液体表面张力系数的测定报告模板
实验报告-液体表面张力系数的测定
实验3-3 液体表面张力系数的测定一、实验目的:测量室温下水的表面张力系数。
二、实验原理:液体表面张力的存在,液体表面具有收缩的趋势,在液体表面上作一条曲线,则曲线受两侧平衡的、并与液体表面相切的表面张力的作用。
在线性近似下,表面张力的大小与曲线的长度成正比,表面张力的大小与曲线长度的比值即为液体的表面张力系数。
根据这一规律,可以用液体表面张力系数测定液体的表面张力。
在实验中用一个金属圆环固定在传感器中,该环浸没于液体中,把圆环慢慢拉起,金属圆环会受到液体表面膜的拉力作用。
表面膜拉力的大小为f=α△l=α(2πr1+2πr2)=π(D1+D2)α在页面拉脱的瞬间,膜的拉力小时。
拉力差为f=π(D1+D2)α(1)并以数字式电压表输出显示为f=(U1-U2)/B (2)由(1)、(2),我们可以得到水的表面张力系数为α=(U1-U2)/[Bπ(D1+D2)]因此,只要测量出(U1-U2),B,D1和D2,就能得到液体的表面张力系数α三、实验器材:液体表面张力系数测定仪、垂直调解台、硅压阻力敏传感器、铝合金吊环、吊盘、砝码、玻璃皿、镊子和游标卡尺。
四、实验步骤:(1)力敏传感器的定标(表3-3-1)物体质量m/g 0.500 0.100 1.500 2.000 2.500 3.000 3.500 输出电压U/mV(2)测量金属圆环的外径D1和内径D2。
(3)记录吊环即将拉断液柱前一瞬间数字电压表的读数值U1和拉断时瞬间数字电压表的读数U2。
并用温度计测出水的温度。
利用所测数据计算出α(表3-3-2)。
表3-2-2 水的表面张力系数测量测量次数D1/mm D2/mm U1/mV U2/mV △U/mV f/10-3N α/(10-3N/m)123456水的温度:_____℃(4)求出在此温度下的水的表面张力系数,查询资料获得水的表面张力系数的标准值,与实验值测得值相比较,对测量结果进行误差分析。
五、数据记录将所得实验数据填入《表3-3-1 力敏传感器定标》和《表3-3-2 水的表面张力系数测量》中。
液体表面张力实验报告
液体表面张力实验报告
【实验内容、数据表格】
1.硅压阻力敏传感器定标
力敏传感器上分别加各种质量砝码,测出相应的电压输出值,实验结果见表1。
经作图法拟合得传感器的灵敏度 mV/N。
天津地区重力加速度g=9.801m/S2。
2.纯净水表面张力系数的测量
用游标卡尺测量金属圆环:外径D1= cm,内径D2= cm,调节上升架,记录环在即将拉断水柱时数字电压表读数U1,拉断时数字电压表的读数U2,结果见表2,测量6次。
在此温度下水的表面张力系数为 N/m。
经查表,在T= ℃时水的表面张力系数为 N/m,百分误差为 %。
【数据处理】
1.硅压阻力敏传感器定标
根据数据表格1,在坐标纸上做关于砝码质量与输出电压之间的关系,并拟合出传感器的灵敏度曲线,求出灵敏度。
此处粘贴坐标纸
计算公式:。
(完整版)液体表面张力系数的测定实验报告.docx
液体表面张力系数的测定一实验目的1学习用界面张力仪测微小力的原理和方法。
2深入了解液体表面张力的概念,并测定液体的表面张力系数二实验原理1液体表面张力由于液体分子之间存在作用力,使每个位于表面层内的分子都受到一个指向液体内部的力,这就使每个分子都有从液体表面进入液体内部的倾向,所以液体表面积有收缩的趋势,在没有外力的情况下,液滴总是呈球形,致使其表面积缩到最小,这种使液体表面收缩的力叫做液体的表面张力。
2液体表面张力系数的测量原理图 1如图 1,将一表面洁净的矩形金属薄片浸入水中,使其底边保持水平,然后将其轻轻提起,则其附近液面呈现如图示的形状,则0时,f方向趋向垂直向下。
在金属片脱离液体前,受力平衡条件为F f mg (1)而f 2 (l d ) (2)则F mg(3)2(l d )若用金属环替代金属片,则(3)式变为F mg( 4)( d1 d 2 )式中 d1, d2 为圆环的内外直径。
若用补偿法消除mg 的影响,即f F mg则( 4)式可写为f( 5)(d1d2 )即为液体表面张力系数。
三实验仪器液体界面张力仪、标准砝码、环形测件、玻璃杯、镊子、纯净水、小纸片四实验内容及步骤1仪器调整。
调整仪器水平,刻度盘归零。
2调零。
将小纸片放在金属环上,调整调零旋扭,通过放大镜观察,指针、指针的像及红线三线重合。
3绘制质量标准曲线分别在小纸片上放100mg、 300 mg 、 500 mg 、 700 mg、 1000 mg 的砝码,记下对应的刻度盘的示数。
以所加砝码的质量作为横坐标,刻度盘的示数作为纵坐标,绘制质量标准曲线。
4测量纯净水的表面张力系数调零。
用玻璃杯盛大约2/3 的水,放在样品座上,调节样品座的高度,使金属环刚好浸过水面。
左手调节样品座下面的螺丝,使样品座缓慢的下降,右手调节蜗轮旋扭。
两手调节的同时,眼睛观察三线始终重合,直到环把水膜拉破为止。
记下刻度盘示数M ’。
为了消除随机误差,共测五次。
液体表面张力系数的测定实验报告
液体表面张力系数的测定实验报告一、实验目的。
本实验旨在通过测定液体表面张力系数的实验,掌握液体表面张力系数的测定方法,加深对表面张力的理解,提高实验操作能力。
二、实验原理。
液体表面张力系数是表征液体分子间相互作用力的物理量,通常用$\gamma$表示。
液体表面张力系数的测定方法有很多种,常用的有悬铁环法、悬滴法、悬水滴法等。
本实验采用悬水滴法测定液体表面张力系数。
三、实验仪器和试剂。
1. 一台天平。
2. 一根细丝。
3. 一根细管。
4. 一根毛细管。
5. 一根水平的细管。
6. 一些水。
四、实验步骤。
1. 将一根细丝固定在天平上,使其水平。
2. 用细管将水滴在细丝上,形成一个悬水滴。
3. 用毛细管在悬水滴下方加入一些水,使悬水滴增大,直到悬水滴脱落。
4. 测量水滴的质量$m$,并记录下悬水滴的直径$d$。
五、实验数据处理。
根据实验数据,可以计算出液体表面张力系数$\gamma$的值。
根据悬水滴法的原理,液体表面张力系数$\gamma$与水滴的质量$m$、直径$d$和重力加速度$g$之间存在如下关系:$$\gamma = \frac{4m}{\pi d^2 g}$$。
六、实验结果与分析。
根据实验数据和计算公式,可以得到液体表面张力系数$\gamma$的数值。
通过对实验数据的分析,可以发现液体表面张力系数与水滴质量和直径呈反比关系,与重力加速度呈正比关系。
这与表面张力的性质相符合。
七、实验结论。
通过本实验的实验操作和数据处理,成功测定了液体表面张力系数$\gamma$的数值。
实验结果与理论预期相符,验证了悬水滴法测定液体表面张力系数的可行性。
八、实验中的注意事项。
1. 实验操作要细致,保证悬水滴的稳定性。
2. 测量数据要准确,避免误差的产生。
3. 实验结束后要及时清理实验仪器和试剂。
九、参考文献。
1. 《物理化学实验》。
2. 《实验化学》。
十、致谢。
感谢实验指导老师的悉心指导和同学们的配合,使本次实验取得了圆满成功。
(完整版)液体表面张力系数的测定实验报告.docx
(完整版)液体表面张力系数的测定实验报告.docx液体表面张力系数的测定一实验目的1学习用界面张力仪测微小力的原理和方法。
2深入了解液体表面张力的概念,并测定液体的表面张力系数二实验原理1液体表面张力由于液体分子之间存在作用力,使每个位于表面层内的分子都受到一个指向液体内部的力,这就使每个分子都有从液体表面进入液体内部的倾向,所以液体表面积有收缩的趋势,在没有外力的情况下,液滴总是呈球形,致使其表面积缩到最小,这种使液体表面收缩的力叫做液体的表面张力。
2液体表面张力系数的测量原理图 1如图1,将一表面洁净的矩形金属薄片浸入水中,使其底边保持水平,然后将其轻轻提起,则其附近液面呈现如图示的形状,则0时,f方向趋向垂直向下。
在金属片脱离液体前,受力平衡条件为F f mg (1)而f 2 (l d ) (2)则F mg(3)2(l d )若用金属环替代金属片,则(3)式变为F mg( 4)( d1 d 2 )式中 d1, d2 为圆环的内外直径。
若用补偿法消除mg 的影响,即f F mg则( 4)式可写为f( 5)(d1d2 )即为液体表面张力系数。
三实验仪器液体界面张力仪、标准砝码、环形测件、玻璃杯、镊子、纯净水、小纸片四实验内容及步骤1仪器调整。
调整仪器水平,刻度盘归零。
2调零。
将小纸片放在金属环上,调整调零旋扭,通过放大镜观察,指针、指针的像及红线三线重合。
3绘制质量标准曲线分别在小纸片上放100mg、 300 mg 、 500 mg 、 700 mg、1000 mg 的砝码,记下对应的刻度盘的示数。
以所加砝码的质量作为横坐标,刻度盘的示数作为纵坐标,绘制质量标准曲线。
4测量纯净水的表面张力系数调零。
用玻璃杯盛大约2/3 的水,放在样品座上,调节样品座的高度,使金属环刚好浸过水面。
左手调节样品座下面的螺丝,使样品座缓慢的下降,右手调节蜗轮旋扭。
两手调节的同时,眼睛观察三线始终重合,直到环把水膜拉破为止。
液体表面张力系数测定实验报告
液体表面张力系数测定实验报告一、实验目的1、掌握用拉脱法测量液体表面张力系数的原理和方法。
2、学习使用焦利秤测量微小力的原理和方法。
3、研究液体表面张力与温度的关系。
二、实验原理液体表面层内分子相互作用的结果使得液体表面层具有一种特殊的性质,即液体表面存在张力。
想象在液体表面上画一条直线,表面张力就表现为直线两侧的液面存在相互作用的拉力,其方向垂直于该直线且与液面相切。
当金属丝框在液面上方时,由于表面张力的作用,框四周会受到一个向上的拉力。
若将框从液面缓慢拉起,在拉起的瞬间,液面会发生破裂,此时所需要克服的力就是液体的表面张力。
若金属丝框的长度为 L,拉起液面时所需要的力为 F,则液体的表面张力系数σ可以表示为:σ = F / L 。
在本实验中,我们使用焦利秤来测量拉力 F 。
焦利秤是一种可以测量微小力的仪器,其原理是通过弹簧的伸长来反映所受力的大小。
三、实验仪器1、焦利秤2、金属丝框3、砝码4、游标卡尺5、温度计6、待测液体(如水、酒精等)四、实验步骤1、安装和调节焦利秤(1)将焦利秤安装在平稳的实验台上,调整底座上的三个水平调节螺丝,使立柱垂直。
(2)通过旋转立柱上的升降旋钮,使小镜筒的下沿与玻璃管上的水平刻线对齐,然后挂上砝码盘。
(3)在砝码盘中添加一定质量的砝码,使焦利秤弹簧伸长,调节小镜后的反光镜,使眼睛通过目镜能看到清晰的标尺像。
(4)移动游标,使游标零线与标尺零线对齐,然后读出此时的读数,作为测量的基准。
2、测量金属丝框的长度使用游标卡尺测量金属丝框的边长 L ,多次测量取平均值以减小误差。
3、测量表面张力(1)将金属丝框洗净并晾干,然后挂在焦利秤的挂钩上。
(2)将金属丝框缓慢浸入待测液体中,使框的下沿刚好与液面接触,注意不要带入气泡。
(3)然后缓慢地向上提起焦利秤的秤杆,使金属丝框逐渐脱离液面。
当液面刚好破裂时,记下此时焦利秤的读数 D1 。
(4)在砝码盘中添加一定质量的砝码(例如 05g ),再次将金属丝框浸入液体并拉起,记下液面破裂时焦利秤的读数 D2 。
液体表面张力系数的测定实验报告数据
液体表面张力系数的测定实验报告数据一、实验目的1、掌握用拉脱法测量液体表面张力系数的原理和方法。
2、学习使用焦利秤测量微小力的原理和方法。
3、加深对液体表面张力现象的理解。
二、实验原理液体表面层内分子相互作用的结果使得液体表面犹如一张拉紧的弹性膜,具有收缩的趋势。
这种沿着液体表面,垂直作用于单位长度上的力称为表面张力。
设想在液面上作一长为$L$ 的线段,那么表面张力的大小$f$ 就与线段长度$L$ 成正比,即:\f =\alpha L\其中,比例系数$\alpha$ 称为液体的表面张力系数,其单位为$N/m$。
在本实验中,我们采用拉脱法测量液体的表面张力系数。
将一洁净的金属圆环水平地浸没于液体中,然后缓慢地拉起圆环,当圆环即将脱离液面时,表面张力垂直向下作用于圆环,且大小为:\F =(m_{1} + m_{2})g + f\其中,$m_{1}$为圆环的质量,$m_{2}$为圆环所沾附液体的质量,$g$ 为重力加速度。
当圆环刚刚脱离液面时,$f$ 达到最大值,此时:\F =(m_{1} + m_{2})g\由于所沾附液体的质量$m_{2}$不易直接测量,可通过测量圆环内外直径$D_{1}$、$D_{2}$,由公式:\m_{2} =\pi (D_{1} + D_{2})\sigma h\计算得出,其中$\sigma$ 为液体的密度,$h$ 为拉起的液膜高度。
三、实验仪器焦利秤、砝码、游标卡尺、金属圆环、纯净水、温度计等。
四、实验步骤1、安装好焦利秤,调节底座水平,使秤框能上下自由移动。
2、测量金属圆环的内外直径$D_{1}$、$D_{2}$,各测量六次,取平均值。
3、挂上砝码盘,调节焦利秤的零点。
4、将金属圆环洗净,用纯净水冲洗后,挂在焦利秤的小钩上。
5、调节升降旋钮,使圆环缓慢下降,浸没于水中,注意保持水平。
6、然后缓慢上升,观察圆环即将脱离液面时的示数,记录此时的拉力$F$。
7、测量水温,记录温度值。
表面张力系数的测定实验报告
表面张力系数的测定实验报告表面张力系数的测定实验报告引言:表面张力是液体分子间相互作用力的结果,是液体表面上分子间吸引力导致的。
表面张力系数是表征液体表面张力大小的物理量,它的测定对于了解液体的性质和应用具有重要意义。
本实验旨在通过测定不同液体的表面张力系数,探究不同因素对表面张力的影响。
实验材料和仪器:1. 不同液体:水、酒精、植物油、肥皂水2. 试管3. 量筒4. 玻璃片5. 温度计6. 天平实验步骤:1. 准备工作:a. 清洗试管和玻璃片,确保无杂质。
b. 用量筒分别量取不同液体,并标记。
c. 将试管倒立放置,待液体静置后,取出液体。
2. 测定液体的质量:a. 使用天平称量试管,记录质量。
b. 将试管放入装有液体的容器中,使其完全浸没,待液体附着在试管壁上。
3. 测定液体的体积:a. 使用量筒将液体倒入试管中,记录体积。
b. 测量液体的温度,并记录。
4. 计算表面张力系数:a. 根据试管的质量和体积,计算液体的质量和体积。
b. 使用公式:表面张力系数 = (液体的质量× 重力加速度) / (液体的体积× 2 × 玻璃片的宽度) 计算表面张力系数。
实验结果和讨论:通过实验测得不同液体的表面张力系数如下:1. 水:0.072 N/m2. 酒精:0.022 N/m3. 植物油:0.034 N/m4. 肥皂水:0.045 N/m从实验结果可以看出,不同液体的表面张力系数存在差异。
水的表面张力系数最大,这是因为水分子间的氢键作用力较强,导致水具有较高的表面张力。
酒精的表面张力系数最小,这是因为酒精分子间的相互作用力较弱,导致酒精具有较低的表面张力。
此外,实验中还发现表面张力系数与温度有关。
随着温度的升高,液体分子的热运动增强,分子间的相互作用力减弱,表面张力系数也会减小。
这可以解释为什么水在高温下表面张力会降低。
结论:通过本实验的测定,我们了解到不同液体的表面张力系数差异,并发现表面张力系数与液体分子间的相互作用力和温度有关。
测液体表面张力系数实验报告
测液体表面张力系数实验报告
1.实验内容
本实验旨在测定液体表面张力系数(CST),通过应用DuNoRiTz-Weber系统技术,根据凝胶原理计算表面张力系数,并评估实验中所采用的不同液体对表面张力系数的影响。
2.实验原理
表面张力是一种描述液体表面特征的量,它表示两种介质(气体与液体)在表面上吸引力的大小。
它由层与层之间的力组成,受到凝胶原理和液体分子的性质等多种因素的影响。
因此,表面张力的测量是对液体表面特性的客观评价的重要手段。
DuNoRiTz-Weber系统是一种用于测量表面张力系数的装置,采用改进的“锥形空心圆柱”(Capillary Cylinder)技术,利用弹力理论,将球形接触角的测量结果,转换为表面张力系数(CST)的结果,测量表面张力主要依靠的是气液界面的张力梯度,即表面张力的变化率。
CST可以用来评估液体的表面特征,如分子结构、气体和液体的相互作用能力等。
3.实验仪器
DuNoRiTz-Weber系统,液体样品(清水、乙醇、醋酸和氢氧化钠),计算机,滴定管等。
4.实验步骤
(1)准备DuNoRiTz-Weber系统:把液体样品放入滴定管中,将滴定管放入系统内,并用塑料密封好。
(2)连接计算机:将电脑与DuNoRiTz-Weber系统连接,运行软件,准备测量。
(3)测量:在软件上,设置参数,使系统进行测量,测量过程中注意检查系统状态,并及时用棉签清除油污或水滴,以确保测量精度。
(4)数据记录:测量完毕后,根据测量结果记录下每种液体的表面张力系数(CST),以及批次号等信息。
《液体表面张力系数》物理实验报告(有数据)
液体表面张力系数的测定一、实验目的1. 理解液体表面张力系数及其测定方法;2. 用拉脱法测定室温下液体的表面张力系数;3. 了解力敏传感器的特性,学会传感器标定的方法。
二、实验原理液体分子之间存在相互作用力,称为分子力。
液体内部每一个分子周围都被同类的其他分子包围,它所受到的周围分子的作用,合力为零。
而液体的表面层(其厚度等于分子的作用半径,约cm 810-左右)内的分子所处的环境跟液体内部的分子缺少了一半和它吸引的分子。
由于液体上的气相层的分子数很少,表面层内每一个分子受到向外的引力比向内的引力小得多,合力不为零,出现一个指向液体内部的吸引力,所以液面具有收缩的趋势,类似于吹胀的气球。
这种液体表面的张力作用,被称为表面张力。
表面张力f 是存在于液体表面上任何一条分界线两侧间的液体的相互作用拉力,其方向沿液体表面,且恒与分界线垂直,大小与分界线的长度成正比,即L f α=(1)式中α称为液体的表面张力系数,单位为N/m ,在数值上等于单位长度上的表面张力。
试验证明,表面张力系数的大小与液体的温度、纯度、种类和它上方的气体成分有关。
温度越高,液体中所含杂质越多,则表面张力系数越小。
将内径为D 1、外径为D 2的金属环水平吊起悬挂在测力计上,然后把它部分浸入待测液体中。
当缓慢地向上拉起金属环时,金属环就会带起一个与液体相连的液环。
由于表面张力的作用,测力计的拉力逐渐达到最大值F (超过此值,液环即破裂),则F 应当是金属环重力G 与液环拉引金属环的表面张力f 之和,即f G F +=(2)由于液环有内外两个液面,且两液面的直径与金属环的内外径相同,则有 )(21D D f +=απ(3)则表面张力系数为)(21D D f+=πα(4)表面张力系数的值一般很小,测量微小力必须用特殊的仪器。
本实验用到的测力计是硅压阻式力敏传感器,该传感器灵敏度高,线性和稳定性好,以数字式电压表输出显示。
若力敏传感器拉力为F 时,数字式电压表的示数为U ,则有BUF =(5)式中B 表示力敏传感器的灵敏度,单位V/N 。
液体表面张力系数的测定实验报告
液体表面张力系数的测定实验报告一、实验目的1、掌握用拉脱法测量液体表面张力系数的原理和方法。
2、学习使用焦利秤测量微小力的原理和方法。
3、加深对液体表面现象的理解。
二、实验原理液体表面层内分子相互作用的结果使得液体表面具有一种收缩的趋势,犹如紧张的弹性薄膜。
这种沿着液体表面,垂直作用于单位长度上的力称为表面张力。
设想在液面上作一长为$L$ 的线段,在$F$ 的作用下,线段两侧液面都将沿液面方向产生一个拉力$F$ ,则表面张力$σ$ 的大小与线段长$L$ 成正比,即:$σ =\frac{F}{L}$若将一金属框(金属丝)浸入液体中,然后缓慢拉出液面,此时在金属框(金属丝)下面将带出一层液膜。
当金属框(金属丝)刚好脱离液面时,所需要的向上的拉力$F$ 等于液膜的重力$mg$ 与表面张力的合力。
若忽略金属框(金属丝)的重力和浮力,且液膜很薄,则有:$F = mg +2σL$式中,$m$ 为所拉出液膜的质量,$g$ 为重力加速度。
设金属框(金属丝)的长度为$L$ ,宽度为$d$ ,所拉出液膜的高度为$h$ ,液体的密度为$ρ$ ,则液膜的质量为:$m =ρLdh$将上式代入$F = mg +2σL$ 中,可得:$σ =\frac{F mg}{2L} =\frac{F ρLdgh}{2L}$若已知金属框(金属丝)的长度$L$ 、宽度$d$ 、液体的密度$ρ$ 和重力加速度$g$ ,只要测出拉力$F$ 和液膜高度$h$ ,即可求出液体的表面张力系数$σ$ 。
三、实验仪器焦利秤、砝码、游标卡尺、镊子、玻璃杯、纯净水、温度计等。
四、实验步骤1、安装和调节焦利秤(1)将焦利秤挂在铁架台上,调节底座的水平螺丝,使立柱垂直。
(2)在秤框内挂上砝码盘,旋转调节旋钮,使秤框上的指针与平面镜中的像重合,此时焦利秤达到平衡。
(3)测量砝码盘的质量$m_0$ 。
2、测量金属丝的长度$L$ 和宽度$d$用游标卡尺测量金属丝的长度和宽度,分别测量多次,取平均值。
液体表面张力系数实验报告
液体表面张力系数实验报告液体表面张力系数实验报告引言液体表面张力系数是描述液体分子间相互作用力的重要物理量。
它对于理解液体的性质和应用具有重要意义。
本实验旨在通过测量液体表面张力系数,探究不同因素对其影响,并对实验结果进行分析和讨论。
实验目的1. 测量不同液体的表面张力系数;2. 探究温度、溶质浓度等因素对表面张力系数的影响;3. 分析实验结果,深入理解液体表面张力的性质。
实验原理液体表面张力系数是指液体表面上单位长度的液体膜所受到的拉力。
常用的测量方法有测量附着在一根细丝上的液滴的重量、测量液体在玻璃片上的接触角等。
本实验采用测量液滴重量的方法进行测量。
实验步骤1. 准备实验设备和材料:天平、毛细管、玻璃板等;2. 清洗玻璃板和毛细管,确保表面干净;3. 使用天平称量一定质量的液滴,记录质量;4. 将液滴悬挂在毛细管上,并调整液滴的形状;5. 将毛细管放置在天平上,记录液滴的质量;6. 根据液滴的质量差异,计算液体的表面张力系数。
实验结果与分析通过实验测量,我们得到了不同液体的表面张力系数。
在实验中,我们发现液体的表面张力系数与温度、溶质浓度等因素有关。
温度对表面张力系数的影响我们分别在不同温度下测量了水的表面张力系数。
结果显示,随着温度的升高,水的表面张力系数逐渐减小。
这是因为温度升高会增加液体分子的热运动,使分子间的相互作用力减弱,从而降低表面张力系数。
溶质浓度对表面张力系数的影响我们选择了不同浓度的盐水进行实验,测量了其表面张力系数。
实验结果显示,随着盐水浓度的增加,表面张力系数逐渐减小。
这是因为溶质的存在会破坏液体分子间的相互作用力,使表面张力减小。
实验误差与改进在实验过程中,我们注意到可能存在一些误差。
首先,液滴的形状调整可能不够理想,导致测量结果的不准确。
其次,实验过程中的环境因素,如空气湿度等,也可能对测量结果产生影响。
为了减小误差,我们可以进一步改进实验方法,提高液滴形状的稳定性,并在恒温环境下进行测量。
测量液体表面张力系数实验报告
测量液体表面张力系数实验报告
实验目的:
本实验旨在通过测量液体表面张力系数,掌握测量液体表面张力系数的方法,并深入理解表面张力的概念及其与液体性质的关系。
实验原理:
液体表面张力是指液体表面上单位长度的表面自由能,通常用$\gamma$表示。
表面张力的大小与液体分子间相互作用力有关,表面张力越大,液体分子间的相互作用力越强。
测量液体表面张力的方法有很多种,本实验采用的是测量液滴下落时间法。
设液滴下落高度为h,下落时间为t,则液滴表面张力系数为:
$\gamma$ = $\frac{2\pi r^2 m g}{t}$
其中,r为液滴半径,m为液滴质量,g为重力加速度。
实验步骤:
1.将测量装置清洗干净,并用吹风机将其吹干。
2.将液体注入测量装置中,液体表面与盖子上的孔平齐。
3.将装置架在支架上,调整仪器高度使液滴能够自由下落。
4.用手控制磁铁的开关,使液滴在磁铁的作用下自由下落,记录下落时间t。
5.重复上述步骤,分别测量不同高度下液滴的下落时间,并记录数据。
6.根据测量结果计算液体表面张力系数。
实验结果:
本次实验测得的液体表面张力系数为X,其误差为X%。
实验分析:
通过本次实验,我们掌握了一种测量液体表面张力系数的方法,深入理解了表面张力的概念及其与液体性质的关系。
同时,我们还发现液体表面张力系数与液体种类、温度等因素相关。
实验结论:
本实验通过测量液滴下落时间,计算液体表面张力系数,得出液体表面张力系数与液体性质相关,并且液体表面张力系数与液体种类、温度等因素有关。
液体表面张力系数的测定报告模板
式中 F 为把金属圆环拉出液面时所用的力; mg 为金属圆环和 带起的水膜的总重;f 为张力 故有
F - mg π (d1 d2)
d1 d2 为圆环的内外直径。
【实验步骤】 1.安装好仪器,挂好弹簧,调节底板的 3 个水平调节螺丝, 使焦利称立柱竖直。然后调节微调螺丝,使指针与镜子框边 的刻线重合, 当镜子边框上刻线、 指针和指针的像重合时 (即 称为“三线对齐”),读出游标零线对应的刻度数值。 2.测量弹簧的劲度系数 k,依次增加一个砝码,即将质量为 一克、两克、三克……九克的砝码加在盘中。调节小游标的 高度,每次重新使三线对齐。分别记下游标零线对应的刻度 数值,再依次减少一个砝码,调节小游标的高度重新使三线 对齐。分别记下游标零线对应的刻度数值。取二者平均值用 逐差法算出弹簧劲度系数。 3.测出 的值。将洁净的金属圆环挂在弹簧下端的勾子 (F - mg) 上。把装有蒸馏水的烧杯至于焦利平台上。调节平台高度。 使金属圆环恰好停在液面为止。调节小游标的高度使三线对 齐。记下此时游标零线指示读数。调节平台位置时金属圆环 浸入水中。转动平台旋钮使平台缓缓下降。下降的过程中金 属圆环底部会拉成水膜在水膜没有破裂时需要调节三线对 齐。然后再使平台下降一点重复刚才的调节。记下此时游标 零线所指示的读数。算出ΔS=Si-S0。即为在表面张力作用下
液体表面张力系数的测定实验报告模板 【实验目的】 1.了解水的表面性质,用拉脱法测定室温下水的表面张 力系数。 2.学会使用焦利氏秤测量微小力的原理和方法。 【实验仪器】 焦利秤,砝码,烧杯,温度计,镊子,水,游标卡尺等。 【实验原理】 液体表面层,内分子相互作用的结果使得液体表面自然收缩 犹如紧张的弹性薄膜。 由液体搜索产生的沿着 方向力称为表面张力, 设想, 在液体上作长为
用拉脱法测定液体的表面张力系数实验报告
用拉脱法测定液体的表面张力系数实验报告实验报告:用拉脱法测定液体的表面张力系数摘要:本实验使用拉脱法测定了两种不同液体的表面张力系数。
通过拉脱法的实验原理和方法,成功测量出了不同液体的表面张力系数,并对实验结果进行了数据分析和讨论。
实验目的:1.了解表面张力的基本概念和相关原理2.掌握使用拉脱法测定液体表面张力系数的实验方法3.通过实验获取两种不同液体的表面张力系数,并分析比较不同液体之间的表面张力性质。
实验原理:拉脱法是一种通过拉伸液体表面的方法来测定液体表面张力系数的实验方法。
当一根细长的金属丝端部被液体浸泡后,其自重会拉伸液体表面,此时,液体表面张力将给金属丝一个上拉力F,该拉力F与液体表面积A和表面张力系数γ之间满足F=γA。
因此,通过测量金属丝的张力变形,可以算出液体的表面张力系数。
实验器材:1.拉力计2.相机显微镜3.精密平衡4.长尾瓶5.细铂丝6.两种不同液体实验步骤:1.先将相机显微镜调节至适合操作的高度,然后将长尾瓶内的液体调至滴液状态。
2.用精密平衡称重,测得6根细铂丝的质量,并记录下来。
3.将一根细铂丝悬吊在长尾瓶口,用拉力计不断向上施加拉力,直到铂丝断裂为止,并记录下断裂前的拉力大小。
4.通过相机显微镜的目测和测量,得到细铂丝的直径和断裂点两侧的长度。
5.根据铂丝质量、直径和断裂拉力值计算该液体的表面张力系数,并记录下实验结果。
6.重复以上操作3-5步,进行不同液体的实验。
实验结果:我们用拉脱法测定了两种不同液体的表面张力系数,其结果如下表所示:液体名称重力加速度(g) 表面张力系数(γ)水9.8m/s²0.0728N/m甘油9.8m/s²0.0643N/m实验分析:从实验结果来看,水的表面张力系数高于甘油的表面张力系数。
而水的表面张力系数是0.0728N/m,甘油的表面张力系数是0.0643N/m。
这两个数据之间的差异可能是由于水的分子间相互作用力较强,因而具有更高的表面张力。
水的表面张力系数测定实验报告
水的表面张力系数测定实验报告实验目的:
本实验旨在通过测定水的表面张力系数,探究影响水的表面张力的因素。
实验原理:
水的表面张力系数是衡量液体表面弹性的物理量,在实验中采用李萨如图形法进行测定。
李萨如图形法是将液体表面覆盖并震动一定频率和振幅的薄膜产生稳定的共振,使用共振波长计算水的表面张力系数。
实验步骤:
1. 准备实验用材料:李萨如装置、水桶、水银灯、振荡器等。
2. 打开振荡器,设置合适的频率,并使李萨如图形在水的表面上产生共振。
3. 采用共振波长计算水的表面张力系数。
实验结果:
通过不断调整频率,本次实验测得的水的表面张力系数为70.5mN/m。
分析:
影响水的表面张力的因素包括温度、溶质浓度、表面污染物质等。
在实验过程中,需要注意确保水的纯度、清洁度,以及实验环境的温度等方面的控制,以避免实验结果的不准确性。
结论:
通过本实验的测定,我们研究了水的表面张力系数及其影响因素,深化了我们对水的物理性质的理解。
同时,我们也了解了李萨如图形法及其在实验中的应用。
液体表面张力系数测定实验报告
液体表面张力系数测定实验报告一、实验目的1、掌握用拉脱法测量液体表面张力系数的原理和方法。
2、学习使用焦利秤测量微小力的原理和方法。
3、观察液体表面张力现象,加深对液体表面性质的理解。
二、实验原理液体表面层内分子受到指向液体内部的合力,使得液体表面有收缩的趋势,从而产生了表面张力。
表面张力的大小可以用表面张力系数来描述,它等于作用在单位长度液体表面上的力。
在本实验中,我们采用拉脱法来测量液体的表面张力系数。
将一个金属框水平地接触液面,然后缓慢拉起,在拉起的过程中,液膜会被拉伸,当金属框脱离液面时,所需要克服的表面张力的合力等于金属框所受的拉力。
若金属框的长度为 L,拉起液膜即将破裂时的拉力为 F,则液体的表面张力系数为:\\sigma =\frac{F}{2L}\使用焦利秤来测量拉力 F。
焦利秤是一种可以测量微小力的仪器,其主要由秤框、秤杆、游标、弹簧等组成。
当秤框上所挂物体的重量发生变化时,弹簧会相应地伸长或缩短,通过游标读取秤杆上的刻度变化,可以计算出拉力的大小。
三、实验仪器1、焦利秤。
2、金属框。
3、砝码。
4、游标卡尺。
5、待测液体(如水)。
6、温度计。
四、实验步骤1、安装好焦利秤,调节底座上的螺丝,使立柱垂直。
在秤框内挂上砝码盘,旋转调节旋钮,使秤杆上的指针指在零刻度处。
2、用游标卡尺测量金属框的长度 L,重复测量多次,取平均值。
3、将洁净的金属框挂在秤框上,调整金属框水平,使其下边缘刚好与液面接触。
4、缓慢旋转调节旋钮,使金属框逐渐上升,同时观察液膜的变化。
当液膜即将破裂时,停止旋转,记录此时焦利秤的读数 F1。
5、重复步骤 4 多次,每次测量前需将金属框和液面用脱脂棉擦拭干净,以保证测量的准确性。
6、测量实验过程中液体的温度,以便对表面张力系数进行修正。
五、实验数据记录与处理1、金属框长度 L 的测量|测量次数| 1 | 2 | 3 | 4 | 5 |||||||||长度(mm)|_____ |_____ |_____ |_____ |_____ |平均值:\(L =\frac{\sum_{i=1}^{5} L_i}{5}\)2、拉力 F 的测量|测量次数| 1 | 2 | 3 | 4 | 5 |||||||||读数(mm)|_____ |_____ |_____ |_____ |_____ |拉力\(F = k\Delta x\),其中\(k\)为焦利秤的弹簧劲度系数,\(\Delta x\)为读数的变化量。
实验报告-液体表面张力系数的测量【范本模板】
1. 实验名称液体表面张力系数的测量 2. 实验目的(1)用砝码对硅压阻力敏传感器进行定标,计算该传感器的灵敏度,学习传感器的定标方法。
(2)观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。
(3)测量纯水和其它液体的表面张力系数.(4)测量液体的浓度与表面张力系数的关系(如酒精不同浓度时的表面张力系数) 3. 实验原理:主要原理公式及简要说明、原理图(1) 液体表面张力f表面张力f 是存在于液体表面上任何一条分界线两侧间的液体的相互作用拉力,其方向沿液体表面,且恒与分界线垂直,大小与分界线的长度成正比,即L f α= (1)式中α称为液体的表面张力系数,单位为NM -1。
实验证明,表面张力系数的大小与液体的温度、纯度、种类和它上方的气体成分有关。
温度越高,液体中所含杂质越多,则表面张力系数越小。
(2) 液膜拉破前瞬间受力分析将内径为D 1,外径为D 2的金属环悬挂在测力计上,然后把它浸入盛水的玻璃器皿中.当缓慢地向上金属环时,金属环就会拉起一个与液体相连的水柱.由于表面张力的作用,测力计的拉力逐渐达到最大值F (超过此值,水柱即破裂),则F 应当是金属环重力mg 与水柱拉引金属环的表面张力f 之和,如图1 所示。
即图1液膜拉破前瞬间受力分析图f mg F +=(2)由于水柱有两个液面,且两液面的直径与金属环的内外径相同,则有)(21D D f +=απ (3)表面张力系数的值一般很小,测量微小力必须用特殊的仪器。
本实验用FD —NST-I 型液体表面张力系数测定仪用到的测力计是硅压阻力敏传感器,该传感器由弹性梁和贴在梁上传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥。
当外界压力作用与金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压U 大小与所加外力F 成正比,即KF U = (4)式中K 表示力敏传感器的灵敏度,单位V/N 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有:
L 1 4 (Li 5 - Li ) 50.16 5i 0
5g
K
=0.976
L
L
L
2
Li /( 5 1) 0.485
A
t0.95
L
0.584
n
仪
B
=0.02mm
1.05
2
2
L
A B =0.560
- 5g
K
L2
2 L
2.计算液体表面张力 f
=0.010
次数
初始位置 S0(mm) 水膜破裂时读数 Si(mm) ΔS=Si- S0(mm)
5. 再记录室温,可查出此温度下蒸馏水的标准值
α,并做比较。
四、强调注意事项 :
1.由于杂质和油污可使水的表面张力显著减小,所以务必使蒸馏水、烧杯、金属片保
持洁净。
2.清洁后的用具,切勿用手触摸,应有镊子取出或存放。
3.测量 S 时要避免水膜提前破裂,否则实验误差较大,其中引起水膜提前破裂的因素
桌面的震动,空气的流动,金属圆环底部不水平等。
α F - mg = π (d1 +
d2 ) 式中 d1 、d2 分别为圆环的内外直径。
【实验步骤】 1.调 “三线对齐 ”
2. 测量弹簧的倔强系数 K 3.测( F-mg)值。
F - mg f K ? S
代入得
K?S
α π(d d )
1
2
4.用卡尺测出 d1、 d2 值,将数据即可算出水的 α值。
线又重合时 , 在管及管的游标上可读出第二个读数 , 该读数与第一个读数这差就是弹簧在增
加 X 克重量时所伸长的长度 .
2.金属圆环浸入水中,然后轻轻提起到底面与水面相平时,试分析金属圆环在竖直方 向的受力。
答:竖直向下的重力,液体表面张力沿竖直方向向下的分力,弹簧拉力
3. 分析( 2)式成立的条件,实验中应如何保证这些条件实现? 答:( 2)式在欲脱离水膜而又恰未脱离的极限状态时成立,应该保证金属圆环水平拉 出水面
越多,值越小,只要上述条件保持一定,则是一个常数
原
始
数
据
:
吊环就已经脱
离水面。这样会导致所测得的张力过小,从而导致求得的系数过小;
【思考题】
1. 用焦利称测量微小力的依据是什么? 答:如果我们在砝码托盘上加 X 克砝码 , 弹簧伸长了某一长度 , 细金属杆上镜中的标线即
向下移动 , 此时三线不再重合 . 转动旋钮使管向上移动 , 因而细金属杆也随之向上移动 . 当三
这会导致测得的电压值偏大,致使定标获得的 k 过大,导致最后求得的结果偏
小
2. 如果吊环不水平,则会导致水面在下降过程中,水膜并不是同时破裂,实际
作用于吊环 的水膜长度只是吊环周长的一小部分,这会会导致最后求得的结果
偏小
3. 测定仪测量电压值并不是连续的,需要一定的时间来进行反应,若在水膜即
将破裂时水面下降过快,传感器尚未显示出实际的最大电压值,
1
245.60
247.76
2.16
2
238.82
240.70
1.88
3
231.62
233.84
2.22
4
224.42
226.56
2.14
5
217.48
219.32
1.84
2
S
S Si /( 5 1) 0.188
A
t0.95
S 0.226
n
仪
B
0.02mm
1.05
S
2 A
2 B
=0.226
3. 金属环外、内直径的测量
( 本实验直接给学生结果 )
平均值 (mm)
S (mm)
2.05
d1
34.92
d2
33.12
KS
0.009
(d1 d2 )
3.计算表面张力系数 及不确定度
2
S
K
(d1 d 2 )
K (d1 d2 )
2
S
0.462
4.表面张力系数的理论值: 0.0728
【误差分析】
1. 定标时砝码盘摇晃,会使传感器受到大于砝码盘(含砝码)重力的力的作用,
液体表面张力系数的测定实验报告模板
【实验目的】
1.了解水的表面性质,用拉脱法测定室温下水的表面张力系数。 2.学会使用焦利氏秤测量微小力的原理和方法。
【实验仪器】
焦利秤,砝码,烧杯,温度计,镊子,水,游标卡尺等。
【实验原理】液体具有尽量缩小其表面的趋势,好像液体表面是一张拉紧了的 橡皮膜一样。这种沿着表面的、收缩液面的力称之为表面张力。测量表面张力 系数的常用方法:拉脱法、毛细管升高法和液滴测重法等。此试验中采用了拉 脱法。拉脱法是直接测定法,通常采用物体的弹性形变(伸长或扭转)来量度 力的大小。液体表面层内的分子所处的环境跟液体内部的分子不同。液体内部 的每一个分子四周都被同类的其他分子所包围,他所受到的周围分子合力为零。 由于液体上方的气象层的分子很少,表层内每一个分子受到的向上的引力比向 下的引力小,合力不为零。这个力垂直于液面并指向液体内部。所以分子有从 液面挤入液体内部的倾向,并使得液体表面自然收缩,直到处于动态平衡。 表面张力 f 与线段长度 L 成正比。即有: f = αL (1) 比例系数 α 称为液体表面张力系数,其单位为N m-1。 将一表面洁净的长为 L 、宽为 d 的矩形金属片(或金属丝)竖直浸入水中,然 后慢慢提 起一张水膜,当金属片将要脱离液面,即拉起的水膜刚好要破裂时, 则有 F = mg + f (2) 式中 F 为把金属片拉出液面时所用的力; mg 为金属片和带起的水膜的总重量; f 为表面张力。此时, f 与接触面的周围边界 2 (L+ d ), 代入( 2)式中可 得 α = F - mg2( L + d ) 本实验用金属圆环代替金属片,则有
【数据处理】
1. 用逐差法计算弹簧的倔强系数 K (实验温度: 180C)
砝码
增重读数 (mm) 减重读数 (mm) 平均数 Li (mm) Li 5 - Li (mm)
数
0
246.82
246.32
246.57
49.56
1
255.78
254.82
255.05
50.00
2
264.62
264.44
264.61
4. 本实验中为何安排测( F — mg),而不是分别测 F 和 mg? 答:因为直接测 F 比较麻烦,而且 F 改变得较小, 可能需要力传感器, 实现起来不方便
也不简单。
5. 本实验影响测量的主要因素有哪些?这些因素使
偏大还是偏小?
答:实验表明,与液体种类、纯度、温度和液面上方的气体成分有关,液体温度越
50.60
3
275.44
275.32
275.38
50.69
4
284.32
285.42
284.87
49.95
5
296.44
6
305.22
7
315.24
8
326.32
9
334.52
295.82 304.88 315.18 325.82 335.12
296.13 305.05 315.21 326.07 334.82