高中数学:2-2-4《点到直线距离》学案(新人教A版必修2)
高中二年级数学人教A版必修二“点到直线的距离”【教学设计】
1.联系两点间距离公式的推导思路及公式推导的几何意义看点到直线距离公式的推导。
2.数形结合中对图的运用。
3.对建立直角三角形,运用勾股定理、等积法模型的熟悉程度。
4.对公式的理解,包括公式的特征及应用。
5.练习的完成程度。
1.解决问题思路多样性。
2.表述思路完整、有逻辑、表达清晰。
3.讨论积极主动,善于发现讨论过程中的问题。
4.课堂积极参与,提出问题。
1.生生互动,同学互相评价,提出问题。
2.师生互动,老师引导及最后补充和总结。
【温习旧知,建立新概念】1.回顾两点间的距离公式及公式推导的几何意义。
2.提出问题:“在铁路的附近,有一大型仓库。
现在要修建一条公路与之连接起来,那么怎样设计使公路最短?最短路程又是多少?”,根据学生已有的知识得到点到直线的距离的定义。
【设计意图】1.回顾两点间的距离公式及公式推导的几何意义,引导学生带着学过的知识看新的问题,进行知识迁移。
2.明确概念,增加学生探索新知的兴趣。
3.引导学生熟悉本堂内容与前沿知识的联系。
【学习目标,明确方向】1.展示本节课的学习目标:1、掌握点到直线的距离公式的推导过程。
2、能用点到直线的距离公式进行计算。
【设计意图】1.有利于学生后来有目的、有方向地学习,明确点到直线距离公式学习中的学习目标,调动积极性和主动性。
【讨论特例,得到思路】1.给出不含参数的特例题:已知点P(-1,2)和直线l:2x+y-10=0,求P点到直线l的距离。
让学生小组讨论得出思路。
2.学生对讨论出的思路进行评价,老师引导及最后补充和总结,思路不唯一。
【设计意图】1.由一道不含参的特例题引导学生得到解题思路,由易到难,保护学生兴趣,让更多的学生可以参与。
【特殊到一般,特例题的推广】1.从特殊到一般,将不含参的题目中已有的思路推广到一般情况。
2.重思路,轻计算。
让学生讲解自己的思路,如何得到各数据,但不计算,直接给出。
【设计意图】1.从特殊到一般,让学生更容易接受含参的问题。
山东省临清实验高中高中数学 3.3.3点到直线的距离和两条平行直线间的距离教案 新人教A版必修2
3.3.3 点到直线的距离【教学目标】1.让学生掌握点到直线的距离公式,并会求两条平行线间的距离.2.引导学生构思距离公式的推导方案,培养学生观察、分析、转化、探索问题的能力,鼓励创新.培养学生勇于探索、善于研究的精神,学会合作.【重点难点】教学重点:点到直线距离公式的推导和应用.教学难点:对距离公式推导方法的感悟与数学模型的建立.【教学过程】 导入新课思路1.点P(0,5)到直线y=2x 的距离是多少?更进一步在平面直角坐标系中,如果已知某点P 的坐标为(x 0,y 0),直线l 的方程是Ax+By+C=0,怎样由点的坐标和直线的方程直接求点P 到直线l 的距离呢?这节课我们就来专门研究这个问题.思路2.我们已学习了两点间的距离公式,本节课我们来研究点到直线的距离.如图1,已知点P(x 0,y 0)和直线l:Ax+By+C=0,求点P 到直线l 的距离(为使结论具有一般性,我们假设A 、B≠0).图1新知探究 提出问题①已知点P(x 0,y 0)和直线l:Ax+By+C=0,求点P 到直线l 的距离.你最容易想到的方法是什么?各种做法的优缺点是什么?②前面我们是在A 、B 均不为零的假设下推导出公式的,若A 、B 中有一个为零,公式是否仍然成立?③回顾前面证法一的证明过程,同学们还有什么发现吗?(如何求两条平行线间的距离) 活动:①请学生观察上面三种特殊情形中的结论:(ⅰ)x 0=0,y 0=0时,d=22||BA C +;(ⅱ)x 0≠0,y 0=0时,d=220||BA C Ax ++;(ⅲ)x 0=0,y 0≠0时,d=220||BA C By ++.观察、类比上面三个公式,能否猜想:对任意的点P(x 0,y 0),d=? 学生应能得到猜想:d=2200||BA C By Ax +++.启发诱导:当点P 不在特殊位置时,能否在距离不变的前提下适当移动点P 到特殊位置,从而可利用前面的公式?(引导学生利用两平行线间的距离处处相等的性质,作平行线,把一般情形转化为特殊情形来处理)证明:设过点P 且与直线l 平行的直线l 1的方程为Ax+By+C 1=0,令y=0,得P′(AC 1-,0). ∴P′N=221221|||)(|B A C C B A C A C A +-=++-•.(*)∵P 在直线l 1:Ax+By+C 1=0上, ∴Ax 0+By 0+C 1=0.∴C 1=-Ax 0-By 0. 代入(*)得|P′N|=2200||BA By Ax C +++即d=2200||BA C By Ax +++,.以验证,当A=0或B=0时,上述公式也成立.③引导学生得到两条平行线l 1:Ax+By+C 1=0与l 2:Ax+By+C 2=0的距离d=2221||BA C C +-.证明:设P 0(x 0,y 0)是直线Ax+By+C 2=0上任一点,则点P 0到直线Ax+By+C 1=0的距离为d=2200||BA C By Ax +++.又Ax 0+By 0+C 2=0,即Ax 0+By 0=-C 2,∴d=2221||BA C C +-.讨论结果:①已知点P(x 0,y 0)和直线l:Ax+By+C=0,求点P 到直线l 的距离公式为d=2200||BA C By Ax +++.②当A=0或B=0时,上述公式也成立.③两条平行线Ax+By+C 1=0与Ax+By+C 2=0的距离公式为d=2221||BA C C +-.应用示例例1 求点P 0(-1,2)到下列直线的距离:(1)2x+y-10=0;(2)3x=2.解:(1)根据点到直线的距离公式得d=5251012|102)1(2|22==+-+-⨯.(2)因为直线3x=2平行于y 轴,所以d=|32-(-1)|=35. 点评:例1(1)直接应用了点到直线的距离公式,要求学生熟练掌握;(2)体现了求点到直线距离的灵活性,并没有局限于公式.变式训练点A(a ,6)到直线3x -4y=2的距离等于4,求a 的值.解:2243|2643|+-⨯-a =4⇒|3a-6|=20⇒a=20或a=346. 例2 已知点A (1,3),B(3,1),C(-1,0),求△ABC 的面积. 解:设AB 边上的高为h ,则S △ABC =21|AB|·h. |AB|=22)31()13(22=-+-, AB 边上的高h 就是点C 到AB 的距离. AB 边所在的直线方程为131313--=--x y ,即x+y-4=0. 点C 到x+y-4=0的距离为h=2511|401|22=+-+-,因此,S △ABC =21×2522⨯=5. 点评:通过这两道简单的例题,使学生能够进一步对点到直线的距离理解应用,能逐步体会用代数运算解决几何问题的优越性.变式训练 求过点A(-1,2),且与原点的距离等于22的直线方程. 解:已知直线上一点,故可设点斜式方程,再根据点到直线的距离公式,即可求出直线方程为x +y -1=0或7x +y +5=0.例3 求平行线2x-7y+8=0和2x-7y-6=0的距离.解:在直线2x-7y-6=0上任取一点,例如取P(3,0),则点P(3,0)到直线2x-7y+8=0的距离就是两平行线间的距离.因此, d=5353145314)7(2|80732|22==-++⨯-⨯. 点评:把求两平行线间的距离转化为点到直线的距离. 变式训练求两平行线l 1:2x+3y-8=0,l 2:2x+3y-10=0的距离.答案:1332.解:点O(0,0)关于直线l:2x-y+1=0的对称点为O′(-54,52), 则直线MO′的方程为y-3=413x. 直线MO′与直线l:2x-y+1=0的交点P(511,158--)即为所求, 相应的||PO|-|PM||的最大值为|MO′|=5185. 课堂小结通过本节学习,要求大家:1.掌握点到直线的距离公式,并会求两条平行线间的距离.2.构思距离公式的推导方案,培养学生观察、分析、转化、探索问题的能力,鼓励创新.培养学生勇于探索、善于研究的精神,学会合作.3.本节课重点讨论了平面内点到直线的距离和两条平行线之间的距离,后者实际上可作为前者的变式应用.当堂检测 导学案当堂检测 【板书设计】一、点到直线距离公式 二、例题 例1 变式1 例2 变式2【作业布置】课本习题3.3 A 组9、10;B 组2、4及导学案课后练习与提高学校--临清实高学科--数学 编写人—张子云 审稿人--周静3.3.3 点到直线的距离课前预习学案一、预习目标让学生掌握点到直线的距离公式,并会求两条平行线间的距离二、学习过程预习教材P 117~ P 119,找出疑惑之处问题1.已知平面上两点(0,3),(2,1)A B -,则AB 的中点坐标为 ,AB 间的长度为 .问题2.在平面直角坐标系中,如果已知某点P 的坐标为00(,)x y ,直线l 的方程是:0l Ax By C ++=,怎样用点的坐标和直线的方程直接求点P 到直线l 的距离呢?5分钟训练1.点(0,5)到直线y=2x 的距离是( )A.25 B.5 C.23D.252.两条平行直线3x+4y-2=0,3x+4y-12=0之间的距离为________________.3.已知点(a,2)(a >0)到直线l :x-y+3=0的距离为1,则a 的值等于( ) A.2 B.22- C.12- D.12+答案:C 三.提出疑惑同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中疑惑点疑惑内容课内探究学案 一、学习目标1.理解点到直线距离公式的推导,熟练掌握点到直线的距离公式; 2.会用点到直线距离公式求解两平行线距离3.认识事物之间在一定条件下的转化.用联系的观点看问题 学习重点:点到直线距离公式的推导和应用.学习难点:对距离公式推导方法的感悟与数学模型的建立 二、学习过程知识点1:已知点00(,)P x y 和直线:0l Ax By C ++=,则点P 到直线l 的距离为:0022Ax By C d A B++=+.注意:⑴点到直线的距离是直线上的点与直线外一点的连线的最短距离; ⑵在运用公式时,直线的方程要先化为一般式.问题1:在平面直角坐标系中,如果已知某点P 的坐标为00(,)x y ,直线方程0:=++C By Ax l 中,如果0A =,或0B =,怎样用点的坐标和直线的方程直接求点P 到直线l 的距离呢并画出图形来.例 分别求出点(0,2),(1,0)A B -到直线341x y -- 0=的距离.问题2:求两平行线1l :2380x y +-=,2l :23x y + 10-=的距离.知识点2:已知两条平行线直线1l 10Ax By C ++=,2:l20Ax By C ++=,则1l 与2l 的距离为d =注意:应用此公式应注意如下两点:(1)把直线方程化为一般式方程;(2)使,x y 的系数相等.典型例题例1 求点P 0(-1,2)到下列直线的距离: (1)2x+y-10=0;(2)3x=2.变式训练点A(a ,6)到直线3x -4y=2的距离等于4,求a 的值.例2 已知点A(1,3),B(3,1),C(-1,0),求△ABC 的面积变式训练求两平行线l 1:2x+3y-8=0,l 2:2x+3y-10=0的距离当堂检测课本本节练习. 拓展提升 问题:已知直线l:2x-y+1=0和点O(0,0)、M(0,3),试在l 上找一点P ,使得||PO|-|PM||的值最大,并求出这个最大值. .学习小结1. 点到直线距离公式的推导过程,点到直线的距离公式,能把求两平行线的距离转化为点到直线的距离公式课后巩固练习与提高30分钟训练1.点(3,2)到直线l :x-y+3=0的距离为( )A.24B.2C.22D.3 2.点P(m-n,-m)到直线nym x +=1的距离为( ) A.22n m + B.22n m - C.22n m +-D.22n m ±3.点P 在直线x+y-4=0上,O 为坐标原点,则|OP|的最小值为( ) A.13 B.22 C.6 D.24.到直线2x+y+1=0的距离为55的点的集合为( ) A.直线2x+y-2=0 B.直线2x+y=0C.直线2x+y=0或直线2x+y-2=0D.直线2x+y=0或直线2x+y+2=0 5.若动点A 、B 分别在直线l 1:x+y-7=0和l 2:x+y-5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A.23B.22C.33D.24 6.两平行直线l 1、l 2分别过点P 1(1,0)、P 2(1,5),且两直线间的距离为5,则两条直线的方程分别为l 1:_________________,l 2:_______________.7.已知直线l 过点A(-2,3),且点B(1,-1)到该直线l 的距离为3,求直线l 的方程. 8.已知直线l 过点(1,1)且点A(1,3)、B(5,-1)到直线l 的距离相等,求直线l 的方程. 9.已知三条直线l 1:2x-y+a=0(a >0),直线l 2:4x-2y-1=0和直线l 3:x+y-1=0,且l 1与l 2的距离是5107. (1)求a 的值.(2)能否找到一点P,使得P 点同时满足下列3个条件:①P 是第一象限的点;②P 点到l 1的距离是P 到l 2的距离的21;③P 点到l 1的距离与P 点到l 3的距离之比是5:2?若能,求P 点的坐标;若不能,请说明理由.参考答案1.解析:由点到直线的距离公式可得d=222|323|=+-.答案:C 2.解析:⇒=+1nym x nx+my-mn=0,由点到直线的距离公式,得 222222222|||)(|n m n m m n n m mn m n m n +=+--=+---.答案:A3.解析:根据题意知|OP|最小时,|OP|表示原点O 到直线x+y-4=0的距离.即根据点到直线的距离公式,得2224=.答案:B4.解析:根据图形特点,满足条件的点的集合为直线,且该直线平行于直线2x+y+1=0,且两直线间的距离为55.设所求直线的方程为2x+y+m=0,根据平行线间的距离公式,得⇒=-555|1|m |m-1|=1,解得m=2或m=0 故所求直线的方程为2x+y=0或2x+y+2=0. 答案:D8.解:直线l 平行于直线AB 时,其斜率为k=k AB =1531---=-1, 即直线方程为y=-(x-1)+1⇒x+y-2=0;直线l 过线段AB 的中点M(2,1)时也满足条件,即直线l 的方程为y=1.综上,直线l 的方程为x+y-2=0或y=1.9.解:(1)根据题意得:l 1与l 2的距离d=⇒=+⇒=+27|21|51075|21|a a a=3或a=-4(舍).(2)设P 点坐标为(x 0,y 0),则x 0>0,y 0>0.若P 点满足条件②,则2×⇒--=+-5|212|5|32|0000y x y x |8x 0-4y 0+12|=|4x 0-2y 0-1|,8x 0-4y 0+12=4x 0-2y 0-1或8x 0-4y 0+12=-(4x 0-2y 0-1)⇒4x 0-2y 0+13=0或12x 0-6y 0+11=0; ①若P 点满足条件③, 则⇒--⨯=+-⨯2|12|25|32|20000y x y x |2x 0-y 0+3|=|x 0+y 0-1|,2x 0-y 0+3=x 0+y 0-1或2x 0-y 0+3=-(x 0+y 0-1),x 0-2y 0+4=0或3x 0+2=0; ②由①②得⎩⎨⎧=+=+-⎩⎨⎧=+=+-⎩⎨⎧=+-=+-023,011612023,01324042,013240000000000x y x x y x y x y x 或或⎩⎨⎧=+-=+-.042,0116120000y x y x 或解得⎪⎪⎩⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧=-=⎪⎩⎪⎨⎧=-=.1837,9121,32631,3221,300000000y x y x y x y x 或或或故满足条件的点P 为(-3,21)或(631,32-)或(21,32-)或(1837,91).。
人教A版高中数学必修二3.3.3-点到直线的距离公式-教案课件
y
P L
Q PN
o
x
MQ
求点P(x0,y0)到直线L:Ax+By+C=0的距离
课题引入 课题解决 例题练习 小结作业
(1) 特殊直线时;
y
(2) 一般直线时;
特殊点P(0,0): 方案1: 面积法求|PQ|
P L
方案2: Rt相似
P N
方案3: 解直角三角形
o
(利用倾斜角及三角同角关系) M
Q
x
一般点P(x0,y0):
(1)2x+y-10=0 (2)3x-2=0 (3)2y+3=0 2.已知点A(a,b)到直线3x-4y=2的距离取下列各值,求的
值(1)d=4 (2)d>4 3.与直线7x+24y=5平行,并且距离等于3的直线方程为: 4.已知点(a,2),(a>0)到直线x-y+3=0的距离为1,则a等
于: 5.求两条平行线2x+y-10=0和4x+2y+3=0的距离
L
x
求点P(x0,y0)到直线L:Ax+By+C=0的距离
课题引入 课题解决 例题练习 小结作业 1. 求|PM|;
2. ∠P与倾斜角的关系; y ∠P = 或 -
3.解Rt△PMQ,求|PQ|。
| PQ| | Ax0 By0 C |
A2 B2
o
(cos | B | | PD|)
A2 B2 | PN |
返回
创设情景
铁路
建模
点到直线的距离
y
l : Ax+By+C=0
. P(x0,y0)
仓库
o
x
几何画板动态演示
新教材高中数学第二章 点到直线的距离公式 两条平行线间距离学案人教A版选择性必修第一册
两条平行线间距离【学习目标】1.点到直线的距离(1)概念:过一点向直线作垂线,则该点与之间的距离,就是该点到直线的距离. (2)公式:点P (x 0,y 0)到直线l :Ax +By +C =0的距离d =. 2.两平行直线间的距离(1)概念:夹在两条平行直线间的公垂线段的长度就是两条平行直线间的距离. (2)公式:两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0之间的距离d =. 思考1:在使用点到直线距离公式时对直线方程有什么要求? 思考2:在应用两条平行线间的距离公式时对直线方程有什么要求? 【小试牛刀】1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)点P (x 0,y 0)到与x 轴平行的直线y =b (b ≠0)的距离d =y 0-b .( ) (2)点P (x 0,y 0)到与y 轴平行的直线x =a (a ≠0)的距离d =|x 0-a |.( ) (3)两直线x +y =m 与x +y =2n 的距离为|m -2n |2.( )2.原点到直线x +2y -5=0的距离为( ) A .1 B.3C .2 D. 53.两条平行线l 1:3x +4y -7=0和l 2:3x +4y -12=0的距离为( ) A .3 B .2 C .1 D .12【经典例题】题型一 点到直线的距离注意:应用点到直线的距离公式应注意的三个问题 (1)直线方程应为一般式,若给出其他形式应化为一般式.(2)点P 在直线l 上时,点到直线的距离为0,公式仍然适用.(3)直线方程Ax +By +C =0中,A =0或B =0公式也成立,但由于直线是特殊直线(与坐标轴垂直),故也可用数形结合求解.例1 求点P (3,-2)到下列直线的距离: (1)y =34x +14;(2)y =6;(3)x =4.[跟踪训练]1 已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a =( ) A. 2 B .2- 2 C.2-1 D.2+1题型二 两平行线间的距离注意:求两平行线间的距离,一般是直接利用两平行线间的距离公式,当直线l 1:y =kx +b 1,l 2:y =kx +b 2,且b 1≠b 2时,d =|b 1-b 2|k 2+1;当直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0且C 1≠C 2时,d =|C 1-C 2|A 2+B 2. 但必须注意两直线方程中x ,y 的系数对应相等.例2 两直线3x +y -3=0和6x +my -1=0平行,则它们之间的距离为________.例3 直线l 1过点A (0,1),l 2过点B (5,0),如果l 1∥l 2,且l 1到l 2的距离为5,求l 1,l 2的方程.[跟踪训练]2 求与直线l :5x -12y +6=0平行且与直线l 距离为3的直线方程.题型三 距离公式的综合应用例4 已知正方形的中心为直线2x -y +2=0,x +y +1=0的交点,正方形一边所在的直线l 的方程为x +3y -5=0,求正方形其他三边所在直线的方程.[跟踪训练]3 求过点(3,5)的所有直线中,距原点最远的直线方程.【当堂达标】1.点(5,-3)到直线x+2=0的距离等于( )A.7 B.5 C.3 D.22.两条平行线l1:3x+4y-2=0,l2:9x+12y-10=0间的距离等于( )A.75B.715C.415D.233.光线从点A(-3,5)射到x轴上,经反射以后经过点B(2,10),则光线从A到B的距离为( ) A.5 2 B.2 5 C.510 D.10 54.已知两点A(-3,-2)和B(-1,4)到直线x+ay+1=0的距离相等,则实数a为________.5.已知直线l经过点(-2,3),且原点到直线l的距离等于2,求直线l的方程.【参考答案】【自主学习】垂足|Ax 0+By 0+C |A 2+B 2|C 1-C 2|A 2+B 2要求直线的方程应化为一般式.两条平行直线的方程都是一般式,且x , y 对应的系数应分别相等. 【小试牛刀】1.(1)× (2)√ (3)√2. D 解析:利用点到直线的距离公式可得:原点到直线x +2y -5=0的距离d =|0+0-5|12+22= 5. 3. C [d =|-7-(-12)|32+42=1.] 【经典例题】例1 解 (1)把方程y =34x +14写成3x -4y +1=0,由点到直线的距离公式得d =|3×3-4×(-2)+1|32+(-4)2=185. (2)法一:把方程y =6写成0·x +y -6=0,由点到直线的距离公式得d =|0×3+(-2)-6|02+12=8. 法二:因为直线y =6平行于x 轴,所以d =|6-(-2)|=8. (3)因为直线x =4平行于y 轴,所以d =|4-3|=1. [跟踪训练]1 C 解析 由点到直线的距离公式得:|a -2+3|12+(-1)2=|a +1|2=1,∴|a +1|= 2. ∵a >0,∴a =2-1.故选C.例2 由题意,得63=m1,∴m =2,将直线3x +y -3=0化为6x +2y -6=0,由两平行线间距离公式,得|-1+6|62+22=540=104. [跟踪训练]2[解] ∵与l 平行的直线方程为5x -12y +b =0, 根据两平行直线间的距离公式得|b -6|52+(-12)2=3,解得b =45或b =-33.所以所求直线方程为:5x -12y +45=0,或5x -12y -33=0. 例3 解 (1)若l 1,l 2的斜率存在,设斜率为k , 由斜截式得l 1的方程为y =kx +1,即kx -y +1=0, 由点斜式可得l 2的方程为y =k (x -5),即kx -y -5k =0,则点A 到直线l 2的距离d =|1+5k |1+k2=5,∴25k 2+10k +1=25k 2+25,∴k =125. ∴l 1的方程为12x -5y +5=0,l 2的方程为12x -5y -60=0.(2)若l 1,l 2的斜率不存在,则l 1的方程为x =0,l 2的方程为x =5,它们之间的距离为5,同样满足条件. 综上,满足条件的直线方程有两组:l 1:12x -5y +5=0,l 2:12x -5y -60=0或l 1:x =0,l 2:x =5.例4 解 设与直线l :x +3y -5=0平行的边所在的直线方程为l 1:x +3y +c =0(c ≠-5).由⎩⎪⎨⎪⎧2x -y +2=0,x +y +1=0,得正方形的中心坐标为P (-1,0), 由点P 到两直线l ,l 1的距离相等,得|-1-5|12+32=|-1+c |12+32,得c =7或c =-5(舍去).∴l 1:x +3y +7=0.又正方形另两边所在直线与l 垂直,∴设另两边所在直线的方程分别为3x -y +a =0,3x -y +b =0. ∵正方形中心到四条边的距离相等, ∴|-3+a |32+(-1)2=|-1-5|12+32,得a =9或a =-3, ∴另两条边所在的直线方程分别为3x -y +9=0,3x -y -3=0.∴另三边所在的直线方程分别为3x -y +9=0,x +3y +7=0,3x -y -3=0.[跟踪训练]3 解 设过点(3,5)的直线方程为y -5=k (x -3)或x =3.对于y -5=k (x -3), 原点(0,0)到它的距离d =|3k -5|k 2+1,化简整理得(9-d 2)k 2-30k +25-d 2=0.当9-d 2≠0时,因k ∈R ,∴Δ=(-30)2-4(9-d 2)(25-d 2)≥0.解得0≤d ≤34(且d ≠3). 对于x =3,原点到它的距离d =3.因此,过点(3,5)的所有直线与原点的距离d ∈[0,34].故d max =34,当d =34时,|3k -5|k 2+1=34,解得k =-35.故所求直线方程为:y -5=-35(x -3),即3x +5y -34=0. 【当堂达标】1. A [直线x +2=0,即x =-2为平行于y 轴的直线,所以点(5,-3)到x =-2的距离d =|5-(-2)|=7.]2. C 解析 l 1的方程可化为9x +12y -6=0,由平行线间的距离公式得d =|-6+10|92+122=415. 3.C 解析 ∵点A 关于x 轴的对称点为A ′(-3,-5),∴|A ′B |=(-3-2)2+(-5-10)2=510,由光的反射理论可知,此即为光线从A 到B 的距离.4. 1或-13解析 ∵两点A (-3,-2),B (-1,4)到直线l :x +ay +1=0的距离相等,∴|-3-2a +1|a 2+1=|-1+4a +1|a 2+1,化为|2a +2|=|4a |.∴2a +2=±4a ,解得a =1或-13.5. 解 当直线l 的斜率不存在时,直线的方程为x =-2,符合原点到直线l 的距离等于2. 当直线l 的斜率存在时,设所求直线l 的方程为y -3=k (x +2),即kx -y +2k +3=0,由d =|0-0+2k +3|1+k 2=2, 得k =-512,即直线l 的方程为5x +12y -26=0.。
人教A版选择性必修第一册2.3.3点到直线的距离公式学案
2.3.3 点到直线的距离公式 导学目标 1.经历用坐标法、向量法推导点到直线的距离公式的运算过程,发展数学运算与逻辑推理素养.2.掌握点到直线的距离公式,并能灵活应用.导语距离问题是几何学的基本问题之一,上节课我们学习了两点间的距离公式,知道两点间的距离可以由两点坐标表示.在平面直角坐标系中,我们用坐标描述点,用方程刻画直线,当点与直线的位置确定后,点到直线的距离可以由点的坐标与直线的方程确定,如何确定呢?一、点到直线距离公式的推导问题1 如图,平面直角坐标系中,已知点P (x 0,y 0),直线l :Ax +By +C =0(A ≠0,B ≠0),怎样求出点P 到直线l 的距离呢?提示 根据定义,点P 到直线l 的距离是点P 到直线l 的垂线段的长,如图,设点P 到直线l 的垂线为l ′,垂足为Q ,由l ′⊥l 可知l ′的斜率为B A,∴l ′的方程为y -y 0=B A(x -x 0),与l 联立方程组, 解得交点Q ⎝ ⎛⎭⎪⎫B 2x 0-ABy 0-AC A 2+B 2,A 2y 0-ABx 0-BC A 2+B 2, ∴|PQ |=|Ax 0+By 0+C |A 2+B 2. 问题2 上述推导过程有什么特点?反思求解过程,你能发现出现这种状况的原因吗? 提示 推导过程思路自然,但运算量较大,一是求点Q 的坐标复杂,二是代入两点间的距离公式化简复杂.问题3 向量是解决空间距离、角度问题的有力工具,怎样用向量方法求点到直线的距离呢?提示 PQ →可以看作PM →在直线l 的垂线上的投影向量,直线l :Ax +By +C =0(AB ≠0)的斜率为-A B, 所以m =(B ,-A )是它的一个方向向量.(1) 由向量的数量积运算可求得与直线l 垂直的一个单位向量n =1A 2+B2(A ,B ). (2) 在直线l 上任取点M (x ,y ),可得向量PM →=(x -x 0,y -y 0).(3) |PQ |=|PQ →|=|PM →·n |=|Ax 0+By 0+C |A 2+B 2. 知识梳理距离公式:d =|Ax 0+By 0+C |A 2+B 2. 注意点:(1)利用公式时直线的方程必须是一般式;(2)分子含有绝对值;(3)若直线方程为Ax +By +C =0,则当A =0或B =0时公式也成立,但由于直线是特殊直线(与坐标轴垂直),故也可用数形结合求解.二、点到直线距离公式的简单应用例1 (1)点P (-1,2)到直线2x +y -10=0的距离为________.(2)已知坐标平面内两点A (3,2)和B (-1,4)到直线mx +y +3=0的距离相等,则实数m 的值等于________.★lx 资源-[答案](1)25 (2)-6或12★lx 资源-[解析](1)由点到直线的距离公式得 |-1×2+2×1-10|22+12=2 5. (2)依题意得|3m +2+3|m 2+1=|-m +4+3|m 2+1, ∴|3m +5|=|m -7|,∴3m +5=m -7或3m +5=7-m ,∴m =-6或m =12. 反思感悟 点到直线的距离的求解方法(1)求点到直线的距离时,只需把直线方程化为一般式,直接利用点到直线的距离公式即可.(2)若已知点到直线的距离求参数值时,只需根据点到直线的距离公式列出关于参数的方程(组)即可.加固检验1 (多选)若点P (3,a )到直线x +3y -4=0的距离为1,则a 的值为( ) A.3B .-3C.33D .-33★lx 资源-[答案]AD★lx 资源-[解析]由题意得|3+3a -4|1+3=|3a -1|2=1, 解得a =3或a =-33. 三、点到直线距离公式的综合应用例2 已知点P (2,-1),求过点P 且与原点距离为2的直线l 的方程.解 当直线l 的斜率不存在时,直线l 的方程为x =2,符合题意.当直线l 的斜率存在时,设直线l 的方程为y +1=k (x -2),即kx -y -2k -1=0,由点到直线的距离公式得|-2k -1|1+k2=2, 解得k =34, 所以直线l 的方程为3x -4y -10=0.故直线l 的方程为x =2或3x -4y -10=0.延伸探究 求过点P (2,-1)且与原点距离最大的直线l 的方程,最大距离是多少? 解 设原点为O ,连接OP (图略),易知过点P 且与原点距离最大的直线是过点P 且与PO 垂直的直线.由l ⊥OP ,得k l ·k OP =-1,所以k l =-1k OP=2. 所以直线l 的方程为y +1=2(x -2),即2x -y -5=0,即直线2x -y -5=0是过点P 且与原点距离最大的直线,最大距离为|-5|5= 5. 反思感悟 解决有限条件的点到直线的距离的问题需注意分类讨论,利用数形结合的思想,直观地观察一些量的变化,从而达到解决问题的目的.加固检验2 已知直线l 过点M (-1,2),且点A (2,3),B (-4,5)到l 的距离相等,求直线l 的方程.解 方法一 当过点M (-1,2)的直线l 的斜率不存在时,直线l 的方程为x =-1, 此时点A (2,3)与点B (-4,5)到直线l 的距离相等,故x =-1满足题意;当过点M (-1,2)的直线l 的斜率存在时,设l 的方程为y -2=k (x +1),即kx -y +k +2=0.由点A (2,3)与B (-4,5)到直线l 的距离相等, 得|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1, 解得k =-13, 此时l 的方程为y -2=-13(x +1),即x +3y -5=0. 综上所述,直线l 的方程为x =-1或x +3y -5=0.方法二 由题意得l ∥AB 或l 过线段AB 的中点.当l ∥AB 时,设直线AB 的斜率为k AB ,直线l 的斜率为k l ,则k l =k AB =5-3-4-2=-13, 此时直线l 的方程为y -2=-13(x +1), 即x +3y -5=0.当l 过AB 的中点(-1,4)时,直线l 的方程为x =-1.综上所述,直线l 的方程为x =-1或x +3y -5=0.1.知识清单:(1) 点到直线的距离公式的推导过程;(2) 点到直线的距离公式d =|Ax 0+By 0+C |A 2+B2; (3) 公式的应用.2.方法归纳:公式法、数形结合.3.常见误区:设直线方程忽略斜率是否存在.1.原点到直线x +2y -5=0的距离为( )A .1B.3C .2D. 5★lx 资源-[答案]D2.(多选)已知点M (1,4)到直线l :mx +y -1=0的距离为3,则实数m 等于( )A .0B.34C .3D .2 ★lx 资源-[答案]AB★lx 资源-[解析]点M 到直线l 的距离d =|m +4-1|m 2+1=3, 所以m =0或34. 3.已知点M (1,2),点P (x ,y )在直线2x +y -1=0上,则|MP |的最小值是( )A.10B.355C. 6D .3 5★lx 资源-[答案]B★lx 资源-[解析]点M 到直线2x +y -1=0的距离,即为|MP |的最小值,所以|MP |的最小值为|2+2-1|22+12=355. 4.已知直线l 经过点(-2,3),且原点到直线l 的距离等于2,则直线l 的方程为__________. ★lx 资源-[答案]x +2=0或5x +12y -26=0★lx 资源-[解析]当直线l 的斜率不存在时,直线l 的方程为x =-2,符合原点到直线l 的距离等于2.当直线l 的斜率存在时,设所求直线l 的方程为y -3=k (x +2),即kx -y +2k +3=0,由d =|0-0+2k +3|1+k2=2, 得k =-512,即直线l 的方程为5x +12y -26=0. 综上,直线l 的方程为x +2=0或5x +12y -26=0.。
人教版数学高一-人教A版高一数学必修二3.3《点到直线的距离》教案 王红敢
教案课题:点到直线的距离教材:人教版全日制普通高级中学教科书(必修)《数学》第二册(上)第七章第3节教学目标:(1)至少掌握点到直线的距离公式的一种推导方法,能用公式来求点到直线距离。
(2)培养学生探究能力和由特殊到一般的研究问题的能力。
(3)认识事物(知识)之间相互联系、互相转化的辩证法思想,培养学生转化的思想和综合应用知识分析问题解决问题的能力。
(4)培养学生团队合作精神,培养学生个性品质,培养学生勇于探究的科学精神。
教学重点:点到直线的距离公式推导及公式的应用教学难点:点到直线的距离公式的推导教学方法:启发引导法、讨论法学习方法:任务驱动下的研究性学习教学时间:45分钟教学过程:1 .教师提出问题,引发认知冲突(约5分钟)问题:假定在直角坐标系上,已知一个定点P(x0 ,y0)和一条定直线l:Ax+By+C=0,那么如何求点P到直线l的距离d?请学生思考并回答。
学生1:先过点P作直线l的垂线,垂足为Q,则|PQ|就是点P到直线l的距离d;然后用点斜式写出垂线方程,并与原直线方程联立方程组,此方程组的解就是点Q的坐标;最后利用两点间距离公式求出|PQ|。
接着,教师用投影出示下列5道题(尝试性题组),请5位学生上黑板练习(第(4)题请一位运算能力强的同学,其余学生在下面自己练习,每做完一题立即讲评):(1)求P(1,2)到直线l:x=3的距离d;(答案:d=2)(2)求P (x 0 ,y 0)到直线l :By+C=0(B ≠0)的距离d ;(答案:0C d y B=+) (3) 求P (x 0 ,y 0)到直线l :Ax+C=0(A ≠0)的距离d ;(答案:0C d x A =+) (4) 求P (6 ,7)到直线l :3x-4y+5=0的距离d ;(答案:d=1)(5) 求P (x 0 ,y 0)到直线l :Ax+By+C=0(AB ≠0)的距离d 。
第(1)容易、(2)和(3)题虽然含有字母参数,但由于直线的位置比较特殊,学生不难得出正确结论;第(4)题虽然运算量较大,但按照刚才学生1回答的方法与步骤,也能顺利解出正确答案;第(5)题虽然思路清晰,但由于字母参数过多、运算量太大行不通。
人教A版高中数学必修2第三章 直线与方程3.3 直线的交点坐标与距离公式导学案
直线的交点坐标与距离公式【学习目标】1.掌握解方程组的方法,求两条相交直线的交点坐标.2.掌握两点间距离公式,点到直线距离公式,会求两条平行直线间的距离. 【要点梳理】【高清课堂:两直线的交点与点到直线的距离381525 知识要点1】 要点一:直线的交点求两直线1111110(0)A x B y C A B C ++=≠与2222220(0)A x B y C A B C ++=≠的交点坐标,只需求两直线方程联立所得方程组11122200A xB yC A x B y C ++=⎧⎨++=⎩的解即可.若有111222A B C A B C ==,则方程组有无穷多个解,此时两直线重合;若有111222A B C A B C =≠,则方程组无解,此时两直线平行;若有1122A BA B ≠,则方程组有唯一解,此时两直线相交,此解即两直线交点的坐标.要点诠释:求两直线的交点坐标实际上就是解方程组,看方程组解的个数. 要点二:过两条直线交点的直线系方程一般地,具有某种共同属性的一类直线的集合称为直线系,它的方程叫做直线系方程,直线系方程中除含有,x y 以外,还有根据具体条件取不同值的变量,称为参变量,简称参数.由于参数取法不同,从而得到不同的直线系.过两直线的交点的直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=交点的直线方程为111222()0A x B y C A x B y C λ+++++=,其中λ是待定系数.在这个方程中,无论λ取什么实数,都得不到2220A x B y C ++=,因此它不能表示直线2l .要点三:两点间的距离公式两点111222()()P x y P x y ,,,间的距离公式为12PP =要点诠释:此公式可以用来求解平面上任意两点之间的距离,它是所有求距离问题的基础,点到直线的距离和两平行直线之间的距离均可转化为两点之间的距离来解决.另外在下一章圆的标准方程的推导、直线与圆、圆与圆的位置关系的判断等内容中都有广泛应用,需熟练掌握.要点四:点到直线的距离公式点00()P x y ,到直线0Ax By C ++=的距离为d =要点诠释:(1)点00()P x y ,到直线0Ax By C ++=的距离为直线上所有的点到已知点P 的距离中最小距离; (2)使用点到直线的距离公式的前提条件是:把直线方程先化为一般式方程;(3)此公式常用于求三角形的高、两平行线间的距离及下一章中直线与圆的位置关系的判断等.要点五:两平行线间的距离本类问题常见的有两种解法:①转化为点到直线的距离问题,在任一条直线上任取一点,此点到另一条直线的距离即为两直线之间的距离;②距离公式:直线10Ax By C ++=与直线20Ax By C ++=的距离为d =.要点诠释:(1)两条平行线间的距离,可以看作在其中一条直线上任取一点,这个点到另一条直线的距离,此点一般可以取直线上的特殊点,也可以看作是两条直线上各取一点,这两点间的最短距离;(2)利用两条平行直线间的距离公式2221||BA C C d +-=时,一定先将两直线方程化为一般形式,且两条直线中x ,y 的系数分别是相同的,才能使用此公式.【典型例题】类型一、判断两直线的位置关系例1.判断下列各组直线的位置关系,如果相交,求出相应的交点坐标:(1)5420220x y x y +-=⎧⎨++=⎩;(2)26301132x y y x -+=⎧⎪⎨=+⎪⎩;(3)2601132x y y x -=⎧⎪⎨=+⎪⎩.【答案】(1)1014,33⎛⎫-⎪⎝⎭;(2)重合;(3)平行. 【解析】(1)解方程组5420220x y x y +-=⎧⎨++=⎩得该方程组有唯一解103143x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以两直线相交,且交点坐标为1014,33⎛⎫-⎪⎝⎭. (2)解方程组2630 1132x y y x -+=⎧⎪⎨=+⎪⎩①② ②×6得2x -6y+3=0,因此①和②可以化成同一个方程,即方程组有无数组解,所以两直线重合.(3)解方程组260 1132x y y x -=⎧⎪⎨=+⎪⎩①② ②×6-①得3=0,矛盾,方程组无解,所以两直线无公共点,所以两直线平行.【总结升华】判断两直线的位置关系,关键是看两直线的方程组成的方程组的解的情况. 举一反三:【变式1】判断下列各对直线的位置关系,若相交,求出交点坐标:(1)l1:2x+y+3=0,l2:x―2y―1=0;(2)l1:x+y+2=0,l2:2x+2y+3=0;(3)l1:x―y+1=0;l2:2x―2y+2=0.【答案】(1)直线l1与l2相交,交点坐标为(―1,―1).(2)直线l1与l2无公共点,即l1∥l2.(3)两直线重合.类型二、过两条直线交点的直线系方程例2.求经过两直线2x―3y―3=0和x+y+2=0的交点且与直线3x+y―1=0平行的直线方程.【答案】15x+5y+16=0【解析】可先求出交点坐标,再根据点斜式求出所要求的直线方程;也可利用直线系(平行系或过定点系)求直线方程.解法一:设所求的直线为l,由方程组233020x yx y--=⎧⎨++=⎩得3575xy⎧=-⎪⎪⎨⎪=-⎪⎩.∵直线l和直线3x+y―1=0平行,∴直线l的斜率k=―3.∴根据点斜式有73355y x⎡⎤⎛⎫⎛⎫--=---⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,即所求直线方程为15x+5y+16=0.解法二:∵直线l过两直线2x―3y―3=0和x+y+2=0的交点,∴设直线l的方程为2x―3y―3+λ(x+y+2)=0,即(λ+2)x+(λ―3)y+2λ―3=0.∵直线l与直线3x+y-1=0平行,∴2323311λλλ+--=≠-,解得112λ=.从而所求直线方程为15x+5y+16=0.【总结升华】直线系是直线和方程的理论发展,是数学符号语言中一种有用的工具,是一种很有用的解题技巧,应注意掌握和应用.举一反三:【变式1】求证:无论m取什么实数,直线(2m―1)x+(m+3)y―(m―11)=0都经过一个定点,并求出这个定点的坐标.证法一:对于方程(2m―1)x+(m+3)y―(m―11)=0,令m=0,得x―3y―11=0;令m=1,得x+4y+10=0.解方程组31104100x yx y--=⎧⎨++=⎩,得两直线的交点为(2,―3).将点(2,―3)代入已知直线方程左边,得(2m―1)×2+(m+3)×(―3)―(m―11)=4m―2―3m―9―m+11=0.这表明不论m取什么实数,所给直线均经过定点(2,―3).证法二:将已知方程以m为未知数,整理为(2x+y―1)m+(―x+3y+11)=0.由于m取值的任意性,有2103110x yx y+-=⎧⎨-++=⎩,解得23xy=⎧⎨=-⎩.所以所给的直线不论m取什么实数,都经过一个定点(2,―3).类型三、对称问题例3.(2016秋 北京期中)求点A (3,―2)关于直线l :2x ―y ―1=0的对称点A '的坐标. 【思路点拨】设点A '的坐标为(m ,n ),求得A 'A 的中点B 的坐标并代入直线l 的方程得到①,再由线段A 'A 和直线l 垂直,斜率之积等于―1得到②,解①②求得m ,n 的值,即得点A '的坐标.【答案】134(,)55-【解析】设点A (3,―2)关于直线l :2x ―y ―1=0的对称点A '的坐标为(m ,n ), 则线段A 'A 的中点32(,)22m n B +-, 由题意得B 在直线l :2x ―y ―1=0上,故3221022m n +-⨯--= ① 再由线段A 'A 和直线l 垂直,斜率之积等于―1得22131n m +⨯=-- ②,解①②所成的方程组可得:134,55m n =-=, 故点A '的坐标为134(,)55-. 【总结升华】本题考查求一个点关于直线的对称点的坐标的方法,注意利用垂直及中点在轴上两个条件.例4.求直线x ―y ―2=0关于直线l :3x ―y+3=0对称的直线方程. 【答案】7x+y+22=0【解析】 解法一:由20330x y x y --=⎧⎨-+=⎩,得交点59,22P ⎛⎫-- ⎪⎝⎭,取直线x ―y ―2=0上一点A (0,―2),设点A 关于直线l :3x ―y+3=0的对称点为A '(x 0,y 0), 则根据'1AA l k k ⋅=-,且线段AA '的中点在直线l :3x ―y+3=0上,有00002310232022y x x y +⎧⨯=-⎪-⎪⎨-⎪⨯-+=⎪⎩,解得0031x y =-⎧⎨=-⎩. 故所求直线过点59,22⎛⎫-- ⎪⎝⎭与(―3,―1). ∴所求直线方程为95722x x ⎛⎫+=-+ ⎪⎝⎭. 即7x+y+22=0.解法二:设P (x ,y )为所求直线上任意一点,P 关于直线l :3x ―y+3=0的对称点P '(x ',y ').根据PP '⊥l 且线段PP '的中点在直线l 上,可得'31'''33022y yx x x x y y -⎧⨯=-⎪⎪-⎨++⎪⋅-+=⎪⎩,解得8618'10686'10x y x x y y -+-⎧=⎪⎪⎨++⎪=⎪⎩.又∵P '(x ',y ')在直线x ―y ―2=0上, ∴8618686201010x y x y -+-++--=,即7x+y+22=0.故所求直线方程为7x+y+22=0.【总结升华】 轴对称问题一般利用这两种方法求解,其中解法二是求轨迹方程的常用方法,称为代入法.举一反三: 【变式1】(1)求点P (x 0,y 0)关于直线x ―y+C=0的对称点坐标;(2)求直线l 1:Ax+By+C=0关于直线l 2:x+y ―3=0的对称直线l 3的方程. 【答案】(1)(y 0―C ,x 0+C );(2)Bx+Ay ―3A ―3B ―C=0.【高清课堂:两直线的交点与点到直线的距离381525 要点(二)中的例1】 【变式2】l 过点M(-2,1),且与点A(-1,2),B(3,0)的距离相等,求直线l 的方程.【答案】1y = 20x y += 【解析】法一:直线l 过AB 的中点(1,1),所以l 的方程为1y =. 直线//l AB ,则设l 的方程为1(2)y k x -=+ 则12k =-,所以l 的方程为:20x y += 法二:由题意知直线l 的斜率存在,设l 的方程为1(2)y k x -=+,则A 、B 两点到直线l 的距离=解得:10,2k k ==-所以l 的方程为:1y =和20x y +=类型四、两点间的距离 例5.已知点A (1,2),B (3,4),C (5,0),求证:△ABC 是等腰三角形. 【解析】 先分别求出三边之长,再比较三边的长短,最后下结论.∵||AB ==||AC ==||BC ==∴|AC|=|BC|.又∵A 、B 、C 三点不共线,∴△ABC 是等腰三角形.【总结升华】 利用两点间距离公式即可求出两点间的线段的长度,进而可解决相关问题,在运用两点间距离公式时只需将两点坐标代入公式即可.举一反三:【变式1】以点A (―3,0),B (3,―2),C (―1,2)为顶点的三角形是( )A .等腰三角形B .等边三角形C .直角三角形D .以上都不是 【答案】C【解析】22(33)236440210=--+=+==AB ,22(13)(22)16163242=--+--=+==BC ,22(13)2822=-++==AC ,∵222AC BC AB +=,∴△ABC 为直角三角形. 故选:C . 例6.已知直线l 过点P (3,1),且被两平行直线l 1:x+y+1=0,l 2:x+y+6=0截得的线段长为5,求直线l 的方程.【答案】y=1或x=3【解析】 设直线l 与直线l 1、l 2分别交于点A (x 1,y 1)、B (x 2、y 2),则11221060x y x y ++=⎧⎨++=⎩,两方程相减,得(x 1―x 2)+(y 1―y 2)=5, ①由已知及两点间距离公式,得(x 1―x 2)2+(y 1―y 2)2=25, ②由①②解得121250x x y y -=⎧⎨-=⎩或12125x x y y -=⎧⎨-=⎩,又点A (x 1,y 1)、B (x 2,y 2)在直线l 上,因此直线l 的斜率为0或不存在,又直线l 过点P (3,1),所以直线l 的方程为y=1或x=3.【总结升华】 从交点坐标入手,采用“设而不求”“整体代入”或“整体消元”的思想方法优化了解题过程.这种解题思想方法在解析几何中经常用到,是需要掌握的技能.另外,灵活运用图形中的几何性质,如对称,线段中垂线的性质等,同样是很重要的.举一反三:【变式1】如图,直线l 上有两点A 、B ,A 点和B 点的横坐标分别为x 1,x 2,直线l 方程为y=kx+b ,求A 、B 两点的距离.【答案】2222121||(1)()1||AB k x x k x x =+-=+-类型五、点到直线的距离例7. 在△ABC 中,A (3,3),B (2,―2),C (―7,1),求∠A 的平分线AD 所在直线的方程. 【答案】y x =【解析】 设M (x ,y )为∠A 的平分线AD 上的任意一点,由已知可求得AC 边所在直线的方程为x ―5y+12=0,AB 所在直线的方程为5x ―y ―12=0.由角平分线的性质得2626=,∴x ―5y+12=5x ―y ―12或x ―5y+12=y ―5x+12,即y=―x+6或y=x . 但结合图形(如图),可知k AC <k AD <k AB ,即155AD k <<, ∴y=-x+6不合题意,故舍去.故所求∠A 的平分线AD 所在直线的方程为y=x .【总结升华】 本例利用角的平分线上任意一点到角的两边的距离相等这一性质,创设了运用点到直线的距离公式的条件,从而得到角的平分线上任意一点的坐标(x ,y )所满足的方程,化简即得到所求的直线方程.由此可见,灵活运用点到直线的距离公式的关键在于创设出点到直线的距离这一条件.举一反三:【变式1】求点P 0(―1,2)到下列直线的距离: (1)2x+y ―10=0;(2)x+y=2;(3)y ―1=0.【答案】(1)2)2(3)1【解析】(1)根据点到直线的距离公式得d ===(2)直线方程可化为x+y ―2=0,所以d ==(3)因为直线y ―1=0平行于x 轴,所以d=|2―1|=1. 类型六、两平行直线间的距离例8.已知直线1l :ax +y +2=0(a ∈R ),(1)若直线1l 的倾斜角为120°,求实数a 的值; (2)若直线1l 在x 轴上的截距为2,求实数a 的值;(3)若直线1l 与直线2l :2x -y +1=0平行,求两平行线之间的距离.【思路点拨】(1)由题意可得tan120°=-a ,解方程可得;(2)令y =0,解得x 即直线1l 在x 轴上的截距,可得关于a 的方程,解方程可得;(3)由直线的平行关系可得a 值,代入两平行线之间的距离公式计算可得.【解析】(1)由题意可得tan120°=-a ,解得=a(2)令y =0,可得2=-x a ,即直线1l 在x 轴上的截距为22-=a,解得a =-1; (3)∵直线1l 与直线2l :2x -y +1=0平行, ∴a =-2,∴直线1l 的方程可化为2x ―y ―2=0=举一反三:【变式1】直线l 1过点A (0,1),l 2过点B (5,0),如果l 1∥l 2,且l 1与l 2的距离为5,求l 1、l 2的方程.【答案】12:12550:125600l x y l x y -+=⎧⎨--=⎩或12:0:5l x l x =⎧⎨=⎩.。
2020-2021学年数学人教A版必修2学案:3.3.1两条直线的交点坐标3.3.2两点间的距离
3.3 直线的交点坐标与距离公式3.3.1 两条直线的交点坐标3.3.2 两点间的距离[目标] 1.会用解方程组的方法求两条相交直线的交点坐标;2.会用代数方法判定两直线的位置关系;3.记住两点间的距离公式并会应用.[重点] 求两直线的交点坐标、两点间的距离公式及应用.[难点] 方程组解的个数与两线相交、平行或重合的对应关系的理解.知识点一 两条直线的交点坐标[填一填]1.求法:两直线方程联立组成方程组,此方程组的解就是这两条直线的交点坐标,因此解方程组即可.2.应用:可以利用两直线的交点个数判断两直线的位置关系. 一般地,将直线l 1:A 1x +B 1y +C 1=0和直线l 2:A 2x +B 2y +C 2=0的方程联立,得方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0. 当方程组有唯一解时,l 1和l 2相交,方程组的解就是交点坐标; 当方程组无解时,l 1与l 2平行;当方程组有无数组解时,l 1与l 2重合.[答一答]1.在下列直线中,与直线x +3y -4=0相交的直线为( C )A.x +3y =0B.y =-13x -12C.x 2+y 3=1D.y =-13x +4解析:A 、B 、D 选项的斜率都是-13,且与x +3y -4=0平行,C选项的斜率是-32,所以x 2+y 3=1与x +3y -4=0相交.2.若两直线的方程组成的方程组有解,两直线是否交于一点? 提示:不一定.两条直线是否交于一点,取决于联立两条直线方程所得的方程组是否有唯一解.若方程组有无穷多个解,则两条直线重合.知识点二 两点间的距离公式[填一填]1.公式:点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.2.文字叙述:平面内两点的距离等于这两点的横坐标之差与纵坐标之差的平方和的算术平方根.名师点拨:坐标平面内两点间的距离公式是数轴上两点间距离公式的推广.[答一答]3.两点间的距离公式中点P 1,P 2的位置有先后之分么?提示:点P 1,P 2的位置没有先后之分,即距离公式也可以写为|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2.4.对于两点P 1(x 1,y 1),P 2(x 2,y 2),当P 1P 2平行于x 轴时,如何求P 1,P 2的距离,当P 1P 2平行于y 轴时,如何求P 1,P 2的距离?提示:当P 1P 2平行于x 轴时,|P 1P 2|=|x 2-x 1|.当P 1P 2平行于y 轴时,|P 1P 2|=|y 1-y 2|.5.式子x 2+y 2的几何意义是什么?提示:x 2+y 2表示点(x ,y )与原点(0,0)的距离.类型一 求两条直线的交点[例1] (1)直线x +2y -4=0与直线2x -y +2=0的交点坐标是( )A.(2,0)B.(2,1)C.(0,2)D.(1,2) (2)两直线2x +3y -k =0与x -ky +12=0的交点在y 轴上,则k 的值为( )A.-24B.6C.±6D.24 [解析] (1)解方程组⎩⎨⎧ x +2y -4=0,2x -y +2=0,得⎩⎨⎧ x =0,y =2.即直线x +2y -4=0与直线2x -y +2=0的交点坐标是(0,2).(2)在2x +3y -k =0中,令x =0,得y =k 3,在x -ky +12=0中,令x =0,得y =12k ,所以12k =k 3,解得k =±6.[答案] (1)C (2)C解二元一次方程组的常用方法有代入消元法和加减消元法.(1)若一条直线的方程是斜截式,常常应用代入消元法解方程组.(2)若直线的方程都是一般式,常常应用加减消元法解方程组.[变式训练1] 判断下列各组直线的位置关系,如果相交,求出交点的坐标:(1)l 1:5x +4y -2=0,l 2:2x +y +2=0.(2)l 1:2x -6y +3=0,l 2:y =13x +12.(3)l 1:2x -6y =0,l 2:y =13x +12.解:(1)解方程组⎩⎨⎧5x +4y -2=0,2x +y +2=0,得⎩⎪⎨⎪⎧ x =-103,y =143. 所以l 1与l 2相交,且交点坐标为-103,143. (2)解方程组⎩⎪⎨⎪⎧2x -6y +3=0,①y =13x +12,②②×6整理得2x -6y +3=0. 因此,①和②可以化成同一个方程,即①和②表示同一条直线,l 1与l 2重合.(3)解方程组⎩⎪⎨⎪⎧ 2x -6y =0,①y =13x +12,②②×6-①得3=0,矛盾. 方程组无解,所以两直线无公共点,l 1∥l 2.类型二 求过两条直线交点的直线方程[例2] 已知两直线l 1:3x +4y -2=0和l 2:2x +y +2=0.(1)求两直线的交点;(2)求过两直线的交点和坐标原点的直线l 的方程.[解] (1)由方程组⎩⎨⎧ 3x +4y -2=0,2x +y +2=0,解得⎩⎨⎧ x =-2,y =2.即l 1与l 2的交点坐标为(-2,2).(2)解法1:∵直线过点(-2,2)和坐标原点,∴其斜率k =2-2=-1,∴直线方程为y =-x ,一般式为x +y =0.解法2:∵l 2不过原点,∴可设l 的方程为3x +4y -2+λ(2x +y +2)=0(λ∈R ),即(3+2λ)x +(4+λ)y +2λ-2=0,将原点坐标(0,0)代入上式,解得λ=1,∴l 的方程为5x +5y =0,即x +y =0.解法2用到过两直线交点的直线系方程,避免了求两直线的交点.选择不同的方法求解题目,可以训练自己的解题思路,使思路更开阔.[变式训练2] 求经过两直线2x -3y -3=0和x +y +2=0的交点且与直线3x +y -1=0平行的直线l 的方程.解:方法1:由方程组⎩⎨⎧ 2x -3y -3=0,x +y +2=0,得⎩⎪⎨⎪⎧ x =-35,y =-75.∵直线l 和直线3x +y -1=0平行, ∴直线l 的斜率k =-3.∴根据点斜式有y -(-75)=-3[x -(-35)],即所求直线方程为15x +5y +16=0.方法2:∵直线l 过两直线2x -3y -3=0和x +y +2=0的交点,∴设直线l 的方程为2x -3y -3+λ(x +y +2)=0,即(λ+2)x +(λ-3)y +2λ-3=0.∵直线l 与直线3x +y -1=0平行,∴λ+23=λ-31≠2λ-3-1,解得λ=112. 从而所求直线方程为15x +5y +16=0.类型三 两点间距离公式的应用[例3] 已知点A (-2,1),B (1,-2),直线y =2上一点P ,使|AP |=|BP |,则P 点坐标为________.[解析] 设P (x,2),∵点A (-2,1),B (1,-2),直线y =2上一点P ,使|AP |=|BP |,∴(x +2)2+(2-1)2=(x -1)2+(2+2)2,解得x =2.∴P (2,2).[答案] (2,2)已知所求点的相关信息及该点到某点的距离满足某些条件时,设出所求点的坐标,利用两点间距离公式建立关于所求点坐标的方程或方程组求解.[变式训练3] 已知点A (-1,2),B (1,3),P 在直线y =2x 上,求|P A |2+|PB |2取得最小值时点P 的坐标.解析:设P点坐标为(x,2x),∵|P A|2+|PB|2=(x+1)2+(2x-2)2+(x -1)2+(2x-3)2=10x2-20x+15=10(x-1)2+5,∴|P A|2+|PB|2≥5.(当且仅当x=1时取等号)∴当|P A|2+|PB|2取得最小值5时,点P的坐标为(1,2).类型四对称问题命题视角1:点关于点的对称问题[例4]已知不同的两点P(a,-b)与Q(b+1,a-1)关于点(3,4)对称,则ab=()A.-5B.14C.-14D.5[分析]利用中点坐标公式求解.[解析]由题意知⎩⎪⎨⎪⎧a+b+12=3,a-b-12=4,即⎩⎨⎧a+b=5,a-b=9,解得⎩⎨⎧a=7,b=-2,故ab=7×(-2)=-14.[答案] C点关于点的对称问题一般用中点坐标公式即可解决.[变式训练4]点(1,y)关于(-1,0)的对称点坐标是(x,2),则x=-3,y=-2.解析:由⎩⎪⎨⎪⎧ 1+x 2=-1,y +22=0得⎩⎨⎧ x =-3,y =-2.命题视角2:点关于线、线关于线的对称问题[例5] 已知直线l :y =3x +3,求(1)点P (4,5)关于直线l 的对称点的坐标;(2)直线l 1:y =x -2关于直线l 对称的直线l 2的方程.[解] (1)设点P 关于直线l 的对称点为P ′(x ′,y ′),则线段PP ′的中点M 在对称轴上,且直线PP ′垂直于对称轴,即⎩⎪⎨⎪⎧ y ′+52=3×x ′+42+3,y ′-5x ′-4×3=-1,解得⎩⎨⎧ x ′=-2,y ′=7.所以点P ′的坐标是(-2,7).(2)由题意,得l 1上任一点P 1(x 1,y 1)关于l 的对称点P 2(x 2,y 2)一定在l 2上,反之也成立.故⎩⎪⎨⎪⎧y 1+y 22=3×x 1+x 22+3,y 1-y 2x 1-x 2×3=-1, 解得⎩⎪⎨⎪⎧x 1=-45x 2+35y 2-95,y 1=35x 2+45y 2+35. 把(x 1,y 1)代入y =x -2,整理得7x 2+y 2+22=0,所以直线l 2的方程为7x +y+22=0.(1)点A (x 0,y 0)关于直线l :Ax +By +C =0的对称点M (x ,y )可由方程组⎩⎪⎨⎪⎧ y -y 0x -x 0·⎝ ⎛⎭⎪⎫-A B =-1(AB ≠0),A ·x +x 02+B ·y +y 02+C =0求得.(2)求直线l 1:A 1x +B 1y +C 1=0关于直线l :Ax +By +C =0对称的直线l 2的方程的方法:转化为点关于直线对称,在l 1上任取两点P 1和P 2,求出P 1,P 2关于l 的对称点,再用两点式可求出l 2的方程.[变式训练5] 已知两点A (3,-3),B (5,1),直线l :y =x ,在直线l 上求一点P 使|P A |+|PB |最小.解:如图,作点A 关于直线l 的对称点A ′,易知A ′(-3,3).连接BA ′交直线l 于点P ,则|P A |+|PB |=|P A ′|+|PB |=|A ′B |.又直线A ′B 的方程为x +4y -9=0,与y =x 联立解得P ⎝ ⎛⎭⎪⎫95,95.1.直线x +2y -2=0与直线2x +y -3=0的交点坐标是( C )A.(4,1)B.(1,4)C.⎝ ⎛⎭⎪⎫43,13D.⎝ ⎛⎭⎪⎫13,43 解析:由方程组⎩⎨⎧ x +2y -2=0,2x +y -3=0,得⎩⎪⎨⎪⎧ x =43,y =13.即直线x +2y -2=0与直线2x +y -3=0的交点坐标是⎝ ⎛⎭⎪⎫43,13. 2.已知M (2,1),N (-1,5),则|MN |等于( A )A.5B.37C.13D.4 解析:|MN |=(2+1)2+(1-5)2=5.3.经过直线2x -y +4=0与x -y +5=0的交点,且垂直于直线x -2y =0的直线方程是( A )A.2x +y -8=0B.2x -y -8=0C.2x +y +8=0D.2x -y +8=0解析:首先解得交点坐标为(1,6),再根据垂直关系得斜率为-2,可得方程y -6=-2(x -1),即2x +y -8=0.4.已知两条直线l 1:ax +3y -3=0,l 2:4x +6y -1=0,若l 1与l 2相交,则实数a 满足的条件是a ≠2.解析:l 1与l 2相交则有:a 4≠36,∴a ≠2.5.已知△ABC 的三个顶点的坐标是A (-3,1),B (3,-3),C (1,7).(1)判断△ABC 的形状;(2)求△ABC 的面积.解:(1)因为|AB |=(3+3)2+(-3-1)2=213,|AC|=(1+3)2+(7-1)2=213,又|BC|=(1-3)2+(7+3)2=226,所以|AB|2+|AC|2=|BC|2,且|AB|=|AC|,所以△ABC是等腰直角三角形.(2)△ABC的面积S△ABC=12|AC|·|AB|=12×213×213=26.——本课须掌握的两大问题1.过两条直线交点的直线系方程:过两条直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0交点的直线系方程是A1x+B1y+C1+λ(A2x +B2y+C2)=0(λ∈R),但此方程中不含l2;一般形式是m(A1x+B1y+C1)+n(A2x+B2y+C2)=0(m2+n2≠0),是过l1与l2交点的所有直线方程.2.坐标平面内两点间的距离公式,是解析几何中的最基本最重要的公式之一,利用它可以求平面上任意两个已知点间的距离.反过来,已知两点间的距离也可以根据条件求其中一个点的坐标.。
新课标人教A版高中数学必修2教学案(完整版)
第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。
教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。
根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。
概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
高中数学:.3《点到直线的距离》【新人教A版必修2】PPT完美课件
•
6.了解和名著有关的作家作品及相关 的诗句 、名言 、成语 和歇后 语等, 能按要 求向他 人推介 某部文 学名著 。
•
7.能够根据所提供的有关文学名著的 相关语 言信息 推断作 品的作 者、作 品的名 称和人 物形象 ,分析 人物形 象的性 格和作 品的思 想内容 并进行 简要评 价。
•
8.能够由具体的阅读材料进行拓展和 迁移, 联系相 关的文 学名著 展开分 析,提 出自己 的认识 和看法 ,说出 自己阅 读文学 名著的 感受和 体验。
高中数学:.3《点到直线的距离》【 新人教A 版必修 2】PPT 完美课 件
高中数学:.3《点到直线的距离》【 新人教A 版必修 2】PPT 完美课 件 高中数学:.3《点到直线的距离》【 新人教A 版必修 2】PPT 完美课 件
高中数学:.3《点到直线的距离》【 新人教A 版必修 2】PPT 完美课 件
例6:已知点A(1,3),B(3,1),C(-1,0),求的ABC面积
y
A
h
C O
B
x
高中数学:.3《点到直线的距离》【 新人教A 版必修 2】PPT 完美课 件
两条平行直线间的距离: 高中数学:.3《点到直线的距离》【新人教A版必修2】PPT完美课件
两条平行直线间的距离是指夹在两条平行直
线间的公垂线段的长.
d=
C1 - C2 A2 + B2
高中数学:.3《点到直线的距离》【 新人教A 版必修 2】PPT 完美课 件
练习4 高中数学:.3《点到直线的距离》【新人教A版必修2】PPT完美课件
1.点A(a,6)到直线x+y+1=0的距离为4,求a的值.
2
2.求过点A(-1,2),且与原点的距离等于 2 的直线方程 .
人教A版高中同步学案数学选择性必修第一册精品课件 第二章 点到直线的距离公式 两条平行直线间的距离
故所求最小值为 a ,此时点 P 的坐标为(0, 6 a).
2
探究点三 求点到直线的距离
【例3】 (1)点P(-1,2)到直线2x+y-10=0的距离为
(2)点P(-1,2)到直线3x=2的距离为
.
.
(3)已知坐标平面内两点A(3,2)和B(-1,4)到直线mx+y+3=0的距离相等,则实
数m的值为
(3)已知点A(-2,-1),B(a,3),且|AB|=5,则a的值为1.( × )
(4)已知A(4,0),B(0,4),从点P(1,0)射出的光线被直线AB反射后,再射到直线
OB上,最后经OB反射后回到P点,则光线所经过的路程是 √34 .( √ )
2.两点P1(x1,y1),P2(x2,y2)间的距离公式能否表示为|P1P2|= (x1 -x2 )2 + (y1 -y2 )2 ?
或 c=-9(舍),
-3
则
=
-3-3
=-2.故选
3
A.
|3+|
32 +32
= √2,解得 c=3
规律方法 两条平行线间的距离的求法
(1)化为一般式,且两条平行线方程中x,y的系数化为相同的,代入两条平行
线的距离公式.
(2)一条直线上任取一点,求该点到另一条直线的距离.
变式训练3
已知直线l1与l2:x+y-1=0平行,且l1与l2的距离是 √2 ,求l1的方程.
的距离d=|x0-b|.
知识点3 两条平行直线间的距离
1.概念:夹在两条平行直线间的 公垂线段
的长就是两条平行直线间的
距离.
2.求法:两条平行直线间的距离转化为点到直线的距离.
湖南省永州市道县第一中学高中数学《 3.3点到直线的距离及两平行线距离》学案 新人教A版必修2
湖南省永州市道县第一中学高一数学《 3.3点到直线的距离及两平行线距离》学案 新人教A 版必修22.会用点到直线距离公式求解两平行线距离3.认识事物之间在一定条件下的转化.用联系的观点看问题117119,找出疑惑之处)复习1.已知平面上两点(0,3),(2,1)A B -,则AB 的中点坐标为 ,AB 间的长度为 .复习2.在平面直角坐标系中,如果已知某点P 的坐标为00(,)x y ,直线l 的方程是:0l Ax By C ++=,怎样用点的坐标和直线的方程直接求点P 到直线l 的距离呢?二、新课导学:※ 学习探究新知1:已知点00(,)P x y 和直线:0l Ax By C ++=,则点P 到直线l 的距离为:d =.注意:⑴点到直线的距离是直线上的点与直线外一点的连线的最短距离; ⑵在运用公式时,直线的方程要先化为一般式.问题2:在平面直角坐标系中,如果已知某点P 的坐标为00(,)x y ,直线方程0:=++C By Ax l 中,如果0A =,或0B =,怎样用点的坐标和直线的方程直接求点P 到直线l 的距离呢并画出图形来.例 分别求出点(0,2),(1,0)A B -到直线341x y --0=的距离.问题3:求两平行线1l :2380x y +-=,2l :23x y +10-=的距离.新知2:已知两条平行线直线1l 10Ax By C ++=,2:l20Ax By C ++=,则1l 与2l 的距离为d = 注意:应用此公式应注意如下两点:(1)把直线方程化为一般式方程;(2)使,x y 的系数相等.※ 典型例题例1 已知点(1,3),(3,1),(1,0)A B C -,求三角形ABC 的面积.例2 求两平行线1l :2380x y +-=,2l :46x y +10-=的距离.※动手试试练1. 求过点(1,2)A-的直线方程.练2.求与直线:51260-+=平行且到l的距离为2的直线方程.l x y三、总结提升:※学习小结1.点到直线距离公式的推导过程,点到直线的距离公式,能把求两平行线的距离转化为点到※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 求点(5,7)P -到直线12530x y +-=的距离( )A .1B .0C .1413D .28132. 过点(1,2)且与原点距离最大的直线方程是( ).A.250x y +-=B.240x y +-=C.370x y +-=D.350x y +-= 3. 到两坐标轴距离相等的点的轨迹方程是( ).A .0x y -=B .0x y +=C .0x y -=D .0x y -=4. 两条平行线3x -2y -1=0和3x -2y +1=0的距离5. 在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有 条.(1,0)G -,一边所在直线的方程为350x y +-=,求其他三边所在的直线方程.2.,A B 两个厂距一条河分别为400m 和100m ,,A B 两厂之间距离500m ,把小河看作一条直线,今在小河边上建一座提水站,供,A B 两厂用水,要使提水站到,A B 两厂铺设的水管长度之和最短,问提水站应建在什么地方?。