食品胶体综述
生活中常见的胶体
![生活中常见的胶体](https://img.taocdn.com/s3/m/e99c3a69182e453610661ed9ad51f01dc3815757.png)
生活中常见的胶体
生活中,我们经常会接触到各种各样的胶体,它们在我们的日常生活中起着重要的作用。
胶体是一种由两种或两种以上的物质组成的混合物,其中一种物质呈颗粒状分散在另一种物质中。
胶体的特点是颗粒大小在溶液与悬浮液之间,而且能够形成凝胶。
在食品中,我们常见的胶体包括牛奶、酸奶、果冻等。
牛奶是由乳脂球和乳清蛋白等物质组成的胶体,它的稠度和浓度会随着时间的变化而发生变化。
酸奶则是由牛奶和乳酸菌发酵而成,它的胶体结构使得它具有特殊的口感和营养价值。
果冻则是由果汁、糖和明胶等物质组成的胶体,它的凝胶结构使得它能够保持形状和口感。
在化妆品中,我们常见的胶体包括乳液、面霜、护肤品等。
这些产品中含有乳化剂和稳定剂等物质,使得它们能够形成稳定的胶体结构,从而能够更好地渗透和滋润皮肤。
在医药领域,胶体也被广泛应用。
例如,胶体银具有抗菌和消炎的作用,被用于医用敷料和消毒液中。
胶体药物能够更好地渗透和吸收,从而提高药效。
总之,胶体在我们的日常生活中扮演着重要的角色,它们不仅丰富了我们的生活,而且为我们的健康和美容带来了便利。
因此,我们应该更加了解和重视生活中常见的胶体,以便更好地利用它们的特性。
食品胶体-第一章
![食品胶体-第一章](https://img.taocdn.com/s3/m/d26cd5a21a37f111f1855b19.png)
Cream:稀O/W乳状液经分层后所形成的高浓 度的乳状液。它可能是聚集的亦可以是胶体稳 定的。但液珠的凝结决不能超过一定的限度, 否则乳状液被“破乳”,转变为热力学稳定的 均匀的油和水两相溶液。 Sediment:低浓度的悬浮体经沉降后所形成的 高密度的悬浮体。
Cream
Sediment
乳液的稳定性
固
气
根据分散相的情况:
1. 多分散体系: 体系中粒子的大小不是单一的,或者它们的形状 或电荷等也不是相同的。实际胶体体系大多数属 这种情况。 2. 单分散体系: 体系中粒子完全或基本上是相同的,胶体科学中 的许多理论推导是源于这种理想体系。
以其它指标分类胶体:
1.多重胶体(Multiple Colloids) 存在有两种以上的分散相 2. 网状胶体(Network Colloids) 两种以上的组成相相互交联成网状的体系。 3.凝胶(Gel) 分散介质为液态,但整个体系的性质却如同固 态的体系。
5. 这种胶体在试验上具有的一个特点是它的透 明性,这种性质适合于详细研究它的光散射或 浊度。所以用于进行胶体粒子大小测定的技术 大都要求胶体体系是这种状态。至少应该充分 稀释和分散以接近这种状态。
散相与分散介质不同相,是热力学上的不稳定体系。
一旦将介质蒸发掉,再加入介质就无法再形成溶胶, 是 一个不可逆体系,如氢氧化铁溶胶、碘化银溶胶 等。 这是胶体分散体系中主要研究的内容。
2.高分子溶液 半径落在胶体粒子范围内的高分子溶解在 合适的溶剂中,一旦将溶剂蒸发,高分子化合 物凝聚,再加入溶剂,又可形成溶胶,分散相
根据分散相粒子的大小可将分散体系分为三个大类:
类别 粗分散体系 ( coarse dispersed system 胶体体系 colloid 分子分散体 系 solution
食品胶体知识点总结高中
![食品胶体知识点总结高中](https://img.taocdn.com/s3/m/336aaf9b3086bceb19e8b8f67c1cfad6195fe9ad.png)
食品胶体知识点总结高中一、食品胶体概述食品胶体是指在食品中形成的具有胶凝、黏稠等特性的分散系统,由两种或两种以上的物质组成,其中一种物质以细小颗粒或分子的形式分散在另一种物质中。
食品胶体是食品中的一种重要组成部分,能够影响食品的质地、口感、稳定性等性质。
二、食品胶体的形成和特性1. 食品胶体的形成食品胶体的形成是由于物质在溶液或悬浮体系中的分散状态产生的。
在食品加工中,常见的形成食品胶体的方法包括凝胶、乳化、溶胶等。
其中,凝胶是通过溶液或浆液中的多糖或蛋白质分子之间的交联作用形成的;乳化是由于两种不相溶的液体混合形成的胶体系统;溶胶是指固体颗粒分散在水或有机溶剂中形成的胶体系统。
2. 食品胶体的特性食品胶体具有多种特性,包括黏度、弹性、稳定性等。
其中,黏度是指食品胶体的粘稠程度,可以影响食品的口感;弹性是指食品胶体在受到外力作用后能够恢复原状的能力;稳定性是指食品胶体在储存或加工过程中能够保持其形态和性质不发生改变。
三、食品胶体的应用1. 食品胶体在食品加工中的应用食品胶体在食品加工中有着广泛的应用,常见的包括增稠剂、乳化剂和稳定剂等。
增稠剂可以改善食品的口感和质地,常见的增稠剂有明胶、果胶等;乳化剂可以使油和水等不相溶的物质混合均匀,常见的乳化剂有大豆异黄酮等;稳定剂可以帮助食品维持良好的外观和口感,常见的稳定剂有明胶和果胶等。
2. 食品胶体在食品营养中的应用食品胶体不仅可以提高食品的口感和稳定性,还可以对人体的健康有益。
例如,果胶是一种常见的增稠剂,它可以有效地帮助降低胆固醇和血糖,有益于心血管健康;大豆异黄酮是一种常见的乳化剂,它可以降低痛经和更年期综合征等妇女相关疾病。
因此,食品胶体在食品营养中也有着重要的应用价值。
四、食品胶体的质量安全1. 食品胶体的合法使用食品胶体的使用需要符合相关法律法规的规定,包括食品添加剂的使用标准和限量。
食品生产企业在使用食品胶体时,需要确保其来源合法,符合食品安全标准,并在使用过程中对食品胶体进行必要的检测和监控。
食品胶体知识点总结
![食品胶体知识点总结](https://img.taocdn.com/s3/m/f1a7ff74366baf1ffc4ffe4733687e21af45ffe6.png)
一、食品胶体的基本概念1. 食品胶体的定义食品胶体是指由分散相和连续相组成的异相体系。
其中,分散相是指在连续相中呈现出分布状态的微粒,而连续相是指分散相所处的媒介物。
在食品胶体中,分散相往往是由溶解或悬浮在连续相中的微粒组成。
2. 食品胶体的特点食品胶体的特点包括稳定性、均匀性、流变性和渗透性。
其中,稳定性是指食品胶体在静态或动态条件下能够保持其结构和性质的能力;均匀性是指食品胶体中微粒的分布是均匀的;流变性是指食品胶体在受力下能够发生流动;渗透性是指食品胶体能够通过滤膜的透过性。
二、食品胶体的形成机制1. 凝聚态胶体的形成凝聚态胶体的形成是由于分散相的微粒间的范德华力、静电吸引力、双电屏蔽效应等作用力,使微粒之间发生相互结合。
当这些作用力超过了微粒间的热运动能量时,微粒之间就会发生结合,形成胶体。
2. 膨胀态胶体的形成膨胀态胶体的形成是由于分散相的微粒吸附了水分子,使得微粒间出现了静电排斥力,从而使得微粒之间发生排斥,形成胶体。
三、食品胶体的分类食品胶体根据其形成机制和结构特点可以分为溶液胶体、胶束胶体和凝胶态胶体三类。
1. 溶液胶体:是由极小的分子或离子在溶剂中形成的稳定的分散体系。
例如,水溶液中的葡萄糖溶液就是一个典型的溶液胶体。
2. 胶束胶体:是由极小的分子或离子在溶剂中形成的具有特定结构的胶体。
胶束胶体通常由亲水头基和疏水尾基组成,靠疏水尾基相互作用形成稳定的结构。
例如,肥皂分子在水中形成的胶束就是一个典型的胶束胶体。
3. 凝胶态胶体:是由一个三维网状结构的连续相中分散着大量微粒的胶体。
凝胶态胶体通常包括溶胶和凝胶两种状态,其中溶胶是指微粒均匀分散在连续相中,而凝胶是指微粒相互连接形成了空间结构。
例如,果冻、布丁等食品就属于凝胶态胶体。
食品胶体在食品工业中有着广泛的应用,主要包括以下几个方面:1. 改善食品质地食品胶体可以通过增稠、乳化、凝胶等方式改善食品的质地,使得食品口感更加丰富和柔软。
食品胶体概论
![食品胶体概论](https://img.taocdn.com/s3/m/289fcb5d3c1ec5da50e270a4.png)
食品凝胶的成胶机理摘要:由于蛋白质形成的凝胶会影响食品的质构和品质,所以研究蛋白质凝胶对于食品科学有极其重要的意义。
然而,蛋白质形成凝胶的机理过于复杂,需要更先进的技术来研究。
凝胶特性是食品蛋白质最重要的功能特性之一,人类在很久以前就利用蛋白质的凝胶特性来制作凝胶类食品,其中最典型的就是中国的豆腐和西方的奶酪。
但是,蛋白质的凝胶机理及其过程动力学还没有被完全了解。
随着现代研究分析技术与方法的发展,有关蛋白质凝胶的机理与过程的研究已经取得大量的成果,下面将有关蛋白质凝胶机理的研究进展作一综述。
关键词:蛋白质凝胶凝胶机理凝聚和凝胶过程对食品加工起着重要的作用,它们能形成食品所需要的质构,也会带来不需要的沉淀或是分层现象。
因此,研究胶体形成的特性对于稳定和形成食品所需结构十分重要,并且通过控制凝胶反应优化食品加工过程,提高食品品质。
本文就蛋白质凝胶的定义及类型、影响蛋白质凝胶的因素以及蛋白质凝胶的机理等方面作以下综述。
1.蛋白质凝胶的定义及类型蛋白质凝胶的形成可以定义为蛋白质分子的聚集现象,在这种聚集过程中,吸引力和排斥力处于平衡,以至于形成能保持大量水分的高度有序的三维网络结构或基体(matrix)。
如果吸引力占主导,则形成凝结物,水分从凝胶基体排除出来。
如果排斥力占主导,便难以形成网络结构。
蛋白质凝胶的类型主要决定于蛋白质分子的形状。
由于凝胶过程是一个动态过程,也受外界环境的PH、离子强度以及加热的温度和时间的影响。
纤维状蛋白质分子,如明胶和肌浆球蛋白凝胶的网络结构由随机的或螺旋结构的多肽链组成。
Ledward报道,明胶的凝胶网络为线性分子通过形成连接区而形成凝胶网络。
Hermanssan 和Langlon; 观测到肌浆球蛋白凝胶是由线性分子间形成连接点而构建成三维网络。
2.影响蛋白质凝胶的因素能形成凝胶的生物材料,除多糖就是蛋白,而蛋白凝胶与多糖凝胶最明显差别就是多糖凝胶为热可逆凝胶,这是因为多糖没有变性问题,所以可以反复加热一融化一冷却一凝胶这个过程。
食品增稠剂(胶体)的种类与应用
![食品增稠剂(胶体)的种类与应用](https://img.taocdn.com/s3/m/33f222667275a417866fb84ae45c3b3566ecdd41.png)
增稠剂的分类与简介
分类
食品增稠剂可以根据其来源、化学结构和性质进行分类,常见的分类方式包括 天然增稠剂和合成增稠剂。
简介
天然增稠剂如植物提取物、动物提取物和微生物发酵产物等,而合成增稠剂则 是通过化学合成方法制备的。不同增稠剂具有不同的理化性质和应用范围,需 要根据具体需求选择合适的增稠剂。
02
新型增稠剂的研发涉及多个学科 领域,如化学、生物学、材料科 学等,需要跨学科合作和深入研
究。
增稠剂在功能性食品中的应用
随着消费者对健康食品的需求不断增加,功能性食品 市场逐渐兴起。增稠剂在功能性食品中具有重要作用,
能够改善食品口感、质地和稳定性。
增稠剂在功能性食品中的应用包括控制血糖、降低胆 固醇、提高免疫力等,对预防和治疗慢性疾病具有积
保产品安全。
标签注明
03
食品包装上应明确标注食品增稠剂的种类和使用量,便于消费
者了解和选择。
05
食品增稠剂的发展趋势与未来展望
新型增稠剂的开发与研究
新型增稠剂的研发是食品工业的 重要方向之一,旨在满足消费者 对食品品质和安全性的更高要求。
新型增稠剂应具备高效、安全、 环保等特点,同时能够替代传统 增稠剂,降低生产成本和风险。
聚合物类
如聚乙烯吡咯烷酮、聚丙烯酰胺等,具有较高的粘度和稳定性,常用于食品、药 品等领域。
03
食品增稠剂的应用
在食品工业中的应用
01
02
03
04
改善食品质地
增稠剂可以增加食品的粘稠度 ,改善其口感和质地,使食品
更加细腻、滑顺。
稳定食品体系
增稠剂可以作为稳定剂,保持 食品体系的稳定,防止食品出
现分层、沉淀等现象。
胶体及其在食品中的应用
![胶体及其在食品中的应用](https://img.taocdn.com/s3/m/875a38af6bec0975f465e256.png)
胶体及其在食品中的应用学号:0831309 姓名:高亚荣(一)胶体简介胶体又称胶状分散体是一种均匀混合物,在胶体中含有两种不同状态的物质,一种分散,另一种连续。
分散的一部分是由微小的粒子或液滴所组成,分散质粒子直径在1nm—100nm 之间的分散系;胶体是一种分散质粒子直径介于粗分散体系和溶液之间的一类分散体系,是一种高度分散的多相不均匀体系。
现简单介绍胶体的分类、性质、稳定性、电性、结构、制备、纯化及其在各个方面的应用。
1、胶体的分类方法主要有一下几种:(1)按颗粒大小分a.粗分散体系——颗粒大,≥100nmb.胶体体系——10~100nm,包含分子溶液(2)按亲和力大小分a.憎液溶胶——亲和力弱,AL(OH)3 絮状,热力学不稳定,表面大,不可逆溶胶b.亲液溶胶:——亲和力大,高分子溶液,多糖,纤维素,热力学稳定体系,可逆胶体c.缔合胶体:——表面活性剂类,两亲性分子,在界面上易定向吸附缔合成胶团,分子有序聚集体(3)按照分散剂状态不同分为:a.气溶胶——以气体作为分散介质的分散体系。
其分散相可以是气相、液相或固相。
:如SO2扩散在空气中b.液溶胶——以液体作为分散介质的分散体系。
其分散相可以是气相、液相或固相。
:如Fe(OH)3胶体c.固溶胶——以固体作为分散介质的分散体系。
其分散相可以是气相、液相或固相。
:如有色玻璃、烟水晶常见的胶体主要有:Fe(OH)3胶体、Al(OH)3胶体、硅酸胶体、淀粉胶体、蛋白质胶体、豆浆、墨水、涂料、肥皂水、AgI、Ag2S、As2S3,有色玻璃等。
其中淀粉胶体、蛋白质胶体在食品中的应用最为广泛。
2、胶体的性质体现在以下几方面:①有丁达尔效应当一束光通过胶体时,从入射光的垂直方向上可看到有一条光带,这个现象叫丁达尔现象。
利用此性质可鉴别胶体与溶液、浊液。
②有电泳现象由于胶体微粒表面积大,能吸附带电荷的离子,使胶粒带电。
当在电场作用下,胶体微粒可向某一极定向移动。
食品中常用的胶体
![食品中常用的胶体](https://img.taocdn.com/s3/m/58c0ac025e0e7cd184254b35eefdc8d376ee14b6.png)
食品中常用的胶体利用明胶的这些特性,可以加工各种食品,例如棉花糖、奶糖、芝士蛋糕、布丁、慕斯等。
2、黄原胶是一种微生物胶,黄原胶具有增稠、悬浮、乳化、稳定作用。
黄原胶无味、无毒、易溶于水、耐酸碱和高盐环境,抗高温、低温冷冻,抗生物酶解,抗污染能力强,低浓度溶液具有高黏度的特性(1%水溶液的黏度相当于明胶的100倍),是一种高效的增稠剂。
黄原胶广泛用于各种肉制品的加工,在火腿、午餐肉、红肠等肉糜制品中使用黄原胶可明显提高制品的嫩度、色泽和风味,还可以提高肉制品的持水性。
3、海藻酸钠是一种亲水性胶体,在食品工业中海藻酸钠主要作稳定剂、增稠剂、乳化剂、分散剂和凝胶剂等,它是一种安全的食品添加剂,用于改善和稳定焙烤食品(蛋糕、馅饼)、馅料、色拉调味汁、牛奶巧克力的质地以及防止冰淇淋储存时形成大的冰晶,海藻酸盐还用来加工各种凝胶食品,例如速冻布丁、果冻、人造鱼子酱等,而且还可以作为仿生食品的基材,还是一种天然的膳食纤维。
海藻酸钠除了单独使用外,还可以和大多数的食用胶配合使用,效果和性价比会比单独使用好些。
4、果胶果胶属于亲水性胶体,在水中会迅速吸水膨胀而结块,所以使用前必须先将果胶充分溶解后再加入配料中,否则会影响果胶的作用效果。
5、魔芋胶魔芋又名蒟蒻,天然食品添加剂。
魔芋的主要成份是葡甘露聚糖,它不仅含有人体所需的10多种氨基酸和多种微量元素,更具有低蛋白质、低脂肪、高纤维、吸水性强、膨胀率高等特性。
药用功效:具有降血脂、降血糖、降血压、减肥、美容、保健、通便及等多种疗效。
性质:魔芋胶是自然界分子量最大、粘度最高的膳食纤维,具有极高的浓度。
众所周知,可溶性膳食纤维最重要的品质在于其粘度,粘度是降低饭后所增加的血糖浓度指数并保持其总体稳定最重要的因素。
粘度越高,功效越好。
用途:胶凝剂、增稠剂、乳化剂、稳定剂、成膜剂。
应用:素食类食品、仿肥猪肉、鱼浆炼制品、米面制品(面条、米线、燕皮、饺子皮、河粉、面包、蛋糕、糕点、蛋奶酥、曲奇饼、速冻食品等)、魔芋果冻类、软糖、饮料、甜点(布丁、豆花、杏仁、豆腐等更有弹性、口感更佳)。
食品胶体第一章
![食品胶体第一章](https://img.taocdn.com/s3/m/6c80b5d303d8ce2f006623de.png)
例如:云,牛奶,珍珠
食品胶体第一章
分散体系分类
分类体系通常有三种分类方法:
按分散相粒子的大小分类:
•分子分散体系 •胶体分散体系 •粗分散体系
•液溶胶 按分散相和介质的聚集状态分类: •固溶胶
•气溶胶
•憎液溶胶 按胶体溶液的稳定性分类: •亲液溶胶
食品胶体第一章
(1)按分散相粒子的大小分类
1.分子分散体系 分散相与分散介质以分子或离子形式彼此混溶,
没有界面,是均匀的单相,分子半径大小在1 nm以下 。 通常把这种体系称为真溶液,如CuSO4溶液。 2.胶体分散体系
分散相粒子的半径在1 nm~100 nm之间的体系。目 测是均匀的,但实际是多相不均匀体系。也有的将1 nm ~ 1000 nm之间的粒子归入胶体范畴。 3.粗分散体系
当分散相粒子大于1000 nm,目测是混浊不均匀体 系,放置后会沉淀或分层,如黄河水。
食品胶体第一章
3.缔合胶体(有时也称为介质,胶束中表面活性剂的亲 油基团向里,亲水基团向外,分散相与分散介 质之间有很好的亲和性,因此也是一类均相的 热力学稳定系统。
食品胶体第一章
(3)按分散相和介质聚集状态分类
1.液溶胶
将液体作为分散介质所形成的溶胶。当分散 相为不同状态时,则形成不同的液溶胶:
匀
食品胶体第一章
胶体粒子的尺寸:1nm-1μm
微乳状液粒子尺寸:10-100nm 热力学稳定体系
(鉴别:外观透明或者近乎透明,流动性好,均相体 系,100倍重力加速度分离5分钟不发生相分离.)
乳状液粒子尺寸:0.1-50 μm 热力学不稳定体系
食品胶体第一章
(2)按胶体溶液的稳定性分类
1.溶胶 半径在1 nm~100 nm之间的难溶物固体粒子
食品胶体第一章绪论
![食品胶体第一章绪论](https://img.taocdn.com/s3/m/f7fb4dc16f1aff00bfd51e06.png)
凝胶化(gelation): 生物大分子溶液在适当的条件下被 转变成生物大分子凝胶的过程。
凝胶化发生的条件: 改变温度:温度的改变会导致生物大分子构象
的改变,进而改变分子的缔合性质。如果此时 的大分子已达到一定的浓度,就能发生凝胶化。 降低温度可能导致分子的构象更为有序,这种 情况下所发生的凝胶化过程可视为是一种不成 功的大分子结晶过程。升温常导致分子的无序, 进而因为一系列复杂的新引起的分子间反应而 产生网状结构。
3. 体系粘度和分散相体积分数间的关系可用 Einstein公式描述;
r = 1+ 2.5
4.粒子的半径小于0.1μm,则它的布朗运动 导致的沉降以及粒子扩散系数可用 StokesEinstein公式描述;
D= kT/f =kT/6πη0a
5. 这种胶体在试验上具有的一个特点是 它的透明性,这种性质适合于详细研究 它的光散射或浊度。所以用于进行胶体 粒子大小测定的技术大都要求胶体体系 是这种状态。至少应该充分稀释和分散 以接近这种状态。
相,亲液溶胶是热力学上稳定、可逆的体系。
3.缔合胶体(有时也称为胶体电解质)
分散相是由表面活性剂缔合而成的胶束。通
常以水作为分散介质,胶束中表面活性剂的亲 油基团向里,亲水基团向外,分散相与分散介 质之间有很好的亲和性,因此也是一类均相的 热力学稳定系统。
(3)按分散相和介质聚集状态分类
1.液溶胶 将液体作为分散介质所形成的溶胶。当分散 相为不同状态时,则形成不同的液溶胶: A.液-固溶胶 如油漆,AgI溶胶 B.液-液溶胶 如牛奶,石油原油等乳状液
胶体不稳定的主要表现:
1.聚集(Aggregation) :是两个或多个胶体粒子粘附在 一起的过程。 2.絮凝(Floculation):松散的聚集,粒子间的距离较大, 过程是热力学可逆的; 3.凝结( Coagulation ):刚性的聚集,粒子间的距离在 原子尺寸的范围,过程是热力学不可逆的 4.分层(上浮或下沉,Creaming or Sedimentation):最 常见的胶体不稳定现象,是由于重力导致的粒子的迁移 和聚集。其动力学速度取决于迁移单元的尺寸和两相的 密度差。
食品中的胶体和乳化作用
![食品中的胶体和乳化作用](https://img.taocdn.com/s3/m/e8334f0011661ed9ad51f01dc281e53a58025102.png)
食品中的胶体和乳化作用在我们的日常生活中,我们经常会听到“胶体”和“乳化作用”这两个名词。
这些名词可能比较抽象,但它们对我们的日常生活和我们食用的食品非常重要。
本文将介绍胶体和乳化作用对我们日常生活和我们所吃的食品的影响。
一、什么是胶体?胶体是指至少由两种不同的物质组成的混合物,其中一个物质呈现为微小的颗粒分散在另一个物质中。
胶体由两个主要组成部分构成:分散相和连续相。
分散相是指微小的颗粒,而连续相是指围绕这些颗粒的物质。
与溶液不同,胶体中的分散颗粒不会完全溶解,而是会形成混合物。
二、胶体在食品中的应用许多我们日常所食用的食品都含有胶体。
例如,鸡蛋中的蛋白质就是一个胶体。
当我们烹饪或烤一只鸡蛋时,蛋白质被加热,从而引起了物质的结构变化,并将其转化为实心。
食品工业中常使用胶体稳定剂来改善和增强食品的外观、口感、稳定性和保质期。
以下是一些常见的胶体使用:1. 乳化剂用于将不相溶的液态成分混合在一起,如乳酪和沙司。
2. 膨胀剂在制作蛋糕、饼干和面包等食品中添加二氧化碳,以使它们变得蓬松。
3. 稳定剂在糖果、饮料和冰淇淋中添加胶体稳定剂,以防止它们分层或分离。
4. 糊化剂用于制作冷冻汤圆或粉丝时,将淀粉吸收和“膨胀”为类似于胶体的形态,以便形成所需的结构。
三、什么是乳化作用?乳化作用是指将两种非相溶物质混合在一起,使它们形成一个稳定的混合物的过程。
该过程涉及到两种不互相溶解的物质的结合,并且需要添加一个乳化剂来使它们均匀分散。
在食品制造业中,使用乳化作用来将油和水混合在一起,以制成像酱料、马洛尼亚酱和蛋白等食品。
四、乳化作用在食品中的应用由于油和水不相容性很高,因此制造像沙司和蛋黄酱这样的调味品需要通过乳化作用来混合油和水。
乳化剂可以在分离油和水之间增强亲和力,并促进两种成分的混合。
此外,一些现代技术,如高压均质,也可用于改进油和水的乳化。
乳化作用的应用还可以进一步扩展,用于助剂在蛋白包裹的食品中充当乳化剂。
食品胶体发展历程
![食品胶体发展历程](https://img.taocdn.com/s3/m/098463adf9c75fbfc77da26925c52cc58bd6908a.png)
食品胶体发展历程食品胶体是一种特殊的材料,由水和其他成分(如蛋白质、多糖、脂质等)组成的胶状物质。
它具有粘性、流动性和稳定性,广泛应用于食品工业中。
食品胶体的发展历程可以追溯到古代,随着科技的进步和人们对食品质量与口感的需求不断增长,食品胶体得到了更加深入的研究和应用。
在古代,人们已经开始使用胶体物质来加工食品。
例如,中国的豆腐就是利用大豆蛋白质形成的胶体结构而制作的,古埃及人也会使用乳清做成的胶体物质来制作奶酪。
到了19世纪,随着科学的进步,人们对胶体的研究逐渐深入。
德国科学家弗里德里希·拉彭特(Friedrich Lachmann)首先提出了“胶体化学”这个概念,并开始研究胶体的性质和特点。
随后,人们逐渐认识到食品中的胶体物质对于食品的质地和口感具有重要影响。
20世纪初,食品胶体的研究进入了一个全新的阶段。
法国物理学家厄斯特·奥斯瓦尔德(Ernest Oswald)提出了胶体系统的分类方法,并发表了关于蛋白质胶体的研究成果。
此后,越来越多的科学家开始关注食品胶体的性质和应用。
食品胶体的研究不仅局限于蛋白质,还开始涉及多糖和脂质等其他成分的胶体。
随着科技的进步,食品胶体的制备和应用技术也不断发展。
20世纪中后期,利用乳化、稳定剂、增稠剂和胶凝剂等技术制备和调控食品胶体的方法逐渐成熟起来。
人们开始利用食品胶体来改善食品的品质和稳定性,创造出更多种类的食品。
进入21世纪,食品胶体的研究和应用更加广泛。
人们在食品胶体的制备、性质和应用等方面取得了重要的进展。
食品胶体不仅被广泛应用于传统食品加工中,还在功能性食品、纳米食品和微胶囊等领域发挥着重要作用。
总的来说,食品胶体的发展历程经历了漫长的历史过程。
从古代的简单利用到现代的精细研究和应用,食品胶体在食品工业中的地位越来越重要,对于提高食品品质和满足人们口感需求起到了重要作用。
食品中的胶体稳定性研究
![食品中的胶体稳定性研究](https://img.taocdn.com/s3/m/ff79e95811a6f524ccbff121dd36a32d7375c785.png)
食品中的胶体稳定性研究胶体稳定性是指液体中分散相颗粒的稳定状态,是食品行业研究的一个重要课题。
胶体稳定性影响着食品的质量和口感,因此对其进行深入研究具有重要意义。
胶体稳定性与胶体颗粒之间的相互作用密切相关。
在食品中,常见的胶体颗粒有胶状体、脂质体、乳液等。
这些胶体颗粒存在于各种食品中,例如酱料、乳制品、饮料等。
胶体颗粒的稳定性受到多种因素的影响,包括表面电荷、溶液中的离子浓度、温度等。
首先,胶体稳定性与胶体颗粒的表面电荷有关。
在水溶液中,胶体颗粒的表面带有电荷,这种表面电荷使胶体颗粒之间形成静电斥力,防止其聚集。
这种静电斥力是维持胶体颗粒分散状态的重要力量。
然而,当溶液中的离子浓度增加时,胶体颗粒的表面电荷可能被中和,导致静电斥力减弱,使得胶体颗粒易于聚集。
其次,胶体稳定性还受到离子浓度和pH值的影响。
溶液中存在的离子可以干扰胶体颗粒的电荷平衡,从而影响胶体的稳定性。
离子浓度较高时,离子与胶体颗粒表面电荷之间发生相互作用,导致胶体的稳定性降低。
此外,溶液的pH值也会影响胶体稳定性。
适当的pH值可以保持胶体颗粒表面电荷的平衡,从而维持胶体的稳定性。
温度是另一个影响胶体稳定性的重要因素。
随着温度的升高,分子的活动性增加,这可能导致胶体颗粒的聚集。
此外,一些食品中的成分在高温下可能发生变化,从而影响胶体稳定性,例如乳制品中的蛋白质在高温下会发生变性,导致乳液的稳定性降低。
针对食品中的胶体稳定性问题,研究人员提出了一些解决方案。
一种常用的方法是添加稳定剂或乳化剂。
稳定剂可以增加胶体颗粒表面的电荷密度,从而增强胶体分散的稳定性。
乳化剂则可以在液体中形成薄膜或界面活性剂层,减少胶体颗粒之间的相互作用。
这些添加剂的选择和使用方法需要进行深入研究,以确保其对食品质量和安全性的影响。
此外,利用纳米技术也是研究胶体稳定性的新方法。
纳米颗粒具有较大的比表面积和特殊的物理化学性质,可以在食品中起到纳米稳定剂的作用。
通过纳米技术可以制备具有独特结构和性质的纳米胶体颗粒,从而提高胶体的稳定性。
食用胶体介绍_2022年学习资料
![食用胶体介绍_2022年学习资料](https://img.taocdn.com/s3/m/7483ed9cc67da26925c52cc58bd63186bceb9239.png)
卡拉胶化学结构式-CH.OH-CH-OH-CH,OH-CH2OSO-03801-HO-03S-01-uH-「H301-:-090y-010yr7做-050g--型-1-型-λ 一型
卡拉胶性质-物理性质-化学性质-A白色至淡黄褐色微有光泽、-AK-型卡拉胶:-半透明片状体或粉末状-对钾离 敏感,形成脆性凝胶,-有泌水性-B无臭或有微臭,无味,口感-BL-型卡拉胶:-粘滑-对钙离子敏感,形成柔性 胶,-不泌水-C冷水中膨胀,溶于60℃以上-的热水-C入-型卡拉胶:-不能形成凝胶
琼胶的应用-食品工业:-布丁果冻、软糖、面点、肉制品、酸奶等-微生物学:-培养基
瓜尔豆胶一原料:瓜尔豆-瓜尔胶片-瓜尔豆粕
瓜尔豆胶化学结构式-CHOH-OHH/-NOH HA-HHO j-CH2OH HHO-CHp角
瓜尔豆胶的特性-1粘度较高,冷水即可溶解,1%溶液粘度能达到-5000mPas-2.和黄原胶有良好的协同作 ,最高能提高至原有-粘度的4倍-3和硼酸盐反应,生成不可逆凝胶(不可食用
卡拉胶的应用-食品工业:-果冻、果酱、果糕、凝胶软糖、肉制品、蛋-制品、冰淇淋、乳制品、乳饮料、饮料、啤酒 等-日用化工、精细化工:-面膜、牙膏、固定化载体等-医药:-胶囊等
海藻酸钠一原料:褐藻
海藻酸钠化学结构式-COONI-H-OH-HO-00
海藻酸钠的特性-。胶体特点-1.有一定的增稠作用,1.5%的粘度在1,000m.Pas-2.遇二价(钙盐能 成热不可逆凝胶-g2+-HO
魔芋胶的特性-1是粘度最高的食用胶体,冷水溶胀,1%溶液粘度最高-能达到50,000m.Pas;-2.有胶 中最高的膨胀率,可达体积100~200倍-3.和卡拉胶有良好的协同作用,提高强度.-4.在高温和碱作用下, 乙酰化,形成不可逆凝胶
食品胶
![食品胶](https://img.taocdn.com/s3/m/5713b17e8e9951e79b89276d.png)
食品胶(food gums)通常是指溶解于水中,并在一定条件下能充分水化形成黏稠、滑腻或胶冻液的大分子物质,在加工食品中可以起到提供增稠、增黏、黏附力、凝胶形成能力、硬度、脆性、紧密度、稳定乳化、悬浊体等作用,使食品获得所需要各种形状和硬、软、脆、黏、稠等各种口感,所以也常称作食品增稠剂(food thickers)、增黏剂、胶凝剂(gelling agents)、稳定剂(stabilizers)悬浮剂(suspending agents)、食用胶、胶质等,因食品胶一般都属亲水性高分子化合物,可水化而形成高黏度的均相液,故亦称亲水胶体(hydrocolloid)、水溶胶。
食品胶是一类能提高食品黏度或形成凝胶的食品添加剂,是在食品工业中有着广泛用途的一类重要的食品添加剂。
食品胶一般具有这样一些特性:在水中有一定溶解度;在水中强烈溶胀,在一定温度范围内能迅速溶解或糊化;水溶液有较大黏度,在大多数情况下具有非牛顿流体的性质;一部分食品胶在一定条件下可形成凝胶和薄膜。
为了统一命名和方便起见,同时突显其在食品中的应用,一般将其称为“食品胶”或“食用胶”。
食品胶是目前世界上广泛使用的食品添加剂,尤其是在食品工业相对发达的国家,几乎所有的食品中都使用了食品胶。
在肉类加工中应用食品胶可以改善肉制品的物理性质、增加肉制品的结着性与持水性、赋予肉制品良好的口感,同时还能提高产品的出品率。
肉制品中使用的食品胶种类很多,分别从植物与海藻、微生物、动物类物质中制取。
目前世界上允许使用的食品胶品种约60余种,我国允许使用的约有40种,国内肉类产品生产使用最广泛的食品胶主要有卡拉胶、黄原胶、瓜尔豆胶、琼脂、明胶、海藻酸钠、刺槐豆胶和魔芋胶,还有素肉粉等。
1、卡拉胶卡拉胶是从红色海藻中提取的一类多糖物质的纯植物胶。
在食品工业上主要作为增稠剂和凝胶形成剂,广泛应用于果蔬加工、饮料制作和人造蛋白纤维等方面。
卡拉胶不同类型的结构特点决定了其具有水溶性、粘结性、乳化稳定性和凝胶形成性等多方面的功能。
胶体在食品中的功能和应用
![胶体在食品中的功能和应用](https://img.taocdn.com/s3/m/7a14d5b9dc3383c4bb4cf7ec4afe04a1b071b0df.png)
胶体在食品中的功能和应用胶体一般指一些碳水化合物类的高分子聚合物,其化学结构主要由大量具有两个以上可反应位置的单体键合而成。
大多胶体都是以不同的单糖或氨基酸作为结构单元,然后通过糖苷键或肽键形成多糖肽物或其衍生物。
胶体分子的结构中往往都含有较多的亲水基团(如羟基、羧基、氨基等),这样就能使胶体充分水化或者溶解于水,进一步就可以形成粘稠溶液或凝胶,从而胶体可以表现出丰富的功能,并广泛应用于食品制造中。
由于构成胶体的单糖或者氨基酸的种类、各单元之间的排列方式、胶体聚合度、单糖或氨基酸的取代基团等各不相同,因此,不同的胶体在性质上既有共性又有着各自的特性。
而且不同胶体的溶解性、黏度、各种理化条件下的耐热性、形成胶冻的能力、对不同物质的兼容性等都存在着不同程度的差异。
这就需要深入研究胶体结构和性质之间的关系,从而可以为食品中胶体的合理应用提供有效的理论依据,最终就可获得种类丰富、味道香美的各色食品。
1、胶体种类一般胶体主要按照它们的来源分类。
如卡拉胶、黄蓍胶和阿拉伯胶等属于植物胶;明胶、壳聚糖和甲壳素等属于动物胶;琼脂、海藻酸及其盐、石莼胶、卡拉胶和红藻胶等属于海藻胶;黄原胶、可得然胶和结兰胶等属于微生物胶;甲基纤维素、羧甲基纤维素和羟乙基纤维素等则属于化学改性胶(表1)。
2、重要功能特性食品胶体因其功能的多样性,在很多食品中有应用,如在一些汤类、肉汁、沙拉酱、调味酱和浇头中胶体常常被用作增稠剂;在布丁、果冻和肉冻中胶体起凝胶作用;在酸奶、冰淇淋和奶油中胶体起乳化作用;在肉类和乳制品中胶体可作为油脂替代物;在糖果糕点和煎炸食品中胶体可作为涂层剂;在啤酒和白酒中胶体可作为澄清剂;在一些油中胶体可作为包裹剂;在巧克力牛奶中胶体可作为悬浮剂;在奶酪和冷冻食品中胶体可起到抑制脱水的作用;此外胶体也可当作生物塑料用到食品包装中。
1)增稠性所有亲水胶体发生水化作用后都具有增稠效果。
对于不同种类的食品胶体,其增稠效果并不一样,大多数食品胶体在浓度很低时,就能获得高黏度的流体,但也有一些胶体即使在很高的浓度下也只能得到较低黏度的流体。
食品胶体综述
![食品胶体综述](https://img.taocdn.com/s3/m/8c104913b7360b4c2e3f64f7.png)
黄原胶的结构及功能特性摘要:综述了黄原胶的结构特性和功能特性,并对其在食品工业中的研究现状和应用前景进行了分析。
根据黄原胶特殊的结构,分别阐述了其流变学性、增稠性和稳定性、耐酸碱盐稳定性、复配性和其他性能如悬浮性、乳化性和冻融稳定性等功能特性,以及这些特性在食品中的应用。
关键词:黄原胶结构功能特性应用The structure and functional properties ofxanthan gumAbstract:The structure and the function characteristic of xanthan gum were reviewed, and also analyze the research status and application prospect about xanthan gum in food industry.According to the special structure of xanthan gum,respectively expound the rheology, thickening and stability, resistance to acid and alkali salt stability, distribution and other performance such as suspension, emulsification and freeze-thaw stability features, as well as the application of these features in food. Keywords: xanthan gum;structure;features;application1 黄原胶黄原胶(Xanthan)是一种典型的亲水胶体,又称汉生胶,是由野油菜黄单胞杆菌、菜豆黄单胞菌、锦葵黄单胞菌和胡萝卜黄单胞菌等分泌的一种大分子生物多糖。
各种食品胶的简介与应用
![各种食品胶的简介与应用](https://img.taocdn.com/s3/m/e342dd20a7c30c22590102020740be1e650ecc2e.png)
各种食品胶的简介与应用各种食品胶的简介与应用A-S多糖胶"AS多糖胶"一种具有独特功能的新型肉类制品添加剂,广泛应用于各种灌肠、火腿肠、午餐肉罐头和肉丸等产品中。
该剂为纯天然溶胀型多糖类树脂,在-30℃至160℃的温度范围内保持极强的物化稳定性。
除了增稠和稳定等功效外,As多糖胶极具优势的是它独特的成膜包裹特性,可以强力乳化脂肪和减缓淀粉的回生老化,使产品在较长时间内保持良好的结构和口感,很好地解决了肉制品制作中因脂肪与淀粉的增加而产生出的诸多问题。
制作肉类制品,无论是高温还是低温产品,一般投入脂肪10%~15%,能使产品不出油,即可认为效果非常理想。
而欲提高原料利用率及降低成本,适量增加脂肪的比例是一项重要手段。
此外,增加脂肪后,还可明显提高肉制品的原始香度。
但通常来讲,加大脂肪使用量,则须增加淀粉的投入量(每增加5%的脂肪就需要增加2%~3%的淀粉),并且淀粉在肉类制品中的应用,也是为了充实馅料的空隙,提高黏结力,降低成本。
然而,随着脂肪、淀粉的增加,产品也就相应地出现较为明显的粉质感和疏松感,且油脂仍然极易渗出,随着时间的延长,产生肠体发硬,有液体渗出,无弹性,切片性能差,不能弯折和伴有强烈的粉质气味等一系列问题。
As多糖胶因其独特的成膜包裹特性,遇水后形成的薄膜网络组织,可将肉粒、水分、脂肪及淀粉等进行层层包容,成为类似于葡萄珠状的一个个微小颗粒,既分散又集中,最终形成一个大的具有紧密结构的整体,使水分和油分等很难从中渗出,明显减缓淀粉的回生老化。
且该结构具有很强的稳定性,不易受温度和外界条件变化的影响。
添加As多糖胶后,不仅产品成本明显降低,而且可使产品品质大为改善,令其结构柔韧紧密,具有良好的弹性,口感鲜嫩、脆爽、肉粒感强,无粉质气味,弯折不断裂,并可相应延长货架保存期,为企业创造可观的综合经济效益。
目前,该产品已被国内多家大中型肉制品生产加工企业所认可,并批量使用,受到了业内外人士的共同青睐和好评。
常用食用胶体的特性对比
![常用食用胶体的特性对比](https://img.taocdn.com/s3/m/b630461cef06eff9aef8941ea76e58fafbb04570.png)
常用食用胶体的特性对比01黄原胶黄原胶又称黄胶、汉生胶,黄单胞多糖,是一种由假黄单胞菌属发酵产生的单孢多糖,由甘蓝黑腐病野油菜黄单胞菌以碳水化合物为主要原料,经好氧发酵生物工程技术,切断1,6-糖苷键,打开支链后,再按1,4-键合成直链组成的一种酸性胞外杂多糖,由于它的大分子特殊结构和胶体特性,而具有多种功能,可作为乳化剂、稳定剂、凝胶增稠剂、浸润剂、膜成型剂等,广泛应用于国民经济各领域。
黄原胶能快速溶解到冷水中,但是具有极强的亲水性,因此若搅拌不充分,外层吸水膨胀成胶团,会阻止水分进入里层,所以黄原胶干粉或与盐、糖等干粉辅料拌匀后缓促加入正在搅拌的水喂,制成溶液使用。
黄原胶水溶液在静态或低的剪切作用下具有高粘度,在高剪切作用下表现为粘度急剧下降,但分子结构不变,而当剪切力消除时,则立即恢复原有的粘度,因此黄原胶溶液具有假塑性。
剪切力和粘度的关系是完全可塑的。
黄原胶假塑性非常突出,这种假塑性对稳定悬浮液、乳浊液极为有效。
实验过程中发现黄原胶溶解在用玻璃棒搅拌的冷水中时,如果加的过快,则黄原胶干粉来不及充分扩散而抱团,之后就很难溶解。
而缓慢加入到高速转子搅拌的冷水中时,充分扩散,抱团不严重,溶解后的溶液粘度大,略发黄,透明度差。
称取198g65℃的热水,用高速转子搅拌,加入2g增稠剂,观察增稠剂在热水中的溶解性能。
(以下同此)实验发现,黄原胶溶于热水后形成的溶液略显黄色,并且黄原胶在热水中分散性较好,较易溶解,抱团不严重。
02海藻酸钠和复配的海藻酸钠海藻酸钠又名褐藻酸钠、海带胶、褐藻胶、藻酸盐,是由海带中提取的天然多糖碳水化合物。
广泛应用于食品、医药、纺织、印染、造纸、日用化工等产品,作为增稠剂、乳化剂、稳定剂、粘合剂、上浆剂等使用。
海藻酸钠亲水性强,在冷水和温水中都能溶解,形成非常粘稠的均匀的溶液,形成的真溶液具有其他类似物难于获得的柔软性、均一性及其他优良特性,具有很强的保护胶体的作用,对油脂的乳化力强。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要:综述了黄原胶的结构特性和功能特性,并对其在食品工业中的研究现状和应用前景进行了分析。
根据黄原胶特殊的结构,分别阐述了其流变学性、增稠性和稳定性、耐酸碱盐稳定性、复配性和其他性能如悬浮性、乳化性和冻融稳定性等功能特性,以及这些特性在食品中的应用。
关键词:黄原胶结构功能特性应用The structure and functional properties ofxanthan gumAbstract: The structure and the function characteristic of xanthan gum were reviewed, and also analyze the research status and application prospect about xanthan gum in food to the special structure of xanthan gum,respectively expound the rheology, thickening and stability, resistance to acid and alkali salt stability, distribution and other performance such as suspension, emulsification and freeze-thaw stability features, as well as the application of these features in food. Keywords: xanthan gum;structure;features;application1 黄原胶黄原胶(Xanthan)是一种典型的亲水胶体,又称汉生胶,是由野油菜黄单胞杆菌、菜豆黄单胞菌、锦葵黄单胞菌和胡萝卜黄单胞菌等分泌的一种大分子生物多糖。
它是国外20世纪50 年代开始研究,60 年代末开始应用的一种功能性水溶胶。
Jeans 等人首先发现了黄原胶独特的功能特性,随后1961年,CP Kelco 成为第一个采用发酵法将黄原胶商业化生产的公司,1969 年黄原胶正式被美国FDA 批为食品添加剂。
从那时开始,黄原胶就因其优良的物化性质—分散液的高黏度、触变性、稳定性等被关注和研究,并在食品工业、采油、涂料等诸多方面得到了广泛的应用。
2 黄原胶的结构黄原胶是一种水溶性微生物多糖,由D—葡萄糖、D—甘露糖、D—葡萄糖醛酸,以及乙酸和丙酮酸组成的“五糖重复单元”的结构聚合体,具有类似纤维素的一级结构,包括由β—1,4键连接的D—葡萄糖基主链以及含三个糖单位的侧链,侧链由两个D—甘露糖和一个D—葡萄糖醛酸交替连接而成,如图1所示【1】。
黄原胶的相对分子质量非常大(>3×106),其水溶液粘度也非常高;分子侧链上的羟基使其易形成钠、钾和钙等金属盐,分子间可形成双螺旋结构。
黄原胶的二级结构,是由侧链绕主链骨架反向五重缠绕,通过氢键静电力等作用所形成的五重折叠的棒状螺旋结构,正是由于这些多螺旋体形成的网络结构,使黄原胶具有良好的控水性质,因而具有良好的增稠性能,如图2所示【1】。
黄原胶在水溶液中具有 3 种构象:天然黄原胶可能具有一个相对较规整的双螺旋结构;而经过长时间的热处理,黄原胶螺旋链会伸展为无序的卷曲链结构,该段温度通常称为构象转变温度;冷却后,螺旋和卷曲链在体系中均有相当程度的存在。
黄原胶的三级结构是棒状螺旋间靠非共价键结合形成的螺旋复合体。
这种结构一方面使主链免受外界环境如酸、碱、酶以及温度和其他离子的破坏,从而保持黄原胶溶液的稳定性;另一方面, 在较低分子量(Mw≈105)和相对高浓度下(10%),该结构状态又使其在一定浓度的水溶液中呈现溶致液晶的状态。
黄原胶分子结构中,部分侧链末端的甘露糖4,6位C上连有一个丙酮酸基团,而部分连接主链的甘露糖在C—6被乙酰化,一般而言,黄原胶中丙酮酸取代基的含量接近50%,流变学表明,丙酮酸基团脱去后,黄原胶分子间作用力明显减小,丙酮酸基团可能在黄原胶分子相互之间形成氢键,以此来稳定黄原胶的分子结构。
对黄原胶纤维的X衍射研究显示,黄原胶分子呈右手螺旋,三个糖侧链与主链对齐,并通过非共价键作用(主要是氢键作用)保持整体结构稳定。
在熔融下,主链周围的侧链保护β—1,4键不受攻击,这也许就是黄原胶在变化条件中保持稳定的原因【2】。
图1 黄原胶的结构图2 黄原胶二级结构示意图3 黄原胶的功能特性正是由于黄原胶独特的分子结构,使其具有增粘性、协效性、假塑性、良好的分散作用和乳化稳定性能等被广泛应用于食品、石油、化工、医药、纺织、化妆品等20多种行业。
黄原胶可添加到食品中,作为稳定剂、乳化剂、增稠剂分散剂、品质改良剂和加工辅助剂。
黄原胶在水中有良好的溶解度,在水溶液中呈多聚阴离子且构象多变,不同条件下表现出不同的特性,具有独特的理化性质。
黄原胶有显著地增加水体粘度和形成弱凝胶结构的特点,其水溶液在受到剪切作用时呈现假塑性,有较好的耐热、耐淀粉酶和耐酸碱盐稳定性,以及对颗粒的悬浮性和乳化性【3】。
黄原胶可控制产品的流变性、结构、风味及外观形态,其假塑性又可保证良好的口感,因此被广泛用于色拉调料、面包、奶制品、冷冻食品、饮料、调味品、酿造、糖果、高点、汤料和罐头食品中。
流变性黄原胶溶液是典型的假塑性流体。
在剪切力作用下,粘度急剧下降,剪切速度越高,粘度下降越大;当剪切作用消失时,粘度瞬间恢复到最大。
其原因可能是当受到剪切作用时,连接主、侧链的氢键被破坏,分子形成了不规则的线团状,粘度下降,在剪切作用消失时,分子又恢复了原来的结构。
黄原胶无毒、安全、低浓度、有高粘性,可控制最终产物的流变性,可以控制产品的外观、结构和风味,对淀粉糊流变性具有很大的影响。
Shittu T A[3]等人通过分析黄原胶对复合木薯小麦面粉(90%小麦,10%木薯)的储藏性能、面团粘弹性以及面糊的气体保持能力的影响,来研究黄原胶对复合木薯小麦面粉特性的功能作用。
实验结果得到,黄原胶对新鲜复合面粉所制作的面团的韧性、延伸性和口感接受度,都具有十分重要的促进作用。
当黄原胶含量为1%时,面包条的体积和面包屑的柔软度都有很大的提高,另外黄原胶的加入使符合面包更加膨松,切感官接受度更好。
当在面包配方中加入1%的黄原胶后,在面包储藏过程中水分的流失和结构老化现象明显减少。
盐的加入直接或间接地与黄原胶发生相互作用,进而影响了后者在容易让中的行为,此影响也会反映在黄原胶分子之间及与水分子的相互作用上,从而影响了黄原胶在溶液中的流变学特性【4】。
盐的种类及浓度亦对黄原胶的粘度、粘弹性、凝胶点温度、松弛时间及构象转变温度等特性有着不同的影响与作用。
另外在考虑盐的作用时,需结合考虑黄原胶本身所含有的钾、钙、镁等离子的含量。
另外,可利用黄原胶溶液的流变学性质作为检测指标筛选菌株和优化发酵条件【7】。
增稠性和稳定性及与其他添加的协效性黄原胶是一种低浓度高粘度的亲水胶体,1%水溶液粘度相当于明胶的100倍。
黄原胶具有特殊的假塑性、高粘度和溶解度,在较宽的PH和温度范围内稳定,能与其他盐类、食品添加剂和多糖复配作为增稠剂。
由于黄原胶的三级结构为网状结构,使其具有良好的控制水流动性质,从而可作为良好的增稠剂和稳定剂,特别是在低质量浓度具有高粘度。
王娜[4]研究不同亲水胶体对豆浆稳定性的效果,用黄原胶作为增稠剂,增加豆浆的粘度,使豆浆在较长时间不会出现脂肪上浮和蛋白质沉淀的出现。
并且黄原胶具有优良的热稳定性,即使在高温条件下,随着冷却,粘度基本是可以完全恢复。
结果发现黄原胶对增加豆浆稳定性具有较好的效果,当黄原胶浓度为L时,其稳定系数最高为。
魔芋胶、卡拉胶和黄原胶均属于水溶性的天然食品添加剂,魔芋胶和卡拉胶均能形成凝胶,而黄原胶自身没有形成凝胶的特性,但在增稠、耐高温和凝胶增效方面有较好的配伍性【8】。
魔芋胶与卡拉胶有非常好的协同作用,能显著增强卡拉胶的凝胶强度和弹性,还能减少卡拉胶的泌水性;魔芋胶与黄原胶互配即能明显的增加胶体的粘稠度,还能减少胶的使用量,因此,两者的复配胶。
既可作为增稠剂,又可作为凝胶剂。
由于蔗糖的存在在一定程度上增强了大分子交联或其他式的缔合,逐渐提高了体系结构化的程度,所以少量的蔗糖可以提高黄原胶体系的粘度,且黄原胶溶解后再加入蔗糖更有利于粘度的增加【9】;而氯化钠的引入则明显降低了体系的粘度,且这种影响对黄原胶质量分数较高的体系更明显。
耐酸、碱、盐稳定性在黄原胶的二级结构中,侧链反向缠绕主链使主链得到保护而不易降解,从而使其具有耐高温、耐酸碱和抗酶解等特性。
黄原胶溶液对酸碱十分稳定,在酸性条件下都可使用,在PH2~12黏度几乎保持不变。
虽然当PH值等于或大于9时,黄原胶会逐渐脱去乙酰基,在PH小于3时丙酮酸基也会脱去。
但无论是去乙酰基或是丙酮酸基对黄原胶溶液的黏度影响都很小。
即黄原胶溶液在PH2~12黏度较稳定,所以对于含高浓度酸或碱的混合物,黄原胶是一种很好的选择[5]。
黄原胶在产品应用中的耐盐对象以NaCl为准,且最高添加量在20%左右(酱类食品)。
在多盐存在时,黄原胶具有良好的相容性和稳定性。
它可以在质量分数为10% KCl、10% CaCl2、5% Na2CO3溶液中长期存放(25e、90 d),黏度几乎保持不变,在其高浓度溶液中加入一定量盐反而可以增加粘度。
复配性黄原胶具有广泛的相容性、复配性和协效性,能与瓜尔豆胶、刺槐豆胶混合物可产生有益的协同作用,使黏度倍增,也可形成不同韧度的凝胶等。
刺槐豆胶与黄原胶的复配溶液能够进行剧烈反应,在两组分的浓度很低的情况下有强烈的协效增稠性,可获得浓稠溶液或形成有弹性的凝胶。
刺槐胶与黄原胶的复配效应可能是因为槐豆胶上不带侧链的片段可与常温下螺旋结构的亲水胶体形成稳定的结合。
Séverine Desplanques[6]等人研究了黄原胶—刺槐胶复配混合物对水包油(O/W)型乳化剂稳定性的影响,发现复配混合物的黏度比单种胶体明显增加了,这说明黄原胶与刺槐胶分之间能发生相互作用,这就是所谓的增效机理。
并且黏度的变化受黄原胶与刺槐胶的结构和化学性质引导。
CMC是一种纤维素衍生物,也是最主要的离子型纤维素胶,因具有独特的增稠、悬浮、黏合及持水等特性,广泛应用在冷饮、酸奶及酸性饮料等食品中。
通过研究总浓度为1%的CMC与黄原胶的复配溶液的流变学特性发现黄原胶与CMC 之间无协同作用,反而会降低体系的粘度、粘性模量与弹性模量;同时,两者复配比例改变溶液的粘弹性质,黄原胶的比例低于%时,体系表现为类液体性质,只有达到%后才表现为类固体性质;同样,黄原胶和CMC的复配改变了单一黄原胶溶液的动态粘弹性特性与动态粘度特性,使凝胶点温度及构象转变温度发生变化,同时,改变了粘度及粘弹性随温度变化的曲线形状。