2018届好教育云平台高三第二次模拟考试(二模)仿真卷(三)文科数学-教师版

合集下载

2018届高三好教育云平台11月份内部特供卷高三文科数学(三)

2018届高三好教育云平台11月份内部特供卷高三文科数学(三)

2018届高三好教育云平台11月份内部特供卷高三文科数学(三)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足()1i 2z -=,则z =( )A .1BCD .2【答案】B2. 已知集合,则P Q = ( ) A .[0,1) B .{}2C .(1,2){}{}220,12P x x x Q x x =-=<≥≤D .[1,2]【答案】B3.已知向量(1,1),2(4,2)a a b =+= ,则向量,a b的夹角的余弦值为( )A B . C D . 【答案】C4.执行两次下图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为( ) A .0,0 B .1,1 C .0,1D .1,0【答案】D5.在一组样本数据1122(,),(,),,(,)n n x y x y x y {}122,,,,n n x x x ⋅⋅⋅≥不全相等)的散点图中,若所有样本点(,)(1,2,,)i i x y i n = 都在直线112y x =+上,则这组样本数据的样本相关系数为( ) A .1- B .0 C .12D .1【答案】D 6.x 为实数,表示不超过的最大整数,则函数在R 上为( ) A .奇函数 B .偶函数C .增函数D .周期函数【答案】D7.函数()sin(2))f x x x ϕϕ=+++是偶函数的充要条件是( )A .,6k k ϕπ=π+∈ZB .2,6k k ϕπ=π+∈ZC .,3k k ϕπ=π+∈ZD .2,3k k ϕπ=π+∈Z【答案】A8.在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“12x y -≤”的概率,3p 为事件“12xy ≤”的概率,则( )A .123p p p <<B .231p p p <<C .312p p p <<D .321p p p <<【答案】B9.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ) A .14斛 B .22斛C .36斛D .66斛【答案】B10.设12,F F 是双曲线22124y x -=的两个焦点,P 是双曲线上的一点,且1234PF PF =,则12PF F △的面积等于( )A. B.C .24 D .48【答案】C11.如图,在小正方形边长为1的网格中画出了某多面体的三视图,则该多面体的外接球表面积为( ) A .27π B .30πC .32πD .34π【答案】D12.设函数()f x 在R 上存在导函数()f x ',对任意x ∈R 都有2()()f x f x x +-=,且当(0,)x ∈+∞时,()f x x '>,若()()22-2f a f a a --≥,则实数a 的取值范围是( ) A .[)1,+∞ B .(],1-∞C .(],2-∞D .[)2,+∞【答案】B第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.已知ABC △的内角,,A B C 的对边分别为,,a b c ,且sin sin sin c b Ac a C B-=-+,则B =. 【答案】3π.14.若,x y 满足约束条件10040x x y x y -⎧⎪-⎨⎪+-⎩≥≤≤,则y x 的最大值为.【答案】3.15.若点P 是曲线2ln y x x =-上任意一点,则点P 到直线2y x =-的最小距离为.【答案】16.给定两个长度为1的平面向量OA 和OB ,它们的夹角为23π.如图所示,点C 在以O 为圆心的)AB 上运动.若OC xOA yOB =+ ,其中,x y ∈R ,则x y +的最大值为_______. 【答案】2.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)数列{}n a 满足12211,2,22n n n a a a a a ++===-+. (1)设1n n n b a a +=-,证明{}n b 是等差数列; (2)求{}n a 的通项公式.【答案】(1)证明:由2122n n n a a a -=+++,得2112n n n n a a a a -=-++++,即12n n b b =++.又1211b a a =-=,所以{}n b 是首项为1,公差为2的等差数列. (2)解:由①得(12121)n b n n =-=-+,即121n n a a n -=+-. 于是()()11121nnk k k k a a k +==-=-∑∑,所以211n a a n -=+,即211n a n a =++.又11a =,所以{}n a 的通项公式为222n a n n =-+. 18.(本小题满分12分)如图所示,在四棱锥P ABCD -中,PD ⊥平面ABCD ,//AB DC ,已知228,2BD AD PD AB DC =====(1)设M 是PC 上一点,证明:平面MBD ⊥平面PAD ;(2)若M 是PC 的中点,求三棱锥P DMB -的体积.【答案】解:(1)在ABD △中,2224,8,AD BD AB AB BD AB ===+=, ∴AD BD ⊥.............................2分又PD ⊥平面,ABCD BD ⊆平面ABCD ,PD BD ∴⊥,...........4分又PD AD D = BD ∴⊥平面PAD ....................5分又BD ⊆平面MBD ,∴平面MBD ⊥平面PAD ,..............6分(2)因为M 是PC 的中点,所以P DMB C DMB M BCD V V V ---==..........7分在四边形ABCD 中,由已知可求得8BCD S =△,又点M 到平面ABCD 的距离等于122PD =,所以1168233M BCD V -=⨯⨯=,即三棱锥P DMB -的体积为163.........12分19.(本小题满分12分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量y 与年份x 之间的回归直线方程;(2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:()()()121ˆˆˆ,niii ni i u u v v v u u u βαβ==--==--∑∑. 【答案】解:(1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来配回归直线方程,为此对数据预处理如下:对预处理后的数据,容易算得:由上述计算结果,知所求回归直线方程为即①(2)利用直线方程①,可预测2012年的粮食需求量为(万吨).20.(本小题满分12分)已知椭圆2222:1(0)x y E a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线:3l y x =-+与椭圆E 有且只有一个公共点T .(1)求椭圆E的方程及点T的坐标;(2)设O 是坐标原点,直线l '平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P .证明:存在常数λ,使得2PT PA PB λ=⋅,并求λ的值.【答案】(1)解:由已知,a =,则椭圆E 的方程为222212x y b b+=.由方程组2222123x y b b y x ⎧+=⎪⎨⎪=-+⎩得22312182(0)x x b -+-=.①方程①的判别式为2)24(3b ∆=-,由0∆=,得23b =,此时方程①的解为2x =,所以椭圆E 的方程为22163x y +=.点T 的坐标为()2,1.(2)证明:由已知可设直线l '的方程为1(0)2y x m m =+≠, 由方程组123y x m y x ⎧=+⎪⎨⎪=-+⎩,可得223213m x m y ⎧=-⎪⎪⎨⎪=+⎪⎩,所以P 点坐标为222,133m m ⎛⎫-+ ⎪⎝⎭.228||9PT m =. 设点A ,B 的坐标分别为A (x 1,y 1),B (x 2,y 2).由方程组2216312x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩,可得2234410()2x mx m ++-=.② 方程②的判别式为2169(2)m ∆=-, 由0∆>,解得m <<. 由②得1243m x x +=-,2124123m x x -=.所以12||3m PA x ==--,同理22||3m PB x =--. 所以()2211212522522||||2222433433m m m m PA PB x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⋅=----=---++ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22252244121022433339m m m m m -⎛⎫⎛⎫⎛⎫=----+= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.故存在常数4=5λ,使得2·PT PA PB λ=. 21.(本小题满分12分)已知函数1()ln f x x x=+. (1)求)(x f 的最小值;(2)若方程a x f =)(有两个根)(,2121x x x x <,证明:221>+x x . 【答案】解:(1)22111(),(0)x f x x x x x-'=-=>,所以()f x 在(0,1)上单调递减,在(1,)+∞上单调递增,故()f x 的最小值为(1)1f =. (2)若方程a x f =)(有两个根)0(,2121x x x x <<, 则22111ln 1ln x x x x +=+,即0ln 122112>=-x xx x x x . 要证221>+x x ,需证12211221ln 2)(x x x x x x x x >-⋅+,即证122112ln 2x xx x x x >-, 设)1(12>=t t x x ,则122112ln 2x xx x x x >-等价于t t t ln 21>-.令t t t t g ln 21)(--=,则0)11(211)(22>-=-+='tt t t g ,所以)(t g 在),1(+∞上单调递增,0)1()(=>g t g ,即t tt ln 21>-,故221>+x x .请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修44-:坐标系与参数方程选讲.在平面直角坐标系xOy 中,曲线1cos :sin x a a C y a ϕϕ=+⎧⎨=⎩(ϕ为参数,实数0a >),曲线2:C cos sin x b y b b ϕϕ=⎧⎨=+⎩(ϕ为参数,实数0b >).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线:0,02l θαραπ⎛⎫= ⎪⎝⎭≥≤≤与1C 交于O A 、两点,与2C 交于,O B 两点.当0α=时,1OA =;当2απ=时,2OB =. (1)求,a b 的值;(2)求22OA OA OB +⋅的最大值.【答案】解:(1)将1C 化为普通方程为222()x a y a -+=,其极坐标方程为2cos a ρθ=,由题可得当0θ=时,||1OA ρ==,∴12a =. 将2C 化为普通方程为222()x y b b +-=,其极坐标方程为2sin b ρθ=, 由题可得当2θπ=时,||2OB ρ==,∴1b =. (2)由,a b 的值可得1C ,2C 的方程分别为cos ρθ=,2sin ρθ=, ∴222||||||2cos 2sin cos sin 2cos21OA OA OB θθθθθ+⋅=+=++)14θπ=++.52[,]444θπππ+∈ ,)14θπ++1,当2,428θθπππ+==即时取到.23.(本小题满分10分)选修45-:不等式选讲. 设函数()12f x x a x a=++-(x ∈R ,实数0a <). (1)若()502f >,求实数a 的取值范围; (2)求证:()f x .【答案】(1)解:∵0a <,∴115(0)||||2f a a a a =+-=-->,即25102a a ++>,解得2a <-或102a -<<.(2)证明:13,2111()|2|||,2113,a x a x a af x x a x x a x a a a x a x a a ⎧+--⎪⎪⎪=++-=---<<-⎨⎪⎪--+⎪⎩≥≤,当2a x -≥时,1()2a f x a --≥;当12a x a <<-时,1()2a f x a>--;当1x a ≤时,2()f x a a --≥.∴min 1()2a f x a =--=≥当且仅当12a a-=-即a =()f x . 【陕西省西安市长安区第一中学2018届高三上学期第四次质量检测数学(文)试题 用稿】。

XXX2018届高三下学期二诊模拟文科数学word含答案

XXX2018届高三下学期二诊模拟文科数学word含答案

XXX2018届高三下学期二诊模拟文科数学word含答案18届高三文科数学下学期二诊模拟考试数学试题(文科)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合 $A,B,C,D$,则 $D$,则的面积为(。

)。

2.已知复数 $z$ 为纯虚数,且 $|z|=1$,则 $z$ 的取值为(。

)。

3.若向量 $\vec{a}=(1,2)$,$\vec{b}=(3,4)$,则$\vec{a}+\vec{b}$ 的模长为(。

)。

4.为了解户籍性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为100的调查样本,其中城镇户籍与农民户籍各50人;男性60人,女性40人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图(如图所示),其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是(。

)。

5.一个棱锥的三视图如图所示,则该棱锥的外接球的体积是(。

)。

6.若 $\log_{a}x=\log_{b}y=\log_{c}z=k$,则$\log_{abc}xyz$ 的值为(。

)。

7.按照如图所示的程序框图,若输入的为2018,为8,则输出的结果为(。

)。

8.若实数 $x$ 满足 $\sqrt{x+3}+\sqrt{3-x}=2$,则 $x$ 的取值范围是(。

)。

9.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为(。

)。

10.在 $\triangle ABC$ 中,$\angle B=120^{\circ}$,$\angle C=15^{\circ}$,边上的高恰为边长的一半,则 $\angle A$ 的度数为(。

)。

11.等差数列 $\{a_n\}$,各项都为正数,且其前项之和为45,设 $a_1=a_2=a_3=1$,其中,若 $a_4$ 中的最小项为5,则公差不能为(。

2018届高考文科数学全国统考仿真试卷二带答案

2018届高考文科数学全国统考仿真试卷二带答案

2018届高考文科数学全国统考仿真试卷(二)带答案绝密★启用前2018年普通高等学校招生全国统一考试仿真卷文科数学(二)本试题卷共8页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设是虚数单位,若复数,则的共轭复数为()A.B.C.D.2.若双曲线的一个焦点为,则()A.B.C.D.3.将函数的图像向左平移个单位后,得到函数的图像,则()A.B.C.D.4.函数,的值域为,在区间上随机取一个数,则的概率是()A.B.C.D.15.已知变量和的统计数据如下表:根据上表可得回归直线方程,据此可以预报当时,()A.8.9B.8.6C.8.2D.8.16.一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.87.《九章算术》是我国古代的数学名著,书中有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共猎得五鹿,欲以爵次分之,问各得几何?”其意思:“共有五头鹿,5人以爵次进行分配(古代数学中“以爵次分之”这种表述,一般表示等差分配,在本题中表示等差分配).”在这个问题中,若大夫得“一鹿、三分鹿之二”,则簪裹得()A.一鹿、三分鹿之一B.一鹿C.三分鹿之二D.三分鹿之一8.函数的部分图像大致为()A.B.C.D.9.阅读如图所示的程序框图,运行相应程序,输出的结果是()A.12B.18C.120D.12510.设,满足约束条件,若目标函数仅在点处取得最小值,则的取值范围为()A.B.C.D.11.已知抛物线的焦点为,其准线与双曲线相交于,两点,若为直角三角形,其中为直角顶点,则()A.B.C.D.612.若关于的不等式在上恒成立,则实数的取值范围为()A.B.C.D.第Ⅱ卷本卷包括必考题和选考题两部分。

18高三二诊文科数学答案.doc

18高三二诊文科数学答案.doc

2018年普通高等学校招生全国统一考试4月调研测试卷文科数学参考答案一、选择题1〜6 BABCBC 7〜12 BADCCD第(12)题提示:圆(% + 3sin a) + (y + 3cos a) =1 的圆心(-3sin a, - 3cosa )在圆 + 上,当a改变时,该圆在绕着原点转动,I,,集合4表示的区域是如右图所示的环形区域,直线3x + 4y+10 = 0恰好与环形的小圆相切,//Z所以4 B所表示的是直线3x + 4y+10 = 0截([(。

—尹彳—广圆x2 + y2=16所得的弦长.二、填空题(13) 64 (14) 8 (15) 3 (16) 7第(16)题提示:PF? - PF]二QF? = 2a , QF\ - QF? = 2a , QF\ = 4a,在^QF\F^中由余弦定理,FF i=QF2 +QF2 -2QF QFcosl20得,1 2 1 2 1 24c2 =16/ + 4/ 一2 4a -2a -cosl20 n e =福三、解答题(17)(本小题满分12分)解:(I) 3S n = (n + 2)a n , 3S〃_i = (〃+l)a〃_i两式相减,3a n = (n + 2)a n - (n -\-l)a n _i ,缶-=巴旦,其中2"j n -1累乘得,a =0+1)〃a =旳+1),其中心2,又a =2n 2 1 1a n = n(n +1)(II) _1 +J.+ + 丄=—+— + + ___________________ J_a a a 12 2 3 n(n +1)1 2 n111 11 1= (1—2)+( 2一3)+n~n~^V> = 1 ~n +1 < 1(18)(本小题满分12分)解:(I ) x = 6.5 , y = 20A (5 - 6.5)(15 - 20) + (6 - 6.5)(17 一20) + (7 - 6.5)(21 - 20) + (8 - 6. 5)(27- 20) "b=(5 - 6.5)2 + (6_6.5)2 + (7 _ 6.5)2 + (8- 6.5)2a" = 20 - 4x6.5 = -6 ,回归方程为= 4x - 6(II)当x = 9时,y = 30 ,预测该社区在2019年投资金额为30万元.4月调研测试卷•文科数学参考答案第1页共3页(19)(本小题满分12分)解:(I )设P 为ABi 中点,连结NP ,则NP 』2 BB I 又MO^2AA \ >所以MOPN 为平行四边形,MN//OP MN// 平面AOBi(II ) V A-MON V B-Ci Ai A =1 卫 =_L AMO 2 N — AC\O 4 BB / / 平而 AA C , VI I IV _ = 1N -Ci Ai A g =v B-Ci Ai A Bi -Ci Ai A V =1 V 二Bi -Ci A] A _ 3 ABC-A1B1C1:.V =A-MON 12 (20)(本小题满分12分)b 3 解:(I )由题 PM = MF? — MF\ ,PF2 -L FyF? , PF? — 2OM~= p = 2 联立 a = + F 和c =1 解得 / 二 4 , x b 2 =3 ,所求椭圆方程为—+ — = 14 3拓,联立椭圆方程得_^3 (4点2 + 3)x 2 + 8/3 k=0 , x =-五k , * = -- k =血k ,4k'+ 3 2 _4 4 + 3k~k 2 +3由题,若直线BS 关于y 轴对称后得到直线B'S',则得到的直线S'T'与ST 关于x 轴对称, 所以若直线ST 经过定点,该定点一定是直线S'T'与ST 的交点,该点必在y 轴上.(kx +_ x (—丄 x + f ) 设该点坐标(0, f ),= y2 -yi ,t = 刃也二卫卫= i: i k ?_______(II )设 S (兀1,刃),T 他,yi ),直线 BS :y = kx -x1代入X , X 化简得t =1 27X - X2 1ST 经过定点(0, 也)7 2 1x -x2(21)(本小题满分12分) 解:(I ) ' v 3 3 o —1 — )— /(x) = e (x 屮 x 2 = 由题'W 在, 恒成立,/⑴ 0 (0+8) 设 g (x) = (-.¥ 2 + 3x - 3) -e x(x)在(0, 1)上单调递增,gmax (x) = g (1) = —e > a3 a 2 -x +3兀一3 % a2 —兀 ・e 兀2—x + 3x — 3 x 2X 1 0o a (II) /(%) = (兀一l)e"+ 兀=2o 2x -e,g©) = e" (J + x) g 在(1, +oo)上单调递减. e[-e 9 + GO )a 3 兀=2 —( JQ -l)e x,其中 x > 0 2(—兀 + 3 兀—3):.a = 2x- (3 - x)e x , x > 0令 h(x) = 2x- (3 - x)e x , h f (x) = 2 + (兀一 2)e x , h'\x) = (x -l)e4月调研测试卷•文科数学参考答案第2页共3页丹(兀)在(一8, 1)上单调递减,在(1, +8)上单调递增,由h f(0) = 0 又丹⑵=2〉0 ,所以存在期)〉0 ,使h'(x)在(0, %o )上满足h\x) < 0 ,在(兀0,+00)上满足h r(x) > 0 ,即/z(兀)在(0,兀。

2018年高考数学二模试卷(文科)带答案精讲

2018年高考数学二模试卷(文科)带答案精讲

2018年高考数学二模试卷(文科)一、选择题(共11小题,每小题5分,满分55分)1.(5分)设等差数列{a n}的前n项和为S n,若a4=9,a6=11,则S9等于()A.180 B.90 C.72 D.102.(5分)在样本的频率分布直方图中,共有5个长方形,若中间一个小长方形的面积等于其它4个小长方形的面积和的,且样本容量为100,则正中间的一组的频数为()A.80 B.0.8 C.20 D.0.23.(5分)在△ABC中,C=60°,AB=,那么A等于()A.135°B.105°C.45°D.75°4.(5分)已知:如图的夹角为的夹角为30°,若等于()A.B.C.D.25.(5分)若集合,B={1,m},若A⊆B,则m的值为()A.2 B.﹣1 C.﹣1或2 D.2或6.(5分)设α、β是两个不同的平面,l、m为两条不同的直线,命题p:若平面α∥β,l⊂α,m⊂β,则l∥m;命题q:l∥α,m⊥l,m⊂β,则β⊥α,则下列命题为真命题的是()A.p或q B.p且q C.¬p或q D.p且¬q7.(5分)已知x,y满足约束条件的最小值是()A.B.C.D.18.(5分)2011年某通讯公司推出一组手机卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10000个号码.公司规定:凡卡号的后四位恰带有两个数字“6”或恰带有两个数字“8”的一律作为“金兔卡”,享受一定优惠政策.如后四位数为“2663”、“8685”为“金兔卡”.则这组号码中“金兔卡”的张数()A.484 B.972 C.966 D.4869.(5分)有三个命题①函数的反函数是y=(x+1)2(x∈R)②函数f(x)=lnx+x﹣2的图象与x轴有2个交点;③函数的图象关于y轴对称.其中真命题是()A.①③B.②C.③D.②③10.(5分)若长度为定值的线段AB的两端点分别在x轴正半轴和y轴正半轴上移动,O为坐标原点,则△OAB的重心、内心、外心、垂心的轨迹不可能是()A.点B.线段C.圆弧D.抛物线的一部分11.(5分)若关于x的不等式|x﹣1|<ax(a≠0)的解集为开区间(m,+∞),其中m∈R,则实数a的取值范围为()A.a≥1 B.a≤﹣1 C.0<a<1 D.﹣1<a<0二、填空题(共5小题,每小题5分,满分25分)12.(5分)一个与球心距离为1的平面截球所得的圆面面积为2π,则球的表面积为.13.(5分)已知二项式展开式中的项数共有九项,则常数项为.14.(5分)已知过椭圆的右焦点在双曲线的右准线上,则双曲线的离心率为.15.(5分)函数,在区间(﹣π,π)上单调递增,则实数φ的取值范围为.16.(5分)在数学中“所有”一词,叫做全称量词,用符号“∀”表示;“存在”一词,叫做存在量词,用符号“∃”表示.设.①若∃x0∈(2,+∞),使f(x0)=m成立,则实数m的取值范围为;②若∀x1∈(2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),则实数a的取值范围为.三、解答题(共6小题,满分70分)17.(12分)已知=(cosx+sinx,sinx),=(cosx﹣sinx,2cosx).(I)求证:向量与向量不可能平行;(II)若•=1,且x∈[﹣π,0],求x的值.18.(12分)已知某高中某班共有学生50人,其中男生30人,女生20人,班主任决定用分层抽样的方法在自己班上的学生中抽取5人进行高考前心理调查.(I)求男生被抽取的人数和女生被抽取的人数;(I)若从这5人中选取2人作为重点调查对象,求至少选取1个男生的概率;(II)若本班学生考前心理状态好的概率为0.8,求调查中恰有3人心理状态良好的概率.19.(12分)如图所示,在正方体ABCD﹣A1B1C1D1中,AB=a,E为棱A1D1中点.(I)求二面角E﹣AC﹣B的正切值;(II)求直线A1C1到平面EAC的距离.20.(12分)已知f(x)=tx3﹣2x2+1.(I)若f′(x)≥0对任意t∈[﹣1,1]恒成立,求x的取值范围;(II)求t=1,求f(x)在区间[a,a+3](a<0)上的最大值h(a).21.(12分)已知{a n}是正数组成的数列,a1=1,且点在函数y=x2+1的图象上.数列{b n}满足b1=0,b n+1=b n+3an(n∈N*).(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)若c n=a n b n cosnπ(n∈N*),求数列{c n}的前n项和S n.22.(10分)若圆C过点M(0,1)且与直线l:y=﹣1相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点,点.(Ⅰ)求曲线E的方程;(Ⅱ)若t=6,直线AB的斜率为,过A、B两点的圆N与抛物线在点A处共同的切线,求圆N的方程;(Ⅲ)分别过A、B作曲线E的切线,两条切线交于点Q,若点Q恰好在直线l 上,求证:t与均为定值.参考答案与试题解析一、选择题(共11小题,每小题5分,满分55分)1.(5分)设等差数列{a n}的前n项和为S n,若a4=9,a6=11,则S9等于()A.180 B.90 C.72 D.10【分析】由a4=9,a6=11利用等差数列的性质可得a1+a9=a4+a6=20,代入等差数列的前n项和公式可求.【解答】解:∵a4=9,a6=11由等差数列的性质可得a1+a9=a4+a6=20故选B【点评】本题主要考查了等差数列的性质若m+n=p+q,则a m+a n=a p+a q和数列的求和.解题的关键是利用了等差数列的性质:利用性质可以简化运算,减少计算量.2.(5分)在样本的频率分布直方图中,共有5个长方形,若中间一个小长方形的面积等于其它4个小长方形的面积和的,且样本容量为100,则正中间的一组的频数为()A.80 B.0.8 C.20 D.0.2【分析】由已知中在样本的频率分布直方图中,共有5个长方形,若中间一个小长方形的面积等于其它4个小长方形的面积和的,我们出该组的频率,进而根据样本容量为100,求出这一组的频数.【解答】解:∵样本的频率分布直方图中,共有5个长方形,又∵中间一个小长方形的面积等于其它4个小长方形的面积和的,则该长方形对应的频率为0.2又∵样本容量为100,∴该组的频数为100×0.2=20故选C【点评】本题考查的知识点是频率分布直方图,其中根据各组中频率之比等于面积之比,求出该组数据的频率是解答本题的关键.3.(5分)在△ABC中,C=60°,AB=,那么A等于()A.135°B.105°C.45°D.75°【分析】由C的度数求出sinC的值,再由c和a的值,利用正弦定理求出sinA 的值,由c大于a,根据大边对大角,得到C大于A,得到A的范围,利用特殊角的三角函数值即可求出A的度数.【解答】解:∵C=60°,AB=c=,BC=a=,∴由正弦定理=得:sinA===,又a<c,得到A<C=60°,则A=45°.故选C【点评】此题考查了正弦定理,三角形的边角关系,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.4.(5分)已知:如图的夹角为的夹角为30°,若等于()A.B.C.D.2【分析】将向量沿与方向利用平行四边形原则进行分解,构造出三角形,由题目已知,可得三角形中三边长及三个角,然后解三角形即可得到答案.【解答】解:如图所示:根据平行四边形法则将向量沿与方向进行分解,则由题意可得OD=λ,CD=μ,∠COD=30°,∠OCD=90°,∠Rt△OCD中,sin∠COD=sin30°===,∴=2,故选D.【点评】对一个向量根据平面向量基本定理进行分解,关键是要根据平行四边形法则,找出向量在基底两个向量方向上的分量,再根据已知条件构造三角形,解三角形即可得到分解结果.5.(5分)若集合,B={1,m},若A⊆B,则m的值为()A.2 B.﹣1 C.﹣1或2 D.2或【分析】由已知中集合,解根式方程可得A={2},结合B={1,m},及A⊆B,结合集合包含关系的定义,可得m的值.【解答】解:∵集合={2}又∵B={1,m}若A⊆B则m=2故选A【点评】本题考查的知识点是集合关系中的参数取值问题,其中解根式方程确定集合A是解答本题的关键,解答中易忽略根成有意义的条件,而错解为A={﹣1}6.(5分)设α、β是两个不同的平面,l、m为两条不同的直线,命题p:若平面α∥β,l⊂α,m⊂β,则l∥m;命题q:l∥α,m⊥l,m⊂β,则β⊥α,则下列命题为真命题的是()A.p或q B.p且q C.¬p或q D.p且¬q【分析】对于命题p,q,只要把相应的平面和直线放入长方体中,找到反例即可.【解答】解:在长方体ABCD﹣A1B1C1D1中命题p:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足α∥β,l⊂α,m⊂β,而m与l异面,故命题p不正确;﹣p正确;命题q:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;故选C.【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.7.(5分)已知x,y满足约束条件的最小值是()A.B.C.D.1【分析】本题属于线性规划中的延伸题,对于可行域不要求线性目标函数的最值,而是求可行域内的点与原点(0,0)构成的线段的长度问题,注意最后要平方.【解答】解:先根据约束条件画出可行域,z=x2+y2,表示可行域内点到原点距离OP的平方,点P到直线3x+4y﹣4=0的距离是点P到区域内的最小值,d=,∴z=x2+y2的最小值为故选B.【点评】本题利用直线斜率的几何意义,求可行域中的点与原点的斜率.本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.巧妙识别目标函数的几何意义是我们研究规划问题的基础,纵观目标函数包括线性的与非线性,非线性问题的介入是线性规划问题的拓展与延伸,使得规划问题得以深化.8.(5分)2011年某通讯公司推出一组手机卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10000个号码.公司规定:凡卡号的后四位恰带有两个数字“6”或恰带有两个数字“8”的一律作为“金兔卡”,享受一定优惠政策.如后四位数为“2663”、“8685”为“金兔卡”.则这组号码中“金兔卡”的张数()A.484 B.972 C.966 D.486【分析】据题意,对卡号的后4位分3种情况讨论:①、后4位中含有2个8,进而细分为1°其他数字不重复,2°其他数字也相同,由排列、组合数公式可得其情况数目,②、后4位中含有2个6的卡片,同①可得其情况数目,③、含有2个8、2个6,由组合数公式可得其情况数目;最后由事件之间的关心计算可得答案.【解答】解:根据题意,对卡号的后4位分3种情况讨论:①、后4位中含有2个8,1°若其他数字不重复,在其中任取2个其他的数字,与2个8进行全排列,有×A44×C92种情况,2°若其他数字也相同,易得有9×C42种情况,共有×A44×C92+9×C42=486张,②、同理后4位只中含有2个6的卡片有486张,③、后4位中含有2个8、2个6,有C42=6张,共有486+486﹣6=966张;故选C.【点评】本题考查分步计数原理的应用,考查带有约束条件的数字问题,分类讨论时,注意事件之间的关系,要做到不重不漏.9.(5分)有三个命题①函数的反函数是y=(x+1)2(x∈R)②函数f(x)=lnx+x﹣2的图象与x轴有2个交点;③函数的图象关于y轴对称.其中真命题是()A.①③B.②C.③D.②③【分析】对于①,欲求原函数y=﹣1(x≥0)的反函数,即从原函数式中反解出x,后再进行x,y互换,即得反函数的解析式.对于②,利用函数f(x)的单调性,与函数的零点与方程的根判断即可;对于③,通过函数f(x)的奇偶性判断即可.【解答】解:对于①,∵y=﹣1(x≥0),∴x=(y+1)2(y≥﹣1),∴x,y互换,得y=(x+1)2(x≥﹣1).故不正确.对于②,考察f(x)的单调性,lnx和x﹣2在(0,+∞)上是增函数,故f(x)=lnx+x﹣2在(0,+∞)上是增函数,图象与x轴最多有1个交点,故不正确.对于③,函数的定义域为[﹣3,3],所以,函数化简为:y=是偶函数,图象关于y轴对称,正确.故选C.【点评】本小题主要考查函数单调性的应用、函数奇偶性的应用、反函数等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.10.(5分)若长度为定值的线段AB 的两端点分别在x 轴正半轴和y 轴正半轴上移动,O 为坐标原点,则△OAB 的重心、内心、外心、垂心的轨迹不可能是( ) A .点 B .线段 C .圆弧D .抛物线的一部分【分析】本题是个选择题,利用排除法解决.首先由△OAB 的重心,排除C ;再利用△OAB 的内心,排除B ;最后利用△OAB 的垂心,排除A ;即可得出正确选项.【解答】解:设重心为G ,AB 中点为C ,连接OC .则OG=OC (这是一个重心的基本结论).而OC=AB=定值,所以G 轨迹圆弧. 排除C ;内心一定是平分90度的那条角平分线上,轨迹是线段.排除B ;外心是三角形外接圆圆心,对于这个直角三角形,AB 中点C 就是三角形外接圆圆心,OC 是定值, 所以轨迹圆弧,排除C ; 垂心是原点O ,定点,排除A 故选D .【点评】本题考查三角形的重心、内心、外心、垂心、以及轨迹的求法.解选择题时可利用排除法.11.(5分)若关于x 的不等式|x ﹣1|<ax (a ≠0)的解集为开区间(m ,+∞),其中m ∈R ,则实数a 的取值范围为( ) A .a ≥1B .a ≤﹣1C .0<a <1D .﹣1<a <0【分析】在同一坐标系中做出函数 y=|x |和 函数y=ax 的图象,由题意结合图形可得实数a 的取值范围.【解答】解:∵关于x 的不等式|x ﹣1|<ax (a ≠0)的解集为 开区间(m ,+∞),其中m ∈R ,在同一坐标系中做出函数y=|x﹣1|和函数y=ax的图象,如图所示:结合图象可得a≥1.故选:A.【点评】本题主要考查绝对值不等式的解法,体现了数形结合的数学思想,画出图形,是解题的关键,属于中档题.二、填空题(共5小题,每小题5分,满分25分)12.(5分)一个与球心距离为1的平面截球所得的圆面面积为2π,则球的表面积为12π.【分析】求出截面圆的半径,利用勾股定理求出球的半径,然后求出球的表面积.【解答】解:由题意可知截面圆的半径为:r,所以πr2=2π,r=,由球的半径,球心到截面圆的距离,截面圆的半径,满足勾股定理,所以球的半径为:R==.所求球的表面积为:4πR2=12π.故答案为:12π.【点评】本题考查球与球的截面以及球心到截面的距离的关系,是本题的解题的关键,考查计算能力.13.(5分)已知二项式展开式中的项数共有九项,则常数项为1120.【分析】根据展开式中的项数共有九项可求出n的值是8.利用二项展开式的通项公式求出通项,令x的指数为0,求出r,将r的值代入通项求出展开式的常数项.【解答】解:∵二项式展开式中的项数共有九项∴n=8=2r C8r x4﹣r展开式的通项为T r+1令4﹣r=0得r=4所以展开式的常数项为T5=24C84=1120故答案为:1120.【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题,解答关键是求出n的值,属于中档题.14.(5分)已知过椭圆的右焦点在双曲线的右准线上,则双曲线的离心率为.【分析】先由题设条件求出椭圆的焦点坐标和双曲线的准线方程,列出关于b 的方程求出b,从而得到a和c,再利用a和c求出双曲线的离心率.【解答】解:由题设条件可知椭圆的右焦点坐标为(2,0),双曲线的右准线方程为x=,∴,解得b=2.则双曲线的离心率为.故答案为:.【点评】本题是双曲线的椭圆的综合题,难度不大,只要熟练掌握圆锥曲线的性质就行.15.(5分)函数,在区间(﹣π,π)上单调递增,则实数φ的取值范围为.【分析】求出函数的单调增区间,通过子集关系,确定实数φ的取值范围.【解答】解:函数,由2kπ﹣πφ≤2kπ,可得6kπ﹣3π﹣3φ≤x≤6kπ﹣3φ,由题意在区间(﹣π,π)上单调递增,所以6kπ﹣3π﹣3φ≤﹣π 且π≤6kπ﹣3φ,因为0<φ<2π,所以k=1,实数φ的取值范围为;故答案为:【点评】本题是基础题,考查三角函数的单调性的应用,子集关系的理解,考查计算能力.16.(5分)在数学中“所有”一词,叫做全称量词,用符号“∀”表示;“存在”一词,叫做存在量词,用符号“∃”表示.设.①若∃x0∈(2,+∞),使f(x0)=m成立,则实数m的取值范围为(,+∞);②若∀x1∈(2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),则实数a的取值范围为不存在.【分析】①先对函数配方,求出其对称轴,判断出其在给定区间上的单调性进而求出函数值的范围,即可求出实数m的取值范围;②先利用单调性分别求出两个函数的值域,再比较即可求出实数a的取值范围.【解答】解:因为f(x)==,(2,+∞),f(x)>f(2)=;g(x)=a x,(a>1,x>2).g(x)>g(2)=a2.①∵∃x0∈(2,+∞),使f(x0)=m成立,∴m;②∵∀x1∈(2,+∞),∃x2∈(2,+∞)使得f(x1)=g(x2),∴⇒a不存在.故答案为:(,+∞):不存在.【点评】本题主要考查函数恒成立问题以及借助于单调性研究函数的值域,是对基础知识的综合考查,属于中档题目.三、解答题(共6小题,满分70分)17.(12分)已知=(cosx+sinx,sinx),=(cosx﹣sinx,2cosx).(I)求证:向量与向量不可能平行;(II)若•=1,且x∈[﹣π,0],求x的值.【分析】(I)先假设两个向量平行,利用平行向量的坐标表示,列出方程并用倍角和两角和正弦公式进行化简,求出一个角的正弦值,根据正弦值的范围推出矛盾,即证出假设不成立;(II)利用向量数量积的坐标表示列出式子,并用倍角和两角和正弦公式进行化简,由条件和已知角的范围进行求值.【解答】解:(I)假设∥,则2cosx(cosx+sinx)﹣sinx(cosx﹣sinx)=0,1+cosxsinx+cos2x=0,即1+sin2x+=0,∴sin(2x+)=﹣3,解得sin(2x+)=﹣<﹣1,故不存在这种角满足条件,故假设不成立,即与不可能平行.(II)由题意得,•=(cosx+sinx)(cosx﹣sinx)+2cosxsinx=cos2x+sin2x=sin (2x+)=1,∵x∈[﹣π,0],∴﹣2π≤2x≤0,即≤,∴=﹣或,解得x=或0,故x的值为:或0.【点评】本题考查了向量共线和数量积的坐标运算,主要利用了三角恒等变换的公式进行化简,对于存在性的题目一般是先假设成立,根据题意列出式子,再通过运算后推出矛盾,是向量和三角函数相结合的题目.18.(12分)已知某高中某班共有学生50人,其中男生30人,女生20人,班主任决定用分层抽样的方法在自己班上的学生中抽取5人进行高考前心理调查.(I)求男生被抽取的人数和女生被抽取的人数;(I)若从这5人中选取2人作为重点调查对象,求至少选取1个男生的概率;(II)若本班学生考前心理状态好的概率为0.8,求调查中恰有3人心理状态良好的概率.【分析】(Ⅰ)根据题意,可得抽取的比例为,由分层抽样的性质,计算可得答案;(Ⅱ)由(Ⅰ)的结论,男生被抽取人数为3人,女生被抽取人数为2人,分析可得“至少选取1个男生”与“没有1个男生”即“选取的都是2个女生”为对立事件;先计算“选取的都是2个女生”的概率,进而由对立事件的概率性质,计算可得答案;(Ⅲ)根据题意,分析可得:本题为在5次独立重复试验中恰有3次发生,由其公式,计算可得答案.【解答】解:(Ⅰ)根据题意,在50人中抽取了5人,抽取的比例为;则抽取男生30×=3,女生20×=2;即男生被抽取人数为3人,女生被抽取人数为2人;(Ⅱ)由(Ⅰ)得,男生被抽取人数为3人,女生被抽取人数为2人,“至少选取1个男生”与“没有1个男生”即“2个女生”为对立事件;选取的两名学生都是女生的概率P==,∴所求的概率为1﹣P=;(Ⅲ)根据题意,本班学生的考前心理状态良好的概率为0.8,则抽出的5人中,恰有3人心理状态良好,即在5次独立重复试验中恰有3次发生,则其概率为C53×()3×()2=.【点评】本题主要考查排列n次独立重复实验中恰有k次发生的概率计算,涉及分层抽样与对立事件的概率计算;需要牢记各个公式,并做到“对号入座”.19.(12分)如图所示,在正方体ABCD﹣A1B1C1D1中,AB=a,E为棱A1D1中点.(I)求二面角E﹣AC﹣B的正切值;(II)求直线A1C1到平面EAC的距离.【分析】(I)取AD的中点H,连接EH,则EH⊥平面ABCD,过H作HF⊥AC与F,连接EF,我们可得∠EFH即为二面角E﹣AC﹣B的补角,解三角形EFH后,即可求出二面角E﹣AC﹣B的正切值;(II)直线A1C1到平面EAC的距离,即A1点到平面EAC的距离,利用等体积法,我们根据=,即可求出直线A 1C1到平面EAC的距离.【解答】解:(I)取AD的中点H,连接EH,则EH⊥平面ABCD,过H作HF⊥AC 与F,连接EF,则EF在平面ABCD内的射影为HF,由三垂线定理得EF⊥AC,,∴∠EFH即为二面角E﹣AC﹣B的补角∵EH=a,HF=BD=∴∠tan∠EFH===2∴二面角E﹣AC﹣B的正切值为﹣2…6分(II)直线A1C1到平面EAC的距离,即A1点到平面EAC的距离d,…8分∵=∴S•d=△EAC∵EF====•AC•EF=•a•=∴S△EAC而=••a=∴•d=•a∴d=∴直线A1C1到平面EAC的距离【点评】本题考查的知识点是二面角的平面角及求法,点到平面的距离,其中(I)的关键是得到∠EFH即为二面角E﹣AC﹣B的补角,(II)中求点到面的距离时,等体积法是最常用的方法.20.(12分)已知f(x)=tx3﹣2x2+1.(I)若f′(x)≥0对任意t∈[﹣1,1]恒成立,求x的取值范围;(II)求t=1,求f(x)在区间[a,a+3](a<0)上的最大值h(a).【分析】(I)f′(x)=3tx2﹣4x,令g(t)=3x2t﹣4x,由,能求出x的取值范围.(II)由f(x)=x3﹣2x2+1,知f′(x)=3x2﹣4x=x(3x﹣4),f′(x)>0,得f(x)在(﹣∞,0)和()为递增函数;令f′(x)<0,得f(x)在(0,)为递减函数.由此进行分类讨论,能求出f(x)在区间[a,a+3](a<0)上的最大值h(a).【解答】解:(I)f′(x)=3tx2﹣4x,令g(t)=3x2t﹣4x,则有,∴,解得.∴x的取值范围是.(II)f(x)=x3﹣2x2+1,f′(x)=3x2﹣4x=x(3x﹣4),令f′(x)>0,得x<0或x>.令f′(x)<0,得0,∴f(x)在(﹣∞,0)和()为递增函数;在(0,)为递减函数.∵f(0)=1,,令f(x)=1,得x=0或x=2.①当a+3<0,即a<﹣3时,f(x)在[a,a+3]单调递增.∴h(a)=f(a+3)=a3+7a2+15a+10.②当0≤a+3≤2,即﹣3≤a≤﹣1时,h(a)=f(0)=1.③当a+3>2,即0>a>﹣1时,h(a)=f(a+3)=a3+7a2+15a+10.∴.【点评】本题考查导数在求最大值和求最小值时的实际应用,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.综合性强,是高考的重点,易错点是知识体系不牢固.解题时要注意分类讨论思想的灵活运用.21.(12分)已知{a n}是正数组成的数列,a1=1,且点在函数y=x2+1的图象上.数列{b n}满足b1=0,b n+1=b n+3an(n∈N*).(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)若c n=a n b n cosnπ(n∈N*),求数列{c n}的前n项和S n.【分析】(Ⅰ)由题设条件知a n=a n+1,根据等差数列的定义:{a n}是首项为1,+1公差为1的等差数列,从而a n=n,根据b n+1=b n+3an(n∈N*),可得b n+1﹣b n=3n (n∈N*).累加可求和,从而得{b n}的通项公式;(II)根据c n=a n b n cosnπ(n∈N*),可得,再分n为偶数,奇数分别求和即可【解答】解:(Ⅰ)因为点()(n∈N*)在函数y=x2+1的图象上=a n+1所以a n+1根据等差数列的定义:{a n}是首项为1,公差为1的等差数列所以a n=n=b n+3an(n∈N*).∵b n+1∴b n﹣b n=3n(n∈N*).+1∴(II)∵c n=a n b n cosnπ(n∈N*),∴当n为偶数时,S n=(﹣3+2•32+…+n•3n)+3[1﹣2+3﹣4+…+(n﹣1)﹣n]设T n=(﹣3+2•32+…+n•3n),则3T n=﹣32+2•33+…+n•3n+1∴∴当n为奇数时,∴【点评】本题以函数为载体,考查数列的概念和性质及其应用,考查错位相减法求和,解题时要注意公式的灵活运用.22.(10分)若圆C过点M(0,1)且与直线l:y=﹣1相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点,点.(Ⅰ)求曲线E的方程;(Ⅱ)若t=6,直线AB的斜率为,过A、B两点的圆N与抛物线在点A处共同的切线,求圆N的方程;(Ⅲ)分别过A、B作曲线E的切线,两条切线交于点Q,若点Q恰好在直线l 上,求证:t与均为定值.【分析】(I)由点C到定点M的距离等于到定直线l的距离与抛物线的定义可得点C的轨迹为抛物线所以曲线E的方程为x2=4y.(II)由题得直线AB的方程是x﹣2y+12=0联立抛物线的方程解得A(6,9)和B(﹣4,4),进而直线NA的方程为,由A,B两点的坐标得到线段AB中垂线方程为,可求N点的坐标,进而求出圆N的方程.(III)设A,B两点的坐标,由题意得过点A的切线方程为又Q(a,﹣1),可得x12﹣2ax1﹣4=0同理得x22﹣2ax2﹣4=0所以x1+x2=2a,x1x2=﹣4.所以直线AB的方程为所以t=﹣1.根据向量的运算得=0.【解答】【解】(Ⅰ)依题意,点C到定点M的距离等于到定直线l的距离,所以点C的轨迹为抛物线,曲线E的方程为x2=4y.(Ⅱ)直线AB的方程是,即x﹣2y+12=0.由及知,得A(6,9)和B(﹣4,4)由x2=4y得,.所以抛物线x2=4y在点A处切线的斜率为y'|x=6=3.直线NA的方程为,即.①线段AB的中点坐标为,线段AB中垂线方程为,即.②由①、②解得.于是,圆C的方程为,即.(Ⅲ)设,,Q(a,1).过点A的切线方程为,即x12﹣2ax1﹣4=0.同理可得x22﹣2ax2﹣4=0,所以x1+x2=2a,x1x2=﹣4.又=,所以直线AB的方程为,即,亦即,所以t=1.而,,所以==.【点评】本题主要考查抛物线的定义和直线与曲线的相切问题,解决此类问题的必须熟悉曲线的定义和曲线的图形特征,这也是高考常考的知识点.。

2018届高三好教育云平台12月份内部特供卷文科数学(二)

2018届高三好教育云平台12月份内部特供卷文科数学(二)

2018届高三好教育云平台12月份内部特供卷高三文科数学(二)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|2A x x =<,{}|320B x x =->,则( ) A .{}3|2B A x x =<B .A B =∅C .3|2A B x x ⎧⎫=<⎨⎬⎩⎭D .A B =R【答案】A2.设复数z 满足(1i)2i z +=,则z =( )A .1i +B .1i -CD .i 1-【答案】A3.已知命题p :0x ∀>,()ln 10x +>;命题q :若a b >,则22a b >,下列命题为真命题的是( ) A .p q ∧ B .p q ∧⌝ C .p q ⌝∧ D .p q ⌝∧⌝【答案】B4.已知向量(3,6)a = ,(1,)b λ=-,且a b ∥,则λ=( )A .2B .3C .2-D .3-【答案】C5.《莱因德纸草书》(Rhind Papyrus )是世界上最古老的数学著作之一,书中有这样一道题:把120个面包分成5份,使每份的面包数成等差数列,且较多的三份之和恰好是较少的两份之和的7倍,则最少的那份有( )个面包. A .4B .3C .2D .1【答案】C6.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则下列说法错误的是( ) A .丙可以知道四人的成绩 B .乙、丙的成绩是一优秀一良好 C .乙可以知道自己的成绩 D .丁可以知道自己的成绩【答案】A7.已知函数()()() sin 00f x A x b A ωϕω=++>,>的图象如图所示,则() f x 的解析式为( )A .()2sin()263f x x ππ=++B .1()3sin()236f x x π=-+C .()2sin()366f x x ππ=++D .()2sin()363f x x ππ=++【答案】D8.()f x =[1,1]a a -+,lg0.2b =,0.22c =,则( ) A .c b a << B .b c a <<C .a b c <<D .b a c <<【答案】D9.某四棱锥的三视图如图所示,则该四棱锥的体积为( )A .43B .C .83D .2【答案】C10.已知[x ]表示不超过...x 的最大..整数.执行如图所示的程序框图,若输入x 的值为2,则输出z 的值为( )A .1B .05-.C .05.D .04-.【答案】B11.已知如下六个函数:y x =,2y x =,ln y x =,2x y =,sin y x =,cos y x =,从中选出两个函数记为()f x 和()g x ,若()()()F x f x g x =+的图象如图所示,则()F x =( )A .2cos x x +B .2sin x x +C .2cos x x +D .2sin x x +【答案】D12.已知定义在()0,+∞上的函数()f x ,满足(1)()0f x >;(2)()()()2f x f x f x '<<(其中()f x '是()f x 的导函数,e 是自然对数的底数),则()()23f f 的范围为( ) A .21,e e ⎛⎫ ⎪⎝⎭B .211,e e ⎛⎫ ⎪⎝⎭C .10,e ⎛⎫ ⎪⎝⎭D .311,e e ⎛⎫ ⎪⎝⎭【答案】B 【解析】设()()e x f x g x =,则()()()0e xf x f xg x '-'=>()g x ∴在(0,)+∞上单调递增,所以(2)(3)g g <, 即2(2)(3)(2)1e e (3)e f f f f <⇒<,令2()()e x f x h x =,则2()2()()0ex f x f x h x '-'=<,()h x ∴在(0,)+∞上单调递增,所以(2)(3)h h >,即242(2)(3)(2)1e e (3)e f f f f >⇒>.综上,21(2)1e (3)ef f <<. 第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.若x ,y 满足约束条件0200x y x y y -⎧⎪+-⎨⎪⎩≥≤≥,则34z x y =-的最小值为___________.【答案】1-14.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是___________.【答案】8π15.为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101240i i x ==∑,1011700i i y ==∑,ˆ4b=.该班某学生的脚长为255.,据此估计其身高为____________. 【答案】17616.设n S 是数列{}n a 的前n 项和,且11a =,11n n n a S S ++=-,则22110n n nS S +的最大值为_____.【答案】319【解析】因为11n n n a S S ++=-,所以有111111n n n n n n S S S S S S +++-=-⇒-=,即1n S ⎧⎫⎨⎬⎩⎭为首项等于1公差为1的等差数列,所以11n n n S S n =⇒=,则22221()1110110()nn n nS n S n=++2221111101010110()n nn n n nn n====++++,因为10n n +≥n =取等号),因为n为自然数,所以根据函数的单调性可从与n =相邻的两个整数中求最大值,3n =,13n S =,22311019n n nS S =+,22124,,411013n n n nS n S S ===+,所以最大值为319. 三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)设数列{}()123n a n =⋯,,,的项满足关系12(2)n n a a n -=≥,且1a ,21a +,3a 成等差数列. (1)求数列{}n a 的通项公式; (2)求数列{1}n a +的前n 项和.【答案】(1)()122n n a a n = -≥,从而212a a =,32124a a a ==,又因为1a ,21a +,3a 成等差数列,即13221()a a a +=+, 所以111421)2(a a a +=+,解得12a =,所以数列{}n a 是首项为2,公比为2的等比数列,故2n n a =. (2)设{}1n a +的前n 项和为n T ,则1122(12)()2212n n n n T a a a n n n +-=++++=+=-+- .18.(本小题满分12分)在ABC △中,边a ,b ,c 分别是内角A ,B ,C 所对的边,且满足2sin sin sin B A C =+.(1)求证:1cos 2B ≥;(2)设B 的最大值为0B ,当0B B =,3a =,又12AD DB =,求CD 的长.【答案】(1)由题设及正弦定理知,2b a c =+,即2a cb +=.由余弦定理知,()()222222223232212cos 22882a c a c a c ac ac ac a cb B ac ac ac ac +⎛⎫+- ⎪+--+-⎝⎭====≥,(2)cos y x = 在()0,π上单调递减,B ∴的最大值03B π=,根据(1)中均值不等式,只有当a c =时才能取到03B π=,3a c ∴==,又12AD DB = ,所以1AD =,在ACD △中由余弦定理得:22213cos 3213CD π+-=⨯⨯,得CD =19.(本小题满分12分)某化妆品商店为促进顾客消费,在“三八”妇女节推出了“分段折扣”活动,具体规则如下表:例如,某顾客购买了300元的化妆品,她实际只需付:()2000.93002000.8260⨯+-⨯=(元).为了解顾客的消费情况,随机调查了100名顾客,得到如下统计表:(1)写出顾客实际消费金额y 与她购买商品金额x 之间的函数关系式(只写结果);(2)估算顾客实际消费金额y 不超过180的概率; (3)估算顾客实际消费金额y 超过420的概率.【答案】(1)0.92000.8202005000.77050010000.6170100x x x x y x x x x ⎧⎪+<⎪=⎨+<⎪⎪+>⎩ ≤ ≤ ≤ .(2)令180y ≤,得200x ≤,所以()()118020010P y P x ==≤≤. (3)令420y >,得500x >,所以()()()()3214205005001000100010102P y P x P x P x >=>=<+>=+=≤.20.(本小题满分12分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,3AB AD ==,4PA BC ==,N ,T 分别为线段PC ,PB 的中点.(1)若PC 与面ABCD 所成角的正切值为43,求四棱锥P ABCD -的体积. (2)试探究:线段AD 上是否存在点M ,使得AT ∥平面CMN ?若存在,请确定点M 的位置,若不存在,请说明理由.【答案】(1)连AC ,由PA ⊥底面ABCD 可知PCA ∠为PC 与面ABCD 所成的角,4PA = ,4tan 3PCA ∠=,3AC ∴=,取线段BC 的中点E ,由3AB AC ==得AE BC ⊥,AE =()1342ABCD S ∴=+=,143P ABCD V -∴==.(2)取线段AD 的三等分点M ,使得223AM AD ==.连接AT ,TN , 由N 为PC 中点知TN BC ∥,122TN BC ==. 又AD BC ∥,故TN AM ∥且TN AM =.四边形AMNT 为平行四边形,于是MN AT ∥.因为AT ⊄面CMN ,MN ⊂面CMN ,所以AT ∥平面CMN ,AD ∴上存在点M ,满足2AM =,就能使AT ∥平面CMN .21.(本小题满分12分)已知函数2()2ln f x x x mx =--. (1)当0m =时,求函数()f x 的最大值;(2)函数()f x 与x 轴交于两点1(,0)A x ,2(,0)B x 且120x x <<,证明:1212121()()333f x x x x '+<-.【答案】(1)当0m =时,()22ln f x x x =-,求导得()()()211x x f x x+-'=,根据定义域,容易得到在1x =处取得最大值,得到函数的最大值为1-.(2)根据条件得到21112ln 0x x mx --=,22222ln 0x x mx --=,两式相减得 221212122(ln ln )()()x x x x m x x ---=-,得221212121212122(ln ln )()2(ln ln )()x x x x x x m x x x x x x ----==-+--,因为2()2f x x m x'=-- 得1212121212122(ln ln )12212()2()()12333333x x f x x x x x x x x x x -'+=-+-++-+121212122(ln ln )21()12333x x x x x x x x -=-+--+ 因为120x x <<,要证1212121()()333f x x x x '+<-,即证1212122(ln ln )201233x x x x x x --<-+,即证1212122()2(ln ln )01233x x x x x x --->+,即证2112212(1)2ln 01233x x x x x x -->+, 设12x t x =(01)t <<,原式即证12(1)2ln 012133t t t -->+⋅,即证6(1)2ln 02t t t -->+ 构造18()62ln 2g t t t =--+,22(1)(4)()0(2)t t g t t t ---'=<+,()g t 单调递减, 所以()(1)0g t g >=得证.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)【选修4—4:坐标系与参数方程】 在直角坐标系xOy 中,直线l 的参数方程为1cos sin x t y t αα=-+⎧⎨=⎩(t 为参数,α为直线的倾斜角).以平面直角坐标系xOy 的原点为极点,x 轴的正半轴为极轴,取相同的长度单位,建立极坐标系.圆C 的极坐标方程为2cos ρθ=,设直线l 与圆C 交于A ,B 两点. (1)求角α的取值范围; (2)若点P 的坐标为()1,0-,求11PA PB+的取值范围. 【答案】(1)圆C 的直角坐标方程2220x y x +-=,把1cos sin x t y t αα=-+⎧⎨=⎩代入2220x y x +-=得24cos 30t t α-+=① 又直线l 与圆C 交于A ,B 两点,所以216cos 120α∆=->,解得:cos α>cos α<,又由[)0,α∈π故50,,66αππ⎡⎫⎛⎫∈π⎪ ⎪⎢⎣⎭⎝⎭.(2)设方程①的两个实数根分别为1t ,2t ,则由参数t 的几何意义可知:12124cos 113t t PA PB t t α++==cos 1α<≤,4cos 433α<≤, 于是11PA PB +的取值范围为43⎤⎥⎝⎦. 23.(本小题满分10分)【选修4—5:不等式选讲】 已知函数()3f x x x =+-.(1)解关于x 的不等式()5f x x -≥;(2)设(){},|m n y y f x ∈=,试比较4mn +与()2m n +的大小.【答案】(1)32,0()|||3|3,0323,3x x f x x x x x x -<⎧⎪=+-=⎨⎪->⎩≤≤从而得0325x x x <⎧⎨-+⎩≥或0335x x ⎧⎨+⎩≤≤≥或3235x x x >⎧⎨-+⎩≥,解之得23x -≤或 x ∈∅或8x ≥, 所以不等式的解集为2(,][8,)3-∞-+∞ .(2)由(1)易知()3f x ≥,所以3m ≥,3n ≥, 由于()()()()2422422m n mn m mn n m n +-+=-+-=-- 且3m ≥,3n ≥,所以20m ->,20n -<,即()()220m n --<, 所以()24m n mn +<+.。

2018届高三第二次模拟考试数学(文)试题含答案

2018届高三第二次模拟考试数学(文)试题含答案

河东区2018年高考二模考试数学试卷(文史类)第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数i t z +=21,i z 212-=,若21z z 为实数,则实数t 的值是( ) A .41-B .-1C .41D .1 2. 设集合}01{2<-=x x A ,},2{A x y y B x∈==,则=B A ( ) A .(0,1) B .(-1,2) C .),1(+∞- D .)1,21(3. 已知函数⎩⎨⎧<≥∙=-0,20,2)(x x a x f x x (R a ∈).若1)]1([=-f f ,则=a ( )A .41 B .21C .2D . 1 4. 若a ,R b ∈,直线l :b ax y +=,圆C :122=+y x .命题p :直线l 与圆C 相交;命题q :12->b a .则p 是q 的( )A .充分不必要条件B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件5. 为丰富少儿文体活动,某学校从篮球,足球,排球,橄榄球中任选2种球给甲班学生使用,剩余的2种球给乙班学生使用,则篮球和足球不在同一班的概率是( ) A .31 B .21 C. 32 D .65 6. 已知抛物线x y 82=的准线与双曲线116222=-y a x 相交于A ,B 两点,点F 为抛物线的焦点,ABF ∆为直角三角形,则双曲线的离心率为( ) A .3 B .12+ C.2 D .3 7. 若数列}{n a ,}{n b 的通项公式分别为a a n n ∙-=+2016)1(,nb n n 2017)1(2+-+=,且n n b a <,对任意*∈N n 恒成立,则实数a 的取值范围是( )A .)21,1[-B .[-1,1) C.[-2,1) D .)23,2[- 8. 已知函数⎩⎨⎧≤++<+=a x x x ax x x f ,25,2)(2,若函数x x f x g 2)()(-=恰有三个不同的零点,则实数a 的取值范围是( )A .[-1,1)B .[-1,2) C. [-2,2) D .[0,2]第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.函数x e x x f )3()(-=的单调递增区间为 .10.执行如图所示的程序框图,若输入的a ,b 值分别为0和9,则输出的i 值为 .11.某几何体的三视图如图所示,则该几何体的体积为 .12.已知0>a ,0>b ,且42=+b a ,则ab1的最小值是 .13.已知0>ω,在函数x y ωsin =与x y ωcos =的图象的交点中,距离最短的两个交点的距离为3,则ω值为 .14.如图,已知ABC ∆中,点M 在线段AC 上,点P 在线段BM 上,且满足2==PBMPMC AM ,2=3=,︒=∠120BAC ,则BC AP ∙的值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)15. 制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙两个项目可能的最大盈利分别为100%和50%,可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.投资人对甲乙两个项目各投资多少万元,才能使可能的盈利最大?最大盈利额为多少?16. 在ABC ∆中,内角A ,B ,C 对应的边分别为a ,b ,c ,已知2)4tan(=+A π.(Ⅰ)求)32cos(π+A 的值;(Ⅱ)若4π=B ,3=a ,求ABC ∆的面积.17. 如图,在四棱锥ABCD P -中,⊥PA 平面ABCD ,BC AD //,且,3===AC AD AB ,4==BC PA ,M 为线段AD 上一点,MD AM 2=,且N 为PC的中点.(Ⅰ)证明://MN 平面PAB ;(Ⅱ)求证:平面⊥PMC 平面PAD ; (Ⅲ)求直线AN 与平面PMC 所成角的正弦值.18. 已知数列}{n a 的前n 项和n n S n 832+=,}{n b 是等差数列,且1++=n n n b b a . (Ⅰ)求数列}{n b 的通项公式;(Ⅱ)令nn n n n b a c )2()1(1++=+,求数列}{n c 的前n 项和n T . 19. 在平面直角坐标系xOy 中,椭圆C :)0(12222>>=+b a b y a x 的离心率为23,直线x y =被椭圆C 截得的线段长为5104. (Ⅰ)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点),点D 在椭圆C 上,且AB AD ⊥.直线BD 与x 轴、y 轴分别交于M ,N 两点.设直线BD ,AM 的斜率分别为1k ,2k ,证明存在常数λ使得21k k λ=,并求出λ的值. 20.选修4-4:坐标系与参数方程 设函数xmx x f +=ln )(,R m ∈. (Ⅰ)当e m =时,求函数)(x f 的极小值;(Ⅱ)讨论函数3)()(xx f x g -'=零点的个数; (Ⅲ)若对任意的0>>a b ,1)()(<--ab b f a f 恒成立,求m 的取值范围.河东区2018年高考二模考试 数学试卷(文史类)参考答案一、选择题1-5:ADABC 6-8:ADB二、填空题9. ),2(+∞ 10.3 11. 335 12. 21 13. π14.-2三、解答题15.解:设甲、乙两个项目的投资分别为x 万元,y 万元,利润为z (万元),由题意有:⎪⎩⎪⎨⎧≥≥≤+≤+,0,0,8.11.03.0,10y x y x y x 即⎪⎩⎪⎨⎧≥≥≤+≤+,0,0,8.113,10y x y x y x y x z 5.0+=.作出不等式组的平面区域:当直线z x y 22+-=过点M 时,纵横距最大,这时z 也取得最大值.解方程组⎩⎨⎧=+=+18310y x y x .得4=x ,6=y ,即)6,4(M .765.041=⨯+⨯=z .故投资人投资甲项目4万元,投资乙项目6万元,可能的盈利最大,最大盈利7万元.16.解:(Ⅰ)∵2)4tan(=+A π,则2tan 4tan 1tan 4tan =-+AAππ,∴31tan =A .∵A 为三角形内角,则),0(π∈A ,则1010sin =A ,10103cos =A , ∴53cos sin 22sin ==A A A ,541cos 22cos 2=-=A A , ∴3cos2cos )32cos(ππA A =+1010343sin2sin -=-πA . (Ⅱ)由正弦定理可知,AaB b sin sin =∴53=b . ∵B A B AC cos sin )sin(sin =+=552sin cos =+B A . ∴9sin 21==C ab S . 17.解:(1)取PB ,BC 中点E ,F ,连EN ,AE ,AF ,由N 为PC 中点,所以BC EN //,且221==BC EN .由MD AM 2=,3=AC ,则2=AM ,又BC AD //,则AM EN //. 所以四边形ENMA 为平行四边形,所以AE MN //,且⊂AE 面PAB ,⊄MN 面PAB ,则//MN 面PAB .(2)∵AC AB =,∴BC AF ⊥,又FC AM //,2==FC AM 所以四边形AFCM 为平行四边形,故AD CM ⊥.又∵⊥PA 面ABCD .⊂CM 面ABCD ,∴⊥CM PA .又A PA AD = ,所以⊥CM 面PAD ,∵⊂CM 面ABCD ,∴面⊥PMC 面PAD .(3)过A 作PM AG ⊥,垂足为G .由(2)知面⊥PMC 面PAD ,面 PMC 面PAD PM =,⊂AG 面PAD ,∴⊥AG 面PMC ,连接AN ,GN .则GN 为AN 在平面PMC 上的射影,∴ANG ∠为AN 与平面PMC 所成角. ANG Rt ∆中==PC AN 21252122=+AC PA , 55422=+∙=AM PA AM PA AG ,2558sin ==∠AN AG ANG , ∴AN 与平面PMC 所成角正弦值为2558.18. 解:(Ⅰ)由题知,当2≥n 时,561+=-=-n S S a n n n ;当1=n 时,1111==S a ,符合上式.所以56+=n a n .设数列}{n b 的公差d ,由⎩⎨⎧+=+=,,322211b b a b b a 即为⎩⎨⎧+=+=,3217,21111d b d b ,解得41=b ,3=d ,所以13+=n b n .(Ⅱ)112)1(3)33()66(+++=++=n nn n n n n c ,n n c c c T +++=...21,则 +⨯+⨯⨯=322322[3n T ]2)1(...1+⨯++n n , +⨯+⨯⨯=432322[32n T ]2)1(...2+⨯++n n ,两式作差,得+++⨯⨯=-4322222[3n T ]2)1(2...21++⨯+-+n n n]2)1(21)21(44[32+⨯+---+⨯=n n n223+∙-=n n .所以223+∙=n n n T .19. 解:(Ⅰ)∵23=e ,∴23=a c ,4322222=-=a b a a c ,∴224b a =.① 设直线x y =与椭圆C 交于P ,Q 两点,不妨设点P 为第一象限内的交点.∴5104=PQ ,∴)552,552(P 代入椭圆方程可得222245b a b a =+.②由①②知42=a ,12=b ,所以椭圆的方程为:1422=+y x . (Ⅱ)设)0)(,(1111≠y x y x A ),(22y x D ,则),(11y x B --,直线AB 的斜率为11x y k AB =,又AD AB ⊥,故直线AD 的斜率为11x y k -=.设直线AD 的方程为m kx y +=,由题知 0≠k ,0≠m 联立⎪⎩⎪⎨⎧=++=1422y x m kx y ,得mkx x k 8)41(22++0442=-+m . ∴221418k mk x x +=+,)(2121x x k y y +=+24122k mm +=+,由题意知021≠+x x , ∴1121211441x y k x x y y k =-=++=,直线BD 的方程为)(41111x x x y y y +=+.令0=y ,得13x x =,即)0,3(1x M ,可得=2k 112x y -,∴2121k k -=,即21-=λ.因此存在常数21-=λ使得结论成立. 20. 解:(1)由题设,当e m =时,xex x f +=ln )(,易得函数)(x f 的定义域为),0(+∞, 221)(xex x e x x f -=-='.∴当),0(e x ∈时,0)(<'x f ,)(x f 在),0(e 上单调递减; ∴当),(+∞∈e x 时,0)(>'x f ,)(x f 在),(+∞e 上单调递增;所以当e x =时,)(x f 取得极小值2ln )(=+=eee ef ,所以)(x f 的极小值为2. (2)函数=-'=3)()(x x f xg 312x x m x --)0(>x ,令0)(=x g ,得x x m +-=231)0(>x .设)0(31)(2≥+-=x x x x ϕ,则=+-='1)(2x x ϕ)1)(1(+--x x .∴当)1,0(∈x 时,0)(>'x ϕ,)(x ϕ在(0,1)上单调递增; ∴当),1(+∞∈x 时,0)(<'x ϕ,)(x ϕ在),1(+∞上单调递减; 所以)(x ϕ的最大值为32131)1(=+-=ϕ,又0)0(=ϕ,可知: ①当32>m 时,函数)(x g 没有零点;②当32=m 时,函数)(x g 有且仅有1个零点; ③当320<<m 时,函数)(x g 有2个零点;④当0≤m 时,函数)(x g 有且只有1个零点. 综上所述:当32>m 时,函数)(x g 没有零点;当32=m 或0≤m 时,函数)(x g 有且仅有1个零点;当320<<m 时,函数)(x g 有2个零点.(3)对任意0>>a b ,1)()(<--a b a f b f 恒成立,等价于a a f b b f -<-)()(恒成立. )(*.设=-=x x f x h )()()0(ln >-+x x xmx ,∴)(*等价于)(x h 在),0(+∞上单调递减.∴011)(2≤--='xmx x h 在),0(+∞上恒成立,∴=+-≥x x m 241)21(2+--x )0(>x 恒成立,∴41≥m (对41=m ,0)(='x h 仅在21=x 时成立).∴m 的取值范围是),41[+∞.。

2018届高三下学期第二次模拟考试文科数学试卷 含答案

2018届高三下学期第二次模拟考试文科数学试卷  含答案

机密★启用前银川市2018年普通高中教学质量检测数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第II 卷第(22)~(23)题为选考题,其它题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答题时使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4.保持卡面清洁,不折叠,不破损。

5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。

第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目要求1.设集合{}{}{}1,0,1,2,3,4,5,1,23,1,0,1,2U A B =-==-,,则()U A B =ðA .{}1,2,3B .{}1,2C .{}3D .{}2 2.已知i 为虚数单位,复数z 满足()z i z i =-,则复数z 所对应的点Z 在 A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限 3.在区间[]1,3-上随机取一个数,x 若x 满足m x ≤的概率为21,则实数m 为A . 0B .1C .2D .34.在等差数列{}n a 中,已知43265,a a a a =是和的等比中项,则数列{}n a 的前5项的和为 A.15B.20C.25D.1525或5. 已知()f x 是定义在R 上的偶函数,且()()+2f x f x =对x R ∈恒成立,当[]0,1x ∈时,()2x f x =,则92f ⎛⎫-= ⎪⎝⎭A.12B.C.2D. 1 6.过抛物线24y x =的焦点F且斜率为的直线交抛物线于,A B 两点(A B x x >),则AF BF=A.32 B. 34 C. 3 D.2 7. 将正方体切去一个三棱锥得到几何体的三视图如下图所示,则该几何体的体积为 A .223 B .203 C .163D .68.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如上图是利用刘徽的“割圆术”思想设计的一个程序框图,其中n 表示圆内接正多边形的边数,执行此算法输出的圆周率的近似值依次为 (1.732,sin150.2588,sin 7.50.1305≈≈≈)A .2.598,3,3.1048 B. 2.598,3, 3.1056 C. 2.578,3,3.1069 D.2.588,3,3.11089.关于函数()[]()22cos0,2xf x x x π=∈下列结论正确的是 A.有最大值3,最小值1- B. 有最大值2,最小值2-俯视图C.有最大值3,最小值0D. 有最大值2,最小值010.点A ,B ,C ,D 在同一个球的球面上,,∠ABC=90°,若四面体ABCD 体积的最大值为3,则这个球的表面积为A .2π B. 4π C. 8π D. 16π11.点P 是双曲线()222210,0x y a b a b-=>>的右支上一点,其左,右焦点分别为12,F F ,直线1PF 与以原点O 为圆心,a 为半径的圆相切于A 点,线段1PF 的垂直平分线恰好过点2F ,则离心率的值为 A .32 B .43 C .53 D . 5412. 设函数()f x '是定义在(0,π)上的函数()f x 的导函数,有()f x sinx -()f x 'cosx <0,1()23a f π=,b=0,5()26c f π=-,则 A .a <b <c B .b <c <a C .c <b <aD .c <a <b第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分13.已知菱形A B C D 的边长为2,=60ABC ∠,点E 满足1=2B E BC ,则A E AD = .14.若x ,y R ∈,且满足1,230,,x x y y x ≥⎧⎪-+≥⎨⎪≥⎩则23z x y =+的最大值等于 .15.下列命题中,正确的命题序号是 .①. 已知a R ∈,两直线1:1,l ax y += 2:2l x ay a +=,则“1a =-”是“12//l l ”的充分条件;②. 命题:p “0x ∀≥,22x x >”的否定是“00x ∃≥,0202xx <”;③.“1sin 2α=”是“2,6k k Z παπ=+∈”的必要条件; ④. 已知0,0a b >>,则“1ab >”的充要条件是“1a b>” .16.已知数列{}n a 满足12a =,且31122(2)234n n a a a a a n n-+++⋅⋅⋅+=-≥,则{}n a 的通项公式为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤 17.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2cosC c2b a -=. (Ⅰ)求角A 的大小;(Ⅱ)若c =2,角B 的平分线BD =3,求a .18.(本小题满分12分)某单位N 名员工参加“我爱阅读”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组[)25,30,第2组[)30,35,第3组[)35,40,第4组[)40,45,第5组[)45,50,得到的频率分布直方图如图所示.(Ⅰ)求正整数,,a b N 的值;(Ⅱ)现要从年龄低于40岁的员工用分层抽样的方法抽取42人,则年龄在第1,2,3组得员工人数分别是多少?(Ⅲ)为了估计该单位员工的阅读倾向,现对该单位所有员工中按性别比例抽查的40人是否喜欢阅读国学类书下面是年龄的分布表:区间 [25,30) [30,35) [35,40) [40,45) [45,50) 人数 28abB CAD籍进行了调查,调查结果如下所示:(单位:人)根据表中数据,我们能否有99%的把握认为 该位员工是否喜欢阅读国学类书籍和性别有关系?附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.19.(本小题满分12分)如图,菱形ABCD 的边长为12,∠BAD=60°,AC 交BD 于点O .将菱形ABCD 沿对角线AC 折起,得到三棱锥B-ACD ,点M ,N 分别是棱BC ,AD 的中点,且. (Ⅰ)求证:OD ⊥平面ABC ; (Ⅱ)求三棱锥M -ABN 的体积.20.(本小题满分12分)已知点,A B 分别为椭圆()2222:10x y E a b a b+=>>的左,右顶点,点()0,2P -,直线BP 交E 于点Q ,32PQ QB =且ABP ∆是等腰直角三角形. (Ⅰ)求椭圆E 的方程;(Ⅱ)设过点P 的动直线l 与E 相交于M ,N 两点,当坐标原点O 位于以MN 为直径的圆外时,求直线l 斜率的取值范围.21.(本小题满分12分)已知函数3()()x f x a bx e =-,ln ()xg x x=,且函数()f x 的图象在点(1,)e 处的切线与直线210ex y +-=平行. (Ⅰ)求,a b ;(Ⅱ)求证:当(0,1)x ∈时,()()2f x g x ->.请考生在第22, 23题中任选一题作答,如果多做,则按所做的第一题记分.作答时请在答题卡涂上题号.22. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,已知圆C:2cos 2sin x y θθ=⎧⎨=⎩ (θ为参数),点P 在直线l :40x y +-=上,以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系.(Ⅰ)求圆C 和直线l 的极坐标方程;(Ⅱ)射线OP 交圆C 于R ,点Q 在射线OP 上,且满足2OP OR OQ =⋅,求Q 点轨迹的极坐标方程.23. (本小题满分10分)选修4-5:不等式选讲 (Ⅰ)解不等式: 211x x --<;(Ⅱ)设2()1f x x x =-+,实数a 满足1x a -<,求证:()()2(1)f x f a a -<+.银川市2018年普通高中教学质量检测数学(文科)答案一、选择题(每题5分,共60分)二、填空题(每题5分,共20分)13.0 14.15 15. ①③④ 16.1n a n =+ 三、解答题:解答应写出文字说明,证明过程或演算步骤 17.(本小题满分12分)【解析】:(Ⅰ)2a cos C -c =2b ,由正弦定理得 2sin A cos C -sin C =2sin B , …2分2sin A cos C -sin C =2sin(A +C ) =2sin A cos C +2cos A sin C , ∴-sin C =2cos A sinC ,∵sin C ≠0,∴cos A =- 12,而A ∈(0, π),∴A =2π3. …………………………………………6分(Ⅱ)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A∴ sin ∠ADB =AB sin A BD= 22, ……………………………………8分∴ ∠ADB =π4,∴∠ABC =π6,∠ACB =π6,AC =AB = 2由余弦定理,a =BC =AB 2+AC 2-2AB ∙AC cos A = 6. …………………12分18.(本小题满分12分) 【解析】:(Ⅰ)总人数:28002.0528=⨯=N ,,28=a第3组的频率是:4.0)02.006.002.002.0(51=+++⨯-所以1124.0280=⨯=b …………………………………………………4分(Ⅱ)因为年龄低于40岁的员工在第1,2,3组,共有1681122828=++(人), 利用分层抽样在168人中抽取42人,每组抽取的人数分别为:第1组抽取的人数为71684228=⨯(人), 第2组抽取的人数为71684228=⨯(人), 第3组抽取的人数为2816842112=⨯(人), 所以第1,2,3组分别抽7人、7人、28人.………………………………8分(Ⅲ)假设0H :“是否喜欢看国学类书籍和性别无关系”,根据表中数据,求得2K 的观测值240(141448) 6.8605 6.63522182218k ⨯⨯-⨯=≈>⨯⨯⨯,查表得2( 6.635)0.01P K ≥=,从而能有99%的把握认为该单位员工是否喜欢阅读国学类书籍和性别有关系…………………………12分 19.(本小题满分12分)【解析】:(Ⅰ)证明:ABCD 是菱形,∴AD DC =,OD AC ⊥在ADC ∆中,12,120AD DC ADC ==∠=, ∴6OD = 又M 是BC 中点,∴16,2OM AB MD === 222OD OM MD +=, ∴DO OM ⊥,OM AC ⊂面ABC ,,OMAC O =∴OD ⊥面ABC . ………………6分(Ⅱ)解:取线段AO 的中点E ,连接NE.∵N 是棱AD 的中点,∴//12NE DO =.∵由(Ⅰ)得OD ⊥面ABC ,∴NE ⊥面ABC 在ABM ∆中,12,6,120AB BM ABM ==∠=1sin 2ABM S AB BM ABM ∆∴=⋅⋅⋅∠11262=⋅⋅=∴11111832223M ABN M ABD D ABM ABMV V V S OD ---====. ……………12分20.(本小题满分12分)【解析】:(Ⅰ)由题意知△ABP 是等腰直角三角形,a =2,B (2,0), 设Q (x 0,y 0),由32PQ QB =,则0064,55x y ==-,代入椭圆方程,解得b 2=1, ∴椭圆方程为2214x y +=.……………5分(Ⅱ)由题意可知,直线l 的斜率存在,方程为y=kx ﹣2,设M (x 1,y 1),N (x 2,y 2),则22214y kx x y =-⎧⎪⎨+=⎪⎩,整理得:(1+4k 2)x 2﹣16kx+12=0, 由韦达定理可知:x 1+x 2=21614k k +,x 1x 2=21214k +,……………8分由直线l 与E 有两个不同的交点,则△>0,即(﹣16k )2﹣4×12×(1+4k 2)>0,解得:k 2>34,………①……………9分 由坐标原点O 位于以MN 为直径的圆外,则0OM ON >,即x 1x 2+y 1y 2>0, 则x 1x 2+y 1y 2=x 1x 2+(kx 1﹣2)(kx 2﹣2)=(1+k 2)x 1x 2﹣2k×(x 1+x 2)+4 =(1+k 2)21214k +﹣2k×21614kk++4>0, 解得:k 2<4,………………………………………………②……………11分综合①②可知:34<k 2<4k <2或﹣2<k直线l 斜率的取值范围(﹣2,2).……………12分21.(本小题满分12分)【解析】:(Ⅰ)因为 (1)f e =,故(),a b e e -=故1a b -=……………………① 依题意,(1)2f e '=-;又23()(32)x f x x x e '=--+,故42a b -=-…………② 联立①②解得2,1a b == ………………………………………………5分(Ⅱ)证明:要证()()2f x g x ->,即证3ln 22x x xe e x x->+……………6分 令3()2x x h x e e x =-∴322()(32)(1)(22)x x h x e x x e x x x '=--+=-++- 故当(0,1)x ∈时,0,10;x e x -<+>令2()22p x x x =+-,因为()p x 的对称轴为-1x =,且(0)(1)0p p ⋅< 故存在0(0,1)x ∈,使得0()0p x =故当0(0,)x x ∈时,2()220p x x x =+-<,故2()(1)(22)0xh x e x x x '=-++->,即()h x 在0(0,)x 上单调递增当0(,1)x x ∈时,2()220p x x x =+->,故2()(1)(22)0xh x e x x x '=-++-<即()h x 在0(,1)x 上单调递减 又因为(0)2,(1)h h e ==故当(0,1)x ∈时,()(0)2h x h >=………………10分又当(0,1)x ∈时,ln ln 0,22x xx x <∴+<………………11分 所以3ln 22x x x e e x x->+,即()()2f x g x ->………………12分22. (本小题满分10分)选修4-4:坐标系与参数方程【解析】:(Ⅰ)圆C 的极坐标方程2ρ=,直线l 的极坐标方程ρ=4sin θ+cos θ. ………………5分(Ⅱ)设,,P Q R 的极坐标分别为12(,),(,),(,)ρθρθρθ,因为124,2sin cos ρρθθ==+又因为2OP OR OQ =⋅,即212ρρρ=⋅2122161(sin cos )2ρρρθθ∴==⨯+, 81sin 2ρθ∴=+ ………………10分23. (本小题满分10分)选修4-5:不等式选讲【解析】: (Ⅰ)当0x <时,原不等式可化为20x x -+<,解得0x >,所以x 不存在;当102x ≤<时,原不等式可化为20x x --<,解得0x >,所以102x <<; 当12x ≤时,原不等式可化为211x x --<,解得2x <,所以122x ≤< 综上,原不等式的解集为{}02x x <<<.………………5分 (Ⅱ)因为22()()1f x f a x x a a x a x a -<--+=-⋅+- 12121x a x a a x a a <+-=-+-≤-+- 1212(1)a a <++=+所以()()2(1)f x f a a -<+………………10分。

高三第二次模拟数学试题(文科).doc

高三第二次模拟数学试题(文科).doc

高三第二次模拟试题数学试卷(文科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集},71{N x x x U ∈≤≤=,}3,2,1{=A ,若U C }7,6,5,4,2,1{)(=⋂B A ,则 集合B 可能为( )A .}4,3,2{B . }5,4,3{C .}6,5,4{D .}7,6,5{2.集合}),1)(1()1({22N x x x x x x x A ∈+-+≥+=,},3228{N x x x x B ∈>-=,则集合B A ⋂的元素个数为( )A .1个B .3个C .5个D .7个3.关于x 的一元二次方程0122=++x ax 至少有一个负根的充要条件为( )A .10≤<aB .1<aC .1≤aD .010<≤<a a 或4.若角α为第一象限角,则角2α为( ) A .第一象限角 B .第二象限角 C .第一或第三象限角 D .第二或第四象限角 5.已知向量R x x OA x ∈-+=),21),1(lg(12,O 为坐标原点,则点A 在平面的( )A .第一象限B .第二象限C .第三象限D .第四象限6.关于无穷项等差数列}{n a 的描述,错误的一项为( )A .将数列的前m 项去掉,其余各项组成的新数列是等差数列.B .将数列中项数为7的倍数的项留下,其余项去掉,组成的新数列是等差数列.C .存在由数列中的无穷多项构成的新数列,其为等比数列.D .存在另一个无穷项等差数列}{n b ,使得数列}{n n b a +是等比数列.7.若有且仅有一个实数x 满足方程x a x lg 21)lg(=-,则实数a 的取值范围是( ) A .41-≥a B .0>a C .0≥a 或41-=a D .0>a 或41-=a 8.已知椭圆)0(12222>>=+R a R y a x 和)0(12222>>=+b R bx R y 的离心率相同,则( ) A .R b a 2=+ B .2R ab = C .R b a 2=+ D .2222R b a =+9.某城市现有人口总数为100万,若希望20年后该城市的人口控制在115万和120万之间,则该城市人口总数的年平均增长率最好控制在( )A .%7.0~%5.0B .%9.0~%7.0C .%1.1~%9.0D .%3.1~%1.110.过正方体中心的平面截正方体所得的平面图形可能为( )A .三角形B .梯形C .五边形D .六边形 11.将数字3,4,5,6,7排成一行,使得相邻两个数都互质,则可能的排列方法共有( ) A .30种 B .36种 C .42种 D .48种 12.如图,点P 是圆周上一动点,设t POx =∠,则以PO 为弦的 POx ∠内部的弓形面积S 是t 的函数,其函数图象可能为 ( )A B C D第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知ABC ∆中, 60,8,5=∠==C b a ,则CA BC ⋅=_____________.14.已知数列}{n a 满足:)(,)21(,1*11N n a a a n n n ∈==+,则2007a =______________.15.已知函数⎩⎨⎧=为无理数,为有理数,x 0x 1)(x f ,则关于x 的不等式0)1()()]1()([2≤-+-++x f x f x x f x f x 的解集为_______________.16.对于)2,0(π∈x ,不等式16cos sin 122≥+xp x 恒成立,则p 的取值范围是_________. 三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数R x x x x f ∈-+-=),4cos(46)4sin(42)(ππ. (1)求函数)(x f y =的单调递增区间.(2)函数)(x f y =的图象可以由R x x y ∈=,2sin 2的图象怎样变换得到?18.(本小题满分12分)如图,直三棱柱111C B A ABC -中, 90,=∠==ABC a BC AB ,直线1AB 与侧面C C AA 11成角为 30.(1)求1AA 的长度.(2)证明:11AB C A ⊥.19.(本小题满分12分)A 、B 两支兵乓球队进行团体对抗赛,每队各有三名队员,A 队的三名队员是321,,A A A ,B 队的三名队员是321,,B B B ,且i A 对j B 的胜率为)3,1(≤≤+j i ji i .若1A 对2B ,2A 对3B ,3A 对1B ,比赛采用三局二胜制.(1) 求A 队取胜的概率.(2) 如何对阵,A 队的胜率最高?(直接写出最后对阵方式和胜率即可)20.(本小题满分12分)已知一段抛物线)11(122<<-++=x x x y ,过该段抛物线上一动点P 作抛物线的切线,交x 轴于A 点,交y 轴于B 点.O 为坐标原点.(1)写出AOB ∆的面积S 与点P 横坐标t 之间的函数关系.(2) 求S 的最大值及此时点P 的坐标.21.(本小题满分12分)已知数列}{n a 满足:)(1211*2N n n n a S n n ∈--=-,其中n S 为数列}{n a 前n 项和. (1) 写出一个满足条件的数列}{n a 的通项公式.(2) 满足条件的数列}{n a 是否唯一?若唯一,请证明;若不唯一,给数列}{n a 增加一个限定条件使其唯一,并证明.22.(本小题满分14分) 已知双曲线),0,(12222b a b a by a x ≠>=-,P 为双曲线右支上一动点,过P 向两条渐近线x a b y =和x ab y -=作垂线,垂足分别为A 和B ,O 为坐标原点. (1)证明:PB PA ⋅为定值.(2)若A 点始终在第一象限内,B 点始终在第四象限内,求双曲线离心率e 的取值范围.(3)在(2)的条件下,求四边形PAOB 的面积最小时,点P 的坐标.东北育才学校2007-2008学年度高三第二次模拟试题数学试卷(文科)参考答案一、选择题1.B ;2.C ;3.D ;4.C ;5.D ;6.C ;7.C ;8.B ;9.B ;10.D ;11.B ;12.D .二、填空题13.20-;14.100321;15.}1{-;16.9≥p . 三、解答题17.(1)解:]23)4cos(21)4[sin(22)(⋅-+⋅-=ππx x x f =)34sin(22ππ+-x = )12sin(22π+x ……………………………………………………4分 令221222πππππ+≤+≤-k x k ,得:12521272ππππ+≤≤-k x k 所以,)(x f 的单调增区间为Z k k k ∈+-],1252,1272[ππππ. …………………………………………………………………………6分(2)解:①将x y 2sin 2=图象上的所有点的横坐标都扩大为原来的2倍,纵坐标不变,得到函数x y sin 2=的图象.……………………………………8分②将函数x y sin 2=图象上的所有点向左平移12π个单位,得到函数 )12sin(2π+=x y 的图象.……………………………………………10分③将函数)12sin(2π+=x y 图象上所有点的纵坐标缩小为原来的21倍,横坐标不变,即得到函数)(x f y =的图象.………………………………12分18.(1)解:设x AA =1,取11C A 中点M ,连接AM M B ,1.由111C B A ∆为等腰三角形及直三棱柱的性质可知:C C AA M B 111面⊥,即AM B 1∠为直线1AB 与侧面C C AA 11的成角.……………………………………………………4分由于2211,22x a AB a M B +==,且21sin 111==∠AB M B AM B ,解得:a x AA ==1.…………………………………………………………8分(2) 证明:连接B A 1,由直三棱柱性质可知:B A 1为C A 1在面11ABB A 上的射影. 由于11ABB A 为正方形,知11AB B A ⊥,则由三垂线定理可知:11AB C A ⊥. ……………………………………………………………………………12分19.(1)解:设321,,A A A 的胜率分别为321,,p p p ,则43,52,31321===p p p ,A 队若取胜,必须胜两局或者三局,则A 队取胜的概率)(A P =)1(321p p p - +)1(132p p p -+321213)1(p p p p p p +-=6029.………………6分 (2)解:对阵方式为231231;;B A B A B A 对对对,……………………………10分A 队取胜的概率为6031.……………………………………………12分 20.(1)解:由22'+=x y 及)12,(2++t t t P ,过P 点的切线方程为:))(22()12(2t x t t t y -+=++-…………………………3分令0=x ,得21t y -=,令0=y ,得21-=t x , 所以AOB ∆面积211212-⋅-=t t S ,又11<<-t ,则 )11)(1(4123<<-+--=t t t t S …………………………6分 (2)解:)1)(13(41)123(412'-+=--=t t t t S ,……………8分 由11<<-t 知: 当)31,1(--∈t 时,0'>S ,即函数)1(4123+--=t t t S 在)31,1(--上为增函数; 当)1,31(-∈t 时,0'<S ,即函数)1(4123+--=t t t S 在)1,31(-上为增函数;………………………………………………………………10分所以,当31-=t 时,S 取得最大值278,此时P 点坐标为)94,31(-. ………………………………………………………………………12分 21.(1)解:数列}{n a :)(12*N n n a n ∈-=即满足条件.…………………4分(2)解:满足条件的数列}{n a 不唯一.令1=n 得:0111=-a S ,即111==S a , 再由12112--=-n n a S n n 得:11212+--=n n a n n S ① 又11)1(21)1(121+-+-+=++n n a n n S 112212+++=+n a n n n ② ②-①得;n n n a n n a n n n a 1211222121---++=++,即n n a n n a n n 121121212--=+-+(*) ……………………………………………………………………………………8分 则1=n 时,(*)恒成立,无法确定2a 的值;当2≥n 时,(*)式即为12121-=++n a n a n n ,由此可得),2(312*2N n n a n a n ∈≥-= 若2a 为确定的值,则满足条件的数列}{n a 唯一.因此我们给数列}{n a 增加一个限定条件:32=a 即可,此时数列}{n a 的通项为 )(12*N n n a n ∈-=.…………………………………………………………12分22.(1)证明:设),(00y x P ,则1220220=-by a x ,即22202202b a y a x b =-. P 点到渐近线x a b y =的距离为2200b a bx ay PA +-=,同理2200ba bx ay PB ++= 所以PB PA ⋅=⋅+-2200b a bx ay 2200b a bx ay ++=222222202202b a b a b a x b y a +=+-为定值. …………………………………………………………………………………………3分 (2)解:直线PA 的方程为:)(00x x b a y y --=-,与渐近线x ab y =联立解得A 点横坐标22002b a aby x a x A ++=,同理B 点横坐标为22002b a aby x a x B +-=.…………………………………………………………………………………………5分 A 点第一象限,B 点在第四象限,等价于0>A x 且0>B x ,即022002>++b a aby x a 且022002>+-ba aby x a ,所以002aby x a >, 即00by ax >,平方得202202yb x a >恒成立.又22202202b a y a x b =-,则2222022202a b a x b b x a -⋅>, 即420242)(b x a b a ->-对于),[0+∞∈a x 恒成立,又b a ≠, 因此0242>-a b a ,即b a >,由此可得:.21<<e ……………………9分 (3)解:四边形PAOB 的面积为PAB ∆面积与AOB ∆面积和,而PAB ∆面积为APB PB PA ∠⋅sin 21,是定值,所以我们只要考察AOB ∆面积. AOB ∆面积AOB OB OA S ∠⋅=sin 21,而AOB ∠为定值, 我们只要考察B A x a bx a bOB OA 22)(1)(1-+⋅+=⋅= ⋅+222a b a 22002b a aby x a ++22002b a aby x a +-⋅=22202202b a y b x a +-的最小值. 由(2)知b a >,且22202202b a y a x b =-,所以≥-202202y b x a 222024202ba yb a x a =-4202202)(a y a x b =- 当且仅当00=y ,即P 点坐标为)0,(a 时取等号.所以,四边形PAOB 的面积最小时,点P 的坐标为)0,(a .…………14分。

2018届好教育云平台高三第二次模拟考试(二模)仿真卷(三)理科数学-教师版

2018届好教育云平台高三第二次模拟考试(二模)仿真卷(三)理科数学-教师版

2018届好教育云平台高三第二次模拟考试仿真卷理科数学(三)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.[2018·保定调研]已知复数z 满足ii z z+=,则z =( ) A .11i 22+B .11i 22-C .11i 22-+D .11i 22--【答案】A【解析】设()i ,z a b a b =+∈R ,则由已知有i i z z +=,()1i i a b b a ++=-+,所以1a bb a =-+=⎧⎨⎩,解得1212a b ⎧⎪⎪⎨==-⎪⎪⎩,所以11i 22z =-,故11i 22z =+,选A . 2.[2018·集宁一中]已知集合{|U x y ==,9{|log }A x y x ==,{|2}x B y y ==-,则()=U AB ð( )A .∅B .RC .{}|0x x >D .{}0【答案】C【解析】由题意得U =R ,{}|0A x x =>,因为20x y =-<,所以{|0}B y y =<,所以{|0}U B x x =≥ð,故(){}|0U AB x x =>ð,故选C .3.[2018·山东师大附中]设随机变量X 服从正态分布()2,N μσ,若(4)(0)P X P X >=<,则μ=( ) A .1 B .2C .3D .4【答案】B【解析】因为(4)(0)P X P X >=<,所以2μ=.故选:B .4.[2018·成都七中]当点()3,2P 到直线120mx y m -+-=的距离最大时,m 的值为( ) AB .0C .1-D .1【答案】C【解析】直线120mx y m -+-=过定点1(2)Q ,,所以点()3,2P 到直线120mx y m -+-=的距离最大时,PQ1m ∴=-,选C . 5.[2018·柳州模拟]函数()()1cos sin f x x x =+在[]π,π-上的图象的大致形状是( )A . B.C .D .【答案】A【解析】()()()1cos sin f x x x f x -=-+=-,所以()f x 是奇函数,故C 错误;D 错误;()222sin cos cos 2cos cos 1f x x x x x x '=-++=+-,得取到极值,所以A 正确.故选A .6.[2018·漳州调研]某三棱锥的三视图如图所示,则该三棱锥的最长棱的长度为( )此卷只装订不密封班级 姓名 准考证号 考场号 座位号正(主)视图左视图俯视图AB.C .3D.【答案】C【解析】在棱长为2的正方体1111ABCD A B C D -中,M 为AD 的中点,该几何体的直观图如图中三棱锥11D MB C,故通过计算可得1111D C D B B C ===,1D M MC ==,13MB =,故最长棱的长度为3,故选C .ABC DA 1B 1C 1D 1M7.[2018·凯里一中]公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在阿基里斯前面1000米处开始,和阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米;当阿基里斯跑完下一个100米时,乌龟仍然前于他10米.当阿基里斯跑完下一个10米时,乌龟仍然前于他1米……,所以,阿基里斯永远追不上乌龟.根据这样的规律,若阿基里斯和乌龟的距离恰好为210-米时,乌龟爬行的总距离为( )A .410190-B .5101900-C .510990-D .4109900-【答案】B【解析】根据条件,乌龟每次爬行的距离构成等比数列,公比为110,当阿基里斯和乌龟的距离恰好为210-米时,乌龟爬行的总距离为552110011********* (101900110)-⎛⎫- ⎪-⎝⎭+++==-,故选B . 8.[2018·赤峰期末]设0ω>图象重合,则ω的最小值是( )A .23B .43C .3D .32【答案】D【解析】图象向右平单位后得到函数解析式为k ∈Z ,k ∈Z ,∵0ω>,∴ω的最小值是31322⨯=,故选D . 9.[2018·宜昌一中]执行如图所示的程序框图,若输入1m=,3n =,输出的 1.75x =,则空白判断框内应填的条件为( )A .1m n -<B .0.5m n -<C .0.2m n -<D .0.1m n -<【答案】B【解析】由程序框图,得程序运行过程为:1m =,3n =,2x =,2230->,1m =,2n =,1m n -=;1m =,2n =, 1.5x =,21.530-<, 1.5m =,2n =,0.5m n -=; 1.5m =,2n =, 1.75x =,21.7530->, 1.5m =, 1.75n =,0.25m n -=;因为输出的结果为1.75x =,所以判断框内应填“0.5mn -<”.故选B .10.[2018·汕头期末]e 为自然对数的底数),若()0f x >在()0,+∞上恒成立,则实数m 的取值范围是( )A .(),2-∞B .(),e -∞CD【答案】C【解析】()0,+∞()0,+∞上恒成立,0x >02x <<时,()0g x '<, ()g x 单调递减;当2x >时,()0g x '>,()g x 单调递增.故当2x =时,()g x 取得最小m C .11.[2018·定州中学]设函数()f x 是定义在()0,+∞上的单调函数,且对于任意正数x ,y有()()()f xy f x f y =+,已知112f ⎛⎫=- ⎪⎝⎭,若一个各项均为正数的数列{}n a 满足()()()()*11n n n f S f a f a n =++-∈N ,其中n S 是数列{}n a 的前n 项和,则数列{}n a 中第18项18a =( ) A .136B .9C .18D .36【答案】C【解析】()f x 是定义域在()0+∞,上的单调函数,数列{}n a 1n =时,可得11a =;当2n ≥∴()()1110n n n n a a a a --+--=,∵0n a >,∴110n n a a ---=,即11n n a a --=,∴数列{}n a 为等差数列,11a =,1d =;∴()111n a n n =+-⨯=,即n a n =,所以1818a =,故选C .12.[2018·佛山质检]双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为1F ,2F ,焦距2c ,以右顶点A 为圆心的圆与直线:0l x c +=相切于点N ,设l 与C 交点为P ,Q ,若点N 恰为线段PQ 的中点,则双曲线C 的离心率为()A B.C .2D .【答案】C【解析】由直线方程可得直线:0l x c -+=过双曲线的左焦点,倾斜角为30︒,直线与圆相切,则:AN l ⊥,即1ANF △是直角三角形,结合1AF a c =+,可得:)N y a c =+,联立直线:0l x c -+=与双曲线2222:1(0,0)x y C a ba b-=>>的方程可得:()2222222230baycy b c b a --+-=,则:122N y yy +==, )a c +=,结合222b c a =-,整理可得:323340c ac a -+=,据此可得关于离心率的方程:32340e e -+=,即()()2120e e +-=,∵双曲线中1e >,2e ∴=.第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.[2018·寻乌中学]已知平面向量a ,b,1=b ,. 【答案】22.14.[2018·潜江城南中学]已知实数x ,y 满足条件1,4,20,x y x y x y --+-⎧⎪⎨⎪⎩≥≤≤若存在实数a 使得函数(0)z ax y a =+<取到最大值()z a 的解有无数个,则a =_________.【答案】1-【解析】由约束条件画出可行域如下图,()1.5,2.5A ,84,33B ⎛⎫⎪⎝⎭,()2,1C --,目标函数可化为y ax z =-+,0k a =->1AC k =,取最大值即截距最大,且有无数个解,所以目标函数与边界重合,当12k a =-=,截距为最小值,不符,当1k a =-=时,符合.1a =-,max 1z =,填1-.15.[2018·赤峰期末]在直三棱柱111ABC A B C -中,底面为等腰直角三角形,2AB BC ==,11AA =,若E 、F 、D 分别是棱AB 、CB 、11A C 的中点,则下列四个命题:①1B E FD ⊥;②三棱锥1A BCC -的外接球的表面积为9π;③三棱锥1B DEF -的体积为13;④直线1C E 与平面ABC其中正确的命题有__________.(把所有正确命题的序号填在答题卡上) 【答案】①②③【解析】根据题意画出如图所示的直三棱柱111ABC A B C -:其中,底面为等腰直角三角形,2AB BC ==,11AA =,E 、F 、D 分别是棱AB 、CB 、11A C 的中点.对于①,取11A B 中点G ,连接EG ,BG 交1B E 于点O ,连接DG .∵E 为AB 中点,2AB =,11AA =,∴四边形1BEGB 为正方形,则1BG B E ⊥,在111A B C △中,D ,G 分别为11A B ,11A C 的中点,则DG ∥11B C ,且1112DG B C =. ∵F 为BC 的中点,且BC ∥11B C ,∴BF ∥DG 且BF DG =, ∴四边形DFBG 为平行四边形,∴DF ∥BG ,∴1B E FD ⊥,故正确;对于②,易得1BC =,则221459AB BC +=+=.∵22211819AC AC CC =+=+=, ∴22211AB BC AC +=∴三棱锥1A BCC -的外接球的球心在线段1AC 的中点处,则外接球的半径为32,∴三棱锥1A BCC -对于③,易得1B D =EF =.在Rt DGE △中,11112DG B C ==,11EG AA ==,DE ==DF =,则三棱锥1B DEF -为正四面体,其体积为111323V =⨯=,故正确;对于④,直线1C E 在平面ABC 上的投影为直线CE ,则1CEC ∠为直线1C E 与平面ABC 所成的角,在1Rt C CE △中,11tan CC CEC CE∠===≠案为①②③.16.[2018·曲阜模拟]若函数()()3F x f x =-的所有零点依次记为123123,,,,...n n x x x x x x x x <<<<,则1231222n n x x x x x -+++++=__________. 【答案】445πk ∈Zk ∈Z1n -π为公差的等差数列,第1n -,解得31n =,三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:60分,每个试题12分.17.[2018·集宁一中]在ABC △中,角A ,B ,C 所对的边分别为a,b ,c ,且满足sin sin sin sin sin C B a A b B c C =+-.(1)求角C 的大小;(2)若()cos cos 22a B b k A π⎛⎫-=π+ ⎪⎝⎭(k ∈Z )且2a =,求ABC △的面积.【答案】(1)6C π=;(2)ABC S =△.【解析】(1)由sin sin sin sin sin C B a A b Bc C =+-得:222sin C a b c=+-,2222a b c Cab +-=cos CC =,∴tan C =,∴6C π=.·······6分(2)由()cos cos 22a B b k A π⎛⎫-=π+ ⎪⎝⎭(k ∈Z ),得sin cos a B b A =,由正弦定理得sin cos A A =,∴4A π=.根据正弦定理可得2sin sin 46c=ππ,解得c=,∴()11sin 22246ABC S ac B A C ππ⎛⎫==⨯π--=+= ⎪⎝⎭△····12分 18.[2018·德化一中]2017年某市政府为了有效改善市区道路交通拥堵状况出台了一系列的改善措施,其中市区公交站点重新布局和建设作为重点项目.市政府相关部门根据交通拥堵情况制订了“市区公交站点重新布局方案”,现准备对该“方案”进行调查,并根据调查结果决定是否启用该“方案”.调查人员分别在市区的各公交站点随机抽取若干市民对该“方案”进行评分,并将结果绘制成如图所示的频率分布直方图.相关规则为:①调查对象为本市市民,被调查者各自独立评分;②采用百分制评分,[60,80)内认定为满意,不低于80分认定为非常满意;③市民对公交站点布局的满意率不低于75%即可启用该“方案”;④用样本的频率代替概率.(1)从该市800万人的市民中随机抽取5人,求恰有2人非常满意该“方案”的概率;并根据所学统计学知识判断该市是否启用该“方案”,说明理由.(2)已知在评分低于60分的被调查者中,老年人占13,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中抽取3人担任群众督查员,记ξ为群众督查员中的老人的人数,求随机变量ξ的分布列及其数学期望E ξ. 【答案】(1)见解析;(2)见解析.【解析】(1)根据频率分布直方图,被调查者非常满意的频率是()10.0160.004105+⨯=, 用样本的频率代替概率,从该市的全体市民中随机抽取1人,该人非常满意该项目的概率为15,·······2分现从中抽取5人恰有2·4分根据题意:60分或以上被认定为满意或非常满意,在频率分布直方图中,评分在[]60,100的频率为:()0.0280.0300.0160.00410+++⨯0.780.75=>,根据相关规则该市应启用该。

2018届高三第二次质量检测文科数学答案

2018届高三第二次质量检测文科数学答案

2018届高三第二次质量检测卷文科数学参考答案第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项符合要求.第II 卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.3; 14. [3,)+∞; 15.1(,1)2; 16.2π3+ 三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知三个集合:{}22log (58)1A x x x =∈-+=R ,{}22821R x x B x +-=∈=,{}22190R C x x ax a =∈-+->.(I )求A B ;(II )已知,A C B C ≠∅=∅,求实数a 的取值范围.解:(Ⅰ){}{}25822,3R A x x x =∈-+==, ………………………........................2分 {}{}22802,4R B x x x =∈+-==-, ……………………….....................4分{}2,3,4.A B ∴=- ……………………....................…5分(Ⅱ),A C B C ≠∅=∅,2,4,3.C C C ∴∉-∉∈ …………………….................…6分{}22190,R C x x ax a =∈-+->22222222190,(4)4190,33190.a a a a a a ⎧-+-≤⎪∴-++-≤⎨⎪-+->⎩…………………….................…10分即35,222 5.a a a a -≤≤⎧⎪--≤≤-⎨⎪<->⎩或解得3 2.a -≤<-……………………….................11分 所以实数a 的取值范围是[3,2).--.................................................................................12分 18. (本小题满分12分)已知函数()()sin f x a x b ωθ=+-()x ∈R 的部分图象如图所示,其中,a b 分别是ABC ∆的角,A B 所对的边, ππ0,[,]22ωθ>∈-.(I )求,,,a b ωθ的值;(II )若cos ()+12CC f =,求ABC ∆的面积S .解:(Ⅰ)0,0a ω>>及图象特征知: ①()f x 的最小正周期2π3ππ2[()]π,88ω=--=2.ω=……………………….......................................................................................................2分②当()sin 1x ωθ+=-时,min ()1f x a b =--=; 当()sin 1x ωθ+=时,max ()1f x a b =-=.解得 1.a b ==………………………..................................................................................4分③ππ()))1188f θ-=-+-=,得ππ2π,42k θ-+=-π2π,4k θ=-.k ∈Z由ππ[,]22θ∈-得π.4θ=- 所以π2,, 1.4a b ωθ==-==…………………….....................................................…6分(II )由π()214f x x ⎛⎫=-- ⎪⎝⎭及cos ()+12C C f =得,πsin c s os o 4c C C C C ⎛⎫-=- ⎪⎝⎭=,即C C sin 21cos = ……………….............…..........................................................................8分又22sin cos 1C C +=,得552sin ,54sin 2±==C C …………………………...........…10分由0πC <<得,sin C =1sin 2S ab C ==……………………...........……12分 19.(本小题满分12分)中国移动通信公司早前推出“全球通”移动电话资费“个性化套餐”,具体方案如下:(I )写出“套餐”中方案1的月话费y (元)与月通话量t (分钟)(月通话量是指一个月内每次通话用时之和)的函数关系式;(II )学生甲选用方案1,学生乙选用方案2,某月甲乙两人的电话资费相同,通话量也相同,求该月学生甲的电话资费;(III )某用户的月通话量平均为320分钟,则在表中所列出的七种方案中,选择哪种方案更合算,说明理由.解: (Ⅰ) 30, 048,300.6(48) , 48.t y t t ≤≤⎧=⎨+⨯->⎩, ……………………..............……3分即:30, 048,0.6 1.2 , 48.t y t t ≤≤⎧=⎨->⎩………………………...........…4分(Ⅱ)设该月甲乙两人的电话资费均为a 元,通话量均为b 分钟.当048b ≤≤时, 甲乙两人的电话资费分别为30元, 98元,不相等;…….........5分 当170b >时, 甲乙两人的电话资费分别为1300.6(48)y b =+-(元),2980.6(170)y b =+-元, 21 5.20y y -=-<,21y y <; ……………......…6分当48170b <≤时, 甲乙两人的电话资费分别为300.6(48)a b =+-(元),98a =(元), 解得484.3b =所以该月学生甲的电话资费98元. …………….................................…8分(Ⅲ)月通话量平均为320分钟,方案1的月话费为:30+0.6×(320-48)=193.2(元); ……………….........9分方案2的月话费为:98+0.6×(320-170)=188(元); ……………..........…10分 方案3的月话费为168元. 其它方案的月话费至少为268元. …………….........…11分 经比较, 选择方案3更合算. ……………........…12分 20.(本小题满分12分)已知函数32()f x ax x b =++的图象在点1x =处的切线方程为13y =,其中实数,a b 为常数.(I )求,a b 的值;(II )设命题p 为“对任意1(2,)x ∈+∞,都存在2(1,)x ∈+∞,使得12()()1f x f x =”,问命题p 是否为真命题?证明你的结论.解: (I )32(),f x ax x b =++ 2()32.f x ax x '∴=+……………......................…1分(1)1,(1)32,f a b f a '=++=+∴函数()f x 的图象在点1x =处的切线方程为(1)(32)(1)y a b a x -++=+-, 即(32)21y a x b a =++-- ………………4分该切线方程为13y =, ∴1320,21,3a b a +=--=…………....................……5分 即2,0.3a b =-= ………….....................……6分(II )命题p 为真命题. ……………................…7分证明如下: 322(),3f x x x =-+ 2()222(1).f x x x x x '=-+=-- 当1x >时, ()0f x '<,()f x 在区间(1,)+∞单调递减,集合{}1()1,(,(1))(,).3R A f x x x f =>∈=-∞=-∞ ……………..................…9分当2x >时, ()f x 的取值范围是4(,(2))(,).3f -∞=-∞-集合132,(,0).()4R B x x f x ⎧⎫=>∈=-⎨⎬⎩⎭…………….................…11分从而.B A ⊆所以对任意1(2,)x ∈+∞,都存在2(1,)x ∈+∞,使得211(),()f x f x =即12()() 1.f x f x = ……………..................…12分21.(本小题满分12分) 已知函数1()ln ,1xf x a x x-=++其中实数a 为常数且0a >. (I )求函数()f x 的单调区间;(II )若函数()f x 既有极大值,又有极小值,求实数a 的取值范围及所有极值之和; (III )在(II )的条件下,记12,x x 分别为函数()f x 的极大值点和极小值点,求证:1212()()()22x x f x f x f ++<. 解:(Ⅰ) 函数2()ln 11f x a x x=+-+的定义域为∞(0,+),22222(1)()(1)(1)a ax a x af x x x x x +-+'=-=++, …………...........……1分 设222()2(1)4(1)44(12).g x ax a x a a a a =+-+∆=--=-,① 当12a ≥时, 0∆≤,()0,g x ≥()0f x '≥,函数()f x 在∞(0,+)内单调递增; …………..........……2分② 当102a <<时, 0∆>,方程()0g x =有两个不等实根:12x x ==,且1201.x x <<< 1()0()00,f x g x x x '>⇔>⇔<<或2.x x >12()0()0.f x g x x x x '<⇔<⇔<< .............................................3分综上所述,当12a ≥时, ()f x 的单调递增区间为∞(0,+),无单调递减区间;当102a <<时,()f x 的单调递增区间为1a a -(0,, 1a a -+∞(),单调递减区间.............................................................4分(II )由(I )的解答过程可知,当12a ≥时,函数()f x 没有极值. ......................................5分 当102a <<时,函数()f x 有极大值1()f x 与极小值2()f x ,121212(1), 1.x x x x a+=-=12()()f x f x ∴+=121211*********(1)(ln )(ln )ln()0.11(1)(1)x x x x a x a x a x x x x x x ---+++=+=++++ .....................................7分故实数a 的取值范围为1(0,)2,所有极值之和为0. ……………................8分 (III )由(II )知102a <<,且1211()(1)ln(1)212x x f f a a a a+=-=-+-, 12()()02f x f x +=.…………9分原不等式等价于证明当102a <<时,1ln(1)210a a a-+-<,即11ln(1)2a a-<-. ………………......................................10分设函数()ln 1h x x x =-+,则(1)0,h =当1x >时,1()10h x x'=-<. 函数()h x 在区间[1,)+∞单调递减,由102a <<知111a ->,1(1)(1)0h h a -<= ……………….....................................11分 . 即11ln(1)2a a-<-. 从而原不等式得证. ………………....................................12分22.[选修4−4:坐标系与参数方程] (本小题满分10分)在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l的参数方程为122(2x t t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数);曲线1C的极坐标方程为2cos ρθθ=+;曲线2C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数) (Ⅰ)求直线l 的直角坐标方程、曲线1C 的直角坐标方程和曲线2C 的普通方程;(Ⅱ)若直线l 与曲线1C 曲线2C 在第一象限的交点分别为,M N ,求,M N 之间的距离。

【信息卷】2018年好教育云平台高三文科数学最新信息卷(三)(教师版)

【信息卷】2018年好教育云平台高三文科数学最新信息卷(三)(教师版)

绝密 ★ 启用前2018年好教育云平台最新高考信息卷文 科 数 学(三)注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。

4、考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}|lg A y y x ==,集合{}|1B x y x ==-,则A B =( )A .[]0,1B .(]0,1C .[)0,+∞D .(],1-∞【答案】D【解析】∵{}|lg A y y x ===R,{(]|1B x y ===-∞,,∴(],1A B =-∞,故选D .2.在ABC △中,“0AB BC ⋅>”是“ABC △是钝角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】A【解析】若0AB BC ⋅>,则B ∠为钝角,故ABC △为钝角三角形;若ABC △为钝角三角形,则B ∠可能为锐角,此时0AB BC ⋅<,故选A .3.若过点()3,0A 的直线l 与曲线()2211x y -+=有公共点,则直线l 斜率的取值范围为( )A.( B.⎡⎣C.⎛ ⎝⎭D.⎡⎢⎣⎦【答案】D【解析】设直线l 的方程为()3y k x =-,代入圆的方程中,整理得()()222216290k x k x k +-++=,()24130k ∆=-≥,解得k ≤≤,故选D . 4.已知函数()()()cos 0πf x x θθ=+<<在π3x =时取得最小值,则()f x 在[]0,π上的单调递增区间是( ) A .π,π3⎡⎤⎢⎥⎣⎦B .π2π,33⎡⎤⎢⎥⎣⎦C .2π0,3⎡⎤⎢⎥⎣⎦D .2π,π3⎡⎤⎢⎥⎣⎦【答案】A【解析】∵函数()()()cos 0πf x x θθ=+<<在π3x =时取得最小值, ∴cos π13θ⎛⎫+=-⎪⎝⎭,∴ππ2π3k θ+=+,k ∈Z ,又∵0πθ<<,∴2π3θ=, 即()2πcos 3f x x ⎛⎫=+ ⎪⎝⎭,令2ππ2π2π3k x k -+≤+≤,k ∈Z , 解得5π2π2π2π33k x k -+≤≤-+,结合[]0,πx ∈, ∴()f x 在[]0,π上的单调递增区间是π,π3⎡⎤⎢⎥⎣⎦,故选A .5.设数列{}n a 是等差数列,且26a =-,66a =,n S 是数列{}n a 的前n 项和,则( ) A .43S S < B .43S S =C .41S S >D .41S S =【答案】B【解析】设等差数列{}n a 的公差为d .∵26a =-,66a =,∴62412d a a =-=,即3d =.∴()632312n a n n =-+-=-, ∴119S a ==-,312396318S a a a =++=---=-,41234963018S a a a a =+++=---+=-,∴41S S <,34S S =,故选B .6.已知实数x ,y 满足20220 20x y x y x y --≤-+≥++≥⎧⎪⎨⎪⎩,则32z x y =-+的最小值为( )A .10-B .4-C .4D .6此卷只装订不密封班级 姓名 准考证号 考场号 座位号【答案】A【解析】画出不等式组表示的平面区域如图所示:由32z x y =-+得经过点A 时,的截距最小,此时z 最小.联立20 220x y x y --=-+=⎧⎨⎩,解得()6,4A ,代入到目标函数得362410z =-⨯+⨯=-.故选A .7.平面上三个单位向量a ,b ,c,则-a b 与+a c 夹角是( ) AB CD 【答案】D【解析】由题意得,向量a ,b ,c 1+=a c ,且()()2-⋅+=+⋅-⋅-⋅a b a c a a c a b b c2π2π2π13111cos11cos 11cos 133322=+⨯⨯-⨯⨯-⨯⨯=+=, 所以-a b 与+a c 的夹角为,且0πθ≤≤,所以-a b与+a c 的夹角为D.8.某几何体的三视图如图所示,则该几何体的体积是( )AB C D 【答案】B【解析】由三视图得该几何体是由半个球和半个圆柱组合而成,根据图中所给数据得该几何体的体B . 9.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割术,就是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.按照这样的思路刘徽把圆内接正多边形的面积一直算到了正3072边形,如图所示是利用刘徽的割圆术设计的程序框图,若输出的24n =,则p 的值可以是( )(参考数据:sin150.2588︒≈,sin7.50.1305︒≈,sin3.750.0654︒≈)A .2.6B .3C .3.1D .3.14【答案】C【解析】模拟执行程序,可得:6n =S p ≥,12n =,6sin 303S =⨯︒=,不满足条件S p ≥,24n =,12sin15120.2588 3.1056S =⨯︒=⨯=,满足条件S p ≥,退出循环,输出n 的值为24.故 3.1p =.故选C .10.已知双曲线()222210,0x y a b ab-=>>与抛物线28y x=有一个公共的焦点F ,且两曲线的一个交点为P ,若5PF =,则双曲线的离心率为( )ABC D .2【答案】D【解析】∵抛物线28y x =的焦点坐标()2,0F ,4p =,∵抛物线的焦点和双曲线的焦点相同,∴2p c=,2c=,∵设(),P m n,由抛物线定义知:252pPF m m=+=+=,∴3m=,∴P点的坐标为(3,,∴222249241a ba b+=-=⎧⎪⎨⎪⎩,解得:2213ab⎧=⎨=⎩,2c=,则双曲线的离心率为2,故选D.11.在平行四边形ABCD中,90ABD∠=︒,且1AB=,BD=,若将其沿BD折起使平面ABD⊥平面BCD,则三棱锥A BDC-的外接球的表面积为()A.2πB.8πC.16πD.4π【答案】D【解析】在平行四边形ABCD中,90ABD∠=︒,若将其沿BD折起使平面ABD⊥平面BCD,可得如图所示的三棱锥A BDC-:其中,三棱锥A BDC-镶嵌在长方体中,即三棱锥A BDC-的外接球与长方体的外接球相同.∵1AB=,BD∴三棱锥A BDC-的外接球的表面积为24π14π⨯=,故选D.12.且()()2g x f x m x m=-+在(]1,1-内有且仅有两个不同的零点,则实数m的取值范围是()A B]1,4⎛-+∞⎝C D)1,4⎡-+∞⎢⎣【答案】C【解析】由()()+20g x f x mx m=-=,即()()2f x m x=-,分别作出函数()f x和()2y m x=-的图象如图,由图象可知()()11,f h x=表示过定点()2,0A的直线,当()h x过()1,1时1m=-,此时两个函数有两个交点,当()h x过个函数有两个交点,所以()()2g x f x mx m=-+在(]1,1-内有且仅有两个不同的零点,实数m的C.第Ⅱ卷本卷包括必考题和选考题两部分。

2018年高三最新 高三文科数学第二次模拟试卷 精品

2018年高三最新 高三文科数学第二次模拟试卷 精品

高三文科数学第二次模拟试卷一、选择题(本大题满分50分,共10个小题,每小题5分)1、设全集}9,7,5,3,1{••••U =,集合}7,5{}9|,5|,1{•A ••C •a •A u =-=,则a 的值是( )A 、2B 、8C 、2-或8D 、2或82、从8名女生,4名男生中选出6名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法种数为( )A 、412CB 、3438C C C 、2448C C D 、2448A A3、||·||=是b a ,共线的( ) A 、必要不充分条件 B 、充分不必要条件 C 、充要条件D 、既不充分也不必要条件4、函数)1,0(log )(≠>=a a x x f a ,若1)()(21=-x f x f ,则)()(2221x f x f -等于( ) A 、2 B 、1 C 、21D 、2log a5、函数)cos (sin cos 2x x x y +=的图象的一个对称中心的坐标是( ) A 、)0,83(π B 、)1,83(π C 、)1,8(πD 、)1,8(--π6、已知函数)(x f 满足))((23)1(R x x f x f ∈+=+,且1)0(=f ,则数列))}(({*∈N n n f 前20项的和为( )A 、335B 、315C 、325D 、3187、已知函数c x ax x f --=2)(,且不等式0)(2>--=c x ax x f 的解集为}12|{<<-x x ,则函数)(x f y -=的图象为( )ABC D8、点)1,3(-P 在椭圆)0(12222>>=+b a b y a x 的左准线上,过点P 且方向为=(2,-5)的光线,经直线y =-2反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A 、33 B 、31C 、22D 、219、已知γβα,,是三个平面,a ,b 是两条直线,有下列三个条件:①βγ⊂b a ,//;②βγ//,//b a ;③γβ⊂a b ,//如果命题“γβα⊂=⋂b a ,,且 ,则b a //”为真命题,则可以在横线处填入的条件是( )A 、①或②B 、②或③C 、①或③D 、只有②10、若不等式na n n 1)1(2)1(+-+<-对*∈N n 恒成立,则实数a 的取值范围是( ) A 、)23,3[-B 、)23,2(-C 、)23,2[-D 、)23,3(-二、填空题(本大题满分20分,共5个小题,每小题4分)11、若)()21(2006200622102006R x x a x a x a a x ∈++++=- ,则++++)()(2010a a a a=++++)()(2006030a a a a (用数字作答)12、把函数4)42(log 2+-=x y 的图象按向量平移后得到函数x y 4log 2=的图象,则= ;13、若实数x ,y 满足⎩⎨⎧≥≤-+-x y y x 25)2()1(22,则x+y 的最大值为 ;14、平面γβα、、两两垂直,点α∈A ,A 到γβ、距离都是3,P 是α上动点,P 到β的距离是到A 点距离的2倍,则P 点轨迹上的点到γ距离的最小值是 。

河南省淮滨2018届高考第二次模拟仿真数学文科试题(三)含解析AlUwKP

河南省淮滨2018届高考第二次模拟仿真数学文科试题(三)含解析AlUwKP

2017-2018下学期高三第二次模拟仿真测试卷文科数学(三)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.[2018·保定调研]已知复数z 满足ii z z+=,则z =( ) A .11i 22+B .11i 22-C .11i 22-+D .11i 22--【答案】A【解析】设()i ,z a b a b =+∈R ,则由已知有i i z z +=,()1i i a b b a ++=-+,所以1a bb a =-+=⎧⎨⎩,解得1212a b ⎧⎪⎪⎨==-⎪⎪⎩,所以11i 22z =-,故11i 22z =+,选A .2.[2018·集宁一中]已知集合3{|}U x y x ==,9{|log }A x y x ==,{|2}x B y y ==-,则()=U A B I ð( ) A .∅ B .RC .{}|0x x >D .{}0【答案】C【解析】由题意得U =R ,{}|0A x x =>,因为20x y =-<,所以{|0}B y y =<,所以{|0}U B x x =≥ð,故(){}|0U A B x x =>I ð,故选C .班级 姓名 准考证号 考场号 座位号3.[2018·渭南质检]如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .12C .8π D .4π 【答案】C【解析】根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积2S π=,则对应概率248P ππ==.故答案为:C .4.[2018·菏泽期末]已知直线210x ay -+=与直线820ax y -+=平行,则实数a 的值为( ) A .4 B .-4C .-4或4D .0或4【答案】B【解析】由于两直线平行,故()()280a a ⋅---⋅=,解得4a =-(当4a =时两直线重合,故舍去.)5.[2018·柳州模拟]函数()()1cos sin f x x x =+在[]π,π-上的图象的大致形状是( )A .B .C .D .【答案】A【解析】()()()1cos sin f x x x f x -=-+=-,所以()f x 是奇函数,故C 2x π=12f π⎛⎫= ⎪⎝⎭,故D 错误;()222sin cos cos 2cos cos 1f x x x x x x '=-++=+-,得3x π=可以取到极值,所以A 正确.故选A .6.[2018·丹东期末]某几何体的三视图如图所示,其中主视图,左视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,则该几何体的体积为( )A 2π166+ B .2π162+ C .2π136+ D .2π132+ 【答案】A【解析】该几何体是一个半球上面有一个三棱锥,体积为:311142121113223266V ⎛⎫π=⨯⨯⨯⨯+⨯π⨯=+ ⎪ ⎪⎝⎭,故选A . 7.[2018·凯里一中]公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在阿基里斯前面1000米处开始,和阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米;当阿基里斯跑完下一个100米时,乌龟仍然前于他10米.当阿基里斯跑完下一个10米时,乌龟仍然前于他1米……,所以,阿基里斯永远追不上乌龟.根据这样的规律,若阿基里斯和乌龟的距离恰好为210-米时,乌龟爬行的总距离为( )A 410190-B .5101900-C .510990-D .4109900-【答案】B【解析】根据条件,乌龟每次爬行的距离构成等比数列,公比为110,当阿基里斯和乌龟的距离恰好为210-米时,乌龟爬行的总距离为552110011011010010 (101900110)-⎛⎫- ⎪-⎝⎭+++==-,故选B . 8.[2018·赤峰期末]设0ω>,函数sin 23y x ωπ⎛⎫=++ ⎪⎝⎭的图象向右平移43π个单位后与原图象重合,则ω的最小值是( ) A .23B .43C .3D .32【答案】D【解析】将sin 23y x ωπ⎛⎫=++ ⎪⎝⎭的图象向右平移43π个单位后得到函数解析式为44sin 2sin 23333y x x ωωω⎡⎤ππππ⎛⎫⎛⎫=-++=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.∵平移后与原图象重合,∴423k ωπ=π,k ∈Z ,即32k ω=,k ∈Z ,∵0ω>,∴ω的最小值是31322⨯=,故选D . 9.[2018·宜昌一中]执行如图所示的程序框图,若输入1m =,3n =,输出的 1.75x =,则空白判断框内应填的条件为( )A .1m n -<B .0.5m n -<C .0.2m n -<D .0.1m n -<【答案】B【解析】由程序框图,得程序运行过程为:1m =,3n =,2x =,2230->,1m =,2n =,1m n -=;1m =,2n =, 1.5x =,21.530-<, 1.5m =,2n =,0.5m n -=; 1.5m =,2n =,1.75x =,21.7530->, 1.5m =, 1.75n =,0.25m n -=;因为输出的结果为 1.75x =,所以判断框内应填“0.5m n -<”.故选B .10.[2018·承德联考]已知0λ>,若对任意的()0,x ∈+∞,不等式ln 0x x λ-≥恒成立,则λ的最小值为( )A .1eB .eC .e 2D .2e【答案】A【解析】令()ln x f x x λ=-,()1f x x λ'=-,由于0λ>,令()10f x x λ=-=',得1x λ=,可以得到()f x 在0,1λ⎛⎫ ⎪⎝⎭单调递减,在1,λ⎛+∞⎫⎪⎝⎭单调递增,所以()f x 在1x λ=时取得最小值,所以11n 1l 0f λλ⎛⎫=- ⎪⎝⎭≥,所以1e λ≥.故选A 选项.11.[2018·大庆一中]已知函数()2f x x ax =+的图象在点()()0,0A f 处的切线l 与直线220x y -+=n 项和为n S ,则20S 的值为( )A B C D 【答案】A【解析】因为()2f x x ax =+,所以()2f x x a '=+,又函数()2f x x ax =+的图象在点()()0,0A f 处的切线l 与直线220x y -+=平行,所以()02f a '==,所以()22f x x x =+,所以11113251222122462⎛⎫⨯+--= ⎪⎝⎭,本题选择A 选项.12.[2018·佛山质检]的左右焦点分别为1F ,2F ,焦距2c ,以右顶点A 为圆心的圆与直线相切于点N ,设l 与C 交点为P ,Q ,若点N 恰为线段PQ 的中点,则双曲线C 的离心率为( )A B C .2 D 【答案】C【解析】过双曲线的左焦点,倾斜角为30︒,直线与圆相切,则:AN l ⊥,即1ANF △是直角三角形,结合1AF a c =+,可得:联立直线与双曲线的方程可得:,结合222b c a =-,整理可得:323340c ac a -+=,据此可得关于离心率的方程:32340e e -+=,即()()2120e e +-=,∵双曲线中1e >,2e ∴=.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.[2018·寻乌中学]已知平面向量a ,b ,1=b .【答案】2【解析】22212444421442⎛⎫+=+⋅+=+⨯⨯⨯-+= ⎪⎝⎭a b a a b b ,故22+=a b ,填2.14.[2018·南宁二中]已知O 为坐标原点,若点(),M x y 为平面区域10,0,0x y x y y ⎧⎪⎨⎪⎩-++≥≤≥上的动点,则2z x y =-+的最大值是__________.【答案】2【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的解析式,平移直线2y x =,由图可知,当直线经过点()1,0B -时,直线的截距最大,此时目标函数取得最大值22z y x =-=.15.[2018·赤峰期末]以等腰直角三角形ABC 的底边BC 上的高AD 为折痕,把ABD △和ACD △折成互相垂直的两个平面,则下列四个命题: ①AB CD ⊥;②ABC △为等腰直角三角形;③三棱锥D ABC -是正三棱锥;④平面ABD ⊥平面BCD ;其中正确的命题有__________.(把所有正确命题的序号填在答题卡上) 【答案】①③④【解析】由题意得,如图所示,因为D 为BC 的中点,所以AD BC ⊥,又平面ABD ⊥平面ACD ,根据面面垂直的性质定理,可得CD ⊥平面ABD ,进而可得AB CD ⊥,所以①是正确的; 其中当ABC △为等腰直角三角形时,折叠后ABC △为等边三角形,所以②不正确;因为ABC △为等腰直角三角形,所以DA DB DC ==,所以D ABC -为正三棱锥,所以③正确; 由AD BD ⊥,AD DC ⊥,可得AD ⊥面BCD ,又AD ⊂面ABD , 则平面ABD ⊥平面BCD ,所以④是正确的,故正确的命题为①③④.16.[2018·曲阜模拟]已知函数()914sin 2066f x x x ππ⎛⎫⎛⎫=+ ⎪⎪⎝⎭⎝⎭≤≤,若函数()()3F x f x =-的所有零点依次记为123123,,,,...n n x x x x x x xx <<<<L ,则1231222n n x x x x x -+++++=L __________. 【答案】445π 【解析】262x k ππ+=+π,k ∈Z ,解得:62k x ππ=+,k ∈Z ,函数在910,6⎡π⎫⎪⎢⎣⎭的对称轴为6π,23π,……443π.关于最大值对称的对称轴间的距离为2π,所以12263x x ππ+=⨯=,2324233x x π+=⨯=π,以此类推,14488233n n x x -π+=⨯=π,这1n -项构成以首项为3π,π为公差的等差数列,第1n -项为883π,所以88332n ππ-=-π,解得31n =, 所以()()()12231883033 (4452)n n x x x x x x -ππ⎛⎫⨯+ ⎪⎝⎭++++++==π.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:60分,每个试题12分. 17.[2018·集宁一中]在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足23sin sin sin sin sin a C B a A b B c C =+-. (1)求角C 的大小;(2)若()cos cos 22a B b k A π⎛⎫-=π+ ⎪⎝⎭(k ∈Z )且2a =,求ABC △的面积.【答案】(1)6C π=;(2)31ABC S +=△.【解析】(1)由23sin sin sin sin sin a C B a A b B c C =+-得:22223sin ab C a b c =+-,∴2223sin 2a b c C ab +-=3sin cos C C =,∴3tan C =,∴6C π=.·······6分(2)由()cos cos 22a B b k A π⎛⎫-=π+⎪⎝⎭(k ∈Z ),得sin cos a B b A =,由正弦定理得sin cos A A =,∴4A π=. 根据正弦定理可得2sin sin 46c =ππ,解得2c =,∴()1131sin 22sin 2sin 22462ABC S ac B A C ππ+⎛⎫==⨯⨯π--=+= ⎪⎝⎭△.····12分 18.[2018·济南一中]韩国民意调查机构“盖洛普韩国”2016年11月公布的民意调查结果显示,受“闺蜜门”事件影响,韩国总统朴槿惠的民意支持率持续下跌,在所调查的1000个对象中,年龄在[20,30)的群体有200人,支持率为0%,年龄在[30,40)和[40,50)的群体中,支持率均为3%;年龄在[50,60)和[60,70)的群体中,支持率分别为6%和13%,若在调查的对象中,除[20,30)的群体外,其余各年龄层的人数分布情况如频率分布直方图所示,其中最后三组的频数构成公差为100的等差数列.(1)依频率分布直方图求出图中各年龄层的人数 (2)请依上述支持率完成下表: 年龄分布是否支持[30,40)和[40,50)[50,60)和[60,70)合计 支持 不支持 合计附表:()2P K k ≥ 0.150.10 0.05 0.025 0.010 0.005 0.001k2.072 2.0763.841 5.024 6.635 7.879 10.828(参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++参考数据:125×33=15×275,125×97=25×485)【答案】(1)年龄在[30,40)的群体有200人,[40,50)的群体有300人,[50,60)的群体有200人,[60,70)的群体有100人;(2)能在犯错误的概率不超过0.001的前提下认为年龄与支持率有关. 【解析】(1)设年龄在[50,60)的人数为x ,则最后三组人数之和为3x , 所以四组总人数为4x =800,得x =200, ·······2分则频率分布直方图中,年龄在[30,40)的群体有200人,[40,50)的群体有300人,[50,60)的群体有200人,[60,70)的群体有100人; ·······6分(2)由题意年龄在[30,40)和[40,50)的支持人数为6+9=15,[50,60)和[60,70)的人数为12+13=25. 填表如下年龄分布是否支持[30,40)和[40,50)[50,60)和[60,70)合计 支持 15 25 40 不支持 485 275 760 合计500300800 所以()2800152752548540760300500K ⨯⨯-⨯=⨯⨯⨯≈11.228>10.828,∴能在犯错误的概率不超过0.001的前提下认为年龄与支持率有关.·······12分19.[2018·盐城中学]如图,在四棱锥P ABCD -中,PC ⊥底面ABCD ,AD BC ∥,22AD BC ==,ABC △是以AC 为斜边的等腰直角三角形,E 是PD 上的点.求证:(1)AD ∥平面PBC ; (2)平面EAC ⊥平面PCD .【答案】(1)见解析;(2)见解析.【解析】(1)∵AD BC ∥,BC ⊂平面PBC ,AD ⊄平面PBC , ∴AD ∥平面PBC .·······6分(2)PC ⊥Q 底面ABCD ,AC ⊂底面ABCD ,PC AC ∴⊥·······7分 由题意可知,AD BC ∥且22AD BC ==,ABC △是等腰直角三角形,CD =,222CD AC AD ∴+=,即AC CD ⊥····9分 又PC CD C =Q I ,AC ∴⊥平面PCD ·······10分 AC ⊂Q 平面EAC ,∴平面EAC ⊥平面PCD ·······12分 20.[2018·顺德调研]已知四边形ABCD 的四个顶点在椭圆C :上,对角线AC 所在直线的斜率为1-,且AB AD =,CB CD =.(1)当点B 为椭圆C 的上顶点时,求AC 所在直线方程; (2)求四边形ABCD 面积的最大值.【答案】(1(2)3.【解析】(1)因为AB AD =,CB CD =,所以对角线AC 垂直平分线段BD . 因为直线AC 的斜率为1-,则直线BD 所在直线的斜率为1.又因为()01B ,,则直线BD 所在直线方程为1y x =+.·······1分 由22331x y y x +==+⎧⎨⎩,解得······2分 则BD 中点P 的坐标为······3分所以AC 所在直线方程为·······4分(2)设AC ,BD 所在直线方程分别为y x m =-+,y x n =+,()11B x y ,,()22D x y ,,BD 中点()00P x y ,. 由2233x y y x n ⎧+=⎨=+⎩,得2246330x nx n ++-=, 令248120n ∆=->,得24n <,······6分 (8)分······9分 ,所以BD 中点 由点P 在直线AC 上,得2n m =-,······11分 因为24n <,所以201m <≤,所以当0m =时,四边形ABCD 的面积最大,最大面积为3.·······12分21.[2018·佛山调研]已知函数()()22ln 0f x x x a x a =-+≠,0x 是函数()f x 的极值点.(1)若4a =-,求函数()f x 的最小值;(2)若()f x 不是单调函数,且无最小值,证明:()00f x <.【答案】(1)()f x 的最小值为()24ln 2f =-;(2)见解析.【解析】(1)解:()224ln f x x x x =--,其定义域是{}|0x x >.令()0f x '=,得2x =,·······2分所以,()f x 在区间()02,单调递减,在()2+∞,上单调递增. 所以()f x 的最小值为()24ln 2f =-.·······5分(2)解:函数()f x 的定义域是{}|0x x >,对()f x 求导数,得 显然,方程()20220f x x x a '=⇔-+=(0x >), 因为()f x 不是单调函数,且无最小值,则方程2220x x a -+=必有2个不相等的正根,所以·······7分 设方程2220x x a -+=的2个不相等的正根是1x ,2x ,其中12x x <,列表分析如下:故只需证明()10f x <,由120x x <<,且121x x +=,得 ,所以()()11112ln 0f x x x a x =-+<, 从而()00f x <.·······12分(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分)22.[2018·邢台期末]选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin xy θθ=+=⎧⎨⎩,(θ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为()cos sin (0)m m ρθθ+=>. (1)求曲线C 的极坐标方程;(2)与直线l 交于点A ,与曲线C 交于M ,N 两点.求m .【答案】(1)22cos 30ρρθ--=;(2【解析】(1)∵()2214x y-+=,∴22230x y x +--=,故曲线C 的极坐标方程为22cos 30ρρθ--=.·······5分(2代入cos sin m ρθρθ+=,得代入22cos 30ρρθ--=, 得123ρρ=-,则·······10分23.[2018·安庆一中]选修4-5:不等式选讲(1)求函数()f x 的最大值;(2)若x ∀∈R ,都有恒成立,求实数m 的取值范围.【答案】(1)3;(2 【解析】(1,所以()f x 的最大值是3.····5分(2)x ∀∈R ,当5m <-时,等价于()()21512m m ---+≥,解得 时,等价于()()21512m m --++≥,化简得6m -≤,无解; 时,等价于21512m m -++≥,解得 综上,实数m 的取值范围为·······10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018届好教育云平台高三第二次模拟考试仿真卷文科数学(三)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.[2018·保定调研]已知复数z 满足ii z z+=,则z =( ) A .11i 22+B .11i 22-C .11i 22-+D .11i 22--【答案】A【解析】设()i ,z a b a b =+∈R ,则由已知有i i z z +=,()1i i a b b a ++=-+,所以1a bb a =-+=⎧⎨⎩,解得1212a b ⎧⎪⎪⎨==-⎪⎪⎩,所以11i 22z =-,故11i 22z =+,选A . 2.[2018·集宁一中]已知集合{|U x y ==,9{|log }A x y x ==,{|2}x B y y ==-,则()=U AB ð( )A .∅B .RC .{}|0x x >D .{}0【答案】C【解析】由题意得U =R ,{}|0A x x =>,因为20xy =-<,所以{|0}B y y =<,所以{|0}U B x x =≥ð,故(){}|0U AB x x =>ð,故选C .3.[2018·渭南质检]如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .12 CD【答案】C【解析】根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,C .4.[2018·菏泽期末]已知直线210x ay -+=与直线820ax y -+=平行,则实数a 的值为( ) A .4 B .-4C .-4或4D .0或4【答案】B【解析】由于两直线平行,故()()280a a ⋅---⋅=,解得4a =-(当4a =时两直线重合,故舍去.)5.[2018·柳州模拟]函数()()1cos sin f x x x =+在[]π,π-上的图象的大致形状是( )A . B.C .D .【答案】A此卷只装订不密封班级 姓名 准考证号 考场号 座位号【解析】()()()1cos sin f x x x f x -=-+=-,所以()f x 是奇函数,故C 错误;D 错误;()222sin cos cos 2cos cos 1f x x x x x x '=-++=+-,得取到极值,所以A 正确.故选A .6.[2018·丹东期末]某几何体的三视图如图所示,其中主视图,左视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,则该几何体的体积为( )11A16+ B.12+ C16+ D12+ 【答案】A【解析】该几何体是一个半球上面有一个三棱锥,体积为:A . 7.[2018·凯里一中]公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在阿基里斯前面1000米处开始,和阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米;当阿基里斯跑完下一个100米时,乌龟仍然前于他10米.当阿基里斯跑完下一个10米时,乌龟仍然前于他1米……,所以,阿基里斯永远追不上乌龟.根据这样的规律,若阿基里斯和乌龟的距离恰好为210-米时,乌龟爬行的总距离为( )A .410190-B .5101900-C .510990-D .4109900-【答案】B【解析】根据条件,乌龟每次爬行的距离构成等比数列,公比为110,当阿基里斯和乌龟的距离恰好为210-米时,乌龟爬行的总距离为552110011********* (101900110)-⎛⎫- ⎪-⎝⎭+++==-,故选B . 8.[2018·赤峰期末]设0ω>图象重合,则ω的最小值是( )A .23B .43C .3D .32【答案】D【解析】图象向右平单位后得到函数解析式为k ∈Z ,k ∈Z ,∵0ω>,∴ω的最小值是31322⨯=,故选D . 9.[2018·宜昌一中]执行如图所示的程序框图,若输入1m =,3n =,输出的 1.75x =,则空白判断框内应填的条件为( )A .1m n -<B .0.5m n -<C .0.2m n -<D .0.1m n -<【答案】B【解析】由程序框图,得程序运行过程为:1m =,3n =,2x =,2230->,1m =,2n =,1m n -=;1m =,2n =, 1.5x =,21.530-<, 1.5m =,2n =,0.5m n -=; 1.5m =,2n =, 1.75x =,21.7530->, 1.5m =, 1.75n =,0.25m n -=;因为输出的结果为1.75x =,所以判断框内应填“0.5m n -<”.故选B .10.[2018·承德联考]已知0λ>,若对任意的()0,x ∈+∞,不等式ln 0x x λ-≥恒成立,则λ的最小值为( )A .1eB .eC .e 2D .2e【答案】A【解析】令()ln x f x x λ=-,()1f x x λ'=-,由于0λ>,令()10f x x λ=-=',得1x λ=,可以得到()f x 在0,1λ⎛⎫ ⎪⎝⎭单调递减,在1,λ⎛+∞⎫⎪⎝⎭单调递增,所以()f x 在1x λ=时取得最小值,所以11n 1l 0f λλ⎛⎫=- ⎪⎝⎭≥,所以1e λ≥.故选A 选项.11.[2018·大庆一中]已知函数()2f x x ax =+的图象在点()()0,0A f 处的切线l 与直线220x y -+=平行,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则20S 的值为( )A .325462B .1920C .119256D .20102011【答案】A【解析】因为()2f x x ax =+,所以()2f x x a '=+,又函数()2f x x ax =+的图象在点()()0,0A f 处的切线l 与直线220x y -+=平行,所以()02f a '==,所以()22f x x x =+,所以()211111222f n n n n n ⎛⎫==- ⎪++⎝⎭, 120⎛++- ⎝11113251222122462⎛⎫⨯+--= ⎪⎝⎭,本题选择A 选项.12.[2018·佛山质检]双曲线2222:1(0,0)x yC a b a b -=>>的左右焦点分别为1F ,2F ,焦距2c ,以右顶点A为圆心的圆与直线:0l x c +=相切于点N,设l 与C 交点为P ,Q ,若点N 恰为线段PQ 的中点,则双曲线C 的离心率为( ) A B C .2D .【答案】C【解析】由直线方程可得直线:0l x c -+=过双曲线的左焦点,倾斜角为30︒,直线与圆相切,则:AN l ⊥,即1ANF △是直角三角形,结合1AF a c =+,可得:)N y a c =+,联立直线:0l x c -+=与双曲线2222:1(0,0)x y C a ba b-=>>的方程可得:()2222222230bay cy bc b a --+-=,则:122N y y y +==, )a c +=,结合222b c a =-,整理可得:323340c ac a -+=,据此可得关于离心率的方程:32340e e -+=,即()()2120e e +-=,∵双曲线中1e >,2e∴=.第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.[2018·寻乌中学]已知平面向量a ,b ,1=b ,.【答案】22.14.[2018·南宁二中]已知O 为坐标原点,若点(),M x y 为平面区域10,0,0x y x yy ⎧⎪⎨⎪⎩-++≥≤≥上的动点,则2z x y =-+的最大值是__________. 【答案】2【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的解析式,平移直线2y x =,由图可知,当直线经过点()1,0B -时,直线的截距最大,此时目标函数取得最大值22z y x =-=.15.[2018·赤峰期末]以等腰直角三角形ABC 的底边BC 上的高AD 为折痕,把ABD △和ACD △折成互相垂直的两个平面,则下列四个命题: ①AB CD ⊥;②ABC △为等腰直角三角形;③三棱锥D ABC -是正三棱锥;④平面ABD ⊥平面BCD ;其中正确的命题有__________.(把所有正确命题的序号填在答题卡上)【答案】①③④【解析】由题意得,如图所示,因为D 为BC 的中点,所以AD BC ⊥,又平面ABD ⊥平面ACD ,根据面面垂直的性质定理,可得CD ⊥平面ABD ,进而可得AB CD ⊥,所以①是正确的; 其中当ABC △为等腰直角三角形时,折叠后ABC △为等边三角形,所以②不正确; 因为ABC △为等腰直角三角形,所以DA DB DC ==,所以D ABC -为正三棱锥,所以③正确;由AD BD ⊥,AD DC ⊥,可得AD ⊥面BCD ,又AD ⊂面ABD , 则平面ABD ⊥平面BCD ,所以④是正确的,故正确的命题为①③④.16.[2018·曲阜模拟]若函数()()3F x f x =-的所有零点依次记为123123,,,,...n n x x x x x x x x <<<<,则1231222n n x x x x x -+++++=__________. 【答案】445πk ∈Zk ∈Z1n -π为公差的等差数列,第1n -,解得31n =,三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:60分,每个试题12分.17.[2018·集宁一中]在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足sin sin sin sin sin C B a A b B c C =+-.(1)求角C 的大小;(2)若()cos cos 22a B b k A π⎛⎫-=π+ ⎪⎝⎭(k ∈Z )且2a =,求ABC △的面积.【答案】(1)6C π=;(2)ABC S=△. 【解析】(1)由sin sin sin sin sin C B aA bB cC =+-得:222sinC a b c =+-,2222a b c C ab+-=cos C C =,∴tan C =,∴6C π=.·······6分(2)由()cos cos 22a B b k A π⎛⎫-=π+ ⎪⎝⎭(k ∈Z ),得sin cos a B b A =,由正弦定理得sin cos A A =,∴4A π=. 根据正弦定理可得2sin sin 46c =ππ,解得c =∴()11sin 22246ABC S ac B A C ππ⎛⎫==⨯π--=+= ⎪⎝⎭△····12分 18.[2018·济南一中]韩国民意调查机构“盖洛普韩国”2016年11月公布的民意调查结果显示,受“闺蜜门”事件影响,韩国总统朴槿惠的民意支持率持续下跌,在所调查的1000个对象中,年龄在[20,30)的群体有200人,支持率为0%,年龄在[30,40)和[40,50)的群体中,支持率均为3%;年龄在[50,60)和[60,70)的群体中,支持率分别为6%和13%,若在调查的对象中,除[20,30)的群体外,其余各年龄层的人数分布情况如频率分布直方图所示,其中最后三组的频数构成公差为100的等差数列.(1)依频率分布直方图求出图中各年龄层的人数 (2)请依上述支持率完成下表:根据表中的数据,能否在犯错误的概率不超过0.001的前提下认为年龄与支持率有关? 附表:(参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++参考数据:125×33=15×275,125×97=25×485)【答案】(1)年龄在[30,40)的群体有200人,[40,50)的群体有300人,[50,60)的群体有200人,[60,70)的群体有100人;(2)能在犯错误的概率不超过0.001的前提下认为年龄与支持率有关. 【解析】(1)设年龄在[50,60)的人数为x ,则最后三组人数之和为3x , 所以四组总人数为4x =800,得x =200, ·······2分则频率分布直方图中,年龄在[30,40)的群体有200人,[40,50)的群体有300人,[50,60)的群体有200人,[60,70)的群体有100人; ·······6分 (2)由题意年龄在[30,40)和[40,50)的支持人数为6+9=15,[50,60)和[60,70)的人数为12+13=25. 填表如下······9分所以()2800152752548540760300500K ⨯⨯-⨯=⨯⨯⨯≈11.228>10.828,∴能在犯错误的概率不超过0.001的前提下认为年龄与支持率有关.·······12分 19.[2018·盐城中学]如图,在四棱锥P ABCD -中,PC ⊥底面ABCD ,AD BC ∥,22AD BC ==,ABC △是以AC 为斜边的等腰直角三角形,E 是PD 上的点.求证:(1)AD ∥平面PBC ; (2)平面EAC ⊥平面PCD .【答案】(1)见解析;(2)见解析.【解析】(1)∵AD BC ∥,BC ⊂平面PBC ,AD ⊄平面PBC , ∴AD ∥平面PBC .·······6分(2)PC ⊥底面ABCD ,AC ⊂底面ABCD ,PC AC ∴⊥·······7分 由题意可知,AD BC ∥且22AD BC ==,ABC △是等腰直角三角形,CD =,222CD AC AD ∴+=,即AC CD ⊥····9分 又PCCD C =,AC ∴⊥平面PCD ·······10分AC ⊂平面EAC ,∴平面EAC ⊥平面PCD ·······12分20.[2018·顺德调研]已知四边形ABCD 的四个顶点在椭圆C :2213x y +=上,对角线AC所在直线的斜率为1-,且AB AD =,CB CD =. (1)当点B 为椭圆C 的上顶点时,求AC 所在直线方程; (2)求四边形ABCD 面积的最大值.。

相关文档
最新文档