等差数列

合集下载

等差数列

等差数列

数列专题(一)——等差数列1.等差数列定义:⇔∈=-+为常数d N n d a a n n ),(*1数列}{n a 为等差数列。

2.等差数列的通项公式1(1)n a a n d =+-; 3.等差数列的前n 项和:公式1:2)(1n n a a n S +=;公式2:1(1)2n n n S na d -=+; 4.等差数列的性质公式: (1)()n m a a n m d =+-;n ma a d n m-=-,如:855(85),(5)n a a d a a n d =+-=+-等;(2)若q p n m +=+,则q p n m a a a a +=+,如11038a a a a +=+; (3)若2m n p +=,则2m n p a a a +=,如11162a a a +=;(4)n S 为等差数列}{n a 的前n 项和,则数列,...,,232m m m m m S S S S S --也是等差数列. 基础题1.已知等差数列}{n a 的前n 项和为n S ,若12,261=-=S a ,则6a 的值为( ) A.4 B.5 C.6 D.82.(15年安徽文科)已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前 9项和等于 。

3.设等差数列}{n a 的前n 项和为n S ,若2,11952-=+-=a a a ,则当n S 取最小值时,n 等 于( ) A. 9 B. 8 C. 7 D. 64.(15年广东理科)在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a +=5.(15年新课标2文科)设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .116.已知等差数列}{n a 中,其前n 项和为n S ,36,963==S S ,则._______987=++a a a 提高题1.(15年新课标2理科)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.2.已知等差数列}{n a 中,若,0,031110119<⋅<+a a a a 且数列}{n a 的前n 项和n S 有最大值,那么n S 取得最小正值时n 等于( ) A. 20 B. 17 C. 19 D. 213.已知等差数列}{n a 中,其前n 项和为n S ,且满足35124,2a a a a a n n n -=-=++,则7S =( ) A. 7 B. 12 C. 14 D. 214.在等差数列}{n a 中,前四项之和为20,最后四项之和为60,前n 项之和是100,则项数n 为( ) A. 9 B. 10 C. 11 D. 125.设n n T S ,分别是等差数列}{},{n n b a 的前n 项和,且5959=T S ,则35b a的值为_________.6.(15年福建文科)等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.7.【2015高考山东,文19】已知数列{}n a 是首项为正数的等差数列,数列11n n a a +⎧⎫⎨⎬∙⎩⎭的前n 项和为21nn +. (I )求数列{}n a 的通项公式;(II )设()12n an n b a =+⋅,求数列{}n b 的前n 项和n T .一、等差数列3.等差数列的通项公式1(1)n a a n d =+-; 2.等差数列的前n 项和:公式1:2)(1n n a a n S +=;公式2:1(1)2n n n S na d -=+; 3.等差数列的性质公式: (1)()n m a a n m d =+-;n ma a d n m-=-,如:855(85),(5)n a a d a a n d =+-=+-等;(2)若q p n m +=+,则q p n m a a a a +=+,如11038a a a a +=+; (3)若2m n p +=,则2m n p a a a +=,如11162a a a +=. 基础题2.已知等差数列}{n a 的前n 项和为n S ,若12,261=-=S a ,则6a 的值为( ) A.4 B.5 C.6 D.8 答案:C5.(15年安徽文科)已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前 9项和等于 。

等差数列公式大全

等差数列公式大全

等差数列公式大全1、 a n =()1121)n n s s n s n -⎧-≥⎪⎨=⎪⎩( (注意:(1)此公式对于一切数列均成立(2)1--=n n n s s a 不是对一切正整数n 都成立,而是局限于n ≥2)2、 等差数列通项公式:n a =1a +(n-1)dn a =m a +(n-m)d ⇒ d=m n a a m n --(重要)3、若{n a }是等差数列,m+n=p+q ⇔m a +n a =p a +q a 4、若a,A,b 成等数列则2A=a+b (A 是a,b 的等差中项) 5、 {n a }是等差数列,若m 、n 、p 、q ∈N *且m ≠n,p ≠q,则m n a a m n --=q p a a q p --=d 6、 等差数列{n a }的前n 项和为n s ,则n s =()21na a n + (已知首项和尾项)=()211d n n na -+ (已知首项和公差)=n d a dn ⎪⎭⎫ ⎝⎛-+212112(二次函数可以求最值问题) 7、等差数列部分和性质:m m m m m s s s s s 232,,--…仍成等差数列。

8、 在等差数列中抽取新数列:一般地,对于公差为d 的等差数列{n a },若...,321k k k 成等差数列,那么,......,,,321kn k k k a a a a 仍成等差数列,而且公差为(12k k -)d 9、n s 的最值问题:若{n a }是等差数列,1a 为首项,d 为公差 ①首项1a >0,d <0,n 满足n a ≥0,1+n a <0时前n 项和n s 最大 ②首项1a <0,d >0,n 满足n a ≤0,1+n a >0时前n 项和n s 最小 10、 在等差数列{n a }中,奇s 与偶s 的关系:①当n 为奇数时,n s =n.a 21+n ,奇s -偶s =a 21+n ,偶奇s s =11-+n n ②当n 为奇数时,n s =n.2122++nn a a ,奇s -偶s =d n 2 偶奇s s =122+nna a 11、等差数列的判别方法:⑴定义法: 1+n a -n a =d (d 为常数) ⇔ {n a }是等差数 ⑵中项公式法: 21+n a =n a +a 2n + (n ∈N*)⇔ {n a }是等差数列 ⑶通项公式法: n a =pn+q (p,q 为常数) ⇔ {n a }是等差数列⑷前n项和公式法: n s =An 2+Bn (A,B 为常数) ⇔ {n a }是等差数列。

等差数列的定义和通项公式

等差数列的定义和通项公式

等差数列的定义和通项公式一、等差数列的定义和通项公式1、等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,常用字母$d$表示。

2、等差数列的通项公式等差数列的通项公式为$a_n=a_1+(n-1)d$,其中$a_1$为首项,$d$为公差。

注:已知等差数列$\{a_n\}$中的任意两项$a_n$,$a_m(n,m∈\mathbf{N}^*,m≠n)$,则$\begin{cases}a_n=a_1+(n-1)d,\\a_m=a_1+(m-1)d\end{cases}\Rightarrow$$a_n-a_m=$$(n-m)d\Rightarrow$$\begin{cases}d=\frac{a_n-a_m}{n-m},\\a_n=a_m+(n-m)d。

\end{cases}$即已知等差数列中的任意两项,可求得其公差,进而求得其通项公式。

3、等差中项由三个数$a$,$A$,$b$组成的等差数列可以看成最简单的等差数列。

这时,$A$叫做$a$与$b$的等差中项。

此时,$2A=a+b$,$A=\frac{a+b}{2}$。

若数列中相邻三项之间存在如下关系:$2a_n=a_{n+1}+a_{n-1}(n\geqslant2)$,则该数列是等差数列。

4、等差数列与函数的关系将等差数列的通项公式$a_n=a_1+(n-1)d$变形,整理得$a_n=nd+(a_1-d)$。

则从函数的角度来看$a_n=a_1+(n-1)d$是关于$n$的一次函数($d≠0$时)或常函数($d=0$时)。

它的图象是一条射线上的一系列横坐标为正整数的孤立的点,公差$d$是该射线所在直线的斜率。

(1)当$d>0$时,数列$\{a_n\}$是递增数列;(2)当$d=0$时,数列$\{a_n\}$是常数列;(3)当$d<0$时,数列$\{a_n\}$是递减数列;5、等差数列的性质若数列$\{a_n\}$是首项为$a_1$,公差为$d$的等差数列,则它具有以下性质(1)若$m+n=p+q(m,n,p,q∈\mathbf{N}^*)$,则$a_m+a_n=a_p+a_q$。

等差数列公式大全

等差数列公式大全

等差数列公式大全
1、a n =1121)
n
n s s n s n ((注意:(1)此公式对于一切数列均成立
(2)1n n n s s a 不是对一切正整数n 都成立,而是局限于n ≥2)
2、等差数列通项公式:n a =1a +(n-1)d
n a =m a +(n-m)d d=m n a a m
n
(重要)
3、
若{n a }是等差数列,m+n=p+q m a +n a =p a +q a 4、
若a,A,b 成等数列则2A=a+b (A 是a,b 的等差中项){n a }是等差数列,若m 、n 、p 、q N 且m ≠n,p ≠q,则m n a a m n
=q p a a q p
=d
5、
6、等差数列{n a }的前n 项和为n s ,则
n s =
21n
a a n (已知首项和尾项)=211d n n na (已知首项和公差)=n d a dn 2121
12(二次函数可以求最值问题)
7、等差数列部分和性质:m m m m m s s s s s 232,,…仍成等差数列。

8、在等差数列中抽取新数列:一般地,对于公差为d 的等差数列{n a },若.
,321k k k 成等差数列,那么,......,,,321kn k k k a a a a 仍成等差数列,而且公差为(
12k k )d 9、
n s 的最值问题:若{n a }是等差数列,1a 为首项,d 为公差①首项1a >0,d <0,n 满足n a ≥0,1n a <0时前n 项和n s 最大。

等差数列项数的公式

等差数列项数的公式

等差数列项数的公式
等差数列的项数公式是:
第n项=第1项+ (n-1) *公差
其中,第1项是等差数列的首项,n是等差数列的项数,公差是等差数列中相邻两项的差值。

拓展:
除了项数公式,还有其他一些与等差数列项数相关的公式和性质:
1.等差数列的前n项和公式:
等差数列的前n项和可以表示为:Sn = (n/2) * (第1项+第n项) 其中,Sn表示等差数列的前n项和。

2.等差数列的末项公式:
等差数列的末项可以表示为:第n项=第1项+ (n-1) *公差
3.项数公式的逆运算:
已知等差数列的第1项、末项和公差,可以使用项数公式的逆运算求得项数n。

具体步骤为:(第n项-第1项) /公差+ 1 = n
4.项数公式的特殊情况:
当等差数列的公差为1时,项数公式可以简化为:第n项=第1项+ (n-1) = n +第1项- 1
这些公式和性质都可以帮助我们在解决与等差数列项数相关的问题时进行计算和推导。

等差数列

等差数列

(2) 4, 8, 12, 16, 20 ,…
a1 4 d a 2 a1 4 an a1 (n 1)d 4 (n 1) 4
a n 4n
(3) 7, 4, 1, -2, -5, …
a1 7 d a 2 a1 3 an a1 (n 1)d 7 (n 1) ( 3)
Sn
n(a1 a n )
求和公式2: S n na 1
d
例 在等差数列中: (1)已知 a1 5, a10 15,求 S10 ; (2)已知 a1 5, d 3,求 S 20 .
解 (1)S10
10 (a1 a10 ) 2 10 (5 15) 2
四、前n项的求和公式
Sn a1 a 2 a 3 an
求和公式1:
Sn
n(a1 a n ) 2
例 求1ห้องสมุดไป่ตู้100的所有整数之和.
解 a1 1、d 1
S100 100 (1 100) 2
50 101 5050
2 将 an a1 (n 1)d 代入,得: Sn n(a1 a1 (n 1)d) 2 2na 1 n(n 1)d 2 n(n 1) 2
Sn 999 n(a1 a n ) 2 n( 20 54) 2
n 27
a 27 a1 26d
54 20 26d
d
34 26

17 13
4.在等差数列中 a15 10, d 2, 求S16 .
解 a15 a1 14d
10 a1 14 2 a1 38
a1 a4 a1 a1 3d 2a1 3 ( 2) 10 a1 8

等差数列定义

等差数列定义

等差数列定义
等差数列是一种常见的数列,其定义为:一个数列中,相邻两项之差都是固定值,这个固定值称为等差数列的公差,通常用字母 d 表示。

例如,数列 1,4,7,10,13,16 就是一个等差数列,其中,公差为 3。

等差数列的通项公式是:an = a1 + (n-1)d,其中 an 表示等差数列的第 n 项,a1 表示等差数列的第一项,n 表示数列中的项数,d 表示公差。

等差数列的性质有:
1. 公差相等性质:一个数列中,相邻两项之差都是固定值,这个固定值称为等差数列的公差,公差相等。

2. 首项性质:等差数列的第一项称为首项,通常用 a1 表示。

3. 末项性质:等差数列的最后一项称为末项,通常用 an 表示。

4. 项数性质:等差数列中项的数量称为项数,通常用 n 表示。

5. 总和性质:等差数列的前 n 项和称为总和,通常用 Sn 表示。

通过这些性质,可以求解等差数列的各种问题。

例如,可以根据已知的等差数列前几项和公差,求出数列的通项公式和第 n 项的值;也可以根据已知的等差数列前几项,求出数列的前 n 项和。

等差数列在数学中有广泛的应用,例如在科学和工程中,可以用等差数列描述时间、距离、速度等变化规律;在金融领域中,可以用等差数列描述资金的增长和降低等变化规律。

等差数列公式大全

等差数列公式大全

等差数列公式大全-CAL-FENGHAI.-(YICAI)-Company One1等差数列公式大全1、 a n =()1121)n n s s n s n -⎧-≥⎪⎨=⎪⎩( (注意:(1)此公式对于一切数列均成立(2)1--=n n n s s a 不是对一切正整数n 都成立,而是局限于n ≥2)2、 等差数列通项公式:n a =1a +(n-1)dn a =m a +(n-m)d ⇒ d=mn a a m n --(重要)3、若{n a }是等差数列,m+n=p+q ⇔m a +n a =p a +q a 4、若a,A,b 成等数列则2A=a+b (A 是a,b 的等差中项) 5、 {n a }是等差数列,若m 、n 、p 、q ∈N *且m ≠n,p ≠q,则mn a a m n --=q p a a q p --=d 6、 等差数列{n a }的前n 项和为n s ,则n s =()21na a n + (已知首项和尾项)=()211d n n na -+ (已知首项和公差)=n d a dn ⎪⎭⎫ ⎝⎛-+212112(二次函数可以求最值问题) 7、等差数列部分和性质:m m m m m s s s s s 232,,--…仍成等差数列。

8、 在等差数列中抽取新数列:一般地,对于公差为d 的等差数列{n a },若...,321k k k 成等差数列,那么,......,,,321kn k k k a a a a 仍成等差数列,而且公差为(12k k -)d9、 n s 的最值问题:若{n a }是等差数列,1a 为首项,d 为公差① 首项1a >0,d <0,n 满足n a ≥0,1+n a <0时前n 项和n s 最大② 首项1a <0,d >0,n 满足n a ≤0,1+n a >0时前n 项和n s 最小10、 在等差数列{n a }中,奇s 与偶s 的关系: ①当n 为奇数时,n s =21+n ,奇s -偶s =a 21+n ,偶奇s s =11-+n n ②当n 为奇数时,n s =n.2122++nn a a ,奇s -偶s =d n 2 偶奇s s =122+nna a 11、等差数列的判别方法: ⑴定义法: 1+n a -n a =d (d 为常数) ⇔ {n a }是等差数 ⑵中项公式法: 21+n a =n a +a 2n + (n ∈N*)⇔ {n a }是等差数列 ⑶通项公式法: n a =pn+q (p,q 为常数) ⇔ {n a }是等差数列 ⑷前n项和公式法: n s =An 2+Bn (A,B 为常数) ⇔ {n a }是等差数列。

等差数列的概念

等差数列的概念

等差数列的概念等差数列是指数列中相邻两项之差恒定的数列。

在数学中,等差数列是一种重要的数列类型,具有广泛的应用。

它在数学、物理、经济等领域都有着重要的地位和作用。

一、等差数列的定义等差数列的定义比较简单,即数列中任意两项之差都相等。

数列的通项公式可以表示为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。

二、等差数列的性质1. 公差:等差数列中相邻两项之差称为公差,常用字母d表示。

公差可以是正数、负数或零,代表着数列中每一项之间的间隔。

2. 首项和末项:等差数列中的第一项为首项,常用字母a1表示;最后一项为末项,常用字母an表示。

3. 通项公式:等差数列的通项公式可以用来表示数列中任意一项的值。

根据公式an = a1 + (n-1)d,我们可以轻松地求得数列中任意一项的值。

4. 总和公式:等差数列的前n项和可以用总和公式来表示。

总和公式为Sn = (n/2)(a1 + an),其中Sn表示前n项和。

5. 递推关系:等差数列中的每一项都可以通过前一项加上公差得到。

这种递推关系使得我们可以通过已知条件计算出其他项的值。

三、等差数列的应用等差数列在数学上具有广泛的应用,它们可以通过表达式和性质来解决各种问题。

1. 数学应用:等差数列常常用来解决一次方程和一次不等式的问题。

通过等差数列的性质和公式,我们可以求解未知项的值,计算前n项和,判断数列的增减性等。

2. 物理应用:等差数列在物理学中也有重要的应用。

例如,物体匀速运动的位移、速度和加速度等可以通过等差数列来表示和计算。

3. 经济应用:等差数列在经济学中的应用也非常广泛。

例如,在贷款计算和投资分析中,我们常常需要利用等差数列的公式来计算每期的利息、本金和回报率等。

四、等差数列的例题分析为了更好地理解等差数列的概念和应用,我们来看几个例题。

例题1:已知等差数列的首项为2,公差为3,求该数列的前5项和。

解法:根据等差数列的总和公式Sn = (n/2)(a1 + an),代入已知条件,得到S5 = (5/2)(2 + 2 + 3×4) = 35。

第2讲 等差数列

第2讲 等差数列

知识归纳一、等差数列的概念1.定义:如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,这样的数列叫做等差数列.2.等差中项:如果三数a 、A 、b 成等差数列,则A 叫做a 和b 的等差中项,即A =a +b2.二、等差数列的通项公式等差数列{a n }的通项a n =a 1+(n -1) d =a m +(n -m )d.推导方法:累加法a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1. 三、等差数列的前n 项和公式 等差数列{a n }的前n 项和S n =n a 1+a n 2=na 1+n n -12d. 推导方法:倒序相加法. 四、用函数观点认识等差数列 1.a n =nd +(a 1-d)(一次函数).2.S n =d 2n 2+(a 1-d2)n(常数项为零的二次函数).五、等差数列的判定方法(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }是等差数列,证明一个数列为等差数列,一般用定义法;(2)中项公式法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列; (3)通项公式法:a n =kn +b(k ,b 是常数)(n ∈N *)⇔{a n }是等差数列; (4)前n 项和公式法:S n =An 2+Bn(A 、B 是常数)(n ∈N *)⇔{a n }是等差数列. (5){a n }是等差数列⇔{S nn }是等差数列.六、等差数列的性质 1.下标和与项的和的关系在等差数列中,若p +q =m +n ,则有a p +a q =a m +a n ;若2m =p +q ,则有 a p +a q =2a m ,(p ,q ,m ,n ∈N *). 2.任意两项的关系在等差数列{a n }中,m 、n ∈N *,则a m -a n =(m -n)d 或a m =a n +(m -n)d 或a m -a nm -n=d. 3.在等差数列中,等距离取出若干项也构成一个等差列,即a n ,a n +m ,a n +2m ,…为等差数列,公差为md.等差数列的依次n 项和也构成一个等差数列,即S n ,S 2n -S n ,S 3n -S 2n ,……第2讲 等差数列为等差数列,公差为n2d.即下标成等差的项成等差数列,下标和成等差的具有相同构成规律的项的和成等差数列.4.设等差数列{a n}的公差为d,那么(1)d>0⇔{a n}是递增数列,S n有最小值;d<0⇔{a n}是递减数列,S n有最大值;d=0⇔{a n}是常数数列.(2)数列{λa n+b}仍为等差数列,公差为λd.(3)若{b n},{a n}都是等差数列,则{a n±b n}仍为等差数列.(4)项数为n的等差数列中,n为奇数时,S奇-S偶=a n+12,S奇S偶=n+1n-1.S n=na中=na n+12.n为偶数时,S偶-S奇=n2d.(5)若{a n}与{b n}为等差数列,且前n项和分别为S n与S′n,则a mb m=S2m-1S′2m-1.误区警示1.用a n=S n-S n-1求a n得到a n=pn+q时,只有检验了a1是否满足a n,才能确定其是否为等差数列,前n项和是不含常数项.....的n的二次函数时,{a n}才是等差数列.2.在讨论等差数列{a n}的前n项和S n的最值时,不要忽视n是整数的条件及含0项的情形.3.如果p+q=2r(p、q、r∈N*),则a p+a q=2a r,而不是a p+a q=a2r.方法技巧一、函数思想等差数列的通项是n的一次函数,前n项和是n的二次函数,故有关等差数列的前n项和的最值问题,数列的递增递减问题等都可以利用函数的研究方法来解决.[例1]已知数列{a n}为等差数列,且a3=5,a5=11,则a n=__________.二、等差数列的设项技巧与方程思想(1)对于连续奇数项的等差数列,可设为:…,x-d,x,x+d,…,此时公差为d;(2)对于连续偶数项的等差数列,通常可设为…,a-3d,a-d,a+d,a+3d,…,此时公差为2d.[例2]有四个数,其中前三个成等差数列,后三个成等比数列,并且第一个与第四个数的和为16,第二个与第三个数的和为12,求这四个数.典例讲练等差数列的通项已知等差数列{a n }、{b n }的公差分别为2和3,且b n ∈N *,则数列{ab n }是( ) A .等差数列且公差为5 B .等差数列且公差为6 C .等差数列且公差为8 D .等差数列且公差为9①在等差数列{a n }中,a 2=2,a 3=4,则a 10=( ) A .12 B .14 C .16 D .18②已知数列{a n }中,a 3=2,a 5=1,若{11+a n }是等差数列,则a 11等于( )A.0B.16C.13D.12等差数列的前n 项和①等差数列{a n }的通项公式是a n =1-2n ,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为( )A .-45B .-50C .-55D .-66②设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{S nn }的前n项和,求T n .①已知等差数列{a n }的前n 项和S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A. 12B .1C .2D .3②已知等差数列{a n }中,|a 3|=|a 9|,公差d<0,S n 是数列{a n }的前n 项和,则( ) A .S 5>S 6 B .S 5<S 6 C .S 6=0D .S 5=S 6等差数列性质的应用已知等差数列{a n }的前n 项和为S n ,若m>1,且a m -1+a m +1-a 2m -1=0,S 2m -1=39,则m 为( ) A .10 B .19 C .20D .39①等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 12=30,则S 13的值是( ) A .130 B .65 C .70D .75②在等差数列{a n }中,若a 1+a 5+a 9=π4,则tan(a 4+a 6)等于( )A. 3 B .-1 C .1D.33有关等差数列的最值问题等差数列{a n }中,a 1<0,S 9=S 12,该数列前多少项的和最小?①若数列{a n }(n ∈N *)的首项为14,前n 项的和为S n ,点(a n ,a n +1)在直线x -y -2=0上,那么下列说法正确的是( )A .当且仅当n =1时,S n 最小B .当且仅当n =8时,S n 最大C .当且仅当n =7或8时,S n 最大D .S n 有最小值,无最大值②已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使得S n >0的最大值n 为( )A .11B .19C .20D .21综合应用设{a n }是一个公差为d(d ≠0)的等差数列,它的前10项和S 10=110,且a 1、a 2、a 4成等比数列.(1)证明a 1=d ;(2)求公差d 的值和数列{a n }的通项公式.①数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11②设数列{a n }满足a 1=0且11-a n +1-11-a n =1.(1)求{a n }的通项公式;(2)设b n =1-a n +1n ,记S n = k =1nb k ,证明:S n <1.课堂巩固1.在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于( ) A .40 B .42 C .43 D .452.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ) A .8 B .7 C .6D .53.设S n 是等差数列{a n }的前n 项和,若a 4=9,S 3=15,则数列{a n }的通项a n =( ) A .2n -3 B .2n -1 C .2n +1 D .2n +34.等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时n 的值是( )A .5B .6C .7D .8 5.设S n 表示等差数列{a n }的前n 项和,已知S 5S 10=13,那么S 10S 20等于( )A.19B.310C.18D.136.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .187.已知数列{a n }为等差数列,S n 是它的前n 项和.若a 1=2,S 3=12,则S 4=( ) A .10 B .16 C .20D .248.已知等差数列{a n }的公差为d(d≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为( ) A .12 B .8 C .6D .49.设数列{a n }为等差数列,其前n 项和为S n ,已知a 1+a 4+a 7=99,a 2+a 5+a 8=93,若对任意n ∈N *,都有S n ≤S k 成立,则k 的值为( ) A .22 B .21 C .20D .1910.已知方程(x 2-2x +m)(x 2-2x +n)=0的四个根组成一个首项为14的等差数列,则|m -n|=A.1B.34C.12D.3811.已知直线(3m +1)x +(1-m)y -4=0所过定点的横、纵坐标分别是等差数列{a n }的第一项与第二项,若b n =1a n ·a n +1,数列{b n }的前n 项和为T n ,则T 10=( ) A.921 B.1021 C.1121D.202112.设等差数列{a n }的公差为正数,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=________.13.已知a n =n 的各项排列成如图的三角形状:记A(m ,n)表示第m 行的第n 个数,则A(21,12)=________.a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 … … … … … … … … … …14.设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .15.已知在等差数列{a n }中,对任意n ∈N *,都有a n >a n +1,且a 2,a 8是方程x 2-12x +m =0的两根,且前15项的和S 15=m ,则数列{a n }的公差是( ) A .-2或-3 B .2或3 C .-2 D .316.已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4000,O 为坐标原点,点P(1,a n ),点Q(2011,a 2011),则OP →·OQ →等于( )A .2011B .-2011C .0D .117.数列{a n },{b n }都是等差数列,a 1=0,b 1=-4,用S k 、S k ′分别表示等差数列{a n }和{b n }的前k 项和(k 是正整数),若S k +S k ′=0,则a k +b k =________.18.已知数列{a n }的前n 项和S n =2-a n ,数列{b n }满足b 1=1,b 3+b 7=18,且 b n -1+b n +1=2b n (n≥2). (1)求数列{a n }和{b n }的通项公式; (2)若c n =b na n ,求数列{c n }的前n 项和T n .19.已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,则S 8S 16=( )A.18B.13C.19D.31020.将正偶数集合{2,4,6…}从小到大按第n 组有2n 个偶数进行分组,第一组{2,4},第二组{6,8,10,12},第三组{14,16,18,20,22,24},则2010位于第( )组. A .30 B .31 C .32D .3321.设数列{a n }是以2为首项,1为公差的等差数列,b n 是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10=( )A .1033B .2057C .1034D .205822.一个算法的程序框图如下图所示,若该程序输出的结果为56,则判断框中应填入的条件是( )A .i<4?B .i<5?C .i≥5?D .i<6?23.已知函数f(x)=sinx +tanx.项数为27的等差数列{a n }满足a n ∈⎝⎛⎭⎫-π2,π2,且公差d≠0.若f(a 1)+f(a 2)+…+f(a 27)=0,则当k =______时,f(a k )=0.24.已知各项都为正数的等比数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为________.25.已知各项均不相等的等差数列{a n }的前四项和S 4=14,且a 1,a 3,a 7成等比数列. (1)求数列{a n }的通项公式;(2)设T n 为数列{1a n a n +1}的前n 项和,若T n ≤λa n +1对一切n ∈N *恒成立,求实数λ的最小值.1.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( ) A .12 B .18 C .22D .442.等差数列{a n }的前n 项和为S n ,若a 2+a 6+a 7=18,则S 9的值是( )A .64B .72C .54D .以上都不对 3.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 3+a 7=-6,则当S n 取最小值时,n 等于( )A .8B .7C .6D .94.已知不等式x 2-2x -3<0的整数解构成等差数列{a n }的前三项,则数列{a n }的第四项为 A .3 B .-1 C .2 D .3或-15.已知数列2,x ,y,3为等差数列,数列2,m ,n,3为等比数列,则x +y +mn 的值为( ) A .16 B .11 C .-11 D .±116.在函数y =f(x)的图象上有点列(x n ,y n ),若数列{x n }是等差数列,数列{y n }是等比数列,则函数y =f(x)的解析式可能为( )A .f(x)=2x +1B .f(x)=4x 2C .f(x)=log 3xD .f(x)=⎝⎛⎭⎫34x7.已知a ,b ,c 是递减的等差数列,若将其中两个数的位置对换,得到一个等比数列,则a 2+c 2b 2的值为________.8.已知{a n }是等差数列,S n 为其前n 项和,n ∈N *,若a 3=16,S 20=20,则S 10的值为________. 9.将正偶数按下表排成5列:第1列 第2列 第3列 第4列 第5列 第1行 2 4 6 8 第2行 16 14 12 10 第3行 18 20 22 24 …………2826那么10.已知数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N +)在函数f(x)=3x 2-2x 的图象上. (1)求数列{a n }的通项公式; (2)设b n =3a n ·a n +1,求数列{b n }的第n 项和T n .11.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=( )A .1+ 2B .1- 2C .3+2 2D .3-2 212.设等差数列{a n }的前n 项和为S n 且S 15>0,S 16<0,则S 1a 1,S 2a 2,…,S 15a 15中最大的是( )A.S 15a 15B.S 9a 9C.S 8a 8D.S 1a 113.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( ) A.1升 B.6766升 C.4744升 D.3733升14.若数列{x n }满足x n -x n -1=d ,(n ∈N *,n≥2),其中d 为常数,x 1+x 2+…+x 20=80,则x 5+x 16=________.15.已知正数数列{a n }的前n 项和为S n ,且对任意的正整数n 满足2S n =a n +1. (1)求数列{a n }的通项公式; (2)设b n =1a n ·a n +1,求数列{b n }的前n 项和B n .。

等差数列(总结和例题)

等差数列(总结和例题)

等差数列知识清单1、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,这个常数叫做等差数列的公差,公差通常用字母公差通常用字母d 表示。

用递推公式表示为1(2)n n a a d n --=³或1(1)n n a a d n+-=³。

根据定义,当我们看到形如:d a a n n =--1、da a n n =--212、d aa n n=--1d a a n n =--111、211-++=n n na a a 、d S S n n =--1时,应能从中得到相应的等差数列。

的等差数列。

等差数列的判定方法1. 定义法:若d aa n n=--1或da an n =-+1(常数*ÎN n )Û {}n a 是等差数列.是等差数列.2.2.等差中项:数列等差中项:数列{}n a 是等差数列)2(211-³+=Û+n a a a n n n 212+++=Ûn n n a a a . 3.3.数列数列{}n a 是等差数列Ûbkn a n+=(其中b k ,是常数)。

是常数)。

4.4.数列数列{}n a 是等差数列Û2n S An Bn =+,(其中(其中A A 、B 是常数)。

是常数)。

等差数列的证明方法定义法:若d aa n n=--1或d a ann =-+1(常数*ÎN n )Û {}n a 是等差数列.例1.设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是(是( )A.等比数列,但不是等差数列等比数列,但不是等差数列B.等差数列,但不是等比数列等差数列,但不是等比数列C.等差数列,而且也是等比数列等差数列,而且也是等比数列D.既非等比数列又非等差数列既非等比数列又非等差数列 答案:B ;解法一:a n =îíì³-==Þîíì³-=-)2( 12)1( 1)2( )1( 11n n n a n S S n S n n n ∴a n =2n -1(n ∈N ) 又a n +1-a n =2为常数,12121-+=+n n a a n n ≠常数≠常数 ∴{a n }是等差数列,但不是等比数列. 2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-Î ,, 首项首项首项::1a ,公差,公差:d :d :d,末项,末项,末项::n a=1,=1得=2,=1+×2,项起开始为正数,则公差的取值范围是______ ______ ______ ;;11<11<=19(a 119)==120=ac(C )8 8 ((D )10 【答案】A 【解析】由角标性质得1952a a a +=,所以5a =5.=5.2.在等差数列{a n }中,a 2+a 6=3π2,则sin(2a 4-π3)=( ) A.32 B.12 C .-32 D .-12 答案 D 解析 ∵a 2+a 6=3π2,∴2a 4=3π2,∴sin(2a 4-π3)=sin(3π2-π3)=-cos π3=-12,选D. 1. (2009北京东城高三第一学期期末检测,理9)已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为________________.答案:21-2。

等差数列

等差数列

3.设 {an} 是一个公差为 d(d0) 的等差数列, 它的前 10 项和 S10=110, 且 a1, a2, a4 成等比数列. (1)证明: a1=d; (2)求公差 d 的 值和数列 {an} 的通项公式.
(1)证: ∵a1, a2, a4 成等比数列, ∴a22=a1a4. 而 {an} 是等差数列, 有 a2=a1+d, a4=a1+3d.
∵b1=-29, 公差 d=2, ∴T15=15(-29)+1572=-225.
故所求前 n 项和的最小值为 -225.
7.已知等差数列 {an} 的首项是 2, 前 10 项之和是 15, 记An=a2 +a4+a8+…+a2n (nN*), 求 An 及 An 的最大值. 解: 设等差数列 {an} 的公差是 d, 由已知: a1=2 且 10a1+45d=15. 1 解得: a1=2d=- 9 . ∴An=a2+a4+a8+…+a2n=na1+d[1+3+7+…+(2n-1)] =na1+d(2+22+23+…+2n-n) 1 (19n+2-2n+1). 2n2-2 1 = =2n- 9 ( 2-1 -n) 9 求 An 的最大值有以下解法: 法1: 由 a1>0, d<0, 则有 a1>a2>…>ak≥0>ak+1>…. 由 ak=2- 1 ( k 1) ≥0 得 k≤19. 由 k=2n≤19(nN*) 得 n≤4. 9 即在数列 {a2n} 中, a21>a22>a23>a24 >0>a25>…. ∴当 n=4 时, An 的值最大, 其最大值为: 4+1)= 46 . {An}max= 1 (19 4+2 2 9 9

等差数列的性质与计算

等差数列的性质与计算

等差数列的性质与计算等差数列是数学中一种常见的数列,它的每一项与前一项之间的差值保持一致。

本文将探讨等差数列的性质以及如何进行计算。

一、等差数列的定义等差数列是指数列中的相邻两项之间的差值保持一致。

换句话说,对于一个等差数列a₁, a₂, a₃, ..., an,每一项aₙ满足以下条件:aₙ - aₙ₋₁ = d其中,d为差值,也被称为公差。

二、等差数列的通项公式对于等差数列a₁, a₂, a₃, ..., aₙ,我们可以通过通项公式来表示任意一项aₙ。

通项公式如下:aₙ = a₁ + (n - 1) * d其中,n表示项数,a₁为首项,d为公差。

三、等差数列的性质1. 等差数列的任意三项可以构成一个等差数列。

对于等差数列a₁, a₂, a₃, ..., an,其中aₙ-₁ - aₙ₋₂ = d₁,aₙ -aₙ₋₁ = d₂。

根据等差数列的定义可知,d₁ = d₂,所以aₙ-₁, aₙ₋₂, aₙ也构成一个等差数列。

2. 等差数列的前n项和等差数列的前n项和可以用以下公式表示:Sₙ = (n/2)(a₁ + aₙ)其中,Sₙ表示前n项的和。

3. 等差数列的性质推导我们来证明等差数列的一个重要性质:等差数列的任意四项可以构成一个等差数列。

假设等差数列为a₁, a₂, a₃, ..., an,其中aₙ-₂ - aₙ₋₃ = d₁,aₙ₋₁ - aₙ₋₂ = d₂,aₙ - aₙ₋₁ = d₃。

我们需要证明d₁ = d₂ = d₃。

由等差数列的定义可知,aₙ₋₁ - aₙ₋₂ = aₙ - aₙ₋₁ = d₃。

则有:aₙ₋₂ - aₙ₋₃ = aₙ - aₙ₋₁(d₁ + d₂) = (d₃)所以d₁ = d₂ = d₃,即aₙ₋₂, aₙ₋₃, aₙ₋₁和aₙ构成一个等差数列。

四、等差数列的计算在实际问题中,我们常常需要计算等差数列中的某一项或某几项。

根据等差数列的通项公式,我们可以利用已知条件求解。

等差数列的概念

等差数列的概念

a2 4 1 3
等差数列的通项公式 如果一个数列 a1 , a 2 , a3 , …,an , …
是等差数列,它的公差是d,那么
a2 a1 d
a3 a2 d (a1 d ) d a1 2d a4 a3 d (a1 2d ) d a1 3d a5 a4 d (a1 3d ) d a1 4d
完成实际问题解答
小结:
1. {an}为等差数列 an+1- an=d an+1=an+d an= a1+(n-1) d an= kn + b (k、b为常数)
2. a、b、c成等差数列 b为a、c 的等差中项AA ac b 2b= a+c 2 【说明】 an am 3.更一般的情形,an= am+(n - m) d ,d= nm am+an=ap+aq 4.在等差数列{an}中,由 m+n=p+q
am+an=ap+aq
1、在等差数列{an}中,由 m+n=p+q
由p=q
2、 在等差数列{an}中a1+an
=
2ap=am+an a2+ an-1 = a3+ an-2 = …
练习
1 .在等差数列{an}中 (1) 已知 a6+a9+a12+a15=20,求a1+a20 分析:由 a1+a20 = a6+ a15 = a9 +a12 及 a6+a9+a12+a15=20, 可得a1+a20=10 (2)已知 a3+a11=10,求 a6+a7+a8

等差数列基本公式

等差数列基本公式

等差数列基本公式:末项=首项+(项数-1)×公差项数=(末项-首项)÷公差+1首项=末项-(项数-1)×公差和=(首项+末项)×项数÷2末项:最后一位数首项:第一位数项数:一共有几位数和:求一共数的总和因数与倍数1、边长为自然数,面积为210平方厘米的长方形,一共有多少种?2、一盒糖,平均分给4个小朋友或5个小朋友或6个小朋友,都正好分完,这鴿糖至少有多少块?3、一些小朋友排队上操,如果每排12人或16人,都正好排列成整齐的长方形队伍,而且没有多余的人,这些小朋友至少有多少人?4、一个数既是36的因数,又是3的倍数,符合条件的数可能有多少个?5、小明用48元钱按零售价买了若干练习本,如果按批发价购买,每本便宜2元,恰好多买4本,零售价每本多少元?6、小红家卧室的开关最初在关闭状态,现在如果不断开关,开关13次后,灯是(),如果开关200次灯是()的。

7、两个相邻奇数的和是100,它们的积是多少?8、50,48,46,44,42,……8,6,4,2,这列数中,每个数都()的倍数,第15个数是()9、要使53□,既是2的倍数,又是3的倍数,□应该填()10、既是2的倍数,又是3的倍数的最小三位数(),最大三位数()11、从0,5,3,4四张卡片中任意取出三张,按要求组成三位数,组成的数是9的倍数且最小是(),组成的数是2,3,5,和9的倍数且最大是()12、你能在□中填上一个数,使三位数23□是6的倍数,□应填()1、12和36的最小公倍数是()3和11的最小公倍数是()24和20的最小公倍数是()2、A和B是连续的两个自然数,它们的最小公倍数是(),如果A=3B ,那么A和B的最小公倍数是()3、两个自然数的最大公因数是3,最小公倍数是30,其中一个数是6,另一个数是()4、已知两个数是互质数,它们的最小公倍数是90,这样的两个数一共有()组。

5、甲数=2×3×A,乙数=2×5×A,已知甲乙两数的最大公因数是22,则A=(),如果这两个数的最小公倍数是210,则A=()6、小明每3天去一次图书馆,小亮每4天去一次图书馆,4月2日它们在图书馆相遇,那么下一次他们()月()日在图书馆相遇。

知识点什么是等差数列

知识点什么是等差数列

知识点什么是等差数列知识点:什么是等差数列等差数列是数学中常见的一种数列,其中每个相邻的数字之间的差值都是相等的。

在等差数列中,一个数字称为首项,差值称为公差。

等差数列可用于解决各种实际问题,也在数学推理中扮演重要角色。

本文将介绍等差数列的定义、性质和应用。

一、等差数列定义及基本性质等差数列的定义是:如果一个数列满足每个相邻的数字之间的差值都相等,则称该数列为等差数列。

等差数列一般用字母a、d和n来表示,其中a表示首项,d表示公差,n表示数列的项数。

等差数列的基本性质包括:1. 公差性质:等差数列中,任意两个相邻数字的差值是相等的。

2. 通项公式:等差数列的通项公式可由首项和公差推导得出。

通项公式通常表示为an = a + (n - 1)d,其中an表示数列的第n项,a表示首项,d表示公差。

3. 求和公式:等差数列的前n项和可以通过求和公式Sn = (n/2)(2a+ (n - 1)d)来计算,其中n表示项数,a表示首项,d表示公差。

二、等差数列的应用等差数列在数学中的应用非常广泛,以下介绍几个常见的应用情况。

1. 数学问题:等差数列可用于解决各种数学问题,如求和、找规律、推测等。

通过等差数列的性质和通项公式,可以轻松计算数列的各项数值、求和以及验证数列中的规律。

2. 数字序列:在实际问题中,常会遇到一组数字按照一定规律排列的情况。

如果这组数字满足相邻数字之差相等,那么可以认定它们构成了一个等差数列。

通过识别等差数列,我们可以更好地理解和解决实际问题。

3. 金融领域:等差数列在金融领域的应用十分广泛。

例如银行的利率、投资计划的收益等都可能涉及等差数列。

通过等差数列的性质,我们可以对这些金融问题进行分析和计算。

4. 物理学问题:在物理学中,等差数列可以用于描述一些连续变化或周期性变化的现象。

例如,匀速运动中的位移、速度和加速度等都可以通过等差数列来表示和计算。

三、等差数列的例题解析为了更好地理解等差数列的应用,我们来看一个例题:例题:一个等差数列的首项是3,公差为4,求前10项的和。

等差数列四种判定方法

等差数列四种判定方法

等差数列四种判定方法等差数列是数学中的一个重要的概念,在高中数学中也经常涉及到。

在判断等差数列的时候,常常有四种方法。

这篇文章将为大家介绍等差数列的四种判定方法,分别为通项公式、公差、前两项差、后两项差。

掌握这些方法,可以更加准确的判断一个数列是否为等差数列。

一、通项公式等差数列通项公式为:an = a1 + (n - 1)dan表示第n项,a1表示第一项,d表示公差。

在使用通项公式判断等差数列时,可以先求出前几项的值,然后利用通项公式求出后面的项,再与实际值进行比较,判断是否为等差数列。

已知一个数列的前五项为1、3、5、7、9,要判断它是否为等差数列。

首先可以看出,这个数列的公差为2,于是可以利用通项公式求出后面的项:a6 = a1 + (6 - 1)d = 1 + 5 × 2 = 11将求得的a6、a7与实际值比较,发现它们与数列中的后两项9、11并不相等,因此这个数列不是等差数列。

二、公差公差是等差数列中相邻两项之差的固定值。

在判断一个数列是否为等差数列时,可以先求出前两项的差,然后比较后面各项之间的差,看是否相等。

如果相等,则说明这个数列是等差数列。

然后比较后面各项之间的差:a3 - a2 = 2发现它们之间的差都是2,因此这个数列是等差数列。

三、前两项差总结等差数列的判定方法有四种,分别为通项公式、公差、前两项差、后两项差。

不同的方法在不同的情况下使用,可以选择合适的方法进行判断。

在求等差数列的和、第n项等问题时,也可根据不同的情况选择不同的方法求解。

除了判定等差数列的四种方法以外,还有一些其他的相关内容需要了解。

一、等差数列的求和公式对于一个等差数列a1,a2,……,an,它们的和Sn可以通过下列公式求得:Sn = (a1 + an)×n/2a1为数列的首项,an为数列的末项,n为数列的项数。

应用等差数列求和公式可以快速计算等差数列的和,节省手工计算的时间。

已知一个等差数列的首项a1为1,公差d为2,项数n为10,要求这个数列的和。

等差数列知识点归纳总结

等差数列知识点归纳总结

等差数列知识点归纳总结
等差数列是一种非常重要的数学概念,它广泛应用于几乎所有数学分支,包括代数、统计、优化等。

本文将介绍等差数列的基本概念、定义、性质及应用,以此对此知识点进行归纳总结。

一、等差数列的定义
等差数列是一种特殊的的数列,它的元素保持一定的差值相等,例如: 1,4,7,10...,元素之间的差值都为3.
二、等差数列的性质
(1)等差数列的前n项和
若等差数列的前n项和为Sn,公差为d,则Sn = n(a1 + an) / 2 = n(a1 + a1 + (n 1)d) / 2 = n(2a1 + (n 1)d) / 2
(2)等差数列的等比数列
如果一个数列所有元素都是正数,且满足等比数列的性质,则称这个数列为等比数列。

例如:2 ,4 ,8, 16...,元素之间的比值都为
2.
三、等差数列的应用
(1)数学问题
等差数列在解决数学问题时很有用,可以用来计算总和、平均数和对数等。

(2)统计分析
等差数列也可以用于统计分析,可以用来判断数据的变化趋势,并进行回归分析。

(3)其他
等差数列也可以在其它领域有用。

例如,它可以用来帮助用户在购物时进行折扣,并可以帮助用户在预测股票价格变化时做出正确的决策。

综上所述,等差数列是一种非常重要的数学概念,它广泛应用在几乎所有数学分支,具有明显的规律性,可以被用来解决各种数学问题,并可以用于统计分析和其他应用。

因此,掌握等差数列的相关知识是数学学习中必不可少的一部分。

等差数列

等差数列

1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n );【例1】设S n 是数列{a n }的前n 项和,且S n =2n 2-5n ,证明数列{a n }是等差数列。

2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈,首项为1a ,公差为d ,末项为n a 推广:d m n a a m n )(-+=,从而mn a a d mn --=;总结:等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ; 说明:等差数列的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。

【例1】等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,则n 为( )A .48B .49C .50D .51【例2】首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______ 【例3】设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13等于( )A.120B.105C.90D.75【例4】若数列{a n }的前n 项和S n =n 2-10n(n =1,2,3,…),则此数列的通项公式为_______________;数列{na n }中数值最小的项是第_______项。

3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2 (2)等差中项及其延展【例1】如果等差数列{}n a 中,34512712,___.a a a a a a ++=+++=那么【例2】已知1,a ,b 成等差数列,3,a +2,b +5成等比数列,则等差数列的公差为( )A .3或-3B .3或-1C .3D .-3【例3】在等差数列{}n a 中,1910a a +=,则5a 的值为( )A 、5B 、6C 、8D 、10【例4】已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为______.【例5】等差数列{}n a 的前三项为1,1,23x x x -++,则这个数列的通项公式为( )A .21n a n =+B .21n a n =-C .23n a n =-D .25n a n =-4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+(其中A 、B 是常数,所以当d≠0时,S n 是关于n 的二次式且常数项为0)特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项:()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项)【例1】)设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( )A.18B.20C.22D.24【例2】设n S 是等差数列{}n a 的前n 项和,若363,24S S ==,则9__.a = 【例3】设等差数列{}n a 的前n 项和为n S ,若924972,___.S a a a =++=则【例4】设{}n a 是公差为-2的等差数列,如果a 1+a 4+….. + a 97 =50,那么a 3+a 6+ a 9+….. + a 99 =( )A.-182B.-78C.-148D.-82【例5】(1)已知等差数列{}n a 的前5项之和为25,第8项等于15,求第21项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列一:等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.递推公式:a n -a n -1=d (n ≥2) [点睛] (1)“从第2项起”是指第1项前面没有项,无法与后续条件中“与前一项的差”相吻合.(2)“每一项与它的前一项的差”这一运算要求是指“相邻且后项减去前项”,强调了:①作差的顺序;②这两项必须相邻.(3)定义中的“同一常数”是指全部的后项减去前一项都等于同一个常数,否则这个数列不能称为等差数列. 二:等差数列的通项公式【例1】已知等差数列{a n }的首项为a 1,公差为d ,则通项公式为:a n =a 1+(n -1)d (n ∈N *) [点睛] 由等差数列的通项公式a n =a 1+(n -1)d 可得a n =dn +(a 1-d ),如果设p =d ,q =a 1-d ,那么a n =pn +q ,其中p ,q 是常数.当p ≠0时,a n 是关于n 的一次函数;当p =0时,a n =q ,等差数列为常数列. 例1 在等差数列{a n }中,(1)已知a 5=-1,a 8=2,求a 1与d ; (2)已知a 1+a 6=12,a 4=7,求a 9.[解] (1)∵a 5=-1,a 8=2,∴⎩⎪⎨⎪⎧ a 1+4d =-1,a 1+7d =2,解得⎩⎪⎨⎪⎧a 1=-5,d =1.(2)设数列{a n }的公差为d .由已知得,⎩⎪⎨⎪⎧ a 1+a 1+5d =12,a 1+3d =7,解得⎩⎪⎨⎪⎧a 1=1,d =2.∴a n =1+(n -1)×2=2n -1,∴a 9=2×9-1=17. 跟踪训练1.2 018是等差数列4,6,8,…的( ) A .第1 006项 B .第1 007项 C .第1 008项D .第1 009项解析:选C ∵此等差数列的公差d =2,∴a n =4+(n -1)×2,a n =2n +2,即2 018=2n +2,∴n =1 008.2.已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项?解:设首项为a 1,公差为d ,则a n =a 1+(n -1)d ,由已知⎩⎪⎨⎪⎧ a 1+(15-1)d =33,a 1+(61-1)d =217,解得⎩⎪⎨⎪⎧a 1=-23,d =4.所以a n =-23+(n -1)×4=4n -27,令a n =153,即4n -27=153,解得n =45∈N *,所以153是所给数列的第45项. 二:等差中项如果三个数a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.这三个数满足的关系式是A =a +b 2.【例2】 :已知等差数列{a n },满足a 2+a 3+a 4=18,a 2a 3a 4=66.求数列{a n }的通项公式. [解] 在等差数列{a n }中,∵a 2+a 3+a 4=18,∴3a 3=18,a 3=6.∴⎩⎪⎨⎪⎧ a 2+a 4=12,a 2·a 4=11,解得⎩⎪⎨⎪⎧ a 2=11,a 4=1或⎩⎪⎨⎪⎧a 2=1,a 4=11. 当⎩⎪⎨⎪⎧a 2=11,a 4=1时,a 1=16,d =-5. a n =a 1+(n -1)d =16+(n -1)·(-5)=-5n +21.当⎩⎪⎨⎪⎧a 2=1,a 4=11时,a 1=-4,d =5. a n =a 1+(n -1)d =-4+(n -1)·5=5n -9. 跟踪训练1.已知数列8,a,2,b ,c 是等差数列,则a ,b ,c 的值分别为________,________,________. 解析:因为8,a,2,b ,c 是等差数列, 所以⎩⎪⎨⎪⎧8+2=2a ,a +b =2×2,2+c =2b .解得⎩⎪⎨⎪⎧a =5,b =-1,c =-4.答案:5 -1 -42.已知数列{a n }满足a n -1+a n +1=2a n (n ≥2),且a 2=5,a 5=13,则a 8=________. 解析:由a n -1+a n +1 =2a n (n ≥2)知,数列{a n }是等差数列,∴a 2,a 5,a 8成等差数列. ∴a 2+a 8=2a 5,∴a 8=2a 5-a 2=2×13-5=21. 答案:21四:等差数列证明方法(1)定义法:a n +1-a n =d (常数)(n ∈N*)⇔{a n }为等差数列. (2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }为等差数列【例3】已知数列{a n }满足a 1=4,a n =4-4a n -1(n >1),记b n =1a n -2.求证:数列{b n }是等差数列.证明:[法一 定义法]∵b n +1=1a n +1-2=1⎝⎛⎭⎫4-4a n -2=a n2(a n -2), ∴b n +1-b n =a n 2(a n -2)-1a n -2=a n -22(a n -2)=12,为常数(n ∈N *).又b 1=1a 1-2=12,∴数列{b n }是首项为12,公差为12的等差数列.[法二 等差中项法] ∵b n =1a n -2,∴b n +1=1a n +1-2=1⎝⎛⎭⎫4-4a n -2=a n2(a n -2). ∴b n +2=a n +12(a n +1-2)=4-4a n 2⎝⎛⎭⎫4-4a n -2=a n -1a n-2.∴b n +b n +2-2b n +1=1a n -2+a n -1a n -2-2×a n2(a n -2)=0. ∴b n +b n +2=2b n +1(n ∈N *), ∴数列{b n }是等差数列.跟踪训练 已知1a ,1b ,1c 成等差数列,并且a +c ,a -c ,a +c -2b 均为正数,求证:lg(a +c ),lg(a -c ),lg(a +c -2b )也成等差数列. 解:∵1a ,1b ,1c 成等差数列,∴2b =1a +1c ,∴2b =a +c ac,即2ac =b (a +c ). (a +c )(a +c -2b )=(a +c )2-2b (a +c )=(a +c )2-2×2ac =a 2+c 2+2ac -4ac =(a -c )2. ∵a +c ,a +c -2b ,a -c 均为正数,上式左右两边同时取对数得,lg[(a +c )(a +c -2b )]=lg(a -c )2,即lg(a +c )+lg(a +c -2b )=2lg(a -c ), ∴lg(a +c ),lg(a -c ),lg(a +c -2b )成等差数列. 五.等差数列的性质若{a n }是公差为d 的等差数列, 1:通项公式的推广:a n =a m +(n -m )d2:若m +n =p +q ,则a m +a n =a p +a q .(m ,n ,p ,q ∈N *)特别地,当p =q 即m +n =2p (m ,n ,p ∈N *)时,a m +a n =2a p .3:对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a 1+a n =a 2+a n -1=…=a k +a n -k +1=….4:{c +a n }(c 为任一常数)是公差为d 的等差数列; 5:{ca n }(c 为任一常数)是公差为cd 的等差数列; 6:{a n +a n +k }(k 为常数,k ∈N *)是公差为2d 的等差数列.7:若{a n },{b n }分别是公差为d 1,d 2的等差数列,则数列{pa n +qb n }(p ,q 是常数)是公差为pd 1+qd 2的等差数列.【例4】 (1)已知等差数列{a n }中,a 2+a 4=6,则a 1+a 2+a 3+a 4+a 5=________.[解析] (1)∵数列{a n }为等差数列,∴a 1+a 2+a 3+a 4+a 5=(a 1+a 5)+(a 2+a 4)+a 3=52(a 2+a 4)=52×6=15.(2)设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37=________. [解析] 设c n =a n +b n ,由于{a n },{b n }都是等差数列, 则{c n }也是等差数列,且c 1=a 1+b 1=25+75=100, c 2=a 2+b 2=100, ∴{c n }的公差d =c 2-c 1=0. ∴c 37=100,即a 37+b 37=100. 跟踪训练1.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7=________. 解析: ∵a 3+a 4+a 5=12,∴3a 4=12,则a 4=4, 又a 1+a 7=a 2+a 6=a 3+a 5=2a 4, 故a 1+a 2+…+a 7=7a 4=28.故选C.2.已知数列{a n }是等差数列,且a 1-a 5+a 9-a 13+a 17=117,则a 3+a 15=_________. 解:∵在等差数列{a n }中,若m +n =p +q ,则a m +a n =a p +a q ,∴a 1+a 17=a 5+a 13.由条件等式,得a 9=117.∴a 3+a 15=2a 9=2×117=234. 六:常见设元技巧1:某两个数是等差数列中的连续两个数且知其和,可设这两个数为:a -d ,a +d ,公差为2d ;2:三个数成等差数列且知其和,常设此三数为:a -d ,a ,a +d ,公差为d ; 3:四个数成等差数列且知其和,常设成a -3d ,a -d ,a +d ,a +3d ,公差为2d【例5】(1)三个数成等差数列,其和为9,前两项之积为后一项的6倍,求这三个数.(2)四个数成递增等差数列,中间两项的和为2,首末两项的积为-8,求这四个数. [解] (1)设这三个数依次为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧ (a -d )+a +(a +d )=9,(a -d )a =6(a +d ),解得⎩⎪⎨⎪⎧a =3,d =-1.∴这三个数为4,3,2. (2)法一:设这四个数为a -3d ,a -d ,a +d ,a +3d (公差为2d ), 依题意,2a =2,且(a -3d )(a +3d )=-8,即a =1,a 2-9d 2=-8, ∴d 2=1,∴d =1或d =-1.又四个数成递增等差数列,所以d >0, ∴d =1,故所求的四个数为-2,0,2,4.法二:若设这四个数为a ,a +d ,a +2d ,a +3d (公差为d ),依题意,2a +3d =2,且a (a +3d )=-8,把a =1-32d 代入a (a +3d )=-8,得⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛d d 23123-1=-8,即1-94d 2=-8, 化简得d 2=4,所以d =2或-2.又四个数成递增等差数列,所以d >0,所以d =2,a =-2. 故所求的四个数为-2,0,2,4.跟踪训练 已知成等差数列的四个数,四个数之和为26,第二个数与第三个数之积为40,求这个等差数列.解:设这四个数依次为a -3d ,a -d ,a +d ,a +3d (公差为2d ).由题设知⎩⎪⎨⎪⎧(a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40,解得⎩⎨⎧a =132,d =32或⎩⎨⎧a =132,d =-32.∴这个数列为2,5,8,11或11,8,5,2. 七:实际应用问题解决实际应用问题,首先要认真领会题意,根据题目条件,寻找有用的信息.若一组数按次序“定量”增加或减少时,则这组数成等差数列.合理地构建等差数列模型是解决这类问题的关键,在解题过程中,一定要分清首项、项数等关键的问题.【例6】某公司经销一种数码产品,第一年可获利200万元,从第二年起由于市场竞争方面的原因,其利润每年比上一年减少20万元,按照这一规律,如果公司不开发新产品,也不调整经营策略,从哪一年起,该公司经销这一产品将亏损? [解] 设从第一年起,第n 年的利润为a n 万元, 则a 1=200,a n +1-a n =-20(n ∈N *), ∴每年的利润构成一个等差数列{a n },从而a n =a 1+(n -1)d =200+(n -1)×(-20)=220-20n . 若a n <0,则该公司经销这一产品将亏损. ∴由a n =220-20n <0,得n >11,即从第12年起,该公司经销此产品将亏损.跟踪训练某市出租车的计价标准为1.2元/km,起步价为10元,即最初的4 km(不含4 km)计费10元.如果某人乘坐该市的出租车去往14 km处的目的地,且一路畅通,等候时间为0,需要支付车费________元.解析:根据题意,当该市出租车的行程大于或等于4 km时,每增加1 km,乘客需要支付1.2元.所以可以建立一个等差数列{a n}来计算车费.令a1=11.2,表示4 km处的车费,公差d=1.2,那么当出租车行至14 km处时,n=11,此时需要支付车费a11=11.2+(11-1)×1.2=23.2(元).答案:23.2课后练习1.已知等差数列{a n }的通项公式为a n =3-2n ,则它的公差为( ) A .2 B .3 C .-2D .-3解析:选C ∵a n =3-2n =1+(n -1)×(-2),∴d =-2,故选C. 2.若等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =35,则n =( )A .50B .51C .52D .53解析:选D 依题意,a 2+a 5=a 1+d +a 1+4d =4,代入a 1=13,得d =23.所以a n =a 1+(n -1)d =13+(n -1)×23=23n -13,令a n =35,解得n =53.3.设x 是a 与b 的等差中项,x 2是a 2与-b 2的等差中项,则a ,b 的关系是( ) A .a =-b B .a =3b C .a =-b 或a =3bD .a =b =0解析:选C 由等差中项的定义知:x =a +b 2,x 2=a 2-b 22,∴a 2-b 22=⎝⎛⎭⎫a +b 22,即a 2-2ab -3b 2=0.故a =-b 或a =3b .4.在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=( ) A .12 B .16 C .20D .24解析:选B 因为数列{a n }是等差数列,所以a 2+a 10=a 4+a 8=16.5.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 等于( ) A .8 B .4 C .6D .12解析:选A 因为a 3+a 6+a 10+a 13=4a 8=32,所以a 8=8,即m =8.6.已知等差数列{a n }:1,0,-1,-2,…;等差数列{b n }:0,20,40,60,…,则数列{a n +b n }是( )A .公差为-1的等差数列B .公差为20的等差数列C .公差为-20的等差数列D .公差为19的等差数列解析:选D (a 2+b 2)-(a 1+b 1)=(a 2-a 1)+(b 2-b 1)=-1+20=19.7.已知x ≠y ,且两个数列x ,a 1,a 2,…,a m ,y 与x ,b 1,b 2,…,b n ,y 各自都成等差数列,则a 2-a 1b 2-b 1等于( )A.m nB.m +1n +1C.n mD.n +1m +1解析:选D 设这两个等差数列公差分别是d 1,d 2,则a 2-a 1=d 1,b 2-b 1=d 2.第一个数列共(m +2)项,∴d 1=y -x m +1;第二个数列共(n +2)项,∴d 2=y -x n +1.这样可求出a 2-a 1b 2-b 1=d 1d 2=n +1m +1.8.若方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=( ) A .1 B.34C.12D.38解析:选C 设方程的四个根a 1,a 2,a 3,a 4依次成等差数列,则a 1+a 4=a 2+a 3=2, 再设此等差数列的公差为d ,则2a 1+3d =2,∵a 1=14,∴d =12,∴a 2=14+12=34,a 3=14+1=54,a 4=14+32=74,∴|m -n |=|a 1a 4-a 2a 3|=⎪⎪⎪⎪14×74-34×54=12. 9.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=________. 解析:设等差数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧ a 1+2d =7,a 1+4d =a 1+d +6.解得⎩⎪⎨⎪⎧a 1=3,d =2.∴a n =a 1+(n -1)d =3+(n -1)×2=2n +1. ∴a 6=2×6+1=13. 答案:1310.已知{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =________. 解析:根据题意得:a 7-2a 4=a 1+6d -2(a 1+3d )=-a 1=-1,∴a 1=1. 又a 3=a 1+2d =1+2d =0, ∴d =-12.答案:-1211.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为________.解析:设这三个数为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧ a -d +a +a +d =9,(a -d )2+a 2+(a +d )2=59.解得⎩⎪⎨⎪⎧ a =3,d =4或⎩⎪⎨⎪⎧a =3,d =-4.∴这三个数为-1,3,7或7,3,-1.∴它们的积为-21.答案:-2112.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为________.解析:∵a ,b ,c 成等差数列,∴2b =a +c , ∴Δ=4b 2-4ac =(a +c )2-4ac =(a -c )2≥0.∴二次函数y =ax 2-2bx +c 的图象与x 轴的交点个数为1或2. 答案:1或213.已知数列{a n }满足a 1=2,a n +1=2a na n +2,则数列⎪⎪⎭⎫ ⎝⎛na 1是否为等差数列?说明理由. 解:数列⎪⎪⎭⎫⎝⎛n a 1是等差数列,理由如下:因为a 1=2,a n +1=2a na n +2, 所以1a n +1=a n +22a n =12+1a n ,所以1a n +1-1a n =12(常数).所以⎪⎪⎭⎫⎝⎛n a 1是以1a 1=12为首项,公差为12的等差数列. 14.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为多少升?解析:选B 设所构成的等差数列{a n }的首项为a 1,公差为d ,则有⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4.解得⎩⎨⎧a 1=1322,d =766,则a 5=a 1+4d =6766,故第5节的容积为6766升.等差数列一:等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.[点睛] (1)“从第2项起”是指第1项前面没有项,无法与后续条件中“与前一项的差”相吻合.(2)“每一项与它的前一项的差”这一运算要求是指“相邻且后项减去前项”,强调了:①作差的顺序;②这两项必须相邻.(3)定义中的“同一常数”是指全部的后项减去前一项都等于同一个常数,否则这个数列不能称为等差数列. 二:等差数列的通项公式已知等差数列{a n }的首项为a 1,公差为d .[点睛] n 1n 1p =d ,q =a 1-d ,那么a n =pn +q ,其中p ,q 是常数.当p ≠0时,a n 是关于n 的一次函数;当p =0时,a n =q ,等差数列为常数列. 【例1】在等差数列{a n }中, (1)已知a 5=-1,a 8=2,求a 1与d ; (2)已知a 1+a 6=12,a 4=7,求a 9. 跟踪训练1.2 018是等差数列4,6,8,…的( ) A .第1 006项 B .第1 007项 C .第1 008项D .第1 009项2.已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项?二:等差中项如果三个数a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.这三个数满足的关系式是A =a +b 2.【例2】 已知等差数列{a n },满足a 2+a 3+a 4=18,a 2a 3a 4=66.求数列{a n }的通项公式.跟踪训练1.已知数列8,a,2,b ,c 是等差数列,则a ,b ,c 的值分别为________,________,________.2.已知数列{a n }满足a n -1+a n +1=2a n (n ≥2),且a 2=5,a 5=13,则a 8=________.四:等差数列证明方法(1)定义法:a n +1-a n =d (常数)(n ∈N*)⇔{a n }为等差数列.(2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }为等差数列【例3】已知数列{a n }满足a 1=4,a n =4-4a n -1(n >1),记b n =1a n -2.求证:数列{b n }是等差数列.跟踪训练 已知1a ,1b ,1c成等差数列,并且a +c ,a -c ,a +c -2b 均为正数,求证:lg(a +c ),lg(a -c ),lg(a +c -2b )也成等差数列.六.等差数列的性质若{a n }是公差为d 的等差数列,1:通项公式的推广:a n =a m +(n -m )d2:若m +n =p +q ,则a m +a n =a p +a q .(m ,n ,p ,q N *)特别地,当p =q 即m +n =2p (m ,n,p N*)时,a m+a n=2a p.3:对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a1+a n=a2+a n-1=…=a k+a n-k+1=….4:{c+a n}(c为任一常数)是公差为d的等差数列;5:{ca n}(c为任一常数)是公差为cd的等差数列;6:{a n+a n+k}(k为常数,k∈N*)是公差为2d的等差数列.7:若{a n},{b n}分别是公差为d1,d2的等差数列,则数列{pa n+qb n}(p,q是常数)是公差为pd1+qd2的等差数列.【例4】(1)已知等差数列{a n}中,a2+a4=6,则a1+a2+a3+a4+a5=________.(2)设{a n},{b n}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37=________.跟踪训练1.如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=________.2.已知数列{a n}是等差数列,且a1-a5+a9-a13+a17=117,则a3+a15=_________.六:常见设元技巧1:某两个数是等差数列中的连续两个数且知其和,可设这两个数为:a-d,a+d,公差为2d;2:三个数成等差数列且知其和,常设此三数为:a-d,a,a+d,公差为d;3:四个数成等差数列且知其和,常设成a-3d,a-d,a+d,a+3d,公差为2d【例5】(1)三个数成等差数列,其和为9,前两项之积为后一项的6倍,求这三个数.(2)四个数成递增等差数列,中间两项的和为2,首末两项的积为-8,求这四个数.跟踪训练已知成等差数列的四个数,四个数之和为26,第二个数与第三个数之积为40,求这个等差数列.七:实际应用问题解决实际应用问题,首先要认真领会题意,根据题目条件,寻找有用的信息.若一组数按次序“定量”增加或减少时,则这组数成等差数列.合理地构建等差数列模型是解决这类问题的关键,在解题过程中,一定要分清首项、项数等关键的问题.【例6】某公司经销一种数码产品,第一年可获利200万元,从第二年起由于市场竞争方面的原因,其利润每年比上一年减少20万元,按照这一规律,如果公司不开发新产品,也不调整经营策略,从哪一年起,该公司经销这一产品将亏损?跟踪训练某市出租车的计价标准为1.2元/km,起步价为10元,即最初的4 km(不含4 km)计费10元.如果某人乘坐该市的出租车去往14 km处的目的地,且一路畅通,等候时间为0,需要支付车费________元.课后练习1.已知等差数列{a n}的通项公式为a n=3-2n,则它的公差为()A.2B.3C.-2 D.-32.若等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =35,则n =( ) A .50B .51C .52D .533.设x 是a 与b 的等差中项,x 2是a 2与-b 2的等差中项,则a ,b 的关系是( )A .a =-bB .a =3bC .a =-b 或a =3bD .a =b =04.在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=( )A .12B .16C .20D .245.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 等于( )A .8B .4C .6D .126.已知等差数列{a n }:1,0,-1,-2,…;等差数列{b n }:0,20,40,60,…,则数列{a n +b n }是( )A .公差为-1的等差数列B .公差为20的等差数列C .公差为-20的等差数列D .公差为19的等差数列7.已知x ≠y ,且两个数列x ,a 1,a 2,…,a m ,y 与x ,b 1,b 2,…,b n ,y 各自都成等差数列,则a 2-a 1b 2-b 1等于( ) A.m nB.m +1n +1C.n mD.n +1m +18.若方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=( )A .1B.34C.12D.389.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=________.10.已知{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =________.11.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为________.12.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为________.13.已知数列{a n }满足a 1=2,a n +1=2a n a n +2,则数列⎪⎪⎭⎫ ⎝⎛n a 1是否为等差数列?说明理由.14.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为多少升?。

相关文档
最新文档