(新)换热器的强度计算

合集下载

1 热交换器的热基本计算

1 热交换器的热基本计算

Q-热负荷,W; M1,M2- 分别为热流体与冷流体的质量流量,kg/s; h1,h2-分别为冷热流体的焓,J/kg; 1代表热流体,2代表冷流体;
代表流体的进口状态, 代表流体的出口状态。
热计算基本方程式
热平衡方程式
Q M1 h1 h1 M 2 h2 h2
当流体无相变时,热负荷也可用下式表示:
为修正系数
其它流动方式时的平均温差
tm tlm,c
若令
t2 t2 冷流体的加热度 P t2 两流体的进口温差 t1 t1 热流体的冷却度 t1 R t2 冷流体的加热度 t2
P的数值代表了冷流体的实际吸热量与最大可能的 吸热量的比率,称为温度效率,恒小于1。 R是冷流体的热容量与热流体的热容量之比, 可以大于1、等于1或小于1。
t t e
μkA
t x t e
-μ kAx
t ln μ kA t
t t t t tm ( 1) t t t ln ln t t
由于式中出现了对数,故常把tm称为对数平均温差。
d dt1 qm1c1 d dt2 qm 2c2
由于qm1c1和qm2c2 不变,则d↓ , dt1、dt2↓
故沿着流体流动方向,冷热流体温度变化渐趋平缓,温 度分布曲线形状的凹向不可能反向。
逆流情况下的平均温差
逆流换热器中冷、热流体温度的沿程变化如下图。
d k[t1 ( x) t2 ( x)]dA kt ( x)dA
d[t ( x)] k t ( x)dAx
顺流情况下的平均温差
1 1 d[t ( x)] dt1 ( x) dt2 ( x) qm1c1 qm2c2 d d

换热器强度计算书

换热器强度计算书

换热器强度计算书
换热器强度计算书是一份重要的技术文件,用于评估换热器在设计条件下的结构强度和安全性。

以下是一个简要的换热器强度计算书的示例,供参考:
1. 换热器概述
对换热器的类型、设计条件、主要结构和材料进行描述。

2. 设计规范和标准
列出计算所依据的相关设计规范和标准。

3. 载荷分析
分析换热器在正常操作、停车、检修等不同工况下所承受的载荷,包括压力、温度、重量等。

4. 强度计算
根据载荷分析的结果,采用适当的计算方法(如压力容器设计规范中的计算公式)对换热器的各个部件进行强度计算,包括壳体、封头、接管、法兰等。

5. 结果评估
对强度计算的结果进行评估,判断是否满足设计规范和标准的要求。

如有不满足的情况,提出相应的改进措施。

6. 结论
总结强度计算的结果,明确换热器在设计条件下的结构强度是否满足要求。

7. 附录
包括计算所使用的主要公式、计算过程中的中间结果、材料性能数据等。

需要注意的是,这只是一个示例,实际的换热器强度计算书应根据具体的设计条件和要求进行编制,并由专业的工程师进行审核和签署。

双管板换热器的强度计算

双管板换热器的强度计算

发 生接触便 会产生 严重 或 灾难 性 事 故 的苛 刻操 作 条件 的换热器 。双管板换 热器 型式 有两 种型 式 , 即
固定管板型式 ( 1 和 U型管板 型式 ( 2 。 图 ) 图 )
当量 厚度 大于任 一较厚 管板 的厚 度 , 于 “ 合 管 小 组
板” 的总厚度 。将组 合 管板视 为一 当量厚 度 的 “ 实
自由变 形 。然 后 考 虑 它 们 问 的变 形 协 调 , 成 边 形
拉 伸应 力 。而管 板 中无 应力 产 生 。 ( ) 向作 用 。P 对管 子外 壁径 向作 用 , 管 2径 使
心” 管板 后 , 该换热 器 的受力 即可 按 一般 的 固定 管
板换 热器 进行 考虑 。
图 1 固 定 管 板 形式
双管 板换 热 器按 单 管 板 ( 般 固定 管 板 换 热 一
器 ) 算 的可行性 , 计 可分 析 论证 如 下 。分 析 可从 一
般 的单 管板 换 热 器 的受 力 和 应 力 产 生 机 理 出 发 , 然后考 证 当管板 厚 度 发 生变 化 ( 加厚 时 ) 管 板应 ,
2 固定管 板换 热器 的受力分 析
固定管 板换 热 器 所 受 的 主要 载 荷 有 压 力 : 管
收 稿 日期 :0 9— 5— 0 20 0 2 。
作者简介 : 桑如 苞, , 男 浙江 绍兴人 , 事压 力容 器设 从
计工作 4 5年 , 体 , 压 力容 器 国 家标 准 G 10等 十 退 为 B5
19 年 载 入 《中 国 专 家 大 辞 典 》 联 系 电 话 : 1 99 。 00—
8 77 89 48 4
第2 7卷
桑如 苞等.双 管板换 热器的强度 计算

换热器的强度计算

换热器的强度计算

确定了换热器的结构及尺寸以后,必须对换热器的所有受压元件进行强度计算。

因为管壳式换热器一般用于压力介质的工况,所以换热器的壳体大多为压力容器,必须按照压力容器的标准进行计算和设计,对于钢制的换热器,我国一般按照GB150<<钢制压力容器>>标准进行设计,或者美国ASME标准进行设计。

对于其它一些受压元件,例如管板、折流板等,可以按照我国的GB151<<管壳式换热器>>或者美国TEMA标准进行设计。

对于其它材料的换热器,例如钛材、铜材等应按照相应的标准进行设计。

下面提供一氮气冷却器的受压元件强度计算,以供参考。

该换热器为U形管式换热器,壳体直径500mm,管程设计压力3.8MPa,壳程设计压力0.6MPa。

详细强度计算如下:1.壳程筒体强度计算2. 前端管箱筒体强度计算3. 前端管箱封头强度计算4. 后端壳程封头强度计算5.管板强度计算6. 管程设备法兰强度计算7. 接管开孔补强计算氮气冷却器(U形管式换热器)筒体计算计算条件筒体简图计算压力P c0.60MPa设计温度 t100.00︒ C内径D i500.00mm材料16MnR(热轧) ( 板材)试验温度许用应力[σ]170.00MPa设计温度许用应力[σ]t170.00MPa试验温度下屈服点σs345.00MPa钢板负偏差C10.00mm腐蚀裕量C2 1.00mm焊接接头系数φ0.85厚度及重量计算计算厚度δ == 1.04mm有效厚度δe =δn- C1- C2= 7.00mm名义厚度δn= 8.00mm 重量481.06Kg压力试验时应力校核压力试验类型液压试验试验压力值PT = 1.25P = 0.7500MPa压力试验允许通过的应力水平[σ]T[σ]T≤0.90 σs = 310.50MPa 试验压力下圆筒的应力σT = = 31.95MPa校核条件σT≤[σ]T校核结果合格压力及应力计算最大允许工作压力[P w]= = 3.99014MPa 设计温度下计算应力σt = = 21.73MPa[σ]tφ144.50MPa 校核条件[σ]tφ≥σt结论合格氮气冷却器前端管箱筒体计算计算条件筒体简图计算压力P c 3.80MPa设计温度 t100.00︒ C内径D i500.00mm材料0Cr18Ni9 ( 板材)试验温度许用应力[σ]137.00MPa设计温度许用应力[σ]t137.00MPa试验温度下屈服点σs205.00MPa钢板负偏差C10.80mm腐蚀裕量C20.00mm焊接接头系数φ0.85厚度及重量计算计算厚度δ == 8.29mm有效厚度δe =δn- C1- C2= 11.20mm名义厚度δn= 12.00mm 重量75.76Kg压力试验时应力校核压力试验类型液压试验试验压力值PT = 1.25P = 4.7500MPa压力试验允许通过的应力水平[σ]T[σ]T≤0.90 σs = 184.50MPa 试验压力下圆筒的应力σT = = 127.53MPa校核条件σT≤[σ]T校核结果合格压力及应力计算最大允许工作压力[P w]= = 5.10266MPa 设计温度下计算应力σt = = 86.72MPa[σ]tφ116.45MPa 校核条件[σ]tφ≥σt结论合格氮气冷却器前端管箱封头计算计算条件椭圆封头简图计算压力P c 3.80MPa设计温度 t100.00︒ C内径D i500.00mm曲面高度h i125.00mm材料0Cr18Ni9 (板材)试验温度许用应力[σ]137.00MPa设计温度许用应力[σ]t137.00MPa钢板负偏差C10.80mm腐蚀裕量C20.00mm焊接接头系数φ 1.00厚度及重量计算形状系数K = = 1.0000计算厚度δ = = 6.98mm有效厚度δe =δn- C1- C2= 11.20mm最小厚度δmin= 0.75mm名义厚度δn= 12.00mm 结论满足最小厚度要求重量32.23Kg压力计算最大允许工作压力[P w]= = 6.06962MPa 结论合格氮气冷却器后端壳程封头计算计算条件椭圆封头简图计算压力P c0.60MPa设计温度 t100.00︒ C内径D i500.00mm曲面高度h i125.00mm材料16MnR(热轧) (板材)试验温度许用应力[σ]170.00MPa设计温度许用应力[σ]t170.00MPa钢板负偏差C10.00mm腐蚀裕量C2 2.00mm焊接接头系数φ 1.00厚度及重量计算形状系数K = = 1.0000计算厚度δ = = 0.88mm有效厚度δe =δn- C1- C2= 6.00mm最小厚度δmin= 0.75mm名义厚度δn= 8.00mm 结论满足最小厚度要求重量19.61Kg压力计算最大允许工作压力[P w]= = 4.05567MPa 结论合格氮气冷却器管板计算设计条件0.60MPa壳程设计压力3.80MPa管程设计压力100.00︒ C壳程设计温度100.00︒ C管程设计温度8.00mm壳程筒体壁厚12.00mm管程筒体壁厚壳程筒体腐蚀裕量C 1.00mm管程筒体腐蚀裕量 C0.00mm500.00mm换热器公称直径换热管使用场合一般场合管板与法兰或圆筒连接方式 ( a b c d 型 ) a型换热管与管板连接方式 ( 胀接或焊接 ) 焊接材料(名称及类型) 0Cr18Ni970.00mm名义厚度管强度削弱系数0.40刚度削弱系数0.40材料泊松比0.30210.00mm2隔板槽面积换热管与管板胀接长度或焊脚高度l 3.50mm191000.00MPa 设计温度下管板材料弹性模量137.00MPa 设计温度下管板材料许用应力68.50MPa许用拉脱力壳程侧结构槽深h10.00mm 板管程侧隔板槽深h2 4.00mm0.00mm壳程腐蚀裕量0.00mm管程腐蚀裕量材料名称0Cr18Ni9换管子外径d19.00mm2.00mm热管子壁厚管U型管根数n138根换热管中心距 S25.00mm137.00MPa 设计温度下换热管材料许用应力垫片材料软垫片压紧面形式1a或1b垫垫片外径D o565.00mm 片垫片内径D i515.00mm a型垫片厚度δg mm 垫片接触面宽度Ωmm垫片压紧力作用中心园直径D G547.11mm 管板材料弹性模量0.00MPa ( c 型 )管板材料弹性模量0.00MPa ( d 型 )( b d 型 )管箱圆筒材料弹性模量0.00MPa ( b c 型 )壳程圆筒材料弹性模量0.00MPa ( c d 型 )管板延长部分形成的凸缘宽度0.00mm ( c 型)壳体法兰或凸缘厚度0.00mm ( d 型 )管箱法兰或凸缘厚度0.00mm参数计算管板布管区面积三角形排列正方形排列一根换热管管壁金属横截面积= 106.81mm2管板开孔前抗弯刚度b c d 型0.00N·mm管板布管区当量直径436.43mma 型其他系数0.80系数按和查图得 : = 0.000000系数按和查图得 : = 0.000000a d 型= 0b c型0.00a ,c 型= 0b ,d 型0.00a 型= 0其他0.00旋转刚度无量刚系数0.00系数0.2696按和0.07130.0000管板厚度或管板应力计算a 管板计算厚度取、大值61.345mm型管板名义厚度66.000mm管板中心处径向应力= 0MPa = 0MPab c d 布管区周边处径向应力= 0MPa型= 0MPa 边缘处径向应力= 0MPa = 0MPa管板应力校核单位:MPa|σr|r=0=b工况|σr |r=Rt=c|σr|r=R=d|σr|r=0=型工况|σr|r=Rt=|σr|r=R=换热管轴向应力计算及校核: MPa (单位)计算工况计算公式计算结果校核只有壳程设计压力, 管程设计压力=0 : |-1.59|≤合格只有管程设计压力,壳程设计压力=0 : =|6.29|≤合格壳程设计压力,管程设计压力同时作用: |4.69|≤合格换热管与管板连接拉脱力校核拉脱力q3.21 ≤[q]MPa校核合格重量64.89Kg氮气冷却器管箱法兰强度计算设计条件简图设计压力 p 3.800 MPa计算压力 pc 3.800 MPa设计温度 t 100.0 ° C轴向外载荷 F 0.0 N外力矩 M 0.0 N.mm壳材料名称0Cr18Ni9体许用应力137.0 MPa法材料名称#许用[s ]f 137.0 MPa兰应力[s ]tf 137.0 MPa材料名称40Cr螺许用[s ]b 212.0 MPa应力[s ]tb 189.0 MPa栓公称直径 d B 24.0 mm螺栓根径 d 1 20.8 mm数量 n 24 个Di 500.0 Do 660.0垫结构尺寸Db 615.0 D外565.0 D内515.0 δ0 16.0 mm Le 22.5 LA 31.5 h 35.0 δ1 26.0 材料类型软垫片N 25.0 m 2.00 y 11.0 压紧面形状1a,1b b 8.94 DG 547.1 片b0≤6.4mm b= b0 b0≤6.4mm DG= ( D外+D内 )/2b0 > 6.4mm b=2.53b0 > 6.4mm DG= D外 - 2b螺栓受力计算预紧状态下需要的最小螺栓载荷Wa Wa= πbDG y = 169119.0 N操作状态下需要的最小螺栓载荷WpWp = Fp + F = 1127044.1N所需螺栓总截面积 Am Am = max (Ap ,Aa ) = 5963.2 mm2 实际使用螺栓总截面积 AbAb = = 8117.5mm2力矩计算操FD = 0.785pc= 745750.0 N LD= L A+ 0.5δ1= 44.5mm MD= FD LD= 33185876.0N.mm作FG = Fp= 233573.5 N LG= 0.5 ( Db - DG )= 33.9mm MG= FG LG= 7928625.5N.mmMp FT = F-FD= 147150.2 N LT=0.5(LA + d 1 + LG )= 45.7mm MT= FT LT= 6728066.0N.mm外压: Mp = FD (LD - LG )+FT(LT-LG ); 内压: Mp = MD+MG+MT Mp = 47842568.0 N.mm 预紧MaW = 1492550.6 N LG = 33.9 mm Ma=W LG = 50664460.0 N.mm 计算力矩 Mo= Mp 与中大者 Mo=50664460.0N.mm螺栓间距校核实际间距= 80.5mm最小间距56.0 (查GB150-98表9-3)mm最大间距158.4mm形状常数确定89.44 h/ho = 0.4 K = Do/DI = 1.3201.6由K查表9-5得T=1.789 Z =3.694 Y =7.145 U=7.851整体法兰查图9-3和图9-4 FI=0.85944 VI=0.31415 0.00961 松式法兰查图9-5和图9-6 FL=0.00000 VL=0.00000 0.00000 查图9-7 f = 1.06578整体法兰 = 松式法兰 = 0.2由得572246.8 0.0ψ=δf e+1 =1.44 g = y /T = =0.811.59= 0.98 剪应力校核计算值许用值结论预紧状态0.00MPa操作状态0.00MPa输入法兰厚度δf = 46.0 mm时, 法兰应力校核应力性质计算值许用值结论轴向应力158.57MPa=205.5 或=342.5( 按整体法兰设计的任意式法兰, 取 )校核合格径向应力77.96MPa= 137.0校核合格切向应力54.14MPa= 137.0校核合格综合应力= 118.27MPa= 137.0校核合格法兰校核结果校核合格氮气冷却器开孔补强计算接管: a,φ219×16计算方法 : GB150-1998 等面积补强法, 单孔设计条件简图计算压力p c 3.8MPa设计温度100℃壳体型式圆形筒体壳体材料名称及类型0Cr18Ni9 板材壳体开孔处焊接接头系数φ0.85壳体内直径D i500mm壳体开孔处名义厚度δn12mm壳体厚度负偏差 C10.8mm壳体腐蚀裕量C20mm壳体材料许用应力[σ]t137MPa接管实际外伸长度100mm接管实际内伸长度0mm 接管材料0Cr18Ni9接管焊接接头系数1名称及类型管材接管腐蚀裕量0mm 补强圈材料名称补强圈外径mm补强圈厚度mm接管厚度负偏差C1t2mm 补强圈厚度负偏差C1r mm 接管材料许用应力[σ]t137MPa 补强圈许用应力[σ]t MPa开孔补强计算壳体计算厚度δ8.293mm 接管计算厚度δt 2.63mm 补强圈强度削弱系数f rr0接管材料强度削弱系数f r1开孔直径d191mm 补强区有效宽度B382mm 接管有效外伸长度h155.28mm 接管有效内伸长度h20mm 开孔削弱所需的补强面积A1584mm2壳体多余金属面积A1555.2mm2接管多余金属面积A21257mm2补强区内的焊缝面积A364mm2A1+A2+A3=1876 mm2 ,大于A,不需另加补强。

换热器设计计算详细过程

换热器设计计算详细过程

换热器设计计算详细过程1.确定换热器的换热负荷和传热系数:首先需要明确换热器所在系统的换热负荷,即所需传热功率。

根据系统的温度差、流体性质、质量流量等参数计算得到传热系数,该系数反映了换热器在给定条件下的传热能力。

2.确定流体入口和出口温度:根据所需的出口温度和流体的性质,可以通过传热方程计算得到流体的入口温度。

同时,需要考虑流体的流速、流态(单相流还是多相流)等因素。

3.选择合适的换热器类型:根据系统的特点和要求,选择合适的换热器类型,如壳管换热器、板式换热器等。

考虑换热器的传热特性、结构特点、施工方便程度等因素。

4.确定换热面积:通过传热方程和传热系数计算得到的换热负荷,可以反推计算出所需的换热面积。

同时还需要考虑换热器的热效率和流体流阻。

5.计算流体质量流量:通过需求传热功率、流体入口和出口温度的关系,可以计算得到流体的质量流率。

同时还需考虑流体的压降和速度等因素。

6.选择换热介质:根据流体的物性参数和流态选择合适的换热介质,如水、蒸汽、油等。

7.根据系统运行条件确定换热器材料:根据流体的性质、温度、压力等参数确定合适的换热器材料,如碳钢、不锈钢、钛合金等。

8.进行换热器的压力损失计算:根据流体的粘度、比热容率、流速等参数计算压力损失,以确保流体能够在换热过程中正常流动。

9.进行换热器的结构设计:根据所选的换热器类型和尺寸,进行换热器结构的设计,包括换热管的布置、壳体的设计等。

10.确定换热器的运行参数:包括换热器的入口温度、出口温度、流量、压力等参数,以便在实际运行中调整和监控换热器的工况。

11.进行换热器的强度计算与选择:根据换热器的运行条件和使用要求,进行强度计算和选择合适的材料和结构,以确保换热器的安全可靠运行。

12.进行换热器的经济性评价:对所设计的换热器进行经济性分析,包括建造成本、维护成本、运行成本等,以确定设计是否经济合理。

管壳式换热器的强度计算

管壳式换热器的强度计算
2 o
t
t=
0.25Do p
[τ ]
t
式中 [τ]t ——管板材料在设计温度下的许用 τ 管板材料在设计温度下的许用 剪应力, τ 剪应力,取[τ]t=0.8 [σ]t σ t ——不包括附加量的管板厚度,t=tc-C。 不包括附加量的管板厚度, 不包括附加量的管板厚度
考虑管板开孔削弱系数为(1-do/to),则管板 考虑管板开孔削弱系数为 , 按剪切强度的计算公式为: 按剪切强度的计算公式为: (3) ) 管孔中心距, 式中 to ——管孔中心距,mm; 管孔中心距 ; d。——管子外径,mm; 管子外径, 。 管子外径 ; D。——布管区最外圈管子中心圆直径,mm 布管区最外圈管子中心圆直径, 。 布管区最外圈管子中心圆直径 当布管区不是圆形时, 当布管区不是圆形时,则D。为布管区外缘 。 管子中心连线所限定的周边当量直径, 管子中心连线所限定的周边当量直径,即 4 Ao Do = Lo
2.将管束当作弹性支承,而管板则作为放置 .将管束当作弹性支承, 弹性支承 于这弹性基础上的圆平板, 弹性基础上的圆平板 于这弹性基础上的圆平板,然后根据载荷大 小、管束的刚度和周边支承情况来确定管板 的弯曲应力。 的弯曲应力。由于它比较全面地考虑了管束 的支承和温差等影响,因而比较精确, 的支承和温差等影响,因而比较精确,但计 算公式较多,计算过程也较繁杂。 算公式较多,计算过程也较繁杂。在大力发 展电子计算技术的今天, 展电子计算技术的今天,是一种有效的设计 方法。 方法。 3.取管板上相邻四根管子之间的棱形面积, .取管板上相邻四根管子之间的棱形面积, 按弹性理论求此棱形面积在均布压力作用下 的最大弯曲应力。 的最大弯曲应力。由于此法与管板实际受载 情况相差甚大,仅用于粗略计算。 情况相差甚大,仅用于粗略计算。

SW6某固定管板换热器强度计算_简单计算书

SW6某固定管板换热器强度计算_简单计算书

软件批准号:CSBTS/TC40/SC5-D01-1999DATA SHEET OF PROCESS EQUIPMENT DESIGN工程名:PROJECT设备位号:ITEM设备名称:EQUIPMENT图号:DWG NO。

设计单位:压力容器专用计算软件DESIGNER固定管板换热器设计计算设计计算条件:壳程: 管程:设计压力P s (MPa) 2.4 设计压力P t (MPa) 0.6设计温度t s (℃) 100 设计温度t t (℃) 60壳程圆筒外径Do (mm) 325 管箱圆筒外径Do (mm) 325材料名称20(GB8163) 材料名称20(GB8163)前端管箱封头计算计算所依据的标准GB 150.3-2011计算条件计算压力P c (MPa) 0.60 外径D o (mm) 325.00 设计温度t (℃) 60.00 曲面高度h o (mm) 73.00 材料名称Q235-B 材料类型板材试验温度许用应力[σ] (MPa) 116.00 钢板负偏差C1 (mm) 0.30 设计温度许用应力[σ]t(MPa) 114.50 腐蚀裕量C2 (mm) 1.00 焊接接头系数φ 1.00压力试验时应力校核压力试验类型液压试验压力试验允许通过的应力试验压力值P T (MPa) 1.0000 [σ]T (Mpa) 211.50试验压力下封头的校核条件σT ≤[σ]T周向应力σT (MPa) 29.90 校核结果合格厚度及重量计算形状系数K 1.2750 最小厚度δmin (mm) 3.00 计算厚度δh (mm) 1.08 名义厚度δnh (mm) 8.00 有效厚度δeh (mm) 6.70 重量(kg) 7.75 结论满足最小厚度要求压力计算最大允许工作压力[P w](MPa) 3.82974 结论合格后端管箱封头计算计算所依据的标准GB 150.3-2011计算条件计算压力P c (MPa) 0.60 外径D o (mm) 325.00 设计温度t (℃) 60.00 曲面高度h o (mm) 73.00 材料名称Q235-B 材料类型板材试验温度许用应力[σ] (MPa) 116.00 钢板负偏差C1 (mm) 0.30 设计温度许用应力[σ]t(MPa) 114.50 腐蚀裕量C2 (mm) 1.00 焊接接头系数φ 1.00压力试验时应力校核压力试验类型液压试验压力试验允许通过的应力试验压力值P T (MPa) 1.0000 [σ]T (Mpa) 211.50试验压力下封头的校核条件σT ≤[σ]T周向应力σT (MPa) 29.90 校核结果合格厚度及重量计算形状系数K 1.2750 最小厚度δmin (mm) 3.00 计算厚度δh (mm) 1.08 名义厚度δnh (mm) 8.00 有效厚度δeh (mm) 6.70 重量(kg) 7.75 结论满足最小厚度要求压力计算最大允许工作压力[P w](MPa) 3.82974 结论合格内压圆筒校核计算所依据的标准GB 150.3-2011计算条件计算压力P c (MPa) 2.40 设计温度t (℃) 100.00 外径D o (mm) 309.00材料名称20(GB8163) 材料类型管材试验温度许用应力[σ] (MPa) 152.00 钢板负偏差C1 (mm) 1.20 设计温度许用应力[σ]t (MPa) 147.00 腐蚀裕量C2 (mm) 1.00 试验温度下屈服点σs (MPa) 245.00 焊接接头系数φ 1.00厚度及重量计算计算厚度δ (mm) 2.50 名义厚度δn (mm) 8.00 有效厚度δe (mm) 5.80 重量(kg) 68.53压力试验时应力校核压力试验类型液压试验压力试验允许通过的应力试验压力值P T (MPa) 3.0000[σ]T0.90σs220.50试验压力下圆筒的应力σT (MPa) 78.41 校核条件σT≤[σ]T校核结果合格压力及应力计算最大允许工作压力[P w] (MPa) 5.62401 设计温度下计算应力σt (MPa) 62.73 [σ]tφ147.00 校核条件[σ]tφ≥σt 结论合格开孔补强计算设计条件接管: A1,A2, φ80×10计算方法: GB150.3-2011 等面积补强法,单孔计算压力p c (MPa) 0.6 接管焊接接头系数 1 设计温度t (℃) 60 接管腐蚀裕量(mm) 1 壳体型式椭圆形封头凸形封头开孔中心至壳体材料Q235-B 封头轴线的距离(mm)名称及类型板材接管厚度负偏差C1t (mm)壳体开孔处焊接接头系数φ 1 接管材料许用应力[σ]t (MPa)壳体内直径D I (mm) 309 接管材料20(GB8163) 壳体开孔处名义厚度δn (mm) 8 名称及类型管材壳体厚度负偏差C1 (mm) 补强圈材料名称壳体腐蚀裕量C2 (mm) 1 补强圈外径(mm)壳体材料许用应力[σ]t (MPa) 补强圈厚度(mm)椭圆形封头长短轴之比 2.1164 补强圈厚度负偏差C1r (mm)接管连接型式补强圈许用应力[σ]t (MPa)接管实际外伸长度(mm) 20 凸形封头上接管轴线与封头轴线的接管实际内伸长度(mm) 0 夹角(°)开孔补强计算非圆形开孔长直径(mm) 64.5 开孔长径与短径之比 1 壳体计算厚度δ(mm) 接管计算厚度δt (mm)补强圈强度削弱系数f rr接管材料强度削弱系数f r开孔补强计算直径d (mm) 64.5 补强区有效宽度B (mm)接管有效外伸长度h1 (mm) 接管有效内伸长度h2 (mm)壳体多余金属面积A1 (mm2)开孔削弱所需的补强面积A(mm2)接管多余金属面积A2 (mm2) 补强区内的焊缝面积A3(mm2)A1+A2+A3= (mm2)补强圈面积A4 (mm2) A-(A1+A2+A3) (mm2)开孔补强计算设计条件接管: B1,B2, φ60×5计算方法: GB150.3-2011 等面积补强法,单孔计算压力p c (MPa) 2.4 接管焊接接头系数 1 设计温度t (℃) 100 接管腐蚀裕量(mm) 1 壳体型式圆形筒体凸形封头开孔中心至壳体材料20(GB8163) 封头轴线的距离(mm)名称及类型管材接管厚度负偏差C1t (mm)壳体开孔处焊接接头系数φ 1 接管材料许用应力[σ]t (MPa)壳体内直径D I (mm) 309 接管材料20(GB8163) 壳体开孔处名义厚度δn (mm) 8 名称及类型管材壳体厚度负偏差C1 (mm) 补强圈材料名称壳体腐蚀裕量C2 (mm) 1 补强圈外径(mm)壳体材料许用应力[σ]t (MPa) 补强圈厚度(mm)0 补强圈厚度负偏差C1r (mm)接管轴线与筒体表面法线的夹角(°)接管连接型式补强圈许用应力[σ]t (MPa)接管实际外伸长度(mm) 77.5 凸形封头上接管轴线与封头轴线的接管实际内伸长度(mm) 0 夹角(°)开孔补强计算非圆形开孔长直径(mm) 53.25 开孔长径与短径之比 1 壳体计算厚度δ(mm) 接管计算厚度δt (mm)补强圈强度削弱系数f rr接管材料强度削弱系数f r开孔补强计算直径d (mm) 53.25 补强区有效宽度B (mm)接管有效外伸长度h1 (mm) 接管有效内伸长度h2 (mm)壳体多余金属面积A1 (mm2)开孔削弱所需的补强面积A(mm2)接管多余金属面积A2 (mm2) 补强区内的焊缝面积A3(mm2)A1+A2+A3= (mm2)补强圈面积A4 (mm2) A-(A1+A2+A3) (mm2)延长部分兼作法兰固定式管板设计计算条件:壳程圆筒:设计压力p s (MPa) 2.4 平均温度下热膨胀系数αs(1/℃) 1.076e-05 设计温度T s (℃) 100 壳程圆筒内径D I(mm) 309 平均金属温度t s (℃) 0 壳程圆筒名义厚度δs(mm) 5.8 装配温度t0 (℃) 15 壳体法兰弹性模量E f’(MPa) 1.97e+05材料名称20(GB8163)壳程圆筒内直径横截面积A(mm2)7.499e+04设计温度下许用应力[σ]t(MPa) 147 壳程圆筒金属横截面积A s(mm2)5736平均温度下弹性模量E s(MPa) 2.023e+05管箱圆筒:设计压力p t (MPa) 0.6 弹性模量E h (MPa) 2.01e+05 设计温度T t(℃)60 管箱圆筒名义厚度δh(mm) 7 材料名称20(GB8163)管箱法兰弹性模量E f”(MPa) 1.99e+05 换热管:材料名称BFe10-1-1管子壁厚δt (mm) 0.6 管子平均温度t t (℃) 0 管子根数n464 设计温度下管子材料许用应力换热管中心距S (mm) 12 [σ]t t(MPa) 63 一根管子金属横截面积α(mm2)16.78 设计温度下管子材料屈服应力管子有效长度(两管板内侧间σs t (MPa) 94距) L (mm) 1152 设计温度下管子材料弹性模量管束模数K t2731 E t t (MPa) 1.21e+05管子回转半径i 3.154 平均温度下管子材料弹性模量管子受压失稳当量长度l cr170 E t (MPa) 1.249e+05系数C r159.4 平均温度下管子材料热膨胀系比值l cr53.9 数αt 1.153e-05 管子稳定许用压应力[σ]cr39.05 管子外径d (mm) 9.5管板:材料名称Q235-B管板强度削弱系数η0.4 设计温度t p100 管板刚度削弱系数μ0.4 设计温度下许用应力[σ]r t (MPa) 108 管子加强系数K 4.23 设计温度下弹性模量E P (MPa) 1.97e+05 管板和管子连接型式胀接,不开槽管板腐蚀裕量C2 (mm) 2 管板和管子胀接(焊接)高度l(mm) 17 管板输入厚度δn (mm)20 许用拉脱应力[q](MPa) 2 管板计算厚度δ(mm) 17.7 隔板槽面积(包括拉杆和假管区面积)A d (mm2) 0管箱法兰:材料名称Q235-B法兰宽度b f (mm) 45.5 管箱法兰厚度δf”(mm) 20 比值δh/D i0.02265 法兰外径D f (mm) 400 比值δf”/D i0.06472 基本法兰力矩M m(N⋅mm)3.362e+06 系数C”0.00 管程压力操作工况下法系数ω”0.002577 兰力M p (MPa) 1.34e+06 旋转刚度K f”(MPa) 52.39 壳体法兰:材料名称Q235-B系数ω’0.001598 壳体法兰厚度δf’(mm) 18 旋转刚度K f’(MPa) 33.61 法兰外径D f (mm) 400 法兰外径与内径之比K 1.294 法兰宽度b f (mm) 45.5 壳体法兰应力系数Y7.666 比值δs/D i0.01877 旋转刚度无量纲参数f~K0.009666比值δf’/D i0.05825 膨胀节总体轴向刚度K ex(N/mm)系数C’0.00注:管板参数计算:管板开孔后面积A1(mm2) 4.21e+04 管板布管区当量直径D t(mm)271.4管板布管区面积A t(mm2)5.786e+04 系数计算:管板第一弯矩系数m 1 0.3562 管板第二弯矩系数m 2 1.884 系数 ψ 8.785 系数 M 1 0.01283 系数 G 22.473 系数 G 30.01426 换热管束与不带膨胀节 法兰力矩折减系数 ξ0.4039壳体刚度之比 Q 0.8376 管板边缘力矩变化系~M ∆0.9565 换热管束与带膨胀节壳 法兰力矩变化系数 f ~M ∆0.6136 体刚度之比 Q ex系数 β=na A /l0.1849系数 λ=A 1/A 0.5614 管板布管区当量直径与系数 ∑s2.364 壳体内径之比 0.8784系数 ∑t 3.035 管板周边不布管区无量纲宽度 k = K (1-ρt )0.5143仅有壳程压力P s 作用下的工况 (P t = 0):不计温差应力计温差应力 换热管与壳程圆筒热膨胀变形差 γ 0.0 -1.155e-05当量压力组合 P c (MPa)2.4 2.4 有效压力组合 P a (MPa) 5.673 5.407 基本法兰力矩系数 m M ~0.04555 0.04779 管板边缘力矩系数~M 0.05782 0.06006 管板边缘剪力系数 ν 0.5079 0.5277 管板总弯矩系数 m 0.871 0.884 系数 G 1e 0.24910.2529系数 G 1i0.14340.1434 系数 G 10.24910.2529 管板径向应力系数σ~r0.028370.02918 管板布管区周边处径向应力系数σ~r0.07093 0.07294 管板布管区周边处剪切应力系数~τp0.1139 0.1154 壳体法兰力矩系数 ws M ~0.010530.01143计算值 许用值 计算值 许用值 管板径向应力 σr (MPa)68.86 162 67.48 324 管板布管区周边处径向应力 σr ’(MPa) 84.68 162 83.92 324 管板布管区周边剪切应力 τP (MPa) 13.91 54 13.43 162 壳体法兰应力 σf (MPa)59.4916261.58324换热管轴向应力 σt (MPa)-5.996[σ]t t =63[σ]cr = 39.05-4.9583[σ]t t =189 [σ]cr =39.05壳程圆筒轴向应力σc (MPa)18.97 147 18.31 441 换热管与管板连接拉脱应力 q (MPa) 0.1982 20.1639 2t s = 0):不计温差应力计温差应力 换热管与壳程圆筒热膨胀变形差 γ 0.0 -1.155e-05当量压力组合 P c (MPa) -0.7109 -0.7109 有效压力组合 P a (MPa) -1.821 -2.087 操作情况下法兰力矩系数p M ~-0.05659 -0.04936 管板边缘力矩系数 M M p ~~=-0.05659 -0.04936 管板边缘剪力系数 ν -0.4972 -0.4336 管板总弯矩系数 m -1.155 -0.8138 系数 G 1e 0.3303 0.2328 系数 G 1i 1.097 0.8784 系数 G 11.0970.8784 管板径向应力系数 σ~r0.041680.03757 管板布管区周边处径向应力系数σ~'r -0.03136 -0.02489 管板布管区周边处剪切应力系数 ~τp0.03798 0.04278 壳体法兰力矩系数 ws M ~-0.03569-0.03277计算值 许用值 计算值 许用值 管板径向应力 σr (MPa)32.46 162 33.55 324 管板布管区周边处径向应力σr ’ (MPa) 28.11 162 28.23 324 管板布管区周边剪切应力 τP (MPa) -1.488 54 -1.922 162 壳体法兰探讨应力σf(MPa) 64.73 162 68.13 324 换热管轴向应力σt (MPa) 4.75 [σ]t t =63 [σ]cr =39.055.827 3[σ]t t =189 [σ]cr =39.05壳 程圆筒轴向应力 σc (MPa) 5.814 147 5.223 441 换热管与管板连接拉脱应力 q (MPa) 0.1572 0.19272 结论管板名义厚度 δn (mm)20管板校核通过换热管内压计算计算条件设计压力P c (MPa) 0.60 试验温度许用应力[σ] (MPa) 67.00 设计温度t (℃) 100.00 设计温度许用应力[σ]t (MPa) 63.00 内径D i (mm) 8.30 钢板负偏差C1 (mm) 0.00 材料名称BFe10-1-1 腐蚀裕量C2 (mm) 0.00 材料类型管材焊缝接头系数φ 1.00厚度及重量计算计算厚度(mm) 0.04 名义厚度(mm) 0.60 有效厚度(mm) 0.60 重量(kg) 0.18压力及应力计算最大允许工作压力[P] (MPa) 8.49438 设计温度下计算应力σt (MPa) 4.45 [σ]tφ63.00校核条件[σ]tφ≥σt结论换热管内压计算合格换热管外压计算计算条件设计压力P c (MPa) -2.40 试验温度许用应力[σ] (MPa) 67.00 设计温度t (℃) 100.00 设计温度许用应力[σ]t (MPa) 63.00 内径D i (mm) 8.30 钢板负偏差C1 (mm) 0.00 材料名称BFe10-1-1 腐蚀裕量C2 (mm) 0.00 材料类型管材焊缝接头系数φ 1.00厚度及重量计算计算厚度(mm) 0.62 L/D o 4.97有效厚度(mm) 0.60 D o/δe15.83 名义厚度(mm) 0.60 A值0.0047973外压计算长度L (mm) 1192.00B值48.70外径D o (mm) 9.50重量(kg) 0.18压力计算许用外压力[P] (MPa) 3.87672结论换热管外压计算合格管箱法兰计算设计条件设计压力p c (MPa) : 0.600 螺栓根径d B (mm) : 13.8 计算压力p c (MPa) 0.600 螺栓材料名称35 设计温度t(︒C) 60.0 螺栓材料常温下许用应力法兰材料名称Q235-B [σ]b (MPa) 117.0 法兰材料常温下许用应力螺栓材料设计温度下许用应力[σ]f (MPa) 116.0 [σ]t b (MPa) 111.0 法兰材料设计温度下许用应力螺栓公称直径d B(mm)16.0 [σ]t f (MPa) 114.5 螺栓数量n (个) 16 法兰输入厚度δf (mm) 20.0垫片参数:b’=4(b’0)1/2 21.91 D I (mm) 309.0 2b" 5 D b (mm) 370.0 m 2.00 d b(mm) 19.0 y11.0 D’G=D b-(d b+2b") (mm) 346.0 D(mm) 400.0 δ1 (mm) 13.0螺栓受力计算W a=bπ'D b y = (N)280133.2 W p=F'+F p+F R= (N)173972.0 实际螺栓总截面积A b (mm2)2405.3弯矩计算F D = 0.785D2i p c (N)49749.4 L’T=0.25(D b+d b+2b"-D I)(mm17.2)F’T=0.785(D b-d b)2p c-F D (N) 8278.3 L’P=0.5(d b+2b") (mm) 12.0 F’T=6.28 D’G m p c b" (N)6521.9 L R=(D-(D b+d b))/4+d b/2 12.2(mm)F R=(F D L D+ F’P L’P+ F’T L’T)/L R (N) 109422.4 M D= F D L D (N.mm)1119361.0 整体: L D=0.5(D b-D i-δ1) M’T= F’T L’T(N.mm)142800.5 活套: L D=0.5(D b-D i) (mm) 22.5 M’P= F’P L’P(N.mm)78263.3 计算用弯矩M0(N.mm) 1340424.9螺栓间距校核实际间距(mm) 72.6 最小间距(查GB150.3-2011表7-3)(mm) 38.0 最大间距(mm) 88.0计算结果:按弯曲应力确定的法兰厚度δfn (mm) 9.0校核合格。

热交换器原理与设计—第1章_热交换器热计算的基本原理_(1)

热交换器原理与设计—第1章_热交换器热计算的基本原理_(1)
例如 对于壳侧为一个流程、管程为偶数流程的壳管式热交换器, 其 值为:(推导得出)
两种流体中只有一种横向混合的错流式热交换器,其 值为:
能源与动力工程教研室
对于某种特定的流动形式, 是辅助参数P、R的函 数 f ( P, R) 该函数形式因流动方式而异。
对于只有一种流体有横向混合的错流式热交换器, 可将辅助参数的取法归纳为:
t m ,算术
t max t min 2
使用条件:如果流体的温度沿传热面变化不大, 范围在
t max 2 内可以使用算数平均温差。 t min
能源与动力工程教研室
算术平均与对数平均温差
t m ,算术
t max t min 2
t m ,对数
t max t min t max ln t min
R 1 t t 2 2 1 P ln 1 PR
的函数
t1m,c
能源与动力工程教研室
为了简化 的计算,引入两辅助参数:
t 2 t2 p t2 t1
t1 t1 R t 2 t2

冷流体的加热度 两种流体的进口温差
能源与动力工程教研室
1.2 平均温差
1.2.2 顺流和逆流情况下的平均温差
简单顺流时的对数平均温差 假设:
(1)冷热流体的质量流量qm2、qm1 以及比热容c2, c1是常数; (2)传热系数是常数;
(3)换热器无散热损失; (4)换热面沿流动方向的导热量 可以忽略不计。 下标1、2分别代表热冷流体。 上标1撇和2撇分别代表进出口
能源与动力工程教研室
在假设的基础上,并已知冷热流体的 进出口温度,现在来看图中微元换热 面dA一段的传热。温差为:

浅谈换热器设计的一些结构和强度问题

浅谈换热器设计的一些结构和强度问题

浅谈换热器设计的一些结构和强度问题雷 勇 余子豪 中国成达工程有限公司 成都 610041摘要 本文结合标准对换热器的部分常见设计问题(例如防短路挡板的设置位置、防冲板的设置条件、换热器进出口的流通面积计算以及法兰的设计等)进行分析总结,给换热器的工程设计提供一定参考。

关键词 压力容器 换热器 结构设计 强度计算雷勇:高级工程师。

2003年毕业于南京工业大学过程装备与控制工程专业。

主要从事压力容器设计工作。

联系电话:028 65530523,E mail:leiyong@chengda com。

《热交换器》GB/T151-2014[1]是管壳式换热器的设计、制造、检验等方面的通用标准。

本文针对运用该标准进行换热器设计时遇到的部分常见问题进行分析总结,给换热器的工程设计提供一定的参考。

1 防短路结构根据GB/T151-2014要求,短路宽度超过16mm时应设置防短路结构,折流板缺口间距小于6个管心距时设置一对旁路挡板,超过6个管心距时每5~7个管心距增设一对旁路挡板;分程隔板槽背面或U形管式换热器管束中间每隔4~6个管心距设置1根挡管。

为起到防短路的作用,以上挡板均应设置在折流板重叠区,见图1;不应设置在折流板缺口区,见图2。

2 防冲板设置防冲板的作用是防止进入换热器的流体对换热管直接产生冲蚀、腐蚀作用。

通常气液混合物的冲蚀能力比气体或液体的冲蚀能力更强,在气液混合物中,气体的流速比较快,液滴夹杂在气体里对于设备表面冲击力就比较大[2]。

对金属表面产生的磨蚀通常来自于液体或者夹杂着固体的气固混合物。

由于腐蚀流体和金属表面间的相对运动,引起金属的加速破坏或腐蚀,这类腐蚀常与金属表面上的湍流强度有关。

湍流使金属表面液体的搅动比层流时更为剧烈,使金属与介质的接触更为频繁,故通常叫做湍流腐蚀。

湍流腐蚀实际上是一种机械磨耗和腐蚀共同作用的结果[3]。

图1 旁路挡板设在折流板重叠区图2 旁路挡板设在折流板缺口区磨蚀的外表特征是槽、沟、波纹、圆孔和山谷形,还常常显示有方向性。

换热器介绍及热效率计算

换热器介绍及热效率计算

⎧⎪) ⎪⎨管翅式 ⎪壳管式 ⎪⎪ 板式 ⎪⎩ 螺旋板式 ⎪间壁式 ⎪板翅式 换热器介绍及热效率的简单计算一、换热器的基本概念换热器的定义:凡是用来使热量从热流体传递到冷流体,以满足规定的工艺要求 的装置通称换热器。

三种类型换热器简介⎧ 套管式 ⎪⎧管束式 ( 管壳式 ⎪⎩交叉流换热器 ⎪⎪ ⎨⎪⎪⎪ 混合式⎪⎩ 蓄热式间壁式——冷热流体分别位于固体壁面两侧,而由壁面间接隔开来。

混合式——冷热流体通过直接接触、相互混合来实现换热。

回热式——冷热流体交替地通过同一换热表面而实现热量交换的设备称为蓄热 式换热器。

2、换热器的分类?螺旋板式换热器 波纹管换热器 列管式换热器 板式换热器 螺旋板换热器 管壳式换热器 容积式换热器 浮头式换热器 管式换热器 热管换热器 汽水换热 器翅片管换热器管壳式换热器分为浮头式换热器和固定管板式换热器1、浮头式换热器特点2、浮头式换热器两端的管板,一端不与壳体相连,该端称浮头。

管子受热时,管束连同浮头可以沿轴向自由伸缩,完全消除了温差应力。

浮头式换热器的特点浮头式换热器的一端管板固定在壳体与管箱之间,另一端管板可以在 壳体内自由移动,这个特点在现场能看出来。

这种换热器壳体和管束的热 膨胀是自由的,管束可以抽出,便于清洗管间和管内。

其缺点是结构复杂, 造价高(比固定管板高 20%),在运行中浮头处发生泄漏,不易检查处理。

m t kA ∆=Φ 以及 中的三个已知的话,我们就可以计算出另hmh c cq tttt '''' ,,, cmc ' '' ' ' ∆ t ' , t '', t ' , t ''h h c cq 浮头式换热器适用于壳体和管束温差较大或壳程介质易结垢的条件。

3、 固定管板式换热器(,4E-401, 4E-200) 固定管板式换热器主要有外壳、管板、管束、顶盖(又称封头)等部件构 成。

换热器的强度计算.

换热器的强度计算.

确定了换热器的结构及尺寸以后,必须对换热器的所有受压元件进行强度计算。

因为管壳式换热器一般用于压力介质的工况,所以换热器的壳体大多为压力容器,必须按照压力容器的标准进行计算和设计,对于钢制的换热器,我国一般按照GB150<<钢制压力容器>>标准进行设计,或者美国ASME标准进行设计。

对于其它一些受压元件,例如管板、折流板等,可以按照我国的GB151<<管壳式换热器>>或者美国TEMA标准进行设计。

对于其它材料的换热器,例如钛材、铜材等应按照相应的标准进行设计。

下面提供一氮气冷却器的受压元件强度计算,以供参考。

该换热器为U形管式换热器,壳体直径500mm,管程设计压力3.8MPa,壳程设计压力0.6MPa。

详细强度计算如下:1.壳程筒体强度计算2. 前端管箱筒体强度计算3. 前端管箱封头强度计算4. 后端壳程封头强度计算5.管板强度计算6. 管程设备法兰强度计算7. 接管开孔补强计算PP==== 0.88( c 型 ) ( d 型 )( b d 型 )( b c 型 )( c d 型 )( c 型)( d 型 )= 106.810.00436.430.80== 00.00= 00.00= 00.000.000.2696取、大值= 0= 0= 0= 0= 0= 0工况 =工况=3.21 ≤[q]pc= 80.556.0 (查GB150-98表9-3)158.489.44 1.60.009610.000000.2得= 0.981.590.000.00=205.5 或158.5777.96 = 137.054.14 = 137.0= 118.27 = 137.0。

管壳式换热器结构设计与强度计算中的重要问题

管壳式换热器结构设计与强度计算中的重要问题

全 不 同 ,简 体 的变 形也 不相 同 ,因此 目前 卧式容 器 的计算 模 型是不 适用 于 卧式换 热器 。 2 弓 形 折 流 板 缺 口 布 置
在 卧式 换热 器 中 ,弓形 折 流板 的缺 口布 置是 设 计重 点 。其 布置 方 式 有 两种 :缺 口上 下 布 置 和 缺 口左 右 布 置 。 当壳 程 介 质 为 气 液 两 相 并 存 时 (如壳程 为蒸 汽进 口 ,凝液 排 出),则折 流板 缺 口必 须 左右 布置 。进 入壳 程 的蒸汽会 在冷 的换 热管 外 壁 上冷 凝变 成冷 凝 液 ,凝 液 沿 管壁 向下 流 至 简体 底 部而 形成 一定 的液 面 。蒸 汽通 常 由壳程一 端上 方 入 口,如果 设计 成缺 口上 下布置 ,靠 近入 口的第 一 块 折 流 板 的 缺 口 总 是 朝 下 的 ;第 二 块 折 流 板 缺 口则朝 上 ,其 下 部 开 有 排残 液 用 的小 缺 口。蒸 汽 经第 一 块折 流板 缺 口后 流 经 的通 道是 折流板 缺 口 以下至 冷凝 液液 面 以上 的空间 。 由于蒸 汽冷 凝速 度较 快 ,而凝 液经 第 二 块 折 流板 小 缺 口的 流通 面 积很 小 ,排液 较 慢 。 当凝 液生 成速 度 大 于 排 出速 度 ,会使 凝液 液 面 升 高 。当 液 面超 过 第 一 块折 流 板 缺 口位 置 时形成 液封 ,蒸 汽流通 通道 被堵 死 ,从 而导 致壳 程蒸 汽 流 路 阻 断 ,造 成 换 热 无 法 正 常进 行 。此 为 弓形 折流 板设计 的大忌 ,应避 免 。
在 相 同直 径 下 ,由于 GB/T 151规 定 的简 体 最 小厚 度值 较 大 ,使 得 圆筒 各 截 面 的 应 力 水平 相 应 较低 。因此 GB/T 151不要 求对 筒体 进 行类 似 卧式容 器 的局 部 应 力 校 核 。此 外 ,换 热 器通 过 折 流 板 、拉杆 等元 件将 换 热 管 和 管 板 组成 一整 体 放 置 在壳 体 内 ,其受 力 情 况 与 卧式 容 器 的“空筒 ”完

板式换热器 承压件强度计算书

板式换热器 承压件强度计算书

B100L板式换热器承压件强度计算书本计算书主要校核板式换热器型号B100L主要承压件强度计算,校核所选用零配件是否符合标准。

参考标准:GB16409-1996《板式换热器》GB699-88《优质碳素结构钢技术条件》GB700-88《碳素结构钢》GB/T983-1995《不锈钢焊条》GB1173-86《铸造铝合金技术条件》GB1220-92《不锈钢棒》GB3077-88《合金结构钢技术条件》GB3274-88《碳素结构钢和低合金结构钢热轧厚钢板和钢带》GB3280-92《不锈钢冷轧钢板》GB3624-83《钛及钛合金板材》GB3624-83《钛及钛合金无缝管》GB3625-83《热交换器及冷凝器用无缝钛管》GB4237-92《不锈钢热轧钢板》GB/T5117-1995《碳钢焊条》GB6654-1995《压力容器用碳素钢和低合金钢厚钢板》GB8163-87《输送流体用无缝钢管》GB13296-91《锅炉、热交换器用不锈钢无缝钢管》JB4276-94《压力容器用碳素钢和低合金钢锻件》JB4727-94《低温压力容器用碳素钢和低合金钢锻件》JB4278-94《压力容器用不锈钢锻件》JB4730-94《压力容器无损检测》根据上述标准规定,对各个承压部件进行强度校核,以确定板式换热器是否可安全使用。

1.1螺柱许用应力:螺柱在不同温度下许用应力按照表1选取,对表1以外的材料,其许用应力按钢材设计温度下的屈服点ta除以表2中安全系数an来确定。

表1表21.2:材料板式换热器材料应考虑设计温度,设计压力、介质特性等,同时,应符合相应的标准。

板式换热器的板片、压紧板、螺柱、法兰、接管、垫片等所用的材料及焊接材料,也应符合相关的产品标准,或者提供产品质量证明书或其复印件。

1.3:计算符号:A——预紧状态下,需要的最小夹紧螺柱总截面积,以螺纹小径计算或以a无螺纹部分的最小直径计算,取较小值,mm²;A——实际使用的夹紧螺柱总截面积,以螺纹小径计算或以无螺纹部分的b最小直径计算,取较小值,mm²;A——需要夹紧螺柱总截面积,mm²;mA——工作状态下,需要的最小夹紧螺柱总截面积,以螺纹小径计算或以P无螺纹部分的最下直径计算,取较小值,mm²。

固定管板式换热器结构设计与强度计算

固定管板式换热器结构设计与强度计算

毕业设计任务书一.题目:固定管板式换热器的结构设计与强度计算二.主要完成内容:在已知工艺参数的基础上,经过工艺计算确定换热器的工艺尺寸,在此基础上进行结构设计。

正确选择换热器的材料和设计方法,确定换热器的总体结构尺寸,对U型膨胀节、鞍座等零部件结构进行设计计算,学会标准件的选用,并熟悉GB150-98和GB151-98的使用。

用AUTOCAD2008绘出换热器的结构装配图及必要的零部件图。

已知参数:管程压力 4.0Mpa(绝对压力) 壳程压力 2.5MPa((绝对压力) 热水进口温度90℃热水出口温度68℃冷水进口温度10℃冷水出口温度18℃冷却水流量35kg/s三.进程安排:(按12周计)1---------1 借阅资料,熟悉设计内容。

学院内2--------2 确定用材及设计思路。

学院内完成基本工艺计算。

3--------5 完成换热器结构设计和强度计算。

学院内6-------6 U型膨胀节设计和鞍座校核。

学院内7------8 标准零部件选用。

学院内9------10 AUTOCAD绘图,发图。

学院内11 整理、完成设计说明书,提交全部内容。

学院内12 准备答辩学院内四.参考资料:(1)《GB150---98压力容器设计规范》标准出版社(2)《GB151---98钢制管壳式换热器设计规范》标准出版社(3)《过程设备设计》化学工业出版社(4)《换热器设计》化学工业出版社(5)《化工原理》化学工业出版社(6)《材料与零部件》(上)化学工业出版社五.指导教师:徐向红六.学生姓名:化机102 阿依努尔·艾拜。

热强度单位

热强度单位

热强度单位1. 引言热强度是指热量传递的强度,即热量在单位时间内通过物体表面的能力。

热强度单位是对热强度进行度量和比较的基准。

本文将介绍热强度的定义、计算方法以及常用的热强度单位。

2. 热强度的定义热强度是指在单位时间内通过物体表面的热量。

热量是指物体由高温区向低温区传递的能量,其传递方式可以是传导、对流或辐射。

热强度描述了热量传递的速度和强度,是热传导、对流和辐射现象的重要参数。

3. 热强度的计算方法热强度可以通过以下公式计算:热强度 = 热量 / 时间 / 面积其中,热量是指通过物体表面的热量,时间是指单位时间,面积是指热量传递的物体表面积。

热强度的单位可以根据上述公式推导得到,常用的热强度单位包括瓦特/平方米(W/m²)、卡/平方米秒(cal/m²s)、焦耳/平方米秒(J/m²s)等。

4. 热强度单位的使用热强度单位常用于热传递和热工学领域。

在工程设计中,热强度单位可以用来评估热交换器的换热效果、计算空调系统的冷却能力等。

在科学研究中,热强度单位可以用来描述热辐射的强度、研究热量在不同材料中的传播规律等。

以下是一些常见的热强度单位及其换算关系:•1瓦特/平方米 = 0.2389卡/平方米秒•1瓦特/平方米 = 1焦耳/平方米秒•1卡/平方米秒 = 4.184焦耳/平方米秒5. 热强度的影响因素热强度受多种因素的影响,包括温度差、传热介质、物体表面的热传导性能等。

•温度差:温度差越大,热强度越大。

这是因为温度差越大,热量传递的动力越大。

•传热介质:不同的传热介质具有不同的热传导性能,例如金属的热传导性能比空气好,所以相同温度差下,金属的热强度通常大于空气。

•物体表面的热传导性能:物体表面的热传导性能越好,热强度越大。

例如铜的热传导性能比塑料好,所以相同温度差下,铜的热强度通常大于塑料。

6. 热强度的应用举例热强度单位的应用非常广泛,以下是一些应用举例:6.1 换热器设计在换热器设计中,热强度单位可以用来评估换热器的换热效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

确定了换热器的结构及尺寸以后,必须对换热器的所有受压元件进行强度计算。

因为管壳式换热器一般用于压力介质的工况,所以换热器的壳体大多为压力容器,必须按照压力容器的标准进行计算和设计,对于钢制的换热器,我国一般按照GB150<<钢制压力容器>>标准进行设计,或者美国ASME标准进行设计。

对于其它一些受压元件,例如管板、折流板等,可以按照我国的GB151<<管壳式换热器>>或者美国TEMA标准进行设计。

对于其它材料的换热器,例如钛材、铜材等应按照相应的标准进行设计。

下面提供一氮气冷却器的受压元件强度计算,以供参考。

该换热器为U形管式换热器,壳体直径500mm,管程设计压力3.8MPa,壳程设计压力0.6MPa。

详细强度计算如下:1.壳程筒体强度计算2. 前端管箱筒体强度计算3. 前端管箱封头强度计算4. 后端壳程封头强度计算5.管板强度计算6. 管程设备法兰强度计算7. 接管开孔补强计算氮气冷却器(U形管式换热器)筒体计算计算条件筒体简图计算压力P c0.60MPa设计温度 t100.00︒ C内径D i500.00mm材料16MnR(热轧) ( 板材)试验温度许用应力[σ]170.00MPa设计温度许用应力[σ]t170.00MPa试验温度下屈服点σs345.00MPa钢板负偏差C10.00mm腐蚀裕量C2 1.00mm焊接接头系数φ0.85厚度及重量计算计算厚度δ == 1.04mm有效厚度δe =δn- C1- C2= 7.00mm名义厚度δn= 8.00mm 重量481.06Kg压力试验时应力校核压力试验类型液压试验试验压力值PT = 1.25P = 0.7500MPa压力试验允许通过的应力水平[σ]T[σ]T≤0.90 σs = 310.50MPa 试验压力下圆筒的应力σT = = 31.95MPa校核条件σT≤[σ]T校核结果合格压力及应力计算最大允许工作压力[P w]= = 3.99014MPa 设计温度下计算应力σt = = 21.73MPa[σ]tφ144.50MPa 校核条件[σ]tφ≥σt结论合格氮气冷却器前端管箱筒体计算计算条件筒体简图计算压力P c 3.80MPa设计温度 t100.00︒ C内径D i500.00mm材料0Cr18Ni9 ( 板材)试验温度许用应力[σ]137.00MPa设计温度许用应力[σ]t137.00MPa试验温度下屈服点σs205.00MPa钢板负偏差C10.80mm腐蚀裕量C20.00mm焊接接头系数φ0.85厚度及重量计算计算厚度δ == 8.29mm有效厚度δe =δn- C1- C2= 11.20mm名义厚度δn= 12.00mm 重量75.76Kg压力试验时应力校核压力试验类型液压试验试验压力值PT = 1.25P = 4.7500MPa压力试验允许通过的应力水平[σ]T[σ]T≤0.90 σs = 184.50MPa 试验压力下圆筒的应力σT = = 127.53MPa校核条件σT≤[σ]T校核结果合格压力及应力计算最大允许工作压力[P w]= = 5.10266MPa 设计温度下计算应力σt = = 86.72MPa[σ]tφ116.45MPa 校核条件[σ]tφ≥σt结论合格氮气冷却器前端管箱封头计算计算条件椭圆封头简图计算压力P c 3.80MPa设计温度 t100.00︒ C内径D i500.00mm曲面高度h i125.00mm材料0Cr18Ni9 (板材)试验温度许用应力[σ]137.00MPa设计温度许用应力[σ]t137.00MPa钢板负偏差C10.80mm腐蚀裕量C20.00mm焊接接头系数φ 1.00厚度及重量计算形状系数K = = 1.0000计算厚度δ = = 6.98mm有效厚度δe =δn- C1- C2= 11.20mm最小厚度δmin= 0.75mm名义厚度δn= 12.00mm 结论满足最小厚度要求重量32.23Kg压力计算最大允许工作压力[P w]= = 6.06962MPa 结论合格氮气冷却器后端壳程封头计算计算条件椭圆封头简图计算压力P c0.60MPa设计温度 t100.00︒ C内径D i500.00mm曲面高度h i125.00mm材料16MnR(热轧) (板材)试验温度许用应力[σ]170.00MPa设计温度许用应力[σ]t170.00MPa钢板负偏差C10.00mm腐蚀裕量C2 2.00mm焊接接头系数φ 1.00厚度及重量计算形状系数K = = 1.0000计算厚度δ = = 0.88mm有效厚度δe =δn- C1- C2= 6.00mm最小厚度δmin= 0.75mm名义厚度δn= 8.00mm 结论满足最小厚度要求重量19.61Kg压力计算最大允许工作压力[P w]= = 4.05567MPa 结论合格氮气冷却器管板计算设计条件0.60MPa壳程设计压力3.80MPa管程设计压力100.00︒ C壳程设计温度100.00︒ C管程设计温度8.00mm壳程筒体壁厚12.00mm管程筒体壁厚壳程筒体腐蚀裕量C 1.00mm管程筒体腐蚀裕量 C0.00mm500.00mm换热器公称直径换热管使用场合一般场合管板与法兰或圆筒连接方式 ( a b c d 型 ) a型换热管与管板连接方式 ( 胀接或焊接 ) 焊接材料(名称及类型) 0Cr18Ni970.00mm名义厚度管强度削弱系数0.40刚度削弱系数0.40材料泊松比0.30210.00mm2隔板槽面积换热管与管板胀接长度或焊脚高度l 3.50mm191000.00MPa 设计温度下管板材料弹性模量137.00MPa 设计温度下管板材料许用应力68.50MPa许用拉脱力壳程侧结构槽深h10.00mm 板管程侧隔板槽深h2 4.00mm0.00mm壳程腐蚀裕量0.00mm管程腐蚀裕量材料名称0Cr18Ni9换管子外径d19.00mm2.00mm热管子壁厚管U型管根数n138根换热管中心距 S25.00mm137.00MPa 设计温度下换热管材料许用应力垫片材料软垫片压紧面形式1a或1b垫垫片外径D o565.00mm 片垫片内径D i515.00mm a型垫片厚度δg mm 垫片接触面宽度Ωmm垫片压紧力作用中心园直径D G547.11mm 管板材料弹性模量0.00MPa ( c 型 )管板材料弹性模量0.00MPa ( d 型 )( b d 型 )管箱圆筒材料弹性模量0.00MPa ( b c 型 )壳程圆筒材料弹性模量0.00MPa ( c d 型 )管板延长部分形成的凸缘宽度0.00mm ( c 型)壳体法兰或凸缘厚度0.00mm ( d 型 )管箱法兰或凸缘厚度0.00mm参数计算管板布管区面积三角形排列正方形排列一根换热管管壁金属横截面积= 106.81mm2管板开孔前抗弯刚度b c d 型0.00N·mm 管板布管区当量直径436.43mma 型其他系数0.80系数按和查图得 : = 0.000000系数按和查图得 : = 0.000000a d 型= 0b c型0.00a ,c 型= 0b ,d 型0.00a 型= 0其他0.00旋转刚度无量刚系数0.00系数0.2696按和0.07130.0000管板厚度或管板应力计算a管板计算厚度取、大值61.345mm型管板名义厚度66.000mm管板中心处径向应力= 0MPa = 0MPab c d 布管区周边处径向应力= 0MPa型= 0MPa 边缘处径向应力= 0MPa = 0MPa管板应力校核单位:MPa|σr|r=0=b工况|σr |r=Rt=c|σr|r=R=d|σr|r=0=型工况|σr|r=Rt=|σr|r=R=换热管轴向应力计算及校核: MPa (单位)计算工况计算公式计算结果校核只有壳程设计压力, 管程设计压力=0 : |-1.59|≤合格只有管程设计压力,壳程设计压力=0 : =|6.29|≤合格壳程设计压力,管程设计压力同时作用: |4.69|≤合格换热管与管板连接拉脱力校核拉脱力q3.21 ≤[q]MPa校核合格重量64.89Kg氮气冷却器管箱法兰强度计算设计条件简图设计压力 p 3.800 MPa计算压力 pc 3.800 MPa设计温度 t 100.0 ° C轴向外载荷 F 0.0 N外力矩 M 0.0 N.mm壳材料名称0Cr18Ni9体许用应力137.0 MPa法材料名称#许用[s ]f 137.0 MPa兰应力[s ]tf 137.0 MPa材料名称40Cr螺许用[s ]b 212.0 MPa应力[s ]tb 189.0 MPa栓公称直径 d B 24.0 mm螺栓根径 d 1 20.8 mm数量 n 24 个Di 500.0 Do 660.0垫结构尺寸Db 615.0 D外565.0 D内515.0 δ0 16.0 mm Le 22.5 LA 31.5 h 35.0 δ1 26.0 材料类型软垫片N 25.0 m 2.00 y 11.0 压紧面形状1a,1b b 8.94 DG 547.1 片b0≤6.4mm b= b0 b0≤6.4mm DG= ( D外+D内 )/2b0 > 6.4mm b=2.53b0 > 6.4mm DG= D外 - 2b螺栓受力计算预紧状态下需要的最小螺栓载荷Wa Wa= πbDG y = 169119.0 N操作状态下需要的最小螺栓载荷WpWp = Fp + F = 1127044.1N所需螺栓总截面积 Am Am = max (Ap ,Aa ) = 5963.2 mm2 实际使用螺栓总截面积 AbAb = = 8117.5mm2力矩计算操FD = 0.785pc= 745750.0 N LD= L A+ 0.5δ1= 44.5mm MD= FD LD= 33185876.0N.mm作FG = Fp= 233573.5 N LG= 0.5 ( Db - DG )= 33.9mm MG= FG LG= 7928625.5N.mmMp FT = F-FD= 147150.2 N LT=0.5(LA + d 1 + LG )= 45.7mm MT= FT LT= 6728066.0N.mm外压: Mp = FD (LD - LG )+FT(LT-LG ); 内压: Mp = MD+MG+MT Mp = 47842568.0 N.mm 预紧MaW = 1492550.6 N LG = 33.9 mm Ma=W LG = 50664460.0 N.mm 计算力矩 Mo= Mp 与中大者 Mo=50664460.0N.mm螺栓间距校核实际间距= 80.5mm最小间距56.0 (查GB150-98表9-3)mm最大间距158.4mm形状常数确定89.44 h/ho = 0.4 K = Do/DI = 1.3201.6由K查表9-5得T=1.789 Z =3.694 Y =7.145 U=7.851整体法兰查图9-3和图9-4 FI=0.85944 VI=0.31415 0.00961 松式法兰查图9-5和图9-6 FL=0.00000 VL=0.00000 0.00000 查图9-7 f = 1.06578整体法兰 = 松式法兰 = 0.2由得572246.8 0.0ψ=δf e+1 =1.44 g = y /T = =0.811.59= 0.98 剪应力校核计算值许用值结论预紧状态0.00MPa操作状态0.00MPa输入法兰厚度δf = 46.0 mm时, 法兰应力校核应力性质计算值许用值结论轴向应力158.57MPa=205.5 或=342.5( 按整体法兰设计的任意式法兰, 取 )校核合格径向应力77.96MPa= 137.0校核合格切向应力54.14MPa= 137.0校核合格综合应力= 118.27MPa= 137.0校核合格法兰校核结果校核合格氮气冷却器开孔补强计算接管: a,φ219×16计算方法 : GB150-1998 等面积补强法, 单孔设计条件简图计算压力p c 3.8MPa设计温度100℃壳体型式圆形筒体壳体材料名称及类型0Cr18Ni9 板材壳体开孔处焊接接头系数φ0.85壳体内直径D i500mm壳体开孔处名义厚度δn12mm壳体厚度负偏差 C10.8mm壳体腐蚀裕量C20mm壳体材料许用应力[σ]t137MPa接管实际外伸长度100mm接管实际内伸长度0mm 接管材料0Cr18Ni9接管焊接接头系数1名称及类型管材接管腐蚀裕量0mm 补强圈材料名称补强圈外径mm补强圈厚度mm接管厚度负偏差C1t2mm 补强圈厚度负偏差C1r mm 接管材料许用应力[σ]t137MPa 补强圈许用应力[σ]t MPa开孔补强计算壳体计算厚度δ8.293mm 接管计算厚度δt 2.63mm 补强圈强度削弱系数f rr0接管材料强度削弱系数f r1开孔直径d191mm 补强区有效宽度B382mm 接管有效外伸长度h155.28mm 接管有效内伸长度h20mm 开孔削弱所需的补强面积A1584mm2壳体多余金属面积A1555.2mm2接管多余金属面积A21257mm2补强区内的焊缝面积A364mm2A1+A2+A3=1876 mm2 ,大于A,不需另加补强。

相关文档
最新文档