北师大版九年级上册数学第二章测试题
北师大版九年级上册数学第二章测试题及答案
北师大版九年级上册数学第二章测试题及答案(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分)1.用配方法解一元二次方程x 2+4x -5=0,此方程可变形为( A )A .(x +2)2=9B .(x -2)2=9C .(x +2)2=1D .(x -2)2=12.若方程x 2-3kx +k +1=0的两根之积为2,则( D )A .k =2B .k =-1C .k =0D .k =13.关于x 的方程(m +1)x 2+2mx -3=0是一元二次方程,则m 的取值是( C )A .任意实数B .m ≠1C .m ≠-1D .m >14.(衡阳中考)绿苑小区在规划设计时,准备在两幢楼房之间设置一块面积为900平方米的矩形绿地,并且长比宽多10米,设绿地的宽为x 米,根据题意,可列方程为( B )A .x (x -10)=900B .x (x +10)=900C .10(x +10)=900D .2[x +(x +10)]=9005.菱形ABCD 的一条对角线长为6,边AB 的长为方程y 2-7y +10=0的一个根,则菱形ABCD 的周长为( B )A .8B .20C .8或20D .106.如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实根,则k 的取值范围是( D )A .-12≤k <12B .k ≠0C .k <12且k ≠0D .-12≤k <12且k ≠0 第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题3分,共18分)7.已知方程3x 2-9x +m =0的一个根是1,则m 的值 6 .8.已知关于x 的一元二次方程(m -2)x 2+3x +m 2-4=0的常数项为0,则m 的值为__-2 .9.已知x 为实数,且满足(x 2+3x )2+2(x 2+3x )-3=0,则x 2+3x 的值为 1 .10.三角形的两边长分别是3和4,第三边长是方程x 2-13x +40=0的根,则该三角形的周长为 12 .11.某种T 恤衫,平均每天销售40件,每件盈利20元.若每降价1元,则每天可多售出10件.如果每天盈利1 400元,那么每件应降价 6或10 元.12.(成都中考)已知x 1,x 2是关于x 的一元二次方程x 2-5x +a =0的两个实数根,且x 21-x 22=10,则a = 214.三、(本大题共5小题,每小题6分,共30分)13.解方程:(1)(2017·兰州)2x 2-4x -1=0;解:原方程可化为(x -1)2=32, ∴x 1=1+62,x 2=1-62; (2)(山西中考)2(x -3)2=x 2-9.解:2(x -3)2-(x +3)(x -3)=0,(x -3)(2x -6-x -3)=0,(x -3)(x -9)=0,x -3=0或x -9=0,∴x 1=3,x 2=9.14.(巴中中考)定义新运算:对于任意实数m ,n 都有m ☆n =m 2n +n ,等式右边是常用的加法、减法、乘法及乘方运算,例如:-3☆2=(-3)2×2+2=20.根据以上知识解决问题:若2☆a 的值小于0,请判断方程2x 2-bx +a =0的根的情况.解:∵2☆a 的值小于0,∴22a +a =5a < 0,解得a < 0.在方程2x 2-bx +a =0中,Δ=(-b)2-8a ≥ -8a > 0,∴方程2x 2-bx +a =0有两个不相等的实数根.15.已知关于x 的方程x 2+2x +a -2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)当该方程的一个根为1时,求a 的值及方程的另一根.解:(1)依题意有Δ=22-4(a -2)> 0,解得a < 3;(2)依题意得1+2+a -2=0,解得a =-1,∴原方程为x 2+2x -3=0.∴x =-2±4-4× 1× (-3)2× 1=-2±162, 即x 1=1,x 2=-3,∴a =-1,方程的另一根为-3.16.一个直角三角形的斜边为4 5 cm ,两条直角边的长相差4 cm ,求这个直角三角形两条直角边的长.解:设其中一条较长的直角边长为x cm , 则另一条直角边长为(x -4) cm.根据题意,得x 2+(x -4)2=(45)2,解得x 1=-4(舍去),x 2=8.∴x -4=4.∴两条直角边的长分别为4 cm ,8 cm.17.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,求3月份到5月份的营业额的月平均增长率.解:3月份到5月份月增长是经过2次增长,平均月增长率是每次增长的百分数相同.设平均月增长率为x,则5月份的营业额是:3月份的营业额× (1+x)2,因此,应先求3月份的营业额.显然,3月份的营业额是2月份的营业额×(1+10%)=400(1+10%)=440,故依题意,得440(1+x)2=633.6,(1+x)2=1.44,两边直接开平方,得1+x=± 1.2,所以x1=0.2=20%,x2=-2.2(不合题意,舍去).故3月份到5月份的营业额的月平均增长率为20%.四、(本大题共3小题,每小题8分,共24分)18.(菏泽中考)某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个.已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20 000元?解:设销售单价为x,则:(x-360)[160+2(480-x)]=20 000,∴x2-920x+211 600=0,解得x1=x2=460.答:这种玩具的销售单价为460元时,厂家每天可获利润20 000元.19.(十堰中考)已知关于x的一元二次方程x2-(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满足x21+x22=31+|x1x2|,求实数m的值.解:(1)Δ=b2-4ac=[-(2m+3)]2-4(m2+2)=12m+1,∵方程有实数根,∴12m+1≥ 0,解得m≥-1 12.(2)∵x1,x2是方程x2-(2m+3)x+m2+2=0的两个实数根,∴x1+x2=2m+3,x1x2=m2+2>0.∵x21+x22=31+x1x2,∴(x1+2)2-2x1x2=31+x1x2,∴(2m+3)2-2(m2+2)=31+m2+2,∴m2+12m-28=0,解得m1=2,m2=-14.∵m≥-112,∴m=2.20.中秋节前夕,旺客隆超市采购了一批土特产,根据以往销售经验,每天的售价与销(1)求y与x的函数表达式;(2)如果这种土特产的成本价是20元/kg,为使某一天的利润为780元,那么这一天的销售价应为多少元?(利润=销售总金额-成本)解:(1)∵y与x是一次函数关系.∴设y 与x 之间的函数表达式是y =kx +b(k ≠0).根据题意,得⎩⎨⎧20k +b =86,35k +b =56,解得⎩⎪⎨⎪⎧k =-2,b =126. 所以,所求的函数表达式是y =-2x +126.(2)设这一天的销售价为x 元/kg, 根据题意,得(x -20)(-2x +126)=780.整理,得x 2-83x +1 650=0,解得x 1=33,x 2=50.答:这一天的销售价应为33元/kg 或50元/kg.五、(本大题共2小题,每小题9分,共18分)21.已知关于x 的一元二次方程(a +c )x 2+2bx +a -c =0,其中a ,b ,c 分别为△ABC 三边的长.(1)如果x =-1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由.解:(1)△ABC 是等腰三角形.理由如下:∵x =-1是方程的根,∴将x =-1代入得(a +c)× (-1)2-2b +a -c =0,∴a +c -2b +a -c =0,∴a -b =0,∴a =b ,∴△ABC 是等腰三角形;(2)△ABC 是直角三角形.理由如下:∵方程有两个相等的实数根,∴Δ=(2b)2-4(a +c)(a -c)=0,∴4b 2-4a 2+4c 2=0,∴a 2=b 2+c 2,∴△ABC 是直角三角形.22.某单位于“三·八”妇女节期间组织女职工到温泉“星星竹海”观光旅游.下面是领队与旅行社导游收费标准的一段对话:领队:组团去“星星竹海”旅游每人收费是多少?导游:如果人数不超过25人,人均旅游费用为100元.领队:超过25人怎样优惠呢?导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团浏览“星星竹海”结束后,共支付给旅行社2 700元. 请你根据上述信息,求该单位这次到“星星竹海”观光旅游的共有多少人? 解:设该单位这次参加旅游的共有x 人,∵100× 25< 2 700,∴x > 25.依题意,得[100-2(x -25)]x =2 700,整理,得x 2-75x +1 350=0.解得x 1=30,x 2=45.当x =30时,100-2(x -25)=90> 70,符合题意.当x =45时,100-2(x -25)=60< 70,不符合题意,舍去.∴x =30.答:该单位这次参加旅游的共有30人.六、(本大题共12分)23.如图,在△ABC 中,AB =6 cm ,BC =7 cm ,∠ABC =30°,点P 从A 点出发,以1 cm/s 的速度向B 点移动,点Q 从B 点出发,以2 cm/s 的速度向C 点移动.如果P ,Q 两点同时出发:(1)经过几秒后△PBQ 的面积等于4 cm 2?(2)当△PBQ 的面积等于4 cm 2时,△PBQ 是什么形状的三角形?解:(1)如图,过点Q 作QE ⊥PB 于E ,则∠QEB =90°.∵∠ABC =30°,∴2QE =QB.∴S △PBQ =12·PB·QE. 设经过t s 后△PBQ 的面积等于4 cm 2,则PB =6-t ,QB =2t ,QE =t.根据题意,12·(6-t)·t =4. t 2-6t +8=0,t 1=2,t 2=4.当t =4时,2t =8,8> 7,不合题意舍去,所以t =2.答:经过2 s 后△PBQ 的面积等于4 cm 2.(2)∵△PBQ 的面积等于4 cm 2时,t =2,∴PB =6-t =6-2=4,QB =2t =4,∴QB =PB ,∴△PBQ 是等腰三角形.。
北师大版九年级上册数学第二章同步测试试卷及答案
第二章学情评估一、选择题(每题3分,共30分)1.下列方程中,是一元二次方程的是()A.x2+3x+y=0 B.x2+1x+5=0C.2x2+13=x+12D.x+y+1=02.一元二次方程x2-2x-3=0配方后可变形为()A.(x-1)2=2 B.(x-1)2=4C.(x-1)2=1 D.(x-1)2=73.已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为() A.1 B.-1 C.2 D.-2 4.根据下面表格中的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是() A.1.32<x<1.33 B.1.33<x<1.34C.1.34<x<1.35 D.1.35<x<1.365.下列一元二次方程中,没有..实数根的是()A.x2+2x-3=0 B.x2+x+14=0C.x2+2x+1=0 D.-x2+3=06.某校办工厂生产的某种产品,今年产量为200件,计划通过技术改革,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1 400件.若设这个百分数为x,则可列方程为()A.200+200(1+x)2=1 400B.200+200(1+x)+200(1+x)2=1 400C.200(1+x)2=1 400D.200(1+x)+200(1+x)2=1 4007.关于x 的一元二次方程ax 2+bx +c =0的两根分别为x 1=-b +b 2+42,x 2=-b -b 2+42,下列判断一定正确的是( ) A .a =-1B .c =1C .ac =-1D.c a =1 8.已知x 1,x 2是一元二次方程3x 2=6-2x 的两根,则x 1-x 1x 2+x 2的值是( )A .-43B.83C .-83D.439.若关于x 的一元二次方程kx 2+2(k -1)x +k -1=0有实数根,则k 的取值范围是( )A .k <1B .k ≤1C .k <1且k ≠0D .k ≤1且k ≠010.已知关于x 的一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程x 2+bx +a =0的根B .0一定不是关于x 的方程x 2+bx +a =0的根C .1和-1都是关于x 的方程x 2+bx +a =0的根D .1和-1不都是关于x 的方程x 2+bx +a =0的根 二、填空题(每题3分,共18分)11.把一元二次方程(x -3)2=4化为一般形式是________,其中二次项为________,一次项系数为________.12.如果关于x 的方程(a -2)xa 2-2+2x =0是一元二次方程,那么a =________.13.一元二次方程x 2-2x =0的解是____________.14.设m 、n 是一元二次方程x 2+5x -8=0的两个根,则m 2+7m +2n =________. 15.已知一个直角三角形的两条直角边的长是方程2x 2-10x +9=0的两个实数根,那么这个直角三角形的斜边长是________.16.如图,在一条矩形床单的四周绣上宽度相等的花边,剩下部分的面积为1.6 m 2.已知床单的长是2 m ,宽是1.4 m ,则花边的宽度为________.三、解答题(21题~22题每题10分,其余每题8分,共52分) 17.用适当的方法解下列方程:(1)(6x-1)2=25;(2)x2-2x=2x-1;(3)x2-2x=2;(4)x(x-7)=8(7-x).18.已知关于x的一元二次方程(k-1)x2-(k-1)x+14=0有两个相等的实数根.(1)求k的值;(2)求此时该方程的根.19.若等腰三角形的一条边长为5,另外两条边的长为一元二次方程x2-7x+k=0的两个根,求k的值.20.有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25,-16,第一次按键后,A,B两区分别显示25+a2,-16-3a.(1)从初始状态按键2次后,分别求A,B两区显示的结果;(2)从初始状态按键4次后,得A,B两区显示的代数式的和为1,求a的值.21.如图,依靠一面长18米的墙,用34米长的篱笆围成一个矩形花圃ABCD,AB边上留有2米宽的小门EF(用其他材料做,不用篱笆围).(1)设花圃的一边AD的长为x米,用含x的代数式表示另一边CD的长为____________米;(2)当矩形花圃面积为160平方米时,求AD的长.22.某小商品市场以每副60元的价格购进800副羽毛球拍.九月份以单价100元销售,售出了200副.十月份如果销售单价不变,预计仍可售出200副.该小商品市场为增加销售量,决定降价销售,根据市场调查,销售单价每降低5元,可多售出10副,但最低销售单价应高于购进的价格.十月份结束后,该小商品市场将对剩余的羽毛球拍进行一次性清仓,清仓时销售单价为50元.设十月份销售单价降低x元.(1)填表:时间九月十月清仓时销售单价/元10050销售量/副200(2)如果该小商品市场希望通过销售这批羽毛球拍获利9 200元,那么十月份的销售单价应是多少元?答案一、1. C 2. B 3. A 4. C 5. C 6. B 7. C 8. D 9. D 10. D二、11. x 2-6x +5=0;x 2;-6 12. -2 13. x 1=0,x 2=2 14. -2 15. 4 16. 0.2 m三、17. 解:(1)两边开平方,得6x -1=±5,即6x -1=5或6x -1=-5.∴x 1=1,x 2=-23. (2)移项,得x 2-4x =-1.配方,得x 2-4x +4=-1+4,即(x -2)2=3. 两边开平方,得x -2=±3, 即x -2=3或x -2=- 3. ∴x 1=2+3,x 2=2- 3.(3)将原方程化为一般形式,得x 2-2x -2=0. ∵b 2-4ac =(-2)2-4×1×(-2)=10, ∴x =2±102×1.∴x 1=2+102,x 2=2-102.(4)移项,得x (x -7)+8(x -7)=0. 变形,得(x -7)(x +8)=0. ∴x -7=0或x +8=0. ∴x 1=7,x 2=-8.18. 解:(1)∵关于x 的一元二次方程(k -1)x 2-(k -1)x +14=0有两个相等的实数根,∴Δ=b 2-4ac =[-(k -1)]2-4·(k -1)·14=0, 即(k -1)2-(k -1)=0, 解得k =2或k =1.易知k -1≠0,即k ≠1,∴k =2.(2)当k =2时,原方程为x 2-x +14=0,解得x 1=x 2=12. 19. 解:当5为腰长时,将x =5代入原方程得25-7×5+k =0,解得k =10,∴原方程为x 2-7x +10=0,∴x 1=2,x 2=5, 长度为2,5,5的三条边能围成三角形, ∴k =10符合题意.当5为底边长时,Δ=(-7)2-4k =0,解得k =494, ∴原方程为x 2-7x +494=0,∴x 1=x 2=72, 长度为72,72,5的三条边能围成三角形,∴k =494符合题意.综上,k 的值为10或494. 20. 解:(1)25+a 2+a 2=25+2a 2,-16-3a -3a =-16-6a .答:A 区显示的结果为25+2a 2,B 区显示的结果为-16-6a . (2)依题意,得25+4a 2+(-16-12a )=1, 化简,得a 2-3a +2=0,解得a 1=2,a 2=1. 答:a 的值为2或1. 21. 解:(1)(36-2x )(2)依题意得x (36-2x )=160, 化简得x 2-18x +80=0, 解得x 1=8,x 2=10.当x =8时,36-2x =36-2×8=20>18,不合题意,舍去; 当x =10时,36-2x =36-2×10=16<18,符合题意. 答:AD 的长为10米.22. 解:(1)100-x ;200+2x ;400-2x(2)根据题意,得100×200+(100-x )(200+2x )+50(400-2x )-60×800=9 200. 解得x 1=20,x 2=-70(舍去).当x=20时,100-x=80>60,符合题意.答:十月份的销售单价应是80元.。
北师大版九年级数学上册单元测试卷:第二章 《一元二次方程》(含答案)
单元测试卷:第二章《一元二次方程》时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A.﹣4,21 B.﹣4,11 C.4,21 D.﹣8,692.若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是()A.k≥5 B.k≥5且k≠1 C.k≤5且k≠1 D.k≤53.下列方程中,是关于x的一元二次方程的是()A.+x=3 B.x2+2x﹣3=0C.4x+3=x D.x2+x+1=x2﹣2x4.已知m、n是一元二次方程x2﹣3x﹣1=0的两个实数根,则=()A.3 B.﹣3 C.D.﹣5.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A.5000(1+2x)=7500B.5000×2(1+x)=7500C.5000(1+x)2=7500D.5000+5000(1+x)+5000(1+x)2=75006.若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2020的值为()A.2020 B.﹣2020 C.2019 D.﹣20197.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=3,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根8.若x 1x 2=2,+=,则以x 1,x 2为根的一元二次方程是( )A .x 2+3x ﹣2=0B .x 2﹣3x +2=0C .x 2+3x +2=0D .x 2﹣3x ﹣2=0 9.若关于x 的一元二次方程x 2+2x +c =0有实数根,则c 的取值可能为( )A .4B .3C .2D .110.设a 、b 是方程x 2+x ﹣2020=0的两个实数根,则(a ﹣1)(b ﹣1)的值为( )A .﹣2018B .2018C .2020D .2022二.填空题(每题4分,共20分)11.已知一元二次方程x 2+2x +m =0的一个根是﹣1,则m 的值为 .12.若关于x 的一元二次方程mx 2﹣2x ﹣1=0无实数根,则一次函数y =mx +m 的图象不经过第 象限.13.已知x 为实数,且满足(2x 2+3)2+2(2x 2+3)﹣15=0,则2x 2+3的值为 . 14.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场),一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军,为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜 场.15.已知一元二次方程x 2+2x ﹣8=0的两根为x 1、x 2,则+2x 1x 2+= .三.解答题(每题10分,共50分)16.解下列方程.(1)x 2+2x ﹣35=0(2)4x (2x ﹣1)=1﹣2x17.某公司设计了一款工艺品,每件的成本是40元,为了合理定价,投放市场进行试销:据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每提高1元,每天就减少售出2件,但要求销售单价不得超过65元.(1)若销售单价为每件60元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1350元,那么每件工艺品售价应为多少元?18.某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?19.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?20.某商店以每件40元的价格进了一批热销商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时商品每月的利润可达到4000元.参考答案一.选择题1.解:∵x2﹣8x﹣5=0,∴x2﹣8x=5,则x2﹣8x+16=5+16,即(x﹣4)2=21,∴a=﹣4,b=21,故选:A.2.解:①当该方程是关于x的一元一次方程时,k﹣1=0即k=1,此时x=﹣,符合题意;②当该方程是关于x的一元二次方程时,k﹣1≠0即k≠1,此时△=16﹣4(k﹣1)≥0.解得k≤5;综上所述,k的取值范围是k≤5.故选:D.3.解:A、因为方程是分式方程,不是整式方程,所以方程不是一元二次方程,故本选项不符合题意;B、是一元二次方程,故本选项符合题意;C、因为方程是一元一次方程,所以方程不是一元二次方程,故本选项不符合题意;D、因为方程是一元一次方程,所以方程不是一元二次方程,故本选项不符合题意;故选:B.4.解:根据题意得m+n=3,mn=﹣1,所以=.故选:B.5.解:设我国2017年至2019年快递业务收入的年平均增长率为x,由题意得:5000(1+x)2=7500,故选:C.6.解:∵a是方程x2﹣x﹣1=0的一个根,∴a2﹣a﹣1=0,∴a 2﹣1=a ,﹣a 2+a =﹣1,∴﹣a 3+2a +2020=﹣a (a 2﹣1)+a +2020=﹣a 2+a +2020=2019.故选:C .7.解:∵小刚在解关于x 的方程ax 2+bx +c =0(a ≠0)时,只抄对了a =1,b =3,解出其中一个根是x =﹣1,∴(﹣1)2﹣3+c =0,解得:c =2,故原方程中c =4,则b 2﹣4ac =9﹣4×1×4=﹣7<0,则原方程的根的情况是不存在实数根.故选:A .8.解:∵+=,∴x 1+x 2=x 1x 2,∵x 1x 2=2,∴x 1+x 2=3,∴以x 1,x 2为根的一元二次方程是x 2﹣3x +2=0.故选:B .9.解:根据题意得△=22﹣4c ≥0,解得c ≤1.故选:D .10.解:∵a 、b 是方程x 2+x ﹣2020=0的两个实数根,∴a +b =﹣1,ab =﹣2020,则原式=ab ﹣a ﹣b +1=ab ﹣(a +b )+1=﹣2020+1+1=﹣2018.故选:A .二.填空题(共5小题)11.解:把x =﹣1代入方程得1﹣2+m =0,解得m =1,故答案为1.12.解:∵关于x 的一元二次方程mx 2﹣2x ﹣1=0无实数根,∴m ≠0且△=(﹣2)2﹣4m (﹣1)<0,∴一次函数y=mx+m的图象经过第二、三、四象限,不经过第一象限.故答案为一.13.解:设2x2+3=t,且t≥3,∴原方程化为:t2+2t﹣15=0,∴t=3或t=﹣5(舍去),∴2x2+3=3,故答案为:314.解:设中国队在本届世界杯比赛中连胜x场,则共有(x+1)支队伍参加比赛,依题意,得:x(x+1)=66,整理,得:x2+x﹣132=0,解得:x1=11,x2=﹣12(不合题意,舍去).故答案为:11.15.解:∵一元二次方程x2+2x﹣8=0的两根为x1、x2,∴x1+x2=﹣2,x1•x2=﹣8,∴+2x1x 2 +=2x1x 2 +=2×(﹣8)+=﹣16+=﹣,故答案为:﹣.三.解答题(共5小题)16.解:(1)x2+2x﹣35=0,(x+7)(x﹣5)=0,x+7=0或x﹣5=0,12(2)4x(2x﹣1)=1﹣2x,4x(2x﹣1)+(2x﹣1)=0,(2x﹣1)(4x+1)=0,(2x﹣1)=0或(4x+1)=0,,17.解:(1)(60﹣40)×[100﹣(60﹣50)×2]=1600(元).答:每天的销售利润为1600元.(2)设每件工艺品售价为x元,则每天的销售量是[100﹣2(x﹣50)]件,依题意,得:(x﹣40)[100﹣2(x﹣50)]=1350,整理,得:x2﹣140x+4675=0,解得:x1=55,x2=85(不合题意,舍去).答:每件工艺品售价应为55元.18.解:(1)设BC=xm,则AB=(33﹣3x)m,依题意,得:x(33﹣3x)=90,解得:x1=6,x2=5.当x=6时,33﹣3x=15,符合题意,当x=5时,33﹣3x=18,18>18,不合题意,舍去.答:鸡场的长(AB)为15m,宽(BC)为6m.(2)不能,理由如下:设BC=ym,则AB=(33﹣3y)m,依题意,得:y(33﹣3y)=100,整理,得:3y2﹣33y+100=0.∵△=(﹣33)2﹣4×3×100=﹣111<0,∴该方程无解,即该扶贫单位不能建成一个100m2的矩形养鸡场.19.(1)证明:∵△=(2k+1)2﹣4×4(k﹣)=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程总有实数根;(2)x=∴x1=2k﹣1,x2=2,∵a、b、c为等腰三角形的三边,∴2k﹣1=2或2k﹣1=3,∴k=或2.20.解:(1)设该商品平均每月的价格增长率为m,依题意,得:50(1+m)2=72,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该商品平均每月的价格增长率为20%.(2)依题意,得:(x﹣40)[188+(72﹣x)]=4000,整理,得:x2﹣300x+14400=0,解得:x1=60,x2=240.∵商家需尽快将这批商品售出,∴x=60.答:x为60元时商品每天的利润可达到4000元.。
北师大数学九上第二单元测试卷
北师版九年级数学上册第二章一元二次方程综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.方程2x2-6x-9=0的二次项系数、一次项系数、常数项分别为( )A.6,2,9 B.2,-6,9C.2,-6,-9 D.-2,6,92.要使方程(a-3)x2+(b+1)x+c=0是关于x的一元二次方程,则( )A.a≠0B.a≠3C.a≠3且b≠-1D.a≠3且b≠-1且c≠03.方程x2-x=0的解是( )A.x=0B.x=1C.x1=0,x2=1D.x1=0,x2=-14.用配方法解关于x的一元二次方程x2-2x-3=0时,配方后的方程可以是( ) A.(x-1)2=4B.(x+1)2=4C.(x-1)2=16D.(x+1)2=165.若关于x的方程kx2-2x-1=0有两个不相等的实数根,则k的取值范围是( ) A.k>-1B.k>-1且k≠0C.k<1D.k<1且k≠06. 若代数式x2-7x的值为-6,则代数式x2-3x+5的值是( )A.3 B.23C.3或23 D.无法确定7.若等腰三角形的两边的长是方程x2-20x+91=0的两个根,则此三角形的周长为( ) A.27B.33C.27和33D.以上都不对8.某超市一月份的营业额为200万元,三月份的营业额为288万元,若每月比上月增长的百分数相同,则平均每月的增长率为( )A.10% B.15%C.20%D.25%9.若关于x的一元二次方程x2-3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2-ab+b2=18,则ab+ba的值是()A.3 B.-3C.5 D.-510.如图,在一次函数y=-x+6的图象上取一点P,作PA⊥x轴于点A,PB⊥y轴于点B,且矩形PBOA的面积为5,则在x轴上方满足上述条件的点P个数共有( )A.1个B.2个C.3个D.4个二.填空题(共8小题,3*8=24)11.当m 时,方程(m2-1)x2-mx+5=0是一元二次方程.12. 一元二次方程x(x+3)=0的根是.13.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是______________.14.若关于x的一元二次方程12x2-2mx-4m+1=0有两个相等的实数根,则(m-2)2-2m(m-1)的值为.15.规定:a⊗b=(a+b)b,如2⊗3=(2+3)×3=15,若2⊗x=3,则x=_____. 16.如图,菱形ABCD的边长是5,两条对角线交于点O,且AO,BO的长分别是关于x 的方程x2+(2m-1)x+m2+3=0的根,则m的值为.17.关于x的一元二次方程x2-2kx+k2-k=0的两个实数根分别是x1,x2,且x12+x22=4,则x22-x1x2+x22的值是.18.有一间长20 m,宽15 m的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的一半,四周未铺地毯的留空宽度相同,则留空的宽度是m.三.解答题(共7小题,66分)19.(8分) 解方程:(1)2 500(1+x)2=3 025;(2)2x2+5x-3=020.(8分) “a2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式,例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,∴(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:(1)填空:因为x2-4x+6=(x_____)2+______,所以当x=_____时,代数式x2-4x+6有最_____(填“大”或“小”)值,这个最值为_______;(2)比较代数式x2-1与2x-3的大小.21.(8分) 已知关于x的一元二次方程x2+4x+k-1=0有两个不相等的实数根.(1)求k的取值范围;(2)如果方程的两实根分别为x1,x2,且x21+x22-x1x2=7,求k的值.22.(10分) 如图,某小区规划在一个长为40 m、宽为26 m的矩形场地ABCD上修建三条同样宽的甬路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若使每一块草坪的面积为144 m2,求甬路的宽度.23.(10分) 某村2018年每人的年平均收入为4 000元,至2020年时每人的年平均收入为5 760元,求该村2018年至2020年每人的年平均收入的增长率是多少.24.(10分) 某楼盘准备以每平方米10000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米8100元的均价开盘销售.(1)求平均每次价格下调的百分率;(2)某人准备以每平方米8100元的价格购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性返还装修费每平方米200元,试问哪种方案更优惠?25.(12分) 若某个一元二次方程的两根都是整数,且其中一根是另一根的整数倍,则称该方程是“倍根方程”.例如x2-2x-3=0的两根为x1=3,x2=-1,因为x1是x2的-3倍,所以x2-2x-3=0是“倍根方程”.(1)说明x2-8x+12=0是“倍根方程”;(2)请写出一个“倍根方程”,并使它的一根为1;(3)已知关于x的一元二次方程x2-(m+3)x+2m+2=0是“倍根方程”,其中m是整数,试探索m的取值条件.参考答案1-5CBCAB 6-10CCCDC11. ≠±112. x =0或x =-313. x(x -1)2=10 14. 7215. 1或-316. -317. 418. 2.519. 解:(1) (1+x)2=1.21.1+x =±1.1.x =±1.1-1.解得x 1=0.1,x 2=-2.1.(2)原方程可化为(2x -1)(x +3)=0.∴2x -1=0或x +3=0.解得x 1=12,x 2=-3. 20. 解:(1)-2,2,2,小,2((2)∵x 2-1-(2x -3)=x 2-2x +2=(x -1)2+1>0,∴x 2-1>2x -3.21. 解:(1)∵方程x 2+4x +k -1=0有两个不相等的实数根,∴Δ=42-4(k -1)=20-4k >0,解得k <5.(2)∵x 21+x 22-x 1x 2=7,∴(x 1+x 2)2-3x 1x 2=7,∴(-4)2-3×(k -1)=7,解得k =4.22. 解:设甬道的宽度为x 米.由题意,得(40-2x)(26-x)=144×6.化简,得x 2-46x +88=0.解得x =2或x =44.当x =44时,甬道的宽度超过了矩形场地的长和宽,因此不合题意,舍去.答:甬道的宽度为2米.23. 解:设每人的年平均收入的增长率为x.由题意,得4 000(1+x)2=5 760,化简,得(1+x)2=1.44.∵1+x>0,∴1+x=1.2,解得x=20%.答:该村2018年至2020年每人的年平均收入的增长率是20%.24. 解:(1)设平均每次下调的百分率为x,根据题意可得10000(1-x)2=8100,解得x1=0.1,x2=1.9(舍去).∴平均每次下调的百分率为10%(2)方案①可优惠:8100×100×(1-0.98)=16200(元);方案②可优惠:100×200=20000(元).∴方案②更优惠25. 解:(1)解方程x2-8x+12=0,得x1=2,x2=6,∵x2=3x1,∴x2-8x+12=0是“倍根方程”(2)答案不唯一,如:x2-3x+2=0(3)解方程x2-(m+3)x+2m+2=0,得x1=2,x2=m+1,∴当m为0,-2或一切不为-1的奇数时,方程x2-(m+3)x+2m+2=0是“倍根方程”。
北师大版九年级上册数学第二章单元测试题(含答案)
第二章单元测试卷[时间:120分钟分值:150分]一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.方程(x+1)(x-2)=0的根是( )A.x=-1 B.x=2C.x1=1,x2=-2 D.x1=-1,x2=22.用配方法解一元二次方程x2+8x+7=0,则方程可变形为( )A.(x-4)2=9 B.(x+4)2=9C.(x-8)2=16 D.(x+8)2=573.已知α是一元二次方程x2-x-1=0较大的根,则下面对α的估计正确的是( )A.0<α<1 B.1<α<1.5C.1.5<α<2 D.2<α<34.已知关于x的一元二次方程3x2+4x-5=0,下列说法正确的是( B )A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定5.若x=-2 是关于x的一元二次方程x2-52ax+a2=0的一个根,则A的值为( )A.1或4 B.-1或-4C.-1或4 D.1或-46.某县为了大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造和更新.2016年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2018年投资7.2亿元人民币,那么每年投资的增长率为( )A.20%或-220% B.40%C.120% D.20%7.三角形两边长分别为3和6,第三边是方程x2-13x+36=0的根,则三角形的周长为( )A.13 B.15C.18 D.13或188.从正方形的铁片上截去2 c m宽的长方形,余下的面积是48 c m2,则原来的正方形铁片的面积是( )A.8 c m2 B.32 c m2C.64 c m2 D.96 c m29.若关于x的方程x2+2x+A=0不存在实数根,则A的取值范围是( ) A.A<1 B.A>1C.A≤1 D.A≥110.x1,x2是关于x的一元二次方程x2-mx+m-2=0的两个实数根,是否存在实数m使1x1+1x2=0成立?则正确的结论是( )A.m=0 时成立 B.m=2 时成立C.m=0 或2时成立 D.不存在二、填空题(本大题共6个小题,每小题4分,共24分)11.已知x1=3是关于x的一元二次方程x2-4x+C=0的一个根,则方程的另一个根x2=__ ____.12.一小球以15 m/s的速度竖直向上抛出,它在空中的高度h(m)与时间t(s)满足关系式:h=15t-5t2,当t=_________时,小球高度为10 m.小球所能达到的最大高度为________m.13.若关于x的一元二次方程x2-x+m=0有两个不相等的实数根,则m的值可能是_____________(写出一个即可).14.菱形的两条对角线长分别是方程x2-14x+48=0的两实根,则菱形的面积为________.15.已知关于x的一元二次方程x2+(2k+1)x+k2-2=0的两根为x1,x2,且(x1-2)(x1-x2)=0,则k的值是___________.16.如果关于x的方程Ax2+2x+1=0有两个不相等的实数根,则实数A的取值范围是________________.三、解答题(本大题共9个小题,共96分)17.(16分)解方程:(1)(x+8)2=36;(2)x(5x+4)-(4+5x)=0;(3)x2+3=3(x+1);(4)2x2-x-1=0(用配方法).18.(8分)已知关于x的方程x2+x+n=0有两个实数根-2,m,求m,n的值.19.(10分)先化简,再求值:m-33m2-6m ÷⎝⎛⎭⎪⎫m+2-5m-2,其中m是方程x2+2x-3=0的根.20.(10分)有一个两位数等于其各位数字之积的3倍,其十位数字比个位数字小2,求这个两位数.21.(10分)利用一面墙(墙的长度不限),另三边用58 m长的篱笆围成一个面积为200 m2的矩形场地,求矩形的长和宽.22.(10分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2015年市政府共投资3亿元人民币建设了廉租房12万平方米,2017年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,2017年建设了多少万平方米廉租房?23.(10分)当m为何值时,一元二次方程(m2-1)x2+2(m-1)x+1=0?(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?24.(10分)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定为多少元?25.(12分)在矩形ABCD中,AB=6 cm,BC=12 cm,点P从点A沿边AB向点B以1 cm/s的速度移动;同时点Q从点B沿边BC向点C以2 cm/s的速度移动,设运动时间为t s.问:(1)几秒后△PBQ的面积等于8 cm2?(2)是否存在t,使△PDQ的面积等于26 cm2?参考答案一、1.D 2.B 3.C【解析】 解方程x 2-x -1=0,得x =1±52,∵α是方程x 2-x -1=0较大的根,∴α=1+52.∵2<5<3,∴3<1+5<4,∴32<1+52<2.4.B 5.B 6.D 7. A 8.C 9.B【解析】 ∵方程不存在实数根,∴Δ=4-4A <0,解得A >1. 10.A【解析】 ∵x 1,x 2是关于x 的一元二次方程x 2-mx +m -2=0的两个实数根,∴x 1+x 2=m ,x 1x 2=m -2.假设存在实数m 使1x 1+1x 2=0成立,则x 1+x 2x 1x 2=0,∴m m -2=0,∴m =0. 当m =0时,方程为x 2-2=0,此时Δ=8>0,∴m =0符合题意.二、11.1 【解析】 ∵x 1+x 2=4,x 1=3,∴x 2=1. 12. 1或2 454【解析】 当小球高度为10 m 时,有10=15t -5t 2,解得t 1=1,t 2=2.小球达到的高度h =15t -5t 2=-5(t 2-3t )=-5⎝⎛⎭⎪⎫t -322+454,故当t =32时,小球达到的最大高度为454m.13. 0(答案不唯一) 14. 24 15.-2或-94【解析】 先由(x 1-2)(x 1-x 2)=0, 得出x 1-2=0或x 1-x 2=0, 再分两种情况进行讨论: ①如果x 1-2=0,将x =2代入x 2+(2k +1)x +k 2-2=0, 得4+2(2k +1)+k 2-2=0,解得k =-2; ②如果x 1-x 2=0,由Δ=(2k +1)2-4(k 2-2)=0,解得k =-94.综上所述,k 的值是-2或-94.16. A <1且A ≠0【解析】 由题意,得Δ=4-4A >0且A ≠0, 解得A <1且A ≠0.三、17.(1) 解:直接开平方,得x +8=±6, ∴x 1=-2,x 2=-14. 4分(2) 解:提公因式,得(4+5x )(x -1)=0, 则4+5x =0或x -1=0. ∴x 1=-45,x 2=1. 8分(3)解:整理,得x 2-3x =0, 分解因式,得x (x -3)=0, 则x =0或x -3=0, ∴x 1=0,x 2=3. 12分(4)解:方程两边同除以2,得x 2-12x -12=0,移项,得x 2-12x =12,配方,得⎝⎛⎭⎪⎫x -142=916,开平方,得x -14=±34,∴x 1=1,x 2=-12.16分18.解:将x =-2代入原方程,得(-2)2-2+n =0, 1分 解得n =-2, 3分因此原方程为x 2+x -2=0, 5分 解得x 1=-2,x 2=1, 7分 ∴m =1. 8分19. 解:原式=m -33m (m -2)÷⎝ ⎛⎭⎪⎫m 2-4m -2-5m -2 =m -33m (m -2)·m -2(m +3)(m -3)=13m (m +3), 4分 ∵m 是方程x 2+2x -3=0的根,∴m =-3或m =1. 6分当m =-3时,原式无意义; 8分当m =1时,原式=13m (m +3)=13×1×(1+3)=112. 10分 20.解:设个位数字为x ,则十位数字为(x -2),这个两位数是[10(x -2)+x ].2分根据题意,得10(x -2)+x =3x (x -2),整理,得3x 2-17x +20=0,5分解得x 1=4,x 2=53(不合题意,舍去).8分 当x =4时,x -2=2,∴这个两位数是24. 10分21. 解:设垂直于墙的一边为x 米, 1分依题意得x (58-2x )=200. 3分解得x 1=25,x 2=4. 6分∴另一边为8米或50米. 9分故矩形长为25米,宽为8米或长为50米,宽为4米. 10分22. 解:(1)设每年市政府投资的增长率为x , 1分根据题意,得3(1+x )2=6.75, 3分解得x 1=0.5=50%,x 2=-2.5(不合题,舍去). 5分则每年市政府投资的增长率为50%. 6分(2)6.753×12=27(万平方米).则2017年建设了27万平方米廉租房. 10分23. 解:Δ=[2(m -1)]2-4(m 2-1)=-8m +8. 1分(1)根据题意,得-8m +8>0,且m 2-1≠0, 2分解得m <1且m ≠-1. 4分(2)根据题意,得-8m +8=0,且m 2-1≠0,可知无解, 6分则方程不可能有两个相等的实数根. 7分(3)根据题意,得-8m +8<0,且m 2-1≠0, 8分解得m >1. 10分24.解:设应降价x 元,则售价为(60-x )元,销售量为(300+20x )件,1分根据题意,得(60-x -40)(300+20x )=6 080, 5分解得x 1=1,x 2=4, 8分又需使顾客得实惠,故取x =4,即定价为56元,故应将销售单价定为56元. 10分25.解:(1)设x 秒后△PBQ 的面积等于8 cm 2.∵AP =x ,QB =2x .∴PB =6-x . ∴12(6-x )·2x =8, 2分解得x 1=2,x 2=4, 4分故2秒或4秒后△PBQ 的面积等于8 cm 2. 5分(2)假设存在t 使得△PDQ 的面积为26 cm 2, 6分则72-6t-t(6-t)-3(12-2t)=26, 8分整理得,t2-6t+10=0,∵Δ=36-4×1×10=-4<0,∴原方程无解, 11分∴不存在t,使△PDQ的面积等于26 cm2. 12分附赠材料:考试做题技巧会学习,还要会考试时间分配法:决定考场胜利的重要因素科学分配答题时间,是决定考场能否胜利的重要因素。
北师大版九年级数学上册《第二章 一元二次方程》章节测试卷-带答案
北师大版九年级数学上册《第二章 一元二次方程》章节测试卷-带答案知识点总结:①配方法和十字叉乘法求解一元二次方程{二次项系数为±1二次项系数不是±1配方法:(a±b)2=a2+b2±2ab十字叉乘法:化简成(x±a)(x±b)=0的形式,解得x=∓a或∓b②公式法求解一元二次方程公式法:x=−b±√b2−4ac2a③因式分解法求解一元二次方程因式分解法:{(a±b)2=a2+b2±2ab a2−b2=(a−b)(a+b)④一元二次方程的根与系数的关系关系:x1+x2=−ba ;x1∙x2=ca⑤应用一元一次方程应用题第二章一元二次方程测试1(拔高题)1、下列方程为一元二次方程,求a的取值范围或者具体值:①2ax2−2bx+a=4x2②(a−1)x|a|+1−2x−7=0③ax2+6x+1=0没有实数根2、已知一元二次方程x2+k+3=0有一个根为1,则k的值为.3、已知一元二次方程为5x2+x=0,其中二次项系数为,一次项系数为,常数项为,x1x2=,x1+x2=.x2+3x−2=0 的两根,则(x1−x2)2的值为.4、设x1与x2为一元二次方程−125、关于x的一元二次方程x2−(k−3)x−k+1=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.实数根的个数由k的值确定6、已知关于x的一元二次方程x2+2mx+m2−m=0的两实数根为x1,x2,且满足x1x2=2,则x1+x2的值为()A.4B.−4C.4或−2D.−4或27、配方法解方程x2+6x+9=23x2−2=5x8、公式法解方程(x−2)(3x−5)=19x2+6x+1=49、直接开平方法解方程2(x−1)2 −18=010、因式分解法解方程3x(x−1)=3(x+2)(1−x)3(4−x)2=x2−16(1−2x)(x−8)=8x−411、如图,在矩形ABCD 中,AB =10 cm ,AD =8 cm ,点P 从点A 出发沿AB 以2cm /s 的速度向点B 运动,同时点Q 从点B 出发沿BC 以1cm /s 的速度向点C 运动,点P 到达终点后,P ,Q 两点同时停止运动。
北师大版九年级上册数学第二章: 一元二次方程 单元测试题
一元二次方程 单元测试题一、选择题1、下列关于的方程中,是一元二次程的为()x A .B .20ax bx c ++=210x -=C .D .2350x y -+=211x x-=2、已知是一元二次方程的一个解,则的值是( )x =1x 2‒2mx +1=0m A.1 B.0C.或01D.或0‒13、市政府为了解决市民看病难的问题,决定下调药品的价格。
某种药品经过连续两次降价后,由每盒200元下调至128元,这种药品平均每次降价的百分率是( )A 10%B 15 %C 20 %D 25 %4、某商店一月份获利3000元,三月份增加到7200元,设平均每月增长率为x ,则由题意可列方程为( )A .3000(1+x )2=7200B .3000+3000(1+x )2=7200C .3000(1﹣x )2=7200D .3000+3000(1﹣x )2=72005、方程的解是(x ‒2)(x +3)=0()A. B.x =2x =‒3C.,D.,x 1=2x 2=3x 1=2x 2=‒36、若关于的方程的两根同为负数,其中,则( )x x 2+px +q =0p 2‒4q ≥0A.且p >0q >0 B.且p >0q <0C.且p <0q >0D.且p <0q <07、若方程()a x =-24有解,则a 的取值范围是( ).A .0≤a B .0≥a C .0>a D .无法确定8、已知互不相等的实数m 、n ,且满足m 2+3m﹣5=0,n 2+3n﹣5=0,则m 2﹣n 2+mn+6m 的值为( )A .14B .﹣14C .10D .﹣109、某工厂一月份产值是5万元,三月份产值为11.25万元,则每月平均增长的百分率为( )%(A )10 (B )50 (C )20 (D )2510、如图将一张正方形纸片一边剪去一个宽为1cm 的矩形纸片后,再从剩下的矩形纸片上剪去一个宽为2cm 的矩形纸片,剩余矩形纸片的面积为18cm 2,求原正方形纸片的边长,设原正方形纸片的边长为xcm ,则可列方程为( )A .(x +1)(x +2)=18B .x 2﹣3x +16=0C .(x ﹣1)(x ﹣2)=18D .x 2+3x +16=0二、填空题11、某印刷厂今年一季度印刷了50万册书,第三季度印刷了72万册书,如果每个季度的增长率相同,设为x,依题意可得方程__________________;12、方程22(2)(3)20m m x m x --+--=是一元二次方程,则____m =.13、方程的根是________. x(x +2)=2(x +2)14、若、是方程的两根,则的值为________. αβx 2‒2x ‒1=0α+β+αβ15、已知为实数,且满足,则代数式的值为a (a 2+b 2)2+2(a 2+b 2)‒15=0a 2+b 2______.三、解答题16、解方程(1)(x +1)(x +3)=15(2)x 2﹣7x﹣18=0(3)(2x+3)2=4(2x+3)(因式分解法)17、设方程的两个实数根为、,求:x 2+2x ‒1=0x 1x 2(1);(2); (3); (4)的值.x 1+x 2x 1⋅x 2x 21+x 221x 1+1x 218、某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?19、某通讯器材公司销售一种市场需求较大的新型通讯产品,已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)为120万元,在销售过程中发现,年销售量y x(万件)与销售单价(元)之间存在着如图所示的一次函数关系.y x⑴直接写出关于的函数关系式为.⑵市场管理部门规定,该产品销售单价不得超过100元,该公司销售该种产品当年获利55万元,求当年的销售单价.8012020、某童装专卖店在销售中发现,一款童装每件进价为元,销售价为元时,每天可20售出件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以增加利润,但2512单件利润不能低于元.经市场调查发现,如果每件童装降价元,那么平均可多售出件.(1)x设每件童装降价元时,每天可销售________件,每件盈利________元;(2)1200每件童装降价多少元时,平均每天赢利元;(3)2000要想平均每天赢利元,可能吗?请说明理由.。
2022-2023学年北师大版九年级数学上册《第2章一元二次方程》单元达标测试题(附答案)
2022-2023学年北师大版九年级数学上册《第2章一元二次方程》单元达标测试题(附答案)一.选择题(共8小题,满分40分)1.下列方程是一元二次方程的是()A.x(x+3)=0B.x2﹣4y=0C.x2﹣=5D.ax2+bx+c=0(a、b、c为常数)2.若关于x的一元二次方程ax2+bx+5=0(a≠0)的一个解是x=1,则2021﹣a﹣b的值是()A.2016B.2020C.2025D.20263.若关于x的一元二次方程(m+1)x2+3x+m2﹣1=0的一个实数根为0,则m等于()A.1B.±1C.﹣1D.04.若关于x的一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,且满足4a﹣2b+c =0,则()A.b=a B.c=2a C.a(x+2)2=0D.﹣a(x﹣2)2=0 5.用配方法解方程x2+8x+9=0,配方后可得()A.(x+8)2=73B.(x+4)2=25C.(x+8)2=55D.(x+4)2=7 6.如图,某学校计划在一块长12米,宽9米的矩形空地修建两块形状大小相同的矩形种植园,它们的面积之和为60平方米,两块种植园之间及周边留有宽度相等的人行通道,若设人行通道的宽度为x米,则可以列出关于x的方程()A.x2﹣17x﹣16=0B.2x2+17x﹣16=0C.2x2﹣17x﹣16=0D.2x2﹣17x+16=07.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5B.﹣1,3C.﹣3,1D.﹣1,58.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则其中正确的()A.只有①②B.只有①②④C.①②③④D.只有①②③二.填空题(共8小题,满分40分)9.如果关于x的方程(m﹣3)﹣x+3=0是一元二次方程,那么m的值为.10.一元二次方程x2﹣x=0的解是.11.若关于x的一元二次方程(k﹣2)x2+4x+2=0有实数根,则k的取值范围是.12.若a是方程x2+x﹣1=0的根,则代数式2022﹣3a2﹣3a的值是.13.某地区加大教育投入,2020年投入教育经费2000万元,以后每年逐步增长,预计2022年,教育经费投入为2420万元,则年平均增长率为.14.已知等腰三角形三边分别为a、b、4,且a、b是关于x的一元二次方程x2﹣12x+m+2=0的两个根,则m的值是.15.2021年端午节期间,合肥某食品专卖店准备了一批粽子,每盒利润为50元,平均每天可卖300盒,经过调查发现每降价1元,可多销售10盒,为了尽快减少库存,决定采取降价措施,专卖店要想平均每天盈利16000元,设每盒粽子降价x元,可列方程.16.如图,△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从A点开始沿AB向B点以1cm/s的速度移动,点Q从B点开始沿BC边向C点以2cm/s的速度移动.如果P、Q分别从A、B同时出发,经过秒钟△PQB的面积等于△ABC面积的.三.解答题(共5小题,满分40分)17.解方程:(1)3x2﹣1=4x;(2)(x+4)2=5(x+4).18.已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根.(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积.19.x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个实数根,若满足|x1﹣x2|=1,则此类方程称为“差根方程”.根据“差根方程”的定义,解决下列问题:(1)通过计算,判断下列方程是否是“差根方程”:①x2﹣4x﹣5=0;②2x2﹣2x+1=0;(2)已知关于x的方程x2+2ax=0是“差根方程”,求a的值;(3)若关于x的方程ax2+bx+1=0(a,b是常数,a>0)是“差根方程”,请探索a与b 之间的数量关系式.20.疫情肆虐,万众一心.由于医疗物资极度匮乏,许多工厂都积极宣布生产医疗物资以应对疫情.某工厂及时引进了1条口罩生产线生产口罩,开工第一天生产300万个,第三天生产432万个,若每天生产口罩的个数增长的百分率相同,请解答下列问题:(1)每天增长的百分率是多少?(2)经调查发现,一条生产线最大产能是900万个/天,如果每增加1条生产线,每条生产线的最大产能将减少30万个/天.现该厂要保证每天生产口罩3900万个,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?21.“阳光玫瑰”葡萄品种是广受各地消费者的青睐的优质新品种,在我国西部区域广泛种植,某葡萄种植基地2018年种植“阳光玫瑰”100亩,到2020年“阳光玫瑰”的种植面积达到256亩.(1)求该基地这两年“阳光玫瑰”种植面积的平均年增长率.(2)市场调查发现,当“阳光玫瑰”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出45千克.①若降价x(0≤x≤20)元,每天能售出多少千克?(用x的代数式表示)②为了推广宣传,基地决定降价促销,同时尽量减少库存,已知该基地“阳光玫瑰”的平均成本价为10元/千克,若要销售“阳光玫瑰”每天获利2125元,则售价应降低多少元?参考答案一.选择题(共8小题,满分40分)1.解:A、x(x+3)=0,是一元二次方程,符合题意;B、x2﹣4y=0,含有两个未知数,最高次数是2,不是一元二次方程,不符合题意;C、x2﹣=5,不是整式方程,不是一元二次方程,不符合题意;D、ax2+bx+c=0(a、b、c为常数),一次项系数可以为任意数,二次项系数一定不能为0,此方程才为一元二次方程,但题目中并没给出这个条件,故此方程不一定是一元二次方程,不符合题意;故选:A.2.解:把x=1代入方程ax2+bx+5=0得a+b+5=0,所以a+b=﹣5,所以2021﹣a﹣b=2021﹣(a+b)=2021+5=2026.故选:D.3.解:把x=0代入(m+1)x2+3x+m2﹣1=0,得m2﹣1=0,解得m1=﹣1,m2=1,而m+1≠0,即m≠﹣1.所以m=1.故选:A.4.解:∵一元二次方程ax2+bx+c=0(a≠0)满足4a﹣2b+c=0,∴x=﹣2是方程ax2+bx+c=0的解,又∵有两个相等的实数根,∴a(x+2)2=0(a≠0).故选:C.5.解:x2+8x+9=0,x2+8x=﹣9,x2+8x+16=﹣9+16,(x+4)2=7,故选:D.6.解:设人行道的宽度为x米,根据题意得,(12﹣3x)(9﹣2x)=60,化简整理得,2x2﹣17x+16=0.故选:D.7.解:∵一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,∴方程a(x+m﹣2)2+n=0(a≠0)中x﹣2=﹣3或x﹣2=1,解得:x=﹣1或3,即方程a(x+m﹣2)2+n=0(a≠0)的两根分别为﹣1和3,故选:B.8.解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知Δ=b2﹣4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实根,∴Δ=0﹣4ac>0,∴﹣4ac>0,则方程ax2+bx+c=0的判别式Δ=b2﹣4ac>0,∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0,∴c(ac+b+1)=0若c=0,等式仍然成立,但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=或x0=∴2ax0+b=或2ax0+b=﹣∴故④正确.故选:B.二.填空题(共8小题,满分40分)9.解:由题意得:m2﹣7=2,且m﹣3≠0,解得:m=﹣3,故答案为:﹣3.10.解:x2﹣x=0,x(x﹣1)=0,∴x=0或x﹣1=0,∴x1=0,x2=1,故答案为:x1=0,x2=1.11.解:∵关于x的一元二次方程(k﹣2)x2+4x+2=0有实数根,∴△≥0且k﹣2≠0,即42﹣4(k﹣2)×2≥0且k﹣2≠0解得k≤4且k≠2.故答案为:k≤4且k≠2.12.解:把x=a代入x2+x﹣1=0,得a2+a﹣1=0,解得a2+a=1,所以2022﹣3a2﹣3a=2022﹣3(a2+a)=2022﹣3=2019.故答案是:2019.13.解:设年平均增长率为x,根据题意得:2000(1+x)2=2420,解得:x=0.1=10%,或x=﹣2.1(不合题意舍去).即:年平均增长率为10%.故答案是:10%.14.解:当a=4时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+b=12,∴b=8,而4+4=8,不符合题意;当b=4时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+a=12,而4+4=8,不符合题意;当a=b时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴12=a+b,解得a=b=6,∴m+2=36,∴m=34,故m的值为34,故答案为34.15.解:设每盒粽子降价x元,则每盒的利润为(50﹣x)元,平均每天可卖(300+10x)盒,依题意得:(50﹣x)(300+10x)=16000,故答案为:(50﹣x)(300+10x)=16000.16.解:根据题意,知BP=AB﹣AP=6﹣t,BQ=2t.∵△PQB的面积等于△ABC面积的,则根据三角形的面积公式,得PB•BQ=××6×8,2t(6﹣t)=18,(t﹣3)2=0,解得t=3.故经过3秒钟△PQB的面积等于△ABC面积的.故答案是:3.三.解答题(共5小题,满分40分)17.解:(1)3x2﹣4x﹣1=0,∵a=3,b=﹣4,c=﹣1,∴Δ=b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=16+12=28>0.∴x==,∴x1=,x2=.(2)(x+4)2=5(x+4),(x+4)2﹣5(x+4)=0,(x+4)(x+4﹣5)=0,∴x+4=0或x﹣1=0,∴x1=﹣4,x2=1.18.(1)证明:∵Δ=(m+2)2﹣4(2m﹣1)=(m﹣2)2+4,∴在实数范围内,m无论取何值,(m﹣2)2+4>0,即Δ>0,∴关于x的方程x2﹣(m+2)x+(2m﹣1)=0恒有两个不相等的实数根;(2)解:根据题意,得12﹣1×(m+2)+(2m﹣1)=0,解得,m=2,则方程的另一根为:m+2﹣1=2+1=3;①当该直角三角形的两直角边是1、3时,该直角三角形的面积为=;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2;则该直角三角形的面积为=;综上,该直角三角形的面积为或.19.解:(1)①设x1,x2是一元二次方程x2﹣4x﹣5=0的两个实数根,∴x1+x2=4,x1•x2=﹣5,∴|x1﹣x2|===6,∴方程x2﹣4x﹣5=0不是差根方程;②设x1,x2是一元二次方程2x2﹣2x+1=0的两个实数根,∴x1+x2=,x1•x2=,∴|x1﹣x2|===1,∴方程2x2﹣2x+1=0是差根方程;(2)x2+2ax=0,因式分解得:x(x+2a)=0,解得:x1=0,x2=﹣2a,∵关于x的方程x2+2ax=0是“差根方程”,∴2a=±1,即a=±;(3)设x1,x2是一元二次方程ax2+bx+1=0(a,b是常数,a>0)的两个实数根,∴x1+x2=﹣,x1•x2=,∵关于x的方程ax2+bx+1=0(a,b是常数,a>0)是“差根方程”,∴|x1﹣x2|=1,∴|x1﹣x2|==1,即=1,∴b2=a2+4a.20.解:(1)设每天增长的百分率是x,依题意得:300(1+x)2=432,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:每天增长的百分率是20%.(2)设应该增加y条生产线,则每条生产线的最大产能为(900﹣30y)万个/天,依题意得:(900﹣30y)(1+y)=3900,整理得:y2﹣29y+100=0,解得:y1=4,y2=25.又∵要节省投入,∴y=4.答:应该增加4条生产线.21.解:(1)设该基地这两年“阳光玫瑰”种植面积的平均增长率为y,依题意,得:100(1+y)2=256,解得:y1=0.6=60%,y2=﹣2.6(不合题意,舍去).答:该基地这两年“阳光玫瑰”种植面积的平均增长率为60%.(2)①设售价应降低x元,则每天可售出(200+45x)千克;②依题意,得:(20﹣10﹣x)(200+45x)=2125,整理,得:9x2﹣50x+25=0,解得:x1=5,x2=.∵要尽量减少库存,∴x=5.答:售价应降低5元.。
北师大版九年级上册数学第二章测试题(附答案)
北师大版九年级上册数学第二章测试题(附答案)北师大版九年级上册数学第二章测试题(附答案)1.下列关于x的方程中,一定是一元二次方程的为()A。
x^2-2=(x+3)^2 B。
ax^2+bx+c=0 C。
x^2+3x+1=0 D。
2x+1=02.方程-5x^2=1的一次项系数是()A。
3 B。
1 C。
-1 D。
03.若关于x的一元二次方程x^2+5x+m^2-1=0的常数项为1,则m等于()A。
1 B。
2 C。
1或-1 D。
04.一元二次方程(x-5)^2=x-5的解是()A。
x=5 B。
x=6 C。
x=0 D。
没有解5.一种药品经两次降价,由每盒50元调至40.5元,平均每次降价的百分率是()A。
5% B。
10% C。
15% D。
20%6.某商品两次价格上调后,单位价格从4元变为4.84元,则平均每次调价的百分率是()A。
9% B。
10% C。
11% D。
12%7.一元二次方程x^2-2x=0的根是()A。
2 B。
0 C。
0和2 D。
1和-18.已知α、β是方程x^2-2x-1=0的两个根,则α^2-β^2的值为()A。
-5 B。
2 C。
0 D。
-29.方程2x^2-6x-5=0的二次项系数、一次项系数、常数项分别为()A。
6、2、5 B。
2、-6、5 C。
2、-6、-5 D。
-2、6、510.用配方法解方程x^2-2x-3=0时,配方后所得的方程为()A。
(x-1)^2=4 B。
(x-1)^2=5 C。
(x-2)^2=4 D。
(x-2)^2=511.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的p%,则新品种花生亩产量的增长率为()泥,经销店可以获得50元的利润。
现在厂家降低了售价,经销店可以选择维持售价不变,或者降低售价以吸引更多客户。
北师大版九年级数学上《第二章一元二次方程》单元测试含答案
第二章一元二次方程一、选择题 ( 本大题共7 小题,共21 分)1.要使方程( a - 3) x 2+ ( b + 1) x + c =0 是对于x 的一元二次方程,则 ()A . a ≠0B . a ≠3C . a ≠3 且b ≠- 1D . a ≠3 且 b ≠- 1 且 c ≠0 2.用配方法解对于x 的一元二次方程 x 2- 2x -3= 0 时,配方后的方程能够是 ()A . ( x - 1) 2= 4B . ( x + 1) 2= 4C . ( x - 1) 2= 16D . ( x +1) 2= 16 3.对于 x 的一元二次方程 x 2+ ax - 1= 0 的根的状况是 ()A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根4.若 x =- 2 是对于x 的一元二次方程2- 5 + 2= 0 的一个根,则a 的值为()x2ax aA .1或 4B .-1或-4C .-1或 4D .1或-45.某旅行景点的旅客人数逐年增添,据相关部门统计, 2015 年约为 12 万人次,若 2017年约为 17 万人次,设旅客人数的年均匀增添率为x ,则以下方程中正确的选项是 ( )A . 12(1 + x ) = 17B . 17(1 - x ) = 12C . 12(1 + x ) 2= 17D . 12+ 12(1 + x ) + 12(1 + x ) 2= 176.已知 2 是对于 x 的方程 x 2 -2mx + 3m = 0 的一个根,而且这个方程的两个根恰巧是等腰三角形 ABC 的两条边长,则△ ABC 的周长为 ()A .10B .14C .10或14D .8或 10图 17.如图 1,一田户要建一个矩形花园,花园的一边利用长为 12 m 的住宅墙,此外三边用 25 m 长的篱笆围成,为方便出入,在垂直于住宅墙的一边留一个1 m 宽的门,花园面积为 80 m 2,设与墙垂直的一边长为x m ,则能够列出对于 x 的方程是 ()A . x (26 - 2x ) =80B . x (24 - 2x ) =80C . ( x - 1)(26 -2x ) = 80D . x (25 - 2x ) =80二、填空题 ( 本大题共 6 小题,共 24 分)8.已知对于 x 的方程 3 2 -8= 0 有一个根是 2的值分别为 ________.+ ,则另一个根及x mx 3m29.对于 x 的方程 mx + x - m + 1= 0,有以下三个结论:①当 m = 0 时,方程只有一个实数解;②当 m ≠ 0 时,方程有两个不相等的实数解; ③不论 m 取何值,方程都有一个负数解. 其中正确的选项是 ________( 填序号 ) .10.已知 是对于x 的方程 2 - 2 -3= 0 的一个根,则 2 2- 4 = ________.mx xmm11.已知一元二次方程2-3 x -4=0 的两根是 , ,则2+2= ________.xm n m n12.经过两次连续降价, 某药品的销售单价由本来的50 元降到 32 元,设该药品均匀每次降价的百分率为 x ,依据题意可列方程是 ____________.13.将一条长为 20 cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是2________cm .三、解答题 ( 共 55 分)14. (12 分 ) 我们已经学习了一元二次方程的四种解法:因式分解法、直接开平方法、配方法和公式法.请选择你以为适合的方法解以下方程:(1) x2- 3x+ 1= 0;(2)( x- 1) 2=3;(3) x2- 3x= 0;(4) x2- 2x= 4.15. (9 分 ) 已知对于x 的一元二次方程x2-( k+3) x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于 1,求k的取值范围.16. (10 分) 如图2,在宽为20 m,长为32 m 的矩形地面上修建相同宽的道路( 图中阴影部分) ,余下的部分种上草坪.要使草坪的面积为540 m2,求道路的宽.( 部分参照数据:322= 1024, 522= 2704, 482= 2304)图 217. (12 分 ) 菜农李伟栽种的某蔬菜计划以每千克 5 元的单价对外批发销售,因为部分菜农盲目扩大栽种,造成该蔬菜滞销.李伟为了加速销售,减少损失,对价钱经过两次下调后,以每千克 3.2 元的单价对外批发销售.(1)求均匀每次下调的百分率.(2)小华准备到李伟处购置 5 吨该蔬菜,因数目多,李伟决定再赐予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200 元.小华选择哪一种方案更优惠?请说明原因.18. (12 分 ) 在图 3 中,每个正方形由边长为 1 的小正方形构成:图 3(1)察看图形,请填写以下表格:1 3 5 7 n(奇数)正方形边长黑色小正方形的个数2 4 6 8 n(偶数)正方形边长黑色小正方形的个数(2) 在边长为n( n≥1)的正方形中,设黑色小正方形的个数为p1,白色小正方形的个数为 p2,问能否存在偶数n,使p2=5p1?若存在,请写出n 的值;若不存在,请说明原因.答案1. B [ 分析 ] 由 a - 3≠0,得 a ≠3.2. A [ 分析 ] 由 x 2- 2x -3= 0,得 x 2- 2x + ( - 1) 2= 3+ ( - 1) 2,即 ( x - 1) 2= 4. 3. D2524.B [分析] 因为 x =- 2 是对于 x 的一元二次方程 x -2ax + a =0 的一个根, 所以 4+5 +2= 0,解得 1=- 1, 2=- 4. 当 a =-1 或 =- 4 时均切合题意.应选a a a a aB.5. C [ 分析 ] 设旅客人数的年均匀增添率为 x ,则 2016 年的旅客人数为: 12× (1 + x ) ,2017 年的旅客人数为: 12× (1 + x ) 2. 那么可得方程: 12(1 + x ) 2= 17.应选 C.6. B [ 分析 ] 将 x = 2 代入方程可得 4- 4m + 3m = 0,解得 m = 4,则此时方程为x 2- 8x+12= 0,解方程得 x 1= 2,x 2= 6,则三角形的三边长为2, 2,6 或许 2,6,6. 因为 2+ 2<6,所以 2,2, 6 没法构成三角形.所以△ABC 的三边长分别为 2,6, 6,所以△ ABC 的周长为 2+ 6+ 6= 14.7.A [分析]∵与墙垂直的一边长为x m ,∴与墙平行的一边长为(26 - 2x )m ,依据题意,得 x (26 - 2x ) = 80.应选 A.2 2 28.- 4, 10 [分析 ]依题意,得 3×( 3) + 3m - 8= 0,解得 m = 10.28设方程的另一根为 t ,则 3t =- 3,所以 t =- 4.综上所述,另一个根是-4, m 的值为 10.9.①③11.17 [ 分析 ] ∵ , 是一元二次方程x 2- 3 x -4= 0 的两个根, ∴ + =3, =- 4,m n m n mn222- 2mn = 9+ 8= 17.则 m + n = ( m +n ) 12. 50(1 - x ) 2= 3213. 12.5 [ 分析 ] 设此中一段铁丝的长为x cm ,则另一段铁丝的长为(20 - x )cm ,则x 220- x 2 1212两个正方形的面积之和为4 + 4=8( x - 20x +100) + = 8( x - 10) + ,∴当两小段铁丝的长都等于 10 cm 时,两个正方形的面积之和最小,最小值为 12.5 cm 2.14.解: (1) b 2- 4ac = 9-4= 5,- b ± b 2- 4ac 3± 5 x = 2a = ,2 x 1=3+ 5 3- 5, x 2=.22(2) 两边直接开平方,得 x - 1=± 3,x 1= 1+ 3, x 2= 1- 3.(3) 原方程可化为 x ( x - 3) = 0,x = 0 或 x - 3= 0, x 1= 0, x 2=3.(4) 配方,得 x 2- 2x + 1= 4+1,整理,得 ( x - 1) 2=5,开平方,得 x -1=± 5,x 1= 1+ 5, x 2= 1- 5.15.解:(1) 证明: ∵在方程 x 2- ( k + 3) x + 2k + 2= 0 中, = [ - ( k +3)] 2- 4×1× (2 k+ 2) = k 2- 2k + 1= ( k -1) 2≥ 0,∴方程总有两个实数根.(2) ∵ x 2-( k + 3) x + 2k + 2= ( x - 2)( x - k - 1) = 0,∴ x 1= 2,x 2= k + 1.∵方程有一个根小于1,∴ k + 1< 1,解得 k < 0,∴k 的取值范围为 k<0.16.解:解法 1:利用平移,原图可转变为图①,设道路宽为x m,依据题意,得 (20 -x)(32 -x) = 540,整理,得 x2-52x+100=0,解得 x1=50(舍去), x2=2.答:道路的宽为 2 m.解法 2:利用平移,原图可转变为图②,设道路宽为x m,依据题意,得20× 32- (20 + 32) x+x2= 540,整理,得 x2-52x+100=0,解得 x1=2, x2=50(舍去).答:道路的宽是 2 m.17. [ 分析 ]此题考察了一元二次方程的应用,掌握增添率的计算方法是解题的重点.解: (1) 设均匀每次下调的百分率为x.由题意,得5(1 -x) 2= 3.2.解这个方程,得x1=,x2=1.8.因为降价的百分率不行能大于1,所以x2= 1.8 不切合题意,切合题目要求的是x1==20%.答:均匀每次下调的百分率是20%.(2)小华选择方案一更优惠.原因:方案一所需花费为 3.2 × 0.9 × 5000 =14400( 元) ,方案二所需花费为 3.2 ×5000- 200× 5= 15000( 元 ) .因为 14400<15000,所以小华选择方案一更优惠.18. [ 全品导学号:52652094] 解: (1)1 5 9 13 2n- 1 4 8 12 16 2n(2)由 (1) 可知,当n为偶数时,p1=2n,所以 p2=n2-2n.依据题意,得n2-2n=5×2n,整理,得 n2-12n=0,解得 n1=12, n2=0(不合题意,舍去) .所以存在偶数n=12,使得 p2=5p1.。
北师大版九年级数学上册第二单元测试题含答案
北师大版九年级数学上册第二章测试题及答案一、选择题(每题3分,共30分)1.下列等式中是关于x的一元二次方程的是()A.3(x+1)2=2(x+1) B.1x2+1x-2=0C.ax2+bx+c=0 D.x2+2x=x2-12.一元二次方程x2-6x+5=0配方后可化为()A.(x-3)2=-14 B.(x+3)2=-14 C.(x-3)2=4 D.(x+3)2=14 3.关于x的一元二次方程(m-1)x2-2x-1=0有两个实数根,则实数m的取值范围是()A.m≥0 B.m>0 C.m≥0且m≠1 D.m>0且m≠1 4.已知关于x的一元二次方程x2+mx-8=0的一个实数根为2,则另一个实数根及m的值分别为()A.4,-2 B.-4,-2 C.4,2 D.-4,25.已知x为实数,且满足(x2+3x)2+2(x2+3x)-3=0,那么x2+3x的值为() A.1 B.-3或1 C.3 D.-1或36.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有()A.7队B.6队C.5队D.4队7.关于x的方程x2-ax+2a=0的两根的平方和是5,则a的值是() A.-1或5 B.1 C.5 D.-18.已知x=2是关于x的方程x2-2mx+3m=0的一个根,并且等腰三角形ABC 的腰长和底边长恰好是这个方程的两个根,则△ABC的周长为()A.10 B.14 C.10或14 D.8或109.若关于x的方程2x2+mx+n=0的两个根是-2和1,则nm的值为() A.-8 B.8 C.16 D.-1610.如图,将边长为2 cm的正方形ABCD沿其对角线AC剪开,再把△AB C沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1 cm2,则它移动的距离AA′等于()A.0.5 cmB.1 cmC.1.5 cmD.2 cm二、填空题(每题3分,共24分)11.一元二次方程x(x-7)=0的解是________.12.若关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a=________.13.已知关于x的方程x2-6x+k=0的两根分别是x1,x2,且满足1x1+1x2=3,则k=________.14.某市加大了对雾霾的治理力度,2017年第一季度投入资金100万元,第二季度和第三季度共投入资金260万元,求这两个季度投入资金的平均增长率.设这两个季度投入资金的平均增长率为x,根据题意可列方程为________________________.15.关于x的两个方程x2-4x+3=0与1x-1=2x+a有一个解相同,则a=________.16.已知线段AB的长为2,以AB为边在AB的下方作正方形ABCD,取AB边上一点E(不与点A,B重合),以AE为边在AB的上方作正方形AENM.过点E作EF⊥CD,垂足为点F,如图.若正方形AENM与四边形EFCB的面积相等,则AE的长为________.17.已知(2a+2b+1)(2a+2b-1)=19,则a+b=________.18.如图,在Rt△ABC中,∠BAC=90°,AB=AC=16 cm,AD为BC边上的高,动点P从点A出发,沿A→D方向以 2 cm/s的速度向点D运动.设△ABP 的面积为S1,矩形PDFE的面积为S2,运动时间为t s(0<t<8),则t=________时,S 1=2S2.三、解答题(19题12分,20~23题每题8分,24题10分,25题12分,共66分)19.用适当的方法解下列方程.(1)x2-x-1=0; (2)3x(x-2)=x-2;(3)x2-22x+1=0; (4)(x+8)(x+1)=-12.20.已知关于x的一元二次方程(m-2)x2+2mx+m+3=0有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.21.解方程(x-1)2-5(x-1)+4=0时,我们可以将x-1看成一个整体,设x-1=y,则原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,即x-1=1,解得x=2;当y=4时,即x-1=4,解得x=5,所以原方程的解为x1=2,x2=5.请利用这种方法求方程(2x+5)2-4(2x+5)+3=0的解.22.关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.23.一个矩形周长为56 cm.(1)当矩形的面积为180 cm2时,长和宽分别为多少?(2)这个矩形的面积能为200 cm2吗?请说明理由.24.如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若点P从点A出发沿AB边向点B以1 cm/s的速度移动,点Q从点B出发沿BC边向点C以2 cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8 cm2?(2)出发几秒后,线段PQ的长为4 2 cm?(3)△PBQ的面积能否为10 cm2若能,求出时间;若不能,请说明理由.25.某中学九年级准备组织学生去方特梦幻王国进行春游活动.方特梦幻王国给出了学生团体门票的优惠价格:如果学生人数不超过30名,那么门票为每张240元;如果人数超过了30名,则每超过1名,每张门票就降低2元,但每张门票最低不能少于200元.(1)若一班共有40名学生参加了春游活动,则需要交门票费多少元?(2)若二班共有52名学生参加了春游活动,则需要交门票费多少元?(3)若三班交了门票费9 450元,请问该班参加春游的学生有多少名?答案一、1.A2.C3.C4.D5.A6.C7.D8.B9.C10.B解析:设AC交A′B′于H.∵∠DAC=45°,∠AA′H=90°,∴△AA′H是等腰直角三角形.设AA′=x cm,则A′H=x cm,A′D=(2-x)cm.∴x(2-x)=1,解得x1=x2=1,即AA′=1 cm.故选B.二、11.x1=0,x2=712.-113.2解析:∵x2-6x+k=0的两根分别为x1,x2,∴x1+x2=6,x1x2=k.∴1x1+1x2=x1+x2x1x2=6k=3.解得k=2.经检验,k=2满足题意.14.100(1+x)+100(1+x)2=260解析:根据题意知:第二季度投入资金100(1+x)万元,第三季度投入资金100(1+x)2万元,∴100(1+x)+100(1+x)2=260.15.1解析:由方程x2-4x+3=0,得(x-1)(x-3)=0,∴x-1=0或x-3=0.解得x1=1,x2=3.当x=1时,分式方程1x-1=2x+a无意义;当x=3时,13-1=23+a,解得a=1.经检验,a=1是方程13-1=23+a的解.16.5-1解析:本题主要考查了根据几何图形列一元二次方程,解题的关键是根据已知条件和图形找出等量关系,列出方程.17.±5 解析:设t =2(a +b ),则原方程可化为(t +1)(t -1)=19,整理,得t 2=20,解得t =±25,则a +b =t 2=±5.技巧解析:换元法的一般步骤是:(1)设新元,即根据问题的特点或关系,引进适当的辅助元作为新元;(2)换元,用新元去代替原问题中的代数式或旧元;(3)求解新元,将解出的新元代回所设的换元式,求解原问题的未知元.18.6 解析:∵在Rt △ABC 中,∠BAC =90°,AB =AC =16 cm ,AD 为BC 边上的高,∴AD =BD =CD =8 2 cm.又∵AP =2t cm ,∴S 1=12AP ·BD =12×2t ×82=8t(cm 2),PD =(82-2t )cm.易知PE =AP =2t cm ,∴S 2=PD ·PE =(82-2t )·2t cm 2.∵S 1=2S 2,∴8t =2(82-2t )·2t .解得t 1=0(舍去),t 2=6.三、19.解:(1)(公式法)a =1,b =-1,c =-1,∴b 2-4ac =(-1)2-4×1×(-1)=5.∴x =-b ±b 2-4ac 2a=1±52, 即原方程的根为x 1=1+52,x 2=1-52.(2)(因式分解法)移项,得3x (x -2)-(x -2)=0,即(3x -1)(x -2)=0,∴x 1=13,x 2=2.(3)(配方法)配方,得(x -2)2=1,∴x -2=±1,∴x 1=2+1,x 2=2-1.(4)(因式分解法)原方程可化为x 2+9x +20=0,即(x +4)(x +5)=0,解得x1=-4,x2=-5.20.解:(1)∵关于x的一元二次方程(m-2)x2+2mx+m+3=0有两个不相等的实数根,∴m-2≠0且Δ=(2m)2-4(m-2)(m+3)=-4(m-6)>0,解得m<6且m≠2.∴m的取值范围是m<6且m≠2.(2)在m<6且m≠2的范围内,最大整数为5.此时,方程化为3x2+10x+8=0,解得x1=-2,x2=-4 3.21.解:设2x+5=y,则原方程可化为y2-4y+3=0,所以(y-1)(y-3)=0,解得y1=1,y2=3.当y=1时,即2x+5=1,解得x=-2;当y=3时,即2x+5=3,解得x=-1,所以原方程的解为x1=-2,x2=-1.22.解:(1)由题意得Δ=9-4(m-1)≥0,∴m≤13 4.(2)由根与系数的关系得x1+x2=-3,x1x2=m-1. ∵2(x1+x2)+x1x2+10=0,∴-6+(m-1)+10=0,∴m=-3,∵m≤134,∴m的值为-3.23.解:(1)设矩形的长为x cm,则宽为(28-x)cm,由题意列方程,得x(28-x)=180,整理,得x2-28x+180=0,解得x1=10(舍去),x2=18.答:矩形的长为18 cm,宽为10 cm.(2)不能.理由如下:设矩形的长为y cm,则宽为(28-y) cm,由题意列方程,得y(28-y)=200,整理,得y2-28y+200=0,则Δ=(-28)2-4×200=784-800=-16<0.∴该方程无实数解.故这个矩形的面积不能为200 cm2.24.解:(1)设t s 后,△PBQ 的面积为8 cm 2,则PB =(6-t )cm ,BQ =2t cm ,∵∠B =90°,∴12(6-t )×2t =8,解得t 1=2,t 2=4,∴2 s 或4 s 后,△PBQ 的面积为8 cm 2.(2)设出发x s 后,PQ =4 2 cm ,由题意,得(6-x )2+(2x )2=(42)2,解得x 1=25,x 2=2,故出发25 s 或2 s 后,线段PQ 的长为4 2 cm.(3)不能.理由:设经过y s ,△PBQ 的面积等于10 cm 2,则12×(6-y )×2y =10,即y 2-6y +10=0,∵Δ=b 2-4ac =36-4×10=-4<0,∴该方程无实数解.∴△PBQ 的面积不能为10 cm 2.25.解:(1)240-(40-30)×2=220(元),220×40=8 800(元).答:若一班共有40名学生参加了春游活动,则需要交门票费8 800元.(2)240-(52-30)×2=196(元),∵196<200,∴每张门票200元.200×52=10 400(元).答:若二班共有52名学生参加了春游活动,则需要交门票费10 400元.(3)∵9 450不是200的整数倍,且240×30=7 200(元)<9 450元,∴每张门票的价格高于200元且低于240元.设三班参加春游的学生有x 名,则每张门票的价格为[240-2(x -30)]元, 根据题意,得[240-2(x -30)]x =9 450,整理,得x 2-150x +4 725=0,解得x 1=45,x 2=105,∵240-2(x -30)>200,∴x <50.∴x =45.答:若三班交了门票费9 450元,则该班参加春游的学生有45名.。
北师大版九年级上册数学第二章测试题及答案
北师大版九年级上册数学第二章测试题及答案(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分)1.用配方法解一元二次方程x 2+4x -5=0,此方程可变形为( A )A .(x +2)2=9B .(x -2)2=9C .(x +2)2=1D .(x -2)2=12.若方程x 2-3kx +k +1=0的两根之积为2,则( D )A .k =2B .k =-1C .k =0D .k =13.关于x 的方程(m +1)x 2+2mx -3=0是一元二次方程,则m 的取值是( C )A .任意实数B .m ≠1C .m ≠-1D .m >14.(衡阳中考)绿苑小区在规划设计时,准备在两幢楼房之间设置一块面积为900平方米的矩形绿地,并且长比宽多10米,设绿地的宽为x 米,根据题意,可列方程为( B )A .x (x -10)=900B .x (x +10)=900C .10(x +10)=900D .2[x +(x +10)]=9005.菱形ABCD 的一条对角线长为6,边AB 的长为方程y 2-7y +10=0的一个根,则菱形ABCD 的周长为( B )A .8B .20C .8或20D .106.如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实根,则k 的取值范围是( D )A .-12≤k <12B .k ≠0C .k <12且k ≠0D .-12≤k <12且k ≠0 第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题3分,共18分)7.已知方程3x 2-9x +m =0的一个根是1,则m 的值 6 .8.已知关于x 的一元二次方程(m -2)x 2+3x +m 2-4=0的常数项为0,则m 的值为__-2 .9.已知x 为实数,且满足(x 2+3x )2+2(x 2+3x )-3=0,则x 2+3x 的值为 1 .10.三角形的两边长分别是3和4,第三边长是方程x 2-13x +40=0的根,则该三角形的周长为 12 .11.某种T 恤衫,平均每天销售40件,每件盈利20元.若每降价1元,则每天可多售出10件.如果每天盈利1 400元,那么每件应降价 6或10 元.12.(成都中考)已知x 1,x 2是关于x 的一元二次方程x 2-5x +a =0的两个实数根,且x 21-x 22=10,则a = 214.三、(本大题共5小题,每小题6分,共30分)13.解方程:(1)(2017·兰州)2x 2-4x -1=0;解:原方程可化为(x -1)2=32, ∴x 1=1+62,x 2=1-62; (2)(山西中考)2(x -3)2=x 2-9.解:2(x -3)2-(x +3)(x -3)=0,(x -3)(2x -6-x -3)=0,(x -3)(x -9)=0,x -3=0或x -9=0,∴x 1=3,x 2=9.14.(巴中中考)定义新运算:对于任意实数m ,n 都有m ☆n =m 2n +n ,等式右边是常用的加法、减法、乘法及乘方运算,例如:-3☆2=(-3)2×2+2=20.根据以上知识解决问题:若2☆a 的值小于0,请判断方程2x 2-bx +a =0的根的情况.解:∵2☆a 的值小于0,∴22a +a =5a < 0,解得a < 0.在方程2x 2-bx +a =0中,Δ=(-b)2-8a ≥ -8a > 0,∴方程2x 2-bx +a =0有两个不相等的实数根.15.已知关于x 的方程x 2+2x +a -2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)当该方程的一个根为1时,求a 的值及方程的另一根.解:(1)依题意有Δ=22-4(a -2)> 0,解得a < 3;(2)依题意得1+2+a -2=0,解得a =-1,∴原方程为x 2+2x -3=0.∴x =-2±4-4× 1× (-3)2× 1=-2±162, 即x 1=1,x 2=-3,∴a =-1,方程的另一根为-3.16.一个直角三角形的斜边为4 5 cm ,两条直角边的长相差4 cm ,求这个直角三角形两条直角边的长.解:设其中一条较长的直角边长为x cm , 则另一条直角边长为(x -4) cm.根据题意,得x 2+(x -4)2=(45)2,解得x 1=-4(舍去),x 2=8.∴x -4=4.∴两条直角边的长分别为4 cm ,8 cm.17.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,求3月份到5月份的营业额的月平均增长率.解:3月份到5月份月增长是经过2次增长,平均月增长率是每次增长的百分数相同.设平均月增长率为x,则5月份的营业额是:3月份的营业额× (1+x)2,因此,应先求3月份的营业额.显然,3月份的营业额是2月份的营业额×(1+10%)=400(1+10%)=440,故依题意,得440(1+x)2=633.6,(1+x)2=1.44,两边直接开平方,得1+x=± 1.2,所以x1=0.2=20%,x2=-2.2(不合题意,舍去).故3月份到5月份的营业额的月平均增长率为20%.四、(本大题共3小题,每小题8分,共24分)18.(菏泽中考)某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个.已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20 000元?解:设销售单价为x,则:(x-360)[160+2(480-x)]=20 000,∴x2-920x+211 600=0,解得x1=x2=460.答:这种玩具的销售单价为460元时,厂家每天可获利润20 000元.19.(十堰中考)已知关于x的一元二次方程x2-(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满足x21+x22=31+|x1x2|,求实数m的值.解:(1)Δ=b2-4ac=[-(2m+3)]2-4(m2+2)=12m+1,∵方程有实数根,∴12m+1≥ 0,解得m≥-1 12.(2)∵x1,x2是方程x2-(2m+3)x+m2+2=0的两个实数根,∴x1+x2=2m+3,x1x2=m2+2>0.∵x21+x22=31+x1x2,∴(x1+2)2-2x1x2=31+x1x2,∴(2m+3)2-2(m2+2)=31+m2+2,∴m2+12m-28=0,解得m1=2,m2=-14.∵m≥-112,∴m=2.20.中秋节前夕,旺客隆超市采购了一批土特产,根据以往销售经验,每天的售价与销(1)求y与x的函数表达式;(2)如果这种土特产的成本价是20元/kg,为使某一天的利润为780元,那么这一天的销售价应为多少元?(利润=销售总金额-成本)解:(1)∵y与x是一次函数关系.∴设y 与x 之间的函数表达式是y =kx +b(k ≠0).根据题意,得⎩⎨⎧20k +b =86,35k +b =56,解得⎩⎪⎨⎪⎧k =-2,b =126. 所以,所求的函数表达式是y =-2x +126.(2)设这一天的销售价为x 元/kg, 根据题意,得(x -20)(-2x +126)=780.整理,得x 2-83x +1 650=0,解得x 1=33,x 2=50.答:这一天的销售价应为33元/kg 或50元/kg.五、(本大题共2小题,每小题9分,共18分)21.已知关于x 的一元二次方程(a +c )x 2+2bx +a -c =0,其中a ,b ,c 分别为△ABC 三边的长.(1)如果x =-1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由.解:(1)△ABC 是等腰三角形.理由如下:∵x =-1是方程的根,∴将x =-1代入得(a +c)× (-1)2-2b +a -c =0,∴a +c -2b +a -c =0,∴a -b =0,∴a =b ,∴△ABC 是等腰三角形;(2)△ABC 是直角三角形.理由如下:∵方程有两个相等的实数根,∴Δ=(2b)2-4(a +c)(a -c)=0,∴4b 2-4a 2+4c 2=0,∴a 2=b 2+c 2,∴△ABC 是直角三角形.22.某单位于“三·八”妇女节期间组织女职工到温泉“星星竹海”观光旅游.下面是领队与旅行社导游收费标准的一段对话:领队:组团去“星星竹海”旅游每人收费是多少?导游:如果人数不超过25人,人均旅游费用为100元.领队:超过25人怎样优惠呢?导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团浏览“星星竹海”结束后,共支付给旅行社2 700元. 请你根据上述信息,求该单位这次到“星星竹海”观光旅游的共有多少人? 解:设该单位这次参加旅游的共有x 人,∵100× 25< 2 700,∴x > 25.依题意,得[100-2(x -25)]x =2 700,整理,得x 2-75x +1 350=0.解得x 1=30,x 2=45.当x =30时,100-2(x -25)=90> 70,符合题意.当x =45时,100-2(x -25)=60< 70,不符合题意,舍去.∴x =30.答:该单位这次参加旅游的共有30人.六、(本大题共12分)23.如图,在△ABC 中,AB =6 cm ,BC =7 cm ,∠ABC =30°,点P 从A 点出发,以1 cm/s 的速度向B 点移动,点Q 从B 点出发,以2 cm/s 的速度向C 点移动.如果P ,Q 两点同时出发:(1)经过几秒后△PBQ 的面积等于4 cm 2?(2)当△PBQ 的面积等于4 cm 2时,△PBQ 是什么形状的三角形?解:(1)如图,过点Q 作QE ⊥PB 于E ,则∠QEB =90°.∵∠ABC =30°,∴2QE =QB.∴S △PBQ =12·PB·QE. 设经过t s 后△PBQ 的面积等于4 cm 2,则PB =6-t ,QB =2t ,QE =t.根据题意,12·(6-t)·t =4. t 2-6t +8=0,t 1=2,t 2=4.当t =4时,2t =8,8> 7,不合题意舍去,所以t =2.答:经过2 s 后△PBQ 的面积等于4 cm 2.(2)∵△PBQ 的面积等于4 cm 2时,t =2,∴PB =6-t =6-2=4,QB =2t =4,∴QB =PB ,∴△PBQ 是等腰三角形.。
北师大版九年级数学上册第二章一元二次方程单元测试题(含答案)
北师大版九年级数学上册第二章一元二次方程单元测试题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0 B.1x2+1x=2 C.x2+2x=y2-1D.3(x+1)2=2(x+1)2.一元二次方程x2-2x-1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根3.一元二次方程x2-8x-1=0配方后为()A.(x-4)2=17 B.(x+4)2=15C.(x+4)2=17 D.(x-4)2=17或(x+4)2=174.把方程x(x+2)=5(x-2)化成一般式,则a,b,c的值分别是()A.1,-3,10 B.1,7,-10 C.1,-5,12 D.1,3,25.某城市2019年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,预计到2021年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A.300(1+x)=363 B.300(1+x)2=363 C.300(1+2x)=363 D.363(1-x)2=3006.若关于x的方程2x2-ax+2b=0的两根和为4,积为-3,则a,b分别为(D)A.a=-8,b=-6 B.a=4,b=-3 C.a=3,b=8 D.a=8,b=-37.当x取何值时,代数式x2-6x-3的值最小()A.0 B.-3 C.3 D.-98.老师出示了小黑板上的题目(如图)后,小敏回答:“方程有一根为4”,小聪回答:“方程有一根为-1”.则你认为()A .只有小敏回答正确B .只有小聪回答正确C .小敏、小聪回答都正确D .小敏、小聪回答都不正确 9.已知2是关于x 的方程x 2-2mx +3m =0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )A .10B .14C .10或14D .8或1010.有两个一元二次方程M :ax 2+bx +c =0;N :cx 2+bx +a =0,其中a ·c ≠0,a ≠c .下列四个结论中,错误的是( )A .如果方程M 有两个相等的实数根,那么方程N 也有两个相等的实数根B .如果方程M 的两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么15是方程N 的一个根 D .如果方程M 和方程N 有一个相同的根,那么这个根必是x =1二、填空题(每小题3分,共24分)11.一元二次方程x 2-6x =0的解是 .12.已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为 .13.下面是某同学在一次测试中解答的填空题:①若x 2=a 2,则 ;②方程2x (x -2)=x -2的解为 ;③已知x 1,x 2是方程2x 2+3x -4=0的两根,则 x 1+x 2=32,x 1x 2=2 .其中错误的答案序号是 .14.已知x 1=3是关于x 的一元二次方程x 2-4x +c =0的一个根,则方程的另一个根x 2是__1__.15.已知x =-1是关于x 的方程2x 2+ax -a 2=0的一个根,则a = .16.方程3(x -5)2=2(x -5)的根是 x 1=5,x 2= .17.设x 1、x 2是一元二次方程x 2-5x -1=0的两实数根,则x 21+x 22的值为 .18.关于x 的一元二次方程(k -1)x 2-1-kx +14=0有两个实数根,则k 的取值范围是 .三、解答题(共66分)19.(12分)用适当的方法解下列方程:(1)4x 2-1=0;(2)3x 2+x -5=0;(3)(x +1)(x -2)=x +1;(4)2x 2-42=4x .20.(7分)已知关于x 的方程(k -1)x 2-(k -1)x +14=0有两个相等的实数根,求k 的值.21.(6分)已知两个连续偶数之积为120,求这两个连续偶数.22.(7分)某工厂一种产品2019年的产量是100万件,计划2021年产量达到121万件.假设2019年到2021年这种产品产量的年增长率相同.求2019年到2021年这种产品产量的年增长率.23.(6分)如图,某广场一角的矩形花草区,其长为40 m ,宽为26 m ,其间有三条等宽的路,一条直路,两条曲路,路以外的地方全部种上花草,要使花草的面积为864 m 2,求路的宽度为多少m?24.(8分)关于x的一元二次方程(x-2)(x-3)=|m|.(1)求证:此方程必有两个不相等的实数根;(2)若方程有一根为1,求另一根及m的值.25.(8分)某商店准备进一批季节性小家电,单价40元,经市场预测,销售价定为52元时可售出180个,定价每增加1元,销售量减少10个.若商店准备获利2 000元,则应进货多少个?每个销售价是多少元?26.(12分)如图,长方形ABCD(长方形的对边相等,每个角都是90°),AB=6 cm,AD =2 cm,动点P、Q分别从点A、C同时出发,点P以2厘米/秒的速度向终点B移动,点Q 以1厘米/秒的速度向D移动,当有一点到达终点时,另一点也停止运动.设运动的时间为t,问:(1)当t=1秒时,四边形BCQP面积是多少?(2)当t为何值时,点P和点Q距离是3 cm?(3)当t=________以点P、Q、D为顶点的三角形是等腰三角形.(直接写出答案)。
北师大版九年级上册数学第二章测试题附答案
北师大版九年级上册数学第二章测试题附答案(满分:120分 考试时间:120分钟)一、选择题(本大题共6小题,每小题3分,共18分)1.一元二次方程y 2-y -34=0配方后可化为( B ) A.⎝ ⎛⎭⎪⎫y +122=1 B.⎝ ⎛⎭⎪⎫y -122=1 C.⎝ ⎛⎭⎪⎫y +122=34 D.⎝ ⎛⎭⎪⎫y -122=342.已知a ,b ,c 为常数,点P (a ,c )在第二象限,则关于x 的方程ax 2+bx +c =0的根的情况是( B )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法判断3.如图,AB ⊥BC ,AB =10 cm ,BC =8 cm ,一只蝉从C 点沿CB 方向以每秒1 cm 的速度爬行,蝉开始爬行的同时,一只螳螂由A 点沿AB 方向以每秒2 cm 的速度爬行,当螳螂和蝉爬行x 秒后,它们分别到达了M ,N 的位置,此时,△MNB 的面积恰好为24 cm 2,由题意可列方程( D )A .2x ·x =24B.(10-2x)(8-x)=24 C.(10-x)(8-2x)=24 D.(10-2x)(8-x)=484.运用换元法解方程2(x2+1)x+6xx2+1=7时,如果设y=x2+1x,那么将原方程化为关于y的一元二次方程的一般形式是(A)A.2y2-7y+6=0 B.y2+7y+6=0C.2y2-7y-6=0 D.y2+7y-6=05.关于x的一元二次方程(m-2)x2+2x+1=0有实数根,则m的取值范围是( D )A.m≤3 B.m<3C.m<3且m≠2 D.m≤3且m≠26.等腰三角形的底和腰是方程x2-7x+12=0的两个根,则这个三角形的周长是( C )A.11 B.10 C.11或10 D.不能确定二、填空题(本大题共6小题,每小题3分,共18分)7.方程(x-1)2-81=0的两个实数根是x1=-8,x2=10.8.关于x的一元二次方程(m-1)x2+4x+m2+4m-5=0有一根为0,则m=-5.9.某公司通过两次技术革新,使生产成本下降了36%.则平均每次生产成本的降低率是20%.10.已知m,n是方程x2+2x-5=0的两个实数根,则m2-mn+3m+n=8.11.中国古代数学家杨辉的《田亩比类乘除捷法》有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?经过计算,可知长比宽多12步.12.近些年,魔术表演风靡全球,某魔术师发明了一个魔术盒,当任意实数对(a,b)进入魔术盒中时,会得到一个新的实数:a2+b-1.例如,把(3,-2)放入魔术盒中,就会得到32+(-2)-1=6.现将实数对(m,-2m)放入魔术盒中,得到实数2,则m=__-1或3 .三、(本大题共5小题,每小题6分,共30分)13.解方程:(1)x2-18x-40=0;解:x2-18x=40,x2-18x+92=40+92,(x-9)2=121,x-9=±11,x1=20,x2=-2.(2)(x-5)2=4(2x+1)2.解:(x-5)2-[2(2x+1)]2=0,[x-5+2(2x+1)][x-5-2(2x+1)]=0,x1=35,x2=-73.14.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;叙放,竿与门的对角线恰好相等.问门的高、宽、对角线的长分别是多少?若设门的对角线长为x尺,根据题意列出方程并化为一般形式.解:根据题意可列方程为:x2=(x-4)2+(x-2)2,将其化为一般形式为x2-12x+20=0.15.(潍坊中考)关于x的方程3x2+mx-8=0有一个根是23,求另一个根及m 的值.解:设方程的另一根为t .依题意得:3×⎝ ⎛⎭⎪⎫232+23m -8=0,解得m =10.又23t =-83,所以t =-4.综上所述,另一个根是-4,m 的值为10.16.已知a ,b ,c 是△ABC 的三边长,且关于x 的方程b (x 2-1)-2ax +c (x 2+1)=0有两个相等的实数根,试判断△ABC 的形状.解:原方程可化为(b +c )x 2-2ax -b +c =0.∵方程有两个相等的实数根,∴Δ=(-2a )2-4(b +c )(-b +c )=4a 2-4c 2+4b 2=0,∴a 2+b 2=c 2,∴△ABC 为直角三角形.17.一个直角三角形的斜边长为4 5 cm ,两条直角边的长相差4 cm ,求这个直角三角形两条直角边的长.解:设其中一条较长的直角边为x cm ,则另一条直角边长为(x -4)cm.依题意得,x 2+(x -4)2=(45)2,x1=-4(舍去),x2=8,∴x-4=4.∴两条直角边的长分别为4 cm,8 cm.四、(本大题共3小题,每小题8分,共24分)18.学校为了奖励“汉字听写大赛”的优秀学生,派王老师到商店购买奖品,他看到下表关于某种商品的销售信息,便用 1 400元买回了该种商品作为奖品,求王老师购买该种商品的件数.解:∵30×40=1 200(元)<1 400元,∴购买的该种商品的件数超过了30.设王老师购买该种商品的件数为x,则每件商品的价格为[40-(x-30)×0.5]元.根据题意,得x[40-(x-30)×0.5]=1 400.解得x1=40,x2=70.∵当x=70时,40-(70-30)×0.5=20(元)<30元,∴x=70不符合题意,舍去.答:王老师购买该种商品的件数为40.19.观察下列一组方程:①x2-x=0;②x2-3x+2=0;③x2-5x+6=0;④x2-7x+12=0……它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.(1)若x2+kx+56=0也是“连根一元二次方程”,写出k的值,并解这个一元二次方程;(2)请写出第n个方程和它的根.解:(1)由题意可得k=-15,则原方程为x2-15x+56=0,即(x-7)(x-8)=0,解得x1=7,x2=8.(2)第n个方程为x2-(2n-1)x+n(n-1)=0,即(x-n)(x-n+1)=0,解得x1=n-1,x2=n.20.解方程x2-|x|-2=0.解:(1)当x≥0时,原方程可化为x2-x-2=0,解得x1=2,x2=-1(不合题意,舍去);(2)当x<0时,原方程可化为x2+x-2=0.解得x1=1(不合题意,舍去),x2=-2.∴原方程的根是x1=2,x2=-2.请你参照例题解方程x2-|x-1|-1=0.解:(1)当x-1≥0,即x≥1时,原方程化为x2-x=0,解得x1=0(不合题意,舍去),x2=1.(2)当x-1<0,即x<1时,原方程化为x2+x-2=0,解得x1=-2,x2=1(不合题意,舍去).∴原方程的根是x1=1,x2=-2.五、(本大题共2小题,每小题9分,共18分)21.已知关于x的一元二次方程x2+2(m+1)x+m2-1=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程的两实数根分别为x1,x2,且满足(x1-x2)2=16-x1x2,求实数m的值.解:(1)根据题意可知Δ=[2(m+1)]2-4(m2-1)≥0,解得m≥-1,∴实数m的取值范围是m≥-1.(2)根据根与系数的关系可知x1+x2=-2(m+1),x1x2=m2-1,∵(x1-x2)2=16-x1x2,∴(x1+x2)2-4x1x2=16-x1x2,即(x1+x2)2=16+3x1x2,∴[-2(m+1)]2=16+3(m2-1),解得m=1或-9.又∵m≥-1,∴m=-9不合题意,舍去,∴m=1.22.如图,在边长为12 cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1 cm的速度移动,点Q从点B 开始沿BC边向点C以每秒钟2 cm的速度移动.若P,Q分别从A,B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:(1)经过6秒后,BP=________ cm,BQ=________cm;(2)经过几秒后,△BPQ是直角三角形?(3)经过几秒△BPQ的面积等于10 3 cm2?解:(1)6,12;(2)∵△ABC 是等边三角形,∴AB =BC =12 cm ,∠A =∠B =∠C =60 °,当∠PQB =90 °时,∴ ∠BPQ =30 °,∴BP =2BQ .∵BP =12-x ,BQ =2x ,∴12-x =2×2x ,∴x =125, 当∠QPB =90 °时,∴∠PQB =30 °,∴BQ =2PB ,∴2x =2(12-x ),x =6.答:6秒或125秒时,△BPQ 是直角三角形; (3)作QD ⊥AB 于D ,∴∠QDB =90 °,∴∠DQB =30 °,∴DB =12BQ =x , 在Rt △DBQ 中,由勾股定理,得DQ =3x , ∴(12-x )3x 2=103,解得:x 1=10,x 2=2, ∵x =10时,2x >12,故舍去,∴x =2.答:经过2秒△BPQ 的面积等于10 3 cm 2.六、(本大题共12分)23.(2018·宜昌)某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算,第一年有40家工厂用乙方案治理,共使Q值降低了12. 经过三年治理,境内长江水质明显改善.(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加一个相同的数值a. 在(2) 的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.解:(1)∵40n=12,∴n=0.3;(2)∵40+40(1+m)+40(1+m)2=190,解得m1=12,m2=-72(舍去).∴第二年用乙方案治理的工厂数量为40(1+m)=40×(1+50%)=60(家);(3)设第一年用甲方案治理降低的Q 值为x ,第二年Q 值因乙方案治理降低了100n =100×0.3=30,得 ⎩⎪⎨⎪⎧x +a =30,x +2a =39.5,∴x =20.5,a =9.5.。
北师大版九年级上册数学 第二章《一元二次方程》单元测试卷(含答案)
北师大版九年级上册数学第二章《一元二次方程》单元测试卷时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.下列方程是一元二次方程的是()A.x2+=0 B.5x2﹣6y﹣3=0 C.ax2﹣x+2=0 D.x2﹣5x=2 2.在下列方程中,以3,﹣4为根的一元二次方程是()A.x2﹣x﹣12=0 B.x2+x﹣12=0 C.x2﹣x+12=0 D.x2+x+12=0 3.下列方程中,没有实数根的是()A.2x2﹣5x+2=0 B.x2﹣3x+4=0 C.x2﹣2x+1=0 D.x2﹣2x﹣2=0 4.若m是方程x2﹣2x﹣1=0的根,则1+2m﹣m2的值为()A.0 B.1 C.﹣1 D.25.已知关于x的一元二次方程x2﹣(k+1)x﹣6=0的一个根是2,则此方程的另一个根和k的值分别是()A.3和2 B.3和﹣2 C.﹣3和﹣2 D.﹣2和3 6.不论x、y为什么实数,代数式x2+y2+2x﹣4y+9的值()A.总不小于4 B.总不小于9C.可为任何实数D.可能为负数7.如图,等边△ABC中,D在射线BA上,以CD为一边,向右上方作等边△EDC.若BC、CD的长为方程x2﹣15x+7m=0的两根,当m取符合题意的最大整数时,则不同位置的D点共有()A.1个B.2个C.3个D.4个8.近日“知感冒,防流感﹣﹣全民科普公益行”活动在武汉拉开帷幕,已知有1个人患了流感,经过两轮传染后共有169个人患了流感,每轮传染中平均一个人传染m人,则m 的值为()A.10 B.11 C.12 D.139.若x1,x2是一元二次方程x2+6=5x的两个根,则x1+x2+x1x2的值是()A.1 B.11 C.﹣11 D.﹣110.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是()A.8% B.9% C.10% D.11%二.填空题(每题4分,共20分)11.若一元二次方程x2﹣mx﹣6=0的一个根为﹣2,则m的值为.12.已知2是关于x的方程x2﹣2mx+3m=0的一个根,且这个方程的两个根恰好是等腰△ABC的两条边长,则△ABC的周长为.13.设a,b是一元二次方程x2﹣x﹣1=0的两根,则3a3+4b+的值为.14.已知实数a,b是方程x2﹣x﹣1=0的两根,则+的值为.15.如图,在宽为4m、长为6m的矩形花坛上铺设两条同样宽的石子路,余下部分种植花卉,若种植花卉的面积15m2,则铺设的石子路的宽应为m.三.解答题(每题10分,共50分)16.解方程(1)x2﹣6x=﹣2(2)(2x﹣1)2﹣9x2=017.国庆期间电影《我和我的祖国》上映,在全国范围内掀起了观影狂潮.小王一行5人相约观影,由于票源紧张,只好选择3人去A影院,余下2人去B影院,已知A影院的票价比B影院的每张便宜5元,5张影票的总价格为310元.(1)求A影院《我和我的祖国》的电影票为多少钱一张;(2)次日,A影院《我和我的祖国》的票价与前一日保持不变,观影人数为4000人.B 影院为吸引客源将《我和我的祖国》票价调整为比A影院的票价低a%但不低于50元,结果B影院当天的观影人数比A影院的观影人数多了2a%,经统计,当日A、B两个影院《我和我的祖国》的票房总收入为505200元,求a的值.18.阅读材料:选取二次三项式ax2+bx+c(a≠0)中两项,配成完全平方式的过程叫配方,配方的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:①选取二次项和一次项配方:x2﹣4x+2=(x﹣2)2﹣2②选取二次项和常数项配方:x2﹣4x+2=+(2﹣4)x,或③选取一次项和常数项配方:请根据阅读材料解决下列问题:(1)比照上面的例子,将二次三项式x2﹣4x+9配成完全平方式(直接写出两种形式);(2)将x4+x2y2+y4分解因式;(3)已知a、b、c是△ABC的三边长,且满足a2+2b2+c2﹣2b(a+c)=0,试判断此三角形的形状.19.已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣=0有两个不相等的实数根x1,x2.(1)若m为正整数,求m的值;(2)在(1)的条件下,求代数式(x12+x1)(x12+x22)的值.20.某超市为微波炉生产厂代销A型微波炉,售价是每台700元,每台可获利润40%.(1)超市销售一台A型微波炉可获利多少元?(2)2019年元旦,超市决定降价销售该微波炉,已知若按原价销售,每天可销售10台,若每台每降价5元,每天可多销1台,同时超市和微波炉生产厂协商,使现有微波炉的成本价,每台减少20元,但生产厂商要求超市尽量增加销售,这样,2019元旦当天超市销售A型微波炉共获利3600元,求超市在元旦当天销售A型微波炉的价格.参考答案一.选择题1.解:A、x2+=0,不是一元二次方程,不合题意;B、5x2﹣6y﹣3=0,含有两个未知数,不合题意;C、ax2﹣x+2=0,a有可能等于0,故此选项不合题意;D、x2﹣5x=2,是一元二次方程,符合题意;故选:D.2.解:设原方程为:x2+bx+c=0,∵该方程的根为:3,﹣4,则﹣b=3+(﹣4),解得:b=1,c=3×(﹣4)=﹣12,即原方程为:x2+x﹣12=0,故选:B.3.解:A、△=(﹣5)2﹣4×2×2=9>0,所以方程有两个不相等的两个实数根,所以A 选项错误;B、△=(﹣3)2﹣4×1×4=﹣7<0,所以方程没有实数根,所以B选项正确;C、△=(﹣2)2﹣4×1×1=0,所以方程有两个相等的两个实数根,所以C选项错误;D、△=(﹣2)2﹣4×1×(﹣2)=12>0,所以方程有两个不相等的两个实数根,所以D选项错误.故选:B.4.解:∵m是方程x2﹣2x﹣1=0的根,∴m2﹣2m﹣1=0,∴﹣m2+2m=﹣1,∴1+2m﹣m2=1﹣1=0.故选:A.5.解:将x=2代入原方程,得:22﹣2(k+1)﹣6=0,∴k=﹣2.方程的另一根为=﹣3.故选:C.6.解:x2+y2+2x﹣4y+9=(x2+2x+1)+(y2﹣4y+4)+4=(x+1)2+(y﹣2)2+4∵(x+1)2≥0,(y﹣2)2≥0,∴x2+y2+2x﹣4y+9≥4,即不论x、y为什么实数,代数式x2+y2+2x﹣4y+9的值总不小于4.故选:A.7.解:由题意,得225﹣28m≥0,解得:m≤.∵m为最大的整数,∴m=8.∴x2﹣15x+56=0,∴x1=7,x2=8.当BC=7时,CD=8,∴点D在BA的延长线上,如图1.当BC=8时,CD=7,∴点D在线段BA上,有两种情况,如图2,在D和D′的位置.∴综上所述,不同D点的位置有3个.故选:C.8.解:依题意,得:1+m+m(m+1)=169,解得:m1=12,m2=﹣14(不合题意,舍去).故选:C.9.解:由原方程,得x2﹣5x+6=0,∴x1+x2=5,x1•x2=6,∴x1+x2+x1x2=5+6=11;故选:B.10.解:设该商店的每月盈利的平均增长率为x,根据题意得:240000(1+x)2=290400,解得:x1=10%,x2=﹣2.1(舍去).故选:C.二.填空题(共5小题)11.解:根据题意,将x=﹣2代入方程x2﹣mx﹣6=0,得:4+4m﹣6=0,解得:m=,故答案是:.12.解:把x=2代入x2﹣2mx+3m=0得4﹣4m+3m=0,解得m=4,方程化为x2﹣8x+12=0,(x﹣2)(x﹣6)=0,x﹣2=0或x﹣6=0,所以x1=2,x2=6,因为2+2=4<6,所以等腰△ABC的腰长为6,底边长为2,所以等腰△ABC的周长为6+6=2=14.故答案为14.13.解:∵a是一元二次方程x2﹣x﹣1=0的解,∴a2﹣a﹣1=0,即a2=a+1,∴a3=a(a+1)=a2+a.∵a,b是一元二次方程x2﹣x﹣1=0的两根,∴a+b=1,ab=﹣1,∴3a3+4b+=3a2+3a+4b+2(﹣b)2=2a2+2b2+4(a+b)+a2﹣a=2(a+b)2﹣4ab+4(a+b)+a2﹣a=2+4+4+1=11.故答案为:11.14.解:根据题意得a+b=1,ab=﹣1,所以+==﹣1.故答案为﹣1.15.解:设铺设的石子路的宽应为x米,由题意得:(4﹣x)(6﹣x)=15,解得:x1=1,x2=9(不合题意,舍去)故答案为:1.三.解答题(共5小题)16.解:(1)∵x2﹣6x=﹣2,∴x2﹣6x+9=﹣2+9,即(x﹣3)2=7,则x﹣3=±,∴x1=3+,x2=3﹣;(2)∵(2x﹣1)2﹣9x2=0,∴(2x﹣1+3x)(2x﹣1﹣3x)=0,即(5x﹣1)(﹣x﹣1)=0,则5x﹣1=0或﹣x﹣1=0,解得x1=0.2,x2=﹣1.17.解:(1)设A影院《我和我的祖国》的电影票为x元一张,由题意得:3x+2(x+5)=310∴3x+2x=300∴x=60答:A影院《我和我的祖国》的电影票为60元一张;(2)由题意得:60×4000+60(1﹣a%)×4000(1+2a%)=505200化简得:2400(1﹣a%)(1+2a%)=2652设a%=t,则方程可化为:2t2﹣t+0.105=0解得:t1=15%,t2=35%∵当t1=15%时,60×(1﹣15%)=51>50;当t2=35%时,60×(1﹣35%)=39<50,故t1=15%符合题意,t2=35%不符合题意;∴当t1=15%时,a=15.答:a的值为15.18.解:(1)选取二次项和一次项配方:x2﹣4x+9=(x﹣2)2+5选取二次项和常数项配方:x2﹣4x+9=(x﹣3)2+2x;(2)x4+x2y2+y4=x4+2x2y2+y4﹣x2y2=(x2+y2)2﹣x2y2=(x2+y2+xy)(x2+y2﹣xy)(3)∵a2+2b2+c2﹣2b(a+c)=0∴a2+2b2+c2﹣2ba﹣2bc=0∴(a﹣b)2+(b﹣c)2=0∴a﹣b=0,b﹣c=0∴a=b,b=c∴a=b=c∴此三角形为等边三角形.19.解:(1)∵方程x2+(2m﹣1)x+m2﹣=0有两个不相等的实数根,∴△=(2m﹣1)2﹣4(m2﹣)=﹣4m﹣11>0,解得:m<2.∵m为正整数,∴m=1,答:m的值为1;(2)∵m=1,∴x2+x+﹣=0,∴x1+x2=﹣1,x1x2=﹣,∴(x12+x1)(x12+x22)=﹣[(x1+x2)2﹣2x1x2]=.20.解:(1)设超市销售一台A型微波炉可获利x元,依题意,得:(700﹣x)×40%=x,解得:x=200.答:超市销售一台A型微波炉可获利200元.(2)设每台微波炉降价5y元,则每天可销售(10+y)台,每台获利为(200+20﹣5y)元,依题意,得:(200+20﹣5y)(10+y)=3600,整理,得:y2﹣34y+280=0,解得:y1=14,y2=20.∵为了尽量增加销售量,∴y=20,∴700﹣5y=600.答:超市在元旦当天销售A型微波炉的价格为600元.。
九年级数学上册第二章测试卷-北师大版(含答案)
九年级数学上册第二章测试卷-北师大版(含答案)一、单选题1.关于x 的一元二次方程22(1)10a x ax a +-+-=有一个根为0,则a 的值为( ) A .1 B .﹣1 C .±1 D .不确定 2.把方程x 2﹣10x ﹣3=0配方成(x +m )2=n 的形式,则m 、n 的值( ) A .﹣5、25 B .5、25 C .5、﹣28 D .﹣5、28 3.为改善居住环境,我县2019年投入治理黑臭水体2500万元,预计到2021年底三年累计投入1.2亿元,若每年投入治理的费用年平均增长百分率为x ,则下列方程正确的是( )A .2500(1+2x )=12000B .2500+2500(1+x )+2500(1+2x )=12000C .2500(1+x )2=12000D .2500+2500(1+x )+2500(1+x )2=120004.已知a ,b 是关于x 的一元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足111a b+=-,则m 的值是( ) A .﹣3或1B .3或﹣1C .3D .1 5.已知一元二次方程x 2+k x +3=0有一个根为3,则k 的值为( ) A .﹣4 B .4 C .﹣2 D .2 6.关于x 的一元二次方程﹣kx 2﹣6x +3=0有两个不相等的实数根,则k 的取值范围是( )A .k >﹣3B .k <3C .k <3且k ≠0D .k >﹣3且k ≠0 7.将一元二次方程2650x x --=化成2()x a b -=的形式,那么a b +的值为( ) A .9 B .11 C .14 D .17 8.若a≠b ,且22410,410a a b b -+=-+=则221111a b +++的值为( ) A .14 B .1 C ..4 D .39.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A .(32﹣2x )(20﹣x )=570B .32x+2×20x=32×20﹣570C .(32﹣x )(20﹣x )=32×20﹣570D .32x+2×20x ﹣2x 2=57010.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( ) A .﹣1 B .2 C .22 D .3011.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值( )A .0或2B .-2或2C .-2D .2二、填空题12.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.13.一元二次方程2420x x -+=的两根为1x ,2x ,则2111242x x x x -+的值为____________ . 14.关于x 的一元二次方程x 2﹣2kx+k 2﹣k=0的两个实数根分别是x 1、x 2,且x 12+x 22=4,则x 12﹣x 1x 2+x 22的值是_____.15.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,可列方程为_____.16.已知关于x 的一元二次方程2640x x m -++=有两个实数根1x ,2x ,若1x ,2x 满足1232x x =+,则m 的值为_____________17.如果m ,n 是两个不相等的实数,且满足m 2﹣m=3,n 2﹣n=3,那么代数式2n 2﹣mn+2m+2015=_____________.三、解答题18.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.19.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.20.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?21.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A 、B 两个玉米品种进行实验种植对比研究.去年A 、B 两个品种各种植了10亩.收获后A 、B 两个品种的售价均为2.4元/kg ,且B 品种的平均亩产量比A 品种高100千克,A 、B 两个品种全部售出后总收入为21600元.(1)求A 、B 两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A 、B 两个品种平均亩产量将在去年的基础上分别增加a %和2a %.由于B 品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a %,而A 品种的售价保持不变,A 、B 两个品种全部售出后总收人将增加20%9a ,求a 的值. 22.如图,在长方形ABCD 中,边AB 、BC 的长(AB <BC )是方程x 2-7x +12=0的两个根.点P 从点A 出发,以每秒1个单位的速度沿△ABC 边 A →B →C →A 的方向运动,运动时间为t (秒).(1)求AB 与BC 的长;(2)当点P 运动到边BC 上时,试求出使AP 时运动时间t 的值;(3)当点P 运动到边AC 上时,是否存在点P ,使△CDP 是等腰三角形?若存在,请求出运动时间t 的值;若不存在,请说明理由.参考答案1.A2.D3.D4.C5.A6.D7.D8.B9.A10.D11.D 12.213.214.415.12x(x﹣1)=2116.417.202618.(1)省略(2)1或219.(1)12,32;(2)省略20.(1)4元或6元;(2)九折.21.(1)A品种去年平均亩产量是400、B品种去年平均亩产量是500千克;(2)10.22.(1) AB=3,BC=4;(2) t=4;(3) t为10秒或9.5秒或535秒时,△CDP是等腰三角形.4。
第2章《一元二次方程 》北师大版九年级数学上册单元测试卷(含答案)
第二章《一元二次方程》单元测试卷一、单选题(每题3分)1.下面关于x的方程中:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x2++5=0;④x2+5x3﹣6=0;⑤3x2=3(x﹣2)2;⑥12x﹣10=0,是一元二次方程个数是()A.1B.2C.3D.42.已知一元二次方程,若方程有解,则必须()A.n=0B.n=0或mn同号C.n是m的整数倍D.mn异号3.方程的解是()A.B.C.D.4.一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定5.解方程:①;②;③;④.较简便的解法是()A.依次用直接开平方法、配方法、公式法和因式分解法B.①用直接开平方法,②用公式法,③④用因式分解法C.依次用因式分解法、公式法、配方法和因式分解法D.①用直接开平方法,②③用公式法,④用因式分解法6.秋冬季节为流感的高发期,有一人患了流感,经过两轮传染后共有人患了流感,每轮传染中平均一个人传染的人数为()A.人B.人C.人D.人7.现要在一个长为,宽为的矩形花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为,那么小道的宽度应是()A.1B.2C.2.5D.38.小明和小华解同一个一元二次方程时,小明看错一次项系数,解得两根为2,﹣3,而小华看错常数项,解错两根为﹣2,5,那么原方程为( )A.x2﹣3x+6=0B.x2﹣3x﹣6=0C.x2+3x﹣6=0D.x2+3x+6=09.若关于x的一元二次方程的一个根大于1,另一个根小于1,则a的值可能为()A.B.C.2D.410.将关于x的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,则的值为()A.3B.4C.5D.6二、填空题(每题3分)11.方程(m﹣1)x|m|+1﹣4x+3=0是一元二次方程,则m满足的条件是:_____,此方程的二次项系数为:_____,一次项系数为:_____,常数项为:_____.12.若一元二次方程的一个根为0,则___________.13.关于x的一元二次方程有两个不相等的实数根,则a的取值范围是____________.14.劳动教育已纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为,则可列方程为________.15.已知方程的两个实数根分别为、,则__.16.已知实数,满足,则的值为________.17.已知关于x的方程a(x+m)2+b=0(a,b,m均为常数,且a≠0)的两个解是x1=3,x2=7,则方程的解是________.18.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为_____.三、解答题19.解方程(8分)(1);(2);(3)(配方法);(4).20.用适当的方法解一元二次方程(8分)(1);(2);(3);(4).21.已知关于的方程.(6分)(1)当为何值时,方程只有一个实数根?(2)当为何值时,方程有两个相等的实数根?(3)当为何值时,方程有两个不相等的实数根?22.已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(6分)(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.23.如图,在足够大的空地上有一段长为的旧墙,某人利用旧墙和木栏围成一个矩形菜园,其中.已知矩形菜园的一边靠墙,修筑另三边一共用了木栏.若所围成的矩形菜园的面积为,求的长.(6分)24.某企业设计了一款工艺品,每件成本50元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.销售单价为多少元时,每天的销售利润可达4000元?(6分)25.某商店代销一种智能学习机,促销广告显示“若购买不超过40台学习机,则每台售价800元,若超出40台,则每超过1台,每台售价将均减少5元”,该学习机的进价与进货数量关系如图所示:(6分)(1)当时,用含x的代数式表示每台学习机的售价;(2)当该商店一次性购进并销售学习机60台时,每台学习机可以获利多少元?(3)若该商店在一次销售中获利4800元,则该商店可能购进并销售学习机多少台?26.已知关于x的一元二次方程.(6分)(1)求证:这个方程的一根大于2,一根小于2;(2)若对于时,相应得到的一元二次方程的两根分别为和和和,…,和和,试求的值.27.阅读理解:(7分)材料1:对于一个关于x的二次三项式(),除了可以利用配方法求该多项式的取值范围外,还可以用其他的方法:比如先令(),然后移项可得:,再利用一元二次方程根的判别式来确定y的取值范围,请仔细阅读下面的例子:例:求的取值范围:解:令,,即;材料2:在学习完一元二次方程的解法后,爱思考的小明同学又想到类比一元二次方程的解法来解决一元二次不等式的解集问题,他的具体做法如下:若关于x的一元二次方程()有两个不相等的实数根、(),则关于x的一元二次不等式()的解集为:或,则关于x的一元二次不等式()的解集为:;请根据上述材料,解答下列问题:(1)若关于x的二次三项式(a为常数)的最小值为-6,则_____.(2)求出代数式的取值范围.类比应用:(3)猜想:若中,,斜边(a为常数,),则_____时,最大,请证明你的猜想.28.(7分)阅读下列材料:分解因式的常用方法有提取公因式法、公式法,但有部分项数多于3的多项式只单纯用上述方法就无法分解,如,我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解.过程如下:,这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:1.知识运用:试用“分组分解法”分解因式:;2.解决问题:(1)已知a,b,c为△ABC的三边,且,试判断△ABC的形状.(2)已知四个实数a,b,c,d,满足a≠b,c≠d,并且,同时成立.①当k=1时,求a+c的值②当k≠0时,用含有a的代数式分别表示b,c,d(直接写出答案即可)答案一、单选题A.B.B.C.D.B.B.B.B.D.二、填空题11.m=﹣1;﹣2,﹣4,3.12.113.且.14.300(1+x)2=363.15.-5.16.2.17.或.18.x=2或x=﹣1+或x=﹣1﹣.三、解答题19.(1)解:或,;(2)解:或,;(3)解:,;(4)解:①当时,,解得:;②当时,,若,即,;若,即,方程无解.20.(1)原方程可化为,∴,用直接开平方法,得方程的根为,.(2)原方程可化为x2+2ax+a2=4x2+2ax+,∴x2=.用直接开平方法,得原方程的根为,.(3)a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0,∴,.(4)将方程整理,得(1-)x2-(1+)x=0用因式分解法,得x[(1-)x-(1+)]=0,,.21.(1)∵方程只有一个实数根,,解得(2)∵方程有两个相等的实数根,,,解得(3)∵方程有两个不相等的实数根,且,且,解得且.22.(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴x12+x22=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=323.解:设的长为,则的长为.依题意,得,解得,.当时,(不符合题意,舍去).当时,.∴的长为.24.设销售单价降低x元,则销售单价为元,每天的销售量是件,由题意得:,整理得:,解得或,因为要求销售单价不得低于成本,所以,解得,因此和均符合题意,则或70,答:销售单价为90元或70元时,每天的销售利润可达4000元.25.(1)由题意可知当时,每台学习机的售价为.(2)设题图中直线的解析式为.把和代入得解得故直线解析式为.当时,进价为(元),售价为(元),则每台学习机可以获利(元).(3)当时,每台学习机的利润是,则.解得(舍去).当时,每台学习机的利润是,则,解得(舍去).答:该商店可能购进并销售学习机80台或30台.26.解:(1)证明:设方程的两根是,,则,,,,,即这个方程的一根大于2,一根小于2;(2),对于,2,3,,2019,2020时,相应得到的一元二次方程的两根分别为和,和,和,,和,和,.27.解:(1)设,∴,∴,即,根据题意可知,∴,解得:或;(2)设,可化为,即,∴,即,令,解得,,∴或;(3)猜想:当时,最大.理由:设,,则,在中,斜边(a为常数,),∴,∴,∴,即,∴,即,∵,,∴,当时,有,∴,即当时,最大.28.解:(1)将写成,等式左边因式分解,得,证明,是等腰三角形;(2)①由得到和,推出,就可以算出a和c的值,再算;②同①可得,根据,利用因式分解得到,同理由,得,从而可以用a表示出b、c、d.解:知识运用原式;解决问题(1),∵,∴,即,∴是等腰三角形;(2)①当时,,即,,即,若则,把它代入,得,解得,当时,,则,当时,,则,综上:的值为6或;②当,∵,∴,∵,∴,同理由,得,由,,若,则,,,则此时k就等于0了,矛盾,不合题意,若,则,,,综上:,,.。
(北师大版)初中数学九年级上册 第二章综合测试(含答案)
第二章综合测试一、选择题(共10题;共30分)1.已知关于x 的一元二次方程250x x m +-=的一个根是2,则另一个根是( )A .7-B .7C .3D .3-2.已知1x ,2x 是一元二次方程220x x -=的两根,则12x x +的值是( )A .0B .2C .2-D .43.一元二次方程22630x x ++=经过配方后可变形为( )A .2(3)6x +=B .()2312x -= C .23324x ⎛⎫+= ⎪⎝⎭ D .231524x ⎛⎫-= ⎪⎝⎭ 4.一元二次方程220x x +=的解是( )A .0x =B .2x =-C .1220x x ==D .1220x x =-=5.若方程2680x x -+=的两根分别是等腰三角形的底和腰,则这个三角形的周长为( )A .10B .8C .10或8D .10或146.一个正方形的边长增加了2 cm ,面积相应增加了232 cm ,则原正方形的边长为( )A .5 cmB .6 cmC .7 cmD .8 cm7.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出( )A .2根小分支B .3根小分支C .4根小分支D .5根小分支8.如图,在长为100 m ,宽为80 m 的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为27 644 m ,则道路的宽应为多少米?设道路的宽为 m x ,则可列方程为( )A .10080100807 644x x ⨯--=B .()()2100807 644x x x --+=C .()()100807 644x x --=D .2100807 644x x x +-=9.关于x 的一元二次方程2410kx x -+=有实数根,则k 的取值范围是( )A .4k -≥B .4k -≥且0k ≠C .4k ≤D .4k ≤且0k ≠10.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的12.则新品种花生亩产量的增长率为( ) A .20%B .30%C .50%D .120% 二、填空题(共6题;共18分)11.已知1x =是关于x 的一元二次方程()221--10k x k x +=的根,则常数k 的值为________.12.当x =________时,代数式2x x -与1x -的值相等.13.设m 、n 是方程2 2 0210x x +-=的两个实数根,则²2m m n ++的值为________.14.关于x 的一元二次方程()22210a x x --+=有两个不相等的实数根,则整数a 的最小值是________.15.如图,已知AB BC ⊥,12 cm AB =,8 cm BC =.一动点N 从C 点出发沿CB 方向以1 cm/s 的速度向B 点运动,同时另一动点M 由点A 沿AB 方向以2 cm/s 的速度也向B 点运动,其中一点到达B 点时另一点也随之停止,当MNB △的面积为224 cm 时运动的时间t 为________秒.16.一元二次方程2680x x -+=的根为菱形的两条对角线长,则菱形的周长为________.三、解答题(共7题;共52分)17.解方程:(1)()224x +=(自选方法)(2)2210x x --=(配方法)(3)²14x x -=(公式法)(4)²122x x -=+(因式分解法)18.已知关于x 的一元二次方程2240x x m ++-=有两个实数根.(1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求出此时方程的根.19.熊组长准备为我们年级投资1万元围一个矩形的运动场地(如图),其中一边靠墙,另外三边选用不同材料建造且三边的总长为50 m,墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用150x.元/m,设平行于墙的边长为/m300 m,求x的值;(1)若运动场地面积为2(2)当运动场地的面积最大时是否会超过了预算?20.某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:(1)若商场每件衬衫降价4元,则商场每天可盈利多少元?(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(3)要使商场平均每天盈利1600元,可能吗?请说明理由.21.开学初期,天气炎热,水杯需求量大.双福育才中学门口某超市购进一批水杯,其中A种水杯进价为每个15元,售价为每个25元;B种水杯进价为每个12元,售价为每个20元(1)该超市平均每天可售出60个A种水杯,后来经过市场调查发现,A种水杯单价每降低1元,则平均每天的销量可增加10个.为了尽量让学生得到更多的优惠,某天该超市将A种水杯售价调整为每个m元,结果当天销售A种水杯获利630元,求m的值.(2)该超市准备花费不超过1600元的资金,购进A、B两种水杯共120个,其中B种水杯的数量不多于A种水杯数量的两倍.请为该超市设计获利最大的进货方案,并求出最大利润.22.如图,在ABC △中,90B ∠=︒,12 cm AB =,16 cm BC =.点P 从点A 开始沿AB 边向点B 以1 cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2 cm/s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当一个点到达终点时,另一个点也随之停止运动.设运动的时间为t 秒.(1)当t 为何值时,PBQ △的面积等于235 cm ?(2)当t 为何值时,PQ 的长度等于?(3)若点P 、Q 的速度保持不变,点P 在到达点B 后返回点A ,点Q 在到达点C 后返回点B ,一个点停止,另一个点也随之停止.问:当t 为何值时,PCQ △的面积等于232 cm ?23.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从去年年底至今年3月20日,猪肉价格不断走高,3月20日比去年年底价格上涨了60%.某市民在今年3月20日购买2.5千克猪肉至少要花200元钱,那么去年年底猪肉的最低价格为每千克多少元?(2)3月20日,猪肉价格为每千克60元,3月21日,某市决定投入储备猪肉并规定其销售价在每千克60元的基础上下调%a 出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克60元的情况下,该天的两种猪肉总销量比3月20日增加了%a ,且储备猪肉的销量占总销量的34,两种猪肉销售的总金额比3月20日提高了1%10a ,求a 的值.第二章综合测试答案解析一、1.【答案】A【解析】设另一个根为x ,则25x +=-,解得7x =-.故答案为:A .2.【答案】B【解析】1x ∵,2x 是一元二次方程220x x -=的两根,122x x +=∴.故答案为:B .3.【答案】C【解析】22630x x ++=∵2332x x +=-∴ 29393424x x ++=-+∴ 23324x ⎛⎫+= ⎪⎝⎭∴ 故答案为:C4.【答案】D【解析】220x x +=∵, ()20x x +=∴,0x =∴或2-,故答案为:D .5.【答案】A【解析】方程2680x x -+=,得12x =,24x =,∵当2为腰,4为底时,224+=,不符合三角形三边关系,∴不能构成等腰三角形;∵当4为腰,2为底时,能构成等腰三角形,周长为44210++=.故答案为:A .6.【答案】C【解析】设原正方形的边长为 cm x ,则面积增加后的正方形的边长为()2 cm x +,根据题意得:()22232x x +=+解之:7x =.故答案为:C7.【答案】B【解析】设每个支干长出x 个分支,根据题意得 113x x x ++⋅=,整理得2120x x +-=,解得13x =,24x =-(不符合题意舍去),即每个支干长出3个分支.故应选B .8.【答案】C【解析】设道路的宽应为x 米,由题意有()()100807 644x x --=,故答案为:C9.【答案】D【解析】∵关于x 的一元二次方程2410kx x -+=有实数根,0k ≠∴且()2440k =--≥,解得:4k ≤且0k ≠.故答案为:D .10.【答案】A【解析】设新品种花生亩产量的增长率为x , 根据题意得()1200150%11322x x ⎛⎫+⋅+= ⎪⎝⎭, 解得10.220%x ==,2 3.2x =-(不合题意,舍去),则新品种花生亩产量的增长率为20%,故选A .二、11.【答案】0【解析】将1x =代入()22110k x k x -+-=中,得20k k -=,解得1k =或0,10k -≠∵,1k ≠∴,0k =∴.故答案为:0.12.【答案】1【解析】根据题意得21x x x -=-,整理得:2210x x -+=,()210x -=∴,解得:1x =故答案为:1.13.【答案】2 020【解析】m ∵、n 是方程2 2 0210x x +-=的两个实数根 2 2 0210m m +-=∴,1m n +=-2 2 021m m +=∴∴原式2 2 0211 2 020m m m n =+++=-=.故答案为:2 020.14.【答案】3【解析】根据题意得20a -≠,且()()224210a =---⨯>,解得:1a >且2a ≠, ∴整数a 的最小值为:3.故答案为:3.15.【答案】2【解析】根据题意可知CN t =,2AM t =,8BN t =-∴,122BM t =-,MNB ∵△的面积为224 cm()()11228242x t t -⨯-=∴ 解得12x =,212x =(舍去)故答案为:2.16.【答案】4=【解析】解方程2680x x -+=得:2x =和4,即4AC =,2BD =,∵四边形ABCD 是菱形,90AOD ∠=︒∴,2AO OC ==,1BO DO ==,由勾股定理得:AD ==4三、17.【答案】(1)22x +=±10x =,24x =-(2)2210x x --=21112102168x x ⎛⎫+-= ⎪⎝⎭- 2192048x ⎛⎫-= ⎪⎝⎭ 219248x ⎛⎫-= ⎪⎝⎭ 219416x ⎛⎫-= ⎪⎝⎭ 1344x -=± 11x =∴,212x =(3)2410x x --=x12x =+22x =(4)21220x x ---=2230x x --=()()310x x -+=13x =,21x =-18.【答案】(1)1a =,2b =,4c m =-24b ac ∆=-∴()2244m =--204m =-∵一元二次方程2240x x m ++-=有两个实数根,2040m -∴≥5m ≤.(2)当1m =时,2230x x +-=.则()()130x x -+=解得11x =,23x =-(答案不唯一).19.【答案】(1)根据题意,得:503002x x -⎛⎫= ⎪⎝⎭, 解得:20x =或30x =,∵墙的长度为24 m ,20x =∴(2)设菜园的面积是S , 则502x S x -⎛⎫= ⎪⎝⎭ 21252x x =+ ()216252522x =-+, 0-12∵<, ∴当25x <时,S 随x 的增大而增大,24x ∵≤,∴当24x =时,S 取得最大值,∴总费用24200261508 700 1 000=⨯+⨯=<, ∴没有超过预算20.【答案】(1)()41020404 1 0085⎛⎫⨯+-= ⎪⎝⎭(元). 答:商场每件衬衫降价4元,则商场每天可盈利1 008元.(2)设每件衬衫应降价x 元,根据题意,得()()40202 1 200x x -+=,整理,得2302000x x -+=,解得110x =,220x =,∵要尽量减少库存,20x =∴.答:每件衬衫应降价20元.(3)不可能.理由如下:令()()40202 1 600x x -+=,整理得2304000x x -+=,90044000∆=-⨯∵<,∴商场平均每天不可能盈利1 600元.21.【答案】(1)设超市将A 种水杯售价调整为每个m 元,则单件利润为()15m -元,销量为()()60102531010m m ⎡⎤⎣=-⎦+-个,依题意得: ()()1531010630m m --=,解得:122m =,224m =,答:为了尽量让学生得到更多的优惠,22m =.(2)设购进A 种水杯x 个,则B 种水杯()120x -个.设获利y 元,依题意得:()1512120 1 6001202x x x x⎧+-⎪⎨-⎪⎩≤≤, 解不等式组得:140533x ≤≤,本次利润()()()251512020122960y x x x =-+--=+.20∵>,y ∴随x 增大而增大,当53x =时,最大利润为1 066元.22.【答案】(1)()12cm BP AB AP t =-=-,2 cm BQ t =. 根据三角形的面积公式,得3251PB BQ ⋅=, 即()2212351t t -⋅=, 整理,得212350t t -+=,解得15t =,27t =.故当t 为5或7时,PBQ △的面积等于235 cm .(2)根据勾股定理,得()()()22222212282PQ BP BQ t t =+=-+=, 整理,得2524160t t -+=, 解得145t =,24t =.故当t 为45或4时,PQ 的长度等于. (3)①当08t <≤时,()12c m PB t =-,()2c 16m CQ t =- 由题意,得()()162123212t t -⨯-=, 解得:14t =,216t =(舍去).②当812t <≤时,()12c m PB t =-,()1c 26m CQ t =-, 由题意,得()()216122123t t -⨯-=,此方程无解. ③当1216t <≤时,()12cm PB t =-,()1c 26m CQ t =-, 由题意,得()()216122132t t -⨯-=, 解得:14t =(舍去),216t =.综上所述,当t 为4或16时,PCQ △的面积等于232 cm .23.【答案】(1)设去年年底猪肉价格为每千克x 元;根据题意得:()2.5160%200x ⨯+≥,解得:50x ≥.答:去年年底猪肉的最低价格为每千克50元;(2)设3月20日的总销量为1; 根据题意得:31160(1%)(1%)60(1%)601%4410a a a a ⎛⎫-⨯++⨯+=+ ⎪⎝⎭, 令%a y =,原方程化为:()31160(1)160(1)6014410y y x y y ⎛⎫-⨯+++=+ ⎪⎝⎭, 整理得:250y y -=,解得:0.2y =,或0y =(舍去),则%0.2a =,20a =∴;答:a的值为20.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阳长镇海座小学
第1页,共4页
41
3=+x
x 2016-2017学年度第二学期第二章数学测试
九年级数学
(考试时间90分钟 满分100分)
沉着、冷静、快乐地迎接期末考试,相信你能行
一、正确选择(每小题3分,共30分) 1、下列方程是一元二次方程的是( )
A 、12=+y x
B 、()32122
+=-x x x C 、 D 、022=-x
2、用配方法解方程2
250x x --=时,原方程应变形为( ) A 、()216x += B 、()2
16x -=
C 、()2
29x +=
D 、()2
29x -=
3、若方程()a x =-2
4有解,则a 的取值范围是( ) A 、0≤a B 、0≥a C 、0>a D 、无法确定 4、一元二次方程x 2
-x+2=0的根的情况是( ) A 、有两个相等的实数根 B 、有两个不相等的实数根 C 、无实数根 D 、只有一个实数根
5、关于x 的一元二次方程02=+k x 有实数根,则( ) A 、k <0 B 、k >0 C 、k ≥0 D 、k ≤0
6、方程x 2
=3x 的根是( )
A 、x = 3
B 、x = 0
C 、x 1 =-3, x 2 =0
D 、x 1 =3, x 2 = 0 7、已知m 方程012
=--x x 的一个根,则代数式m m -2
的值等于( ) A 、—1 B 、0 C 、1 D 、2
班级 姓名 考号 ……………………………………………… 密 …………………………………… 封 …………………………………… 线 ……………………………………
九年级上册数学测试卷
第2页,共4页
8、解方程)15(3)15(2
-=-x x 的适当方法是( )
A 、开平方法
B 、配方法
C 、公式法
D 、因式分解法 9、方程2
9180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) A 、12
B 、12或15
C 、15
D 、不能确定
10、若方程02=++c bx ax )0(≠a 中,c b a ,,满足0=++c b a 和
0=+-c b a ,则方程的根是( )
A 、1,0
B 、-1,0
C 、1,-1
D 、无法确定 二、准确填空(每小题3分,共24分)
11、把一元二次方程()423=-x x 化为一般形式是 . 12、一元二次方程x 2
=16的解是 .
13、关于x 的方程03)3(1
2
=+---x x
m m
是一元二次方程,则
=m .
14、如果()4122
++-x m x 是一个完全平方公式,则=m .
15、当y= 时,y 2
-2y 的值为3.
16、请你给出一个c 值, c= ,使方程x 2
-3x+c=0无解. 17、已知x 2
+4x -2=0,那么3x 2
+12x +2002的值为 .
18、一元二次方程2
730x x -+=的两个实数根分别为1x 和2x ,则
+21x x 12x x +=。
三、解答题(共46分)
19、解下列方程(每小题4分,共16分) (1)4)1(2
=-x
(2)x 2
-2x +4 =0
阳长镇海座小学
第3页,共4页
(3)()()2
2
132-=+y y (4) 2y 2
+7y-3=0
20、(5分)已知方程2
310x x --=,求:)(21x x +21x x 的值.
21、(5分)已知2
2
2a ax x y --=,且当1=x 时,0=y ,求a 的值.
22、(5分)在实数范围内定义运算“⊕”,其法则为:2
2
a b a b ⊕=-,求方程(4⊕3)⊕24x =的解.
九年级上册数学测试卷
23、(7分)三个连续正奇数,最大数与最小数的积比中间一个数的6倍多3,求这三个正奇数.
24、(8分)百货大搂服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十·一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装上盈利1200元,那么每件童装因应降价多少元?
第4页,共4页
阳长镇海座小学
第5页,共4页
参考答案
一、正确选择(每小题3分,共30分)
二、准确填空(每小题3分,共24分)
11、3x 2-6x-4=0 12、14x =,24x =- 13、-3 14、-3或1 15、3或-1 16、3等 17、2008 18、10 三、解答题(共46分)
19、 (1)1,321-==x x (2)无实数根;
(3)y 1=-4
1,y 2=2
3; (4)y=4
73
7±- 20、-3
21、把x=1,y=0代入得2,1,20212-==--=a a a a 22、
5x =±
23、设中间一个正奇数为x ,则1,7,36)2)(2(21-==+=-+x x x x x 由于x 为正奇数,x=—1舍去,三个正奇数为5,7,9 24、设应降价x 元,得:(40-x )(20+2x )=1200,解得x 1=20,x 2=10(不合题意,舍去);。