高考数学(文)二轮复习 高考小题标准练(九) Word版含解析

合集下载

高考数学二轮复习专题突破—函数的单调性、极值与最值(含解析)

高考数学二轮复习专题突破—函数的单调性、极值与最值(含解析)

高考数学二轮复习专题突破—函数的单调性、极值与最值一、单项选择题1.(2021·浙江丽水联考)若函数f(x)=(x-a)3-3x+b的极大值是M,极小值是m,则M-m的值()A.与a有关,且与b有关B.与a有关,且与b无关C.与a无关,且与b无关D.与a无关,且与b有关2.(2021·山东青岛期末)若函数f(x)=x2-ax+ln x在区间(1,e)上单调递增,则实数a的取值范围是() A.[3,+∞) B.(-∞,3]C.[3,e2+1]D.[-e2+1,3],则下列关于函数f(x)的说法正确的是()3.(2021·陕西西安月考)已知函数f(x)=3xe xA.在区间(-∞,+∞)上单调递增B.在区间(-∞,1)上单调递减,无极小值C.有极大值3eD.有极小值3,无极大值e4.(2021·湖南岳阳期中)已知直线y=kx(k>0)和曲线f(x)=x-a ln x(a≠0)相切,则实数a的取值范围是()A.(-∞,0)∪(0,e)B.(0,e)C.(0,1)∪(1,e)D.(-∞,0)∪(1,e)5.(2021·湖北十堰二模)已知函数f(x)=2x3+3mx2+2nx+m2在x=1处有极小值,且极小值为6,则m=() A.5 B.3C.-2D.-2或56.(2021·四川成都二模)已知P是曲线y=-sin x(x∈[0,π])上的动点,点Q在直线x-2y-6=0上运动,则当|PQ|取最小值时,点P的横坐标为()A.π4B.π2C.2π3D.5π67.(2021·湖北荆门期末)已知曲线y=sinxe x+1(x≥0)的一条切线的斜率为1,则该切线的方程为()A.y=x-1B.y=xC.y=x+1D.y=x+2二、多项选择题8.(2021·广东湛江一模)已知函数f(x)=x3-3ln x-1,则()A.f(x)的极大值为0B.曲线y=f(x)在点(1,f(1))处的切线为x轴C.f(x)的最小值为0D.f(x)在定义域内单调9.(2021·山东淄博二模)已知e是自然对数的底数,则下列不等关系中错误的是()A.ln 2>2e B.ln 3<3eC.ln π>πe D.ln3ln π<3π10.(2021·辽宁沈阳二模)已知函数f(x)={2x+2,−2≤x≤1,lnx-1,1<x≤e,若关于x的方程f(x)=m恰有两个不同的根x1,x2(x1<x2),则(x2-x1)f(x2)的取值可能是()A.-3B.-1C.0D.2三、填空题11.(2021·福建三明二模)已知曲线y=ln x+ax与直线y=2x-1相切,则a=.12.(2021·江苏无锡月考)试写出实数a的一个取值范围,使函数f(x)=sinx-ae x有极值.13.(2021·四川成都月考)设函数f(x)=e x-2x,直线y=ax+b是曲线y=f(x)的切线,则2a+b的最大值是.四、解答题14.(2021·山东潍坊二模)已知函数f(x)=ax 2+bx+ce x的单调递增区间是[0,1],极大值是3e.(1)求曲线y=f(x)在点(-1,f(-1))处的切线方程;(2)若存在非零实数x0,使得f(x0)=1,求f(x)在区间(-∞,m](m>0)上的最小值.15.(2021·河北唐山期末)已知函数f(x)=a e x-x-1(a∈R),g(x)=x2.(1)讨论函数f(x)的单调性;(2)当a>0时,若曲线C1:y1=f(x)+x+1与曲线C2:y2=g(x)存在唯一的公切线,求实数a的值.16.(2021·浙江嘉兴月考)已知f(x)=a2ln x-1ax2-(a2-a)x(a≠0).2(1)当a=1时,求f(x)的单调区间;(2)若函数f(x)在x=1处取得极大值,求实数a的取值范围.答案及解析1.C解析因为f(x)=(x-a)3-3x+b,所以f'(x)=3(x-a)2-3,令f'(x)=3(x-a)2-3=0,得x=a-1或x=a+1,判断可得函数的极大值M=f(a-1)=-1-3(a-1)+b=2-3a+b,极小值m=f(a+1)=1-3(a+1)+b=-2-3a+b,因此M-m=4.故选C.2.B解析依题意f'(x)=2x-a+1x ≥0在区间(1,e)上恒成立,即a≤2x+1x在区间(1,e)上恒成立,令g(x)=2x+1x (1<x<e),则g'(x)=2-1x2=2x2-1x2=(√2x+1)(√2x-1)x2>0,所以g(x)在区间(1,e)上单调递增,而g(1)=3,所以a≤3,即实数a的取值范围是(-∞,3].故选B.3.C解析由题意得函数f(x)的定义域为R,f'(x)=3(1−x)e x.令f'(x)=0,得x=1,当x<1时,f'(x)>0,f(x)单调递增;当x>1时,f'(x)<0,f(x)单调递减,故f(1)是函数f(x)的极大值,也是最大值,且f(1)=3e,函数f(x)无极小值.故选C.4.A解析设直线y=kx(k>0)与曲线f(x)=x-a ln x(a≠0)相切于点P(x0,x0-a ln x0)(x0>0).由题意得,f'(x)=1-ax ,则以P为切点的切线方程为y-x0+a ln x0=1-ax0(x-x0),因为该切线过原点,所以-x0+a ln x0=1-ax0(-x0),因此ln x0=1,即x0=e,所以k=1-ae>0,得a<e,又a≠0,故实数a的取值范围是(-∞,0)∪(0,e).故选A.5.A解析f'(x)=6x2+6mx+2n.因为f(x)在x=1处有极小值,且极小值为6,所以{f'(1)=0, f(1)=6,即{6+6m+2n=0,2+3m+2n+m2=6,解得{m=5,n=−18或{m=−2,n=3.当m=5,n=-18时,f'(x)=6x2+30x-36=6(x+6)(x-1),则f(x)在区间(-∞,-6)上单调递增,在区间(-6,1)上单调递减,在区间(1,+∞)上单调递增,所以f(x)在x=1处取得极小值,且极小值为f(1)=6.当m=-2,n=3时,f'(x )=6x 2-12x+6=6(x-1)2≥0, 则f (x )在R 上单调递增,f (x )无极值. 综上可得,m=5,n=-18. 6.C 解析 如图所示,要使|PQ|取得最小值,则曲线y=-sin x (x ∈[0,π])在点P 处的切线与直线x-2y-6=0平行,对函数y=-sin x 求导得y'=-cos x ,令y'=12,可得cos x=-12,由于0≤x ≤π,所以x=2π3.故选C . 7.C 解析 由题得y'=cosx·e x -sinx·e x(e x )2=cosx-sinxe x.设切点为(x 0,y 0)(x 0≥0),则y'|x=x 0=cos x 0-sin x 0e x 0,由y'|x=x 0=1,得e x 0=cos x 0-sin x 0.令f (x )=e x -cos x+sin x (x ≥0),则f'(x )=e x +sin x+cos x=e x +√2sin x+π4,当0≤x<1时,f'(x )>0,当x ≥1时,e x ≥e,√2sin (x +π4)≥-√2,f'(x )>0,所以∀x ≥0,f'(x )>0,所以f (x )在区间[0,+∞)上单调递增,则f (x )≥f (0)=0,所以方程e x 0=cos x 0-sin x 0只有一个实根x 0=0,所以y 0=sin0e 0+1=1,故切点为(0,1),切线斜率为1,所以切线方程为y=x+1.8.BC 解析 函数f (x )=x 3-3ln x-1的定义域为(0,+∞),f'(x )=3x 2-3x =3x (x 3-1).令f'(x )=3x (x 3-1)=0,得x=1,列表得:f (x ) 单调递减单调递增所以f (x )的极小值,也是最小值为f (1)=0,无极大值,在定义域内不单调,故C 正确,A,D 错误;对于B,由f (1)=0及f'(1)=0,所以曲线y=f (x )在点(1,f (1))处的切线方程为y-0=0(x-1),即y=0,故B 正确,故选BC .9.ACD 解析 令f (x )=ln x-xe ,x>0,则f'(x )=1x −1e ,令f'(x )=0,得x=e,当0<x<e 时,f'(x )>0,当x>e 时,f'(x )<0,所以f (x )在区间(0,e)上单调递增,在区间(e,+∞)上单调递减,故f (x )max =f (e)=ln e -ee =0,则f (2)=ln 2-2e <0得ln 2<2e ,故A 错误;f (3)=ln 3-3e <0得ln 3<3e ,故B 正确;f (π)=ln π-πe <0得ln π<πe ,故C 错误;对于D 项,令g (x )=lnx x,x>0,则g'(x )=1−lnx x 2,当0<x<e时,g'(x )>0,当x>e 时,g'(x )<0,所以g (x )在区间(0,e)上单调递增,在区间(e,+∞)上单调递减,则g (3)>g (π),得ln33>ln ππ,即ln3ln π>3π,故D 错误.故选ACD .10.BC 解析 画出函数f (x )的图象,如图,因为f (x )=m 的两根为x 1,x 2(x 1<x 2),所以x 1=m-22,x 2=e m+1,m ∈(-1,0],从而(x 2-x 1)·f (x 2)=e m+1-m-22m=m e m+1-m 22+m.令g (x )=x e x+1-12x 2+x ,x ∈(-1,0],则g'(x )=(x+1)e x+1-x+1.因为x ∈(-1,0],所以x+1>0,e x+1>e 0=1,-x+1>0, 所以g'(x )>0,从而g (x )在区间(-1,0]上单调递增.又g (0)=0,g (-1)=-52,所以g (x )∈-52,0,即(x 2-x 1)·f (x 2)的取值范围是-52,0,故选BC . 11.1 解析 由题意得函数y=ln x+ax 的定义域为x>0,y'=1x +a.设曲线y=ln x+ax 与直线y=2x-1相切于点P (x 0,y 0),可得1x 0+a=2,即ax 0=2x 0-1①,y 0=ln x 0+ax 0,y 0=2x 0-1,所以ln x 0+ax 0=2x 0-1②,联立①②,可得x 0=1,a=1. 12.(-√2,√2)(答案不唯一) 解析 f (x )=sinx-a e x的定义域为R ,f'(x )=cosx-sinx+ae x,由于函数f (x )=sinx-a e x有极值,所以f'(x )=cosx-sinx+ae x有变号零点,因此由cos x-sin x+a=0,即a=sin x-cosx=√2sin x-π4,可得a ∈(-√2,√2),答案只要为(-√2,√2)的子集都可以. 13.e 2-4 解析 f'(x )=e x -2.设切点为(t ,f (t )),则f (t )=e t -2t ,f'(t )=e t -2,所以切线方程为y-(e t -2t )=(e t -2)(x-t ),即y=(e t -2)x+e t (1-t ),所以a=e t -2,b=e t (1-t ),则2a+b=-4+3e t -t e t .令g (t )=-4+3e t -t e t ,则g'(t )=(2-t )e t .当t>2时,g'(t )<0,g (t )在区间(2,+∞)上单调递减;当t<2时,g'(t )>0,g (t )在区间(-∞,2)上单调递增,所以当t=2时,g (t )取最大值g (2)=-4+3e 2-2e 2=-4+e 2,即2a+b 的最大值为e 2-4. 14.解 (1)因为f (x )=ax 2+bx+ce x,所以f'(x )=-ax 2+(2a-b)x+b-ce x.因为e x >0,所以f'(x )≥0的解集与-ax 2+(2a-b )x+b-c ≥0的解集相同,且同为[0,1].所以有{a>0,2a-ba=1,b-c-a=0,解得a=b=c.所以f(x)=a(x 2+x+1)e x(a>0),f'(x)=-ax2+axe x(a>0).因为a>0,所以当x<0或x>1时,f'(x)<0,函数f(x)单调递减,当0≤x≤1时,f'(x)≥0,函数f(x)单调递增,且f'(1)=0,所以f(x)在x=1处取得极大值,又由题知,极大值为3e,所以f(1)=3ae =3e,解得a=1,所以a=b=c=1.所以f(x)=x 2+x+1e x,f'(x)=-x2+xe x.所以f(-1)=1e-1=e,f'(-1)=-2e-1=-2e.所以曲线y=f(x)在点(-1,f(-1))处的切线方程为y-e=-2e(x+1),即y=-2e x-e.(2)由(1)知函数f(x)在区间(-∞,0)上单调递减,在区间(0,1)上单调递增,且f(0)=1e0=1, 所以满足f(x0)=1(x0≠0)的x0∈(1,+∞).所以当0<m≤x0时,由函数f(x)的单调性易知,f(x)在区间(-∞,m]上的最小值为f(0)=1;当m>x0时,f(m)<f(x0)=f(0)=1,f(x)在区间(-∞,m]上的最小值为f(m)=m 2+m+1 e m.综上所述,f(x)在区间(-∞,m]上的最小值为{1,0<m≤x0, m2+m+1e m,m>x0.15.解 (1)f'(x)=a e x-1.当a≤0时,f'(x)<0恒成立,f(x)在区间(-∞,+∞)上单调递减.当a>0时,由f'(x)=0,得x=-ln a.当x<-ln a时,f'(x)<0,f(x)单调递减;当x>-ln a时,f'(x)>0,f(x)单调递增.综上,当a ≤0时,f (x )在区间(-∞,+∞)上单调递减;当a>0时,f (x )在区间(-∞,-ln a )上单调递减,在区间(-ln a ,+∞)上单调递增.(2)因为曲线C 1:y 1=a e x 与曲线C 2:y 2=x 2存在唯一的公切线,设该公切线与曲线C 1,C 2分别切于点(x 1,a e x 1),(x 2,x 22),显然x 1≠x 2.由于y 1'=a e x,y 2'=2x ,所以a e x 1=2x 2=ae x 1-x 22x 1-x 2,因此2x 2x 1-2x 22=a e x 1−x 22=2x 2-x 22,所以2x 1x 2-x 22=2x 2,即x 2=2x 1-2.由于a>0,故x 2>0,从而x 2=2x 1-2>0,因此x 1>1.此时a=2x2e x 1=4(x 1-1)e x 1(x 1>1).设F (x )=4(x-1)e x(x>1),则问题等价于当x>1时,直线y=a 与曲线y=F (x )有且只有一个公共点.又F'(x )=4(2−x)e x,令F'(x )=0,解得x=2,所以F (x )在区间(1,2)上单调递增,在区间(2,+∞)上单调递减.而F (2)=4e 2,F (1)=0,当x →+∞时,F (x )→0, 所以F (x )的值域为0,4e 2,故a=4e 2. 16.解 (1)由题意得,当a=1时,函数f (x )=ln x-12x 2,其定义域为(0,+∞),因此f'(x )=1x -x=1−x 2x.令f'(x )>0,即1-x 2>0,得0<x<1,所以f (x )在区间(0,1)上单调递增; 令f'(x )<0,即1-x 2<0,得x>1,所以f (x )在区间(1,+∞)上单调递减. 故函数f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (2)由题意,函数f (x )=a 2ln x-12ax 2-(a 2-a )x (a ≠0)的定义域为(0,+∞),11且f'(x )=a 2x -ax-(a 2-a )=-a(x+a)(x-1)x .当a<0时,-a>0, ①若-1<a<0,令f'(x )>0,即(x+a )(x-1)>0,得x>1或0<x<-a ;令f'(x )<0,即(x+a )(x-1)<0,得-a<x<1,所以函数f (x )在区间(1,+∞),(0,-a )上单调递增,在区间(-a ,1)上单调递减.所以当x=1时,函数f (x )取得极小值,不符合题意.②若a=-1,可得f'(x )=(x-1)2x ≥0,此时函数f (x )在区间(0,+∞)上单调递增,函数f (x )无极值,不符合题意.③若a<-1,令f'(x )>0,即(x+a )(x-1)>0,得x>-a 或0<x<1,令f'(x )<0,即(x+a )(x-1)<0,得1<x<-a ,所以函数f (x )在区间(1,-a )上单调递减,在区间(0,1),(-a ,+∞)上单调递增,所以当x=1时,函数f (x )取得极大值,符合题意.当a>0时,-a<0.令f'(x )>0,即(x+a )(x-1)<0,得0<x<1;令f'(x )<0,即(x+a )(x-1)>0,得x>1,所以f (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,所以当x=1时,函数f (x )取得极大值,符合题意.综上可得,实数a 的取值范围是(-∞,-1)∪(0,+∞).。

2022高考数学(文)二轮复习高考小题标准练(二) Word版含答案

2022高考数学(文)二轮复习高考小题标准练(二) Word版含答案

温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。

关闭Word 文档返回原板块。

高考小题标准练(二)满分75分,实战模拟,40分钟拿下高考客观题满分!一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x ∈Z|2<2x+2≤8},B={x ∈R|x 2-2x>0},则A ∩(R B)所含的元素个数为( )A.0B.1C.2D.3【解题提示】求出A 中不等式的解集,找出解集中的整数解确定出A ,求出B 中不等式的解集,确定出B ,求出B 的补集,找出A 与B 补集的交集,即可确定出元素个数.【解析】选C.由集合A 中的不等式变形得:21<2x+2≤23,得到1<x+2≤3, 解得:-1<x ≤1,且x 为整数,所以A={0,1};由集合B 中的不等式变形得:x(x-2)>0,解得:x>2或x<0,即B=(-∞,0)∪(2,+∞),所以R B=[0,2],所以A ∩(R B)={0,1},即元素有2个.2.设i 是虚数单位,a 为实数,复数z=1+ai i为纯虚数,则z 的共轭复数为( )A.-iB.iC.2iD.-2i 【解析】选B.由于z=1+ai i=(1+ai)i i 2=−a+i −1=a-i ,由于z 为纯虚数,故a=0,所以z=-i , 则z ̅=i.3.甲乙两人在一次赛跑中,从同一地点动身,路程s 与时间t 的函数关系如图所示,则下列说法正确的是( )A.甲比乙先动身B.乙比甲跑的路程多C.甲,乙两人的速度相同D.甲比乙先到达终点【解析】选D.由图形可知甲,乙两人从同一时间动身,且路程相同,甲用的时间短,故甲比乙先到达终点.4.某高校进行自主招生,先从报名者中筛选出400人参与笔试,再按笔试成果择优选出100人参与面试.现随机调查了24名笔试者的成果,如表所示:分数段 [60,65) [65,70) [70,75) [75,80) [80,85) [85,90)人数234951据此估量允许参与面试的分数线大约是( )A.75B.80C.85D.90【解析】选B.由于参与笔试的400人中择优选出100人,故每个人被择优选出的概率P=100400=14,由于随机调查24名笔试者,则估量能够参与面试的人数为24×14=6,观看表格可知,分数在[80,85)有5人,分数在[85,90)的有1人,故面试的分数线大约为80分,故选B.5.已知等比数列{a n}中,a3=2,a4a6=16,则a10−a12a6−a8的值为( )A.2B.4C.8D.16【解题提示】结合已知条件得到q4=4,再利用等比数列的性质即可. 【解析】选B.由于a3=2,a4a6=16,所以a4a6=a32q4=16,即q4=4,则a10−a12 a6−a8=q4(a6−a8)a6−a8=q4=4.6.当m=6,n=3时,执行如图所示的程序框图,输出的S值为( )A.6B.30C.120D.360【解题提示】模拟执行程序框图,依次写出每次循环得到的S,k的值,当k=3时,满足条件k<m-n+1=4,退出循环,输出S的值为120.【解析】选C.模拟执行程序框图,可得m=6,n=3,k=6,S=1,不满足条件k<m-n+1=4,S=6,k=5;不满足条件k<m-n+1=4,S=30,k=4;不满足条件k<m-n+1=4,S=120,k=3;满足条件k<m-n+1=4,退出循环,输出S的值为120. 7.实数x,y满足{x≥1,y≤a,a>1,x−y≤0,若目标函数z=x+y取得最大值4,则实数a的值为( )A.4B.3C.2D.32【解析】选C.画出可行域得直线y=-x+z过(a,a)点时取得最大值,即2a=4,a=2.8.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为( )A.83B.43C.4√3D.2√3【解析】选A.结合三视图,借助正方体想象该棱锥的直观图,如图所示.该棱锥是四棱锥P-ABCD.其底面ABCD为一个底边长为2√2和2的矩形,面积S=4√2,高是P点到底面ABCD的距离,即h=√2,故此棱锥的体积V=13Sh=83.9.设函数f(x)是定义在R上的奇函数,当x>0时,f(x)=e x+x-3,则f(x)的零点个数为( )A.1B.2C.3D.4【解题提示】先由函数f(x)是定义在R上的奇函数确定0是一个零点,再令x>0时的函数f(x)的解析式等于0转化成两个函数,转化为推断两函数交点个数问题,最终依据奇函数的对称性确定答案.【解析】选C.由于函数f(x)是定义域为R的奇函数,所以f(0)=0,所以0是函数f(x)的一个零点.当x>0时,令f(x)=e x+x-3=0,则e x=-x+3,分别画出函数y=e x,和y=-x+3的图象,如图所示,有一个交点,所以函数f(x)在x>0时有一个零点,又依据对称性知,当x<0时函数f(x)也有一个零点.综上所述,f(x)的零点个数为3,故选C.【加固训练】函数f(x)=2x3-6x2+7在(0,2)内零点的个数为( )A.0B. 1C.2D.4 【解析】选B.由于f′(x)=6x2-12x=6x(x-2),由f′(x)>0,得x>2或x<0;由f′(x)<0得0<x<2.所以函数f(x)在(0,2)上是减函数,而f(0)=7>0,f(2)=-1<0,由零点存在定理可知,函数f(x)=2x3-6x2+7在(0,2)内零点的个数为1.10.已知二次函数y=ax2+bx+c(ac≠0)图象的顶点坐标为(−b2a,−14a),与x轴的交点P,Q位于y轴的两侧,以线段PQ为直径的圆与y轴交于F1(0,4)和F2(0,-4),则点(b,c)所在曲线为( )A.圆B.椭圆C.双曲线D.抛物线【解析】选B.结合二次函数的顶点坐标为(−b2a,4ac−b24a),依据题意可得Δ=b 2-4ac=1,①,二次函数图象和x轴的两个交点分别为(−b+12a,0)和(−b−12a,0),利用射影定理即得:-(−b+12a×−b−12a)=16 1-b2=64a2,结合①先求出a和c之间的关系,代入①可得到,(b,c)所在的曲线为b2+c24=1,表示椭圆.二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知a=(1,2),b=(4,2),设a,b的夹角为θ,则cosθ= .【解析】由平面对量的夹角公式得,cosθ==1212√x1+y1·√x2+y2=√5×√20=45.答案:45【加固训练】已知向量a=(1,√3),b=(3,m).若向量b在a方向上的投影为3,则实数m= .【解析】依据投影的定义:|b|·cos<a,b>==3+√3m2=3;解得m=√3. 答案:√312.已知函数f(x)={x 3+1,x ≥0,x 2+2,x <0,若f(x)=1,则x= .【解析】若x ≥0则x 3+1=1,所以x=0,若x<0则x 2+2=1无解,所以x=0.答案:013.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且(b-c)(sin B+ sin C)=(a-√3c)·sinA ,则角B 的大小为 .【解题提示】由正弦定理化简已知等式可得c 2+a 2-b 2=√3ac ,由余弦定理可求 cos B ,结合B 的范围即可得解.【解析】由正弦定理,可得sinB=b2R,sin C=c2R,sinA=a2R, 所以由(b-c)(sin B+sin C)=(a-√3c)·sin A 可得(b- c)(b+c)=a(a-√3c),即有c 2+a 2-b 2=√3ac ,则cos B=a 2+c 2−b 22ac=√32,由于0°<B<180°,则B=30°. 答案:30°14.已知三棱锥S-ABC 的全部顶点都在球O 的球面上,SA ⊥平面ABC ,SA=2√3,AB=1,AC=2,∠BAC=π3,则球O 的表面积为 .【解析】三棱锥S-ABC 的全部顶点都在球O 的球面上,由于SA ⊥平面ABC ,SA=2√3,AB=1,AC=2,∠BAC=60°,所以BC=√1+4−2×1×2×cos60°=√3,所以∠ABC=90°. 所以△ABC 截球O 所得的圆O ′的半径r=12AC=1,所以球O 的半径R=√12+(2√32)2=2,所以球O 的表面积S=4πR 2=16π. 答案:16π15.已知直线y=kx+1与曲线y=x 3+ax+b 相切于点(1,3),则b 的值为 . 【解题提示】由于切点在直线与曲线上,将切点的坐标代入两个方程,得到关于a ,b ,k 的方程,再求出在点(1,3)处的切线的斜率的值,即利用导数求出在x=1处的导函数值,结合导数的几何意义求出切线的斜率,再列出一个等式,最终解方程组即可得,从而问题解决.【解析】由于直线y=kx+1与曲线y=x 3+ax+b 相切于点(1,3), 所以{k +1=3,1+a +b =3,①又由于y=x 3+ax+b ,所以y ′=3x 2+a ,当x=1时,y ′=3+a 得切线的斜率为3+a ,所以k=3+a , ②所以由①②得:b=3. 答案:3关闭Word 文档返回原板块。

2022高考数学(文)二轮复习高考小题标准练(十一) Word版含答案

2022高考数学(文)二轮复习高考小题标准练(十一) Word版含答案

温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。

关闭Word 文档返回原板块。

高考小题标准练(十一)满分75分,实战模拟,40分钟拿下高考客观题满分!一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|1≤x ≤2},B={x|x 2-1≤0},则A ∩B=( ) A.{x|-1<x<1} B{x|-1<x<2} C.{1} D.{-1,1}【解析】选C.由已知,得A={x|1≤x ≤2},B={x|-1≤x ≤1},则A ∩B={x|x=1}. 2.已知复数z 满足(2-i)2·z=1,则z 的虚部为( ) A.325i B.325C.425i D.425【解析】选D.设复数z=a+bi ,则由(2-i)2·z=1可得:(4-4i-1)·(a+bi)=1,即3a+4b+(3b-4a)i=1,所以{3a +4b =1,3b −4a =0,解得:a=325,b=425,故z 的虚部为425.3.已知log 2a>log 2b ,则下列不等式肯定成立的是( ) A.1a >1bB.log 2(a-b)>0C.2a-b<1 D.(13)a <(12)b【解析】选D.由log 2a>log 2b 得a>b>0,所以(13)a <(13)b <(12)b,故选D.4.函数f(x)=x 2+bx 的图象在点A(1,f(1))处的切线与直线3x-y+2=0平行,若数列{1f(n)}的前n 项和为S n ,则S 2021=( )A.1B.2 0132 014C.2 0142 015D.2 0152 016【解题提示】由f ′(1)与直线斜率相等可得f(x)的解析式,从而可得数列{1f(n)}的通项公式,计算可得答案.【解析】选D.f ′(x)=2x+b ,由直线3x-y+2=0可知其斜率为3, 依据题意,有f ′(1)=2+b=3,即b=1, 所以f(x)=x 2+x ,从而数列{1f(n)}的通项为1f(n)=1n 2+n =1n -1n+1,所以S 2021=1-12+12-13+…+12 015-12 016=2 0152 016.5.直线x-y+1=0被圆x 2+y 2+2my=0所截得的弦长等于圆的半径,则实数m=( ) A.√6-2或√6+2 B.2+√6或2-√6 C.1 D.√6【解析】选B.圆的方程即x 2+(y+m)2=m 2,圆心(0,-m)到已知直线的距离d=|m+1|√2=√3|m|2,解得m=2+√6或m=2-√6.6.函数f(x)的导函数f ′(x)的图象如图所示,那么f(x)的图象最有可能的是 ( )【解析】选A.由f ′(x)的图象可知f(x)在(-2,0)上是单调递增的, 在(-∞,-2),(0,+∞)单调递减,故选A.7.某程序框图如图所示,若该程序运行后输出的值是74,则( )A.a=3B.a=4C.a=5D.a=6【解析】选A.第一次:S=32,k=2;其次次:S=53,k=3;第三次:S=74,k=4,退出循环,故选A.8.已知不等式组{x −y ≥0,x +y ≤1,x +2y ≥1表示的平面区域为D ,若D 内存在一点P(x 0,y 0),使ax 0+y 0<1,则a 的取值范围为( )A.(-∞,2)B.(-∞,1)C.(2,+∞)D.(1,+∞)【解析】选A.平面区域D 如图所示,先求z=ax+y 的最小值,当a ≤12时,-a ≥-12,z=ax+y 在点A(1,0)取得最小值a ;当a>12,-a<-12,z=ax+y 在点B (13,13)取得最小值13a+13.若D 内存在一点P(x 0,y 0),使ax 0+y 0<1,则有z=ax+y 的最小值小于1,所以{a ≤12,a <1或{a >12,13a +13<1,解得a<2,故选A.9.在平行四边形ABCD 中,AB →·BD →=0,2AB →2+BD →2-4=0,若将其沿BD 折成直二面角A-BD-C ,则三棱锥A-BDC 的外接球的表面积为( )A.16πB.8πC.4πD.2π【解题提示】由已知中AB →·BD →=0,可得AB ⊥BD ,沿BD 折起后,由平面ABD ⊥平面BDC ,可得三棱锥A-BCD 的外接球的直径为AC ,进而依据2AB 2→+BD 2→-4=0,求出三棱锥A-BCD 的外接球的半径.【解析】选C.平行四边形ABCD 中,由于AB →·BD →=0,所以AB ⊥BD , 沿BD 折成直二面角A-BD-C , 由于平面ABD ⊥平面BDC ,三棱锥A-BCD 的外接球的直径为AC , 所以AC 2=AB 2+BD 2+CD 2=2AB 2+BD 2=4,所以外接球的半径为1,故表面积是4π.10.已知函数f(x)的定义域为[-1,5],部分对应值如表,f(x)的导函数y= f ′(x)的图象如图所示.x -1 0 2 4 5 y1221若函数y=f(x)-a 有4个零点,则实数a 的取值范围为( ) A.[1,2) B.[1,2] C.(2,3) D.[1,3)【解析】选A.依据导函数的图象可知:y=f(x)在[-1,0],[2,4]单调递增,在[0,2],[4,5]单调递减,将函数的大致图象画出,所以若y=f(x)-a 有4个零点,则a ∈[1,2),所以答案为A.【加固训练】已知f(x)是定义在(0,+∞)上的单调函数,且对任意的x ∈(0, +∞),都有f[f(x)-log 2x]=3,则方程f(x)-f ′ (x)=2的解所在的区间是( ) A.(0,12) B.(12,1) C.(1,2) D.(2,3)【解析】选C.对任意的x ∈(0,+∞),都有f[f(x)-log 2x]=3,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)-log 2x 为定值,设t=f(x)-log 2x ,则f(x)=log 2x+t ,又由f(t)=3,即log 2t+t=3, 解得t=2;则f(x)=log 2x+2,f ′(x)=1xln2,由于f(x)-f ′(x)=2, 所以log 2x+2-1xln2=2,即log 2x-1xln2=0,设h(x)=log 2x-1xln2,可知h(x)在定义域上为单调增函数,又由于h(1)=log 21-1ln2<0,h(2)=log 22-12ln2=1-1ln4>0,所以h(x)=log 2x-1xln2的零点在区间 (1,2)上,即方程f(x)-f ′(x)=2的解所在的区间是(1,2).二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知向量a =(x 2-1,2+x),b =(x ,1),a ∥b ,则x= .【解析】由于a =(x 2-1,2+x),b =(x ,1),a ∥b ,所以x 2-1=(2+x)x ,解得x=-12.答案:-1212.某几何体的三视图如图所示,则它的表面积为 .【解析】由三视图可知,该几何体是底面半径为2,高为4的圆锥的一半,其表面积为:S=12×π×22+12×4×4+12×12×2π×2×√42+22=8+(2+2√5)π.答案:8+(2+2√5)π13.椭圆C :x 24+y 23=1的左、右顶点A 1,A 2,点P 在C 上且直线PA 2的斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是 .【解析】椭圆C :x 24+y 23=1的左、右顶点A 1,A 2的坐标为(-2,0),(2,0),设点P的坐标为(x 0,y 0),由题意x 024+y 023=1,所以y 02x 02−4=-34,又由于k PA 1·k PA 2=y 0x 0+2·y 0x 0−2=y 02x 02−4=-34,k PA 1=−34k PA 2,直线PA 2的斜率的取值范围是[-2,-1],所以38≤k PA 1≤34.答案:[38,34]14.抛物线y 2=-12x 的准线与双曲线x 26-y 22=1的两条渐近线所围成的三角形的面积等于 .【解析】抛物线的准线方程为x=3,双曲线的渐近线方程为y=±√33x ,所以所要求的三角形的面积为12×3×2√3=3√3.答案:3√315.袋中有大小、质地相同的红、黑球各一个,现有放回地随机摸取3次,每次摸取一个球,若摸出红球,得2分,摸出黑球,得1分,则3次摸球所得总分至少是4分的概率是 .【解析】全部基本大事为(红,红,红),(红,红,黑),(红,黑,红),(黑,红,红),(红,黑,黑),(黑,红,黑),(黑,黑,红),(黑,黑,黑)共计8个,总分至少4分的大事可分为“两黑一红”,“一黑两红”,“三红”这三个互斥大事,所以P=38+38+18=78;也可求对立大事“总分少于4分”即“三黑”的概率为18,所以P=1-18=78. 答案:78关闭Word 文档返回原板块。

2023届新高考数学二轮复习:专题(导数解答题之零点题)提分练习(附答案)

2023届新高考数学二轮复习:专题(导数解答题之零点题)提分练习(附答案)

2023届新高考数学二轮复习:专题(导数解答题之零点题)提分练习【总结】1、函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.【典型例题】例1.(2023秋ꞏ内蒙古包头ꞏ高三统考期末)已知函数()()ln 11f x x a x =--+. (1)若()f x 存在极值,求a 的取值范围;(2)当2a =时,讨论函数()()sin g x f x x =+的零点情况.例2.(2023春ꞏ全国ꞏ高三竞赛)已知函数()()1e cos ,0,2xf x x x π-=+∈.设()f x '为()f x 的导函数.(1)证明:()f x '有且仅有一个极值点;(2)判断()f x 的所有零点之和与2π的大小关系,并说明理由.例3.(2023秋ꞏ重庆ꞏ高三统考学业考试)已知函数2()ln ,R f x x x a x a =--∈.(1)当1a =时,求曲线()f x 在点(1,0)处的切线方程; (2)当02e a <<时,讨论函数()f x 的零点个数.例4.(2023秋ꞏ山东日照ꞏ高三校联考期末)已知函数()sin e ()x f x x a f x π-='-,是()f x 的导函数.(1)若()0f x ≥在(π,π)-上恒成立,求实数a 的取值范围;(2)若(π)0f '=,判断关于x 的方程()1f x =-在*[(21)π(22)π],(N )k k k ++∈,内实数解的个数,并说明理由.例5.(2023秋ꞏ江西赣州ꞏ高三统考期末)已知函数()e x f x =,()22g x x x a =-++.(1)讨论函数()()()h x f x g x =⋅的单调性;(2)若函数()y f x =的图象与函数()y g x =的图象仅有一个交点M ,求证:曲线()y f x =与()y g x =在点M 处有相同的切线,且1,24a ⎛⎫∈ ⎪⎝⎭.例6.(2023春ꞏ广东江门ꞏ高三校联考开学考试)已知函数21()e 2xf x x ax =+,()f x '为其导函数.(1)若2a =-,求()f x '的单调区间;(2)若关于x 的方程()x f x e =有两个不相等的实根,求实数a 的取值范围.例7.(2023ꞏ全国ꞏ高三专题练习)已知2x =是函数2()e x f x ax =-的极值点.(1)求a ;(2)证明:()f x 有两个零点,且其中一个零点02,0e x ⎛⎫∈- ⎪⎝⎭;(3)证明:()f x 的所有零点都大于1ln 22-.例8.(2023秋ꞏ安徽阜阳ꞏ高三安徽省临泉第一中学校考期末)已知函数1()e xf x x=+. (1)求()f x 的导函数()f x '的单调区间;(2)若方程()f x ax =(R a ∈)有三个实数根123 ,,x x x ,且12301x x x <<<<,求实数 a 的取值范围.例9.(2023春ꞏ江苏南京ꞏ高三南京市宁海中学校考阶段练习)已知函数()e xf x =和()ln g x ax x =-,a ∈R(1)求()y f x =在0x =处的切线方程;(2)若当()1,x ∈+∞时,()ln g x x x a <+恒成立,求a 的取值范围; (3)若()()h x f x ax =-与()y g x =有相同的最小值. ①求出a ;②证明:存在实数b ,使得()h x b =和()g x b =共有三个不同的根1x 、2x 、()3123x x x x <<,且1x 、2x 、3x 依次成等差数列.【过关测试】1.(2023秋ꞏ江苏苏州ꞏ高三统考期末)已知函数()ln(1)2axf x x x =+-+. (1)若0x ≥时,()0f x ≥,求实数a 的取值范围; (2)讨论()f x 的零点个数.2.(2023秋ꞏ河南驻马店ꞏ高三统考期末)已知函数()21ln 12f x x x x x =---. (1)求()f x 的单调区间; (2)若函数()()()2121ln 12g x x a x a x =+-+--恰有两个不同的零点,求a 的取值范围.3.(2023ꞏ全国ꞏ高三专题练习)已知01a <<,函数()1x f x x a -=+,()1log a g x x x =++.(1)若()e e g =,求函数()f x 的极小值;(2)若函数()()y f x g x =-存在唯一的零点,求a 的取值范围.4.(2023秋ꞏ河南信阳ꞏ高三信阳高中校考期末)已知函数()()212ln ,e (0)x b f x x x a x g x xx -=--=->,其中0,,e a b ⎤>∈⎥⎦是自然对数的底数. (1)若()f x 在区间()1,+∞上单调递增,求a 的取值范围;(2)设函数()()()()()2f xg x f x g xh x +--=,证明:存在唯一的正实数a ,使得()h x 恰好有两个零点.5.(2023秋ꞏ内蒙古呼和浩特ꞏ高三统考期末)已知函数()e 2xx x a f x a =-+.(1)当12a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求实数a 的取值范围.6.(2023秋ꞏ河北衡水ꞏ高三河北衡水中学校考阶段练习)已知函数()e sin xf x x ax =+,π0,2x ⎡⎤∈⎢⎥⎣⎦. (1)若1a =-,求()f x 的最小值;(2)若()f x 有且只有两个零点,求实数a 的取值范围.7.(2023ꞏ辽宁ꞏ辽宁实验中学校考模拟预测)已知函数()e cos xf x x =.(1)求()f x 在区间π0,2⎛⎫⎪⎝⎭内的极大值;(2)令函数()1()e xaf x F x x =-,当πa >时,证明:()F x 在区间π0,2⎛⎫ ⎪⎝⎭内有且仅有两个零点.8.(2023秋ꞏ江苏南通ꞏ高三统考期末)已知函数()ln f x a x =,()()1e xg x x =-,其中a 为实数.(1)若函数()f x ,()g x 的图象在1x =处的切线重合,求a 的值;(2)若e a >,设函数()()()h x f x g x =-的极值点为0x .求证:①函数()h x 有两个零点1x ,2x (12x x <);②01231x x x -->.9.(2023ꞏ全国ꞏ模拟预测)已知函数()()2sin ln 1f x x x x =-+-. (1)当10-<≤x 时,求()f x 的最小值;(2)设()()g x f x x =+,(]1,2πx ∈-,证明:()g x 有且仅有3个零点.(1.414≈,πln 1 1.544⎛⎫-≈- ⎪⎝⎭.)10.(2023春ꞏ云南ꞏ高三校联考开学考试)已知函数()(01)x f x a ax a a =->≠且. (1)当e a =时,求函数()f x 的极值;(2)讨论()f x 在区间(0,1)上的水平切线的条数.11.(2023秋ꞏ广西南宁ꞏ高三南宁二中校考期末)已知函数()()()22ln 11af x x x =+-+有两个不同的零点x 1,x 2.(1)当112x -<<-时,求证:()12ln 11x x +>-+;(2)求实数a 的取值范围;12.(2023秋ꞏ湖北武汉ꞏ高三统考期末)已知函数()xf x a =与()log a g x x =(0a >,且1a ≠)(1)求()g x 在()()1,1g 处的切线方程;(2)若1a >,()()()h x f x g x =-恰有两个零点,求a 的取值范围13.(2023秋ꞏ浙江ꞏ高三浙江省永康市第一中学校联考期末)已知函数()e x f x ax =-,()2g x x a =-+(1)当1a =时,求函数()()y f x g x =-的最小值;(2)设01a <<,证明:曲线()y f x =与曲线()y g x =有两条公切线.14.(2023ꞏ全国ꞏ模拟预测)已知函数()ln f x a x x =-1e a ⎛⎫> ⎪⎝⎭(e 是自然对数的底数).(1)若12,x x (120x x <<)是函数()y f x =的两个零点,证明:12112ln x x x x <-; (2)当2a =时,若对于0k ∀>,曲线C :2y m kx =-与曲线()y f x =都有唯一的公共点,求实数m 的取值范围.15.(2023ꞏ全国ꞏ高三专题练习)已知函数()()()e 1xf x a x a =--∈R .(1)当1a =时,求函数()y f x =的极值;(2)若关于x 的方程()ln e 0f x x +-=在()1,+∞无实数解,求实数a 的取值范围.16.(2023ꞏ全国ꞏ高三专题练习)已知函数2()eln (R),()eln x f x ax x a g x x x=+∈=-. (1)讨论函数()()2F x f x =在()0,∞+上的单调性;(2)若函数()f x 的图象与()g x 的图象有三个不同的交点,求实数a 的取值范围.17.(2023ꞏ全国ꞏ高三专题练习)已知函数()ln f x a x x =-(e 是自然对数的底数). (1)讨论函数()f x 的单调性;(2)当2a =时,若对于0k ∀>,曲线C :2y m kx =-与曲线()y f x =都有唯一的公共点,求实数m 的取值范围.参考答案【总结】1、函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.【典型例题】例1.(2023秋ꞏ内蒙古包头ꞏ高三统考期末)已知函数()()ln 11f x x a x =--+. (1)若()f x 存在极值,求a 的取值范围;(2)当2a =时,讨论函数()()sin g x f x x =+的零点情况. 【答案解析】(1)因为()()ln 11f x x a x =--+,所以()()11(0)f x a x x'=-->, 当10a -≤,即1a ≤时,()0f x ¢>,则()f x 为单调递增函数,不可能有极值,舍去; 当10a ->,即1a >时,令()0f x '=,解得11x a =-, 当101x a <<-时,()0f x ¢>;当11x a >-时,()0f x '<;所以()f x 在10,1a ⎛⎫ ⎪-⎝⎭上单调递增,在1,1a ⎛⎫+∞⎪-⎝⎭上单调递减, 所以()f x 在11x a =-取得极大值,符合题意; 综上:1a >,故实数a 的取值范围为()1,+∞.(2)当2a =时,()ln 1sin (0)g x x x x x =-++>,则()11cos g x x x'=-+, 令()()11cos 0h x x x x =-+>,则()21sin h x x x'=--, (i )当(]0,πx ∈时,()0h x '<,则()h x 单调递减,即()g x '单调递减, 注意到()cos101g '=>,()120ππg '=-<, 所以存在唯一的()01,πx ∈使()00g x '=,且当00x x <<时,()0g x '>,()g x 单调递增, 当0πx x <≤时,()0g x '<,()g x 单调递减,注意到22211121sin 0e e e g ⎛⎫=--++< ⎪⎝⎭,()1sin10g =>,2ln πln e 2π1<=<-,则()πln ππ10g =-+<,所以()g x 在21,1e ⎛⎫⎪⎝⎭和()1,π上各有一个零点;(ii )当(]π,2πx ∈时,sin 0x ≤,故()ln 1g x x x ≤-+, 令()()ln 1π2πx x x x ϕ=-+<≤,则()110x xϕ'=-<, 所以()x ϕ在(]π,2π上单调递减,故()()πln ππ10x ϕϕ<=-+<, 所以()()0g x x ϕ≤<,故()g x 在(]π,2π上无零点; (iii )当()2π,x ∈+∞时,sin 1x ≤,则()ln 2g x x x ≤-+, 令()()ln 22πm x x x x =-+>,则()110m x x=-<',所以()m x 在()2π,+∞上单调递减, 又3ln 2πln e 32π2<=<-,故()()2πln 2π2π20m x m <=-+<, 所以()()0g x m x ≤<,故()g x 在()2π,+∞上无零点;综上:()g x 在21,1e ⎛⎫⎪⎝⎭和()1,π上各有一个零点,共有两个零点.例2.(2023春ꞏ全国ꞏ高三竞赛)已知函数()()1e cos ,0,2xf x x x π-=+∈.设()f x '为()f x 的导函数.(1)证明:()f x '有且仅有一个极值点;(2)判断()f x 的所有零点之和与2π的大小关系,并说明理由.【答案解析】(1)证明:因为()()1e cos ,0,2πx f x x x -=+∈,所以()1e sin x f x x --'=- 设()()1e sin xg x f x x -==--',()0,2πx ∈,所以()()111e cos e 1e cos xx x g x x x ---=--'=,其中1e 0x ->恒成立,令()11e cos x h x x -=-,()0,2πx ∈,则()111πecos e sin sin 4x x x h x x x x ---⎛⎫=-+='- ⎪⎝⎭,因为()0,2πx ∈,所以ππ7π,444x ⎛⎫-∈- ⎪⎝⎭, 所以当π0,4x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,函数()h x 单调递减,当π5π,44x ⎛⎫∈ ⎪⎝⎭时,()0h x '>,函数()h x 单调递增,当5π,2π4x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,函数()h x 单调递增;又()π1104π01e 0,1e 1e 0422h h --⎛⎫=->=->-> ⎪⎝⎭,5ππ044h h ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭,7π1147π1e 1e 0422h -⎛⎫=-<-< ⎪⎝⎭,()7π2π04h h ⎛⎫<< ⎪⎝⎭所以05π7π,44x ⎛⎫∃∈ ⎪⎝⎭,使得()01001e cos 0x h x x -=-= ,即010e cos xx -=,故对于()()1e x g x h x -'=有()00g x '=,当()00,x x ∈时,()00g x '>,函数()f x '单调递增,当()0,2πx x ∈时,()00g x '<,函数()f x '单调递减,所以0x 是函数()f x '的极大值点,()f x '无极小值点,故()f x '有且仅有一个极值点. (2)()f x 的所有零点之和大于2π,理由如下:函数()()1e cos ,0,2xf x x x π-=+∈,其导函数()1e sin x f x x --'=-,05π7π,44x ⎛⎫∃∈ ⎪⎝⎭,使得当()00,x x ∈时,()f x '单调递增,当()0,2πx x ∈时,函数()f x '单调递减,又010ecos x x -=,所以()()0100000π0e 0,e sin cos sin 4xf f x x x x x -⎛⎫=-<=--=--=+' ⎝'⎪⎭,因为057π,π44x ⎛⎫∈ ⎪⎝⎭,所以0π3π,2π42x ⎛⎫+∈ ⎪⎝⎭,所以()00f x '>,又()12π2πe0f -'=-<, 故()100,x x ∃∈,使得()10f x '=,()20,2πx x ∃∈,使得()20f x '=,于是可得:当()10,x x ∈时,()0f x '<,()f x 单调递减,当()12,x x x ∈时,()0f x ¢>,()f x 单调递增,当()2,2πx x ∈时,()0f x '<,()f x 单调递减, 又()3π11π23ππe0,e 102f f --⎛''⎭<⎫=-=-+> ⎪⎝,故13ππ,2x ⎛⎫∈ ⎪⎝⎭,则()π11π2πe 0,πe 102f f --⎛⎫=>=-< ⎪⎝⎭,所以存在π,π2α⎛⎫∈ ⎪⎝⎭使得()0f α=,所以()()1π0f x f <<,又3π123πe 02f -⎛⎫=> ⎪⎝⎭,所以()23π02f x f ⎛⎫>> ⎪⎝⎭,则存在3ππ,2β⎛⎫∈ ⎪⎝⎭使得()0f β=,又()12π2πe10f -=+>,所以函数()f x 在区间()2,2πx x ∈上无零点;故函数在()0,2πx ∈上有两个零点,αβ,且π3ππ22αβ<<<<, 由()()0f f αβ==可得:11e cos 0,e cos 0αβαβ--+=+=,所以11cos e ,cos e αβαβ--=-=-, 又111111e e e e αβαβαβαβ----<⇒->-⇒>⇒-<-, 所以()cos cos cos 2παββ<=-, 根据π3ππ22αβ<<<<,可得:ππ2α<<,π2ππ2β<-<,并且函数cos y x =在π,π2⎛⎫⎪⎝⎭上单调递减,所以2παβ>-,即2παβ+>,故()f x 的两个零点之和大于2π.例3.(2023秋ꞏ重庆ꞏ高三统考学业考试)已知函数2()ln ,R f x x x a x a =--∈.(1)当1a =时,求曲线()f x 在点(1,0)处的切线方程; (2)当02e a <<时,讨论函数()f x 的零点个数.【答案解析】(1)因为1a =,所以()2()ln 0f x x x x x =-->,令()()ln 0x x x x ϕ=->,则()111x x x xϕ-'=-=, 令()0x ϕ'>,得1x >;令()0x ϕ'<,得01x <<; 所以()x ϕ在()0,1上单调递减,在()1,+∞上单调递增, 所以()()11ln10x ϕϕ≥=->,即ln 0x x ->恒成立, 所以2()ln f x x x x =-+,则1()21f x x x'=-+, 所以切线的斜率为()12k f '==,又切点为(1,0),所以切线方程为()21y x =-,即22y x =-.(2)令()0f x =,则2ln x x a x =-,该式等价于2ln x x a x =-或2ln x x a x =-+,当2ln x x a x =-时,有2ln x a x x =--,令()()20m x x x x =->,()ln n x a x =-,则2ln x x a x =-的解的个数即为()m x 与()n x 的交点个数,易知()m x 开口向上,对称轴为12x =, 所以()m x 在10,2⎛⎫⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,且()()010m m ==,而ln y x =在()0,∞+上单调递增,02e a <<,所以()ln n x a x =-在()0,∞+上单调递减,且()10n =,作出()m x 与()n x 的图像,如图,所以()m x 与()n x 的交点只有一个,且为()1,0,故2ln x x a x =-只有一个解;当2ln x x a x =-+时,因为当1x =时,该式不成立,所以2ln x a xx=+,令()()20ln x x h x x x+=>,则2(12)ln (1)()(ln )x x x h x x +-+'=, 令()()(12)ln (1)0s x x x x x =+-+>,则1()2ln 1s x x x'=++, 令()()12ln 10g x x x x=++>,则()221x g x x -'=,令()0g x '>,得12x >;令()0g x '<,得102x <<;所以()g x 在10,2⎛⎫⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,所以()min 112ln 2132ln 2022g x g ⎛⎫==++=-> ⎪⎝⎭,故()()0s x g x '=>,所以()s x 在(0,)+∞上单调递增,因为()10,e e 02ss =-<=>,所以存在0x ∈,使得()00s x =,则()s x 在0(0,)x 上()0s x <,在0(,)x +∞上()0s x >, 所以()()2()ln s x h x x '=在()0,1上()0h x '<,在()01,x 上()0h x '<,在()0,x +∞上()0h x '>,所以() h x 在()0,1上单调递减,在()01,x 上单调递减,在()0,x +∞上调递增, 因为()00s x =,所以000(12)ln (1)0x x x +-+=,即000121ln 1x x x +=+, 所以()()()2200000000min0012ln 112x x x h x h x x x x x x x ++===+⋅=++,因为22y x x =+在()0,∞+上单调递增,0x ,所以20022e 2e 2x x +>⨯+>,故()()02e h x h x ≥>, 又因为02e a <<,所以方程()a h x =无解,即方程2ln x a x x=+无解,故2ln x x a x =-+无解;综上:当02e a <<时,2ln x x a x =-与2ln x x a x =-+只有一个解,即()f x 只有一个零点. 例4.(2023秋ꞏ山东日照ꞏ高三校联考期末)已知函数()sin e ()x f x x a f x π-='-,是()f x 的导函数.(1)若()0f x ≥在(π,π)-上恒成立,求实数a 的取值范围;(2)若(π)0f '=,判断关于x 的方程()1f x =-在*[(21)π(22)π],(N )k k k ++∈,内实数解的个数,并说明理由.【答案解析】(1)由题意()0f x ≥在(π,π)-上恒成立,得π()sin e 0x f x x a --≥= ,即πe e sin x a x ≤恒成立,令()e sin x m x x =,则()()e sin cos xm x x x '=+ ,当(π,π)x ∈-时,π3π5π(,)444x +∈-,令()()e sin cos 0xm x x x '=+>π04x +>,则π(0,π)4x +∈,得π3π44x -≤<,令()()e sin cos 0xm x x x '=+<π04x +<,π3π(,0)44x +∈-或π5π(π,)44x +∈得 ππ4x -<<-或3ππ4x <<, 所以()()e sin cos xm x x x '=+在π(π,)4--和(3π,π)4为减函数,在π3π(,)44-上为增函数,()π(π)=0m m =- ,ππ()()44ππ(e sin()44m ---=-=,故π()4min ()m x -=,故π(π4e a -≤,即5π()4a -≤,综上 ,实数a 的取值范围5π()4(,e ]2--∞ .(2)由题意()sin e ()cos e x x f x x a f x x a π-π-'=-=+,, ()π10,1f a a '=-+=∴= ,由()1f x =-,得πsin e 10x x --+= , 令()πsin e1xs x x -=-+ ,()πcos e x s x x -'=+ 令()πcos e x x x g -=+,π()sin e x g x x -'=--,令ππ()sin e ()cos e ,x x h x x h x x --'=--=-+()h x '在[]*(21)π,(22)π,N k k k ++∈上单调递减,注意到2ππ2π((21)π)1e 0,((22)π))1e 0k k h k h k ---''+=+>+=-+<, ∴存在()()021π,22()πx k k ∈++,使0()0h x '=, 且当()021πk x x +≤<时,()0h x '> ,()g x ' 单调递增, 当()02π2x x k <≤+时,()0h x '<,()g x '单调递减,且2ππ2π((21)π)e 0,((22)π)e 0k k g k g k ---''+=-<+=-< ,π2π23((21e 02k g k --'+=-> ,所以()g x '在3(21)π,(22k k ⎛⎫++ ⎪⎝⎭和3(2)π,(22)π2k k ⎛⎫++ ⎪⎝⎭上各有一个零点,设为12,x x ,且当()1[21π,)x k x ∈+时,()s x '单调递减;12(,)x x x ∈时,()s x '单调递增, 当()2(,22π]x x k ∈+时,()s x '单调递减 且()()()()2ππ2π211ππe0,221e 0k k s k s k ---''+=-+<+=+> ,∴当()121πk x x +≤≤时,()()()21π0x s k s +''<< , 当()222πx x k <≤+ 时,()()()22π0x s k s +''>>, 故()s x '在12(,)x x 上有唯一的零点,设为3x ,且当()321πk x x +<< ,时,()0s x '< ,()s x 在()321π)(,k x +上单调递减; 当()322πx x k <<+ 时,()0s x '>,()s x 在()3,22π()x k +上单调递增. 注意到2ππ2π((21)π)e 10,((22)π)e 10k k s k s k ---+=-+>+=-+> ,π2π23((2)π)e 02k s k --+=-< ,所以:()s x 在3((21)π,(2)π)2k k ++和3((22)π)2k k ++上各有一个零点,设为45,x x ,所以()s x 共两个零点,故方程()1f x =-()1f x =-在*[(21)π(22)π],(N )k k k ++∈,内实数解的个数为2. 例5.(2023秋ꞏ江西赣州ꞏ高三统考期末)已知函数()e xf x =,()22g x x x a =-++.(1)讨论函数()()()h x f x g x =⋅的单调性;(2)若函数()y f x =的图象与函数()y g x =的图象仅有一个交点M ,求证:曲线()y f x =与()y g x =在点M 处有相同的切线,且1,24a ⎛⎫∈ ⎪⎝⎭.【答案解析】(1)()()2e 2x h x x x a =-++定义域为R ,所以()()2e 2x h x a x '=+-,①当20a +≤即2a ≤-时,()0h x '≤恒成立, 函数()h x 在(),x ∈-∞+∞上为单调递减函数.②当20a +>即2a >-时,令()0h x '>得:x <<,令()0h x '<得:x <x >所以,函数()h x 在(x ∈上单调递增,在(,x ∈-∞和)x ∈+∞上单调递减综上所述,当2a ≤-时,函数()h x 在(),x ∈-∞+∞上为单调递减;当2a >-时,()h x 在(x ∈上单调递增,在(,x ∈-∞和)x ∈+∞上单调递减;(2)构造()()()2e 2x F xf xg x x x a =-=+--,所以()22e xF x x '=+-.记()()m x F x '=,()20e xm x '=+>恒成立,即()m x 在(),x ∈-∞+∞上单调递增.而()00210e m =-=-<,1102m ⎛⎫=> ⎪⎝⎭,所以存在唯一的010,2x ⎛⎫∈ ⎪⎝⎭使得()00m x =,即000e 22xx +-=,由()e x f x =,()22g x x x a =-++可得()e xf x '=,()22g x x '=-+,所以()00e xf x '=,()0022g x x '=-+,所以()()00f x g x ''=,即曲线()y f x =与()y g x =在点M 处有相同的切线.又因为当()0,x x ∈-∞时,()0F x '<,当()0,x x ∈+∞时,()0F x '>, 故()F x 在()0,x x ∈-∞上单调递减,在()0,x x ∈+∞上单调递增, 故()F x 在0x x =上取得极小值,也是最小值, 即()()min 0F x F x =,由于函数()y f x =的图象与函数()y g x =的图象仅有一个交点M ,所以()00F x =,即0200e 20x x x a +--=,故()02220000e 24222x a x x x x x =+-=-+=--,010,2x ⎛⎫∈ ⎪⎝⎭,所以()2022a x =--在010,2x ⎛⎫∈ ⎪⎝⎭上单调递减,所以1,24a ⎛⎫∈ ⎪⎝⎭,综上,曲线()y f x =与()y g x =在点M 处有相同的切线,且1,24a ⎛⎫∈ ⎪⎝⎭.例6.(2023春ꞏ广东江门ꞏ高三校联考开学考试)已知函数21()e 2xf x x ax =+,()f x '为其导函数.(1)若2a =-,求()f x '的单调区间;(2)若关于x 的方程()x f x e =有两个不相等的实根,求实数a 的取值范围.【答案解析】(1)函数2()e x f x x x =-,x ∈R ,则()()1e 2xf x x x =+-', 令()()()1e 2x h x f x x x ==+-',则()()2e 2x h x x +'=-,设()()2e 2xm x x =+-,则()()3e 0x m x x +'==,得3x =-,故(),3x ∈-∞-时,()0m x '<,函数()m x 即()h x '单调递减,()3,x ∈-+∞时,()0m x '>,函数()m x 即()h x '单调递增,所以min 31()(3)20e h x h =-=--<',又x →-∞时,()h x '→-∞,又(0)0h '=, 所以(),0x ∈-∞时,()0h x '<,函数()f x '单调递减,()0,x ∈+∞时,()0h x '>,函数()f x '单调递增,故()f x '的单调减区间为(),0∞-,增区间为()0,∞+;(2)关于x 的方程21e =e 2x x x ax +有两个不相等的实根,即函数()21e e 2x xg x x ax =-+,在x ∈R 上有两个零点,又()()()1e e e x x xg x x ax x a =+-+=+',①当0a ≥时,()0g x '=,得0x =,所以当(),0x ∈-∞时,()0g x '<,函数()g x 单调递减,当()0,x ∈+∞时,()0g x '>,函数()g x 单调递增,所以()()min 01g x g ==-,又x →-∞时,()g x →+∞,()22e 20g a =+>,则函数()g x 在x ∈R上有两个零点;②当0a <时,()0g x '=,得0x =,()ln x a =-,(i )当1a =-时,()ln 0a -=,此时()0g x '≥恒成立,函数()g x 单调递增,在x ∈R 上不可能有两个零点,不符合题意;(ii )当10a -<<时,()ln 0a -<,则当()(),ln x a ∈-∞-时,()0g x '>,函数()g x 单调递增,()()ln ,0x a ∈-时,()0g x '<,函数()g x 单调递减,当()0,x ∈+∞时,()0g x '>,函数()g x 单调递增,所以()()()()()()2211ln ln ln ln 11022g a a a a a a a a ⎡⎤-=--++-=--+<⎣⎦,()01g =-,故函数()g x 在区间(),0x ∈-∞无零点,在()0,x ∈+∞不可能存在两个零点,故不符合题意;(iii )当1a <-时,()ln 0a ->,则当(),0x ∈-∞时,()0g x '>,函数()g x 单调递增,()()0,ln x a ∈-时,()0g x '<,函数()g x 单调递减,当()()ln ,x a ∈-+∞时,()0g x '>,函数()g x 单调递增,又()01g =-,故函数()g x 在区间()(),ln x a ∈-∞-无零点,在()()ln ,x a ∈-+∞不可能存在两个零点,故不符合题意; 综上,实数a 的取值范围[)0,∞+.例7.(2023ꞏ全国ꞏ高三专题练习)已知2x =是函数2()e x f x ax =-的极值点.(1)求a ;(2)证明:()f x 有两个零点,且其中一个零点02,0e x ⎛⎫∈- ⎪⎝⎭;(3)证明:()f x 的所有零点都大于1ln 22-.【答案解析】(1)2()e x f x ax =-,则()e 2x f x ax '=-, 因为2x =是函数()f x 的极值点,所以(2)0f '=,即2e 40a -=,解得2e 4a =.当2e 4a =时,2e ()e 2xf x x '=-,当(1,2)x ∈时,()0f x '<,函数()f x 单调递减, 当(2,)x ∈+∞时,()0f x '>,函数()f x 单调递增, 所以2x =是函数()f x 的极小值点,故2e 4a =; (2)由(1)知,22e ()e 4xf x x =-,令()0f x =,则22e e 4xx =,作e xy =和22e 4y x =函数图象,如图所示,由图可知,两函数图象有2个交点,且一个交点分布在(,0)-∞上,另一个分布在(0,)+∞上, 所以方程()0f x =有2个解,即函数()y f x =有2个零点. 易知2是函数()f x 的一个零点,设另一个零点为0x ,又(0)10=>f ,2222e e 2e 2()e ()e 10e 4ef ---=--=-<,所以2(0)()0e f f -<,又函数()f x 在定义域上连续,由零点的存在性定理,知02(,0)ex ∈-;(3)由(1)知,22e ()e 4xf x x =-,当0x =时,(0)1f =, 当0x ≠时,令()0f x =,则22e 14x x -=, 设22e (0)()x h x x x -=≠,则()0h x >,23e (2)()x x x h x --=',令()00h x x '>⇒<或2x >,令()002h x x '<⇒<<,所以函数()h x 在(,0)-∞和(2,)+∞上单调递增,在(0,2)上单调递减, 又1(2)0,(2)4h h ->=,2ln 221-<-<-,得111ln 222-<<-- 所以213132,0()1ln 222ln 22-<-<-<<--,又332e >16e 4⇒>,所以当1ln 22x =-时,1322ln 2223322221e e (ln 22)11()11ln 224(()e e ln 22ln 22h ----=<=<<---, 作出函数()y h x =和14y =的图象,如图所示,由图可知,两函数图象的交点的的横坐标都大于1ln 22-,故函数()f x 的所有零点都大于1ln 22-.例8.(2023秋ꞏ安徽阜阳ꞏ高三安徽省临泉第一中学校考期末)已知函数1()e xf x x=+. (1)求()f x 的导函数()f x '的单调区间;(2)若方程()f x ax =(R a ∈)有三个实数根123 ,,x x x ,且12301x x x <<<<,求实数 a 的取值范围.【答案解析】(1)函数f (x )的定义域为()()()21,00,,e xf x x '-∞⋃+∞=-记()()g x f x '=,则()3332e 2e x x x g x x x '+=+=. 当()0,x ∈+∞时,()0g x '>,则()g x 在()0,+∞上单调递增,当(),0x ∈-∞时,记()()()32e 2,3e xx x x x x x ϕϕ'=+=+,所以(),3x ∈-∞-时,()0x ϕ'<,()x ϕ递减;()3,0x ∈-时,()0x ϕ'>,()x ϕ递增,()x ϕ的极小值为()333332e e 332e 0ϕ⎛⎫-=-> ⎪-⎝=⎭,即有()0x ϕ>, 因此()0g x '<, g (x )在(,0)-∞上单调递减,所以函数()f x '在()0,+∞上单调递增,在(,0)-∞上单调递减.(2)令()()()()211e ,e xx F x f x ax ax F x f x a a x x'=-=+-=-=--' 方程()f x ax =(R a ∈)有三个实数根等价于F (x )有三个零点123,,x x x ,12301x x x <<<<,当0a ≤时,因为0x >,则()0F x >,此时F (x )在()0,+∞无零点; 当0a >时,由(1)知()F x '在()0,+∞上单调递增,显然1()402F a '=--<,21(ln(e ))e e 10(ln(e ))F a a '+=->->+, 因此存在00x >,使得()00F x '=,()00,x x ∈,()()0,F x F x '<单调递减,()0,x x ∈+∞,()()0,F F x x '>单调递增,①若e 1a =+,则()1e 10F a =+-=,不符合题意;②若0e 1a <<+,()1e 10F a =+->,当01x ≥时,(0,1)x ∈,()0F x >,()F x 在()0,1上无零点,当01x <时,()()1,,0x F x ∈+∞>,()F x 在()1,+∞上无零点,不符合题意, ③若e 1a >+,则()1e 10F a =+-<,()1e 10F a '=--<,于是01x >, 而当01x <<时,1e e x <<,0a ax -<-<,但1x的取值集合是(1,)+∞, 因此存在(0,1)t ∈,使得()0F t >,当1x >时,令2()e x h x x =-,()e 2x h x x '=-,令()()e 2x u x h x x '==-,则()e 2e 20x u x '=->->,即()h x '在(1,)+∞上单调递增,()(1)e 20h x h ''>=->, ()h x 在(1,)+∞上单调递增,()(1)e 10h x h >=->,因此当1x >时,2e x x >,有()2211e xF x ax x ax x ax x x=+->+->-,因为当x a ≥时,二次函数2x ax -的值域是[0,)+∞,于是得当x a ≥时,()0F x >,因此存在2301x x <<<,使得()()230F x F x ==,此时当0x <时,()e 10xF x a a '<-<-<,即函数F (x )在(,0)-∞上单调递减, 由()11111e 10,e 1e e 0a a F a F a a ---⎛⎫-=-+>-=-+<-< ⎪⎝⎭因此存在10x <,使得()10F x =,从而当e 1a >+时,F (x )有三个零点123,,x x x ,且12301x x x <<<<, 所以实数a 的取值范围是()e 1,++∞.例9.(2023春ꞏ江苏南京ꞏ高三南京市宁海中学校考阶段练习)已知函数()e xf x =和()ln g x ax x =-,a ∈R(1)求()y f x =在0x =处的切线方程;(2)若当()1,x ∈+∞时,()ln g x x x a <+恒成立,求a 的取值范围; (3)若()()h x f x ax =-与()y g x =有相同的最小值. ①求出a ;②证明:存在实数b ,使得()h x b =和()g x b =共有三个不同的根1x 、2x 、()3123x x x x <<,且1x 、2x 、3x 依次成等差数列.【答案解析】(1)因为()e x f x =,则()e x f x '=,所以,()()001f f '==,所以,()y f x =在0x =处的切线方程为1y x =+. (2)当()1,x ∈+∞时,不等式()ln g x x x a <+等价于()1ln 01a x x x -->+. 设()()1ln 1a x p x x x -=-+,则()()()()2222111211x a x a p x x x x x +-+'=-=++,且()10p =. 对于函数()2211y x a x =+-+,()()241442a a a ∆=--=-.(ⅰ)当2a ≤且()1,x ∈+∞时,()22211210x a x x x +-+≥-+>,故()0p x '>,则()p x 在()1,+∞上单调递增,因此()()10p x p >=; (ⅱ)当2a >时,令()0p x '=得11x a =-21x a =-由122110x x x x =⎧⎨>>⎩得101x <<,21x >,故当()21,x x ∈时,()0p x '<,()p x 在()21,x 单调递减,因此()()210p x p <=,不合乎题意.综上,a 的取值范围是(],2-∞.(3)①()e xh x ax =-的定义域为R ,而()e x h x a '=-,若0a ≤,则()0h x '>,此时()h x 无最小值,故0a >. 函数()ln g x ax x =-的定义域为()0,∞+,而()11ax g x a x x-'=-=. 当ln x a <时,()0h x '<,故()h x 在(),ln a -∞上为减函数, 当ln x a >时,()0h x '>,故()h x 在()ln ,a +∞上为增函数, 故()()min ln ln h x h a a a a ==-. 当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数, 当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数, 故()min 111ln 1ln g x g a a a ⎛⎫==-=+ ⎪⎝⎭.因为()e xh x ax =-和()ln g x ax x =-有相同的最小值,故1n ln l a a a a =-+,整理得到1ln 1a a a-=+,其中0a >, 设()1ln 1a s a a a -=-+,其中0a >,则()()()222211011a s a a a a a --'=-=<++, 故()s a 为()0,∞+上的减函数,而()10s =,故()0s a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =. 综上,1a =.②由①可得()e xh x x =-和()ln g x x x =-的最小值为1ln11+=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e x S x x b =--,()e 1xS x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>, 故()S x 在(),0∞-上为减函数,在()0,∞+上为增函数, 所以()()min 010S x S b ==-<, 而()e0bS b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即方程e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=, 当01x <<时,()0T x '<,当1x >时,()0T x '>, 故()T x 在()0,1上为减函数,在()1,+∞上为增函数, 所以()()min 110T x T b ==-<, 而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由①讨论可得ln x x b -=、e x x b -=仅有一个解, 当1b <时,由①讨论可得ln x x b -=、e x x b -=均无根,故若存在直线y b =与曲线()y h x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x t x x x =+-,其中0x >,故()1e 2xt x x'=+-, 设()e 1x r x x =--,其中0x >,则()e 10xr x '=->,故()r x 在()0,∞+上为增函数,故()()00r x r >=即e 1x x >+, 所以()11210t x x x'>+-≥->,所以()t x 在()0,∞+上为增函数, 而()1e 20t =->,31e 333122e 3e 30e e e t ⎛⎫=--<--< ⎪⎝⎭,故()t x 在()0,∞+上有且只有一个零点2x ,且2311e x <<, 当20x x <<时,()0t x <,即e ln x x x x -<-,即()()h x g x <, 当2x x >时,()0t x >,即e ln x x x x ->-,即()()h x g x >,因此若存在直线y b =与曲线()y h x =、()y g x =有三个不同的交点, 故()()221b h x g x ==>,此时e x x b -=有两个不同的根1x 、()2120x x x <<, 此时ln x x b -=有两个不同的根2x 、()32301x x x <<<,故11e xx b -=,22e x x b -=,33ln 0x x b --=,22ln 0x x b --=,所以33ln x b x -=,即33e x bx -=,即()33e 0x bx b b ----=,故3x b -为方程e x x b -=的解,同理2x b -也为方程e x x b -=的解,又11e x x b -=可化为11e xx b =+,即()11ln 0x x b -+=,即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理2x b +也为方程ln x x b -=的解,所以{}{}1223,,x x x b x b =--,而1b >,故2312x x bx x b =-⎧⎨=-⎩,即1322x x x +=.【过关测试】1.(2023秋ꞏ江苏苏州ꞏ高三统考期末)已知函数()ln(1)2axf x x x =+-+. (1)若0x ≥时,()0f x ≥,求实数a 的取值范围; (2)讨论()f x 的零点个数.【答案解析】(1)()f x 的定义域是(1,)-+∞,22212(42)(1)()1(2)(1)(2)a x a x f x x x x x +'-+=-=++++. ①当2a ≤时,()0f x '≥,所以()f x 在(1,)-+∞上单调递增, 又因为(0)0f =,所以当0x ≥时,()(0)0f x f ≥=,满足题意; ②当2a >时,令22()(42)(1)(42)(42)g x x a x x a x a =+-+=+-+-, 由()0g x =,得1(2)0x a =-<,2(2)0x a -=>. 当()20,x x ∈时,()0g x <,()0f x '<,所以()f x 在()20,x 上单调递减, 所以()()200f x f <=,不满足题意. 综上所述,2a ≤.(2)①当2a ≤时,由(1)可得()f x 在(1,)-+∞上单调递增,且(0)0f =,所以()f x 在(1,)-+∞上存在1个零点;②当2a >时,由(1)可得()0g x =必有两根1x ,2x ,又因为(1)10g -=>,(0)420g a =-<所以1(1,0)x ∈-,2(0,)x ∈+∞.x ()11,x -1x()12,x x2x()2,x +∞()f x '+-+()f x单调递增 极大值()1f x 单调递减 极小值()2f x 单调递增当()12,x x x ∈时,因为(0)0f =,所以()f x 在()12,x x 上存在1个零点, 且()()100f x f >=,()()200f x f <=; 当()11,x x ∈-时,因为()()e 12ee 1ln e 0e 1e l---------=-=<++a aa a aaa a f ,1e 10--<-<a ,而()f x 在1(0,)x 单调递增,且1()0f x '=,而(e 1)0a g -->,故11e 1ax --<-<,所以()f x 在()11,x -上存在1个零点; 当()2,x x ∈+∞时,因为()()e 12e 1ln e 0e 1e 1a a a a a a af --=-=>++, e 10a ->,而()f x 在2(,)x +∞单调递增,且2()0f x '=,而(e 1)0ag ->, 所以2e 1ax ->,所以()f x 在()2,x +∞上存在1个零点.从而()f x 在()1,-+∞上存在3个零点.综上所述,当2a ≤时,()f x 存在1个零点;当2a >时,()f x 存在3个零点.2.(2023秋ꞏ河南驻马店ꞏ高三统考期末)已知函数()21ln 12f x x x x x =---. (1)求()f x 的单调区间; (2)若函数()()()2121ln 12g x x a x a x =+-+--恰有两个不同的零点,求a 的取值范围. 【答案解析】(1)由题意可得()ln f x x x '=-, 设()()ln h x f x x x '==-,则()111xh x x x-'=-=由()0h x '>,得01x <<,由()0h x '<,得1x >则()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,即()f x '在(0,1)单调递增,在(1,)+∞上单调递减,从而()(1)10f x f ''≤=-<,故()f x 的单调递减区间是(0,)+∞,无递增区间(2)由题意可得21(2)1(1)(1)()2a x a x a x a x g x x a x x x-+-+-+--'=+-+==, ()g x 的定义域是(0,)+∞,①当10a -<,即1a >时,1x >时()0g x '>,01x <<时()0g x '<, 则()g x 在(0,1)上单调递减,在(1,)+∞上单调递增. 因为0x →时,()g x →+∞,x →+∞时,()g x ∞→+, 所以()g x 要有两个零点,则1(1)2102g a =+--<,解得52a <,故152a <<;②当10a -=,即1a =时,由21()102g x x x =--=,解得x 1=因为0x >,所以1x =()g x 有且仅有1个零点,故1a =不符合题意; ③当011a <-<,即01a <<时,由()0g x '>,得01x a <<-或1x >, 由()0g x '<,得11a x -<<,则()g x 在(0,1)a -和(1,)+∞上单调递增,在(1,1)a -上单调递减. 因为0x →时,()0,g x x <→+∞时,()g x ∞→+, 所以()g x 要有两个零点,则1(1)2102g a =+--=或21(1)(1)(2)(1)(1)ln(1)102g a a a a a a -=-+--+---=, 若(1)0g =,解得52a =,不符合题意, 若(1)0g a -=,设1(0,1)t a =-∈,则(1)0g a -=化为2211(1)ln 1ln 1022t t t t t t t t t +--+-=--+-=, 01t <<时,ln 0t t <,221111(1)0222t t t ---=-+-<,所以21ln 102t t t t --+-<,21ln 102t t t t --+-=无解,即(1)0g a -=无解,故01a <<不符合题意;④当11a -=,即0a =时,()0g x '≥恒成立,则()g x 在(0,)+∞上单调递增,从而()g x 最多有1个零点,则0a =不符合题意;⑤当11a ->,即a<0时,由()0g x '>,得01x <<或1x a >-,由()0g x '<,得11x a <<-, 则()g x 在(0,1)和(1),a -+∞上单调递增,在(1,1)a -上单调递减. 因为0x →时,()0g x x <→+∞,时,()g x ∞→+ 所以()g x 要有两个零点,则(1)0g =或(1)0g a -=,若1(1)2102g a =+--=,解得52a =,不符合题意,若21(1)(1)(2)(1)(1)ln(1)102g a a a a a a -=-+--+---=. 设1(1,)t a =-∈+∞,则(1)0g a -=化为2211(1)ln 1ln 1022t t t t t t t t t +--+-=--+-=,由(1)知21ln 12y t t t t =---在(1,)+∞上单调递减,所以21ln 102t t t t --+-<,21ln 102t t t t --+-=无解, 即(1)0g a -=无解,故a<0不符合题意.综上,a 的取值范围是51,2⎛⎫⎪⎝⎭.3.(2023ꞏ全国ꞏ高三专题练习)已知01a <<,函数()1x f x x a -=+,()1log a g x x x =++.(1)若()e e g =,求函数()f x 的极小值;(2)若函数()()y f x g x =-存在唯一的零点,求a 的取值范围. 【答案解析】(1)由()1e e e 1log e e ea g a =⇒++=⇒=, 所以()1e x f x x -=+,()11e xf x -'=-,令()01f x x '=⇒=,当1x <时,()0f x '<,当1x >时,()0f x ¢>, 所以()f x 在(,1)-∞上递减,在(1,)+∞上递增, 所以()f x 的极小值为()12f =;(2)()()1log 1x a f x g x a x --=--,令()1log 1x a F x a x -=--(0x >), ()F x 存在唯—的零点,()11111ln ln ln ln x x F x a a xa a x a x a --⎛⎫'=-=- ⎪⎝⎭, 令()11ln ln x x xaa a ϕ-=-,()()11ln ln x x a x a a ϕ-'=+, 令()10ln x x aϕ'=⇒=-, 当10ln x a<<-时,()0x ϕ'<; 当1ln x a>-时,()0x ϕ'>, 所以()x ϕ在10,ln a ⎛⎫- ⎪⎝⎭上递减,在1,ln a ⎛⎫-+∞ ⎪⎝⎭上递增, 所以()11ln min11ln ln ax a a a ϕϕ--⎛⎫=-=-- ⎪⎝⎭,。

2023年高考数学二轮复习讲练测专题09 排列组合高考常见小题全归类(解析版)

2023年高考数学二轮复习讲练测专题09 排列组合高考常见小题全归类(解析版)

专题09排列组合高考常见小题全归类【命题规律】排列组合是高考重点考查的内容之一,今后在本节的考查形式依然以选择或者填空为主,以考查基本概念和基本方法为主,难度中等偏下,与教材相当.本节内容与生活实际联系紧密,考生可适当留意常见的排列组合现象,如体育赛事排赛、彩票规则等,培养数学应用的思维意识.【核心考点目录】核心考点一:两个计数原理的综合应用核心考点二:直接法核心考点三:间接法核心考点四:捆绑法核心考点五:插空法核心考点六:定序问题(先选后排)核心考点七:列举法核心考点八:多面手问题核心考点九:错位排列核心考点十:涂色问题核心考点十一:分组问题核心考点十二:分配问题核心考点十三:隔板法核心考点十四:数字排列核心考点十五:几何问题核心考点十六:分解法模型与最短路径问题核心考点十七:排队问题核心考点十八:构造法模型和递推模型核心考点十九:环排问题【真题回归】1.(2022·全国·统考高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有()A.12种B.24种C.36种D.48种【答案】B【解析】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式,故选:B2.(2021·全国·统考高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种【答案】C【解析】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有2 54!240C⨯=种不同的分配方案,故选:C.3.(2020·山东·统考高考真题)现从4名男生和3名女生中,任选3名男生和2名女生,分别担任5门不同学科的课代表,则不同安排方法的种数是()A.12B.120C.1440D.17280【答案】C【解析】首先从4名男生和3名女生中,任选3名男生和2名女生,共有3243C C种情况,再分别担任5门不同学科的课代表,共有55A种情况.所以共有3254351440C C A=种不同安排方法.故选:C4.(2020·海南·高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种B.3种C.6种D.8种【答案】C【解析】第一步,将3名学生分成两个组,有12323C C=种分法第二步,将2组学生安排到2个村,有222A=种安排方法所以,不同的安排方法共有326⨯=种故选:C5.(2020·海南·统考高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种【答案】C【解析】首先从6名同学中选1名去甲场馆,方法数有16C ; 然后从其余5名同学中选2名去乙场馆,方法数有25C ; 最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C6.(2020·全国·统考高考真题)如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称ai ,aj ,ak 为原位大三和弦;若k –j =4且j –i =3,则称ai ,aj ,ak 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( )A .5B .8C .10D .15【答案】C【解析】根据题意可知,原位大三和弦满足:3,4k j j i -=-=.∴1,5,8i j k ===;2,6,9i j k ===;3,7,10i j k ===;4,8,11i j k ===;5,9,12i j k ===. 原位小三和弦满足:4,3k j j i -=-=.∴1,4,8i j k ===;2,5,9i j k ===;3,6,10i j k ===;4,7,11i j k ===;5,8,12i j k ===. 故个数之和为10. 故选:C .7.(2022·全国·统考高考真题)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.【答案】635. 【解析】从正方体的8个顶点中任取4个,有48C 70n ==个结果,这4个点在同一个平面的有6612m =+=个,故所求概率1267035m P n ===. 故答案为:635. 8.(2020·全国·统考高考真题)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【答案】36【解析】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学∴先取2名同学看作一组,选法有:246C =现在可看成是3组同学分配到3个小区,分法有:336A =根据分步乘法原理,可得不同的安排方法6636⨯=种 故答案为:36.【方法技巧与总结】1、如图,在圆中,将圆分n 等份得到n 个区域1M ,2M ,3M ,,(2)n M n ,现取(2)k k 种颜色对这n 个区域涂色,要求每相邻的两个区域涂不同的两种颜色,则涂色的方案有(1)(1)(1)n n k k --+-种.2、错位排列公式1(1)(1)!!inn i D n n =-=+⋅∑ 3、数字排列问题的解题原则、常用方法及注意事项(1)解题原则:排列问题的本质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个位子上,或某个位子不排某些元素,解决该类排列问题的方法主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子,若一个位子安排的元素影响到另一个位子的元素个数时,应分类讨论.4、定位、定元的排列问题,一般都是对某个或某些元素加以限制,被限制的元素通常称为特殊元素,被限制的位置称为特殊位置.这一类问题通常以三种途径考虑:(1)以元素为主考虑,这时,一般先解决特殊元素的排法问题,即先满足特殊元素,再安排其他元素; (2)以位置为主考虑,这时,一般先解决特殊位置的排法问题,即先满足特殊位置,再考虑其他位置; (3)用间接法解题,先不考虑限制条件,计算出排列总数,再减去不符合要求的排列数.5、解决相邻问题的方法是“捆绑法”,其模型为将n 个不同元素排成一排,其中某k 个元素排在相邻位置上,求不同排法种数的方法是:先将这k 个元素“捆绑在一起”,看成一个整体,当作一个元素同其他元素一起排列,共有11n k n k A -+-+种排法;然后再将“捆绑”在一起的元素“内部”进行排列,共有k k A 种排法.根据分步乘法计数原理可知,符合条件的排法共有11n k n k kk A A -+-+⋅种. 6、解决不相邻问题的方法为“插空法”,其模型为将n 个不同元素排成一排,其中某k 个元素互不相邻(1k n k ≤-+),求不同排法种数的方法是:先将(n k -)个元素排成一排,共有n k n k A --种排法;然后把k 个元素插入1n k -+个空隙中,共有1k n k A -+种排法.根据分步乘法计数原理可知,符合条件的排法共有n k n k A --·1k n k A -+种.7、解决排列、组合综合问题时需注意“四先四后”:(1)先分类,后分步:某些问题总体不好解决时,常常分成若干类,再由分类加法计数原理解决或分成若干步,再由分步乘法计数原理解决.常常既要分类,又要分步,其原则是先分类,再分步.(2)先特殊,后一般:解排列、组合问题时,常先考虑特殊情形(特殊元素,特殊位置等),再考虑其他情形.(3)先分组,后分配:对不同元素且较为复杂的平均分组问题,常常“先分组,再分配”. (4)先组合,后排列:对于既要选又要排的排列组合综合问题,常常考虑先选再排.【核心考点】核心考点一:两个计数原理的综合应用 【典型例题】例1.(2022·全国·高三专题练习)重庆九宫格火锅,是重庆火锅独特的烹饪方式.九宫格下面是相通的,实现了“底同火不同,汤通油不通”它把火锅分为三个层次,不同的格子代表不同的温度和不同的牛油浓度,其锅具抽象成数学形状如图(同一类格子形状相同):“中间格“火力旺盛,不宜久煮,适合放一些质地嫩脆、顷刻即熟的食物; “十字格”火力稍弱,但火力均匀,适合煮食,长时间加热以锁住食材原香;“四角格”属文火,火力温和,适合焖菜,让食物软糯入味.现有6种不同食物(足够量),其中1种适合放入中间格,3种适合放入十字格,2种适合放入四角格.现将九宫格全部放入食物,且每格只放一种,若同时可以吃到这六种食物(不考虑位置),则有多少种不同放法( )A .108B .36C .9D .6【答案】C【解析】由题可知中间格只有一种放法;十字格有四个位置,3种适合放入,所以有一种放两个位置,共有3种放法;四角格有四个位置,2种适合放入,可分为一种放三个位置,另一种放一个位置,有两种放法,或每种都放两个位置,有一种放法,故四角格共有3种放法;所以不同放法共有133=9⨯⨯种.故选:C .例2.(2022春·黑龙江哈尔滨·高三哈尔滨七十三中校考阶段练习)某市抽调5位医生分赴4所医院支援抗疫,要求每位医生只能去一所医院,每所医院至少安排一位医生.由于工作需要,甲、乙两位医生必须安排在不同的医院,则不同的安排种数是( )A .90B .216C .144D .240【答案】B【解析】完成这件事情,可以分两步完成,第一步,先将5为医生分为四组且甲、乙两位医生不在同一组,共有2519C -=种方案;第二步,再将这四组医生分配到四所医院,共有4424A =种不同方案,所以根据分步乘法计数原理得共有249216⨯=种不同安排方案. 故选:B .例3.(2022春·山东聊城·高三山东聊城一中校考期末)某大型联欢会准备从含甲、乙的6个节目中选取4个进行演出,要求甲、乙2个节目中至少有一个参加,且若甲、乙同时参加,则他们演出顺序不能相邻,那么不同的演出顺序的种数为( )A .720B .520C .600D .264【答案】D【解析】若甲、乙两节目只有一个参加,则演出顺序的种数为:134244192C C A =, 若甲、乙两节目都参加,则演出顺序的种数为:22242372C A A =;因此不同的演出顺序的种数为19272264+=. 故选:D .核心考点二:直接法 【典型例题】例4.甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军.”对乙说:“你当然不会是最差的.”从这两个回答分析,5人的名次排列方式共有( )种A .54B .72C .96D .120【答案】A【解析】根据题意,甲乙都没有得到冠军,而乙不是最后一名, 分2种情况讨论:①甲是最后一名,则乙可以为第二、三、四名,即乙有3种情况,剩下的三人安排在其他三个名次,有336A =种情况,此时有1863=⨯种名次排列情况;②甲不是最后一名,甲乙需要排在第二、三、四名,有236A =种情况,剩下的三人安排在其他三个名次,有336A=种情况,此时有6636⨯=种名次排列情况;则一共有361854+=种不同的名次情况,故选:A.例5.某校开展研学活动时进行劳动技能比赛,通过初选,选出,,,,,A B C D E F共6名同学进行决赛,决出第1名到第6名的名次(没有并列名次),A和B去询问成绩,回答者对A说“很遗㙳,你和B都末拿到冠军;对B说“你当然不是最差的”.试从这个回答中分析这6人的名次排列顺序可能出现的结果有()A.720种B.600种C.480种D.384种【答案】D【解析】由题意,,A B不是第一名且B不是最后一名,B的限制最多,故先排B,有4种情况,再排A,也有4种情况,余下4人有44432124A=⨯⨯⨯=种情况,利用分步相乘计数原理知有4424384⨯⨯=种情况.故选:D.例6.甲、乙、丙、丁四人站成一列,要求甲站在最前面,则不同的排法有()A.24种B.6种C.4种D.12种【答案】B【解析】甲、乙、丙、丁四人站成一列,要求甲站在最前面,则只需对剩下3人全排即可,则不同的排法共有333216A=⨯⨯=,故选:B.核心考点三:间接法【典型例题】例7.将7个人从左到右排成一排,若甲、乙、丙3人中至多有2人相邻,且甲不站在最右端,则不同的站法有().A.1860种B.3696种C.3600种D.3648种【答案】D【解析】7个人从左到右排成一排,共有775040A=种不同的站法,其中甲、乙、丙3个都相邻有3535720A A=种不同的站法,甲站在最右端有66720A=种不同的站法,甲、乙、丙3个相邻且甲站最右端有242448A A=种不同的站法,故甲、乙、丙3人中至多有2人相邻,且甲不站在最右端,不同的站法有5040720720483648--+=种不同的站法.故选:D例8.某学校计划从包含甲、乙、丙三位教师在内的10人中选出5人组队去西部支教,若甲、乙、丙三位教师至少一人被选中,则组队支教的不同方式共有()A .21种B .231种C .238种D .252种【答案】B【解析】10人中选5人有510C 252=种选法,其中,甲、乙、丙三位教师均不选的选法有57C 21=种,则甲、乙、丙三位教师至少一人被选中的选法共有55107C C 231-=种.故选:B例9.中园古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”主要指德育;“乐”主要指美育;“射”和“御”就是体育和劳动;“书”指各种历史文化知识;“数”指数学.某校国学社团开展“六艺”讲座活动,每周安排一次讲座,共讲六次.讲座次序要求“射”不在第一次,“数”和“乐”两次不相邻,则“六艺”讲座不同的次序共有( )A .408种B .240种C .1092种.D .120种【答案】A【解析】每周安排一次,共讲六次的“六艺”讲座活动,“射”不在第一次的不同次序数为1555A A ,其中“射”不在第一次且“数”和“乐”两次相邻的不同次序数为142442A A A , 于是得1514255442A A A A A 51204242408-=⨯-⨯⨯=,所以“六艺”讲座不同的次序共有408种. 故选:A核心考点四:捆绑法 【典型例题】例10.(2022·四川自贡·统考一模)在某个单位迎新晚会上有A 、B 、C 、D 、E 、F 6个节目,单位为了考虑整体效果,对节目演出顺序有如下具体要求,节目C 必须安排在第三位,节目D 、F 必须安排连在一起,则该单位迎新晚会节目演出顺序的编排方案共有( )种A .36B .48C .60D .72【答案】A【解析】由题意D 、F 在一二位或四五位、五六位,C 是固定的,其他三个节目任意排列,因此方法数为23233A A 36=.故选:A .例11.(2022·四川宜宾·统考模拟预测)“四书” “五经”是我国9部经典名著《大学》《论语》《中庸》《孟子》《周易》《尚书》《诗经》《礼记》《春秋》的合称.为弘扬中国传统文化,某校计划在读书节活动期间举办“四书”“五经”知识讲座,每部名著安排1次讲座,若要求《大学》《论语》相邻,但都不与《周易》相邻,则排法种数为( )A .622622A A AB .6262A AC .622672A A A D .622662A A A【答案】C【解析】先排除去《大学》《论语》《周易》之外的6部经典名著的讲座,共有66A 种排法,将《大学》《论语》看作一个元素,二者内部全排列有22A 种排法, 排完的6部经典名著的讲座后可以认为它们之间包括两头有7个空位,从7个空位中选2个,排《大学》《论语》捆绑成的一个元素和《周易》的讲座,有27A 种排法,故总共有622627A A A 种排法,故选:C .例12.(2022春·四川内江·高三威远中学校校考期中)某一天的课程表要排入语文、数学、英语、物理、化学、生物六门课,如果数学只能排在第一节或者最后一节,物理和化学必须排在相邻的两节,则共有( )种不同的排法A .24B .144C .48D .96【答案】D【解析】若数学只能排在第一节或者最后一节,则数学的排法有2种, 物理和化学必须排在相邻的两节,将物理和化学捆绑,与语文、英语、生物三门课程进行排序,有2424A A 48=种排法.由分步乘法计数原理可知,共有24896⨯=种不同的排法. 故选:D .核心考点五:插空法 【典型例题】例13.(2022·全国·高三专题练习)电视台在电视剧开播前连续播放6个不同的广告,其中4个商业广告2个公益广告,现要求2个公益广告不能连续播放,则不同的播放方式共有( ).A .5424A A ⋅B .5424C C ⋅ C .4267A A ⋅D .4267C C ⋅【答案】A【解析】先排4个商业广告,则44A ,即存在5个空,再排2个公益广告,则25A ,故总排法:4245A A , 故选:A .例14.(2022·全国·高三专题练习)五声音阶是中国古乐的基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徽、羽,如果用上这五个音阶,排成一个五音阶音序,且商、角不相邻,徽位于羽的左侧,则可排成的不同音序有( )A .18种B .24种C .36种D .72种【答案】C【解析】先将宫、徽、羽三个音节进行排序,且徽位于羽的左侧,有33A 32=,再将商、角插入4个空中,共有243A 36=种.故选:C .例15.(2022·全国·高三专题练习)A ,B ,C ,D ,E ,F 这6位同学站成一排照相,要求A 与C 相邻且A 排在C 的左边,B 与D 不相邻且均不排在最右边,则这6位同学的不同排法数为( )A .72B .48C .36D .24【答案】C【解析】首先将A 与C 捆绑到一起,与除B 、D 以外的其他2位同学共3个元素进行排列,有33A 6=种排法,再将B 、D 插空到除最右边的3个位置中,有23A 6= 种排法,因此共有6636⨯=种排法,故选:C核心考点六:定序问题(先选后排) 【典型例题】例16.满足*(1,2,3,4)i x i ∈=N ,且123410x x x x <<<<的有序数组()1234,,,x x x x 共有( )个.A .49CB .49PC .410CD .410P【答案】A【解析】∵数组中数字的大小确定,从1到9共9个数任取4个数得一个有序数组,所有个数为49C . 故选:A .例17.某次演出有5个节目,若甲、乙、丙3个节目间的先后顺序已确定,则不同的排法有( ) A .120种 B .80种 C .20种 D .48种【答案】C【解析】在5个位置中选两个安排其它两个节目,还有三个位置按顺序放入甲、乙、丙,方法数为2520A =.故选:C .例18.花灯,又名“彩灯”“灯笼”,是中国传统农业时代的文化产物,兼具生活功能与艺术特色.如图,现有悬挂着的8盏不同的花灯需要取下,每次取1盏,则不同取法总数为 ( )A .2520B .5040C .7560D .10080【答案】A【解析】由题意,对8盏不同的花灯进行取下, 先对8盏不同的花灯进行全排列,共有88A 种方法, 因为取花灯每次只能取一盏,而且只能从下往上取, 所以须除去重复的排列顺序,即先取上方的顺序,故一共有8822222222=2520A A A A A 种,故选:A核心考点七:列举法【典型例题】例19.(2022春·河南南阳·高三统考期末)2021年8月17日,国家发改委印发的《2021年上半年各地区能耗双控目标完成情况晴雨表》显示,青海、宁夏、广西、广东、福建、新疆、云南、陕西、江苏、浙江、安徽、四川等12个地区能耗强度同比不降反升,全国节能形势十分严峻.某地市为响应节能降耗措施,决定对非繁华路段路灯在晚高峰期间实行部分关闭措施.如图,某路段有十盏路灯(路两边各有五盏),现欲在晚高峰期关闭其中的四盏灯,为保证照明的需求,要求相邻的路灯不能同时关闭且相对的路灯也不能同时关闭,则不同的关闭方案有()A.15种B.16种C.17种D.18种【答案】B【解析】因为在晚高峰期关闭其中的四盏灯,为保证照明的需求,要求相邻的路灯不能同时关闭且相对的路灯也不能同时关闭,所以不同的关闭方案如下:''''''''''''ACEB ACED ACB D ACB E ADB E ADC E AEB D,,,,,,,'''''''''''''''''''',,,,,,,,BDAC BDA E BDC E BEAC BEA D CEA D CEB D BAC E DAC E,共16种方案,故选:B例20.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中,则不同的传球方式共有()A.6种B.8种C.10种D.16种【答案】C【解析】根据题意,作出树状图,第四次球不能传给甲,由分步加法计数原理可知:经过5次传球后,球仍回到甲手中,则不同的传球方式共有10种,故选:C .例21.(2022·上海浦东新·上海市实验学校校考模拟预测)定义“规范01数列”{an }如下:{an }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有A .18个B .16个C .14个D .12个【答案】C【解析】由题意,得必有10a =,81a =,则具体的排法列表如下:,01010011;010101011,共14个核心考点八:多面手问题 【典型例题】例22.我校去年11月份,高二年级有10人参加了赴日本交流访问团,其中3人只会唱歌,2人只会跳舞,其余5人既能唱歌又能跳舞.现要从中选6人上台表演,3人唱歌,3人跳舞,有种不同的选法.A .675B .575C .512D .545【答案】A【解析】分析:根据题意可按照只会左边的2人中入选的人数分类处理,分成三类,即可求解. 详根据题意可按照只会左边的2人中入选的人数分类处理.第一类2个只会左边的都不选,有3355100C C ⋅=种;第二类2个只会左边的有1人入选,有123256400C C C ⋅=种;第三类2个只会左边的全入选,有213257175C C C ⋅=种,所以共有675种不同的选法,故选A .例23.某国际旅行社现有11名对外翻译人员,其中有5人只会英语,4人只会法语,2人既会英语又会法语,现从这11人中选出4人当英语翻译,4人当法语翻译,则共有( )种不同的选法A .225B .185C .145D .110【答案】B【解析】根据题意,按“2人既会英语又会法语”的参与情况分成三类. ①“2人既会英语又会法语”不参加,这时有4454C C 种; ②“2人既会英语又会法语”中有一人入选, 这时又有该人参加英文或日文翻译两种可能,因此有134413254524C C C C C C +种; ③“2人既会英语又会法语”中两个均入选,这时又分三种情况:两个都译英文、两个都译日文、两人各译一个语种,因此有22442213132545242514C C C C C C C C C C ++种. 综上分析,共可开出441344132244221313542545242545242514185C C C C C C C C C C C C C C C C C C +++++=种. 故选:B .例24.“赛龙舟”是端午节的习俗之一,也是端午节最重要的节日民俗活动之一,在我国南方普遍存在端午节临近,某单位龙舟队欲参加今年端午节龙舟赛,参加训练的8名队员中有3人只会划左桨,3人只会划右桨,2人既会划左桨又会划右桨.现要选派划左桨的3人、划右桨的3人共6人去参加比赛,则不同的选派方法共有( )A .26种B .30种C .37种D .42种【答案】C【解析】根据题意,设{A =只会划左桨的3人},{B =只会划右桨的3人},{C =既会划左桨又会划右桨的2人},据此分3种情况讨论:①从A 中选3人划左桨,划右桨的在(B C ⋃)中剩下的人中选取,有35C 10=种选法,②从A 中选2人划左桨,C 中选1人划左桨,划右桨的在(B C ⋃)中选取,有213324C C C 24=种选法,③从A 中选1人划左桨,C 中2人划左桨,B 中3人划右桨,有13C 3=种选法,则有1024337++=种不同的选法. 故选:C .核心考点九:错位排列 【典型例题】例25.编号为1、2、3、4、5的5个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个人的编号与座位号一致的坐法有( )A .10种B .20种C .30种D .60种【答案】B【解析】先选择两个编号与座位号一致的人,方法数有2510C =,另外三个人编号与座位号不一致,方法数有2, 所以不同的坐法有10220⨯=种. 故选:B例26.将编号为1、2、3、4、5、6的小球放入编号为1、2、3、4、5、6的六个盒子中,每盒放一球,若有且只有两个盒子的编号与放入的小球的编号相同,则不同的放法种数为( )A .90B .135C .270D .360【答案】B【解析】根据题意,分以下两步进行:(1)在6个小球中任选2个放入相同编号的盒子里,有2615C =种选法,假设选出的2个小球的编号为5、6;(2)剩下的4个小球要放入与其编号不一致的盒子里,对于编号为1的小球,有3个盒子可以放入,假设放入的是2号盒子. 则对于编号为2的小球,有3个盒子可以放入, 对于编号为3、4的小球,只有1种放法.综上所述,由分步乘法计数原理可知,不同的放法种数为1533135⨯⨯=种. 故选:B .例27.若5个人各写一张卡片(每张卡片的形状、大小均相同),现将这5张卡片放入一个不透明的箱子里,并搅拌均匀,再让这5人在箱子里各摸一张,恰有1人摸到自己写的卡片的方法数有( )A .20B .90C .15D .45【答案】D【解析】根据题意,分2步分析:①先从5个人里选1人,恰好摸到自己写的卡片,有15C种选法,②对于剩余的4人,因为每个人都不能拿自己写的卡片,因此第一个人有3种拿法,被拿了自己卡片的那个人也有3种拿法,剩下的2人拿法唯一,所以不同的拿卡片的方法有11153345C C C⋅⋅=种.故选:D.核心考点十:涂色问题【典型例题】例28.(2022春·陕西宝鸡·高三校考开学考试)某儿童游乐园有5个区域要涂上颜色,现有四种不同颜色的油漆可供选择,要求相邻区域不能涂同一种颜色,则符合条件的涂色方案有()种A.36B.48C.54D.72【答案】D【解析】如图:将五个区域分别记为∴,∴,∴,∴,∴,则满足条件的涂色方案可分为两类,第一类区域∴,∴涂色相同的涂色方案,第二类区域∴,∴涂色不相同的涂色方案,其中区域∴,∴涂色相同的涂色方案可分为5步完成,第一步涂区域∴,有4种方法,第二步涂区域∴,有3种方法,第三步涂区域∴,有2种方法,第四步涂区域∴,有1种方法,第五步涂区域∴,有2种方法,由分步乘法计数原理可得区域∴,∴涂色相同的涂色方案有43212⨯⨯⨯⨯种方案,即48种方案;区域∴,∴涂色不相同的涂色方案可分为5步完成,第一步涂区域∴,有4种方法,第二步涂区域∴,有3种方法,第三步涂区域∴,有2种方法,第四步涂区域∴,有1种方法,第五步涂区域∴,有1种方法,由分步乘法计数原理可得区域∴,∴涂色不相同的涂色方案有43211⨯⨯⨯⨯种方案,即24种方案;所以符合条件的涂色方案共有72种,故选:D.。

2023高考数学二轮复习专项训练《一次函数与二次函数》(含解析)

2023高考数学二轮复习专项训练《一次函数与二次函数》(含解析)

2023高考数学二轮复习专项训练《一次函数与二次函数》一 、单选题(本大题共12小题,共60分) 1.(5分)关于x 的不等式1x +4x a⩾4在区间[1,2]上恒成立,则实数a 的取值范围为( )A. (0,43] B. (1,43] C. [1,43] D. [167,43] 2.(5分)若函数f(x)=x 2+2x +m ,x ∈R 的最小值为0,则实数m 的值是()A. 9B. 5C. 3D. 13.(5分)函数y=x2-2x ,x ∈[0,3]的值域为( )A. [0,3]B. [1,3]C. [-1,0]D. [-1,3]4.(5分)函数y =x 2−8x +2的增区间是()A. (−∞,−4]B. [−4,+∞)C. (−∞,4]D. [4,+∞)5.(5分)二次函数y =x 2−2x −3在x ∈[−1,2]上的最小值为( )A. 0B. −3C. −4D. −56.(5分)某工厂生产的A 种产品进入某商场销售,商场为吸引厂家第一年免收管理费,因此第一年A 种产品定价为每件70元,年销售量为11.8万件,从第二年开始,商场对A 种产品征收销售额的x%的管理费(即销售100元要征收x 元),于是该产品定价每件比第一年增加了70.x%1−x%元,预计年销售量减少x 万件,要使第二年商场在A 种产品经营中收取的管理费不少于万元,则x 的最大值是( )A. 2B. 6.5C. 8.8D. 107.(5分)函数y =−x 2+2x −3在闭区间[0,3]上的最大值、最小值分别为()A. 0,−2B. −2,−6C. −2,−3D. −3,−68.(5分) 函数f(x)=|x 2−3x +2|的单调递增区间是( )A. [1,32]和[2,+∞)B. [32,+∞)C. (−∞,1]和[32,2]D. (−∞,32]和[2,+∞)9.(5分)下列命题正确的是( )A. 命题“∃x ∈R ,使得2x <x 2”的否定是“∃x ∈R ,使得2x ⩾x 2”B. 若a >b ,c <0,则ca >cbC. 若函数f(x)=x 2−kx −8(k ∈R)在[1,4]上具有单调性,则k ⩽2D. “x >3”是“x 2−5x +6>0”的充分不必要条件10.(5分)已知函数y=b+a x2+2x(a,b是常数,且0<a<1)在区间[−32,0]上有最大值3,最小值52,则ab的值是()A. 1B. 2C. 3D. 411.(5分)已知f(x)=x2+2(a−2)x+5在区间[4,+∞)上是增函数,则实数a的范围是()A. (−∞,−2]B. [−2,+∞)C. [−6,+∞)D. (−∞,−6]12.(5分)函数f(x)=ln x+12x2−ax(x>0)在区间[12,3]上有且仅有一个极值点,则实数a的取值范围是()A. (52,3] B. [52,103)C. (52,103] D. [2,103]二、填空题(本大题共6小题,共30分)13.(5分)设b>0,二次函数y=ax2+bx+a2−1的图象为下列图象之一:则a的值为______.14.(5分)已知f(x)=m(x−2m)(x+m+3),g(x)=2x−2,若对任意x∈R有f(x)<0或g(x)<0,则m的取值范围是____.15.(5分)函数y=x2+2ax+1在区间[2,+∞)上是增函数,那么实数a的取值范围是______ .16.(5分)函数f(x)=log2(4−x2)的值域为__________________.17.(5分)若不等式−1<ax2+bx+c<1的解集为(−1,3),则实数a的取值范围为_______.18.(5分)f(x)=x2−ax+3a−1在(3,+∞)上是增函数,实数a的范围是 ______ .三、解答题(本大题共6小题,共72分)19.(12分)求函数f(x)=x2+2ax+3在[-5,5]上的最大值和最小值.20.(12分)已知关于x的一元二次方程(m2−1)x2+(2m−1)x+1=0(m∈R)的两个实根是x1、x2.(1)求1x1+1x2的取值范围;(2)是否存在m,使得|x1−x2|=11−m2若存在,求m的值;若不存在,说明理由.21.(12分)已知函数f(x)=x2+bx+c,且f(1)=0.(1)若函数f(x)是偶函数,求f(x)的解析式;(2)在(1)的条件下,求函数f(x)在区间[t,t+1]上的最小值.22.(12分)已知函数f(x)=x2+2ax+2,x∈[-5,5].(1)当a=-1时,求函数f(x)的最大值和最小值.(2)当a∈R时,求函数f(x)在区间[-5,5]上的最值.23.(12分)某军工企业生产一种精密电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)={400x−12x2,0⩽x⩽400 80000,x>400,其中x是仪器的月产量.(总收益=总成本+利润.)(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?24.(12分)平阳木偶戏又称傀偏戏、木头戏,是浙江省温州市的传统民间艺术之一.平阳木偶戏是以提线木偶为主,活跃于集镇乡村、广场庙会,演绎着古今生活百态.其表演形式独特,活泼多样,具有浓厚的地方色彩和很高的观赏性与研究价值.现有一位木偶制作传人想要把一块长为4dm(dm是分米符号),宽为3dm的矩形木料沿一条直线MN切割成两部分来制作不同的木偶部位.若割痕MN(线段)将木料分为面积比为1:λ的两部分(含点A的部分面积不大于含点C的部分面积,M,N可以和矩形顶点重合),有如下三种切割方式如图:①M点在线段AB上,N点在线段AD上;②M点在线段AB上,N点在线段DC上;③M点在线段AD上;N点在线段BC上.设AM=xdm,割痕MN(线段)的长度为ydm,(1)当λ=1时,请从以上三种方式中任意选择一种,写出割痕MN的取值范围(无需求解过程,若写出多种以第一个答案为准);(2)当λ=2时,判断以上三种方式中哪一种割痕MN的最大值较小,并说明理由.四、多选题(本大题共6小题,共30分)25.(5分)已知函数f(x)=&#x007Bln(x+1),x⩾0x2−2ax+1,x<0,其中实数a∈R,则下列关于x的方程f2(x)−(1+a)⋅f(x)+a=0的实数根的情况,说法正确的有()A. a取任意实数时,方程最多有5个根B. 当−1−√52<a<1+√52时,方程有2个根C. 当a=−1−√52时,方程有3个根D. 当a⩽−4时,方程有4个根26.(5分)若二次函数f(x)=ax2+bx+c满足f(2+x)=f(2-x),则下列结论错误的是()A. b=cB. 2a+b=0C. 4a=-bD. a+b=027.(5分)已知函数f(x)=e2x-2e x-3,则()A. f(ln3)=0B. 函数f(x)的图象与x轴有两个交点C. 函数f(x)的最小值为-4D. 函数f(x)的单调增区间是[0,+∞)28.(5分)设a,b均为正数,且2a+b=1,则下列结论正确的是()A. ab有最大值18B. √2a+√b有最小值√2C. a2+b2有最小值15D. a−12a−1−4bb有最大值1229.(5分)已知函数f(x)=x,g(x)=√x,则下列说法正确的是()A. 函数y=1f(x)+g(x)在(0,+∞)上单调递增B. 函数y=1f(x)−g(x)在(0,+∞)上单调递减C. 函数y=f(x)+g(x)的最小值为0D. 函数y=f(x)−g(x)的最小值为−1430.(5分)已知f(x)是定义域为R的奇函数,x>0时,f(x)=x(1−x),若关于x的方程f[f(x)]=a有5个不相等的实数根,则实数a的可能取值是()A. 132B. 116C. 18D. 14答案和解析1.【答案】A;【解析】由1x +4xa⩾4,分离变量a得1a⩾−14(1x−2)2+1,由x∈[1,2]求得1x∈[12,1],则−14(1x−2)2+1∈[716,3 4 ].∴1a ⩾34,由此求得实数a的取值范围.该题考查了函数恒成立问题,考查了数学转化思想方法,属于中档题.解:由1x +4xa⩾4,得4xa⩾4−1x=4x−1x,即1a⩾4x−14x2=−14(1x)2+1x=−14(1x−2)2+1,∵x∈[1,2],∴1x ∈[12,1],则−14(1x−2)2+1∈[716,34].∴1a ⩾34,则0<a⩽43.∴实数a的取值范围为(0,43].故选:A.2.【答案】D;【解析】解:由题知y=(x+1)2+m−1,易知当x=−1时,f(x)min=m−1=0,故m=1即为所求.故选:D.将二次函数配方,易求得最小值,据此求解.此题主要考查利用配方法求二次函数的最值.3.【答案】D;【解析】解:∵函数y=x2-2x=(x-1)2-1,x∈[0,3],∴当x=1时,函数y取得最小值为-1,当x=3时,函数取得最大值为 3,故函数的值域为[-1,3],故选D.4.【答案】D;【解析】解:函数y=x2−8x+2=(x−4)2−14,对称轴为x=4,则函数的增区间为[4,+∞).故选:D.求出二次函数的对称轴,结合二次函数的图象和性质,即可得到所求增区间.此题主要考查二次函数的单调区间的求法,注意结合二次函数的对称轴,属于基础题.5.【答案】C;【解析】此题主要考查了二次函数在闭区间上的最值,属于基础题.解:∵y=x2−2x−3=(x−1)2−4,x∈[−1,2],∴x=1时,函数取得最小值为−4.故选C.6.【答案】D;【解析】由已知有,第二年的年销售收入为(%2070%20+%2070x%%20%20)(11.8%20−%20x)万元,商场对该商品征收1%20−%20x%%20的管理费记为y,y%20=%20(%2070%20+%2070x%%20%20)(11.8%20−%20x)x%%20(x%20%3E%200)1%20−%20x%%20,则y⩾14,所以(%2070%20+%2070x%%20%20)(11.8%20−%20x)x%%20%20⩾%2014,1%20−%20x%%20化简得x2−12x+20⩽0,所以2⩽x⩽10,故x得最大值为10,选D.7.【答案】B;【解析】此题主要考查二次函数的最值的求法,属于简单题.解:函数y=−x2+2x−3的开口向下,对称轴为x=1,结合图象可得当x=3是y有最小值−6,当x=1时,y有最大值−2,所以本题选B.8.【答案】A; 【解析】此题主要考查函数的单调性和函数的单调区间,考查函数图象的应用,考查数形结合思想,属于基础题.由题函数f(x)=|x 2−3x +2|={x 2−3x +2,x ⩽1或x ⩾2−(x 2−3x +2),1<x <2,利用数形结合即可得到答案.解:由题可知函数f(x)=|x 2−3x +2|, 等价于f(x)={x 2−3x +2,x ⩽1或x ⩾2−(x 2−3x +2),1<x <2,画图可得如下图所示:∴函数的单调递增区间是[1,32]和[2,+∞) ,故选A.9.【答案】D;【解析】解:对于A ,命题“∃x ∈R ,使得2x <x 2”的否定是“∀x ∈R ,使得2x ⩾x 2”,故A 错误;对于B ,由条件知,比如a =2,b =−3,c =−1,则ca=−12<cb=13,故B 错误;对于C ,若函数f(x)=x 2−kx −8(k ∈R)在[1,4]上具有单调性,则k 2⩽1或k2⩾4,故k ⩽2或k ⩾8,故C 错误;对于D ,x 2−5x +6>0的解集为{ x |x <2或x >3},故“x >3”是“x 2−5x +6>0”的充分不必要条件,正确. 故选:D.A 由命题的否命题,既要对条件否定,也要对结论否定,注意否定形式,可判断;B 由条件,注意举反例,即可判断;C 由二次函数的图象,即可判断;D 先求出不等式x 2−5x +6>0的解集,再由充分必要条件的定义,即可判断. 此题主要考查函数的单调性,充分必要条件的判断、命题的否定、不等式的性质,属于基础题.10.【答案】A;【解析】复合指数函数,当0<a<1时,整体指数为减函数,指数部分为二次函数,根据复合函数同增异减原则,对该区间内进行分块讨论,从而得到最值点−1,0本题着重考察求复合函数最值问题,通常利用图象法法讨论函数单调性的最值问题.解:A.令u=x2+2x=(x+1)2−1,当0<a<1时,整体指数为减函数,则借助二次函数图象,再由复合函数同增异减原则,在已知区间内,x=0取得最大值,x=−1取得最小值时.即{b+a−1=3b+a0=52,解得{a=23b=32,有ab=1.故选:A.11.【答案】B;【解析】解:∵函数f(x)=x2+2(a−2)x+5的图象是开口方向朝上,以x=2−a为对称轴的抛物线若函数f(x)=x2+2(a−2)x+5在区间[4,+∞)上是增函数,则2−a⩽4,解得a⩾−2.故答案为:B.由函数f(x)=x2+2(a−2)x+5的解析式,根据二次函数的性质,判断出其图象是开口方向朝上,以x=2−a为对称轴的抛物线,此时在对称轴右侧的区间为函数的递增区间,由此可构造一个关于a的不等式,解不等式即可得到实数a的取值范围.该题考查的知识点是函数单调性的性质,及二次函数的性质,其中根据已知中函数的解析式,分析出函数的图象形状,进而分析函数的性质,是解答此类问题最常用的办法.12.【答案】C;【解析】此题主要考查导数与二次方程根的分布,考查学生分析能力及运算能力,属于中档题. 对f(x)求导,问题转化为f′(x)=0在区间[12,3]上有且只有一解,根据二次方程根的分布建立不等式即解.解:f ′(x )=1x +x −a =x 2−ax +1x,x >0,令g(x)=x 2−ax +1,函数f (x )=ln x +12x 2−ax (x >0)在区间[12,3]上有且仅有一个极值点, 所以g (12).g (3)⩽0,即(14−12a +1)(9−3a +1)⩽0,且Δ≠0; 解得52⩽a ⩽103.当a =52时,令g(x)=x 2−52x +1=0,解得x 1=12,x 2=2,此时f (x )在(0,12]上单调递增,在[12,2]上单调递减,在(2,+∞)上单调递增,故f (x )在x =2处取得极小值,在x =12处取得极大值.不符合题意; 当a =103时,令g(x)=x 2−103x +1=0,解得x 1=13,x 2=3,此时f (x )在(0,13]上单调递增,在[13,3]上单调递减,在(3,+∞)上单调递增, 故f (x )在x =3处取得极小值,在x =13处取得极大值. 此时f (x )在区间[12,3]上有且仅有一个极值点,符合题意; 故选C.13.【答案】-1;【解析】解:若a >0,即图象开口向上,∵b >0,∴对称轴x =−b 2a<0,故排除第2和4两图,若a <0,即图象开口向下,∵b >0∴对称轴x =−b2a >0,故函数图象为第3个图, 由图知函数过点(0,0),∴a 2−1=0, ∴a =−1 故答案为−1先根据二次函数的开口方向和对称轴的位置,选择函数的正确图象,再根据图象性质计算a 值即可该题考查了二次函数的图象和性质,排除法解图象选择题14.【答案】(−4,0); 【解析】此题主要考查了全称命题与特称命题的成立,指数函数与二次函数性质的应用是解答本题的关键.解:∵g(x)=2x −2,当x ⩾1时,g(x)⩾0, 又∵∀x ∈R ,f(x)<0或g(x)<0,∴此时f(x)=m(x −2m )(x +m +3)<0在x ⩾1时恒成立,则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(1,0)的左面,则{m<0−m−3<12m<1,∴−4<m<0故答案为(−4,0).15.【答案】[-2,+∞);【解析】解:函数y=x2+2ax+1的对称轴为:x=−a,函数y=x2+2ax+1在区间[2,+∞)上是增函数,可得−a⩽2,解得a⩾−2,即a∈[−2,+∞).故答案为:[−2,+∞).求出二次函数的对称轴,结合函数的单调性,写出不等式求解即可.该题考查二次函数的简单性质的应用,是基础题.16.【答案】(−∞,2];【解析】此题主要考查了复合函数,先求出定义域,再根据复合函数的值域,属基础题. 解:由4−x2>0,得−2<x<2,即函数f(x)的定义域为(−2,2),且0<4−x2⩽4,所以,f(x)⩽log24=2,即函数f(x)的值域为(−∞,2].故答案为(−∞,2].17.【答案】(−12,12);【解析】此题主要考查一元二次不等式得解法,考查二次函数的性质,是中档题. 分a=0,a>0和a<0三类讨论,结合二次函数的性质求解即可.解:当a=0时,b≠0,不等式的解集(−1,3),适当选取b,c可以满足题意.当a>0时,不等式−1<ax2+bx+c<1对应的二次函数的对称轴为x=1,开口向上,所以x=−1时,a−b+c=1,x=3时,9a+3b+c=1,最小值为x=1时,a+b+c>−1,联立解这个不等式组得:a<12,所以0<a<12;当a<0时,不等式−1<ax2+bx+c<1对应的二次函数的对称轴为x=1,开口向下,所以x=−1时,a−b+c=−1,x=3时,9a+3b+c=−1,最大值为x=1时,a+b+c<1,联立解这个不等式组得:a>−12,所以−12<a<0;综上所述得−12<a<12.所以实数a的取值范围为(−12,12).故答案为(−12,12).18.【答案】(-∞,6]; 【解析】解:由题意得:对称轴x=−−a2=a2,∴a2⩽3,∴a⩽6;故答案为:(−∞,6].由已知得,函数图象开口向上,由题意读出对称轴x=a2⩽3,解出即可.本题考察了二次函数的对称轴,单调性,是一道基础题.19.【答案】解:∵函数f(x)=x2+2ax+3=(x+a)2+3-a2的对称轴为x=-a,①当-a<-5,即a>5时,函数y在[-5,5]上是增函数,故当x=-5时,函数y取得最小值为28-10a;当x=5时,函数y取得最大值为28+10a.②当-5≤-a<0,即0<a≤5时,x=-a时,函数y取得最小值为3-a2;当x=5时,函数y取得最大值为28+10a.③当0≤-a≤5,即-5≤a≤0时,x=-a时,函数y取得最小值为3-a2;当x=-5时,函数y取得最大值为28-10a.④当-a>5,即a<-5时,函数y在[-5,5]上是减函数,故当x=-5时,函数y 取得最大值为28-10a ; 当x=5时,函数y 取得最小值为28+10a .;【解析】由于二次函数的对称轴为x=-a ,分①当-a <-5、②当-5≤-a <0、③当0≤-a≤5、④当-a >5四种情况,分别利用二次函数的性质求得函数的最值.20.【答案】解:(1)由题意知,Δ=(2m−1)2−4(m 2−1) =4m 2−4m+1−4m 2+4 =5−4m ⩾0, ∴m ⩽54, ∵m 2−1≠0, ∴m≠±1,∴m 的取值范围是(−∞,−1)∪(−1,1)∪(1,54],由题意x 1+x 2=1−2m m 2−1,x 1x 2=1m 2−1 ∴1x 1+1x 2=x 1+x 2x 1x 2=1−2m ,又m ∈(−∞,−1)∪(−1,1)∪(1,54], ∴2m ∈(−∞,−2)∪(−2,2)∪(2,52],∴1−2m ∈[−32,−1)∪(−1,3)∪(3,+∞),所以1x 1+1x 2的取值范围是[-32,−1)∪(-1,3)∪(3,+∞).(2)(x 1−x 2)2=(x 2+x 2)2−4x 1x 2 =(1−2m )2(m 2−1)2−4m 2−1=5−4m (m 2−1)2,∴|x 1−x 2|=√5−4m |m 2−1|, 若|x 1−x 2|=−1m 2−1, 则m 2−1<0, 即m ∈(−1,1), ∴5−4m=1,即m=1∉(−1,1), 故不存在.; 【解析】(1)由一元二次方程有两个根,则Δ>0,求出m 的范围,再利用韦达定理求解即可, (2)由(1)中结论,对所求式子进行变形,再求解.此题主要考查一元二次方程及韦达定理求参数的范围,属于中档题.21.【答案】解:(1)由f (1)=0,得:1+b+c=0, 由f (x )是偶函数,得:b=0 ∴c=-1,因此f (x )=x 2-1,(2)当t+1<0,即t <-1时,函数f (x )在区间[t ,t+1]上为减函数, 当x=t+1时,取最小值t 2+2t ,当t≤0≤t+1,即-1≤t≤0时,函数f (x )在区间[t ,0]上为减函数,在[0,t+1]上是增函数 当x=0时,取最小值-1,当t >0时,函数f (x )在区间[t ,t+1]上为增函数, 当x=t 时,取最小值t 2-1; 【解析】(1)利用函数的奇偶性,求出b ,利用f(1)=0求出c , (2)分类讨论区间[t,t +1]与对称轴的关系,可得答案.该题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.22.【答案】解:(1)当a=-1时,f (x )=x 2-2x+2=(x-1)2+1,对称轴x=1, 在[-5,5]上,最大值为f (-5)=37,最小值为f (1)=1; (2)函数f (x )的对称轴是:x=-a , ①当-a≤-5,即a≥5时,f (x )在[-5,5]递增,f (x )最小值=f (-5)=-10a+27,f (x )最大值=f (5)=10a+27; ②当-5<-a≤0,即0≤a <5时,f (x )在[-5,-a )递减,在(-a ,5]递增,f (x )最小值=f (-a )=-a 2+2,f (x )最大值=f (5)=10a+27; ③当0<-a≤5,即-5≤a <0时,f (x )在[-5,-a )递减,在(-a ,5]递增,f (x )最小值=f (-a )=-a 2+2,f (x )最大值=f (-5)=-10a+27; ④-a≥5,即a≤-5时,f (x )在[-5,5]递减,f (x )最小值=f (5)=10a+27,f (x )最大值=f (-5)=-10a+27.;【解析】(1)直接将a=-1代入函数解析式,求出最大最小值,(2)先求出函数的对称轴,通过讨论对称轴的位置,得到函数的单调性,从而求出函数的最值.23.【答案】解:(1)设月产量为x 台,则总成本为20000+100x , 从而利润f(x)={−12x 2+300x −20000,0⩽x ⩽40060000−100x ,x >400.(2)当0⩽x ⩽400时,f(x)=−12(x −300)2+25000, 所以当x =300时,有最大值25000;当x >400时,f(x)=60000−100x 是减函数,所以f(x)<60000−100×400<25000. 所以当x =300时,有最大值25000,即当月产量为300台时,公司所获利润最大,最大利润是25000元.;【解析】该题考查了一次函数与二次函数的单调性、函数的应用,考查了推理能力与计算能力,属于中档题.(1)设月产量为x 台,则总成本为20000+100x ,即可得出利润f(x).(2)当0⩽x ⩽400时,f(x)=−12(x −300)2+25000,利用二次函数的单调性即可最大值.当x >400时,f(x)=60000−100x 是减函数,利用一次函数的单调性即可得出最大值.24.【答案】解:(1)选①y =5, 选②y ∈[3,5], 选③y ∈[4,5], (2)选①令AN =z ,则S =12xz =4,z =8x,y =√x 2+z 2=√x 2+64x 2,∵{0<x ⩽40<z ⩽3z =8x∴83⩽x ⩽4,∴x ∈[83,2√2]时,y =f(x)为减函数,∴x ∈[2√2,4]时,y =f(x)为增函数, 当x =83时,y =√1453,当x =4时,y =2√5,∴y max =2√5;选②令DN =z ,则S =12(x +z)×3=4,z =83−x ,y =√(x −z)2+9=√(2x −83)2+9,∵{0<x ⩽40⩽z ⩽4,∴0⩽x ⩽83,z =83−x∴x ∈[0,43]时,y =f(x)为减函数,∴x ∈[43,83]时,y =f(x)为增函数, 当∴x =0或x =83时,y max =√1453; 选③令BN =z ,则S =12(x +z)×4=4,z =2−x ,y =√(x −z)2+16=2√(x −1)2+4,∵{0⩽x⩽30⩽z⩽3,∴0⩽x⩽2z=2−x∴x∈[0,1]时,y=f(x)为减函数,∴x∈[1,2]时,y=f(x)为增函数,当∴x=0或x=2时,y max=2√5,综上所述,方式②割痕MN的最大值较小,值为√1453.;【解析】此题主要考查了函数最值的综合应用,属于中档题.25.【答案】CD;【解析】此题主要考查分段函数,二次函数及对数函数的性质,函数图象的应用,函数与方程的综合应用,属难题.求解方程f2(x)−(1+a)⋅f(x)+a=0,可得f(x)=1或f(x)=a,即可得原方程的实数根的个数,即为f(x)=1和f(x)=a的根的个数之和.分别对0⩽a⩽1,a>1,−1−√52<a<0,a=−1−√52和a<−1−√52时讨论画图即可判定.解:对于方程f2(x)−(1+a)⋅f(x)+a=0,解得f(x)=1或f(x)=a.所以原方程的实数根的个数,即为f(x)=1和f(x)=a的根的个数之和.对于函数f(x)=&#x007Bln(x+1),x⩾0x2−2ax+1,x<0,若a⩾0,当x∈[0,+∞)时,f(x)单调递增,且f(x)⩾0,当x∈(−∞,0)时,f(x)单调递减,且f(x)>1.如图:,由f(x)=1可得x=e−1,方程有1个根;又由f(x)=a可得,当0⩽a⩽1时,方程有1个根;当a>1时,方程有2个根.所以当0⩽a⩽1时,原方程共有2个根;当a>1时,原方程共有3个根.若a<0,当x∈[0,+∞)时,f(x)单调递增,且f(x)⩾0,当x∈(−∞,0)时,f(x)在(−∞,a)单调递减,在(a,0)单调递增,且f(x)⩾1−a2.又由{1−a2=aa<0,可得a=−1−√52.所以当−1−√52<a<0时,1−a2>a,如图:,由f (x)=1可得,方程有2个根;又由f(x)=a可得,方程无解.所以此时原方程有2个根;当a=−1−√52时,1−a2=a,如图:,由f(x)=1可得,方程有2个根;又由f(x)=a可得,方程有1个根.所以此时原方程有3个根;当a<−1−√52时,1−a2<a,如图:,由f(x)=1可得,方程有2个根;又由f(x)=a可得,方程有2个根.所以此时原方程有4个根;综上所述,当0⩽a⩽1或−1−√52<a<0时,原方程有2个根;当a>1或a=−1−√52时,原方程有3个根;当a<−1−√52时,原方程有4个根.对于A,对于a∈R,方程最多有4个根,故A错误;对于B,当1<a<1+√52时,方程有3个根,故B错误;对于C,当a=−1−√52时,方程有3个根,故C正确;对于D,当a<−1−√52时,方程有4个根,所以a⩽−4时,方程有4个根成立,故D正确. 故选:CD.26.【答案】ABD;【解析】【解析】此题主要考查二次函数性质,属于基础题.由f(2+x)=f(2−x)可知对称轴x=2,即−b2a=2,即可得到答案.解:由f(2+x)=f(2−x)可知对称轴x =2,即−b 2a=2,得4a =−b ,只有C 正确.故选A 、B 、D.27.【答案】ACD; 【解析】此题主要考查了函数定义域与值域,二次函数的最值,复合函数的单调性以及函数零点与方程根的关系,属于基础题.A 选项,将x =ln 3代入f(x)求解即可;B 选项,令f(x)=0,根据方程根的个数判断f(x)的图象与x 轴有几个交点;C 选项,求二次函数f(x)=(e x -1)2-4的最值即可;D 选项,利用复合函数的单调性判断即可.解:A 选项,f(ln 3)=e 2ln 3-2e ln 3-3=9-6-3=0,正确;B 选项,令f(x)=0,得(e x -3)(e x +1)=0,得e x =3或e x =-1(舍),所以x =ln 3, 即函数f(x)的图象与x 轴只有1个交点,错误;C 选项,f(x)=(e x -1)2-4,当e x =1,即x =0时,f(x)min =-4,正确;D 选项,因为函数y =e x 在[0,+∞)上单调递增且值域为[1,+∞),函数y =x 2-2x -3在[1,+∞)上单调递增,所以函数f(x)在[0,+∞)上单调递增,正确. 故选ACD .28.【答案】ACD; 【解析】此题主要考查基本不等式的应用和函数的最值,注意检验等号成立的条件,式子的变形是解答该题的关键,属于中档题.利用基本不等式分别判断选项A ,B ,D 的对错,对于C ,由b =1−2a ,且0<a <12,转化为关于a 的二次函数,由函数的性质可得最值,可判断对错.解:∵正实数a ,b 满足2a +b =1,由基本不等式可得2a +b =1⩾2√2ab , ∴ab ⩽18,当2a =b =12时等号成立,故ab 有最大值18,故A 正确; 由于(√2a +√b)2=2a +b +2√2ab =1+2√2ab ⩽2 , ∴√2a +√b ⩽√2,当且仅当2a =b =12时等号成立, 故√2a +√b 有最大值为√2,故B 错误;由a ,b 均为正数,且2a +b =1,则b =1−2a ,且0<a <12,则a 2+b 2=a 2+(1−2a )2=5a 2−4a +1,当a =25∈(0,12)时,a 2+b 2有最小值15,故C 正确; b2a+2a b⩾2√b 2a =2,当且仅当2a =b =12时等号成立,a−12a −1−4b b=−a−b 2a −2a −3b b=52−b 2a−2a b⩽52−2=12,当且仅当b2a =2ab 时等号成立, 所以a−12a−1−4b b有最大值12,故D 正确,故选ACD .29.【答案】BCD; 【解析】此题主要考查函数的单调性、最值,属中档题.对于A ,求x =12和x =1时的函数值,即可判断不为单调递增,对于BC ,根据常见函数的单调性即可判断组合函数单调性、最值,对于D ,利用配方法求最值即可得解. 解:对于A:函数y =1f(x)+g(x)=1x+√x ,当x =12时,y =2+√22,当x =1时, y =2,所以函数y =1f(x)+g(x)在(0,+∞)上不单调递增,A 错误. 对于B:函数y =1f(x)−g(x)=1x −√x ,因为函数y =1x 和函数y =−√x 在(0,+∞)上单调递减, 所以y =1f(x)−g(x)在(0,+∞)上单调递减,B 正确.对于C:因为函数y =f(x)+g(x)=x +√x 在[0,+∞)上单调递增, 且当x =0时,y =0,所以y =f(x)+g(x)的最小值为0,C 正确. 对于D:函数y =f(x)−g(x)=x −√x =(√x −12)2−14,当√x =12时,函数y =f(x)−g(x)取得最小值,且最小值为−14,D 正确. 故选BCD.30.【答案】ABC; 【解析】根据函数的奇偶性,由已知区间的解析式,画出函数图象,令f(x)=t ,分别讨论a >14,a =14,316⩽a <14,0⩽a <316,四种情况,得出0⩽a <316满足题意,再根据对称性,得a <0时,−316<a <0满足题意,最后结合选项,即可得出结果.此题主要考查数形结合解决函数的零点个数,考查转化思想以及计算能力,是中档题.解:因为f(x)是定义域为R 的奇函数,x >0时,f(x)=x(1−x)=−(x −12)2+14⩽14,且f(12)=14,画出函数f(x)的图象如下:令f(x)=t ,f(14)=316,当a >14时,由图象可得y =a 与y =f(t)有一个交点,且t <−1, 由图象可得f(x)=t 只有一个根,不满足题意,当a =14时,由图象可得y =a 与y =f(t)有两个不同交点,交点的横坐标分别记作t 1,t 2,则t 1<−1,t 2=12, 则f(x)=t 1与f(x)=t 2共有两个根,不满足题意,当316⩽a <14时,由图象可得y =a 与y =f(t)有三个不同的交点, 记作t 1,t 2,t 3,不妨令t 1<t 2<t 3, 由图象可得,t 1<−1<14⩽t 2<12<t 3<1,则f(x)=t 1与f(x)=t 3各有一个根,而f(x)=t 2有一个或两个根,共三个或四个根,不满足题意,当0⩽a <316时,由图象可得y =a 与y =f(t)有三个不同的交点, 记作t 1,t 2,t 3,不妨令t 1<t 2<t 3,由图象可得,t 1⩽−1<0⩽t 2<14<12<t 3⩽1,则f(x)=t 1与f(x)=t 3以及f(x)=t 2共有5个根,满足题意,根据函数图象的对称性,当a <0时,为使关于x 的方程f[f(x)]=a 有5个不相等的实数根,只需要−316<a <0,综上,满足条件的a 的取值范围是(−316,316). 故选:ABC .。

2025届高考数学二轮复习-数列题型解答题专项训练【含解析】

2025届高考数学二轮复习-数列题型解答题专项训练【含解析】

2025届高考数学二轮复习-数列题型解答题专项训练一、解答题1.已知数列{}n a 的前n 项和为n S ,且()113n n S a =-.(1)求1a ,2a ;(2)证明:数列{}n a 是等比数列.答案:(1)112a =-;214a =(2)数列{}n a 是首项和公比均为12-的等比数列解析:(1)当1n =时,()111113a S a ==-,所以112a =-.当2n =时,()22211123S a a =-+=-,所以214a =.(2)由()113n n S a =-,得()1111(2)3n n S a n --=-≥,所以()111(2)3n n n n n a S S a a n --=-=-≥,所以11(2)2n n a a n -=-≥.又112a =-,所以数列{}n a 是首项和公比均为12-的等比数列.所以数列{}n a 是以3为首项,2为公差的等差数列.(2)由(1)知()32121n a n n =+-=+.3.在数列{}n a 中,14a =,1431n n a a n +=-+,*n ∈N .(1)设n n b a n =-,求证:数列{}n b 是等比数列;(2)求数列{}n a 的前n 项和n S .答案:(1)见解析(2)()1412n n n ++-解析:(1)证明:1431,n n a a n +=-+11(1)43114()4,n n n n n b a n a n n a n b ++∴=-+=-+--=-=又111413,b a =-=-=∴数列{}n b 是首项为3、公比为4的等比数列;(2)由(1)可知134n n a n --=⨯,即134n n a n -=+⨯,()()()31411412142n n n n n n n S -++∴=+=--.4.在数列{}n a 中,616a =,点()()1,n n a a n *+∈N 在直线30x y -+=上.(1)求数列{}n a 的通项公式;(2)若2n n n b a =,求数列{}n b 的前n 项和n T .答案:(1)32n a n =-(2)见解析解析:(1)依题意,130n n a a +-+=,即13n n a a +-=,因此数列{}n a 是公差为3的等差数列,则63(6)32n a a n n =+-=-,所以数列{}n a 的通项公式是32n a n =-.(2)由(1)得(32)2n n b n =-⋅,则132421242(32)2n n T n =⨯+⨯+⋅⋅⋅+-⨯+⨯,于是23121242(35)2(32)2n n n T n n +=⨯+⨯+⋅⋅⋅+-⨯+-⨯,两式相减得2123112(12))23(222(32)22(312)232n n n n n T n n ++--=+++⋅⋅⋅+--⋅--⋅-=+⋅-1(532)10n n +⋅=--,所以1(35)210n n T n +=-⋅+.5.已知公差不为0的等差数列{}n a 的前n 项和为n S ,且636S =,1a ,3a ,13a 成等比数列.(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若不等式4n kT <对任意的*n ∈N 都成立,求实数k的取值范围.答案:(1)21n a n =-(2)2k ≥.解析:(1)设等差数列{}n a 公差为d ,由题意1211161536(2)(12)a d a d a a d +=⎧⎨+=+⎩,0d ≠,解得112a d =⎧⎨=⎩,所以12(1)21n a n n =+-=-;(2)由(1)111111()(21)(21)22121n n a a n n n n +==--+-+,所以1111111111(1)()((12323522121221n T n n n =-+-++-=--++,易知n T 是递增的且12n T <,不等式4n k T <对任意的*n ∈N 都成立,则142k ≥,所以2k ≥.6.已知数列{}n a 的前n 项和n S 满足24(1)n S n =+,n +∈N .(1)求数列{}n a 的通项公式;(2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若对任意的n +∈N ,不等式25n T a a <-恒成立,求实数a 的取值范围.答案:(1) 1, 1 21, 24n n a n n =⎧⎪=⎨+≥⎪⎩(2)3a ≤-或4a ≥解析:(1)24(1)n S n =+当1n =时,214(11)a =+,即11a =当2n ≥时,由1n n n a S S -=-,故224(1)21n a n n n =+-=+,得214n n a +=.易见11a =不符合该式,故 1 121, 24n n a n n =⎧⎪=⎨+=⎪⎩,(2)由0n a >,易知n T 递增;112145T a a ==当2n ≥时,()()111611821232123n n a a n n n n +⎛⎫==- ⎪++++⎝⎭.从而41111111281285577921235235n T n n n ⎛⎫=+-+-++-=-< ⎪+++⎝⎭.又由25n T a a <-,故212a a ≤-,解得3a ≤-或4a ≥即实数a 的取值范围为3a ≤-或4a ≥7.记n S 为数列{}n a 的前n 项和,已知112a =,n n S a ⎧⎫⎨⎬⎩⎭是公差为12的等差数列.(1)求{}n a 的通项公式;(2)设()1nn n b a =-,求{}n b 的前2n 项和2n T .答案:(1)12n a n =(2)2n解析:(1)由n n S a ⎧⎫⎨⎬⎩⎭是公差为12的等差数列,且111S a =,则()11111222n n S n n a =+-⨯=+,即()21n n S n a =+,当2n ≥时,112n n S na --=,两式相减可得:()121n n n a n a na -=+-,整理可得11n n a na n -=-,故121121121121212n n n n n a a a n n a a n n a a a n ----=⋅⋅⋅⋅=⨯⨯⨯⨯-=-,将1n =代入上式,12n a =,故{}n a 的通项公式为12n a n =.(2)由()1nn n b a =-,则21212342221n n n n a a T b a a a a b b -=-+-+-+-+++=()()()()22121242132122n n n n n a a n a a a a a a a a --++=+++-+++=-()111122*********n nn n ⎡⎤=⨯+⨯-⨯-⨯⎢⎥⎦=-⎣.8.已知数列{}n a 是各项均为正数的等比数列,且11a =,34a =,数列{}n b 中()*221log log n n n b a a n +=+∈N .(1)求数列{}n b 的通项公式;(2)若数列{}n b 的前n 项和为n S ,数列{}n c 满足141n n c S =-,求数列{}n c 的前n 项和n T .答案:(1)21n b n =-(2)21n nT n =+解析:(1)正项等比数列{}n a 的公比为q ,由231a a q =,得24q =,而0q >,解得2q =,于是1112n n n a a q --==,由221log log n n n b a a +=+,得12222log o 21l g n n n n b -=+=-,所以数列{}n b 的通项公式21n b n =-.(2)由(1)知,21n b n =-,显然数列{}n b 是等差数列,21(21)2n n S n n +-=⋅=,2111111(4141(21)(21)22121n n c S n n n n n ====----+-+,所以11111111[(1)()()](1)2335212122121n nT n n n n =-+-++-=-=-+++.9.已知等差数列{}n a 前n 项和为n S ,满足33a =,410S =.数列{}n b 满足12b =,112n n n nb a b a ++=,*n ∈N .(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n c 满足()1(1)32n n n n n c a b +-+=,*n ∈N ,求数列{}n c 的前n 项和n T .答案:(1)见解析(2)见解析解析:(1)设数列{}n a 的公差为d ,11234610a d a d +=⎧∴⎨+=⎩,解得11a =,1d =,n a n ∴=.()121n n n b b n ++=,112n n b n b n++∴=,且121b =,所以n b n ⎧⎫⎨⎬⎩⎭是等比数列,2n nb n∴=,2n n b n ∴=⋅(2)()()()()1111(1)3211(1)(1)(1)12212212n n n nn n n n n n n c n n n n n n ++++⎛⎫-+--==-+=- ⎪ ⎪+⋅⋅+⋅⋅+⋅⎝⎭,()1111(1)212n n n T n ++∴=---+⋅10.已知各项为正的数列{}n a 的首项为2,26a =,22211122n n n n n n n n a a a a a a a a +++++-=--.(1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和n S ,求数列{}28n n S a +-(其中*n ∈N )前n 项和的最小值.答案:(1)42n a n =-(2)最小值为38-解析:(1)因为22211122n n n n n n n n a a a a a a a a +++++-=--,所以有()()12120n n n n n a a a a a +++++-=,而0n a >,10n n a a +∴+≠,所以2120n n n a a a +++-=,则211121n n n n n n a a a a a a a a +++--=-=-=⋅⋅⋅=-,又12a =,26a =,∴214a a -=,由等差数列定义知数列{}n a 是以2为首项,4为公差的等差数列.∴数列{}n a 的通项公式为42n a n =-.(2)由(1)有2(1)=2+4=22n n n S n n -⨯,()()2282430253n n S a n n n n ∴+-=+-=+-,令280n n S a +->,有4,5,6,n =⋅⋅⋅;280n n S a +-<,有1,2n =;280n n S a +-=,有3n =.所以{}28n n S a +-前n 项和的最小值为()()()()215132252338+-++-=-,当且仅当2n =,3时取到.11.记n S 为数列{}n a 的前n 项和,已知2n S n =,等比数列{}n b 满足11b a =,35b a =.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和n T .答案:(1)()*21n a n n =-∈N (2)当3q =时,3122n n T =-;当3q =-时,1(3)44n n T -=-.解析:(1)当1n =时,111a S ==,当2n ≥时,1n n n a S S -=-22(1)n n =--21n =-,因为11a =适合上式,所以()*21n a n n =-∈N .(2)由(1)得11b =,39b =,设等比数列{}n b 的公比为q ,则2319b b q =⋅=,解得3q =±,当3q =时,()113311322n n nT ⋅-==--,当3q =-时,11(3)1(3)1(3)44nn n T ⎡⎤⋅---⎣⎦==---.12.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若4a ,7a ,9a 成等比数列,求n S 的最小值.答案:(1)证明见解析(2)12n =或13时,n S 取得最小值,最小值为-78解析:(1)由221nn S n a n+=+,得2n n 22S n a n n +=+,①所以2112(1)2(1)(1)n n S n a n n ++++=+++,②②-①,得112212(1)21n n n a n a n a n ++++=+-+,化简得11n n a a +-=,所以数列{}n a 是公差为1的等差数列.(2)由(1)知数列{}n a 的公差为1.由2749a a a =,得()()()2111638a a a +=++,解得112a =-.所以22(1)251256251222228n n n n n S n n --⎛⎫=-+==-- ⎪⎝⎭,所以当12n =或13时,n S 取得最小值,最小值为-78.13.已知数列{}n a 满足11a =,11,,22,n n n a n n a a n n +⎧+⎪=⎨⎪-⎩为奇数为偶数,数列{}n b 满足22n n b a =-.(1)求2a ,3a .(2)求证:数列{}n b 是等比数列,并求其通项公式.(3)已知12log n n c b =,求证:122311111n nc c c c c c -+++<.答案:(1)232a =,352a =-(2)证明见解析(3)证明见解析解析:(1)由数列{}n a 的递推关系,知2113122a a =+=,325222a a =-⨯=-.(2)()12221212211112(21)2(21)4(21)12222n n n n n n b a a n a n a n n a ++++=-=++-=+-=-+-=-()211222n n a b =-=.因为12122b a =-=-,所以数列{}n b 的各项均不为0,所以112n n b b +=,即数列{}n b 是首项为12-,公比为12的等比数列,所以1111222n nn b -⎛⎫⎛⎫=-=- ⎪⎪⎝⎭⎝⎭.(3)由(2)知11221log log 2nn n c b n ⎛⎫=== ⎪⎝⎭.所以12231111n nc c c c c c -+++1111223(1)n n =+++⨯⨯-1111112231n n=-+-++--11n=-1<.14.已知数列{}n a 是公比为2的等比数列,2a ,3a ,44a -成等差数列.(1)求数列{}n a 的通项公式;(2)若21log nn na b a +=,设数列{}n b 的前n 项和为n T ,求证:13n T ≤<.答案:(1)2n n a =(2)证明见解析解析:(1)因为2a ,3a ,44a -成等差数列,所以32424a a a =+-,又因为数列{}n a 的公比为2,所以2311122224a a a ⨯=+⨯-,即1118284a a a =+-,解得12a =,所以1222n n n a -=⨯=.(2)由(1)知2nn a =,则221log 1log 2122n n n nn n a n b a +++===,所以2323412222n nn T +=++++,①231123122222n n n n n T ++=++++,②①-②得23111111122222n nn n T ++⎛⎫=++++- ⎪⎝⎭212111111111122221111221122n n n n n n -+++⎛⎫-- ⎪++⎝⎭=+-=+---11112133122222n n n n n +++++=+--=-.所以3332n nn T +=-<.又因为102n n n b +=>,所以{}n T 是递增数列,所以11n T T ≥=,所以13n T ≤<.15.在①221n n b b =+,②212a b b =+,③1b ,2b ,4b 成等比数列这三个条件中选择符合题意的两个条件,补充在下面的问题中,并求解.已知数列{}n a 中,11a =,13n n a a +=,公差不等于0的等差数列{}n b 满足__________,__________求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n S .答案:选①②;选②③解析:因为11a =,13n n a a +=,所以{}n a 是以1为首项,3为公比的等比数列,所以13n n a -=.方案一:选①②.设数列{}n b 的公差为d ,因为23a =,所以123b b +=.因为221n n b b =+,所以1n =时,2121b b =+,解得123b =,273b =,所以53d =,所以533n n b -=,满足221n n b b =+,所以533n n n b n a -=,所以12123122712533333n n nn b b b n S a a a -=+++=++++,所以2341127125853333333n n n n n S +--=+++++,两式相减,得23111122111532515533109533333336233223n n n n n n n n n S ++++--+⎛⎫=++++-=+--=- ⎪⨯⨯⎝⎭,所以9109443n n n S +=-⨯.方案二:选②③.设数列{}n b 的公差为d ,因为2133a a ==,所以123b b +=,即123b d +=.因为1b ,2b ,4b 成等比数列,所以2214b b b =,即()()21113b d b b d +=+,化简得21d b d =.因为0d ≠,所以11d b ==,所以n b n =,所以13n n n b n a -=,所以120121121233333n n n n b b b n S a a a -=+++=++++,所以123111231333333n n nn n S --=+++++,两式相减,得1231211113132311333333233223n n n n n n n n n S -+⎛⎫=+++++-=--=- ⎪⨯⎝⎭,所以1923443n n n S -+=-⨯.方案三:选①③.设数列{}n b 的公差为d ,因为221n n b b =+,所以1n =时,2121b b =+,所以11d b =+.又1b ,2b ,4b 成等比数列,所以2214b b b =,即()()21113b d b b d +=+,化简得21d b d =.因为0d ≠,所以1b d =,此式与11d b =+矛盾.所以等差数列{}n b 不存在,故不符合题意.。

2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习(附答案)

2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习(附答案)

2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习【总结】1、叠加法:+-=1()n n a a f n ;2、叠乘法:+=1()n na f n a ;3、构造法(等差,等比):①形如+=+1n n a pa q (其中,p q 均为常数-≠(1)0pq p )的递推公式,()+-=-1n n a t p a t ,其中=-1qt p,构造+-=-1n n a t p a t,即{}-n a t 是以-1a t 为首项,p 为公比的等比数列.②形如+=+1n n n a pa q (其中,p q 均为常数,-≠()0pq q p ),可以在递推公式两边同除以+1n q ,转化为+=+1n n b mb t 型.③形如++=-11n n n n a a d a a ,可通过取倒数转化为等差数列求通项.4、取对数法:+=1t n n a a .5、由n S 和n a 的关系求数列通项(1)利用-⎧=⎪⎨≥⎪⎩,-,111=2n n n S n a S S n ,化n S 为n a . (2)当n a 不易消去,或消去n S 后n a 不易求,可先求n S ,再由-⎧=⎪⎨≥⎪⎩,-,111=2n n n S n a S S n 求n a .6、数列求和:(1)错位相减法:适用于一个等差数列和一个等比数列(公比不等于1)对应项相乘构成的数列求和=⋅n n n c a b 型 (2)倒序相加法 (3)裂项相消法 常考题型数列的通项公式裂项方法【典型例题】例1.已知数列{}n a 满足14a =且121n n a a a a +++⋯+=,设2log n n b a =,则122320172018111b b b b b b ++⋯+的值是( ) A.20174038B.30254036C.20172018D.20162017例2.已知数列{}n a 的通项公式为*)n a n N =∈,其前n 项和为n S ,则在数列1S ,2S ,⋯,2019S 中,有理数项的项数为( )A.42 B.43 C.44 D.45例3.对于*n N ∈,2314121122232(1)2n n n n +⨯+⨯+⋯+⨯=⨯⨯+ .例4.设曲线1()n y x n N ++=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则201712017220172016log log log x x x ++⋯+的值为 .例5.在数1和2之间插入n 个正数,使得这2n +个数构成递增等比数列,将这2n +个数的乘积记为n A ,令2log n n a A =,*n N ∈.(1)数列{}n a 的通项公式为n a = ;(2)2446222tan tan tan tan tan tan n n n T a a a a a a +=⋅+⋅+⋯+⋅= .例6.数列{}n a 中,*111,()2(1)(1)n n n na a a n N n na +==∈++,若不等式2310n ta n n++…恒成立,则实数t 的取值范围是 .【过关测试】 一、单选题1.(2023·江西景德镇·统考模拟预测)斐波那契数列{}n a 满足121a a ==,()*21n n n a a a n ++=+∈N ,设235792023k a a a a a a a +++++⋅⋅⋅+=,则k =( )A.2022 B.2023 C.2024 D.20252.(2023·全国·模拟预测)1678年德国著名数学家莱布尼兹为了满足计算需要,发明了二进制,与二进制不同的是,六进制对于数论研究有较大帮助.例如123在六进制下等于十进制的32162636306⨯+⨯+⨯=.若数列n a 在十进制下满足21n n n a a a +++=,11a =,23a =,n n b a =,则六进制1232022b b b b 转换成十进制后个位为( ) A.2B.4C.6D.83.(2023秋·广东·高三统考期末)在数列{}n a 中,11,0n a a =>,且()221110n n n n na a a n a ++--+=,则20a 的值为( ) A.18B.19C.20D.214.(2023秋·江西·高三校联考期末)设,a b ∈R ,数列{}n a 中,11a =,1n n a ba a +=+,*N n ∈,则下列选项正确的是( )A.当1a =,1b =-时,则101a =B.当2a =,1b =时,则22n S n n =-C.当0a =,2b =时,则2n n a =D.当1a =,2b =时,则21nn a =-5.(2023·全国·高三专题练习)已知数列{}n a 满足21112nn n a a a +++=,且11a =,213a =,则2022a =( )A.12021B.12022C.14043D.140446.(2023·安徽淮南·统考一模)斐波那契数列因以兔子繁殖为例子而引入,故又称为“兔子数列”.此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,斐波那契数列{}n a 可以用如下方法定义:21n n n a a a ++=+,且121a a ==,若此数列各项除以4的余数依次构成一个新数列{}n b ,则数列{}n b 的前2023项的和为( ) A.2023B.2024C.2696D.26977.(2023秋·江苏扬州·高三校考期末)已知数列{}n a 满足1122n n n n a a a a ++++=,且11a =,213a =,则2022a =( ) A.12021B.12022C.14043D.140448.(2023·全国·高三专题练习)已知数列{}n a 满足211232n n n n n n a a a a a a ++++-=,且1231a a ==,则7a =( ) A.163B.165C.1127D.1129一、倒数变换法,适用于1nn n Aa a Ba C+=+(,,A B C 为常数)二、取对数运算 三、待定系数法 1、构造等差数列法 2、构造等比数列法①定义构造法。

新教材适用2024版高考化学二轮总复习第4部分题型标准练选择题标准练二

新教材适用2024版高考化学二轮总复习第4部分题型标准练选择题标准练二

选择题标准练(二)一、选择题:本题共15小题,每小题3分,共45分。

在每小题给出的四个选项中,只有一项符合题目要求。

1. (2023·湖北选考)2023年5月10日,天舟六号货运飞船成功发射,标志着我国航天事业进入到高质量发展新阶段。

下列不能作为火箭推进剂的是( A )A.液氮—液氢B.液氧—液氢C.液态NO2—肼D.液氧—煤油【解析】虽然氮气在一定的条件下可以与氢气反应,而且是放热反应,但是,由于N ≡N键能很大,该反应的速率很慢,氢气不能在氮气中燃烧,在短时间内不能产生大量的热量和大量的气体,因此,液氮—液氢不能作为火箭推进剂,A符合题意;氢气可以在氧气中燃烧,反应速率很快且放出大量的热、生成大量气体,因此,液氧—液氢能作为火箭推进剂,B不符合题意;肼和NO2在一定的条件下可以发生剧烈反应,该反应放出大量的热,且生成大量气体,因此,液态NO2—肼能作为火箭推进剂,C不符合题意;煤油可以在氧气中燃烧,反应速率很快且放出大量的热、生成大量气体,因此,液氧—煤油能作为火箭推进剂,D不符合题意;综上所述,本题选A。

2. (2023·河北部分示范学校三模)下列说法错误的是( C )A.阴离子的配位数:CsCl晶体>NaCl晶体>CaF2晶体B.BF3与NH3可通过配位键形成氨合三氟化硼(BF3·NH3)C.H3BO3和H3PO3均为三元弱酸,分子结构式均为(X=B,P)D.基态氧原子的电子排布图(轨道表示式)为【解析】在CsCl晶体、NaCl晶体、CaF2晶体中,阴离子的配位数分别为8、6、4,A 正确;BF3与NH3反应生成BF3·NH3,B与N之间形成配位键,N原子提供孤对电子,B原子提供空轨道,B正确;H3BO3分子的结构式为,其水溶液呈酸性是因为H3BO3与H2O发生反应:H3BO3+H2O[B(OH)4]-+H+,因此H3BO3为一元弱酸。

H3PO3分子的结构式为,H3PO3为二元弱酸,C错误;O为8号元素,基态氧原子的电子排布图(轨道表示式)为,D正确;故选C。

专题9.1 直线的方程(练习)【必考点专练】2023届高考数学二轮复习专题

专题9.1 直线的方程(练习)【必考点专练】2023届高考数学二轮复习专题

专专9.1直线的方程一、单选题1. 点(0,1)-到直线(1)y k x =+距离的最大值为( ) A. 1B. 2C. 3D. 22. 若平面内三点(1,)A a -,2(2,)B a ,3(3,)C a 共线,则a =( ) A. 12±或0B.252-或0 C.252± D.252+或0 3. “4ab =”是“直线210x ay +-=与直线220bx y +-=平行”的( ) A. 充要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件4. 在平面直角坐标系中,记d 为点到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A. 1B. 2C. 3D. 45. 已知(2,3)A ,(1,2)B -,若点(,)P x y 在线段AB 上,则3yx -最大值为 ( ) A. 1B.35C. 12-D. 3-6. 已知00(,)P x y 是直线:0++=l Ax By C 外一点,则方程00()0Ax By C Ax By C +++++=表示( )A. 过点P 且与l 垂直的直线B. 过点P 且与l 平行的直线C. 不过点P 且与l 垂直的直线D. 不过点P 且与l 平行的直线7. 2020年12月4日,嫦娥五号探测器在月球表面第一次动态展示国旗.1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点。

有人发现,第三颗小星的姿态与大星相近。

为便于研究,如图,以大星的中心点为原点,建立直角坐标系,1234,,,OO OO OO OO 分别是大星中心点与四颗小星中心点的联结线,3OO 与x 轴所成的角16α︒≈,则第三颗小星的一条边AB 所在直线的倾斜角约为( )A. 0︒B. 1︒C. 2︒D. 3︒8. 已知直线1:0()l kx y k R +=∈与直线2:220l x ky k -+-=相交于点A ,点B 是圆22(2)(3)2x y +++=上的动点,则||AB 的最大值为( )A. B. C. 5+ D. 3+9. 著名数学家华罗庚曾说过“数无形时少直觉,形少数时难入微”,事实上,很多代点(,)M x y 与点(,)N a b 最小值为( )A. B. C. 8 D. 610. 已知圆C :221x y +=,直线l :2x =,P 为直线l 上的动点,过点P 作圆C 的切线,切点分别为A ,B ,则直线AB 过定点( )A. 1(,0)2B. (0,2)C. (2,1)D. 1(,1)2二、多选题11. 已知直线12:10,:10l x l x +=-=,直线:10l kx y k -+-=被12,l l 截,则k 的值可能为( )A. 2+B. 2-C. 2D. 212. 已知在平面直角坐标系中,3(,0)2A ,(0,3)B ,点(,)M m n 位于线段AB 上,M与端点A ,B 不重合,则11212m n +++的可能取值为( ) A.13B.23C. 1D. 313. 下列说法中,正确的有.( )A. 点斜式11()y y k x x -=-可以表示任何直线B. 直线42y x =-在y 轴上的截距为2-C. 直线20x y -=关于0x y +=对称的直线方程是20x y -=D. 点(2,3)P 到直线的(1)30ax a y +-+=的最大距离为5 14. 下列说法正确的是( )A. 直线 10xsin y α-+=的倾斜角的取值范围为3[0,][,)44πππ⋃B. “5c =”是“点(2,1)到直线340x y c ++=距离为3”的充要条件C. 直线l :30()x y R λλλ+-=∈恒过定点(3,0)D. 直线25y x =-+与210x y ++=平行,且与圆225x y +=相切三、填空题15. 曲线23()x y x x e =+在点(0,0)处的切线方程为__________.16. 已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,的最大值为__________. 17. 已知函数,函数()f x 的图象在点和点的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是__________.18. 已知直线l 过点(0,2)A 和2(1213)()B m m m R ++∈,则直线l 的倾斜角的取值范围为__________. 四、解答题19. 已知直线l 过点(1,1)M ,且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.求:(1)当||||OA OB +取得最小值时,直线l 的方程;(2)当22||||MA MB +取得最小值时,直线l 的方程.20. 已知直线l 经过直线1l :250x y +-=与2l :20x y -=的交点.(1)若点(5,0)A 到l 的距离为3,求直线l 的方程; (2)求直线l 的方程,使点(5,0)A 到直线l 的距离最大;(3)求直线l 的方程,使直线l 和直线1l 关于直线2l 对称.答案和解析1.【答案】B解:因为直线(1)y k x =+恒过点(1,0)-,可知:点(0,1)-到直线(1)y k x =+的最大距离,即为点(0,1)-与(1,0)-两点的距离,则点(0,1)-到直线(1)y k x =+ 故选.B2.【答案】A解:平面内三点(1,)A a -,2(2,)B a ,3(3,)C a 共线,,AB AC k k ∴=232131a a a a ++∴=--,化为:2(21)0a a a --=,解得0a =或1a =± 故选.A3.【答案】C解:由题意知a ,b 均不为0,则直线210x ay +-=与直线220bx y +-=平行的充要条件是22b a -=-且11a≠, 即4ab =且1a ≠,故“4ab =”是“直线210x ay +-=与直线220bx y +-=平行”的必要不充分条件. 故选.C4.【答案】C解:由题意, 当0m =时,,∴当cos 1θ=-时,max 3;d =当0m ≠时,222222|cos sin 2||sin cos 2||1sin()2|111m m m d mmm θθθθθα---++++===+++,(其中1tan )mα=-,∴当sin()1θα+=时,max 13d =+<,d ∴的最大值为3.故选.C5.【答案】C解:设(3,0)Q ,3yx -表示直线PQ 的斜率, 则30323AQ k -==--,201132BQ k -==---, 点(,)P x y 是线段AB 上的任意一点,3y x ∴-的取值范围是1[3,]2--, 故3yx -的最大值为12-,故选:.C6.【答案】D解:因为点00(,)P x y 不在直线0Ax By C ++=上, 所以000Ax By C ++≠,所以直线00()0Ax By C Ax By C +++++=不经过点P ,排除A 、B ;又直线00()0Ax By C Ax By C +++++=与直线l :0Ax By C ++=平行,排除C , 故选.D7.【答案】C解:过3O 作x 轴平行线3O E ,则316.OO E α∠=≈︒ 由五角星的内角为36︒,可知318BAO ∠=︒, 所以直线AB 的倾斜角为18162︒-︒=︒, 故选.C8.【答案】C解:联立消去参数k 得22(1)(1)2x y -+-=,所以点A 在以(1,1)C 为圆心,2为半径的圆上.又点B 是圆22(2)(3)2x y +++=上的动点,此圆圆心为(2,3)D --,半径为2, 且22||(12)(13)5CD =+++=,两圆相离, 所以||AB 的最大值为||2252 2.CD ++=+ 故选.C9.【答案】B解:设()f x =则()f x()f x ∴的几何意义为点(,0)M x 到两定点(2,4)A 与(1,3)B 的距离之和.设点(2,4)A 关于x 轴的对称点为A ',则A '的坐标为(2,4).- 要求()f x 的最小值,可转化为求||||MA MB +的最小值,利用对称思想可知||||||||||MA MB MA MB A B +='+'=即()f x故选.B10.【答案】A解:根据题意,因为P 为直线l :2x =上的动点,设(2,)P t ,圆C :221x y +=,其圆心C 的坐标为(0,0),半径为1,PA 、PB 为圆C 的切线, 则以线段PC 为直径的圆N 的方程为2220x y x ty +--=,则有2222120x y x y x ty ⎧+=⎨+--=⎩,联立可得210x ty +-=, 即两圆公共弦AB 的方程为210x ty +-=,即12()2ty x -=-, 所以直线AB 过定点1(,0).2故选:.A11.【答案】AD解:直线12:310,:310l x y l x y -+=--=平行, 倾斜角为,两平行线间距离为1112+=, 因为直线:10l kx y k -+-=被12,l l 截得的线段长为2, 所以直线:10l kx y k -+-=的倾斜角为或,,,则斜率为23+或3 2.- 故选.AD12.【答案】BC解:由题意知,直线AB 的方程为2133x y+=, 点(,)M m n 位于线段AB 上,M 与端点A ,B 不重合, 则2133m n+=,即23m n +=,(0,3)n ∈, 所以111121242m n n n +=+++-+ 266.(4)(2)(1)9n n n ==-+--+ 因为(0,3)n ∈, 所以2(1)9(5,9],n --+∈ 所以2626[,).(1)935n ∈--+故选.BC13.【答案】BCD解:A :点斜式11()y y k x x -=-不能表示斜率不存在的直线,故A 错误; B :直线42y x =-在y 轴上的截距为2-,正确;C :在直线20x y -=上任取一点(,)P m n ,它关于0x y +=的对称点(,)Q m n --在直线20x y -=上,所以直线20x y -=关于0x y +=对称的直线方程是20x y -=,C 正确;D :因为直线的(1)30ax a y +-+=即()30a x y y +-+=过定点(3,3)M -,所以点(2,3)P 到直线的(1)30ax a y +-+=的最大距离为||5MP =,D 正确. 故选:.BCD14.【答案】ACD解:直线 sin 10x y α-+=的倾斜角θ,可得tan sin [1,1]θα=∈-, 所以θ的取值范围为3[0,][,),44πππ⋃所以A 正确; “点(2,1)到直线340x y c ++=距离为3”,可得22|64| 3.34c ++=+解得5c =,25c =-,所以“5c =”是“点(2,1)到直线340x y c ++=距离为3”的充分不必要条件,所以B 不正确;直线l :30()x y R λλλ+-=∈,即,恒过定点(3,0),所以C 正确;直线25y x =-+即250x y +-=与直线210x y ++=平行,22|5|521-=+,所以直线25y x =-+与圆225x y +=相切, 所以D 正确; 故选:.ACD15.【答案】3y x =解:23()x y x x e =+,223(21)3()3(31)x x x y x e x x e e x x ∴'=+++=++, ∴当0x =时,3y '=,23()x y x x e ∴=+在点(0,0)处的切线斜率3k =, ∴曲线23()x y x x e =+在点(0,0)处的切线方程为:3.y x =故答案为3.y x =16.+解:设11(,)A x y ,22(,)B x y ,O 为坐标原点,11(,)OA x y =,22(,)OB x y =,由22111x y +=,22221x y +=,121212x x y y +=, 可得A ,B 两点在圆221x y +=上, 且1212111cos 2OA OB AOB x x y y ⋅=⨯⨯∠=+=, 即有60AOB ︒∠=,即三角形OAB 为等边三角形,1AB =,A ,B 两点到直线:10l x y +-=的距离1d 与2d 之和,设AB 中点为M ,则距离1d 与2d 之和等于M 到直线l 的距离的两倍,圆心(0,0)到线段AB 中点M 的距离2d =,圆心到直线l 的距离d '=M ∴到直线l 的距离的最大值为d d +'=+,+17.【答案】解:由题意,,则,所以点和点,12,xxAM BN k e k e =-=,所以12121,0xx e e x x -⋅=-+=,所以,所以,同理,所以故答案为:18.【答案】[0,](,)62πππ⋃解:设此直线的倾斜角为θ,[0,).θπ∈ 则2tanθ=232).3m =+ [0,](,).62ππθπ∴∈⋃故答案为:[0,](,).62πππ⋃19.【答案】 解:(1)设(,0)A a ,(0,)(0,0).B b a b >>设直线l 的方程为1x y a b +=,则111a b+=, 所以2224a b a bb a b a=+++⋅=, 当且仅当2a b ==时取等号, 此时直线l 的方程为20.x y +-=(2)方法一:设直线l 的斜率为k ,则0k <,直线l 的方程为1(1)y k x -=-, 则,(0,1)B k -,所以22222211||||2224MA MB k k k k +=+++⋅=, 当且仅当221k k=,即1k =-时, 22||||MA MB +取得最小值4,此时直线l 的方程为20.x y +-=方法二:设(,0)A a ,(0,)(0,0).B b a b >>设直线l 的方程为1x y a b +=,则111a b+=,即a b ab +=, 2222||||(1)1(1)1MA MB a b +=-++-+222()4a b a b =+-++2224a b ab =+-+2()4a b =-+∴当且仅当2a b ==时,22||||MA MB +取得最小值4, 此时直线方程为122x y +=,即20.x y +-=20.【答案】解:(1)易知l 不可能为2l ,故可设经过两已知直线交点的直线系方程为(25)(2)0x y x y λ+-+-=,即(2)(12)50x y λλ++--=,点(5,0)A 到l 的距离为3, 22|1055|3(2)(12)λλλ+-∴=++-,化简得22520λλ-+=,解得12λ=或2λ=, ∴直线l 的方程为2x =或4350.x y --=(2)由解得直线1l 与2l 的交点为(2,1)P , 显然当l PA ⊥时,点(5,0)A 到直线l 的距离最大, 又101253PA k -==--, 3l k ∴=,∴所求直线l 的方程是13(2)y x -=-,即350.x y --=(3)在直线1l 上取点(0,5)E ,设点E 关于直线2l 的对称点是(,)F a b ,则052022a b ++-⋅=且520b a -=--, 解得4a =,3b =-,由直线l 经过两点(2,1)P ,(4,3)F -, 可得直线l 的方程是341324y x +-=+-,即250.x y +-=。

(新课标)2020高考语文二轮复习限时练(九)小说阅读(飞来的木桶饱学之士)(含解析)

(新课标)2020高考语文二轮复习限时练(九)小说阅读(飞来的木桶饱学之士)(含解析)

限时练(九) 小说阅读(飞来的木桶·饱学之士)(建议用时:30分钟)一、阅读下面的文字,完成1~3题。

飞来的木桶高军1939年冬天,沂蒙山区比往年冷得多。

这样的气候对患有肋膜炎的徐向前来说是很不舒服的。

部队很快就要从东高庄村移防了,一有空闲徐向前总是到老百姓家里多转一转。

这天他和警卫员随意走进了麻其老人家中,老人正坐在被窝里取暖。

麻其想从床上起来,徐向前赶紧上前一步,按住了他:“大爷,够冷的哈。

”徐向前觉得那破被子薄薄的,仅有很少的一点暖意,“你就坐在被窝里,咱们拉拉呱。

”说着,他把自己披的大衣脱下来,盖在了麻其的薄被子上面。

警卫员想阻止,徐向前摆手阻止他说下去:“咳,咳,你出去吧,我和大爷说说话。

”麻其心中一热,眼睛有些湿润起来。

徐向前倾着身子,拉着他那粗糙的手与他家长里短地说着话。

麻其看徐向前嘴唇有些发青,想让他把大衣披上。

徐向前用力制止了:“大爷,这是送给你的。

”告辞的时候,麻其还是起来了,徐向前赶紧给他披上大衣,拉了拉领子:“这样会暖和一点,别送了,有空我再来看你……”拐过院子墙角的时候,警卫员突然对徐向前小声说:“首长,大爷家的木桶盛的水不易上冻,咱们饮马用的铁桶,太容易冻实心了,要是……”徐向前摆摆手制止了他,大步向前走去。

这些天天气太冷了,饮马水很快就被冻住了,冻实的冰块倒都倒不出来,非常麻烦,警卫员打的小九九是想要麻其家的木桶,但看到徐向前很坚决地摆了手,知道没有戏了也就打消了这一念头。

可是说来也奇怪,第二天警卫员在大门楼下发现了一只不知道从哪里飞来的木桶,他高兴地拿着去井上打满水,提回来就放到了马头前面。

他站在一边,高兴地观察着,马悠闲地喝几口水,偶尔抬起头来看他一眼,温驯的眼睛中好像充满感激之情。

“怎么回事儿?”警卫员转眼一看,是徐向前来了,正用严厉的眼光逼视着自己,食指直直地指着木桶。

“我、我……”警卫员正想解释,被徐向前毫不客气地打断了,“我什么我,赶紧给麻大爷送回去。

高考数学二轮复习第一部分微专题强化练习题:等差数列与等比数列含解析

高考数学二轮复习第一部分微专题强化练习题:等差数列与等比数列含解析

第一部分 一 9一、选择题1.(文)(2014·东北三省三校联考)等差数列{a n }的前n 项和为S n ,若a 2+a 4+a 6 =12,则S 7的值是( )A .21B .24C .28D .7[答案] C[解析] ∵a 2+a 4+a 6=3a 4=12,∴a 4=4, ∴2a 4=a 1+a 7=8,∴S 7=7(a 1+a 7)2=7×82=28.[方法点拨] 1.熟记等差、等比数列的求和公式. 2.形如a n +1=a n +f (n )的递推关系用累加法可求出通项; 3.形如a n +1=a n f (n )的递推关系可考虑用累乘法求通项a n ;4.形如a n +1=ka n +b (k 、b 为常数)可通过变形,设b n =a n +bk -1构造等比数列求通项a n .(理)在等比数列{a n }中,a 1=a ,前n 项和为S n ,若数列{a n +1}成等差数列,则S n 等于( ) A .a n +1-a B .n (a +1) C .na D .(a +1)n -1[答案] C[解析] 利用常数列a ,a ,a ,…判断,则存在等差数列a +1,a +1,a +1,…或通过下列运算得到:2(aq +1)=(a +1)+(aq 2+1),∴q =1,S n =na .2.(文)已知S n 为等差数列{a n }的前n 项和,若S 1=1,S 4S 2=4,则S 6S 4的值为( )A.94 B.32 C.53 D .4[答案] A[解析] 由等差数列的性质可知S 2,S 4-S 2,S 6-S 4成等差数列,由S 4S 2=4得S 4-S 2S 2=3,则S 6-S 4=5S 2,所以S 4=4S 2,S 6=9S 2,S 6S 4=94.(理)(2014·全国大纲文,8)设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( )A .31B .32C .63D .64[答案] C[解析] 解法1:由条件知:a n >0,且⎩⎪⎨⎪⎧a 1+a 2=3,a 1+a 2+a 3+a 4=15, ∴⎩⎪⎨⎪⎧a 1(1+q )=3,a 1(1+q +q 2+q 3)=15,∴q =2. ∴a 1=1,∴S 6=1-261-2=63.解法2:由题意知,S 2,S 4-S 2,S 6-S 4成等比数列,即(S 4-S 2)2=S 2(S 6-S 4),即122=3(S 6-15),∴S 6=63.[方法点拨] 下标成等差的等差、等比数列的项或前n 项和的问题,常考虑应用等差、等比数列的性质求解.3.(2015·浙江理,3)已知{a n }是等差数列,公差d 不为零,前n 项和是S n .若a 3,a 4,a 8成等比数列,则( )A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0 [答案] B[解析] 考查等差数列的通项公式及其前n 项和;等比数列的概念. ∵{a n }为等差数列,且a 3,a 4,a 8成等比数列, ∴(a 1+3d )2=(a 1+2d )(a 1+7d )⇒ a 1=-53d ,∴S 4=2(a 1+a 4)=2(a 1+a 1+3d )=-23d ,∴a 1d =-53d 2<0,dS 4=-23d 2<0,故选B.4.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13C.19 D .-19[答案] C[解析] ∵S 3=a 2+10a 1,∴a 1+a 2+a 3=a 2+10a 1,a 3=9a 1=a 1q 2,∴q 2=9, 又∵a 5=9,∴9=a 3·q 2=9a 3,∴a 3=1, 又a 3=9a 1,故a 1=19.[方法点拨] 求基本量的问题,熟记等差、等比数列的定义、通项及前n 项和公式,利用公式、结合条件,建立方程求解.5.(2015·江西省质检)已知数列{a n }满足a 1=1,a 2=3,a n +2=3a n (n ∈N *),则数列{a n }的前2015项的和S 2015等于( )A .31008-2B .31008-3C .32015-2D .32015-3[答案] A[解析] 因为a 1=1,a 2=3,a n +2a n=3, 所以S 2015=(a 1+a 3+…+a 2015)+(a 2+a 4+…+a 2014)=1-310081-3+3(1-31007)1-3=31008-2.6.(文)(2014·新乡、许昌、平顶山调研)设{a n }是等比数列,S n 是{a n }的前n 项和,对任意正整数n ,有a n +2a n +1+a n +2=0,又a 1=2,则S 101的值为( )A .2B .200C .-2D .0[答案] A[解析] 设公比为q ,∵a n +2a n +1+a n +2=0,∴a 1+2a 2+a 3=0,∴a 1+2a 1q +a 1q 2=0,∴q 2+2q +1=0,∴q =-1,又∵a 1=2,∴S 101=a 1(1-q 101)1-q =2[1-(-1)101]1+1=2.(理)(2014·哈三中二模)等比数列{a n },满足a 1+a 2+a 3+a 4+a 5=3,a 21+a 22+a 23+a 24+a 25=15,则a 1-a 2+a 3-a 4+a 5的值是( )A .3 B. 5 C .- 5 D .5[答案] D[解析] 由条件知⎩⎪⎨⎪⎧a 1(1-q 5)1-q=3a 21(1-q10)1-q2=15,∴a 1(1+q 5)1+q=5,∴a 1-a 2+a 3-a 4+a 5=a 1[1-(-q )5]1-(-q )=a 1(1+q 5)1+q=5.7.(文)在等差数列{a n }中,a 1+a 2+a 3=3,a 18+a 19+a 20=87,则此数列前20项的和等于( )A .290B .300C .580D .600[答案] B[解析] 由a 1+a 2+a 3=3,a 18+a 19+a 20=87得, a 1+a 20=30,∴S 20=20×(a 1+a 20)2=300.(理)已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=( )A .1+ 2B .1- 2C .3+2 2D .3-2 2 [答案] C[解析] 由条件知a 3=a 1+2a 2, ∴a 1q 2=a 1+2a 1q , ∵a 1≠0,∴q 2-2q -1=0, ∵q >0,∴q =1+2, ∴a 8+a 9a 6+a 7=q 2=3+2 2. 8.(2015·福建理,8)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( )A .6B .7C .8D .9[答案] D[解析] 由韦达定理得a +b =p ,a ·b =q ,因为p >0,q >0,则a >0,b >0,当a ,b ,-2适当排序后成等比数列时,-2必为等比中项,故a ·b =(-2)2=4,故q =4,b =4a .当适当排序后成等差数列时,-2必不是等差中项,当a 是等差中项时,2a =4a -2,解得a =1,b =4,;当b 是等差中项时,8a =a -2,解得a =4,b =1,综上所述,a +b =p =5,所以p +q =9,选D.9.已知数列{a n },{b n }满足a 1=b 1=1,a n +1-a n =b n +1b n=2,n ∈N +,则数列{ba n }的前10项的和为( )A.43(49-1) B.43(410-1) C.13(49-1) D.13(410-1) [答案] D[解析] 由a 1=1,a n +1-a n =2得,a n =2n -1, 由b n +1b n=2,b 1=1得b n =2n -1, ∴ba n =2a n -1=22(n -1)=4n -1,∴数列{ba n }前10项和为1×(410-1)4-1=13(410-1).10.(文)若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1等于( )A .1-14nB.23(1-14n ) C .1-12nD.23(1-12n ) [答案] B[解析] 因为a n =1×2n -1=2n -1,所以a n ·a n +1=2n -1·2n =2×4n -1, 所以1a n a n +1=12×(14)n -1,所以{1a n a n +1}也是等比数列,所以T n =1a 1a 2+1a 2a 3+…+1a n a n +1=12×1×(1-14n )1-14=23(1-14n ),故选B.(理)(2014·唐山市一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n( )A .4n -1B .4n -1 C .2n -1 D .2n -1[答案] C[解析] 设公比为q ,则a 1(1+q 2)=52,a 2(1+q 2)=54,∴q =12,∴a 1+14a 1=52,∴a 1=2.∴a n =a 1q n -1=2×(12)n -1,S n =2[1-(12)n ]1-12=4[1-(12)n ],∴S n a n =4[1-(12)n ]2×(12)n -1=2(2n -1-12)=2n -1.[点评] 用一般解法解出a 1、q ,计算量大,若注意到等比数列的性质及求S na n,可简明解答如下:∵a 2+a 4=q (a 1+a 3),∴q =12,∴S na n =a 1(1-q n )1-q a 1q n -1=1-q n (1-q )·qn -1=1-12n 12·12n -1=2n -1. 11.给出数列11,12,21,13,22,31,…,1k ,2k -1,…,k1,…,在这个数列中,第50个值等于1的项的序号..是( ) A .4900 B .4901 C .5000 D .5001[答案] B[解析] 根据条件找规律,第1个1是分子、分母的和为2,第2个1是分子、分母的和为4,第3个1是分子、分母的和为6,…,第50个1是分子、分母的和为100,而分子、分母的和为2的有1项,分子、分母的和为3的有2项,分子、分母的和为4的有3项,…,分子、分母的和为99的有98项,分子、分母的和为100的项依次是:199,298,397,…,5050,5149,…,991,第50个1是其中第50项,在数列中的序号为1+2+3+…+98+50=98(1+98)2+50=4901.[点评] 本题考查归纳能力,由已知项找到规律,“1”所在项的特点以及项数与分子、分母的和之间的关系,再利用等差数列求和公式即可.二、填空题12.(文)(2015·广东理,10)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.[答案] 10[解析] 本题考查等差数列的性质及简单运算,属于容易题.因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25 即a 5=5,a 2+a 8=2a 5=10.(理)(2015·湖南理,14)设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.[答案] 3n -1[解析] 考查等差数列与等比数列的性质.∵3S 1,2S 2,S 3成等差数列,∴4S 2=3S 1+S 3,∴4(a 1+a 2)=3a 1+a 1+a 2+a 3⇒a 3=3a 2⇒q =3.又∵{a n }为等比数列,∴a n =a 1q n -1=3n -1.[方法点拨] 条件或结论中涉及等差或等比数列中的两项或多项的关系时,先观察分析下标之间的关系,再考虑能否应用性质解决,要特别注意等差、等比数列性质的区别.13.(文)(2015·安徽理,14)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.[答案] 2n -1[解析] 考查1.等比数列的性质;2.等比数列的前n 项和公式.由题意,⎩⎪⎨⎪⎧ a 1+a 4=9,a 2·a 3=8.∴⎩⎪⎨⎪⎧a 1+a 4=9,a 1·a 4=8,解得a 1=1,a 4=8或者a 1=8,a 4=1,而数列{a n }是递增的等比数列,所以a 1=1,a 4=8,即q 3=a 4a 1=8,所以q =2,因而数列{a n }的前n 项和S n =a 1(1-q n )1-q =1-2n 1-2=2n -1.(理)(2015·江苏,11)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.[答案]2011[解析] 考查数列通项,裂项求和.由题意得:a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+2+1=n (n +1)2,所以1a n =2(1n -1n +1),S n =2(1-12)+2(12-13)+…+2(1n -1n +1)=2(1-1n +1)=2nn +1,S 10=2011.三、解答题14.(文)设数列{a n }的前n 项和为S n ,且S n =4a n -p (n ∈N *),其中p 是不为零的常数. (1)证明:数列{a n }是等比数列;(2)当p =3时,若数列{b n }满足b n +1=a n +b n (n ∈N *),b 1=2,求数列{b n }的通项公式. [解析] (1)证明:因为S n =4a n -p (n ∈N *), 则S n -1=4a n -1-p (n ∈N *,n ≥2),所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1.由S n =4a n -p ,令n =1,得a 1=4a 1-p ,解得a 1=p3.所以{a n }是首项为p 3,公比为43的等比数列.(2)因为a 1=1,则a n =(43)n -1,由b n +1=a n +b n (n =1,2,…),得b n +1-b n =(43)n -1,当n ≥2时,由累加法得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =2+1-(43)n -11-43=3(43)n -1-1,当n =1时,上式也成立.∴b n =3·(43)n -1-1.[方法点拨] 证明数列是等差(等比)数列时,应用定义分析条件,结合性质进行等价转化. (理)(2015·河南高考适应性测试)已知数列{a n }的各项均为正数,且a 1=2,a n =a 2n +1+4a n +1+2.(1)令b n =log 2(a n +2),证明:数列{b n }是等比数列. (2)设c n =nb n ,求数列{c n }的前n 项和S n .[解析] (1)由a n =a 2n +1+4a n +1+2,得a n +2=a 2n +1+4a n +1+4=(a n +1+2)2.因为a n >0,所以a n +2=a n +1+2. 因为b n +1b n =log 2(a n +1+2)log 2(a n +2)=log 2a n +2log 2(a n +2)=12,又b 1=log 2(a 1+2)=2,所以数列{b n }是首项为2,公比为12的等比数列.(2)由(1)知,b n =2·⎝⎛⎭⎫12n -1,则c n =2n ⎝⎛⎭⎫12n -1. S n =2×⎝⎛⎭⎫120+4×⎝⎛⎭⎫121+…+2(n -1)⎝⎛⎭⎫12n -2+2n ⎝⎛⎭⎫12n -1,① 12S n =2×⎝⎛⎭⎫121+4×⎝⎛⎭⎫122+…+2(n -1)⎝⎛⎭⎫12n -1+2n ⎝⎛⎭⎫12n .② ①-②得:12S n =2×⎝⎛⎭⎫120+2×⎝⎛⎭⎫121+2×⎝⎛⎭⎫122+…+2×⎝⎛⎭⎫12n -1-2n ·⎝⎛⎭⎫12n =21-⎝⎛⎭⎫12n1-12-2n ·⎝⎛⎭⎫12n =4-(4+2n )⎝⎛⎭⎫12n . 所以S n =8-(n +2)⎝⎛⎭⎫12n -2.15.(2015·南昌市一模)已知等差数列{a n }的前n 项和为S n ,a 1=1,S 3=6,正项数列{b n }满足b 1·b 2·b 3·…·b n =2S n .(1)求数列{a n },{b n }的通项公式;(2)若λb n >a n 对n ∈N *均成立,求实数λ的取值范围.[解析] (1)等差数列{a n },a 1=1,S 3=6,∴d =1,故a n =n⎩⎪⎨⎪⎧b 1·b 2·b 3·…·b n =2S n (1)b 1·b 2·b 3·…·b n -1=2S n -1 (2),(1)÷(2)得b n =2S n -S n -1=2a n =2n (n ≥2), b 1=2S 1=21=2,满足通项公式,故b n =2n(2) 设λb n >a n 恒成立⇒λ>n 2n 恒成立,设c n =n 2n ⇒c n +1c n =n +12n当n ≥2时,c n <1,{c n }单调递减, ∴(c n )max =c 1=12,故λ>12.16.(文)(2014·湖北理,18)已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式;(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.[分析] (1)设数列{a n }的公差为d ,利用等比数列的性质得到a 22=a 1·a 5,并用a 1、d 表示a 2、a 5,列等式求解公差d ,进而求出通项,注意对公差d 分类讨论;(2)利用(1)的结论,对数列{a n }的通项分类讨论,分别利用通项公式及等差数列的前n 项和公式求解S n ,然后根据S n >60n +800列不等式求解.[解析] (1)设数列{a n }的公差为d ,依题意,2,2+d,2+4d 成等比数列,故有(2+d )2=2(2+4d ).化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立, 当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2,令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去).此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的n ;当a n =4n -2时,存在满足题意的n ,其最小值为41.[方法点拨] 存在型探索性问题解答时先假设存在,依据相关知识(概念、定理、公式、法则、性质等),结合所给条件进行推理或运算,直到得出结果或一个明显成立或错误的结论,从而断定存在与否.(理)(2014·新课标Ⅰ理,17)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.[分析](1)利用a n+1=S n+1-S n用配凑法可获证;(2)假设存在λ,则a1,a2,a3应成等差数列求出λ的值,然后依据a n+2-a n=λ推证{a n}为等差数列.[解析](1)由题设:a n a n+1=λS n-1,a n+1a n+2=λS n+1-1,两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1,令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.。

人教版新高考数学二轮复习习题训练--专题突破练1 常考小题点过关检测(word版含解析)

人教版新高考数学二轮复习习题训练--专题突破练1 常考小题点过关检测(word版含解析)

专题突破练1 常考小题点过关检测一、单项选择题1.(2021·山东潍坊一模)已知集合A={-2,0},B={x|x 2-2x=0},则下列结论正确的是( ) A.A=B B.A ∩B={0} C.A ∪B=A D.A ⊆B2.(2021·广东广州二模)已知集合P={x|-3≤x ≤1},Q={y|y=x 2+2x },则P ∪(∁R Q )=( )A.[-3,-1)B.[-1,1]C.(-∞,-1]D.(-∞,1]3.(2021·河北保定一模)设a ,b ∈R ,则“|a+b i |=|1+i |”是“a=b=1”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件4.(2021·福建福州一中模拟)在复平面内,复数z=a+b i(a ∈R ,b ∈R )对应向量OZ⃗⃗⃗⃗⃗ (O 为坐标原点),设|OZ⃗⃗⃗⃗⃗ |=r ,以x 轴的非负半轴为始边,射线OZ 为终边的角为θ,则z=r (cos θ+isin θ).法国数学家棣莫弗发现棣莫弗定理:z n =[r (cos θ+isin θ)]n =r n (cos n θ+isin n θ),则(-1+√3i)10=( ) A.1 024-104√3i B.-1 024+1 024√3i C.512-512√3iD.-512+512√3i5.(2021·东北三校第一次联考)土楼有圆形、方形、五角形、八角形、日字形、回字形、吊脚楼等类型.某大学建筑系学生对这七种主要类型的土楼依次进行调查研究.在制定调查顺序时,要求将圆形排在第一个或最后一个,方形、五角形相邻,则共有( )种不同的排法. A.480B.240C.384D.1 4406.(2021·河北唐山一模)记(x +12x)4展开式的偶数项之和为P ,则P 的最小值为( )A.1B.2C.3D.47.(2021·江苏南京三模)在正方形ABCD 中,O 为两条对角线的交点,E 为BC 边上的动点.若AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ +μDO ⃗⃗⃗⃗⃗⃗ (λ>0,μ>0),则2λ+1μ的最小值为( ) A.2B.5C.92D.1438.(2021·山东日照一中月考)已知f (x )=x 2+4x+1+a ,且对任意x ∈R ,f (f (x ))≥0恒成立,则实数a 的取值范围为( ) A.[√5-12,+∞) B.[2,+∞) C.[-1,+∞)D.[3,+∞)二、多项选择题9.(2021·河北张家口一模)如果平面向量a =(2,-4),b =(-6,12),那么下列结论正确的是( ) A.|b |=3|a |B.a ∥bC.a 与b 的夹角为30°D.a ·b =-6010.(2021·河北唐山二模)已知a>b>0,且ab=4,则 ( )A.2a-b >1B.log 2a-log 2b>1C.2a +2b >8D.log 2a ·log 2b<111.(2021·山东临沂模拟)在下列四个条件中,能成为x>y 的充分不必要条件的是( ) A.xc 2>yc 2 B.1x<1y<0 C.|x|>|y| D.ln x>ln y12.(2021·广东茂名模拟)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.这是因为阿基米德认为这个“圆柱容球”是他最为得意的发现,于是留下遗言:他死后,墓碑上要刻上一个“圆柱容球”的几何图形.如图,设圆柱的体积与球的体积之比为m ,圆柱的表面积与球的表面积之比为n ,若f (x )=(mn x 3-1x )8,则( ) A.f (x )的展开式中的常数项是56 B.f (x )的展开式中的各项系数之和为0 C.f (x )的展开式中的二项式系数最大值是70 D.f (i)=-16,其中i 为虚数单位三、填空题13.(2021·福建厦门双十中学月考)设复数z 满足z=4i 1+i,则z 的共轭复数z 在复平面内对应的点位于第象限.14.(2021·上海嘉定二模)将(x √x)7的二项展开式的各项重新随机排列,则有理项互不相邻的概率为 .15.(2021·浙江嘉兴二模)为满足某度假区游客绿色出行需求,某电力公司在该度假区停车楼建设了集中式智慧有序充电站,充电站共建设901个充电桩,其中包括861个新型交流有序充电桩、37个直流充电桩以及3个专门满足新能源大巴快速补电需求的大功率直流充电桩.现有A ,B ,C ,D ,E ,F 六辆新能源大巴,需要安排在某周一的上午或下午在甲、乙、丙3个新能源大巴大功率直流充电桩充电,每个充电桩在上午和下午均只安排一辆大巴充电.若要求A ,B 两大巴不能同时在上午充电,而C 大巴只能在下午充电,且F 大巴不能在甲充电桩充电,则不同的充电方案一共有 种.(用数字作答) 16.(2021·辽宁葫芦岛一模)在边长为2的正三角形ABC 中,D 是BC 边的中点,AE ⃗⃗⃗⃗⃗ =2EB⃗⃗⃗⃗⃗ ,CE 交AD 于点F.若BF ⃗⃗⃗⃗⃗ =x BC ⃗⃗⃗⃗⃗ +y BA ⃗⃗⃗⃗⃗ ,则x+y= ;BF ⃗⃗⃗⃗⃗ ·DE ⃗⃗⃗⃗⃗ = .专题突破练1 常考小题点过关检测1.B 解析: 由题设得B={0,2},所以A ≠B ,A ∩B={0},A ∪B ≠A ,A 不是B 的子集.2.D 解析: 因为Q={y|y=x 2+2x }={y|y=(x+1)2-1}={y|y ≥-1},所以∁R Q={y|y<-1}, 又P={x|-3≤x ≤1},所以P ∪(∁R Q )={x|x ≤1}.3.B 解析: ∵|a+b i |=|1+i |,∴√a 2+b 2=√12+12,即a 2+b 2=2. ∵a 2+b 2=2a=b=1,而a=b=1⇒a 2+b 2=2,∴“a 2+b 2=2”是“a=b=1”的必要不充分条件,即“|a+b i |=|1+i |”是“a=b=1”的必要不充分条件.4.D 解析: 由题意,得(-1+√3i)10=210cos (10×2π3)+isin 10×2π3=1 024cos 20π3+isin 20π3=1 024(-12+√32i)=-512+512√3i .5.A 解析: 当圆形排在第一个时,有A 55A 22=240种不同的排法.同理,当圆形排在最后一个时,有A 55A 22=240种不同的排法.综上,圆形要排在第一个或最后一个,方形、五角形相邻,则共有480种不同的排法.6.B 解析: 由已知得x ≠0,则x 2>0,所以P=C 41x 3·12x+C 43x·(12x )3=2x 2+12x 2≥2√1=2,当且仅当2x 2=12x 2即x=±√22时等号成立. 7.C 解析: 如图所示,以A 为原点,AB ,AD 所在直线分别为x 轴、y 轴建立平面直角坐标系. 设正方形的边长为1,则A (0,0),B (1,0),C (1,1),D (0,1),于是可得O (12,12).设点E 的坐标为(1,m )(0≤m ≤1),则由AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ +μDO⃗⃗⃗⃗⃗⃗ (λ>0,μ>0),可得(1,m )=λ(1,1)+μ(12,-12)(λ>0,μ>0),所以1=λ+12μ(λ>0,μ>0),则2λ+1μ=(2λ+1μ)(λ+12μ)=2+12+μλ+λμ≥52+2√μλ·λμ=92,当且仅当{ λμ=μλ,1=λ+12μ,λ>0,μ>0,即λ=μ=23时取等号,此时2λ+1μ的最小值为92.经检验,此时m=13∈[0,1]符合题意.8.B解析: 由题意,函数f(x)=x2+4x+1+a,令t=f(x),则t=x2+4x+1+a=(x+2)2-3+a≥a-3,又对任意x∈R,f(f(x))≥0恒成立,即f(t)≥0对任意t≥a-3恒成立,当a-3≤-2时,即a≤1时,f(t)min=f(-2)=a-3≥0,解得a≥3,此时无解;当a-3>-2时,即a>1时,f(t)min=f(a-3)=a2-a-2≥0,解得a≥2或a≤-1,所以a≥2.综上可得,实数a的取值范围为[2,+∞).9.ABD解析: 因为a=(2,-4),b=(-6,12),所以b=-3a.所以|b|=3|a|,a∥b,a与b的夹角为180°,a·b=2×(-6)+(-4)×12=-60,故选项A,B,D正确,选项C错误.10.ACD解析: 因为a>b>0,且ab=4,对A,a-b>0,所以2a-b>20=1,故A正确;对B,取a=83,b=32,则log2a-log2b=log2ab=log2169<log22=1,故B错误;对C,2a+2b≥2√2a·2b=2√2a+b,当且仅当a=b时取等号,又因为a+b≥2√ab=4,当且仅当a=b=2时取等号,所以2a+2b≥2√2a+b≥2√24=8,当且仅当a=b=2时取等号,因为a>b>0,所以不能取等号,故C正确;对D,当a>1>b>0时,log2a>0,log2b<0,所以log2a·log2b<1;当a>b>1时,log2a>0,log2b>0,所以log2a·log2b≤(log2a+log2b)24=[log2(ab)]24=1,当且仅当a=b时取等号,因为a>b>0,所以不能取等号,故D正确.11.ABD解析: 对于A选项:若xc2>yc2,则c2≠0,于是x>y,而当x>y,c=0时xc2=yc2,所以“xc2>yc2”是“x>y”的充分不必要条件,故A符合题意;对于B选项:由1x<1y<0可得y<x<0,即能推出x>y;但x>y不能推出1x<1y<0(因为x,y的正负不确定),所以“1x<1y<0”是“x>y”的充分不必要条件,故B符合题意;对于C选项:由|x|>|y|可得x2>y2,则(x+y)(x-y)>0,不能推出x>y;由x>y也不能推出|x|>|y|(如x=1,y=-2),所以“|x|>|y|”是“x>y”的既不充分也不必要条件,故C不符合题意; 对于D选项:若ln x>ln y,则x>y,而由x>y不能推出ln x>ln y,所以“ln x>ln y”是“x>y”的充分不必要条件.故选项D符合题意.12.BC解析: 设内切球的半径为r(r>0),则圆柱的高为2r.于是m=πr2·2r43πr3=32,n=2πr2+2πr·2r4πr2=32,所以mn=1,所以f(x)=(x3-1x)8.对于A,f(x)展开式通项为T r+1=C8r x24-3r·(-1x )r=(-1)r C8r x24-4r,令24-4r=0,解得r=6,所以f(x)展开式中的常数项为(-1)6C86=28,A错误;对于B,f(1)=0,即f(x)展开式的各项系数之和为0,B正确; 对于C,f(x)展开式中二项式系数最大值为C84=70,C正确;对于D,f (i)=(i 3-1i )8=(-i +i)8=0,D 错误. 13.四 解析: 因为z=4i1+i =4i (1-i )(1+i )(1-i )=4i (1-i )2=2i(1-i)=2i -2i 2=2+2i,所以z =2-2i,所以共轭复数z 在复平面内对应的点位于第四象限.14.114解析: (x +1√x )7的展开式的通项为T r+1=C 7r x 7-r ·x -12r =C 7r x 7-32r ,当r=0,2,4,6时,对应的项为有理项,一共4项,当r=1,3,5,7时,对应的项为无理项,一共4项,要使得有理项互不相邻,采用插空法,先把无理项排好,再把有理项插到无理项的5个空档中,共有A 44A 54=2 880种情况,全部的情况有A 88=40 320种,故所求概率P=A 44A 54A 88=2 88040 320=114.15.168 解析: 先排F 大巴,第一种方案,F 大巴在上午充电,有C 21种可能情况,此时再排C大巴,C 大巴在下午充电,有C 31种可能情况,再排A ,B 大巴,又分A ,B 大巴同在下午和一个上午、一个下午两种情况,有(A 22+C 21C 21C 21)种可能情况;第二种方案,F 大巴在下午充电,有C 21种可能情况,此时再排C 大巴,C 大巴在下午充电,有C 21种可能情况,再排A ,B 大巴,只能一个上午、一个下午,有C 21C 31种可能情况.最后再排剩下的两辆大巴,有A 22种可能情况,故共有[C 21C 31(A 22+C 21C 21C 21)+C 21C 21C 21C 31]A 22=168种不同的充电方案. 16.35 -715解析: 如图,过点E 作EM ∥AD 交BC 于点M ,由AE ⃗⃗⃗⃗⃗ =2EB ⃗⃗⃗⃗⃗ ,得EM=13AD ,BM=13BD ,MD=23BD ,又D 是BC 边的中点,得DC=35MC ,∴FD=35EM ,故FD=15AD ,即AF=45AD ,所以AF ⃗⃗⃗⃗⃗ =45AD ⃗⃗⃗⃗⃗ =45(BD ⃗⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ )=45(12BC ⃗⃗⃗⃗⃗ -BA ⃗⃗⃗⃗⃗ )=25BC ⃗⃗⃗⃗⃗ −45BA ⃗⃗⃗⃗⃗ ,所以BF ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AF ⃗⃗⃗⃗⃗ =15BA ⃗⃗⃗⃗⃗ +25BC ⃗⃗⃗⃗⃗ ,故x+y=35.易知DE ⃗⃗⃗⃗⃗ =BE ⃗⃗⃗⃗⃗ −BD ⃗⃗⃗⃗⃗⃗ =13BA ⃗⃗⃗⃗⃗ −12BC ⃗⃗⃗⃗⃗ , 由已知得BA=BC=2,<BC ⃗⃗⃗⃗⃗ ,BA ⃗⃗⃗⃗⃗ >=60°,所以|BA ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |=2,BA ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ =2×2×cos 60°=2.所以BF ⃗⃗⃗⃗⃗ ·DE ⃗⃗⃗⃗⃗ =(15BA ⃗⃗⃗⃗⃗ +25BC ⃗⃗⃗⃗⃗ )·(13BA ⃗⃗⃗⃗⃗ -12BC ⃗⃗⃗⃗⃗ )=115BA ⃗⃗⃗⃗⃗ 2−15BC ⃗⃗⃗⃗⃗ 2+130BA ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ =115×4-15×4+130×2=-715.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考小题标准练(九)时间:40分钟 分值:75分 姓名:________ 班级:________一、选择题(本大题共10小题,每小5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数2+i-i=( )A .1+2iB .1-2iC .-1+2iD .-1-2i解析:2+i -i =(2+i )·i -i·i=2i +i 2=2i -1.故选C.答案:C2.给出以下三个命题:①若ab ≤0,则a ≤0或b ≤0 ②在△ABC 中,若sin A =sin B ,则A =B ③在一元二次方程ax 2+bx +c =0中,若b 2-4ac <0,则方程有实数根.其中原命题、逆命题、否命题、逆否命题全都是真命题的是( ) A .① B .② C .③ D .②③解析:对于命题①,其原命题和逆否命题为真,但逆命题和否命题为假;对于命题②,其原命题、逆命题、否命题、逆否命题全部为真;对于命题③,其原命题、逆命题、否命题、逆否命题全部为假.故选B.答案:B3.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A .-1B .0 C.12D .1 解析:由题设知,这组样本数据完全正相关,故其相关系数为1,故选D. 答案:D4.函数f (x )=3sin x -cos x ,x ∈R .若f (x )≥1,则x 的取值范围为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π3≤x ≤k π+π,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪ 2k π+π3≤x ≤2k π+π,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π+π6≤x ≤k π+5π6,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π6≤x ≤2k π+5π6,k ∈Z 解析:令3sin x -cos x ≥1,即sin ⎝⎛⎭⎫x -π6≥12,解得2k π+π3≤x ≤2k π+π(k ∈Z ),故选B. 答案:B5.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若三边的长为连续的三个正整数,且A >B >C,3b =20a cos A ,则sin A :sin B :sin C =( )A .::2B .::7C .::3D .::4解析:由3b =20a cos A 及余弦定理得3b =20a ·b 2+c 2-a 22bc,化简得3b 2c =10a (b 2+c 2-a 2).又a ,b ,c 为连续的三个正整数,且A >B >C ,所以设a =m +1,b =m ,c =m -1.所以3m 2·(m -1)=10(m +1)[m 2+(m -1)2-(m +1)2],解得m =5⎝⎛⎭⎫m =-87舍去.故a =6,b =5,c =4,由正弦定理得sin A :sin B :sin C =::4,故选D.答案:D6.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经2 009次跳后它停在的点所对应的数为( ) A .1 B .2 C .3 D .5解析:按规则:从5开始经1次跳到达数2,经2次跳到达数1,经3次跳到达数3,经4次跳到达数5,…,故它是以4为周期.又2009=4×502+1,从而经过2009次跳后到达的数与第1次跳后到达的数是一样的,故对应的数为2.故选B.答案:B7.设集合A =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪m2≤(x -2)2+y 2≤m 2,x ,y ∈R , B ={(x ,y )|2m ≤x +y ≤2m +1,x ,y ∈R }.若A ∩B ≠∅,则实数m 的取值范围是( ) A.⎣⎡⎦⎤12,2 B.⎣⎡⎦⎤12,2+2 C.⎝⎛⎭⎫12,2+1 D .(0,2+1] 解析:当m <0时,集合A 是以(2,0)为圆心、以|m |为半径的圆,集合B 是在两条平行线之间的部分,A ∩B ≠∅等价于点(2,0)到直线x +y =2m +1的距离不大于半径|m |,因为2-2m -12+m =(1-2)m +22>0,A ∩B =∅,不符合题意;当m =0时,A ={(2,0)},B ={(x ,y )|0≤x +y ≤1},A ∩B =∅,不符合题意;当m >0时,集合A 是以(2,0)为圆心、以 m2和|m |为半径的圆环,集合B 是在两条平行线之间的部分,必有⎩⎪⎨⎪⎧|2-2m -1|2≥m ,|2-2m |2≤m ,解得2-2≤m ≤2+2.又因为m 2≤m 2,所以12≤m ≤2+2.故选B.答案:B 8.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数.下面关于f (x )的判断:①f (x )是周期函数 ②f (x )的图象关于直线x =1对称 ③f (x )在[0,1]上是增函数 ④f (x )在[1,2]上是减函数 ⑤f (2)=f (0).其中正确判断的个数是( ) A .5 B .3 C .2 D .1解析:f (x +1)=-f (x )=f (x -1)=f (1-x ),所以f (x )是周期为2的函数且图象关于直线x =1对称;偶函数f (x )在[-1,0]上是增函数,所以在[0,1]上是减函数,在[1,2]上是增函数.所以①②⑤正确,故选B.答案:B9.异面直线l 与m 所成角为π3,异面直线l 与n 所成角为π4,则异面直线m 与n 所成角的范围是( )A.⎣⎡⎦⎤π12,π2B.⎣⎡⎦⎤π6,π2C.⎣⎡⎦⎤π12,7π12D.⎣⎡⎦⎤π6,7π12 解析:平移直线l ,m 到同一平面,故当n 也在同一平面,且在l ,m 之间时,异面直线m 与n 所成的角最小,为π3-π4=π12.再根据异面直线的性质知,异面直线m 与n 所成的角的最大值为π2.所以异面直线m 与n 所成的角的范围是⎣⎡⎦⎤π12,π2.故选A. 答案:A10.已知P 是抛物线y 2=4x 上一点,设点P 到此抛物线准线的距离为d 1,到直线x +2y +10=0的距离为d 2,则d 1+d 2的最小值为( )A .5B .4 C.1155 D.115解析:点P 到抛物线准线的距离d 1等于点P 到焦点(1,0)的距离,所以d 1+d 2的值等于焦点到点P 的距离加上从点P 到直线的距离,因此最小值是焦点到直线的距离,点P 是垂线段和抛物线的交点,即d 1+d 2的最小值等于焦点到直线的距离115=1155.故选C.答案:C二、填空题(本大题共5小题,每小5分,共25分.请把正确答案填在题中横线上) 11.在正三棱柱ABC -A 1B 1C 1中,D 为棱AA 1的中点.若截面△BC 1D 是面积为6的直角三角形,则此三棱柱的体积为__________.解析:由题意,设AB =a ,AA 1=b .由12BD ·DC 1=6可得a 2+b 24=12.由BC 2+CC 21=BC 21,得a 2+b 2=24,可得a =22,b =4,所以V =34×(22)2×4=8 3.答案:8 312.双曲线x 2a 2-y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,已知线段F 1F 2被点(b,0)分成两段,则此双曲线的离心率为__________.解析:双曲线的焦点坐标为(c,0),(-c,0),则c +b =5(c -b ),所以b =23c .则e =c 2a 2=c 2c 2-b2=355. 答案:35513.设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a ,b )落在直线x +y =n 上”为事件C n (2≤n ≤5,n ∈N ).若事件C n 的概率最大,则n 的所有可能值为__________.解析:点P 的所有可能值为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3).点P (a ,b )落在直线x +y =n 上(2≤n ≤5),且事件C n 的概率最大.当n =3时,点P 可能是(1,2),(2,1),当n =4时,点P 可能是(1,3),(2,2),即事件C 3,C 4的概率最大.答案:3或414.设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -5≥0,y -2≤0,则u =x +yx的取值范围是__________. 解析:不等式表示的区域是一个三角形,顶点坐标为(3,1),(1,2),(4,2),区域中任一点和原点连线的斜率最大为2,最小为13,u =x +y x =1+yx=1+k ,k ∈⎣⎡⎦⎤13,2,故u ∈⎣⎡⎦⎤43,3. 答案:⎣⎡⎦⎤43,315.我们把由半椭圆x 2a 2+y 2b 2=1(x ≥0)与半椭圆y 2b 2+x 2c2=1(x <0)合成的曲线称作“果圆”(其中a 2=b 2+c 2,a >b >c >0).如图,设点F 0,F 1,F 2是相应椭圆的焦点,A 1,A 2和B 1,B 2是“果圆”与x 轴,y 轴的交点.若△F 0F 1F 2是边长为1的等边三角形,则a ,b 的值分别为__________.解析:由题意得点F 0(c,0),F 1(0,-b 2-c 2),F 2(0,b 2-c 2),因为△F 0F 1F 2是边长为1的等边三角形,所以OF 0=32,OF 1=OF 2=12,故c =3×b 2-c 2=32,解得b =1,c =32,所以a =b 2+c 2=72,a 2-c 2=74-34=1=b 2,b =1.答案:72,1。

相关文档
最新文档