高三数学理10.26周考(1)-副本
江苏省扬州市广陵区江苏省扬州中学2022-2023学年高三上学期10月月考数学试卷
江苏省扬州中学2022-2023学年度10月双周练试题高三数学2022.10试卷满分:150分,考试时间:120分钟一、单项选择题:(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合2{|20}A x x x =--<,{|1}B x x m =-<<,A B A = ,则实数m 的取值范围为()A .(2,)+∞B .(1,2)-C .[2,)+∞D .(1-,2]2.已知1tan 3α=,则sin 2α=().A 45.B 35.C 310.D 1103.1"0,"3m ⎛⎫∈ ⎪⎝⎭是“函数(31)4,1,(),1m x m x f x mx x -+<⎧=⎨-≥⎩是定义在R 上的减函数”的().A 充分不必要条件.B 必要不充分条件.C 充分必要条件.D 既不充分也不必要条件4.已知函数()y f x =的图象与函数2xy =的图象关于直线y x =对称,函数()g x 是奇函数,且当0x >时,()()g x f x x =+,则(4)g -=()A.-18B.-12C.-8D.-65.已知函数()sin()(0f x x ωϕω=+>,||2πϕ<,其图象相邻两条对称轴之间的距离为4π,且直线12x π=-是其中一条对称轴,则下列结论正确的是()A .函数()f x 的最小正周期为πB .函数()f x 在区间[6π-,]12π上单调递增C .点5(24π-,0)是函数()f x 图象的一个对称中心D .将函数()f x 图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,再把得到的图象向左平移6π个单位长度,可得到()sin 2g x x =的图象6.设a ,b ,c 都是正数,且469a b c ==,那么()A.2ab bc ac +=B.ab bc ac +=C.22ab bc ac=+ D.2ab bc ac=+7.已知0.21,ln1.2,tan 0.2e a b c =-==,其中e 2.71828= 为自然对数的底数,则()A .c a b>>B .a c b>>C .b a c>>D .a b c>>8.正实数x ,y 满足12(2)xye x y e -=+,则22x yx y x++的最小值为()A .2B C .7D .4二、多项选择题:(本题共4小题,每小题5分,共20分.在每个小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.某同学在研究函数()()1||xf x x R x =∈+时,给出下面几个结论中正确的是()A .()f x 的图象关于点(1,1)-对称B .()f x 是单调函数C .()f x 的值域为(1,1)-D .函数()()g x f x x =-有且只有一个零点10.已知随机事件A ,B 发生的概率分别为()0.3,()0.6==P A P B ,下列说法正确的有()A.若()0.18=P AB ,则A ,B 相互独立B.若A ,B 相互独立,则()0.6P B A =C.若()0.4P B A =,则()0.12P AB = D.若A B ⊆,则()0.3P A B =11.已知正数a ,b 满足14a b+=()A .1ab ab+最小值为2B .ab 的最小值为4C .4a b +的最小值为8D .4a b +的最小值为812.已知正方体''''ABCD A B C D -的棱长为2,Q 为棱'AA 的中点,点,M N 分别为线段'',C D CD 上两动点(包括端点),记直线,QM QN 与平面''ABB A 所成角分别为,αβ,且22tan 4tan αβ+=,则().A 存在点,M N 使得//'MN AA .B DM DN ⋅为定值.C 不存在点,M N 使得52MN =.D 存在点,M N 使得MN CQ⊥三、填空题:(本题共4小题,每小题5分,共20分.)13.已知“R x ∃∈,使得21202x ax ++≤”是假命题,则实数的a 取值范围为________.14.已知cos 46πα⎛⎫+= ⎪⎝⎭,则sin 2α的值为______.15.定义:在区间上,若函数=()是减函数,且=B ()是增函数,则称=()在区间上是“弱减函数”.若221cos )(kx x x f +=在(0,2)上是“弱减函数”,则k 的取值范围为.16.设a ∈R ,函数⎩⎨⎧≥+++-<-=ax a x a x ax a x x f 5)1(2)22cos()(22ππ,若函数f (x )在区间()+∞,0内恰有6个零点,则a 的取值范围是.四、解答题:(本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知:p 0161218541≤+⋅-xx ;().023:2<++-m x m x q R x ∈.(1)若p 为真,求实数x 的取值范围;(2)若p 是q 的充分不必要条件,求实数m 的取值范围.在ABC ∆中,设角,,A B C 所对的边分别为,,a b c ,sin sin 2B C a b B +==(1)求sin A ;(2)如图,点M 为边AC 上一点,,2MC MB ABM π=∠=,求ABC ∆的面积.19.(本小题满分12分)设()f x 是R 上的减函数,且对任意实数x ,y ,都有()()()f x y f x f y +=+;函数2()(,)g x x ax b a b R =++∈(1)判断函数()f x 的奇偶性,并证明你的结论;(2)若1,5a b =-=,且存在[]3,2t ∈-,不等式(()1)(3)0f g t f t m -++>成立,求实数m 的取值范围.如图,在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,PAD △是以AD 为斜边的等腰直角三角形.若E 为棱P A 上一点,且BE ∥平面PCD ,BC AD ∥,CD AD ⊥,22AD DC CB ==.(1)求P APE的值;(2)求二面角P BD E --的余弦值.21.(本小题满分12分)甲、乙两人组成“虎队”代表班级参加学校体育节的篮球投篮比赛活动,每轮活动由甲、乙两人各投篮一次。
北京市北京师范大学附属中学2024—2025学年高三上学期10月考数学试卷
北京市北京师范大学附属中学2024—2025学年高三上学期10月考数学试卷一、单选题1.已知集合{20},{10}M xx N x x =+≥=-<∣∣,则M N =I ( ) A .{21}x x -≤<∣ B .{21}x x -<≤∣ C .{2}xx ≥-∣ D .{1}xx <∣2.在复平面内,复数z 对应的点的坐标是(-,则i z ⋅=( )A iB .iC iD .i3.下列函数中,在区间()0,∞+上单调递减的是( )A .()2xf x =B .()ln f x x =-C .()1f x x=-D .()13x f x -=4.已知实数,a b 满足a b >,则下列不等式中正确的是( ) A .a b > B .a b > C .2a ab >D .2ab b >5.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是有由瑞士数学家欧拉发现的,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,特别是当x π=时,10i e π+=被认为是数学中最优美的公式,数学家们评价它是“上帝创造的公式”.根据欧拉公式可知,i e 在复平面中位于 ( ) A .第一象限B .第二象限C .第三象限D .第四象限6.已知函数()21,026,2x x f x x x ⎧-<<=⎨-≥⎩,那么不等式()12f x x >的解集为( ) A .()0,1 B .()0,2 C .()1,4 D .()1,67.设0.40.5a =,0.5log 0.4b =,4log 0.5c =,则a ,b ,c 的大小关系是( ) A .a b c <<B .b c a <<C .c b a <<D .c a b <<8.若0xy ≠,则“0x y +=”是“2y xx y+=-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.已知函数211,(,0)(),()44ln(1),[0,)x x f x g x x x x x ∞∞⎧+-∈-==--⎨+∈+⎩,设R b ∈,若存在R a ∈,使得()()0f a g b +=,则实数b 的取值范围是( )A .[1,5]-B .(,1][5,)-∞-⋃+∞C .[1,)-+∞D .(,5]-∞10.恩格斯曾经把对数的发明、解析几何的创始和微积分的建立称为十七世纪数学的三大成就.其中对数的发明曾被十八世纪法国数学家拉普拉斯评价为“用缩短计算时间延长了天文学家的寿命”.已知正整数N 的70次方是一个83位数,则由下面表格中部分对数的近似值(精确到0.001),可得N 的值为( )A .13B .14C .15D .16二、填空题11.函数()1ln f x x=. 12.已知()f x 是定义在R 上的偶函数,且当(],0x ∈-∞时,()123x f x =+,则23log 2f ⎛⎫= ⎪⎝⎭. 13.设函数()2e 2sin 1x xf x x +=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为.14.对于三次函数()()320ax bx d a f x cx =+++≠,给出定义:()f x '是函数()f x 的导函数,()f x ''是()f x '的导函数,若方程()0f x ''=有实数解0x ,则称点()()00,x f x 为函数()y f x =的“拐点”.某同学经研究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若()3211533212f x x x x =-+-,根据这一发现,函数()y f x =的对称中心是.15.已知函数()22,2,x a x af x x ax x a ⎧+<=⎨+≥⎩给出下列四个结论:①当0a =时,()f x 的最小值为0;②当13a ≤时,()f x 存在最小值;③当1a ≥时,()f x 在(),-∞+∞上单调递增;④()f x 的零点个数为()g a ,则函数()g a 的值域为{}0,1,2,3. 其中所有正确结论的序号是.三、解答题16.设函数()πsin cos cos sin 0,2f x x x ωϕωϕωϕ⎛⎫=+>< ⎪⎝⎭.(1)若()102f =,求ϕ的值;(2)已知()f x 在区间π2π,33-⎡⎤⎢⎥⎣⎦上单调递增,2π13f ⎛⎫= ⎪⎝⎭,π13f ⎛⎫-=- ⎪⎝⎭,求ω,ϕ的值. 17.在ABC V 中,222b c a bc +-=. (1)求A ∠;(2)再从条件①、条件②、条件③这三个条件中选择两个作为已知,使ABC V 存在且唯一确定,求ABC V 的面积. 条件①:11cos 14B =; 条件②:12a b +=; 条件③:12c =.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分.18.某地区组织所有高一学生参加了“科技的力量”主题知识竟答活动,根据答题得分情况评选出一二三等奖若干,为了解不同性别学生的获奖情况,从该地区随机抽取了500名参加活动的高一学生,获奖情况统计结果如下:假设所有学生的获奖情况相互独立.(1)分别从上述200名男生和300名女生中各随机抽取1名,求抽到的2名学生都获一等奖的概率;(2)用频率估计概率,从该地区高一男生中随机抽取1名,从该地区高一女生中随机抽取1名,以X 表示这2名学生中获奖的人数,求X 的分布列和数学期望EX ;(3)用频率估计概率,从该地区高一学生中随机抽取1名,设抽到的学生获奖的概率为0p ;从该地区高一男生中随机抽取1名,设抽到的学生获奖的概率为1p ;从该地区高一女生中随机抽取1名,设抽到的学生获奖的概率为2p ,试比较0p 与122p p +的大小.(结论不要求证明)19.已知函数()()11ln f x a x x =+--.(1)若2a =,求曲线()y f x =在点()()1,1f 处的切线方程; (2)求函数()f x 的单调区间;(3)若2a <,证明:当1x >时,()1e xf x -<.20.已知函数()e sin xf x a x =-.(1)当2a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)当1a =时,证明:函数()2y f x =-在区间()0,π上有且仅有一个零点; (3)若对任意[]0,πx ∈,不等式()2cos f x x ≥-恒成立,求a 的取值范围.21.已知数列A :1a ,2a ,…,n a 满足:{}0,1i a ∈(1i =,2,…,n ,2n ≥),从A 中选取第1i 项、第2i 项、…、第m i 项(12m i i i <<<L ,2m ≥)称数列1i a ,2i a ,…,m i a 为A 的长度为m 的子列.记()T A 为A 所有子列的个数.例如A :0,0,1,其()3T A =. (1)设数列A :1,1,0,0,写出A 的长度为3的全部子列,并求()T A ;(2)设数列A :1a ,2a ,…,n a ,A ':n a ,1n a -,…,1a ,A '':11a -,21a -,…,1n a -,判断()T A ,()T A ',()T A ''的大小,并说明理由;(3)对于给定的正整数n ,k (11k n ≤≤-),若数列A :1a ,2a ,…,n a 满足:12n a a a k ++⋅⋅⋅+=,求()T A 的最小值.。
北京师范大学附属实验中学2024-2025学年高三10月月考数学(含答案)
北师大实验中学2024-2025学年第一学期高三统练(一)高三数学 2024.10命题人:曹絮 审题人:黎宁本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.一、选择题:共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合2{|3100}A x x x =−−<,{|10}B x x =−<,则(AB = )A .{|15}x x <<B .{|21}x x −<<C .{|12}x x <<D .{|51}x x −<<2.设0.50.533434(),(),log (log 4)43a b c ===,则( )A .c b a <<B .c a b <<C .a b c <<D .a c b <<3.若实数a 、b 满足220a b >>,则下列不等式中成立的是( ) A .a b > B .22a b > C .||a b >D .2222log log a b >4.若函数1,0,()0,0,1,0x x f x x x x −<⎧⎪==⎨⎪+>⋅⎩则“120x x +>”是“12()()0f x f x +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.已知复数z 的共轭复数是1i +,则复数2zi−在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.已知()f x 是偶函数,它在[0,)+∞上是增函数.若()(1)f lgx f >,则x 的取值范围是( ) A .1(,1)10B .1(0,)(10,)10+∞C .1(,10)10D .(0,1)(10,)+∞7.函数()()sin 2x x f x e e x −=+−在[2,2]−上的最大值和最小值分别为M ,N ,则M N +=( ) A .4−B .0C .2D .48.已知()f x 是定义在R 上的奇函数,()g x 是定义在R 上的偶函数,且()()x f x g x e +=,则2()4()f x g x +的最小值是( ) A .2B.C .4D.9.某渔场鱼群的最大养殖量为m 吨,为保证鱼群的生长空间,实际的养殖量x 要小于m ,留出适当的空闲量,已知鱼群的年增长量y (吨)和实际养殖量x (吨)与空闲率(空闲量与最大养殖量的比值叫空闲率)的乘积成正比(设比例系数0k >),则鱼群年增长量的最大值为( ) A .2mkB .4mkC .2m D .4m 10.英国物理学家牛顿用“作切线”的方法求函数的零点时,给出的“牛顿数列”在航空航天中应用广泛.若数列{}n x 满足1()()n n n n f x x x f x +=−',则称数列{}n x 为牛顿数列.若1()f x x =,数列{}n x 为牛顿数列,且11x =,0n x ≠,数列{}n x 的前n 项和为n S ,则满足2024n S 的最大正整数n 的值为( ) A .10B .11C .12D .13二、填空题:共5小题,每小题5分,共25分.11.等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 .12.能够说明“设a ,b ,c 是任意实数,若a b c <<,则ac bc <”是假命题的一组整数a ,b ,c 的值依次为 .13.已知函数()y f x =是定义域为R 的奇函数,且(1)0f −=.若对任意的1x 、2(0,)x ∈+∞且12x x ≠,都有122121()()0x f x x f x x x −>−成立,则不等式()0f x >的解集是 .14.已知函数2()(1)f x lg x ax =++在区间(,2)−∞−上单调递减,则a 的取值范围为 . 15. 华人数学家李天岩和美国数学家约克给出了“混沌的数学定义,由此发展的混沌理论在生物学、经济学和社会学领域都有重要作用.在混沌理论中,函数的周期点是一个关键概念,定义如下:设()f x 是定义在R 上的函数,对于0x R ∈,令1()(1n n x f x n −==,2,3,),若存在正整数k 使得0k x x =,且当0j k <<时,0j x x ≠,则称0x 是()f x 的一个周期为k 的周期点,给出下列四个结论:①若()21f x x =−,则()f x 存在唯一一个周期为1的周期点; ②若()2(1)f x x =−,则()f x 存在周期为2的周期点;③若12,2()12(1),2x x f x x x⎧<⎪⎪=⎨⎪−⎪⎩,则()f x 存在周期为3的周期点;④若()(1)f x x x =−,则对任意正整数n ,12都不是()f x 的周期为n 的周期点. 其中所有正确结论的序号是 .三、解答题:共6小题,共85分,解答应写出文字说明,演算步骤或证明过程. 16.(本小题13分)已知{}n a 是等差数列,11a =,且1a ,3a ,9a 成等比数列. (1)求数列{}n a 的公差; (2)求数列{2}n a 的前n 项和n S .17.(本小题13分)已知函数22()()(12)(0)f x a x lnx a x a =−+−. (Ⅰ)若1x =是函数()y f x =的极值点,求a 的值; (Ⅱ)求函数()y f x =的单调区间.18.(本小题14分)随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某社团为调查大学生对于“中华诗词”的喜好,从甲、乙两所大学各随机抽取了40名学生,记录他们每天学习“中华诗词”的时间,并整理得到如下频率分布直方图:根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等2050t <50t(Ⅰ)从甲大学中随机选出一名学生,试估计其“爱好”中华诗词的概率;(Ⅱ)从两组“痴迷”的同学中随机选出2人,记ξ为选出的两人中甲大学的人数,求ξ的分布列和数学期望()E ξ;(Ⅲ)试判断选出的这两组学生每天学习“中华诗词”时间的平均值X 甲与X 乙的大小,及方差2S 甲与2S 乙的大小.(只需写出结论)19.(本小题15分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,长轴的左端点为(2,0)A −.(Ⅰ)求C 的方程;(Ⅱ)过椭圆C 的右焦点的任一直线l 与椭圆C 分别相交于M ,N 两点,且AM ,AN 与直线4x =分别相交于D ,E 两点,求证:以DE 为直径的圆恒过x 轴上定点,并求出定点.20.(本小题15分)已知函数2()222xf x e ax x =−−− (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0a ≤时,求证:函数()f x 有且只有一个零点;(Ⅲ)当0a >时,写出函数()f x 的零点的个数.(只需写出结论)21.(本小题15分)无穷数列{}n a 满足:1a 为正整数,且对任意正整数n ,1n a +为前n 项12,,,n a a a 中等于n a 的项的个数.(Ⅰ)若12a =,请写出数列{}n a 的前7项;(Ⅱ)求证:对于任意正整数M ,必存在k *∈N ,使得k a M >;(Ⅲ)求证:“11a =”是“存在m *∈N ,当n m ≥时,恒有2n n a a +≥成立”的充要条件.北师大实验中学2024-2025学年第一学期高三统练(一)参考答案一、选择题共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项. 1.A 2.B 3.D 4.C 5.D 6.B 7.A 8.B 9.B 10.A 二、填空题 5小题,每小题5分,共25分. 11.3112.如:2−,1−,0(答案不唯一) 13.(1−,0)(1,)+∞14.(−∞,5]215. ①③④注: 15题不选、错选0分,少选3分,选全对5分三、解答题共6小题,共85分,解答应写出文字说明,演算步骤或证明过程. 16.(本小题13分)解:(1)设{}n a 的公差为d ,则由题意,2(12)18d d +=+, 解得1d =或0d =.(2)由(1)得数列{}n a 的通项公式为1n a =或n a n =. 由于22n a =或22n a n =,由等比数列前n 项和公式得2n S n =或12(12)2212n n n S +−==−−. 17.(本小题13分)解:(Ⅰ)函数22()()(12)(0)f x a x lnx a x a =−+−的定义域为(0,)+∞, 21(21)()()(2)12ax x a f x a x a x x+−'=−+−=, 因为1x =是函数()y f x =的极值点,所以f '(1)0=,即(21)(1)0a a +−=,0a ,解得1a =,经检验知,当1a =时,1x =是函数()y f x =的极值点,所以1a =.(Ⅱ)由(Ⅰ)知(21)()()ax x a f x x+−'=,0a ,当0a =时,()0f x '>,所以函数()f x 的单调递增区间为(0,)+∞,无减区间; 当0a >时,当0x a <<时,()0f x '<,当x a >时,()0f x '>, 所以函数()f x 的递减区间为(0,)a ,增区间为(,)a +∞.综上,当0a =时,函数()f x 的单调递增区间为(0,)+∞,无减区间; 当0a >时,函数()f x 的递减区间为(0,)a ,增区间为(,)a +∞.18.(本小题14分) 解:(Ⅰ) 由图知,甲大学随机选取的40名学生中,“爱好”中华诗词的频率为(0.0300.0200.015)100.65++⨯=,所以从甲大学中随机选出一名学生,“爱好”中华诗词的概率为0.65.(Ⅱ) 甲大学随机选取的40名学生中“痴迷”的学生有400.005102⨯⨯=人,乙大学随机选取的40名学生中“痴迷”的学生有400.015106⨯⨯=人, 所以,随机变量ξ的取值为0ξ=,1,2.所以02262815(0)28C C P C ξ===,1126283(1)7C C P C ξ===,2026281(2)28C C P C ξ===. 所以ξ的分布列为:ξ∴的数学期望为(0)012287282E ξ==⨯+⨯+⨯=. (Ⅲ)X X <乙甲,22S S >甲乙.19.(本小题15分)解:(Ⅰ)因为椭圆2222:1(0)x y C a b a b +=>>的离心率为12,长轴的左端点为(2,0)A −,所以1,22c a a ==,得b所以椭圆C 的方程:22143x y +=; (Ⅱ)证明:椭圆右焦点坐标为(1,0),由题直线斜率不为零,设直线l 方程为1x my =+, 设1(M x ,1)y ,2(N x ,2)y ,由题,联立方程组221143x my x y =+⎧⎪⎨+=⎪⎩,消去x 得22(34)690m y my ++−=,所以12122269,3434m y y y y m m −−+==++,直线11:(2)2y AM y x x =++,得116(4,)2y D x +, 同理,直线22:(2)2y AN y x x =++,得226(4,)2y E x +,设x 轴上一点(,0)P t ,则116(4,)2y PD t x =−+,同理得:226(4,)2y PE t x =−+, 所以2121212126636(4,)(4,)(4)22(2)(2)y y y y PD PE t t t x x x x ⋅=−⋅−=−+++++, 因为1212(2)(2)(3)(3)x x my my ++=++,所以 22212222123636(9)(4)(4)(4)90(3)(3)9182736y y PD PE t t t my my m m m ⨯−⋅=−+=−+=−−=++−−++, 解得:43t −=±,即1t =或7t =,所以以DE 为直径的圆恒过x 轴上定点,定点分别为(1,0),(7,0).20. (本小题15分)(Ⅰ)因为函数2()222x f x ax x =−−−e ,所以'()222xf x ax =−−e ,故(0)0f =,'(0)0f = ,曲线()y f x =在0x =处的切线方程为0y = (Ⅱ)当0a ≤时,令()'()222xg x f x ax ==−−e ,则'()220xg x a =−>e故()g x 是R 上的增函数. 由(0)0g =,故当0x <时,()0g x <,当0x >时,()0g x >. 即当0x <时,'()0f x <,当0x >时,'()0f x >.故()f x 在(,0)−∞单调递减,在(0,)+∞单调递增.函数()f x 的最小值为(0)f ,由(0)0f =,故()f x 有且仅有一个零点. (Ⅲ)当01a <<时,()f x 有两个零点.当1a =时,()f x 有一个零点;当1a >时,()f x 有两个零点.21. (本小题15分)(Ⅰ)若12a =,则数列{}n a 的前7项为2,1,1,2,2,3,1 (Ⅱ)证法一假设存在正整数M ,使得对任意的*k ∈N ,k a M ≤. 由题意,{1,2,3,...,}k a M ∈,故数列{}n a 多有M 个不同的取值 考虑数列{}n a 的前21M +项: 1a ,2a ,3a ,…,21M a + 其中至少有1M +项的取值相同,不妨设121M i i i a a a +==⋅⋅⋅= 此时有:111M i a M M ++=+>,矛盾.故对于任意的正整数M ,必存在*k ∈N ,使得k a M >.(Ⅱ)证法二假设存在正整数M ,使得对任意的*k ∈N ,k a M ≤.由题意,{1,2,3,...,}k a M ∈,故数列{}n a 多有M 个不同的取值对任意的正整数m ,数列{}n a 中至多有M 项的值为m ,事实上若数列{}n a 中至少有1M +项的值为m ,其1M +项为12311,,,,,,M M M i i i i i i a a a a a a −+⋅⋅⋅,此时有:111M i a M M ++=+>,矛盾.故数列{}n a 至多有2M 项,这与数列{}n a 有无穷多项矛盾. 故对于任意的正整数M ,必存在*k ∈N ,使得k a M >.(Ⅲ)充分性:若11a =,则数列{}n a 的项依次为1,1,2,1, 3,1,4,1,…,2k −,1,1k −,1,k ,1,…特别地,数列{}n a 的通项公式为,211,2n k n k a n k =−⎧=⎨=⎩,即1,2121,2n n n k a n k+⎧=−⎪=⎨⎪=⎩ 故对任意的*n ∈N(1)若n 为偶数,则21n n a a +== (2)若n 为奇数,则23122n n n n a a +++=>= 综上,2n n a a +≥恒成立,特别地,取1m =有当n m ≥时,恒有2n n a a +≥成立必要性:方法一假设存在1a k =(1k >),使得“存在m N *∈,当n m ≥时,恒有2n n a a +≥成立” 则数列{}n a 的前21k +项为k,211,1,2,1,3,1,4,...,1,2,1,1,1,k k k k−−−项,232,2,3,2,4,2,5,...,2,2,2,1,2,k k k k−−−项,253,3,4,3,5,3,6,...,3,2,3,1,3,k k k k −−−项,⋅⋅⋅,52,2,1,2,k k k k k −−−−项,31,1,k k k −−项,k后面的项顺次为21,1,1,2,1,3,...,1,2,1,1,1,k k k k k k k k k k ++++−+−+项,22,1,2,2,2,3,...,2,2,2,1,2,k k k k k k k k k k ++++−+−+项,23,1,3,2,3,3,...,3,2,3,1,3,k k k k k k k k k k ++++−+−+项,…2,1,,2,,3,...,,2,,1,,k k t k t k t k t k k t k k t k ++++−+−+项,…故对任意的1,2,3,...,2,1,s k k k =−−,*t ∈N2212(1)2112(1)2k t k s k t k sa k ta s ++−+−++−+=+⎧⎪⎨=⎪⎩ 对任意的m ,取12m t k ⎡⎤=+⎢⎥⎣⎦,其中[]x 表示不超过x 的最大整数,则2kt m > ,令212n k kt =++,则n m >,此时n a k =,21n a +=有2n n a a +>,这与2n n a a +≤矛盾,故若存在m N *∈,当n m ≥时,恒有2n n a a +≥成立,必有11a = 方法二 若存在m N *∈,当n m ≥时,2n n a a +≥恒成立,记{}12max ,,,m a a a s =.由第(2)问的结论可知:存在k N *∈,使得k a s >(由s 的定义知1k m ≥+) 不妨设k a 是数列{}n a 中第一个...大于等于1s +的项,即121,,,k a a a −均小于等于s .则11k a +=.因为1k m −≥,所以11k k a a +−≥,即11k a −≥且1k a −为正整数,所以11k a −=.记1k a t s =≥+,由数列{}n a 的定义可知,在121,,,k a a a −中恰有t 项等于1.假设11a ≠,则可设121t i i i a a a ====,其中1211t i i i k <<<<=−,考虑这t 个1的前一项,即12111,,,t i i i a a a −−−,因为它们均为不超过s 的正整数,且1t s ≥+,所以12111,,,t i i i a a a −−−中一定存在两项相等,将其记为a ,则数列{}n a 中相邻两项恰好为(a ,1)的情况至少出现2次,但根据数列{}n a 的定义可知:第二个a 的后一项应该至少为2,不能为1,所以矛盾! 故假设11a ≠不成立,所以11a =,即必要性得证!综上,“11a =”是“存在m N *∈,当n m ≥时,恒有2n n a a +≥成立”的充要条件.。
2021-2022年高三上学期第十次周考数学理试题 含答案
2021年高三上学期第十次周考数学理试题含答案一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数满足,则的值等于()A.1 B. C. D.2. 设集合,对任意实数恒成立},则下列关系中成立的是()A. B. C. D.3. 设命题p:,命题q:,若是的必要非充分条件,则实数的取值范围是()A. B. C. D.4. 已知直线平面,直线平面,那么下列四个结论:①;②;③;④,其中正确结论的个数是()A.1 B.2 C.3 D.45. 设甲、乙两队以“五局三胜”制进行比赛,甲胜乙的概率为,现乙胜第一局,在这种情况下甲取胜的概率是()A. B. C. D.6. 设是连续函数,则的取值是()A. B.1 C.2 D.7. 已知的展开式中各项系数的和为128,则展开式中的系数是()A.21 B.35 C.56 D.848. 已知椭圆的准线方程为,直线:与该椭圆的交点在轴上的射影恰为椭圆的焦点,则该椭圆的方程是( ) A .B .C .D .9. 已知A 、B 是圆C :上的两点,且弦长,点C 为圆心,则 A .0 B . C . D . 10. 设等比数列的公比为,前项和为,若、、成等差数列,则( ) A .1 B . C .或 D .1或 11. 已知函数1cos sin 23cos 21)(2++=x x x x f ,下列命题正确的是( ) A .解析式看化为: B .的最小正周期是 C .的图象关于点对称D .当取得最大值时,自变量的集合是12.如图所示的几何体是由一个正三棱锥P —ABC 与正三 棱柱ABC —A 1B 1C 1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A 1B 1C 1不涂色),要求相邻的面均不 同色,则不同的染色方案共有( ) A .24种 B .18种 C .16种 D .12种二.填空题:(本大题共4小题,每小题5分,共20分)B 1PABCC 1A 113.在正三棱柱中,,且D为的中点,则AD与面所成角的余弦值是___________.14.已知函数在内有且只有一个极值点,则实数的取值范围是 .15.设分别是双曲线的左、右两焦点,若线段被抛物线的焦点分成两线段满足,则该双曲线的离心率是 .16. 已知函数满足,则不等式的解集为 .三.解答题:(本大题共6小题,共70分。
2021年高三数学(理)10月周考卷(一) 含答案
绝密★启用前2021年高三数学(理)10月周考卷(一)含答案A. B.3 C. D.93.为研究两变量和的线性相关性,甲、乙两人分别作了研究,利用线性回归方程得到回归直线和,两人计算相同,也相同,则下列说法正确的是()A.与重合B.与平行C.与交于点(,)D.无法判定与是否相交4.已知.若且,非同时假命题,则满足条件的的集合为()A. B.C. D.5.已知双曲线的渐近线为,焦点坐标为(-4,0),(4,0),则双曲线方程为()A. B. C.D.6.设是虚数单位,复数是纯虚数,则实数A. B.2 C. D.7.如果直线与直线互相垂直,则的值等于()A.2 B.-2 C.2,-2 D.2,0,-28.圆x2+y2=1和圆x2+y2﹣6y+5=0的位置关系是().A.外切B.内切C.外离D.内含9.把函数图象上所有点向右平移个单位,再将所得图象的横坐标变为原来的倍(纵坐标不变),得图象的解析式是,则()A. B.C. D.10.如图,在正三棱锥中,分别是的中点,,且,则正三棱锥的体积是()A. B. C. D.x第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题(题型注释)11._____ ___.12.设全集,集合,,则 , .13.定义在上的奇函数满足:当时,,则 ;使的的取值范围是 . 14.已知函数()sin(),(0,0,||,)2f z A x Ax R πωϕωϕ=+>><∈的部分图象如图所示,则函数的最大值是 .15.已知为圆:的两条相互垂直的弦,垂足为,则四边形的面积的最大值为 . 三、解答题(题型注释)16..已知圆,直线过定点 A (1,0). (1)若与圆C 相切,求的方程;(2)若的倾斜角为,与圆C 相交于P ,Q 两点,求线段PQ 标;(3)若与圆C 相交于P ,Q 两点,求△CPQ 面积的最大值17.(14分)已知函数f(x)是 (x R )的反函数,函数g (x )的图象与函数的图象关于直线x =-2成轴对称图形,设F(x )=f (x )+g (x ). (1)求函数F(x )的解析式及定义域;(2)试问在函数F(x )的图象上是否存在两个不同的点A,B ,使直线AB 恰好与y 轴垂直?若存在,求出A,B坐标;若不存在,说明理由.18.用数学归纳法证明:19.设,函数(Ⅰ)若是函数的极值点,求实数的值;(Ⅱ)若函数在上是单调减函数,求实数的取值范围.20.在中,所对的边分别是,不等式对一切实数恒成立.(1)求的取值范围;(2)当取最大值,且时,求面积的最大值并指出取最大值时的形状21.已知平面向量.(1)若,求;(2)若与夹角为锐角,求的取值范围.22.如图,在直角坐标系中,射线OA: x-y=0(x≥0),OB: x+2y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于A、B两点.(1)当AB中点为P时,求直线AB的斜率(2)当AB中点在直线上时,求直线AB的方程.23.已知双曲线的左、右焦点分别为,过的直线与双曲线的右支相交于两点,若,且,则双曲线的离心率()A. B. C. D.参考答案1.C【解析】试题分析:表示集合是集合的子集,所以应该选C.考点:本小题主要考查韦恩图的识别和集合关系的应用.点评:韦恩图在集合的运算中应用很广,要灵活应用. 2.C 【解析】试题分析:由正弦定理得,由二倍角公式及两角和的正弦公式得,,所以,由余弦定理得即22222)(43)(3)(3c a c a ac c a ac c a +-+≥-+=-+=,解得.考点:1、正弦定理、余弦定理;2、基本不等式. 3.C 【解析】试题分析:根据回归直线方程知识可知,利用最小二乘法得到的回归直线方程必过样本中心点,所以直线与交于点。
高三数学-10月月考数学试题参考答案
2024-2025学年度高三10月月考数学试题参考答案一、选择题题号1234567891011答案DDBCCABDABDBCDABD二、填空题12.5013.2433ππ⎛⎫ ⎪⎝⎭,14.(1)1327;(2)13425153n -⎛⎫-⋅- ⎪⎝⎭三、解答题15、解:(1)由题3sin 21==∆θbc S ABC ,可得θsin 6=bc ,又36cos 0≤=⋅≤θbc AC AB ,所以36sin cos 60≤≤θθ,得到33tan ≥θ或2πθ=因为()πθ,0∈,所以,62ππθ⎡⎤∈⎢⎥⎣⎦6分(2)()2cos sin cos34f πθθθθ⎛⎫=⋅++ ⎪⎝⎭,化简得()21sin 2cos 4f θθθ=进一步计算得()1sin 223f πθθ⎛⎫=- ⎪⎝⎭,因为,62ππθ⎡⎤∈⎢⎥⎣⎦,故22033ππθ⎡⎤-∈⎢⎥⎣⎦,故可得()102f θ⎡⎤∈⎢⎥⎣⎦,13分16、解:(1)过点P 作PO 垂直于平面ABCD ,垂足为O ,连接BO 交AD 于E ,连接PE ,则有AD PB AD PO ⊥⊥,,又P PB PO =⋂,所以POB AD 平面⊥,因为POB PE 平面⊂,所以PE AD ⊥,又PD P A =,所以E 为AD 得中点依题侧面P AD 与底面ABCD 所成的二面角为120°,即有32π=∠PEB ,所以3π=∠PEO ,因为侧面P AD 为正三角形,所以323sin 4=⋅=πPE ,则323323sin =⋅=⋅=πPE PO ,所以38323443131=⋅⋅⋅⋅==-PO S V ABCD ABCD P 7分(2)如图,在平面ABCD 内过点O 作OB 得垂线Ox ,依题可得Ox OB OP ,,两两垂直,以Ox OB OP ,,为轴轴,轴,x y z 建立空间直角坐标系可得()0,3,2A ,()0,0,0P ,()0,33,0B ,取PB 得中点为N ,则⎪⎪⎭⎫⎝⎛23,233,0N 因为AB AP =,所以PB AN ⊥,由(1)POB AD 平面⊥,AD BC //,知POB BC 平面⊥所以PB BC ⊥,可得NA BC ,所成角即为二面角A PB C --的平面角,求得⎪⎪⎭⎫ ⎝⎛-=23,23,2AN ,()0,0,2=BC,则72724-=-==BC NA则21sin 7A PBC --=15分17、解:(1)当a e =时,1()e lnx e f x x -=+,0(1)e ln 2f e =+=,11()e ,(1)0x f x f x-''=-=所求切线方程为:)1(02-=-x y ,即2y =5分(2)()2≥x f 转化为ln 2e ln ln 2a x a x +-+-≥,可得ln 2e ln +2ln 0a x a x x x x +-+-≥+>,构造函数()e x g x x =+,易得()g x 在R 单调递增所以有()(ln 2)ln g a x g x +-≥,由()g x 在R 单调递增,故可得ln 2ln a x x +-≥,即有ln ln 2a x x ≥-+在()∞+,0恒成立令()2ln +-=x x x h ,()011=-='xx h ,得到1=x ,可得()10,∈x 时,()0>'x h ;()∞+∈,1x 时,()0<'x h ,所以()x h 在1=x 时取最大值所以()ln 11a h ≥=,得到ea ≥15分18、解:(1)∵椭圆E 经过点A 52,3⎛⎫⎪⎝⎭,23e =∴222222549123a b a b c c e a ⎧⎪+=⎪⎪⎨=+⎪⎪==⎪⎩,解得32a b c =⎧⎪=⎨⎪=⎩E :22195x y +=;4分(2)由(1)可知,1(2,0)F -,2(2,0)F 思路一:由题意,1:512100AF l x y -+=,2:2AF l x =设角平分线上任意一点为(),P x y ,则51210213x y x -+=-得9680x y --=或2390x y +-=∵斜率为正,∴21AF F ∠的角平分线所在直线为9680x y --=思路二:椭圆在点A 52,3⎛⎫⎪⎝⎭处的切线方程为2319x y +=,23k =-切根据椭圆的光学性质,21AF F∠的角平分线所在直线l 的斜率为32l k =,∴,21AF F ∠的角平分线所在直线34:23l y x =-即9680x y --=10分(3)思路一:假设存在关于直线l 对称的相异两点()()1122,,,B x y C x y ,设2:3BC l y x m =-+,∴2222195912945023x y x mx m y x m ⎧+=⎪⎪⇒-+-=⎨⎪=-+⎪⎩∴线段BC 中点为25,39m mM ⎛⎫⎪⎝⎭在21AF F ∠的角平分线上,即106803m m --=得3m =∴52,3M ⎛⎫⎪⎝⎭与点A 重合,舍去,故不存在满足题设条件的相异的两点.思路二:假设存在关于直线l 对称的相异两点()()1122,,,B x y C x y ,线段BC 中点()00,Mx y ,由点差法,2211222212122222195095195x y x x y y x y ⎧+=⎪⎪⇒+=⎨⎪+=⎪--⎩,∴0121212120552993BC x y y x x k x x y y y -+==-=-=--+,∴0065OM y k x ==,:968052,63:5AM OM l x y M l y x --=⎧⎪⎛⎫⇒⎨⎪=⎝⎭⎪⎩与点A 重合,舍去,故不存在满足题设条件的相异的两点.17分19、解:(1)①()()()222121()111b f x x bx x x x x +=-=-+'++,∵1x >,()()2101h x x x =>+恒成立,∴函数()f x 具有性质()P b ;3分②设()()211u x x bx x =-+>,(i)当0b -≥即0b ≤时,()0u x >,()0f x '>,故此时()f x 在区间()1,+∞上递增;(ii)当0b >时当240b ∆=-≤即02b <≤时,()0u x >,()0f x '>,故此时()f x 在区间()1,+∞上递增;当240b ∆=->即2b >时,12441122b b x x +===,,∴x ⎛⎫∈⎪ ⎪⎝⎭时,()0u x <,()0f x '<,此时()f x在1,2b ⎛⎫⎪ ⎪⎝⎭上递减;4,2b x ∞⎛⎫+∈+ ⎪ ⎪⎝⎭时,()0u x >,()0f x '<,此时()f x在∞⎫+⎪⎪⎝⎭上递增.综上所述,当2b ≤时,()f x 在()1,+∞上递增;当2b >时,()f x在⎛⎫⎪ ⎪⎝⎭上递减,在∞⎫+⎪⎪⎝⎭上递增.9分(2)由题意,()()22()()21()1g x h x x x h x x =-+=-',又()h x 对任意的()1,x ∈+∞都有()0h x >,所以对任意的()1,x ∈+∞都有()0g x '>,()g x 在()1,+∞上递增.10分∵12(1)mx m x α=+-,12(1)m x mx β=-+,∴()()1212,21x x m x x αβαβ+=+-=--1先考虑12x x αβ-<-的情况即()()121221m x x x x --<-,得01m <<,此时1122(1)x mx m x x α<=+-<,1122(1)x m x mx x β<=-+<∴1212()()(),()()()g x g g x g x g g x αβ<<<<∴12()()()()g g g x g x αβ-<-满足题意13分2当1m ≥时,11112(1)(1)mx m x mx m x x α--≤==++,12222(1)(1)m x mx m x mx x β=--+≥=+,∴12x x αβ≤<≤∴12()()()()g g x g x g αβ≤<≤,∴12()()()()g g g x g x αβ-≥-,不满足题意,舍去16分综上所述,01m <<17分。
高三数学周测试卷
1. 下列各数中,无理数是()A. √2B. 3/5C. -πD. 0.333...2. 已知函数f(x) = x² - 2x + 1,那么f(2)的值为()A. 0B. 1C. 2D. 33. 若a、b、c是等差数列,且a+b+c=12,那么3a+5b+c的值为()A. 15B. 18C. 21D. 244. 已知直线l:2x-3y+1=0,点P(1,2),那么点P到直线l的距离是()A. √5B. 1C. 2D. √25. 若复数z满足|z+1|=2,那么复数z的取值范围是()A. z∈(-3,-1]∪[-1,1]B. z∈(-3,-1)∪(-1,1)C. z∈(-3,-1)∪[1,3]D. z∈(-3,-1]∪[1,3]6. 下列函数中,单调递减的是()A. y = x²B. y = 2xC. y = √xD. y = 3x - 17. 已知等比数列{an}的公比为q,且a1=2,a3=32,那么q的值为()A. 2B. 4C. 8D. 168. 若log₂x + log₄x = 3,那么x的值为()A. 8B. 16C. 32D. 649. 已知三角形的三边长分别为3、4、5,那么这个三角形的面积是()A. 6B. 8C. 10D. 1210. 若函数f(x) = ax² + bx + c在x=1时取得最小值,那么a、b、c之间的关系是()A. a > 0,b² - 4ac < 0B. a > 0,b² - 4ac = 0C. a < 0,b² - 4ac >0 D. a < 0,b² - 4ac = 011. 已知数列{an}的通项公式为an = 2n - 1,那么数列的第10项是______。
12. 已知函数f(x) = (x-1)/(x+1),那么f(-1)的值为______。
高三数学周测试卷(理科)
高三数学周测试题(理数)第I 卷(选择题)一、单选题(本大题共12小题,共60.0分。
在每小题列出的选项中,选出符合题目的一项) 1. 若复数z 在复平面内对应的点为(1,1),则其共轭复数z −的虚部是( ) A. i B. −i C. 1 D. −1 2. 集合A ={x|x 2>2x},B ={−2,−1,0,1,2},则(∁R A)∩B =( ) A. {−1,0,1}B. {−1,1}C. {0,1,2}D. {1,2}3. 设x ∈R ,则“sinx =1”是“cosx =0”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 4. 在△ABC 中,已知AB =5,BC =3,CA =4,则AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =( ) A. 16 B. 9 C. −9 D. −16 5. 已知数列{a n }满足a n+1=2a n (n ∈N ∗),S n 为其前n 项和.若a 2=2,则S 5=( )A. 20B. 30C. 31D. 626. 已知双曲线C :x 2a2−y 2b2=1(a >0,b >0))的焦距为2√5,且实轴长为2,则双曲线C 的渐近线方程为( )A. y =±12xB. y =±2xC. y =±√5xD. y =±√52x7. 中国空间站的主体结构包括天和核心舱、问天实验舱和梦天实验舱.假设空间站要安排甲,乙,丙,丁4名航天员开展实验,其中天和核心舱安排2人,问天实验舱与梦天实验舱各安排1人,则甲乙两人安排在同一个舱内的概率为( )A. 16B. 14C. 13D. 128. 先将函数f(x)=sin(x −π3)图象上各点的横坐标缩短为原来的12,再把所得函数图象向左平移π6个单位长度,得到函数g(x)的图象,则下列说法错误的是( )A. 函数g(x)是奇函数B. 函数g(x)的最小正周期是πC. 函数g(x)图像关于直线x =π4+kπ(k ∈Z)对称 D. 函数g(x)在(−π6,π3)上单调递增9. 已知随机变量X ~N(2,1),其正态分布密度曲线如图所示,则图中阴影部分的面积为( )附:若随机变量ξ~N(μ,σ2),则P(μ−σ<ξ<μ+σ)=0.6827,P(μ−2σ<ξ<μ+2σ)=0.9545,P(μ−3σ<ξ<μ+3σ)=0.9973A. 0.1359B. 0.7282C. 0.8641D. 0.9320510. 己知F 1,F 2是椭圆E :x 2a 2+y 2b2=1(a >0,b >0)的左、右焦点,点M 在椭圆E上,MF 1与x 轴垂直,sin∠MF 2F 1=12,则椭圆E 的离心率为( ) A. √33B. √53C. 2√33D. √3211. 已知三棱锥S −ABC 的所有顶点都在表面积为64π的球面上,且SA ⊥平面ABC ,SA =4,∠BAC =2π3,AB =2√3,M 是边BC 上一动点,则直线SM 与平面ABC 所成的最大角的正切值为( )A. 3B. 4√33C. √3D. 3212. 已知函数f(x)=xlnx ,若关于x 的方程[f(x)]2+af(x)+a −1=0有且仅有三个不同的实数解,则实数a 的取值范围是( )A. (−2e,1−e)B. (1−e,0)C. (−∞,1−e)D. (1−e,2e)第II 卷(非选择题)二、填空题(本大题共4小题,共20.0分)13. 我国中医药选出的“三药三方”对治疗新冠肺炎均有显著效果,“三药”分别为金花清感颗粒、连花清瘟胶囊、血必净注射液;“三方”分别为清肺排毒汤、化湿败毒方、宜肺败毒方.若某医生从“三药三方”中随机选出三种药方,事件A 表示选出的三种药方中至少有一药,事件B 表示选出的三种药方中至少有一方,则P(A|B)=______.14. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足bcosAcosB +a =2c ,则角B =______. 15. 已知(1+x)n 的展开式中,唯有x 3的系数最大,则(1+x)n 的系数和为______.16. 在等腰梯形ABCD 中,已知AB//CD ,AB =4,BC =2,∠ABC =60∘,动点E 和F 分别在线段BC 和DC 上,且BE ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,DF ⃗⃗⃗⃗⃗ =19λDC ⃗⃗⃗⃗⃗ ,当λ=______时,则AE ⃗⃗⃗⃗⃗ ⋅AF⃗⃗⃗⃗⃗ 有最小值为______. 三、解答题(本大题共4小题,共50.0分。
江苏省扬州中学2024-2025学年高三上学期10月月考数学试题(含答案)
高三数学自主学习效果评估2024.10一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求的.1.已知角的终边上一点,则( )A.B. C. D.不确定2.已知集合,,则集合的真子集个数为( )A.7B.4C.3D.23.设,都是不等于1的正数,则“”是“”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.函数的图象大致为( )A. B.C.D.5.已知函数,,若与的图象在上有唯一交点,则实数( )A.2B.4C.D.16.在中,角,,分别为,,三边所对的角,,则的形状是()A.等腰三角形但一定不是直角三角形B.等腰直角三角形C.直角三角形但一定不是等腰三角形D.等腰三角形或直角三角形7.已知不等式(其中)的解集中恰有三个正整数,则实数的取值范围是()α(3,4)(0)P t t t ≠sin α=4545-45±{|04}A x x =∈<<N {1,0,1,2}B =-A B I a b log 3log 31a b >>33a b <||1cos ()ex x xf x -=()()e e 21x xf x a x -=++-2()2g x x ax =-+()f x ()g x (1,1)x ∈-a =12ABC △A B C a b c 2222sin()sin()a b A B a b A B ++=--ABC △23ln(1)2a x x x ++>0x >aA. B. C. D.8.已知定义在上且无零点的函数满足,且,则( )A. B.C. D.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有错的得0分.9.下列命题正确的是()A.命题:“,都有”的否定为“,使得”B.设定义在上函数,则C.函数D.已知,,,则,,的大小关系为10.已知函数的定义域为,对任意实数,满足:,且.当时,.则下列选项正确的是( )A. B.C.为奇函数D.为上的减函数11.已知函数,则( )A.函数的最小正周期为B.函数的图象为中心对称图形C.函数在上单调递增D.关于的方程在上至多有3个解三、填空题:本题共3小题,每小题5分,共15分.(3,8][3,8)932,ln 4ln 5⎡⎫⎪⎢⎣⎭932,ln 4ln 5⎛⎤⎥⎝⎦(0,)+∞()f x ()(1)()xf x x f x '=-(1)0f >1(1)(2)2f f f ⎛⎫<<⎪⎝⎭1(2)(1)2f f f ⎛⎫<<⎪⎝⎭1(2)(1)2f f f ⎛⎫<<⎪⎝⎭1(2)(1)2f f f ⎛⎫<<⎪⎝⎭(1,)x ∀∈+∞21x >(,1]x ∃∈-∞21x ≤R 3log (1),(4)()(1),(4)x x f x f x x -≥⎧=⎨+<⎩(1)1f =()f x =[1,)+∞2log 0.3a =0.32b =sin 2c =a b c a c b<<()f x R x y ()()()1f x y f x f y -=-+(1)0f =0x >()1f x <(0)1f =(2)2f =-()1f x -()f x R π()|sin |cos 6f x x x ⎛⎫=+- ⎪⎝⎭()f x 2π()f x ()f x 5π2π,3⎛⎫--⎪⎝⎭x ()f x a =[π,π]-12.计算:______.13.已知幂函数的图象过点,则的解集为______.14.已知的角,,满足,其中符号表示不大于的最大整数,若,则______.四、解答题:本小题共5小题,计77分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本题13分)已知函数(,,)的部分图象如图所示.(1)求函数的解析式;(2)将函数的图象向右平移个单位长度,再将得到的图象上各点的横坐标缩短为原来的,纵坐标不变,得到函数的图象,当时,求函数的值域.16.(本题15分)为了提高学生的法律意识,某校组织全校学生参与答题闯关活动,共两关.现随机抽取100人,对第一关答题情况进行调查.分数人数1015452010(1)求样本中学生分数的平均数(每组数据取区间的中点值);(2)假设分数近似服从正态分布,其中近似为样本的平均数(每组数据取区间的中点值),近似为样本方差,若该校有4000名学生参与答题活动,试估计分数在内的学生数(结果四舍五入);(3)学校规定:分数在内的为闯关成功,并对第一关闯关成功的学生记德育学分5分;只有第一关成功才能闯第二关,第二关闯关不成功的学生德育学分只记第一关学分;对两关均闯关成功的学生记德育学分10分.在闯过第一关的同学中,每位同学第二关闯关成功的概率均为,同学之间第二关闯关是相互独立的。
北京市2025届高三上学期10月月考数学试题含答案
北京市2024-2025学年高三上学期10月月考数学试题(答案在最后)(清华附中朝阳望京学校)2024.10.10姓名____________一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集{}0U x x =>,集合{}23A x x =≤≤,则U A =ð()A.(][)0,23,+∞B.()()0,23,+∞ C.(][),23,-∞⋃+∞ D.()(),23,-∞⋃+∞【答案】B 【解析】【分析】由补集定义可直接求得结果.【详解】()0,U =+∞ ,[]2,3A =,()()0,23,U A ∴=+∞ ð.故选:B.2.若等差数列{}n a 和等比数列{}n b 满足11a b =,222a b ==,48a =,则{}n b 的公比为()A.2B.2- C.4D.4-【答案】B 【解析】【分析】根据等差数列的基本量运算可得111a b ==-,然后利用等比数列的概念结合条件即得.【详解】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,则242822a a d d +=+==,所以3d =,∴22123b a a ===+,111a b ==-,所以212b q b ==-.故选:B.3.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于直线y x =对称.若3sin 5α=,则cos β=()A.45-B.45C.35-D.35【答案】D 【解析】【分析】根据对称关系可得()22k k παβπ+=+∈Z ,利用诱导公式可求得结果.【详解】y x = 的倾斜角为4π,α\与β满足()22242k k k ππαβππ+=⨯+=+∈Z ,3cos cos 2cos sin 225k ππβπααα⎛⎫⎛⎫∴=+-=-==⎪ ⎪⎝⎭⎝⎭.故选:D.4.若点()1,1M 为圆22:40C x y x +-=的弦AB 的中点,则直线AB 的方程是()A.20x y --=B.20x y +-=C.0x y -=D.0x y +=【答案】C 【解析】【分析】由垂径定理可知MC AB ⊥,求出直线AB 的斜率,利用点斜式可得出直线AB 的方程.【详解】圆C 的标准方程方程为()2224x y -+=,()221214-+< ,即点M 在圆C 内,圆心()2,0C ,10112MC k -==--,由垂径定理可知MC AB ⊥,则1AB k =,故直线AB 的方程为11y x -=-,即0x y -=.故选:C.5.已知D 是边长为2的正△ABC 边BC 上的动点,则AB AD ⋅的取值范围是()A.B.2]C.[0,2]D.[2,4]【答案】D 【解析】【分析】根据向量数量积的几何意义可得||cos [1,2]AD DAB ∠∈ ,再由||||cos AD AB D A A B AD B =∠⋅即可求范围.【详解】由D 在边BC 上运动,且△ABC 为边长为2的正三角形,所以03DAB π≤∠≤,则[]cos 1,2AB DAB ∠∈ ,由||||cos [2,4]AD AB D D B A A A B =∠⋅∈.故选:D6.若0a b >>,则①11b a >;②11a ab b +>+>的序号是()A.①②B.①③C.②③D.①②③【答案】A 【解析】【分析】对①,由a b >两边同除ab 化简即可判断;对②,由a b >得a ab b ab +>+,两边同除()1b b +化简即可判断;>>【详解】对①,0a b a b ab ab>>⇒>,即11b a >,①对;对②,由()()011a b a ab b ab a b b a >>⇒+>+⇒+>+,则()()()()111111a b b a a a b b b b b b +++>⇒>+++,②对;对③,由>,>,与0a b >>矛盾,③错;故选:A7.若命题“2,20x x x m ∃∈++≤R ”是真命题,则实数m 的取值范围是()A.1m < B.1m ≤ C.1m > D.1m ≥【答案】B 【解析】【分析】不等式能成立,等价于方程有实数解,用判别式计算求参数即可.【详解】由题可知,不等式220x x m ++≤在实数范围内有解,等价于方程220x x m ++=有实数解,即440m ∆=-≥,解得1m ≤.8.“1a =”是“函数()22x x af x a+=-具有奇偶性”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分、必要性的定义,及奇偶性的定义求参数a ,判断题设条件间的关系即可.【详解】当1a =时21()21x x f x +=-,则定义域为{|0}x x ≠,211221()()211221x x x x xx f x f x --+++-===-=----,故()f x 为奇函数,充分性成立;若2()2x x af x a+=-具有奇偶性,当()f x 为偶函数,则212()()212x x x xa a f x f x a a --++⋅-===--⋅,所以212212x xx xa a a a ++⋅=--⋅恒成立,可得0a =;当()f x 为奇函数,则212()()212x x x xa a f x f x a a --++⋅-===---⋅,所以212212x xx xa a a a ++⋅-=--⋅恒成立,可得1a =或=−1;所以必要性不成立;综上,“1a =”是“函数()22x x af x a+=-具有奇偶性”的充分而不必要条件.故选:A9.已知函数()32x x f x =-,则()A.()f x 在R 上单调递增B.对R,()1x f x ∀∈>-恒成立C.不存在正实数a ,使得函数()xf x y a=为奇函数D.方程()f x x =只有一个解【答案】B【分析】对()f x 求导,研究()f x '在0x ≥、0x <上的符号,结合指数幂的性质判断()f x '零点的存在性,进而确定单调性区间、最小值,进而判断A 、B 的正误;利用奇偶性定义求参数a 判断C ;由(0)0f =、(1)1f =即可排除D.【详解】由3ln 3ln 22[(ln 3ln ()322]2x x x xf x =-'=-,而20x >,当0x ≥时()0f x '>,即(0,)+∞上()f x 递增,且(30)2x x f x =->恒成立;而0x <,令()0f x '=,可得3ln 2()2ln 3x=,所以00x x ∃=<使03ln 2(2ln 3x =,综上,0(,)x -∞上()0f x '<,()f x 递减;0(,)x +∞上()0f x '>,()f x 递增;故在R 上不单调递增,A 错误;所以0x x =时,有最小值0000002()323()3ln 3[1]3(1)ln 2x x x x xf x ===---,而0031x <<,ln 310ln 2<-,所以0ln 3ln 4111ln 2()ln 2f x >-->=-,故R,()1x f x ∀∈>-恒成立,B 正确;令()()x f x y g x a ==为奇函数且0a >,则3232()()x x x x x xg x g x a a ------==-=-恒成立,所以6(23)23x x x x x xxaa --=恒成立,则a =满足要求,C 错误;显然000)20(3f -==,故0x =为一个解,且(1)321f =-=,即1x =为另一个解,显然不止有一个解,D 错误.故选:B【点睛】关键点点睛:A 、B 判断注意分类讨论()f x '的符号,结合指数幂的性质确定导函数的零点位置,C 、D 应用奇偶性定义得到等式恒成立求参、特殊值法直接确定()f x x =的解.10.如图为某无人机飞行时,从某时刻开始15分钟内的速度()V x (单位:米/分钟)与时间x (单位:分钟)的关系.若定义“速度差函数”()v x 为无人机在时间段[]0,x 内的最大速度与最小速度的差,则()v x 的图像为()A. B.C. D.【答案】C 【解析】【分析】根据速度差函数的定义,分[0,6],[6,10],[10,12],[12,15]x x x x ∈∈∈∈四种情况,分别求得函数解析式,从而得到函数图像.【详解】由题意可得,当[0,6]x ∈时,无人机做匀加速运动,40()603V x x =+,“速度差函数”40()3v x x =;当[6,10]x ∈时,无人机做匀速运动,()140V x =,“速度差函数”()80v x =;当[10,12]x ∈时,无人机做匀加速运动,()4010V x x =+,“速度差函数”()2010v x x =-+;当[12,15]x ∈时,无人机做匀减速运动,“速度差函数”()100v x =,结合选项C 满足“速度差函数”解析式,故选:C.二、填空题共5小题,每小题5分,共25分.11.函数()1ln 1f x x x =+-的定义域是____________.【答案】()()0,11+,⋃∞.【解析】【分析】根据分母不为零、真数大于零列不等式组,解得结果.【详解】由题意得,10x x -≠⎧⎨>⎩故答案为:()()0,11,+∞ .【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.12.直线:1l x y +=截圆22220x y x y +--=的弦长=___________.【答案】【解析】【分析】由圆的弦长与半径、弦心距的关系,求直线l 被圆C 截得的弦长.【详解】线l 的方程为10x y +-=,圆心(1,1)C 到直线l 的距离2d ==.∴此时直线l 被圆C 截得的弦长为=..13.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,2PA AB ==,E 为线段PB 的中点,F 为线段BC 上的动点,平面AEF 与平面PBC ____________(填“垂直”或“不垂直”);AEF △的面积的最大值为_____________.【答案】①.垂直②.【解析】【分析】根据线面垂直的的性质定理,判定定理,可证AE ⊥平面PBC ,根据面面垂直的判定定理,即可得证.分析可得,当点F 位于点C 时,面积最大,代入数据,即可得答案.【详解】因为PA ⊥底面ABCD ,⊂BC 平面ABCD ,所以PA BC ⊥,又底面ABCD 为正方形,所以AB BC ⊥,又AB PA A = ,,AB PA ⊂平面PAB ,所以⊥BC 平面PAB ,因为AE ⊂平面PAB ,所以BC AE ⊥,又2PA AB ==,所以PAB 为等腰直角三角形,且E 为线段PB 的中点,所以AE PB ⊥,又BC PB B ⋂=,,BC PB ⊂平面PBC ,所以AE ⊥平面PBC ,因为AE ⊂平面AEF ,所以平面AEF ⊥与平面PBC .因为AE ⊥平面PBC ,EF ⊂平面PBC ,所以AE EF ⊥,所以当EF 最大时,AEF △的面积的最大,当F 位于点C 时,EF 最大且EF ==,所以AEF △的面积的最大为12⨯⨯=.14.设函数()221,,x x af x x a x a⎧-<=⎨+≥⎩①若2a =-,则()f x 的最小值为__________.②若()f x 有最小值,则实数a 的取值范围是__________.【答案】①.2-②.1a ≤-【解析】【分析】对①,分别计算出每段的范围或最小值即可得;对②,由指数函数在开区间内没有最小值,可得存在最小值则最小值一定在x a ≥段,结合二次函数的性质即可得.【详解】①当2a =-时,()221,22,2x x f x x x ⎧-<-=⎨-≥-⎩,则当2x <-时,()3211,4xf x ⎛⎫=-∈--⎪⎝⎭,当2x ≥-时,()222f x x =-≥-,故()f x 的最小值为2-;②由()221,,x x a f x x a x a⎧-<=⎨+≥⎩,则当x a <时,()()211,21x af x =-∈--,由()f x 有最小值,故当x a ≥时,()f x 的最小值小于等于1-,则当1a ≤-且x a ≥时,有()min 1f x a =≤-,符合要求;当1>-a 时,21y x a a =+≥>-,故不符合要求,故舍去.综上所述,1a ≤-.故答案为:2-;1a ≤-.15.设数列{}n a 的前n 项和为n S ,10a >,21(R)n n n a a a λλ+-=∈.给出下列四个结论:①{}n a 是递增数列;②{}R,n a λ∀∈都不是等差数列;③当1λ=时,1a 是{}n a 中的最小项;④当14λ≥时,20232022S >.其中所有正确结论的序号是____________.【答案】③④【解析】【分析】利用特殊数列排除①②,当0λ≠时显然有0n a ≠,对数列递推关系变形得到1n n na a a λ+=+,再判断③④即可.【详解】当数列{}n a 为常数列时,210n n n a a a +-=,{}n a 不是递增数列,是公差为0的等差数列,①②错误;当1λ=时,211n n na a a +-=,显然有0n a ≠,所以11n n na a a +=+,又因为10a >,所以由递推关系得0n a >,所以110n n na a a +-=>,故数列{}n a 是递增数列,1a 是{}n a 中的最小项,③正确;当14λ≥时,由③得0n a >,所以由基本不等式得11n n n a a a λ+=+≥=≥,当且仅当n na a λ=时等号成立,所以2320232022a a a ++⋅⋅⋅+≥,所以20232022S >,④正确.故选:③④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC V 中,角,,A B C 所对的边分别为,,,a b c 已知222b c a bc +=+.(1)求A 的大小;(2)如果cos 2B b ==,求ABC V 的面积.【答案】(1)3π;(2)2【解析】【分析】(1)利用余弦定理的变形:222cos 2b c a A bc+-=即可求解.(2)利用正弦定理求出3a =,再根据三角形的内角和性质以及两角和的正弦公式求出sin C ,由三角形的面积公式即可求解.【详解】(1)222b c a bc +=+。
2019届高三数学上学期周考十理(1)
江西省信丰中学2019届高三数学上学期周考(十)理一、选择题(每小题5分,共60分) 1. 若复数z 满足232z z i +=- 其中i 为虚数单位,则z =( )A .1+2iB .1-2iC .12i -+D .12i --2. 设 i 是虚数单位,复数aii1+2-为纯虚数,则实数a 为( ) A .2 B .-2 C .1-2 D .123. 设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件4. 若1201x x <<<,则( )A .2121ln ln xxe e x x ->- B .2121ln ln xxe e x x -<- C .1221xxx e x e > D .1221xxx e x e < 5. 已知曲线1C :cos y x =,2C :2sin(2)3y x π=+,则下面结论正确的是( ) A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移6π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移12π 个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移6π 个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π 个单位长度,得到曲线2C6. 钝角三角形ABC 的面积是12,1AB =,BC =AC =( )A .5B .2 D .17. 在函数:①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中, 最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③8. 已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈ 恒成立,且()()2f f ππ>,则()f x 的单调递增区间是( )A .,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .,()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦C .2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .,()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦ 9. 已知函数)(x f =A tan (ωx +ϕ)(2||,0πϕω<>),y =)(x f 的部分图像如下图,则=)24(πfA .2+3B .3C .3D .23-10. 已知函数()ln ln(2)f x x x =+-,则( )A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()f x 的图像关于直线1x =对称D .()f x 的图像关于点(1,0)对称11. 如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点, 点P 沿着边BC ,CD 与DA 运动,∠BOP =x .将动点P 到A ,B两点距离之和表示为x 的函数()f x ,则()y f x =的图像大致为( )A B C D12. 若函数1()sin 2sin 3f x x x a x =-+在(,)-∞+∞单调递增,则a 的取值范围是( )A .[1,1]-B .1[1,]3-C .11[,]33-D .1[1,]3--二、填空题(每小题5分,共20分) 13. 已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-= .14. 当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是15. 如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC ,sin 3BAC ∠=,AB =3AD =,则BD 的长为______.16. 在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上. 若AP AB AD λμ=+,则λμ+的最大值为班级: 姓名: 座号: 得分: 一、选择题(每小题5分,共60分)二、填空题(每小题5分,共20分)13. 14. 15. 16. 三、解答题:(共36分) 17.(本小题满分12分)已知(cos ,sin )αα=a ,(cos ,sin )ββ=b ,0βαπ<<<. (1) 若||-=a b ⊥a b ;(2) 设(0,1)=c ,若+=a b c ,求α,β的值.18. (本小题满分12分) 已知函数321()(1)3=-++f x x a x x . (1)若3=a ,求()f x 的单调区间; (2)证明:()f x 只有一个零点.19. (本小题满分12分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.NM POAB CD(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为43∶.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.信丰中学2019届高三年级理科数学周考(十)参考答案一、选择题:二、填空题: 13. 3- 14. [6,2]-- 15. 16. 3 三、解答题:17. 【解析】(1)-a b =(cos cos ,sin sin )αβαβ--,2||-a b =22(cos cos )(sin sin )αβαβ-+-=22(cos cos sin sin )2αβαβ-⋅+⋅=.所以,cos cos sin sin 0αβαβ⋅+⋅=,所以,b a ⊥.(2)⎩⎨⎧=+=+②1sin sin ①0cos cos βαβα,①2+②2得:1cos()2αβ-=-. 所以,αβ-=π32,α=π32+β, 带入②得:sin (π32+β)+sin β=23cos β+12sin β=sin (3π+β)=1,所以,3π+β=2π.所以,α=65π,β=6π. 18.【解析】(1)当3=a 时,321()3333=---f x x x x ,2()63'=--f x x x .令()0'=f x 解得3=-x 或3=+x当(,3(323,)∈-∞-++∞x 时,()0'>f x ;当(3∈-+x 时,()0'<f x .故()f x 在(,3-∞-,(3)++∞单调递增,在(3-+单调递减.(2)由于210++>x x ,所以()0=f x 等价于32301-=++x a x x .设32()31=-++x g x a x x ,则2222(23)()0(1)++'=++≥x x x g x x x ,仅当0=x 时()0'=g x ,所以()g x 在(,)-∞+∞单调递增. 故()g x 至多有一个零点,从而()f x 至多有一个零点. 又22111(31)626()0366-=-+-=---<f a a a a ,1(31)03-=>f a , 故()f x 有一个零点. 综上,()f x 只有一个零点.19. 【解析】(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10.θHE KG NM PO ABC D过O 作OE ⊥BC 于E ,则OE ∥MN ,所以COE θ∠=, 故40cos OE θ=,40sin EC θ=,则矩形ABCD 的面积为240cos (40sin 10)800(4sin cos cos )θθθθθ⨯+=+,CDP ∆的面积为1240cos (4040sin )1600(cos sin cos )2θθθθθ⨯⨯-=-.过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则10GK KN ==. 令0GOK θ∠=,则01sin 4θ=,0(0,)6πθ∈. 当0[,)2πθθ∈时,才能作出满足条件的矩形ABCD ,所以sin θ的取值范围是1[,1)4.答:矩形ABCD 的面积为800(4sin cos cos )θθθ+平方米,CDP ∆的面积为1600(cos sin cos )θθθ-,sin θ的取值范围是1[,1)4.(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (0)k >, 则年总产值为4800(4sin cos cos )31600(cos sin cos )k k θθθθθθ⨯++⨯-8000(sin cos cos )k θθθ=+,0[,)2πθθ∈.设()sin cos cos f θθθθ=+,0[,)2πθθ∈,则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ'=--=-+-=--+. 令()0f θ'=,得π6θ=, 当0(,)6πθθ∈时,()>0f θ′,所以()f θ为增函数; 当(,)62ππθ∈时,()<0f θ′,所以()f θ为减函数, 因此,当π6θ=时,()f θ取到最大值.答:当π6θ=时,能使甲、乙两种蔬菜的年总产值最大.。
高三数学下学期第十次周考试题 理 试题
江西省赣州市石城中学2020届高三数学下学期第十次周考试题 理满分150分 时间120分钟一、选择题:本大题共12个小题,每小题5分,共60分. 1.已知集合{}260A x x x =+->,集合{|13}B x x =-<<,则A B =( )A. (1,2)-B. (2,3)C. ()3,3-D. (1,3)-2.在复平面内,复数z=i 对应的点为Z ,将向量OZ 绕原点O 按逆时针方向旋转6π,所得向量对应的复数是( ) A. i 2321+-B. i 2123+-C. i 2321--D. i 2123-- 3.在等比数列{}n a 中,“412,a a 是方程2310x x ++=的两根”是“81a =-”的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.若3cos()45πα-=,则sin 2α=( ) A 725 B. 15 C. 15- D. 725- 5.设F 为抛物线24x y =的焦点,A, B,C 为抛物线上三点,若0,FA FB FC ++=则||||||FA FB FC ++=( )A.9B.63.8C 3.16D 6.函数2()()ex n mf x -=(其中e 为自然对数的底数)的图象如图所示,则( )A. 0m >,01n <<B. 0m >,10n -<<C. 0m <,01n <<D. 0m <,10n -<<7.执行如图所示的程序框图后,输出的值为5,则P 的取值范围是( )A.37(,]48B.(5,69]10C.1785(,]16 D.1531(,]16328.已知七人排成一排拍照,其中甲、乙、丙三人两两不相邻,甲、丁两人必须相邻,则满足要求的排队方法数为( )A.432B.576C.696D.9609.(错题重现)已知函数()ln x f x x=,关于x 的方程2[()]()10f x f x λ+-=恰有两个不同的实数根,则实数λ的取值集合是( ) A. RB. 1e e ⎧⎫-⎨⎬⎩⎭C. {}eD.10,e e ⎛⎫- ⎪⎝⎭10.若000a b c >>>,,且()16a a b c bc +++=,则222a b c m m ++>+恒成立,则实数m 的取值范围是( )A .()()24-∞-+∞,,B .()()42-∞-+∞,,C .()24-,D .()42-, 11.已知直线l:kx-y-3k+1=0与椭圆22122:1(0)x y C a b a b+=>>交于A 、B 两点,与圆C 2:(x-3)2+(y-1)2=1交于C 、D 两点.若存在k ∈[-2,-1],使得AC DB =,则椭圆C 1的离心率的取值范围为( )A. 36,33⎡⎤⎢⎥⎣⎦B.3[,1)3C.3(0,]3D.6[,1)312.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为(x 2+y 2)3=x 2y 2.给出下列四个结论:①曲线C 有四条对称轴;②曲线C 上的点到原点的最大距离为14; ③曲线C 第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为18; ④四叶草面积小于4π. 其中,所有正确结论的序号是( )A.①②B.①③C.①③④D.①②④二.填空题:(本大题共4小题,每小题5分,共20分)13.已知二项式2nx x ⎛ ⎝的展开式中第2项与第3项的二项式系数之比是2:5,则3x 的系数为________.14.若051,20200<++-∈∃x a x R x 为假,则实数a 的取值范围为 .15.在直角坐标系xOy 中,已知点A(0,1)和点B (-3,4),若点C 在∠AOB 的平分线上,且103=OC ,则向量OC 的坐标为16.已知抛物线C :y 2=4x ,点P 为抛物线C 上一动点,过点P 作圆M :(x-3)2+y 2=4的切 线,切点分别为A ,B ,则线段AB 长度的取值范围为三.解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.) 17.如图,等腰直角三角形ABC 中,90ACB ∠=︒,4AB =,点P 为ABC ∆内一点,且1tan 3PAB ∠=,1tan 2PBA ∠=.(1)求PA ; (2)求APC ∠.18.如图,四边形ABCD 是菱形,EA ⊥平面ABCD ,//EF AC ,//CF 平面BDE ,G 是AB 中点.()1求证://EG 平面BCF ; ()2若AE AB =,60BAD ∠=,求二面角A BE D --的余弦值.19.(本题满分12分)椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,右顶点为A ,上顶点为B ,且满足向量120BF BF ⋅=. (1)若(2,0)A ,求椭圆的标准方程;(2)设P 为椭圆上异于顶点的点,以线段PB 为直径的圆经过1F ,问是否存在过2F 的直线与该圆相切?若存在,求出其斜率;若不存在,说明理由.20.已知函数()e ln xb f x a x x=-,曲线()y f x =在点()()1,1f 处的切线方程为22x y ---0e =.(1)求a ,b 的值;(2)证明函数()f x 存在唯一的极大值点0x ,且()02ln 22f x <-.21.某工厂生产零件A ,工人甲生产一件零件A ,是一等品、二等品、三等品的概率分别为41,21,41,工人乙生产一件零件A ,是一等品、二等品、三等品的概率分别为31,31,31.己知生产一件一等品、二等品、三等品零件A 给工厂带来的效益分别为10元、5元、2元。
高三数学上学期周考一理B层 试题
卜人入州八九几市潮王学校信丰2021届高三数学上学期周考一〔理B 层〕一、选择题〔本大题一一共12小题,每一小题5分,一共60分〕 1.集合2{|log (2)2}A x R x =∈-<,{}1,0,1,2,3B =-,那么AB 真子集的个数〔〕A .8B .7C .4D .162.以下说法错误的选项是......〔〕 :p “2000,10x R x x ∃∈++<〞,那么p ⌝:“2,10x R x x ∀∈++≥〞2430x x -+=,那么3x =C .假设p q ∧p q ∨D .假设p 是q 的充分不必要条件,那么q 是p 的必要不充分条件3.假设函数)(x f 的定义域为]3,1[-,那么函数(23)f x +的定义域为〔〕A.]0,2[-B.]9,1[C.]3,1[-D.]9,2[- 4.幂函数f 〔x 〕=k•的图象过点,那么k+=〔〕A .B .1C .D .25.函数()122++=ax ax x f ()0≠a ,那么以下各式中不可能成立的是为〔〕A .()()()221f f f >->-B .()()()012f f f >->-C .()()()210f f f << D .()()()301-<<-f f f6.函数()2sin 2xf x x =-的图象可能是〔〕 A .B .C .D .7.以下函数在定义域内既是奇函数又是增函数的是〔〕 A .B .C .D .8.函数()f x 满足:()()0-+=f x f x ,且当0x ≥时,2()12xmf x +=-,那么(1)=f -〔〕 A .32B .32-C .12D .12-9.函数,那么函数的值域为〔〕A .B .C .D .10.定义在实数集R 上的函数()f x 的图象经过点(1,2)--,且满足()()f x f x -=,当0≤<a b 时不等式()()0f b f a b a->-恒成立,那么不等式(1)20f x -+<的解集为〔〕A .(0,2)B .(2,0)-C .(,0)(2,)-∞+∞D .(,2)(0,)-∞-+∞11.假设函数在区间内单调递增,那么a 的取值范围是〔〕 A .B .C .D .12.先作与函数=y 1lg 2x-的图象关于原点对称的图象,再将所得图象向右平移2个单位得图象1C ,又()y f x =的图象2C 与1C 关于x y =对称,那么)(x f y =的解析式是〔〕A .10x y =B .210x y -=C .lg y x =D .lg(2)y x =-二、填空题〔本大题一一共4小题,每一小题5分,一共20分〕 13.函数()f x 与(1)f x -都是定义在R 上的奇函数,当01x <<时,2()log f x x =,那么9()4f f-+〔4〕的值是__________.14.设,假设,那么__________.15.函数()()2111013a a x x f x log x x ⎧-⎪=⎨-≤⎪⎩,>,<,当x 1≠x 2时,()()12120f x f x x x --<, 那么实数a 的取值范围是__________. 16.给出以下结论: ①集合的子集有3个;②函数的值域是;③幂函数图象一定不过第四象限;④函数的图象过定点;⑤假设成立,那么的取值范围是.其中正确的序号是________________. 三、解答题〔本大题一一共3小题,一共36分〕 17、〔本小题总分值是12分〕在平面直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t y t αα=-+⎧⎨=-+⎩〔t 为参数,0a π≤<〕,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.〔Ⅰ〕假设4πα=,求直线l 的普通方程及曲线C 的直角坐标方程; 〔Ⅱ〕假设直线l 与曲线C 有两个不同的交点,求sin α的取值范围. 18、〔本小题总分值是12分〕函数()2f x x a a =-+.〔1〕当4a=时,求不等式()18f x x +-≤的解集;〔2〕设函数()23gx x =-,当x ∈R 时,()()5f x g x +≥,求a 的取值范围.19、〔本小题总分值是12分〕设函数()()11x x f x xe a e =+-+.〔1〕求函数()f x 的单调区间及极值;〔2〕假设函数()f x 在(0,)+∞上有唯一零点,证明:23a <<二零二零—二零二壹高三上学期数学周考一〔理科〕参考答案一、选择题1---12BCACBCDCBABA二、填空题13、214、615、103⎛⎤ ⎥⎝⎦,16、③④⑤三、解答题17、解:〔Ⅰ〕当4πα=时,直线的l参数方程为1212x t y t ⎧=-+⎪⎪⎨⎪=-+⎪⎩. 所以其普通方程为y x =.对于曲线C ,由2cos ρθ=,得22cos ρρθ=,所以其直角坐标方程为222xy x +=.〔Ⅱ〕由题意得,直线l 过定点()1,1P--,α为其倾斜角,曲线C :()2211x y -+=,表示以()1,0C 为圆心,以1为半径的圆.当2πα=时,直线l 为1x =-,此时直线l 与圆C 不相交.当2πα≠时,设tan k α=表示直线的斜率,那么l :10kx y k -+-=.设圆心C 到直线l的间隔为d =当直线l 与圆C 相切时,令1d=,解得0k =或者43k =. 那么当直线l 与圆C 有两个不同的交点时,403k <<.因为()0,απ∈,由40tan 3α<<,可得40sin 5α<<,即sin α的取值范围为40,5⎛⎫⎪⎝⎭. 18、解:(1)当4a=时,2214x x -+-≤综上133xx ⎧⎫≤≤⎨⎬⎩⎭(2)()()5f x g x +≥2325(23)(2)5x x a a x x a a -+-+≥⇒---+≥恒成立 35a a -+≥恒成立解不等式可得4a ≥19、解:〔1〕()f x 的定义域为(,)-∞+∞,∵'()(1)x f x x a e =+-,当(,1)x a ∈-∞-时,'()0f x >,()f x 为减函数; 当(1,)x a ∈-+∞时,'()0f x >,()f x 为增函数,∴()f x 有极小值1(1)1a f a a e --=+-,无极大值,故()f x 的减区间为(,1)a -∞-,增区间为(1,)a -+∞,极小值为1(1)1a f a a e --=+-,无极大值; 〔2〕函数()f x 在(0,)+∞上有唯一零点,即当(0,)x ∈+∞时,方程()0f x =有唯一解,∴11x x a x e +=+-有唯一解,令1()1x x g x x e +=+-,那么()()22'()1x x x e e x g x e --=- 令()2x h x e x =--,那么'()1x h x e =-,当(0,)x ∈+∞时,'()0h x >,故函数()h x 为增函数, 又(1)30h e =->,2(2)40h e=->,∴()h x 在(0,)+∞上存在唯一零点0x ,那么0(1,2)x ∈,且002x e x =+,当()00,x x ∈时,)'(0g x <,当()0,x x ∈+∞时,'()0g x >,∴()g x 在(0,)+∞()0000011(2,3)1x x g x x x e +=+=+∈-,∴23a <<.。
2016届高三周测数学试卷(10.26)
2016届高三周测数学试卷(10.26)考试时间:120分钟 试题分数:150一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合M ={-1,0},则满足M ∪N ={-1,0,1}的集合N 的个数是( )A .2B .3C .4D .82.设集合U ={0,1,2,3,4,5},M ={0,3,5},N ={1,4,5},则M ∩(∁U N )=( )A .{5}B .{0,3}C .{0,2,3,5}D .{0,1,3,4,5}3. 已知全集{}U=1,2,3,4,5,6,{}U A (C B)=1,2,{}A B=6,{}U U (C A)(C B)=4,则B=( )A.{3,6}B. {5,6}C.{3,5}D. {3,5,6}4.已知集合{}0|=-=m x x A ,{}01|=-=mx x B ,若B B A = ,则m 等于( )A .1B .0或1C .﹣1或1D .0或1或﹣15.设集合A={-1,3,5},若f:x →2x -1是集合A 到集合B 的映射,则集合B 可以是( )A .{0,2,3}B .{1,2,3}C .{-3,5}D .{-3,5,9}6.下列四个函数中,在(-∞,0)上是增函数的为( )A .()42+=x x f B.x23- C.()652--=x x x f D .()x x f -=1 7.已知()⎩⎨⎧≥+-<+=1,321,12x x x x x f ,则()()=2f f ( )A .-7B .2C .-1D .58.已知函数()f x 是偶函数,且在(],1-∞-上是增函数,则 ( )A .()()12f f f ⎛⎫<-< ⎪⎝⎭3-2B .()()322f f f ⎛⎫<-< ⎪⎝⎭-1 C .()()312f f f ⎛⎫<-<- ⎪⎝⎭2 D .()()312f f f ⎛⎫<-<- ⎪⎝⎭2 9.下列四个集合:①{}12+=∈=x y R x A ;②{}R x x y y B ∈+==,12;③(){}R x x y y x C ∈+==,1,2;④{}1≥=x x D .其中相同的集合是( )A .①与②B .①与④C .②与③D .②与④ 10. 已知()12g x x =-,221(()),x f g x x -=则1()2f =( ) A .1 B .3 C .15 D .3011.已知函数y=f(x+1)定义域是[-2,3],则y=f(x-1)的定义域是( )A .[0,5]B .[-1,4]C .[-3,2]D .[-2,3]12.定义在R 上的偶函数()x f 满足:对任意的[)(),,,0,2121x x x x ≠+∞∈有2121()()0f x f x x x -<-,则( ) A .f(3)<f(-2)<f(1) B .f(1)<(-2)<f(3) C .f(-2)<f(1)<f(3) D . f(3)<f(1)<f(-2)二、填空题(本大题共4小题,每小题5分,共20分)13.设,,R b a ∈集合{}{},.01,b a a +=则=-a b ________.14.关于x 的方程()02122<-+-+a x a x 的两根满足()()01121<--x x ,则a 的取值范围是 .15.已知函数()23f x ax bx a b =+++是定义在[1,2]a a -上的偶函数,则()2f -=_______.16. 设()f x 是R 上的奇函数,且当0<x 时,13)(2+-=x x x f ,那么()f x = .三、解答题17.(本题满分10分)已知函数()f x =的定义域为集合A ,集合{}81<<=x x B , {}2a+1C .x x a =≤≤(1)求();B A C R (2)若A ∪C=A ,求实数a 的取值范围。
高三数学理11.26周考(1)
枣阳市白水高级中学2016-2017学年度月周考高三数学(理) 出题人:徐传杰 考试时间(2016.11.26)一.选择题(本大题共12小题,每小题5分,共60分)1.已知集合{0,1,2}A =,{1,}B m =,若AB B =,则实数m 的值是( )A .0B .0或2C .2D .0或1或2 2.已知命题p :“存在,使得”,则下列说法正确的是( )A .p 是假命题;p ⌝:“任意[1,)x ∈+∞,都有02(log 3)1x <”B .p 是真命题;p ⌝:“不存在0[1,)x ∈+∞,使得02(log 3)1x <”C .p 是真命题;p ⌝:“任意[1,)x ∈+∞,都有02(log 3)1x <” D .p 是假命题;p ⌝:“任意0(,1)x ∈-∞,都有02(log 3)1x <”3.定义运算,,a b ad bc c d=-,若21,2,z i i=,则复数z 对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知直线,a b ,平面,αβ,且a α⊥,b β⊂,则“a b ⊥”是“//αβ”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知一元二次方程01)1(2=+++++b a x a x 的两个实根为21,x x ,且 1,1021><<x x ,则ab的取值范围是( )A .)21,2(-- B.]21,2(-- C.)21,1(-- D.]21,1(--6.函数()sin 6f x x πω⎛⎫=A + ⎪⎝⎭(0ω>)的图象与x 轴正半轴交点的横坐标构成一个公差为2π的等差数列,若要得到函数()sin g x x ω=A 的图象,只要将()f x 的图象( )个单位A .向左平移6πB .向右平移6πC .向左平移12πD .向右平移12π7.若非零向量,a b 满足a b a b +=-,则a 与b 的夹角为( ) A.0 B.45 C.90 D.1808.已知函数)(x f 满足)()(x f x f -=,且当)0,(-∞∈x 时,)(')(x xf x f +0<成立,若)2(ln )2(ln ),2()2(1.01.0f b f a ⋅=⋅=,c b a f c ,,),81(log )81(log 22则⋅=的大小关系是( )A .a b c >>B .c b a >>C .c a b >>D .a c b >>9.已知数列是等差数列,,,设为数列的前项和,则( )A .B .C .D .10.如图,焦点在x 轴上的椭圆22213x y a +=(0a >)的左、右焦点分别为1F ,2F ,P 是椭圆上位于第一象限内的一点,且直线2F P 与y 轴的正半轴交于A 点,1APF ∆的内切圆在边1PF 上的切点为Q ,若1||4F Q =,则该椭圆的离心率为( )A .14 B.12C .4 D .411.N 为圆221x y +=上的一个动点,平面内动点00(,)M x y 满足01y ≥且030OMN ∠= (O 为坐标原点),则动点M 运动的区域面积为()A.83π- B.43π23π+43π+12.设函数()()()21ln 31f x g x ax x ==-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得()()12f x g x =,则实数a 的最大值为( ) A .94 B .2 C.92D .4二.填空题:(本大题共4小题,每小题5分,共20分)13.已知2,22,23a b c ===,且0a b c ++=,则a b b c a c ⋅+⋅+⋅=[)01,x ∈+∞02(log 3)1x ≥{}n a 1tan 225a =5113a a =n S {(1)}nn a -n 2015S =20152015-30243022-14.已知⎰=-2047d )sin(πϕx x ,则=ϕ2sin . 15.已知等差数列{}n a 满足:11101a a <-,且它的前n 项和n S 有最大值,则当n S 取到最小正值时,n = .16.已知数列{}n a 的通项公式为n a n p =-+,数列{}n b 的通项公式为43n n b -=,设n n nn nn n a a b c b a b ≥⎧=⎨<⎩,在数列{}n c 中,4()n c c n N *>∈,则实数p 的取值范围是 .三.解答题:(本大题共6小题,请写出必要的文字说明和解答过程,共70分)17.已知函数()sin(4)cos(4)44f x x x ππ=++-.(1)求函数()f x 的最大值;(2)若直线x m =是函数()f x 的对称轴,求实数m 的值. 18.已知数列满足对任意的,都有,且.(1)求,的值;(2)求数列的通项公式;(3)设数列的前项和为,不等式对任意的正整数 恒成立,求实数的取值范围.19.如图,在四棱锥ABCD S -中,SD ⊥底面ABCD ,ABDC ,AD DC ⊥,1==AD AB ,2==SD DC ,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:EB SE 2=;(Ⅱ)求二面角C DE A --的大小.20.已知1m >,直线l :202m x my --=,椭圆C :2221x y m+=,12F F 、分别为椭圆C 的左、右焦点.(Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于A B ,两点,12AF F ∆,12BF F ∆的重心分别为G H ,.若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.21.已知函数()()()()22ln ,1212f x a x x g x x x λλ=-=-+--.(1)讨论函数()f x 的单调性; (2)2a =时, 有()()f x g x ≤恒成立, 求整数λ最小值.22.在直角坐标系中,圆1C :22x y +=经过伸缩变换'3'2x xy y =⎧⎨=⎩后得到曲线2C .以坐标原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的单位长度, 建立极坐标系,直线的极坐标方程为ρθθ10sin 2cos =+·(1)求曲线2C 的直角坐标方程及直线的直角坐标方程;(2)在2C 上求一点M ,使点M 到直线的距离最小,并求出最小距离. 23.已知函数()a x x f -=(Ⅰ)若()m x f ≤的解集为[]5,1-,求实数m a ,的值;(Ⅱ)当2=a 且20<≤t 时,解关于x 的不等式()()2+≥+x f t x f{}n a *n ∈N 0n a >()23331212n n a a a a a a +++=+++1a 2a {}n a n a 21n n a a +⎧⎫⎨⎬⎩⎭n n S ()1log 13n a S a >-n a第5页共2页◎第6页共2页。
北京市2024—2025学年高三上学期10月考数学试卷含答案
北京2024-2025学年(上)高三数学10月考试卷班级______姓名______学号______(答案在最后)考生须知1.本试卷有三道大题,共6页.考试时长120分钟,满分150分.2.考生务必将答案填写在答题纸(共8页)上,在试卷上作答无效.3.考试结束后,考生应将答题纸交回.一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{20},{10}M x x N x x =+≥=-<∣∣,则M N = ()A.{21}x x -≤<∣B.{21}x x -<≤∣C.{2}xx ≥-∣ D.{1}xx <∣【答案】A 【解析】【分析】先化简集合,M N ,然后根据交集的定义计算.【详解】由题意,{20}{|2}M xx x x =+≥=≥-∣,{10}{|1}N x x x x =-<=<∣,根据交集的运算可知,{|21}M N x x =-≤< .故选:A2.在复平面内,复数z对应的点的坐标是(-,则i z ⋅=()A.i + B.i-C.iD.i【答案】B 【解析】【分析】首先表示出z ,再根据复数代数形式的乘法运算计算可得.【详解】因为复数z对应的点的坐标是(-,所以1z =-+,则()2i i 1i i z ⋅=⋅-+=-+=.故选:B3.下列函数中,在区间()0,∞+上单调递减的是()A.()2xf x = B.()ln f x x =-C.()1f x x=- D.()13x f x -=【答案】B 【解析】【分析】根据基本初等函数的单调性判断即可.【详解】对于A :()2xf x =在定义域R 上单调递增,故A 错误;对于B :因为ln y x =在定义域0,+∞上单调递增,所以()ln f x x =-在定义域0,+∞上单调递减,故B 正确;对于C :()1f x x=-在0,+∞上单调递增,故C 错误;对于D :()1113,133,1x x x x f x x ---⎧≥==⎨<⎩,所以()f x 在()0,∞+上先减后递增,故D 错误.故选:B4.已知实数,a b 满足a b >,则下列不等式中正确的是()A.a b >B.a b >C.2a ab >D.2ab b >【答案】A 【解析】【分析】由a a ≥可知A 正确;通过反例可知BCD 错误.【详解】对于A ,a a ≥ (当且仅当0a ≥时取等号),a b ∴>,A 正确;对于B ,当1a =-,2b =-时,a b <,B 错误;对于C ,当1a =-,2b =-时,21a =,2ab =,则2a ab <,C 错误;对于D ,当1a =,2b =-时,2ab =-,24b =,则2ab b <,D 错误.故选:A.5.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是有由瑞士数学家欧拉发现的,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,特别是当x π=时,10i e π+=被认为是数学中最优美的公式,数学家们评价它是“上帝创造的公式”.根据欧拉公式可知,i e 在复平面中位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A 【解析】【分析】根据定义把i e 写成三角形式,即可得出对应点的坐标,从而得其象限.【详解】由题意cos1sin1i e i =+,对应点坐标为(cos1,sin1),而cos10,sin10>>,点在第一象限.故选:A .6.已知函数()21,026,2x x f x x x ⎧-<<=⎨-≥⎩,那么不等式()12f x x >的解集为()A.()0,1 B.()0,2 C.()1,4 D.()1,6【答案】C 【解析】【分析】分别作出=及12y x =的图象后,借助图象分析即可得.【详解】分别作出=及12y x =的图象如下:由图可知不等式()12f x x >的解集为1,4.故选:C.7.设0.40.5a =,0.5log 0.4b =,4log 0.5c =,则a ,b ,c 的大小关系是()A.a b c << B.b c a<< C.c b a<< D.c a b<<【答案】D 【解析】【分析】根据指数函数、对数函数的性质判断即可.【详解】因为0.4000.50.51<<=,即01a <<,又0.50.5log 0.4log 0.51b =>=,44log 0.5log 10c =<=,所以b a c >>.故选:D8.若0xy ≠,则“0x y +=”是“2y xx y+=-”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】解法一:由2x yy x+=-化简得到0x y +=即可判断;解法二:证明充分性可由0x y +=得到x y =-,代入x y y x+化简即可,证明必要性可由2x yy x +=-去分母,再用完全平方公式即可;解法三:证明充分性可由x y y x +通分后用配凑法得到完全平方公式,再把0x y +=代入即可,证明必要性可由x yy x+通分后用配凑法得到完全平方公式,再把0x y +=代入,解方程即可.【详解】解法一:因为0xy ≠,且2x yy x+=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=.所以“0x y +=”是“2x yy x+=-”的充要条件.解法二:充分性:因为0xy ≠,且0x y +=,所以x y =-,所以112x y y y y x y y-+=+=--=--,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=.所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.解法三:充分性:因为0xy ≠,且0x y +=,所以()2222222222x y xy x y x y x y xy xy xy y x xy xy xy xy+-+++--+=====-,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以()()22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy+-++++-+====-=-,所以()20x y xy+=,所以()20x y +=,所以0x y +=,所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.故选:C9.已知函数211,(,0)(),()44ln(1),[0,)x x f x g x x x x x ∞∞⎧+-∈-==--⎨+∈+⎩,设R b ∈,若存在R a ∈,使得()()0f a g b +=,则实数b 的取值范围是()A.[1,5]-B.(,1][5,)-∞-⋃+∞C.[1,)-+∞D.(,5]-∞【答案】A 【解析】【分析】根据题意,求得函数()f x 的值域为[1,)-+∞,结合题意转化为()1g b -≥-,列出不等式,即可求解.【详解】由题意,作出函数()y f x =的图象,如图所示,所以,当(,0)x ∈-∞时,()()11f x f ≥-=-;当[0,)x ∈+∞时,()()00f x f ≥=,可函数()f x 的值域为[1,)-+∞,设R b ∈,若存在R a ∈,使得()()0f a g b +=成立,即()()f a g b =-,只需()1g b -≥-,即对于R b ∈,满足2441b b -++≥-成立,即2450b b --≤,解得15b -≤≤,所以实数b 的取值范围为[1,5]-.故选:A.10.恩格斯曾经把对数的发明、解析几何的创始和微积分的建立称为十七世纪数学的三大成就.其中对数的发明曾被十八世纪法国数学家拉普拉斯评价为“用缩短计算时间延长了天文学家的寿命”.已知正整数N 的70次方是一个83位数,则由下面表格中部分对数的近似值(精确到0.001),可得N 的值为()M2371113lg M0.3010.4770.8451.0411.114A.13B.14C.15D.16【答案】C 【解析】【分析】利用对数的运算公式计算即可.【详解】由题意知,N 的70次方为83位数,所以()70828310,10N∈,则827083lg10lg lg10N <<,即8270lg 83N <<,整理得1.171lg 1.185N <<,根据表格可得lg14lg 2lg 7 1.146 1.171=+=<,lg164lg 2 1.204 1.185==>,所以lg lg15N =,即15N =.故选:C.二、填空题共5小题,每小题5分,共25分.11.函数()1ln f x x=的定义域是______.【答案】()(]0,11,2 【解析】【分析】根据函数解析式建立不等式组,可解得答案.【详解】由题意可得ln 0020x x x ≠⎧⎪>⎨⎪-≥⎩,解得()(]0,11,2x ∈⋃.故答案为:()(]0,11,2⋃.12.已知()f x 是定义在R 上的偶函数,且当(],0x ∈-∞时,()123xf x =+,则23log 2f ⎛⎫= ⎪⎝⎭______.【答案】1【解析】【分析】根据偶函数的性质及指数对数恒等式计算可得.【详解】因为()f x 是定义在R 上的偶函数,且当(],0x ∈-∞时,()123xf x =+,所以2log 2223233log log l 1og 2221213333f f f ⎛⎫⎛⎫⎛⎫=-==⎭+= ⎪ ⎪ ⎝⎭⎭+⎝⎝=⎪.故答案为:113.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为______.【答案】16【解析】【分析】借助导数的几何意义计算可得其在点()0,1处的切线方程,即可得其与坐标轴的交点坐标,从而求得所求面积.【详解】因为()2e 2sin 1x xf x x+=+,所以()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+,则()()()()()02e 2cos 010e 2sin 000310f ++-+⨯'==+,所以该切线方程为13y x -=,即31y x =+,令0x =,则1y =,令0y =,则13x =-,故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=.故答案为:16.14.对于三次函数()()320ax bx d a f x cx =+++≠,给出定义:()f x '是函数()f x 的导函数,()f x ''是()f x '的导函数,若方程()0f x ''=有实数解0x ,则称点()()00,x f x 为函数()y f x =的“拐点”.某同学经研究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若()3211533212f x x x x =-+-,根据这一发现,函数()y f x =的对称中心是______.【答案】1,12⎛⎫⎪⎝⎭【解析】【分析】根据所给定义,求出函数的一阶导数与二阶导数,再()0f x ''=,求出x ,即可得解.【详解】因为()3211533212f x x x x =-+-,所以()23'=-+f x x x ,则()21f x x ''=-,令()210f x x ''=-=,解得12x =,又3211111153123222212f ⎛⎫⎛⎫⎛⎫=⨯-⨯+⨯-= ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,所以函数()y f x =的对称中心是1,12⎛⎫⎪⎝⎭.故答案为:1,12⎛⎫⎪⎝⎭15.已知函数()22,2,x a x af x x ax x a⎧+<=⎨+≥⎩给出下列四个结论:①当0a =时,()f x 的最小值为0;②当13a ≤时,()f x 存在最小值;③当1a ≥时,()f x 在(),-∞+∞上单调递增;④()f x 的零点个数为()g a ,则函数()g a 的值域为{}0,1,2,3.其中所有正确结论的序号是______.【答案】①④【解析】【分析】对于①,写出此时函数解析式,得到当0x =时,()f x 取得最小值,最小值为0;对于②,举出反例;对于③,两分段均单调递增,但端点处,左端点的函数值不一定小于右端点的函数值,故③错误;对于④,对a 进行分类讨论,结合零点存在性定理得到函数()g a 的值域为{}0,1,2,3.【详解】对于①,当0a =时,()22,0,0x x f x x x ⎧<=⎨≥⎩,当0x <时,021x <<,当0x ≥时,20x ≥,综上,当0x =时,()f x 取得最小值,最小值为0,①正确;对于②,不妨设12a =-,此时()2112,221,2x x f x x x x ⎧-<-⎪⎪=⎨⎪-≥-⎪⎩,当12x <-时,11212,222x⎛⎫--∈- ⎪ ⎪⎝⎭,当21x ≥-时,22111244x x x ⎛⎫-=--≥- ⎪⎝⎭,故()12f x >-,此时函数不存在最小值,②错误;对于③,2x y a =+在(),x a ∈-∞上单调递增,且()2,2xay a a a =+∈+,当1a ≥时,()2222y x ax x a a =+=+-在),x a ⎡∈+∞⎣上单调递增,且()2223y x a a a =+-≥,当8a =时,223720a a a +-=>,故当8a =时,()f x 在R 上不单调递增,③错误;对于④,()22,2,x a x a f x x ax x a ⎧+<=⎨+≥⎩,2x y a =+在x a <上单调递增,当0a <时,设()2at a a =+,显然()2at a a =+单调递增,又()110,02t t ⎛⎫-<-> ⎪⎝⎭,故存在011,2a ⎛⎫∈-- ⎪⎝⎭,使得()00t a =,当0a a ≤时,20a a +=无解,即2x y a =+在x a <上无零点,此时22y x ax =+有两个零点,0和2a -,故此时()2g a =,当0a a >时,2x y a =+在x a <上有1个零点,此时22y x ax =+有两个零点,0和2a -,故此时()3g a =,当0a =时,()22,0,0x x f x x x ⎧<=⎨≥⎩,由①知,此时有1个零点,即()1g a =,当0a >时,2x y a =+在x a <上无零点,22y x ax =+在x a ≥上也无零点,此时()0g a =,则函数()g a 的值域为{}0,1,2,3,④正确.故答案为:①④【点睛】函数零点问题处理思路:(1)直接令函数值为0,代数法求出零点;(2)将函数零点问题转化为两函数的图象交点问题,将代数问题几何化,借助图象分析,大大简化了思维难度;三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.设函数()πsin cos cos sin 0,2f x x x ωϕωϕωϕ⎛⎫=+>< ⎪⎝⎭.(1)若()102f =,求ϕ的值;(2)已知()f x 在区间π2π,33-⎡⎤⎢⎥⎣⎦上单调递增,2π13f ⎛⎫= ⎪⎝⎭,π13f ⎛⎫-=- ⎪⎝⎭,求ω,ϕ的值.【答案】(1)π6(2)1ω=,π6ϕ=-【解析】【分析】(1)借助两角和的正弦公式化简后代入计算即可得;(2)由题意可得函数周期,即可得ω,而后借助正弦函数性质代入计算即可得ϕ.【小问1详解】()()sin cos cos sin sin f x x x x ωϕωϕωϕ=+=+,()10sin 2f ϕ==,故()ππ2π23k k ϕ±+=∈Z ,又π2ϕ<,故π6ϕ=;【小问2详解】由题意可得2ππ22π33T ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦,故2π1Tω==,又0ω>,故1ω=,由2π13f ⎛⎫=⎪⎝⎭,则()2ππ2π32k k ϕ+=+∈Z ,解得()π2π6k k ϕ=-+∈Z ,又π2ϕ<,故π6ϕ=-.17.在ABC V 中,222b c a bc +-=.(1)求A ∠;(2)再从条件①、条件②、条件③这三个条件中选择两个作为已知,使ABC V 存在且唯一确定,求ABC V 的面积.条件①:11cos 14B =;条件②:12a b +=;条件③:12c =.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分.【答案】(1)π3(2)答案见解析【解析】【分析】(1)根据题意,利用余弦定理求得1cos 2A =,即可求解;(2)根据题意,若选择①②,求得sin B ,由正弦定理求得7,5a b ==,再由余弦定理求得8c =,结合面积公式,即可求解;若①③:先求得sin 14B =,由83sin sin()14C A B =+=,利用正弦定理求得212a =,结合面积公式,即可求解;若选择②③,利用余弦定理,列出方程求得0b =,不符合题意.【小问1详解】解:因为222b c a bc +-=,由余弦定理得2221cos 22b c a A bc +-==,又因为(0,π)A ∈,所以π3A =.【小问2详解】解:由(1)知π3A =,若选①②:11cos 14B =,12a b +=,由11cos 14B =,可得53sin 14B ==,由正弦定理sin sin a bA B=214=,解得7a =,则125b a =-=,又由余弦定理2222cos a b c bc A =+-,可得249255c c =+-,即25240c c --=,解得8c =或3c =-(舍去),所以ABC V 的面积为11sin 58222S bc A ==⨯⨯⨯=.若选①③:11cos 14B =且12c =,由11cos 14B =,可得sin 14B ==,因为πA BC ++=,可得()111sin sin 2142147C A B =+=⨯+⨯=,由正弦定理sin sin a cA C =27=,解得212a =,所以ABC V的面积为1121sin 12222142S ac b ==⨯⨯⨯=.若选:②③:12a b +=且12c =,因为222b c a bc +-=,可得22212(12)12b b b +--=,整理得2412b b =,解得0b =,不符合题意,(舍去).18.某地区组织所有高一学生参加了“科技的力量”主题知识竟答活动,根据答题得分情况评选出一二三等奖若干,为了解不同性别学生的获奖情况,从该地区随机抽取了500名参加活动的高一学生,获奖情况统计结果如下:性别人数获奖人数一等奖二等奖三等奖男生200101515女生300252540假设所有学生的获奖情况相互独立.(1)分别从上述200名男生和300名女生中各随机抽取1名,求抽到的2名学生都获一等奖的概率;(2)用频率估计概率,从该地区高一男生中随机抽取1名,从该地区高一女生中随机抽取1名,以X 表示这2名学生中获奖的人数,求X 的分布列和数学期望EX ;(3)用频率估计概率,从该地区高一学生中随机抽取1名,设抽到的学生获奖的概率为0p ;从该地区高一男生中随机抽取1名,设抽到的学生获奖的概率为1p ;从该地区高一女生中随机抽取1名,设抽到的学生获奖的概率为2p ,试比较0p 与122p p +的大小.(结论不要求证明)【答案】(1)1240(2)分布列见解析,期望12EX =(3)1202p p p +>【解析】【分析】(1)直接计算概率11102511200300C C ()C C P A =;(2)X 的所有可能取值为0,1,2,求出高一男生获奖概率和高一女生获奖概率,再计算概率得到分布列,最后计算期望即可;(3)计算出01350p =,12124p p +=,比较大小即可.【小问1详解】设事件A 为“分别从上述200名男生和300名女生中各随机抽取1名,抽到的2名学生都获一等奖”,则11102511200300C C 1()C C 240P A ==,【小问2详解】随机变量X 的所有可能取值为0,1,2.记事件B 为“从该地区高一男生中随机抽取1名,该学生获奖”,事件C 为“从该地区高一女生中随机抽取1名,该学生获奖”.由题设知,事件B ,C 相互独立,且()P B 估计为1015151,()2005P C ++=估计为252540330010++=.所以1328(0)()()()1151050P X P BC P B P C ⎛⎫⎛⎫====-⨯-= ⎪ ⎪⎝⎭⎝⎭,131319(1)()()()()()1151051050P X P BC BC P B P C P B P C ⎛⎫⎛⎫==⋃=+=⨯-+-⨯=⎪ ⎪⎝⎭⎝⎭,133(2)()()()51050P X P BC P B P C ====⨯=.所以X 的分布列为X012P28501950350故X 的数学期望()2819310125050502E X =⨯+⨯+⨯=【小问3详解】1202p p p +>,理由:根据频率估计概率得04090135250050200p +===,由(2)知115p =,2310p =,故1213150510224200p p ++===,则1202p p p +>.19.已知函数()()11ln f x a x x =+--.(1)若2a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)求函数()f x 的单调区间;(3)若2a <,证明:当1x >时,()1e xf x -<.【答案】(1)y x =(2)答案见解析(3)证明见解析【解析】【分析】(1)借助导数的几何意义计算可得其切线斜率,即可得其切线方程;(2)分0a ≤及0a >,结合导数讨论即可得;(3)构造函数()()1e ln 11x g x x a x -=+---,多次求导研究其单调性即可得.【小问1详解】当2a =时,()()121ln 2ln 1f x x x x x =+--=--,则()121ln111f =⨯--=,()12f x x'=-,则()1211f ='-=,即曲线=在点1,1处的切线方程为()11y x =-+,即y x =;【小问2详解】()()110ax f x a x x x-=-=>',当0a ≤时,′<0恒成立,故()f x 在0,+∞上单调递减;当0a >时,若10,x a ⎛⎫∈ ⎪⎝⎭,则′<0,若1,x a ∞⎛⎫∈+ ⎪⎝⎭,则′>0,故()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ∞⎛⎫+ ⎪⎝⎭上单调递增;【小问3详解】令()()()11e11ln e ln 11x x g x a x x x a x --⎡⎤=-+--=+---⎣⎦,()11e x g x a x-+'=-,令()()11ex h x g x a x -=+'=-,则()121e x h x x --'=,令()()121e x m x h x x -=-'=,则()122e 0x m x x-'=+>恒成立,故()h x '在1,+∞上单调递增,则()()011e 01h x h >=-'=',故()g x '在1,+∞上单调递增,则()()011e 201g x g a a >=+-=-'>',故()g x 在1,+∞上单调递增,则()()()01e ln01110g x g a >=+---=,即()1ex f x -<.20.已知函数()e sin xf x a x =-.(1)当2a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)当1a =时,证明:函数()2y f x =-在区间()0,π上有且仅有一个零点;(3)若对任意[]0,πx ∈,不等式()2cos f x x ≥-恒成立,求a 的取值范围.【答案】(1)10x y +-=;(2)证明见解析;(3)(],1-∞.【解析】【分析】(1)根据导数几何意义可求得切线斜率()0f ',结合()01f =可得切线方程;(2)令()()2g x f x =-,求导后可知()0g x '>,由此确定()g x 在()0,π上单调递增,结合零点存在定理可得结论;(3)()()2cos h x f x x =-+,将问题转化为()0h x ≥恒成立;求导后,分析可知当0a ≥时,()h x '单调递增;当1a >时,利用零点存在定理可说明()h x 在()00,x 上单调递减,由此可得()()00h x h <=,知不合题意;当1a =时,可得()()00h x h ''>=,知()h x 单调递增,满足题意;当1a <时,采用放缩法得()e sin cos 2x h x x x >-+-,结合1a =时的结论可知其满足题意;综合三种情况可得结果.【小问1详解】当2a =时,()e 2sin xf x x =-,则()e 2cos xf x x '=-,()0121f '∴=-=-,又()01f =,()f x \在点()()0,0f 处的切线方程为:1y x =-+,即10x y +-=.【小问2详解】当1a =时,令()()2e sin 2xg x f x x =-=--,则()e cos xg x x '=-;当()0,πx ∈时,0e e 1x >=,cos 1x <,即()0g x '>,()g x ∴在()0,π上单调递增,又()01210g =-=-<,()πe 20g π=->,()g x ∴在()0,π上有唯一零点,即()2f x -在()0,π上有且仅有一个零点.【小问3详解】令()()2cos e sin cos 2xh x f x x a x x =-+=-+-,则对任意[]0,πx ∈,()0h x ≥恒成立;又()e cos sin xh x a x x '=--,令()()t x h x =',则()e sin cos xt x a x x '=+-;当0a ≥时,若[]0,πx ∈,则0e e 1x ≥=,cos 1≤x ,sin 0x ≥,()0t x '∴≥在[]0,π上恒成立,则()h x '在[]0,π上单调递增;①当1a >时,()010h a '=-<,()ππe 0h a '=+>,()00,πx ∴∃∈,使得()00h x '=,且当()00,x x ∈时,()0h x '<,()h x ∴在()00,x 上单调递减,此时()()00h x h <=,不合题意;②当1a =时,()e sin cos 2xh x x x =-+-;当()0,πx ∈时,()()00h x h ''>=,则()h x 在[]0,π上单调递增,()()00h x h ∴≥=恒成立,满足题意;③当1a <时,()e sin cos 2e sin cos 2xxh x a x x x x =-+->-+-,由②知:对任意[]0,πx ∈,()e sin cos 20xh x x x >-+-≥,满足题意;综上所述:实数a 的取值范围为(],1-∞.【点睛】关键点点睛:利用导数几何意义求解切线方程、函数零点个数问题、恒成立问题的求解;本题求解恒成立问题的关键是能够通过构造函数的方式,将问题转化为含参数函数单调性的讨论问题,进而由单调性和函数最值确定满足题意的参数范围.21.已知数列A :1a ,2a ,…,n a 满足:{}0,1i a ∈(1i =,2,…,n ,2n ≥),从A 中选取第1i 项、第2i 项、…、第m i 项(12m i i i <<< ,2m ≥)称数列1i a ,2i a ,…,m i a 为A 的长度为m 的子列.记()T A 为A 所有子列的个数.例如A :0,0,1,其()3T A =.(1)设数列A :1,1,0,0,写出A 的长度为3的全部子列,并求()T A ;(2)设数列A :1a ,2a ,…,n a ,A ':n a ,1n a -,…,1a ,A '':11a -,21a -,…,1n a -,判断()T A ,()T A ',()T A ''的大小,并说明理由;(3)对于给定的正整数n ,k (11k n ≤≤-),若数列A :1a ,2a ,…,n a 满足:12n a a a k ++⋅⋅⋅+=,求()T A 的最小值.【答案】(1)子列为:1,0,0;1,1,0;()6T A =;(2)()()()T A T A T A '''==,理由见解析;(3)22nk n k +--.【解析】【分析】(1)根据()T A 的定义结合条件即得;(2)若121k k m m m m -,,,,L 是12n A a a a :,,,L 的一个子列,则121k k m m m m -,,,,L 为11n n A a a a -':,,,L 的一个子列.若121k k m m m m -,,,,L 与121k k n n n n -,,,,L 是12n A a a a :,,,L 的两个不同子列,则121k k m m m m -,,,,L 与121k k n n n n -,,,,L 也是11n n A a a a -':,,,L 的两个不同子列,得()()T A T A '≤,同理()()T A T A '≤,得()()T A T A '=,同理()()T A T A ''=;(3)令000111n k k A *-个个:L L 144244314243,得数列A *中不含有0的子列有1k -个,含有1个0的子列有k 个,含有2个0的子列有1k +个,L L ,含有n k -个0的子列有1k +个,即可解决.【小问1详解】由()T A 的定义以及1100A :,,,,可得:A 的长度为3的子列为:100110,,;,,,有2个,又A 的长度为2的子列有3个,A 的长度为4的子列有1个,所以()6T A =;【小问2详解】()()().T A T A T A '''==理由如下:若121k k m m m m -,,,,L 是12n A a a a :,,,L 的一个子列,则121k k m m m m -,,,,L 为11n n A a a a -':,,,L 的一个子列.若121k k m m m m -,,,,L 与121k k n n n n -,,,,L 是12n A a a a :,,,L 的两个不同子列,则121k k m m m m -,,,,L 与121k k n n n n -,,,,L 也是11n n A a a a -':,,,L 的两个不同子列.所以()()T A T A '≤;同理()()T A T A '≤,所以()()T A T A '=.同理()().T A T A ''=所以有()()().T A T A T A '''==【小问3详解】由已知可得,数列12n A a a a :,,,L 中恰有k 个1,n k -个0.令000111n k k A *-个个:L L 144244314243,下证:()()T A T A *≥.由于000111n k k A *-个个:L L 144244314243,所以A *的子列中含有i 个0,j 个1(0101,2)i n k j k i j =-=+≥ ,,,,,,,的子列有且仅有1个,设为:000111i j 个个LL 144244314243.因为数列12n A a a a :,,,L 的含有i 个0,j 个1的子列至少有一个,所以()()T A T A *≥.数列000111n k k A *-个个:L L 144244314243中,不含有0的子列有1k -个,含有1个0的子列有k 个,含有2个0的子列有1k +个,L L ,含有n k -个0的子列有1k +个,所以2()()(1)22T A n k k k nk n k *=-++-=+--.所以()T A 的最小值为22nk n k +--.【点睛】数学中的新定义题目解题策略:①仔细阅读,理解新定义的内涵;②根据新定义,对对应知识进行再迁移.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
枣阳市白水高级中学2016-2017学年度月周考
高三数学(理) 出题人:徐传杰 考试时间(2016.10.26)
一.选择题(本大题共12小题,每小题5分,共60分)
1.已知集合2
{|430}A x x x =-+<,{|21,0}x
B y y x ==-≥,则A B ⋂=( ) A .∅ B .[0,1)
(3,)+∞ C .A D .B
2.若复数z 满足()122z i +=,则z 的虚部为( ) A .45- B .45 C .45i - D .45
i
3.若101a b c >><<,,则下列不等式错误的是( ) A.c c a b > B.c c ab ba > C.log log a b c c > D.log log b a a c b c > 4.设函数2
,,(),x x a f x x x a
≤⎧=⎨
>⎩,a 是R 上的常数,若()f x 的值域为R ,则a 取值范围为( )
A.[2,1]--
B.[1,1]-
C.[0,1]
D.[1,2] 5.函数2
1x y e
-=的图象大致是( )
A .
B .
C .
D .
6.已知3
1
)22015sin(
=+απ,则)2cos(a -π的值为( ) A .31 B .31- C .97 D .9
7-
7
.将函数()sin(
)2
f x x π
π=+图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)
,再把图象上所有的点向右平移1个单位,得到函数()g x 的图象,则函数()g x 的单调递减区间是( )
A.[21,22]()k k k Z -+∈
B.[21,23]()k k k Z ++∈
C.[41,43]()k k k Z ++∈
D.[42,44]()k k k Z ++∈
8.已知4
1
4cos =⎪⎭⎫
⎝
⎛-
πα,则=α2sin ( ) A.
31
32
B.31-32
C.78-
D.78 9.设ABC ∆的内角,,A B C 所对的边分别为,,a b c ,若cos cos sin b C c B a A +=,则ABC ∆的形状为( )
A .直角三角形
B .锐角三角形
C .钝角三角形
D .不确定
10.已知向量,且,则( ) A . B . C .-8 D .8 11.向量(1,1)a =-,(1,0)b =,若()(2)a b a b λ-⊥+,则λ=( ) A .2 B .2- C .3 D .3- 12.已知,若存在,使得,则的取值范围是( )
A .
B .
C .
D .
二.填空题:(本大题共4小题,每小题5分,共20分)
13.命题:“2
,10x R x x ∃∈--<”的否定是. 14.函数212
log (43)y x x =-+-的单调递增区间是.
15.已知在中,,,,则
___.
16.设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2
,则m=.
()()1,,3,2a m b ==-()
//a b b +m =23-
2
3
()(2)(0)x b g x ax a e a x =-->0(1,)x ∈+∞00()'()0g x g x +=b
a
(1,)-+∞(1,0)-(2,)-+∞(2,0)-
三.解答题:(本大题共6小题,请写出必要的文字说明和解答过程,共70分)
17.在ABC ∆中,角,,A B C 所对的边分别为,,a b c
,且222
a b c ++=. (1)求C ; (2
)设cos cos A B =
2cos()cos()cos 5
A B ααα++=,求tan α的值.
18.已知函数f (x )=cos (2ωx﹣
)+sin 2
ωx﹣cos 2
ωx(ω>0)的最小正周期是π.
(1)求函数f (x )图象的对称轴方程; (2)求函数f (x )的单调递增区间.
19.已知函数2
1
4)(2+-+-=a ax x x f 在区间[]1,0上的最大值是2,求实数a 的值.
20.已知函数3
()31f x x x =-+. (1)求()f x 的单调区间和极值;
(2)求曲线在点(0,(0))f 处的切线方程.
21.已知||4a =,||3b =,(23)(2)61a b a b -⋅+=.
(1)求a b ⋅的值; (2)求||a b +的值.
22.选修4-5:不等式选讲
已知函数()()R a x a x x f ∈---=12. (Ⅰ)当a=3时,求函数()x f 的最大值; (Ⅱ)解关于x 的不等式()0≥x f 23.选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合, 极轴与直角坐标系的x 轴的正半轴重合, 设点O 为
坐标原点, 直线:22x t l y t
=⎧⎨=+⎩(参数t R ∈)与曲线C 的极坐标方程为2
cos 2sin ρθθ=.
(1)求直线l 与曲线C 的普通方程;
(2)设直线l 与曲线C 相交于A 、B 两点, 证明:0OA OB ⋅=.
第5页共2页◎第6页共2页。