∆是锐角三角形,所以cos 4C =,cos 8A =. 所以sin sin()B AC =+sin cos cos sin A C A C =+8484=+=.sin aA=,所以a =. …………………………13分16.(本小题满分13分) 解法一:(Ⅰ)因为 90PAD ∠=︒,所以PA AD ⊥.又因为侧面PAD ⊥底面ABCD ,且侧面PAD I 底面ABCD AD =, 所以PA ⊥底面ABCD . 而CD ⊂底面ABCD , 所以PA ⊥CD .在底面ABCD 中,因为90ABC BAD ∠=∠=︒,12AB BC AD ==, 所以AC CD AD ==, 所以AC ⊥CD . 又因为PA AC A =I , 所以CD ⊥平面PAC . ……………………………4分 (Ⅱ)在PA 上存在中点E ,使得//BE 平面PCD ,证明如下:设PD 的中点是F , 连结BE ,EF ,FC ,则//EF AD ,且12EF AD =. 由已知90ABC BAD ∠=∠=︒,所以//BC AD . 又12BC AD =,所以//BC EF ,且BC EF =,所以四边形BEFC 为平行四边形,所以//BE CF .因为BE ⊄平面PCD ,CF ⊂平面PCD ,所以//BE 平面PCD . ……………8分(Ⅲ)设G 为AD 中点,连结CG ,则 CG ⊥AD .又因为平面ABCD ⊥平面PAD , 所以 CG ⊥平面PAD . 过G 作GH PD ⊥于H ,连结CH ,由三垂线定理可知CH PD ⊥. 所以GHC ∠是二面角A PD C --的平面角.设2AD =,则1PA AB CG DG ====, DP =在PAD ∆中,GH DGPA DP =,所以GH =所以tan CGGHC GH∠==cos GHC ∠=. 即二面角A PD C --的余弦值为6. ………………………………13分解法二:因为 90PAD ∠=︒,所以PA AD ⊥.又因为侧面PAD ⊥底面ABCD , 且侧面PAD I 底面ABCD AD =, 所以 PA ⊥底面ABCD . 又因为90BAD ∠=︒,所以AB ,AD ,AP 两两垂直. 分别以AB ,AD ,AP 为x 轴, y 轴,z 轴建立空间直角坐标系,如图.设2AD =,则(0,0,0)A ,(1,0,0)B ,(1,1,0)C ,(0,2,0)D ,(0,0,1)P .(Ⅰ)(0,0,1)AP =u u u r ,(1,1,0)AC =u u u r ,(1,1,0)CD =-u u u r , 所以 0AP CD ⋅=u u u r u u u r ,0AC CD ⋅=u u u r u u u r,所以AP ⊥CD ,AC ⊥CD .又因为AP AC A =I , 所以CD ⊥平面PAC . ………………………………4分(Ⅱ)设侧棱PA 的中点是E , 则1(0, 0, )2E ,1(1, 0, )2BE =-u u u r .设平面PCD 的一个法向量是(,,)x y z =n ,则0,0.CD PD ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n 因为(1, 1, 0)CD =-u u u r ,(0, 2,1)PD =-u u u r,所以0,20.x y y z -+=⎧⎨-=⎩ 取1x =,则(1, 1, 2)=n .所以1(1, 1, 2)(1, 0, )02BE ⋅=⋅-=u u u r n , 所以BE ⊥u u u r n .因为BE ⊄平面PCD ,所以BE P 平面PCD . ………………………………8分(Ⅲ)由已知,AB ⊥平面PAD ,所以(1, 0, 0)AB =u u u r为平面PAD 的一个法向量.由(Ⅱ)知,(1, 1, 2)=n 为平面PCD 的一个法向量. 设二面角A PD C --的大小为θ,由图可知,θ为锐角,所以cos AB ABθ⋅===u u u ru u u r n n . 即二面角A PD C --………………………………13分 17.(本小题满分13分) 解:(Ⅰ)X 的所有可能取值为0,1,2,3,4,5,6.依条件可知X ~B (6,23). 6621()33kkk P X k C -⎛⎫⎛⎫==⋅⋅ ⎪ ⎪⎝⎭⎝⎭(0, 1, 2, 3, 4, 5, 6k =)X所以(01112260316042405192664)729EX =⨯+⨯+⨯+⨯+⨯+⨯+⨯=4729=.或因为X ~B (6,23),所以2643EX =⨯=. 即X 的数学期望为4. ……………5分(Ⅱ)设教师甲在一场比赛中获奖为事件A ,则224156441212232()()()()().3333381P A C C =⨯⨯+⨯⨯+=答:教师甲在一场比赛中获奖的概率为32.81………………………………10分(Ⅲ)设教师乙在这场比赛中获奖为事件B ,则2444662()5A A PB A ==. 即教师乙在这场比赛中获奖的概率为25. 显然2323258081=≠,所以教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率不相等.…………………13分18.(本小题满分13分)解: (I) 直线2y x =+的斜率为1.函数()f x 的定义域为(0,)+∞,因为22()a f x x x '=-+,所以22(1)111af '=-+=-,所以1a =. 所以2()ln 2f x x x =+-. 22()x f x x-'=.由()0f x '>解得2x >;由()0f x '<解得02x <<.所以()f x 的单调增区间是(2,)+∞,单调减区间是(0,2). ……………………4分 (II) 2222()a ax f x x x x -'=-+=, 由()0f x '>解得2x a >;由()0f x '<解得20x a<<.所以()f x 在区间2(, )a+∞上单调递增,在区间2(0, )a 上单调递减. 所以当2x a=时,函数()f x 取得最小值,min 2()y f a=.因为对于(0,)x ∀∈+∞都有()2(1)f x a >-成立, 所以2()2(1)f a a>-即可.则22ln 22(1)2a a a a+->-. 由2ln a a a >解得20a e <<. 所以a 的取值范围是2(0, )e. ………………………………8分(III)依题得2()ln 2g x x x b x=++--,则222()x x g x x +-'=.由()0g x '>解得1x >;由()0g x '<解得01x <<.所以函数()g x 在区间(0, 1)为减函数,在区间(1, )+∞为增函数.又因为函数()g x 在区间1[, ]e e -上有两个零点,所以1()0,()0,(1)0. g e g e g -⎧⎪⎨⎪<⎩≥≥解得211b e e<+-≤. 所以b 的取值范围是2(1, 1]e e+-. ………………………………………13分 19.(本小题满分14分)解:(Ⅰ)由题意可设椭圆C 的方程为22221(0)x y a b a b+=>>,(,0)F c .由题意知解得b =1c =.故椭圆C 的方程为22143x y +=,离心率为12.……6分 (Ⅱ)以BD 为直径的圆与直线PF 相切.证明如下:由题意可设直线AP 的方程为(2)y k x =+(0)k ≠.则点D 坐标为(2, 4)k ,BD 中点E 的坐标为(2, 2)k .⎧⎪⎨⎪⎩2221222, .a b a a b c ⋅⋅===+由22(2),143y k x x y =+⎧⎪⎨+=⎪⎩得2222(34)1616120k x k x k +++-=.设点P 的坐标为00(,)x y ,则2021612234k x k--=+. 所以2026834k x k -=+,00212(2)34ky k x k =+=+. ……………………………10分 因为点F 坐标为(1, 0), 当12k =±时,点P 的坐标为3(1, )2±,点D 的坐标为(2, 2)±. 直线PF x ⊥轴,此时以BD 为直径的圆22(2)(1)1x y -+=m 与直线PF 相切. 当12k ≠±时,则直线PF 的斜率0204114PF y k k x k ==--. 所以直线PF 的方程为24(1)14ky x k =--.点E 到直线PF的距离d =322228142||14|14|k k k k k k +-==+-. 又因为||4||BD k = ,所以1||2d BD =. 故以BD 为直径的圆与直线PF 相切.综上得,当直线AP 绕点A 转动时,以BD 为直径的圆与直线PF 相切.………14分 20.(本小题满分14分) 解:(Ⅰ)由题意知1(1)mn m a n d =+-.212121[1(1)][1(1)](1)()n n a a n d n d n d d -=+--+-=--,同理,3232(1)()n n a a n d d -=--,4343(1)()n n a a n d d -=--,…, (1)1(1)()nn n n n n a a n d d ---=--.又因为123,,,,n n n nn a a a a L 成等差数列,所以2132(1)n n n n nn n n a a a a a a --=-==-L . 故21321n n d d d d d d --=-==-L ,即{}n d 是公差为21d d -的等差数列. 所以,12112(1)()(2)(1)m d d m d d m d m d =+--=-+-.令122,1p m p m =-=-,则1122m d p d p d =+,此时121p p +=. …………4分(Ⅱ)当121, 3d d ==时,*2 1 ()m d m m =-∈N .数列{}m d 分组如下:123456789(), (,,), (,,,,),d d d d d d d d d L . 按分组规律,第m 组中有21m -个奇数,所以第1组到第m 组共有2135(21)m m ++++-=L 个奇数. 注意到前k 个奇数的和为2135(21)k k ++++-=L ,所以前2m 个奇数的和为224()m m =.即前m 组中所有数之和为4m ,所以44()m c m =.因为0m c >,所以m c m =,从而 *2(21)2()m cm m d m m =-⋅∈N . 所以 234112325272(23)2(21)2n nn S n n -=⋅+⋅+⋅+⋅++-⋅+-⋅L .23412123252(23)2(21)2n n n S n n +=⋅+⋅+⋅++-⋅+-⋅L .故2341222222222(21)2n n n S n +-=+⋅+⋅+⋅++⋅--⋅L2312(2222)2(21)2n n n +=++++---⋅L12(21)22(21)221n n n +-=⨯---⋅-1(32)26n n +=--.所以 1(23)26n n S n +=-+. …………………………………9分 (Ⅲ)由(Ⅱ)得*2 1 ()n d n n =-∈N ,1(23)26n n S n +=-+*()n ∈N .故不等式1(6)50n n S b -> 就是1(23)250(21)n n n +->-. 考虑函数1()(23)250(21)n f n n n +=---1(23)(250)100n n +=---.当1,2,3,4,5n =时,都有()0f n <,即1(23)250(21)n n n +-<-.而(6)9(12850)1006020f =--=>,注意到当6n ≥时,()f n 单调递增,故有()0f n >. 因此当6n ≥时,1(23)250(21)n n n +->-成立,即1(6)50n n S d ->成立.N L.…………………………14分所以,满足条件的所有正整数5,6,7,,20。

北京市2017届高三数学(理)综合练习31 Word版含答案

北京市2017届高三数学(理)综合练习31 Word版含答案

北京市2017届高三综合练习数学(理)第一部分 (选择题 共40分)选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知{1}A x x =>,2{20}B x x x =-<,则A B =U(A) {0x x <或1}x ≥ (B) {12}x x << (C) {0x x <或1}x >(D) {0}x x >2.“a =0”是“复数i z a b =+(a ,b ∈R)为纯虚数”的(A) 充分不必要条件 (B) 必要不充分条件 (C) 充分必要条件 (D) 既不充分也不必要条件 “复数i z a b =+(a ,b ∈R)为纯虚数”成立的充分不必要条件是(A) a =0,b ≠0 (B) a =0 (C) b =0 (D) a =0,b =2 3.直线4y x =+与曲线21y x x =-+所围成的封闭图形的面积为(A) 223 (B)283 (C) 323(D) 343原题:如图所示,直线1y x =+与曲线321y x x x =--+与x 轴所围成的封闭图形的面积是 . 4.函数1,0,()2cos 1,20x x f x x x ⎧-≥⎪=⎨--π≤<⎪⎩的所有零点的和等于(A) 1-2π (B) 312π- (C) 1-π(D) 12π-5.某三棱锥的正视图和俯视图如图所示,则其左视图面积为(A) 6(B)29 (C) 3(D) 23 6.平面向量a r 与b r 的夹角是3π,且1a =r ,2b =r ,如果AB a b =+u u u r r r ,3AC a b =-u u u r r r ,D 是BC 的中点,那么AD =u u u r俯视图正视图32213(A)(B) (C) 3 (D) 67.某生产厂家根据市场调查分析,决定调整产品生产方案,准备每周(按5天计算)生产A ,B ,C 三种产品共15吨(同一时间段内只能生产一种产品),已知生产这些产品每吨所需则每周最高产值是 (A) 30 (B) 40 (C) 47.5 (D) 52.5某生产厂家根据市场调查分析,决定调整产品生产方案,准备每周(按5天计算)生产A ,B ,C 三种产品共15吨(同一时间段内只能生产一种产品),且C 种产品至少生产5吨,则每周最高产值是(A) 40 (B) 42.5 (C) 45 (D) 50 说明:这两个题没有本质区别,主要差一句话(且C 种产品至少生产5吨),这句话意味着什么?考题希望交给学生遇到问题应如何思考。

北京市2017届高三数学(理)综合练习52 Word版含答案

北京市2017届高三数学(理)综合练习52 Word版含答案

北京市2017届高三综合练习数学(理)一、选择题:本大题共 8 小题,每小题 5 分,共 40 分. 在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集{1,2,3,4,5}U =,集合{3,4},{2,3,5}A B ==,那么集合()U A B Uð等于( )A.{1,2,3,4,5}B.{3,4}C.{1,3,4}D.{2,3,4,5}2. 设i 是虚数单位,复数tan 45z =-o sin 60i ×o,则2z 等于( ) A.734i - B.134i - C.734i + D.134i + 3. 若数列{}n a 是公比为4的等比数列,且12a =,则数列2{log }n a 是( ) A.公差为2的等差数列 B.公差为lg 2的等差数列 C.公比为2的等比数列 D.公比为lg 2的等比数列4. 设a 为常数,函数2()43f x x x =-+. 若()f x a +为偶函数,则a 等于( ) A.-2 B. 2 C. -1 D.1 5. 已知直线a 和平面a ,那么//a a 的一个充分条件是( )A.存在一条直线b ,//,a b b a ÌB.存在一条直线b ,,a b b a ^^C.存在一个平面,,//a ββαβ⊂D.存在一个平面,,a ββαβ⊥⊥ 6. 一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰十角三角形。

若该几何体的体积为V ,并且可以用n 个这样的几何体拼成一个棱长为4的正方体,则V ,n 的值是 ( ) A .2,32==n VB .3,364==n V C .6,332==n VD .V=16,n=47.设 ,a b ÎR , 且(1)<0b a b ++,(1)<0b a b +-,则 ( )A.1a >B.1a <-C. 11a -<<D. ||1a > 8. 函数f (x )的定义域为D ,若对于任意12,x x D Î,当12x x <时,都有12()()f x f x £,则称函数()f x 在D 上为非减函数.设函数f (x )在[0,1]上为非减函数,且满足以下三个条件: ○1(0)0f =; ○21()()32xf f x =; ○3(1)1()f x f x -=-. 则1()2010f 等于( ) A.1128 B.1256 C. 1512 D.164二、填空题:本大题共 6 小题,每小题 5 分,共 30 分. 把答案填在题中横线上 .9.在可行域内任取一点,规则如流程图所示,则能输出数对(,)x y 的概率是 . 10.522()x x+的展开式中2x 的系数是___________;其展开式中各项系数之和为________.(用数字作答) 11.若数列}{),,(11}{*1n nn n a d N n d a a a 则称数列为常数满足∈=-+为调和数列。

北京市2017届高三数学(理)综合练习51 含答案

北京市2017届高三数学(理)综合练习51 含答案

北京市2017届高三综合练习数学(理)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项. (1)若sin 20α>,且cos 0α<,则角α是( )(A)第一象限角 (B) 第二象限角 (C )第三象限角 (D)第四象限角 (2)函数12xf x的反函数()1y f x -=的图象是)(A ) (B ) (C ) )3)若向量a 、满足a b +=(2,-1),a =(1,2),则向量a 与b 的夹角等 ( )(A )︒45 (B )︒60 (C )︒120 (D )︒135(4)已知l 是直线,α、β是两个不同的平面,下列命题中的真命题是 ( )(A )若//l α,//l β,则//αβ (B )若αβ,//l α,则lβ(C )若lα,//l β,则αβ (D )若//l α,βα//,则//l β21Oyx21Oyx21Oyx21Oyx(5)已知实数,,a b c 成公差不为零的等差数列,那么下列不等式不成立...的是 ( ) (A )12b a c b(B )333444a bb c c a a b c(C )ac b≥2(D )ba cb(6) “4ab ”是“直线210x ay 与直线220bxy平行”的( )(A )充分必要条件 (B )充分而不必要条件 (C)必要而不充分条件 (D)既不充分也不必要条件(7)已知实数,x y 满足22221(0,0)x y abab ,则下列不等式中恒成立的是( )(A )byx a(B )2b y x a (C)b y x a(D )2b yx a(8)关于函数2||21()sin ()32x f x x =-+,有下列四个结论①()f x 是奇函数 ②当2010x >时,1()2f x >恒成立③()f x 的最大值是32 ④()f x 的最小值是12-其中正确命题的个数是 A .1 B .2 C .3 D .4二、填空题:本大题共6小题,每小题5分,共30分。

北京市2017届高三数学(理)综合练习39 Word版含答案

北京市2017届高三数学(理)综合练习39 Word版含答案

北京市2017届高三综合练习数学(理)本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至6页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将答题卡务必交回。

第Ⅰ卷(选择题 40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,选出符合题目要求的一项. 1.已知集合2{|0},{|lg },S x x x T x y x S T =-≥==I 则=A .{|01}x x x <≥或B .{|1}x x >C .{|01}x x x ≤≥或D .{|1}x x ≥2.记者为4名志愿者和他们帮助的1位老人拍照,要求排成一排,且老人必须排在正中间,那么不同 的排法共有 A.120种 B .72种 C .56种 D.24种 3.已知直线l 过定点(-1,1),则“直线l 的斜率为0”是“直线l 与圆122=+y x 相切”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若向量a r 与b r的夹角为120° ,且||1,||2,a b c a b ===+r r r r r,则有A. c a ⊥r rB. b c ⊥C. b c //D. a c // 5.执行如图所示的程序框图所表示的程 序,则所得的结果为A.3B.41-C.34- D.3-6.已知一个棱长为2的正方体,被一个平面截后所得几何 体的三视图如图所示,则该几何体的体积是A .8B .203C .173 D .1437.若函数sin()y A x ωϕ=+(0A >,0ω>,||2πϕ<)在 一个周期内的图象如图所示,,M N 分别是这段图象的最高点和最低点,且0OM ON ⋅=u u u u r u u u r(O 为坐标原点),则=AA .6πB .7πC .7πD .7π8.已知函数22, 1()(1)2,1x f x x x >⎧=⎨-+≤⎩,则不等式2(1)(2)f x f x ->的解集是 A .{|112}x x -<<-+B .{|1,12}x x x <->-+或C .{|121}x x --<<D .{|12,21}x x x <-->-或第Ⅱ卷(非选择题 110分)二、填空题:本大题共6小题,每小题5分,共30分.9.若a R ∈,且(1)(2)ai i +-为纯虚数,则a 的值是 .10.在极坐标系中,圆2ρ=上的点到直线()6sin 3cos =+θθρ的距离的最小值是 .11.在二项式n xx )3(+的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且72=+B A ,则=n ____________.12.已知函数2()2,[4,6]f x x x x =+-∈-,在函数()f x 的定义域内任取一点0x ,使得0()0f x ≥的概率是___________.13.如图,已知PA 与圆O 相切于点A ,半径OB OP ⊥,AB 交PO 点C ,若圆O 的半径为3,5OP =,则BC 的长度____________.14. 在直角坐标平面内,已知点列()()()()ΛΛ,2,,,2,3,2,2,2,133221nnn P P P P 如果k 为正偶数,则向量1234561k k PP PP P P P P -++++u u u u r u u u u r u u u u r u u u u u u rL 的纵坐标(用k 表示)为____________.三、解答题:本大题共6小题,共80分. 解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分12分)设△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c ,且1cos 2a C cb +=.(Ⅰ)求角A 的大小;(Ⅱ)求cos cos B C +的取值范围.16.(本小题12分)如图,已知四棱锥P —ABCD 的底面是直角梯形,90ABC BCD ∠=∠=︒,AB=BC=2CD=2,PB=PC ,侧面PBC ⊥底面ABCD ,O 是BC 的中点. (Ⅰ)求证:PO ⊥平面ABCD ; (Ⅱ)求证:PD PA ⊥;(Ⅲ)若二面角D —PA —O 10PB 的长. 17.(本小题满分13分) 研究室有甲、乙两个课题小组,根据以往资料统计,甲、乙两小组完成课题研究各项任务的概率依 次分别为122,3P P =,现假设每个课题研究都有两项工作要完成,并且每项工作的完成互不影响,若在一次课题研究中,两小组完成任务项数相等且都不少于一项,则称该研究为“先进和谐室”. (Ⅰ)若212P =,求该研究室在完成一次课题任务中荣获“先进和谐室”的概率; (Ⅱ)设在完成6次课题任务中该室获得“先进和谐室”的次数为, 2.5E ξξ≥求时,P 2的取值范围.18.(本小题满分13分)已知函数32(1)()ln (1)x x bx c x f x a xx ⎧-+++<=⎨≥⎩的图象过点(1,2)-,且在23x =处取得极值.(Ⅰ)求实数,b c 的值;(Ⅱ)求()f x 在[1,]e -(e 为自然对数的底数)上的最大值.高考资源网19.(本小题满分14分)已知直线022=+-y x 经过椭圆)0(1:2222>>=+b a by a x C 的左顶点A 和上顶点,D椭圆C 的右顶点为B ,点S 是椭圆C 上位于x 轴上方的动点,直线BS AS ,与直线310:=x l 分别交于N M ,两点,如图所示.(Ⅰ)求椭圆C 的方程;(Ⅱ)求线段MN 的长度的最小值;(Ⅲ)当线段MN 的长度的最小时,在椭圆C 上是否存在这样的点T ,使得TSB ∆的面积为51?若存在 确定点T 的个数,若不存在,请说明理由.20.(本小题满分13分)已知函数 f (x ) 对任意x ∈ R 都有 1()(1)2f x f x +-=. (Ⅰ)求 1()2f 的值; (Ⅱ)若数列{a n }满足:na =(0)f +)1()1()2()1(f nn f n f n f +-+++ΛΛ,那么数列{}n a 是等差数列吗?请给予证明;高考资源网 (Ⅲ)令.1632,,1442232221nS b b b b T a b n n n n n -=++++=-=ΛΛ试比较n T 与n S 的大小.(考生务必将答案答在答题卡上,在试卷上作答无效)参考答案及评分标准(理工类)一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.9. 2- 10. 6 11. 3 12.71013. BC = 14. 2(21)3k - 三、解答题:本大题共 6 小题,共 80 分. 15.(本小题满分12分)设△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c ,且1cos 2a C cb +=.(Ⅰ)求角A 的大小;(Ⅱ)求cos cos B C +的取值范围.解:(Ⅰ)由1cos 2a C cb +=得 b c ab c b a a =+-+⋅212222 高考资源网bcc b a -+=22221cos =∴A在ABC ∆中,所以3A π=(Ⅱ)2cos cos cos()cos 3B C B B π+=-+ )6sin(cos 21sin 23B B B +=+=π320π<<B Θ6566πππ<+<∴B ,∴, 2)6sin(21≤+<B π∴B C cos cos +的取值范围是]1,21(16.(本小题12分)如图,已知四棱锥P —ABCD 的底面是直角梯形,90ABC BCD ∠=∠=︒,AB=BC=2CD=2,PB=PC ,侧面PBC ⊥底面ABCD ,O 是BC 的中点. (Ⅰ)求证:PO ⊥平面ABCD ; (Ⅱ)求证:PD PA ⊥;(Ⅲ)若二面角D —PA —O 的余弦值为105,求PB 的长. (Ⅰ)证明:因为PB PC =,O 是BC 的中点,所以PO ⊥BC ,又侧面PBC ⊥底面ABCD ,PO ⊂平面PBC , 面PBC ⋂底面ABCD BC =, 所以PO ⊥平面ABCD .(Ⅱ)证明:以点O 为坐标原点,建立如图空间直角坐标系Oxyz , 设(0)OP t t =>,则(0,0,)P t ,(1,2,0),(1,0,0),(1,1,0)A B D -,(1,2,),(2,1,0)PA t BD =-=-u u u r u u u r,因为2200PA BD =-++=u u u r u u u r g ,所以PA BD ⊥u u u r u u u r ,即PA BD ⊥.(Ⅲ)解:设平面PAD 和平面PAO 的法向量分别为(,,),(,,)m a b c n x y z ==u r r, 注意到(1,1,)PD t =--u u u r ,(1,2,0)OA =u u u r ,(0,0,)OP t =u u u r,由0,20,m PD a b tc m PA a b tc ⎧⋅=-+-=⎪⎨⋅=+-=⎪⎩u r u u u ru r u u u r高考资源网,令1a =得,3(1,2,)m t =--u r , 由20,0,n OA x y n OP tz ⎧⋅=+=⎪⎨⋅==⎪⎩r u u u rr u u u r 令1y =-得,(2,1,0)n =-r ,所以cos605||||m n m n ⋅===⋅o u r r u r r ,解之得t =,所以2PB ==为所求.17.(本小题满分13分) 研究室有甲、乙两个课题小组,根据以往资料统计,甲、乙两小组完成课题研究各项任务的概率依 次分别为122,3P P =,现假设每个课题研究都有两项工作要完成,并且每项工作的完成互不影响,若在一次课题研究中,两小组完成任务项数相等且都不少于一项,则称该研究为“先进和谐室”. (Ⅰ)若212P =,求该研究室在完成一次课题任务中荣获“先进和谐室”的概率; (Ⅱ)设在完成6次课题任务中该室获得“先进和谐室”的次数为, 2.5E ξξ≥求时,P 2的取值范围.解:(Ⅰ))3132(12⋅⋅=C P )2121(12⋅⋅C )3232(⋅+)2121(⋅31=(Ⅱ)研究室在一次任务中荣获“先进和谐室”的概率)3132(12⋅⋅=C P 222212)3232()]1([P P P C ⋅+-⋅⋅2229498P P -= 而ξ~B(6,P),所以E ξ=6P ,由E ξ≧2.5知5.26)9498(222≥⨯-P P解得45432≤≤p ,而12≤p ,所以1432≤≤p18.(本小题满分13分)已知函数32(1)()ln (1)x x bx c x f x a xx ⎧-+++<=⎨≥⎩的图象过点(1,2)-,且在23x =处取得极值.(Ⅰ)求实数,b c 的值;(Ⅱ)求()f x 在[1,]e -(e 为自然对数的底数)上的最大值. 解:(Ⅰ)当1x <时,2'()32f x x x b =-++,由题意得:()122'03ff -=⎧⎪⎨⎛⎫= ⎪⎪⎝⎭⎩,即22443093b c b -+=⎧⎪⎨-⨯++=⎪⎩,解得:0b c ==。

北京市2017届高三数学(理)综合练习24 含答案

北京市2017届高三数学(理)综合练习24 含答案

北京市2017届高三综合练习数学(理)一、选择题1。

已知函数()f x 在R 上满足2()2(2)88f x f x xx =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是()资.源。

网A 。

21y x =-B 。

y x =C 。

32y x =- D.23y x =-+高。

考。

资。

源.2. 点O 在ABC ∆所在平面内,给出下列关系式:(1)0=++OC OB OA ; (2)OA OC OC OB OB OA ⋅=⋅=⋅;(3)0=⎫⎛-⋅=⎫⎛-⋅BA BA BC BC OB AB AB AC AC OA ;(4)0)()(=⋅+=⋅+BC OC OB AB OB OA . 则点O依次为ABC∆的( )A .内心、外心、重心、垂心B .重心、外心、内心、垂心C .重心、垂心、内心、外心D .外心、内心、垂心、重心3。

设点P 是三角形ABC 内一点(不包括边界),且AP m AB n AC →→→=+,.m n R ∈,则22(2)mn +-的取值范围为( )A5) B (1,5) C1(,5)2D2(5)24。

已知函数()()1||xf x x R x =∈+ 时,则下列结论不.正确的是A .x R ∀∈,等式()()0f x f x -+=恒成立B .(0,1)m ∃∈,使得方程|()|f x m =有两个不等实数根C .12,x x R ∀∈,若12x x ≠,则一定有12()()f x f x ≠D .(1,)k ∃∈+∞,使得函数()()g x f x kx =-在R 上有三个零点5。

点(),M a b 在由不等式组002x y x y ≥⎧⎪≥⎨⎪+≤⎩确定的平面区域内,则42163a b a +++的最大值为( )A .4B .245C .163D .20 二、填空题 6。

数列{}n a 满足112 0212 1 12n n n n n a a a a a +⎧≤<⎪=⎨⎪-≤<⎩,若1a =76,则24a= .7. 双曲线22221(0,0)x y a b a b -=>>的两条渐近线将平面划分为“上、下、左、右"四个区域(不含边界),若点(1,2)在“上”区域内,则双曲线离心率e 的取值范围是 .8。

北京市2017届高三数学(理)综合练习41 含答案

北京市2017届高三数学(理)综合练习41 含答案

北京市2017届高三综合练习数学(理)第I卷选择题(共40分)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项,直接涂在答题卡上。

1。

已知集合{}{}2==-<∈≠∅Z如果则等于M a N x x x x M N a,0,250,,,()5(A)1(B)2(C)12或(D)22。

如果(1,)=那么“a∥b”是“2b k=,(,4),a kk=-”的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件3。

如图,PA是圆O的切线,切点为A,PO交圆O于,B C两点,3,1==,PA PB则ABC∠=()(A)70︒(B)60︒(C)45︒(D)30︒4.在平面直角坐标系xOy中,点P的直角坐标为(1,3).若以原点O为极点,x轴正半轴为极轴建立极坐标系,则点P的极坐标可以是( )(A )(2,)3π-(B )4(2,)3π(C )(1,)3π-(D )4(2,)3π-5。

执行如图所示的程序框图,则输出的n 的值为 ( )(A )5 (B )6 (C )7是(D )8 否6.已知函数⎪⎩⎪⎨⎧≥-+<--=0,120,12)(22x x x x x x x f ,则对任意R ∈21,x x ,若120x x <<,下列不等式成立的是( ) (A)12()()0f x f x +<(B)12()()0f x f x +>(C )12()()0f x f x ->(D)12()()0f x f x -<7。

直线3y kx =+与圆()()42122=++-y x 相交于N M ,两点,若23MN≥则k 的取值范围是( )(A )12(,)5-∞- (B)12(,]5-∞- (C )12(,)5-∞ (D )12(,]5-∞8。

如图,边长为1的正方形ABCD 的顶点A ,D 分别在x 轴、y 轴正半轴上移动,则OC OB ⋅的最大 值是( )(A)2 (B )12(C)π (D )4第II 卷 非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分。

北京市2017届高三数学(理)综合练习65 含答案

北京市2017届高三数学(理)综合练习65 含答案

北京市2017届高三综合练习数学(理)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合A={0,1},集合B={x|x>a},若A∩B=∅,则实数a 的范围是( )A.a≤1B.a≥1C.a≥0D.a≤02.复数z满足z•i=3﹣i,则在复平面内,复数z对应的点位于( ) A.第一象限B.第二象限 C.第三象限D.第四象限3.在极坐标系中,曲线ρ=2cosθ是( )A.过极点的直线B.半径为2 的圆C.关于极点对称的图形D.关于极轴对称的图形4.执行如图所示的程序框图,若输入的x的值为3,则输出的n的值为()A.4 B.5 C.6 D.75.设函数f(x)的定义域为R,则“∀x∈R,f(x+1)>f(x)”是“函数f(x)为增函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.一个几何体的三视图如图所示,则该几何体的体积的是()A.B.C.D.77.已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰与4枝康乃馨的价格之和小于20元,那么2枝玫瑰和3枝康乃馨的价格的比较结果是()A.2枝玫瑰的价格高B.3枝康乃馨的价格高C.价格相同D.不确定8.已知抛物线y=和y=﹣x2+5所围成的封闭曲线如图所示,给定点A(0,a),若在此封闭曲线上恰有三对不同的点,满足每一对点关于点A 对称,则实数a的取值范围是( )A.(1,3)B.(2,4)C.(,3) D.(,4)二、填空题:本大题共6小题,每小题5分,共30分.9.已知平面向量,满足=(1,﹣1),(+)⊥(﹣),那么||=__________.10.已知双曲线的一个焦点是抛物线y2=8x的焦点,且双曲线C 的离心率为2,那么双曲线C 的方程为__________.11.在△ABC 中,角A,B,C所对的边分别为a,b,c,若A=,cosB=,b=2,则a=__________.12.若数列{a n}满足a1=﹣2,且对于任意的m,n∈N*,都有a m+n=a m+a n,则a3=__________;数列{a n}前10项的和S10=__________.13.某种产品的加工需要A,B,C,D,E五道工艺,其中A必须在D的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有__________种.(用数字作答)14.如图,四面体ABCD的一条棱长为x,其余棱长均为1,记四面体ABCD的体积为F(x),则函数F(x)的单调增区间是__________;最大值为__________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.设函数f(x)=4cosxsin(x﹣)+,x∈R(Ⅰ)当x∈[0,],时,求函数f (x)的值域;(Ⅱ)已知函数y=f (x)的图象与直线y=1有交点,求相邻两个交点间的最短距离.16.2014 年12 月28 日开始,北京市公共电汽车和地铁按照里程分段计价.具体如下表.(不考虑公交卡折扣情况)乘公共汽车方案10公里(含)内2元;10公里以上部分,每增加1元可乘坐5公里(含)乘坐地铁方案(不含机场线)6公里(含)内3元6公里至12公里(含)4元12公里至22公里(含)5元22公里至32公里(含)6元32公里以上部分,每增加1元可乘坐20公里(含)已知在北京地铁四号线上,任意一站到陶然亭站的票价不超过5 元,现从那些只乘坐四号线地铁,且在陶然亭出站的乘客中随机选出120 人,他们乘坐地铁的票价统计如图所示.(Ⅰ)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1 人,试估计此人乘坐地铁的票价小于5 元的概率;(Ⅱ)从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选2 人,记x 为这2人乘坐地铁的票价和,根据统计图,并以频率作为概率,求X 的分布列和数学期望;(Ⅲ)小李乘坐地铁从A 地到陶然亭的票价是5 元,返程时,小李乘坐某路公共电汽车所花交通费也是5 元,假设小李往返过程中乘坐地铁和公共电汽车的路程均为s 公里,试写出s 的取值范围.(只需写出结论)17.如图,在五面体ABCDEF中,四边形ABCD是边长为4的正方形,EF∥AD,平面ADEF⊥平面ABCD,且BC=2EF,AE=AF,点G是EF的中点.(1)证明:AG⊥平面ABCD.(2)若直线BF与平面ACE所成角的正弦值为,求AG 的长.(3)判断线段AC上是否存在一点M,使MG∥平面ABF?若存在,求出的值;若不存在,说明理由.18.设n∈N*,函数f(x)=,函数g(x)=,x∈(0,+∞),(1)当n=1时,写出函数y=f(x)﹣1零点个数,并说明理由;(2)若曲线y=f(x)与曲线y=g(x)分别位于直线l:y=1的两侧,求n的所有可能取值.19.设F1,F2分别为椭圆=1(a>b>0)的左、右焦点,点P(1,)在椭圆E上,且点P和F1关于点C(0,)对称.(1)求椭圆E的方程;(2)过右焦点F2的直线l与椭圆相交于A,B两点,过点P且平行于AB 的直线与椭圆交于另一点Q,问是否存在直线l,使得四边形PABQ 的对角线互相平分?若存在,求出l的方程;若不存在,说明理由.20.已知点列T:P1(x1,y1),P2(x2,y2),…P k(x k,y k)(k∈N*,k≥2)满足P1(1,1),与(i=2,3,4…k)中有且只有一个成立.(1)写出满足k=4且P4(1,1)的所有点列;(2)证明:对于任意给定的k(k∈N*,k≥2),不存在点列T,使得+=2k;(3)当k=2n﹣1且P2n﹣1(n,n)(n∈N*,n≥2)时,求的最大值.北京市2017届高三综合练习数学(理)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合A={0,1},集合B={x|x>a},若A∩B=∅,则实数a 的范围是( )A.a≤1B.a≥1C.a≥0D.a≤0考点:交集及其运算.专题:集合.分析:由A∩B=∅,可知集合B中最小元素要大于等于集合A中最大元素,即得答案.解答:解:∵集合A={0,1},集合B={x|x>a},且A∩B=∅,∴集合B中最小元素要大于等于集合A中最大元素,从而a≥1,故选:B.点评:本题考查集合的运算,弄清交集的定义是解决本题的关键,属基础题.2.复数z满足z•i=3﹣i,则在复平面内,复数z对应的点位于() A.第一象限 B.第二象限C.第三象限D.第四象限考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用复数代数形式的乘除运算化简,求出z的坐标得答案.解答: 解:由z•i=3﹣i,得,∴复数z对应的点的坐标为(﹣1,﹣3),位于第三象限.故选:C.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3.在极坐标系中,曲线ρ=2cosθ是()A.过极点的直线B.半径为2 的圆C.关于极点对称的图形D.关于极轴对称的图形考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:曲线ρ=2cosθ化为ρ2=2ρcosθ,可得(x﹣1)2+y2=1,即可得出.解答:解:曲线ρ=2cosθ化为ρ2=2ρcosθ,∴x2+y2=2x,配方为(x﹣1)2+y2=1,因此表示以(1,0)为圆心,1为半径的圆,关于极轴对称.故选:D.点评:本题考查了圆的极坐标方程化为直角坐标方程及其性质,考查了推理能力与计算能力,属于基础题.4.执行如图所示的程序框图,若输入的x的值为3,则输出的n的值为( )A.4 B.5 C.6 D.7考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的x,n的值,当x=243时,满足条件x>100,退出循环,输出n的值为5.解答:解:模拟执行程序框图,可得x=3,n=1不满足条件x>100,x=9,n=2不满足条件x>100,x=27,n=3不满足条件x>100,x=81,n=4不满足条件x>100,x=243,n=5满足条件x>100,退出循环,输出n的值为5.故选:B.点评:本题主要考察了循环结构的程序框图,依次正确写出每次循环得到的x,n的值是解题的关键,属于基本知识的考查.5.设函数f(x)的定义域为R,则“∀x∈R,f(x+1)>f(x)”是“函数f(x)为增函数”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据函数单调性的性质以及充分条件和必要条件的定义进行判断.解答:解:若函数f(x)为增函数,则f(x+1)>f(x)成立,若f(x)=x,满足∀x∈R,f(x+1)>f(x)”,则函数f(x)为增函数不成立,即“∀x∈R,f(x+1)>f(x)”是“函数f(x)为增函数”的必要不充分条件,故选:B点评:本题主要考查充分条件和必要条件的判断,根据函数单调性的定义是解决本题的关键.6.一个几何体的三视图如图所示,则该几何体的体积的是( )A.B.C.D.7考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由已知的三视图可得:该几何体是一个正方体截去一个三棱锥所得的组合体,分别计算体积后,相减可得答案.解答: 解:由已知的三视图可得:该几何体是一个正方体截去一个三棱锥所得的组合体,正方体的棱长为2,故体积为:2×2×2=8,三棱锥的底面是一个直角边长为1的等腰直角三角形,高为1,故体积为:××1×1×1=,故几何体的体积V=8﹣=,故选:A点评:本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.7.已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰与4枝康乃馨的价格之和小于20元,那么2枝玫瑰和3枝康乃馨的价格的比较结果是()A.2枝玫瑰的价格高B.3枝康乃馨的价格高C.价格相同 D.不确定考点:不等式比较大小.专题:不等式的解法及应用.分析:设1枝玫瑰和1枝康乃馨的价格分别x,y元,由题意可得:,化为,设2x﹣3y=m(2x+y)+n(﹣x﹣y)=(2m ﹣n)x+(m﹣n)y,令,解得m,n,即可得出.解答: 解:设1枝玫瑰和1枝康乃馨的价格分别x,y元,由题意可得:,化为,设2x﹣3y=m(2x+y)+n(﹣x﹣y)=(2m﹣n)x+(m﹣n)y,令,解得m=5,n=8,∴2x﹣3y=5(2x+y)+8(﹣x﹣y)>5×8﹣5×8=0,因此2x>3y,∴2枝玫瑰的价格高.故选:A.点评:本题考查了不等式的性质,考查了推理能力与计算能力,属于基础题.8.已知抛物线y=和y=﹣x2+5所围成的封闭曲线如图所示,给定点A(0,a),若在此封闭曲线上恰有三对不同的点,满足每一对点关于点A 对称,则实数a的取值范围是()A.(1,3)B.(2,4)C.(,3)D.(,4)考点:定积分在求面积中的应用.专题:函数的性质及应用.分析:由图可知过两曲线的交点的直线与x轴的交点为(0,4),所以a <4.当对称的两个点分属两段曲线时,设其中一个点为(x1,),则其对称点为(﹣x1,2a﹣),将其代入曲线y=﹣x2+5,得到的关于x1的方程的解有且只有两个,由根的判别式大于0得,从而可得结果.解答:解:显然,过点A与x轴平行的直线与封闭曲线的两个交点关于点A对称,且这两个点在同一曲线上.当对称的两个点分属两段曲线时,设其中一个点为(x1,y1),其中,且﹣4≤x1≤4,则其关于点A的对称点为(﹣x1,2a﹣y1),所以这个点在曲线y=﹣x2+5上,所以2a﹣y1=﹣x12+5,即2a﹣=﹣x12+5,所以2a=x12+5,即x12+5﹣2a=0,此方程的x1的解有且只有两个,从而,解得.当=﹣x2+5,即点A(0,4)时,此时只有一对满足题意的关于A点的对称点,故a<4,所以,故选:D.点评:本题考查点的对称性、一元二次方程根的判别式,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年度北京市大兴区高三第一次综合练习数学(理)本试卷共4页,满分150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合{|0}A x x =>,则R C A =( ). A .{|0}x x < B .{|0}x x … C .{|0}x x > D .{|0}x x …2.下列函数中,既是偶函数又有零点的是( ). A .12y x = B .tan y x = C .x x y e e -=+ D .ln ||y x =3.执行如图所示的程序框图,输出的S 值为( ). A .4B .5C .6D .74.设a ,R b ∈,则“a b >”是“11a b<”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.某三棱锥的三视图如图所示,该三棱锥体积为( ). A .13B .12C .1D .32俯视图侧左()视图正主()视图6.若x ,y 满足220,20,0,x y x y y ≥≥≥-+⎧⎪-+⎨⎪⎩且z kx y =-+有最大值,则k 的取值范围为( ).A .1k …B .12k 剟C .1k …D .2k …7.设函数()sin(2)f x x ϕ=+(ϕ是常数),若2π(0)3f f ⎛⎫= ⎪⎝⎭,则π12f ⎛⎫ ⎪⎝⎭,4π3f ⎛⎫ ⎪⎝⎭,π2f ⎛⎫⎪⎝⎭之间的大小关系可能是( ). A .π4ππ2312f f f ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .4πππ3212f f f ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .ππ4π2123f f f ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .π4ππ1232f f f ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭8.某公司有4家直营店a ,b ,c ,d ,现需将6箱货物运送至直营店进行销售,各直营店出售该货物以往所得利润统计如下表所示.根据此表,该公司获得最大总利润的运送方式有( ). A .1种B .2种C .3种D .4种第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.复数2(1i)+=_______.10.设22,0()log,0xx f x x x ⎧⎪=⎨>⎪⎩≤则((1))f f -=________.11.已知双曲线2221y x b-=(0)b >的离心率为2,则b =_______.12.在极坐标系中,点π2,3A ⎛⎫⎪⎝⎭到直线cos 2p θ=的距离是________.13.已知圆22:1O x y +=的弦AB 若线段AP 是圆O 的直径,则AP AB⋅=______;若点P 为圆O 上的动点,则AP AB⋅的取值范围是__________.14.已知数列{}n a 满足11a k=,2k ≥,*k N ∈,[]n a 表示不超过n a 的最大整数(如[1.6]1=),记[]n n b a =,数列{}n b 的前n 项和为n T .①若数列{}n a 是公差为1的等差数列,则4T =_______. ②若数列{}n a 是公比为1k +的等比数列,则n T =________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题13分)在ABC △中,a =3b =,1cos 3A =-.(1)求sin B ;(2)设BC 的中点为D ,求中线AD 的长.16.(本小题13分)某大型超市拟对店庆当天购物满288元的顾客进行回馈奖励.规则如下:顾客转动十二等分且质地均匀的圆形转盘(如图),待转盘停止转动时,若指针指向扇形区域,则顾客可领取此区域对应面额(单位:元)的超市代金券.假设转盘每次转动的结果互不影响.(1)若060x ≠,求顾客转动一次转盘获得60元代金券的概率;(2)某顾客可以连续转动两次转盘并获得相应奖励,当020x =时,求该顾客第一次获得代金券的面额不低于第二次获得代金券的面额的概率;(3)记顾客每次转动转盘获得代金券的面额为X ,当0x 取何值时,X 的方差最小?(结论不要求证明) 17.(本小题14分)如图,在三棱柱111ABC A B C -中,平面11BCC B ⊥平面ABC ,四边形11BCC B 为菱形,点M 是棱AC 上不同于A ,C 的点,平面1B BM 与棱11AC 交于点N ,2AB BC ==,90ABC °∠=,1160BB C °∠=. C 1CNMB 1BA 1A(1)求证:1B N ∥平面1C BM ; (2)求证:1B C ⊥平面1ABC ;(3)若二面角1A BC M --为30°,求AM 的长.18.(本小题13分)已知函数22()m xf x x m=-,且0m ≠.(1)若1m =,求曲线()y f x =在点(0,0)处的切线方程; (2)求函数()y f x =的单调区间;(3)若函数()y f x =有最值,写出m 的取值范围.(只需写出结论)19.(本小题14分)已知椭圆2222:1x y C a b+=(0)a b >>的短轴端点到右焦点(1,0)F 的距离为2.(1)求椭圆C 的方程;(2)过点F 的直线交椭圆C 于A ,B 两点,交直线:4l x =于点P ,设1||||PA AF λ=,2||||PB BF λ=,求证:12λλ-为定值.20.(本小题13分)若合集1A ,2A ,⋅⋅⋅,n A 为合集U 的n 个非空子集,这n 个集合满足:①从中任取m 个集合都有12m i i i A A A U ⋅⋅⋅≠ 成立;②从中任取1m +个合计都有121m m j j j j A A A A U +=成立. (1)若{1,2,3}U =,3n =,1m =,写出满足题意得一组集合1A ,2A ,3A ; (2)若4n =,2m =,写出满足题意的一组集合1A ,2A ,3A ,4A 以及集合U ; (3)若10n =,3m =,求集合U 中的元素个数的最小值.大兴区2016-2017学年度第一次综合练习 高三数学(理科)参考答案及评分标准一、选择题(共8小题,每小题5分,共40分)9.2i 10.1-1112.113.2;[114.2(1)16:n k kn k+-- 注:13、14第一空3分,第二空2分.三、解答题(共6小题,共80分). 15.(共13分)解:(1)由1cos 3A =-知,且0πA <<.所以sin A .由正弦定理及题设得sin sin a bA B =3sin B =.所以sin B . (2)因为b a <, 所以B 为锐角.所以cos B . 因为πA B C ∠+∠+∠=,所以cos cos()cos cos sin sin C A B A B A B =-+=-+.所以1cos 3C =+在ACD △中,D 为BC 的中点,所以CD 由余弦定理及题设得2222cos AD AC CD AC CD C =+-⋅.22323=+-⨯ 2=.所以中线AD16.(共13分)解:(1)设事件A 为“顾客转动一次转盘获得60元代金券”, 由题意知41()123P A ==. (2)设事件B 为“顾客第一次获得代金券面额不低于第二次获得的代金券面额”,设事件C 为“该顾客第i 转动转盘获得的超市代金券面额为60”,1,2i =.由题意知,1()3P C =,1,2i =.因此112()()P B P C P =+. 11111333⎛⎫⎛⎫=+-⨯- ⎪ ⎪⎝⎭⎝⎭.79=. (3)036x =.17.(共14分)解:(1)因为在三棱柱111ABC A B C -中,平面ABC ∥平面111A B C , 平面1B BM 平面ABC BM =, 平面1B BM 平面1111A B C B N =, 所以1BM B N ∥.又因为1B N ⊄平面1C BM ,BM ⊂平面1C BM , 所以1B N ∥平面1C BM .(2)因为90ABC °∠=,所以AB BC ⊥, 又因为平面11BCC B ⊥平面ABC , 所以AB ⊥平面11BCC B . 所以1AB B C ⊥.又因为四边形11BCC B 为菱形,所以11B C BC ⊥.所以1B C ⊥平面1ABC .(3)取线段11B C 中点D ,因为菱形11BCC B 中,1160BB C °∠=, 所以11BD B C ⊥.又因为11BC B C ∥,所以BD BC ⊥. 又因为AB ⊥平面11BCC B .如图,以B 为原点,建立空间直角坐标系B xyz -,则(2,0,0)A ,(0,0,0)B,1(0,1B -,(0,2,0)C,1(0,1C ,所以1(0,3,BC =1BC =(2,0,0)BA =(2,2,0)AC =-. 设AM AC λ=,(01)λ<<,BM BA AM BA AC λ=+=+(2,0,0)(2,2,0)λλ=+-(22,2,0)λλ=-, 设平面1BC M 的法向量为(,y,z)n x =, 则100BC n BM n ⎧⋅=⎪⎨⋅=⎪⎩,即0(22)20y x y λλ⎧=⎪⎨-+=⎪⎩,令z ,则3y =-,31x λλ=-.所以3,1n λλ⎛=- -⎝.A由(2)知,1(0,3,BC =是平面 1ABC 的一个法向量.则因为二面角1A BC M --为30°, 111cos30cos ,n B C nB C B C n°⋅=<>=⋅=. 解得25λ=,或2λ=-(舍).所以25AM AC ==AM .18.(共13分)解:(1)当 1m =时,由题设知2()1xf x x =-. 因为2221()(1)x f x x +'=--,所以(0)0f =,(0)1f '=-.所以()f x 在0x =处的切线方程为0x y +=. (2)因为22()m x f x x m=-,所以2222()()x m f x m x m +'=--.当0m >时,定义域为(,-∞( )+∞. 且2222()0()x mf x m x m +'=-<-.故()f x 的单调递减区间为(,-∞,(,)+∞.当0m <时,定义区域为R .当x 变化时,()f x ',()f x 的变化情况如下表:故()f x 的单调递减区间为(,-∞,)+∞,单调递增区间为(.综上所述,当0m >时,()f x 的单调递减区间为(,-∞,(,)+∞;当0m <时,故()f x 的单调递减区间为(,-∞,)+∞,单调递增区间为(. (3)0m <.19.(共14分)解:(1)由题意有:1c =2=, 所以2a =,2223b a c =-=.所以椭圆C 的方程为22143x y +=. (2)由题意直线AB 过点(1,0)F ,且斜率存在,设方程为(1)y k x =-,将4x =代入得P 点坐标为(4,3k),由22(1)143y k x x y =-⎧⎪⎨+=⎪⎩,消元得 2222(4)84120s k x k x k +-+-=,设11(,y )A x ,22(,y )B x ,则0∆>且2122212283441234k x x k k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩, 方法一:因为1PA AF λ=,所以11141PA x AF x λ-==-. 同理22241PB x BF x λ-==-,且1141x x --与2241x x --异号,所以1212124411x x x x λλ---=+=--12332()11x x --+--, 1212123(2)2()1x x x x x x +-=-+-++,222223(868)2412834k k k k k --=-+--++,0=.所以,12λλ-的定值为0.方法二:由题意,当121x x >>时,(若:不妨设121x x >>,加一分) 有1PA AF λ=,且2PB BF λ=-,所以11111(4,3)(1,)x y k x y λ--=--,且22222(4,3)(1,)x y k x y λ--=---, 所以11141x x λ-=-,同理22241x x λ-=--, 从而1212124411x x x x λλ---=+=--12331111x x ------, 12123(2)2(1)(1)x x x x --=--=--1212123(2)2()1x x x x x x +--+-++,222223(868)2412834k k k k k --=-+--++,0=.当121x x <<时,同理可得120λλ-=. 所以,12λλ-为定值0.方法三:由题意直线AB 过点(1,0)F ,设方程为1x my =+(0)m ≠, 将4x =代入得P 点坐标为34,m ⎛⎫⎪⎝⎭,由221143x my x y =+⎧⎪⎨+=⎪⎩,消元得22(34)690m y my ++-=,设11(,)A x y ,22(,)B x y ,则0∆>且12212263493m y y m y y m -⎧+=⎪⎪+⎨-⎪⋅=⎪⎩,因为1PA AF λ=,所以11111330y PA my m AF y my λ--===-. 同理2223PB my BF my λ-==,且113my my -与223my my -异号,所以12121233my my my my λλ---=+12123()2y y my y +=-, 3(6)20(9)m m ⨯-=-=⨯-.又当直线AB 与x 轴重合时,120λλ-=, 所以,12λλ-为定值0.20.(共13分)解:(1){1,2,3}U =,1{2,3}A =,2{1,3}A =,3{1,2}A =.(2){1,2,3,4,5,6}U =,1{4,5,6}A =,2{2,3,6}A =,3{1,3,5}A =, 4{1,2,4}A =.(3)集合U 中元素个数的最小值为120个. 下面先证明若123123{,,}{,,}i i i j j j ≠,则123j j j j B A A A =,123i i i i B A A A =,j i B B ≠. 反证法:假设j i B B =,不妨设1123{,,}i j j j ∉. 由假设i j B B U =≠,设j U j D C B =,设j x D ∈, 则x 是1j A ,2j A ,3j A 中都没有的元素,j x B ∉. 因为1i A , 1j A ,2j A ,3j A 四个子集的并集为U , 所以1i i j x A B B ∈⊂=与j x B ∉矛盾,所以假设不正确.若123123{,,}{,,}i i i j j j ≠,且123j j j j B A A A =,123i i i i B A A A =,j i B B ≠成立.则1A ,2A ,⋅⋅⋅,10A 的3个集合的并集共计有310120C =个.把集合U 中120个元素与1A ,2A ,⋅⋅⋅,10A 的3个集合的并集123i i i i B A A A =建立一一对应关系,所以集合U 中元素的个数大于等于120.下面我们构造一个有120个元素的集合U :把与123i i i i B A A A =(1,2,,120)i =⋅⋅⋅对应的元素放在异于1i A ,2i A ,3i A 的集合中,因此对于任意一个3个集合的并集,它们都不含与i B 对应的元素,所以i B U ≠.同时对于任意的4个集合不妨为 1i A ,2i A ,3i A ,4i A 的并集, 则由上面的原则与1i A ,2i A ,3i A 对应的元素在集合4i A 中, 即对于任意的4个集合1i A ,2i A ,3i A ,4i A 的并集为全集U .。

相关文档
最新文档