数学人教版八年级下册中位数众数

合集下载

人教八年级数学平均数、加权平均数、中位数、众数、极差和方差归纳与复习

人教八年级数学平均数、加权平均数、中位数、众数、极差和方差归纳与复习

平均数、加权平均数、中位数、众数、极差和方差归纳与复习一、回顾与梳理。

平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。

即x=(x1+x2+……+xn)÷n中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。

众数:在一组数据中出现次数最多的数叫做这组数据的众数。

平均数:一组数据的平均值,平均水平.平均数是描述一组数据的一种常用指标,反映了这组数据中各数据的平均大小。

平均数的大小与一组数据里的每个数据都有关系,其中任何数据的变动都会引起平均数的相应变动.平均数一般的计算方法为:用一组数据的总和除以这组数据的个数.平均数的优点。

反映一组数的总体情况比中位数、众数更为可靠、稳定.平均数的缺点。

平均数需要整批数据中的每一个数据都加人计算,因此,在数据有个别缺失的情况下,则无法准确计算,计算的工作量也较大。

平均数易受极端数据的影响,从而使人对平均数产生怀疑。

中位数:在有序排列的一组数据中最居中的那个数据中等水平.中位数是描述数据的另一种指标,如果将一组数按从小到大排列那么中位数的左边和右边恰有一样多的数据。

中位数仅与数据的大小排列位置有关,某些数据的变动对它的中位数没有影响.中位数是将数据按大小顺序依次排列(相等的数也要全部参加排序)后“找”到的.当数据的个数是奇数时,中位数就是最中间的那个数据;当数据的个数是偶数时,就取最中间的两个数据的平均数作为中位数.中位数的优点。

简单明了,很少受一组数据的极端值的影响。

中位数的缺点。

中位数不受其数据分布两端数据的影响,因此中位数缺乏灵敏性,不能充分利用所有数据的信息。

当观测数据已经分组或靠近中位数附近有重复数据出现时,则难以用简单的方法确定中位数。

众数:一组数据中出现次数最多的那个数据。

集中趋势众数告诉我们,这个值出现次数最多,一组数据可以有不止一个众数,也可以没有众数。

众数着眼于对各数据出现的频数的考查,其大小只与这组数据中的部分数据有关.一组数据中的众数不止一个.当一组数据中有相同数据多次出现时,其众数往往是我们关心的.众数的优点。

人教版八年级下册 20.1 中位数,众数 知识点和对应练习 讲义(无答案)

人教版八年级下册 20.1 中位数,众数 知识点和对应练习  讲义(无答案)

中位数、众数课堂导入运动会男子50m步枪三姿射击决赛.甲、乙两位运动员10次射击的成绩如下表(单位:环):由表中的数据可以看出.当第9次射击后,甲以5环的优势遥遥领先于乙.但由于第10次射击,意外地未能击中靶子,最终乙以总分第一获得该项目的第一名.你认为用10次射击的平均数来表示甲射击成绩的实际水平合适吗?如果你认为不合适.那么应该怎样评价甲射击的实际水平?一、知识梳理:专题一:中位数;专题二:众数;专题三:中位数与众数的应用二、考点分类考点一:中位数定义:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数.注意:一组数据的中位数是唯一的,中位数与所给数据的单位是一致的.【例1】我市某一周的最高气温(单位:℃)分别为25,27,27,26,28,28,28.则这组数据的中位数是()A.28B.27C.26D.25解析:首先把数据按从小到大的顺序排列为25、26、27、27、28、28、28,则中位数是27.故选B.方法总结:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).【例2】某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是()A.94,96B.96,96C.94,96.4 D.96,96.4解析:总人数为6÷10%=60(人),则94分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96;这些职工成绩的平均数是(92×6+94×12+96×15+98×18+100×9)÷60=(552+1128+1440+1764+900)÷60=5784÷60=96.4.故选D.方法总结:解题的关键是从统计图中获取正确的信息并求出各个小组的人数.然后求中位数和平均数.考点二:众数定义:一组数据中出现次数最多的数据称为这组数据的众数.注意:众数是一组数据中出现次数最多的数据,是该组数据中的原数据而不是相应的项数;一组数据的众数有时不止一个.【例3】为参加阳光体育运动,有9位同学去购买运动鞋,他们的鞋号(单位:码)由小到大是20,21,21,22,22,22,22,23,23.这组数据的中位数和众数是()A.21和22 B.21和23C.22和22 D.22和23解析:数据按从小到大的顺序排列为20,21,21,22,22,22,22,23,23,所以中位数是22;数据22出现了4次,出现次数最多,所以众数是22.故选C.方法总结:一组数据中出现次数最多的数据叫做众数.【例4】一组数据3,x,4,5,8的平均数为5,则这组数据的众数、中位数分别是()A.4,5B.5,5C.5,6D.5,8解析:∵3,x,4,5,8的平均数为5,∴(3+x+4+5+8)÷5=5,解得x=5.把这组数据从小到大排列为3,4,5,5,8,∴这组数据的中位数为5.∵5出现的次数最多,∴这组数据的众数是5.故选B.方法总结:解决本题的关键是掌握平均数、众数和中位数的求法.考点三:平均数、中位数、众数的关系与应用平均数、中位数和众数都是数据的代表,它们各有自己的特点,能够从不同的角度提供信息.计算平均数时,所有的数据都要参与运算,它能充分利用数据所提供的信息,因此在现实生活中较为常用,但它容易受极端值影响.中位数的优点是计算简单,不易受极端值影响,但不能充分利用所有数据的信息.当一组数据中某些数据多次重复出现时,众数往往是人们尤其关注的一个量,但各个数据的重复次数大致相等时,众数往往没有特别的意义.【例5】某中学开展演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示.(1)根据上图填写下表:(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)如果在每班参加复赛的选手中分别选出2人参加决赛,你认为哪个班的实力更强一些?说明理由.解析:(1)根据统计图中的具体数据以及中位数和众数的概念计算;(2)观察数据发现:平均数相同,则中位数大的较好;(3)分别计算前两名的平均分,比较其大小.解:(1)85100(2)∵两班的平均数相同,九(1)班的中位数高,∴九(1)班的复赛成绩好些;(3)∵九(1)班、九(2)班前两名选手的平均分分别为92.5分,100分,∴在每班参加复赛的选手中分别选出2人参加决赛,九(2)班的实力更强一些.方法总结:读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.【例6】在喜迎“中国人民抗日战争胜利70周年暨世界反法西斯战争胜利70周年”,某校举办校园唱红歌比赛,选出10名同学担任评委,并事先拟定从如下四种方案中选择合理方案来确定演唱者的最后得分(每个评委打分最高10分).方案1:所有评委给分的平均分;方案2:在所有评委中,去掉一个最高分和一个最低分,再计算剩余评委的平均分;方案3:所有评委给分的中位数;方案4:所有评委给分的众数.为了探究上述方案的合理性,先对某个同学的演唱成绩进行统计实验,下图是这个同学的得分统计图:(1)分别按上述四种方案计算这个同学演唱的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演唱的最后得分?解析:本题关键是理解每种方案的计算方法:(1)方案1:平均数=总分数÷10;方案2:平均数=去掉一个最高分和一个最低分的总分数÷8.方案3:10个数据,中位数应是数据从小到大(或从大到小)排列的第5个和第6个数据的平均数;方案4:求出评委给分中,出现次数最多的分数.(2)考虑不受极值的影响,不能有两个得分等原因进行排除.解:(1)方案1:最后得分为110×(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7;方案2:最后得分为110×(7.0+7.8+3×8+3×8.4)=8;方案3:最后得分为8;方案4:最后得分为8和8.4;(2)因为方案1中的平均数受极端数值的影响,不适合作为这个同学演讲的最后得分,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.方法总结:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大(或从大到小)依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷个数.学会选用适当的统计量分析问题.经典例题考点一:中位数【例1】某班组织了一次读书活动,统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如下表,则这10名同学一周内累计的读书时间的中位数是()A.8B.7C.9D.10考点二:众数【例2】为参加阳光体育运动,有9位同学去购买运动鞋,他们的鞋号(单位:码)由小到大是20,21,21,22,22,22,22,23,23.这组数据的中位数和众数是()A.21和22 B.21和23 C.22和22 D.22和23【例3】某公司33名职工的月工资(单位:元)如下:(1)求该公司职工月工资的平均数、中位数和众数(精确到个位);(2)假设副董事长的工资从8000元提升到20000元,董事长的工资从8500元提升到30000元,那么新的平均数、中位数、众数又各是多少(精确到个位)?(3)你认为哪个统计量更能反映这个公司职工的工资水平?请说明理由.考点三:平均数、中位数、众数的应用【例4】某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月的销售目标,根据目标完成的情况对营业员进行适当的奖惩.为了确定一个适当的目标,商场统计了每个营业员在某月的销售额,并整理得到如图所示的统计图.请分析统计数据完成下列问题.(1)月销售额的众数是多少?中位数是多少?平均月销售额是多少?(2)如果想让一半左右营业员都能达到目标,你认为月销售额定为多少合适?说明理由.拓展提升1.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是______ 小时.2.若一组数据“-2,x,-1,0,2”的众数是2,则中位数是______ .3.一组数据按从小到大排列为1,2,4,x,6,9,这组数据的中位数为5,那么这组数据的众数为______ .4.为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:则关于这10户家庭的月用水量的中位数是______ ,平均数是______ ,众数是______ .5.某同学进行社会调查,随机抽查了某个地区的20个家庭的收入情况,并绘制了统计图(如图).请你根据统计图给出的信息回答:(1)这20个家庭的年平均收入为______ 万元;(2)样本中的中位数是______ 万元,众数是______ 万元;(3)在平均数、中位数两数中,______ 更能反映这个地区家庭的年收入水平.6.某市规定学生的学期体育成绩满分是100分,其中大课间活动和下午体段占20%,期中考试占30%,期末考试占50%,张晨的三项成绩(百分制)分别是95分、90分、86分,求张晨这学期的体育成绩.7.为迎接国庆60周年,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整理参赛同学的成绩,并制作成图表如下:请根据以上图表提供的信息,解答下列问题:(1)表中m和n所表示的数分别为:m= ,n= ;(2)请在图中,补全频数分布直方图;(3)比赛成绩的中位数落在哪个分数段;(4)如果比赛成绩80分以上可以获得奖励,那么获奖率是多少?8.我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机抽出10名男生,分别测量出他们的身高(单位:cm),收集并整理如下统计表:根据以上信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数、众数;(2)请你选择其中一个统计量作为选定标准,找出这10名男生中具有“普通身高”是哪几位男生?并说明理由.。

八年级数学下册第二十章数据的分析知识点归纳新版新人教版

八年级数学下册第二十章数据的分析知识点归纳新版新人教版

第二十章数据的分析知识点,数据的代表:平均数、众数、中位数、极差、方差知识点详解:1.解统计学的几个根本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考杏的对象是解决有关总体、个体、样木、样本容堂问题的关键。

2. 平均数a上下波动时,一般选用简化平均数公式[=;+々,其中a是取接近于这组数据平均数中比拟'整”的数:当所给一组数据中有成夏屡次出现的数据,常选用加权平均数公式。

3. 众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的堂。

平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动.当一组数据中有个数据太高或太低. 用平均数来描述整体趋势那么不适宜,用中位数或众数那么较适宜•中位数与数据排列有关,个别数据的波动对中位数没影响:当一组数据中不少数据屡次垂复出现时,可用众数来描述。

4 .极差用一•组数据中的最大值;成去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值一最小值。

5. 方差与标准差用“光平均.再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是1s s=n [(xi-x)2+(X2-x)>...t(Xn-x)2].方差是反映一组数据的波动大小的一个拉・其值越大,波动越大,也越不稳定或不整齐。

一、选择题1. 一组数据3, 5. 7, m, n的平均数是6,那么m, n的平均数是()A.6B.7C. 7.5D. 152. 小华的数学平时成绩为92分,期中成绩为90分,期末成绒为96分,假设按3: 3: 4的比例计算总评成绩,那么小华的数学总评成绩应为()A. 92B. 93C. 963. 关于•组数据的平均数、中位数、众数.以下说法中正确的选项是()A.平均数,定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对4. 某小组在一次测试中的成绩为x 86, 92, 84, 92, 85, 85, 86, 94, 92, 83,那么这个小组本次测试成绩的中位数是()A. 85B. 86C. 925. 某人上山的平均速度为35,沿原路下山的平均速度为5km/h,上山用lh,那么此人上下山的平均速度为(〉A. 4 km/hB. 3. 75 km/hC. 3.5 km/hD. 4.5 km/h6. 在校冬季运动会上,有15名选手参加了200成绩各不相同,某选手要想知道自己是否进入决界,只需要了解自己的成绩以及全部成绩的()A.平均数B.中位数C.众数D.以上都可以二、填空题,(每题6分,共42分〉7. 将9个数据从小到大排列后,第 __________ 个数是这组数据的中位数8. 如果一组数据4. 6, x. 7的平均数是5.那么x = _________________ ・9. 己知一组数据:5, 3. 6. 5, 8. 6, 4, lh那么它的众数是__________________ .中位数是________ .10. 一组数据12, 16, 11, 17. 13, x的中位数是14,那么、= _______________________ .H.那么这组数据的平均数是________ ,中位数是 _________ ,众数是 _________ ・12. 某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,那么这个小组的本次测试的平均成绩为_____________________ .13. 为了了解某立交桥段在四月份过往车辆承载情况,连续id录了6天的车流量(单位:千WH): 3. 2, 3.4, 3, 2. 8. 3.4, 7,那么这个月该桥过往车辆的总数大约为_____________________辆.第二十章数据的分析知识点*选用恰当的数据分析数据知识点详解,-:5个根本统计量(平均数、众数、中位数、极差、方差)的数学内涵:平均数:把一组数据的总和除以这组数据的个数所得的商。

2024年人教版八年级下册数学同步教案第二十章数据的分析第1节中位数和众数第2课时

2024年人教版八年级下册数学同步教案第二十章数据的分析第1节中位数和众数第2课时

20.1.2 中位数和众数第2课时1.在解决实际问题中进一步理解平均数、中位数、众数作为数据代表的意义,能根据所给信息求出相应的数据代表.2.结合具体情景体会平均数、中位数、众数三者的特点与差异,能根据具体问题选择适当的量来代表,并作出自己的评判.3.经历探索常见的数据集中趋势的特征数的过程,感受其实际应用,掌握判断方法.重点:进一步认识度量集中数据趋势的平均数、众数、中位数三个特征数.能灵活应用平均数、众数、中位数解决实际问题.难点:进一步认识度量集中数据趋势的平均数、众数、中位数三个特征数.能灵活应用平均数、众数、中位数解决实际问题.一、创设情境,导入新课在端午节到来之前,幸福儿童福利院对全体小朋友爱吃哪几种粽子作调查如下: 名称艾香粽豆沙粽蜜枣粽糯米粽火腿粽人数 3 5 20 11 14幸福儿童福利院调查后最值得关注的是平均数、中位数和众数中的哪个量?你能根据调查统计表中数据为进货员提供进货建议吗?你会解答上面问题吗?这一节课我们就来探究.二、探究归纳活动1:选择统计量描述数据的集中趋势1.问题:某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数 1 800 510 250 210 150 120 人数 1 1 3 5 3 2则这15位营销人员该月销售量的平均数是,中位数是________,众数是________答案:3202102102.思考:假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?提示:不合理.因为15人中有13人的销售额不到320件,320件虽是所给一组数据的平均数,它却不能很好地反映销售人员的一般水平.3.归纳:(1)平均数、中位数和众数都可以反映一组数据的集中趋势,它们各有自己的特点,能够从不同的角度提供信息.在实际应用中,需要分析具体问题的情况,选择适当的量反映数据的集中趋势.(2)①平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大;②当一组数据中某些数据多次重复出现时,众数往往是人们关心的一个量,它不易受极端值的影响,这是它的一个优势;③中位数只需要很少的计算,它也不易受极端值的影响.活动2:例题讲解【例1】三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取11只日光灯管进行检测,灯管的使用寿命(单位:月)如下:甲厂7 8 9 9 9 11 13 14 16 17 19 乙厂7 7 8 8 9 10 12 12 12 12 13 丙厂7 7 7 8 8 12 12 13 13 16 18(1)这三个厂家的广告宣传中,分别利用了统计中的哪一个反映数据集中趋势的统计量?(2)如果三种产品的售价一样,作为顾客的你选购哪个厂家的产品?请说明理由.分析:(1)分别求出这三个厂家的平均数、中位数和众数,根据计算结果进行解答.(2)根据(1)的计算结果进行选择,并说明理由.解:(1)甲厂的平均数、中位数和众数分别为12,11,9;乙厂的平均数、中位数和众数分别为10,10,12;丙厂的平均数、中位数和众数分别为11,12,7.根据计算的结果可知这三个日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月,甲厂的广告利用了统计中的平均数;乙厂的广告利用了统计中的众数;丙厂的广告利用了统计中的中位数.(2)根据以上分析选用甲厂的产品.因为它的平均数较真实地反映灯管的使用寿命.或选用丙厂的产品.因为该厂有一半以上的灯管使用寿命超过12个月.活动3:平均数、中位数和众数的综合应用【例2】在对全市初中生进行的体质健康测试中,青少年体质研究中心随机抽取的10名学生的坐位体前屈的成绩(单位:厘米)如下:11.210.511.410.211.411.411.29.512.010.2(1)通过计算,样本数据(10名学生的成绩)的平均数是10.9,中位数是________,众数是________.(2)一个学生的成绩是11.3厘米,你认为他的成绩如何?说明理由.(3)研究中心确定了一个标准成绩,等于或大于这个成绩的学生该项素质被评定为“优秀”等级.如果全市有一半左右的学生能够达到“优秀”等级,你认为标准成绩定为多少?说明理由.分析:(1)用中位数,众数的定义得出答案.(2)方法一:将这名学生的成绩与中位数进行比较,方法二:将这名学生的成绩与平均数相比较.(3)要让一半学生达到“优秀”等级,这个衡量标准取中位数,即标准成绩定为11.2厘米(中位数).解:(1)中位数是11.2,众数是11.4.(2)方法一:从样本数据的中位数是11.2得到,可以估计在这次坐位体前屈的成绩测试中,全市大约有一半学生的成绩大于11.2厘米,有一半学生的成绩小于11.2厘米,这位学生的成绩是11.3厘米,大于中位数11.2厘米,可以推测他的成绩一半以上学生的成绩好.方法二:从样本数据的平均数是10.9得到,可以估计在这次坐位体前屈的成绩测试中,全市学生的平均成绩是10.9厘米,这位学生的成绩是11.3厘米,大于平均成绩,可以推测他的成绩比全市学生的平均成绩好.(3)如果全市有一半左右的学生评定为“优秀”等级,标准成绩应定为“11.2厘米”(中位数).因为从样本情况看,成绩在11.2厘米以上(含11.2厘米)的学生占总人数的一半左右.可以估计,如果标准成绩定为11.2厘米,全市将有一半左右的学生能够评定为“优秀”等级.总结:平均数、中位数和众数的作用平均数、中位数和众数都是来刻画数据平均水平的统计量,平均数常用于表示统计对象的一般水平,中位数表示这组数据的中等水平,而众数刻画了数据中出现次数最多的情况.三、交流反思这节课我们学习了选择统计量描述数据的集中趋势,练习时,在同一具体问题中分别求平均数、中位数和众数,目的是比较这三个统计量在描述一组数据集中趋势时的不同角度,有助于了解三个概念之间的联系与区别,有助于我们在实际应用中选择合理的统计量来描述数据的集中趋势.四、检测反馈1.某校九年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自已的成绩,她想知道自已能否进入决赛,还需要知道这11名同学成绩的 ()A.中位数B.众数C.平均数D.最高分2.某品牌鞋店在一个月内销售某款女鞋,各种尺码鞋的销量如下表所示:尺码/厘米22.5 23 23.5 24 24.5销售量/双35 40 30 17 8通过分析上述数据,对鞋店业主的进货最有意义的是()A.平均数B.众数C.中位数D.最小鞋号3.数学老师在录入班级50名同学的数学成绩时,有一名同学的成绩录入错了,则该组数据一定会发生改变的是()A.中位数B.众数C.平均数D.中位数、众数、平均数都一定发生改变4.歌唱比赛有二十位评委给选手打分,统计每位选手得分时,会去掉一个最高分和一个最低分,这样做,肯定不会对所有评委打分的哪一个统计量产生影响________.(填“平均数”或“中位数”或“众数”)5.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:加工件数540 450 300 240 210 120人数 1 1 2 6 3 2 (1)这15人该月平均的加工零件数是________件,加工零件数在________件的人数最多,中间的加工零件数是________件.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为.(请填“合理”或“不合理”)6.某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分满分均为100分.前六名选手的得分如下:序号项目 1 2 3 4 5 6笔试成绩/分85 92 84 90 84 80面试成绩/分90 88 86 90 80 85根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是________分,众数是________分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余5名选手的综合成绩,并以综合成绩排序确定前两名人选.五、布置作业教科书第121页习题20.1第2,7,8,9题.六、板书设计七、教学反思关于平均数、中位数和众数综合应用:(1)首先要让学生明确认识到平均数、中位数和众数是度量集中趋势的三个主要特征数,它们具有不同的特点和应用场合,掌握它们之间的关系和各自的不同特点,有助于学生在实际应用中选择合理的统计量来描述数据的集中趋势.(2)在实际应用中,选择哪一个统计量来描述数据的集中趋势,需要综合考虑问题的具体情况、数据的特征以及统计量的特点等作出选择.(3)要注意让学生充分体会各种统计量的统计意义,对选择适当的统计量解决问题、用样本估计总体以及数据处理的基本过程有进一步的认识.。

人教版八年级数学下册20.1.2中位数与众数课件

人教版八年级数学下册20.1.2中位数与众数课件

增加小清后,工资的中位数是多少? 取平均数
先按大小排列:
600,600,1100,1100,1100,1200,1800,2100,5000,9000
工资的中位数是1150元.
中位数误区二: 奇数取中间, 偶数取中间两数平均数.
创设情境
探求新知
当堂训练
小结归纳
工资
/元
1100 1100 1100 1200 2000 2300 5000 9000
600
中位数:
中位数
一组数据按大小顺序排列,位于最中间的一个 数据叫做这组数据的中位数。
创设情境
探求新知
当堂训练
小结归纳
布置作业
中位数理解误区一
根据个人能力表现,上个月老板对员工工资作出了调整.
工种 见习 工资
/元
服务 服务 服务 前台 前台 前台 经理 总监 生1 生2 生3 1 2 3 2300 2000 2300 1200 5000 9000 1100 1100 1100 1200
义务教育课程标准试验教科书
数学
人教版 八年级 下册
20.1.2
中位数和众数
徐闻县和安中学 林朝清
本课目标:
(1)理解中位数和众数的定义. (2)会求一组数据的中位数和众数.
创设情境
探求新知
当堂训练
小结提升
布置作业
创设情境
探求新知
当堂训练
小结提升
布置作业
新同事见面会
见习明强 服务生小丽 前台美玉
(元)
600
1100 1100 1100 1200 2000 2300 5000 9000
请大家帮小清算算该酒店员工月平均工资 是多少?

人教版八年级下册第二十章数据的分析第26讲_中位数和众数 讲义

人教版八年级下册第二十章数据的分析第26讲_中位数和众数 讲义

初中八年级数学下册第26讲:中位数和众数一:知识点讲解知识点一:中位数➢定义:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数➢意义:中位数是刻画一组数据“中等水平”的一个代表,反映了一组数据的集中趋势,一组数据的中位数是唯一的➢求法:1.把数据由小到大(或由大到小)排列2.确定这组数据的个数3.当数据是奇数个时,取最中间的一个数作为中位数;当数据是偶数个时,取最中间两个数的平均数作为中位数例1:求数据2、3、14、16、7、8、10、11、13的中位数例2:10名工人某天生产同一种零件的个数是15、17、14、10、15、19、17、16、14、12。

求这一天10名工人生产零件的中位数。

知识点二:众数➢定义:一组数据中出现次数最多的数据称为这组数据的众数➢意义:众数是刻画一组数据“大多数水平”的重要代表,在我们日常生活中,经常用众数来解决一些实际问题➢求法:众数是出现次数最多的数据,而不是出现次数,若一组数据中有两个或两个以上数据出现的次数并列最多,则这些数据都是众数,故众数可能不止一个。

例3:一组数据2、3、x、5、7的平均数是4,则这组数据的众数是。

知识点三:平均数、中位数和众数的综合➢平均数✧优点:平均数能充分利用各数据提供的信息,在实际生活中常用样本的平均数估计总体的平均数。

✧缺点:在计算平均数时,所有的数据都参与运算,所以它易受极端值的影响。

➢中位数✧优点:中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用中位数来描述数据的集中趋势。

✧缺点:不能充分地利用各数据的信息。

➢众数✧优点:众数考察的是各数据所出现的频数,其大小只与部分数据相关,当一组数据中某些数据多次重复出现时,众数往往更能反映问题。

✧缺点:当各数据重复出现的次数大致相等时,它往往就没有什么特别意义。

平均数、中位数、众数、方差的综合应用人教版八年级数学下册

平均数、中位数、众数、方差的综合应用人教版八年级数学下册

新知小结
在比较两组数据时,一般先看平均数,在平均数相同 或相近的情况下,再分析稳定性问题,而方差是反映数据的 波动大小的量,通过比较方差的大小来解决问题.
合作探究 某校积极开展国防知识教育,八年级甲、乙两班分别选5名同学参加 “国防知识”比赛,其预赛成绩如图所示.
(1)根据上图填写下表:
平均数 中位数 众数 方差
解:从平均数分析可知,甲、乙两队员都有夺冠的可能.但由方 差分析可知,甲成绩比较平稳,夺冠的可能性比乙大.
但要打破纪录,成绩要比较突出,因此乙队员打破纪录的可能性 大,我认为为了打破纪录,应选乙队员参加这项比赛.
课堂总结
用样本的方差估计总体的方差,并利用方差作决策的一般步骤: 1.计算出各组样本数据的平均数. 2.在样本平均数基本相同的情况下计算出各组样本数据的方差. 3.根据样本数据方差的大小估计总体数据的稳定性,并进行比 较,从而作出决策.
分析:分别计算出平均数和方差,根据平均数判断出谁的成绩 好,根据方差判断出谁的成绩波动大.
随堂练习
解: x甲 =
1 10
(585+596+610+598+612+597+604+600+613+601)
=601.6,s2甲≈65.84;
x乙 =
1 10
(613+618+580+574+618+593+585+590+598+624)
5.85 5.93 6.07 5.91 5.99

6.13 5.98 6.05 6.00 6.19
6.11 6.08 5.83 5.92 5.84

人教版数学八年级下册20.2.2中位数和众数优秀教学案例

人教版数学八年级下册20.2.2中位数和众数优秀教学案例
小组合作是培养学生团队协作能力和口头表达能力的重要手段。在本章节的教学中,我们将采取以下策略:
1.将学生分成若干小组,每组4-6人,确保每个学生都能参与到合作学习中来。
2.给每个小组分配一个实际问题,要求他们共同探讨、解决问题。
3.小组内部分工明确,每个成员负责一部分任务,共同完成整个问题的解答。
4.组织小组间的交流分享,让学生在互动中学习、借鉴,提高解决问题的能力。
-能够通过绘制统计图表,直观展示中位数和众数在数据中的作用。
(二)过程与方法
1.过程方面:通过小组合作、讨论交流等形式,让学生在探究中位数和众数的过程中,培养以下能力:
-观察和发现问题的能力,使学生能够从实际情境中提炼出统计学问题。
-逻辑思维和推理能力,让学生在探讨中位数和众数的过程中,学会运用数学知识解决问题。
1.向学生展示一组跳绳成绩数据,让他们观察数据的特点。
2.提问:“如何描述这组数据的集中趋势?”激发学生的思考。
3.引导学生通过排序、观察、讨论等方式,发现中位数和众数在描述数据集中趋势方面的作用。
(二)问题导向
以问题为导向,激发学生的探究欲望,引导学生深入思考中位数和众数的性质和应用。具体策略如下:
1.提出具有启发性的问题,如:“为什么中位数和众数能够描述数据的集中趋势?”
2.鼓励学生提出自己的疑问,引导学生相互解答,促进课堂互动。
3.设计不同难度的问题,使学生在解决问题的过程中,逐步掌握中位数和众数的计算方法和应用。
问题导向的教学策略有助于培养学生的逻辑思维能力和解决问题的能力。
(三)小组合作
-团队协作和沟通能力,学生在合作交流中,提高与他人合作解决问题的能力。
2.方法方面:采用以下方法,引导学生掌握中位数和众数的计算和应用:

八年级数学中位数和众数

八年级数学中位数和众数

中位数、众数和平均数可以相 互补充,全面地揭示数据的分 布情况。
05
实例分析
中位数实例分析
题目
某班有50名学生,在一次数学考试中 的成绩分别为60,65,70,75,80, 85,90,95,100,则这组数据的中 位数为多少?
分析
首先将这组数据从小到大排序,然后 找到位于中间位置的数字。由于数据 量为奇数(50名学生),中位数即为 排序后位于中间位置的数字。
八年级数学中位数和 众数
目录
CONTENTS
• 引言 • 中位数的定义与计算 • 众数的定义与计算 • 中位数与众数的比较 • 实例分析 • 总结与回顾
01
引言
主题简介
中位数和众数是在统计学中常用的两个概念,用于描述一组数据的中心趋势和集中 趋势。
中位数是一组数据排序后处于中间位置的数值,而众数是一组数据中出现次数最多 的数值。
学习中位数和众数的概念及其应用,有助于学生更好地理解和分析数据,解决实际 问题。
学习目标
掌握中位数和众数的 定义和计算方法。
能够在实际问题中应 用中位数和众数的知 识,进行数据分析和 处理。
理解中位数和众数在 描述数据分布中的作 用。
02
中位数的定义与计

中位数的定义
01
中位数是一组数据中排在中间位 置的数值。
比较
众数反映数据的集中趋势,而平均数反映数据的平均水平。当数据分布较为集中时,众数 与平均数的差距较小;当数据分布较为分散时,众数与平均数的差距较大。
中位数、众数与平均数的综合比较
中位数、众数和平均数都是描 述数据特征的重要统计量,各 有其特点和适用场景。
在实际应用中,需要根据数据 的特性和问题的需求选择合适 的统计量来描述数据的特征。

人教八年级数学下册- 中位数和众数(附习题)

人教八年级数学下册- 中位数和众数(附习题)

2. 某校男子足球队的年龄分布如下面条形图 所示.请找出这些队员年龄的平均数、众数、中位 数,并解释它们的意义.
解:由图知13岁2人,14岁6人,15岁8人,16岁 3人,17岁2人,18岁1人,一共22人.
所以足球队员年龄的平均数为:15岁;众 数为:15岁;中位数为:15岁.
它们的含义分别是:校男子足球队员的平 均年龄为15岁;校男子足球队员中年龄为15岁 的队员最多;校男子足球队员的年龄不足15岁 和超过15岁的人数相当.
根据例4中的样本数据,你还有其 他方法评价(2)中这名选手在这次比 赛中的表现吗?
练习
下面的条形图描述了某车间工人日加工 零件数的情况.
请找出这些 工人日加工零件 数的中位数,并 说明这个中位数 的意义.
解:由条形图知这组数据中从小到大排列为:4个3, 5个4,8个5,9个6,6个7,4个8共36个数,则这组数 据的中位数为处在中间两个数6,6的平均数,因此这 些工人日加工零件的中位数为6.
它的意义是:23.5cm的鞋销量最大.因此可以 建议鞋店多进23.5cm的鞋.
练习
1. 下面的扇形图描述了某种运动服的S号,M 号,L号,XL号,XXL号在一家商场的销售情况. 请你为这家商场提出进货建议. 解:由扇形图可以看出,在某种运 动服大小型号组成的一组数据当中, M号最多为30%.因此可以建议这家 商场多进M号的运动服.
2.在一次女子体操比赛中,八名运动员的年
龄(单位:岁)分别为:12、14、12、15、14、14、 16、15,这组数据的众数是( B )
A.12
B.14
C.15
D.16
综合应用
如图是连续十周测试甲、乙两名运动员体能 训练成绩的折线统计图,教练组规定:体能测试 成绩70分以上(包括70分)为合格.

人教版数学八年级下册20.1.2中位数和众数优秀教学案例

人教版数学八年级下册20.1.2中位数和众数优秀教学案例
(二)讲授新知
1.讲解中位数的定义:将一组数据从小到大排列后,位于中间位置的数称为这组数据的中位数。
2.通过示例,讲解如何求一组数据的中位数,并强调中位数的性质和作用。
3.引入众数的概念:一组数据中出现次数最多的数称为这组数据的众数。
4.讲解众数的求法,并通过示例让学生理解众数在实际生活中的应用。
(三)学生小组讨论
2.采用自主探究、合作交流的学习方式,引导学生发现中位数和众数的求法,培养学生的问题解决能力。
3.设计具有梯度的练习题,让学生在实践中巩固中位数和众数的概念,提高学生的数学技能。
(三)情感态度与价值观
1.培养学生对数学的兴趣,激发学生学习数学的积极性,使学生感受到数学的趣味性与魅力。
2.通过对实际问题的分析,让学生体会数学在生活中的重要性,提高学生的数学应用意识。
1.让学生分成小组,讨论以下问题:
a.中位数和众数在描述数据集中趋势方面有什么区别?
b.在实际生活中,中位数和众数有哪些应用场景?
c.怎样确定一组数据的中位数和众数?
2.各小组汇报讨论成果,教师点评并给予指导。
(四)总结归纳
1.教师引导学生总结本节课所学的中位数和众数的概念、求法及应用。
2.强调中位数和众数在数据分析中的重要性,以及它们在解决实际问题中的应用。
3.引导学生认识到,掌握中位数和众数的方法能够帮助我们更好地理解数据,做出合理的判断和决策。
(五)作业小结
1.布置作业:求一组数据的中位数和众数,并写出解题思路。
2.要求学生在作业中运用所学知识,解决实际问题,提高学生的应用能力。
3.教师对学生的作业进行批改,及时给予反馈,帮助学生巩固所学知识。
五、案例亮点
在实际教学中,我以学生的生活经验为切入点,设计了一系列具有实际背景的问题,让学生在解决问题的过程中,自然地接触到中位数和众数的概念,并理解它们的含义和作用。例如,我设计了一个关于班级学生身高的问题,让学生通过计算中位数和众数,来了解班级学生的身高分布情况。通过这样的设计,学生能够更加直观地理解中位数和众数在实际生活中的应用,提高他们的学习兴趣和积极性。

人教版数学八年级下册《中位数》教学设计

人教版数学八年级下册《中位数》教学设计

人教版数学八年级下册《中位数》教学设计一. 教材分析人教版数学八年级下册中的《中位数》是统计学的一部分,主要让学生了解中位数的定义、性质和求法。

中位数是将一组数据从小到大排列后,位于中间位置的数。

它是一种描述数据集中趋势的统计量,能较好地反映一组数据的一般水平。

本节课通过中位数的概念,让学生掌握中位数的求法,并能够运用中位数解决实际问题。

二. 学情分析学生在八年级上册已经学习了平均数、众数等统计量,对统计学有了初步的认识。

但中位数的概念和求法与他们之前学习的内容有所不同,需要引导学生进行适当的过渡。

同时,学生需要具备一定的逻辑思维能力和数学运算能力,才能理解和掌握中位数。

三. 教学目标1.知识与技能:让学生了解中位数的定义、性质和求法,能运用中位数描述一组数据的一般水平。

2.过程与方法:通过实例分析,让学生学会求一组数据的中位数,培养学生的逻辑思维能力和数学运算能力。

3.情感态度与价值观:让学生感受统计在生活中的应用,培养学生的统计观念,激发学生学习数学的兴趣。

四. 教学重难点1.重点:中位数的定义、性质和求法。

2.难点:中位数的求法,以及如何运用中位数解决实际问题。

五. 教学方法1.情境教学法:通过生活实例,引导学生了解中位数的概念和作用。

2.讲授法:讲解中位数的定义、性质和求法。

3.实践操作法:让学生动手实践,求一组数据的中位数。

4.问题驱动法:引导学生思考中位数在实际生活中的应用,培养学生的统计观念。

六. 教学准备1.教学课件:制作课件,展示中位数的定义、性质和求法。

2.练习题:准备一些有关中位数的练习题,用于巩固所学知识。

3.教学素材:收集一些生活中的统计数据,用于引导学生思考中位数的作用。

七. 教学过程1.导入(5分钟)利用课件展示一组数据:3, 5, 7, 9, 11, 13, 15。

提问:“请问这组数据的中位数是多少?”让学生思考并回答。

2.呈现(10分钟)讲解中位数的定义、性质和求法。

人教版八年级下册数学知识点归纳:第二十章数据的分析

人教版八年级下册数学知识点归纳:第二十章数据的分析

人教版八年级下册数学知识点归纳
第二十章数据的分析
数据的代表:平均数、众数、中位数、极差、方差
1.解统计学的几个基本概念
总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。

2.平均数:当给出的一组数据,都在某一常数a上下波动时,一般选用简化平均数公式,其中a是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。

3.众数与中位数:平均数、众数、中位数都是用来描述数据集中趋势的量。

平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。

中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。

4.极差:用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。

5.方差与标准差:用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是
s2=[(x1-)2+(x2-)2+…+(x n-)2];
方差是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20.1.2 中位数和众数
一、教学目标:
知识与技能
1、进一步认识平均数、众数、中位数都是数据的代表。

2、通过本节课的学习还应了解平均数、中位数、众数在描述数据时的差异。

3、能灵活应用这三个数据代表解决实际问题。

过程与方法
经历探索常见的数据集中趋势的特征数的过程,感受其实际应用,掌握判断方法。

情感态度与价值观
培养数据信息培养,体会数据的集中趋势的特征数的实际应用价值。

二、重点、难点和突破难点的方法
1、重点:了解平均数、中位数、众数之间的差异。

2、难点:灵活运用这三个数据代表解决问题。

三、教学过程
活动一:创设问题情境,引入新课。

歌唱比赛有二十位评委给选手打分,统计每位选手得分时,会去掉一个最高分和一个最低分,这样做,肯定不会对所有评委打分的哪一个统计量产生影响?
活动二:探究新知
甲、乙、丙三个家电厂在广告中都声称,他们的某种电子产品在正确使用的情况下,使用寿命都不低于8年.后来质量检测部门对他们的产品进行抽查,分别抽查的8个产品使用寿命的统计结果如下(单位:年):
甲厂:6,6,6,8,8,9,9,12.
乙厂:6,7,7,7,9,10,10,12.
丙厂:6,8,8,8,9,9,10,10.
(1)把以上三组数据的平均数、众数、中位数填入下表:
(2)估计这三个厂家的推销广告分别利用了哪一种数. 甲厂利用了平均数或中位数;乙厂利用了平均数或中位数;丙厂利用了平均数、众数或中位数.
(3)如果你是顾客,应该选哪个厂家的产品?为什么? 选丙厂的产品.因为无论从哪种数据看都是最大的,且多数的使用寿命达到或超过8年.
活动三:小结
平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应引起平均数的变动.
中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中,也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.
众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势.
活动四:知识拓展
(1)平均数、中位数、众数都是描述一组数据的集中趋势的量.
(2)平均数反映一组数据的平均水平,与这组数据
中的每个数据都有关,是最为重要的量.
(3)中位数不受个别数据的影响,当一组数据中的个别数据变动较大时,一般用它来描述其集中趋势.
(4)众数只与数据出现的频数有关,不受个别数据影响,有时是我们最为关心的统计量.
活动五:例题讲解
例1:为了从张明、王龙两名学生中选拔一人参加“希望杯”数学竞赛,在相同条件下对他们的数学知识进行了5次测验,成绩如下:(单位:分)
〔解析〕把这组数据按大小关系排列,中间位置的数是中位数;出现次数最多的数是众数.
(1)张明同学成绩的众数是多少分?王龙同学成绩的中位数是多少分?
解:(1)张明成绩中96分最多,
所以其众数是96分;
王龙成绩从小到大排列为(单位:分):
84,90,92,94,100,所以中位数是92分.
(2)分别求出这两位同学成绩的平均分数;
〔解析〕 平均数是总分除以次数
解: 张明的平均分数是
92869696100945++++=
王龙的平均分数是 94100929084925++++=
(3)如果测验分数在95分(含95分)以上为优秀,那么他们的优秀率分别是多少?
解:张明的优秀率为 3/5 =60% 王龙的优秀率为 1/5=20%
(4)你认为应选哪名同学去参加“希望杯”数学竞赛?说说你的理由.
〔解析〕根据优秀率等综合选拔.
选张明去参加数学竞赛,因为他的平均分和优秀率都高.
[解题策略] 此题是一道综合应用题,掌握中位数、众数、平均数和优秀率等概念及计算方法是关键,同时会用它们对问题进行分析得出结论.
例2:某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:
17 18 16 13 24 15 28 26 18 19 22 17 16 19 32 30 16 14 15 26 15 32 23 17 15 15 28 28 16 19
(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均月销售额是多少?
从表和图中可以看出,样本的数据的众数是15,中位数是18,利用计算器求得这组数据的平均数约是20,可以推测,这个服装部营业员的月销售额为15万元的人数最多,中间的月销售额是18万元,平均月销售额大约是20万元.
(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.
这个目标可以定为每月20万元(平均数).因为从样本
数据看,在平均数、中位数和众数中,平均数最大,可
以估计,月销售额定为每
月20万元是一个较高目标,大约会有 1/3 的营
业员获得奖励.
(3)如果想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.
月销售额可以定为每月18万元(中位数),因为
从样本情况看,月销售额在18万元以上(含18万元)
的有16人,占总人数的一半左右,可以估计,如果月销
售额定为18万元,将有一半左右的营业员获得奖励.
活动六:课堂小结
活动七:课堂练习
1.某中学开展“八荣八耻”演讲比赛活动,九
(1)、九(2)班根据初赛成绩各选出5名选手
参加复赛,两个班各选出的5名选手的复赛成
绩(满分为100分)如图所示.(1)根据上图填
写下表:
(2)结合两班复赛成绩的平均数和中位数,分析哪一个班级的复赛成绩较好;
从平均数来看两班成绩一样,从中位数来看,(1)班大于(2)班,综合得出(1)班复赛成绩较好.
(3)如果在每班参加复赛的选手中分别选出2人参加决赛,你认为哪个班的实力更强一些,并说明理由.
(2)班实力更强一些,因为(2)班有2人100分,而(1)班第一名100分,第二名85分.
2.某公司有10名销售业务员,去年每人完成的销售额情况如下表:(1)求10名销售业务员销售额的平均数、中位数和众数;(单位:万元)
314352617181101 5.6(10⨯+⨯+⨯+⨯+⨯+⨯+⨯=万元); 这些数据处于中间位置的两个数字分别为5和5,故中位数为5万元;该组数据中出现次数最多的是4,故众数为4万元.
(2)为了调动员工积极性,公司准备采取超额有 奖措施,则把标准定为多少万元时最合适? 为了调动员工积极性,公司准备采取超额有奖措施,把标准定为5万元时最合适,这样多数人都能达到这个标准,又不至于让绝大多数人拿到奖金,如果把众数4万元作为标准则太低.
活动八:作业布置
活动九:教后反思。

相关文档
最新文档