钢结构焊接残余应力分析
高强度钢结构焊接残余应力的数值计算
坡 口的多 道 焊 接 接 头 的残 余 应 力 分 布形 态 .对 于 极
厚板 多道 焊 焊 接 接 头 .其最 大 残 余 应 力 出 现在 最 后
一
目前 .比较 实 用 的 焊 接 残 余 应 力 分 析 方 法包 括
解 析 方 法 、残 余 塑 变法 和 固有 应 变 法 、热 弹 塑性 有
徐 济进 等人 采用 三维 固有应 变 有 限元方 法分 析 大型
焊接 是 将金 属 材料 零 件 连接 成 构件 的重要 方 法 大 多 数 焊接 过程 的技 术 核 心 是 将被 连 接 件 的表 面局 部 加热 熔化 ,随后 是 连续 地 冷却 ,而且 升 温速 度 高 、
冷 却 速 度快 .形 成 与 普 通 热 处 理 过程 大不 相 同 的特 殊 热循 环 由 于高 度 集 中的 瞬 时热 输 入 .在 焊 接 过 程 中 .结 构 件母 材 被 加 热 到 高 温 ,材 料 在 温 度 较 高
时 发 生 了塑 性 变 形 或 相 变 .将 不 可避 免 地 产 生 焊 接 残余 应 力 和焊 接 变 形 。焊 接应 力 和焊 接 变 形 不 但 可
筒 体 结 构 环 缝 对 接焊 的焊 接 变 形情 况 .求 得 各 条 焊
道 的纵 向残余 塑变 和 横 向残余 塑变 数 值 。钱 秀 清 等
对接 焊 的残余 应力 进行 了分 析 和研究 。A f z a a l 等人[ 1 0 ]
用 有 限元 和 试 验 方 法 研 究 了 圆柱 壳 的 残 余 应 力 陈 虎等 人 …] 对 典 型 封 闭 环 焊缝 多道 焊 焊 接 残余 应 力 进
行模 拟分 析
收 稿 日期 :2 0 1 3 — 0 8 — 1 5
浅谈焊接残余应力控制措施及消除方法
浅谈焊接残余应力控制措施及消除方法摘要:文章主要阐述了焊接结构在焊接过程中产生的残余应力及应力的消除方法,主要说了焊接残余应力的分布、焊接残余应力施工中的控制、焊后消除焊接应力的方法。
关键词:焊接残余应力控制措施消除方法前言随着焊接技术的迅速发展,在短短的几十年中焊接已是工业技术中的重要方法之一。
如建筑钢结构、压力容器、船舶、车辆等中几乎全部用焊接代替了铆接。
部分过去一直用整铸整锻方法生产的大型毛坯也改成了焊接结构,焊接技术不仅大大减化了生产工艺,而且还降低了很多成本。
但是实际焊接中也存在不少问题,如焊接的内应力、焊接结构的变形、焊接结构的脆性断裂、焊接结构的疲劳强度等都直接影响着焊接的质量。
本文就对焊接残余应力进行具体分析。
一、焊接残余应力的分布在厚度不大(δ<15-20mm)的常规焊接结构中,残余应力基本上是双轴向的,厚度方向上的应力很小。
只有的大厚度的焊接结构中,厚度方向的应力才比较大。
焊接应力分别有焊缝方向的纵向应力、垂直焊缝方向的横向应力和厚度方向的应力。
二、焊接残余应力施工中的控制在焊接过程中采用一些简单的工艺措施往往可以调节内应力,降低残余内应力的峰值,避免在大面积内产生较大的拉应力,并使内应力分布更为合理。
这些措施不但可以降低残余应力,而且也可以降低焊接过程中的内应力。
因此有利于消除焊接裂纹。
现在把这些措施分述于后:1、采用合理的焊接顺序和方向尽量使焊缝能自由收缩,先焊收缩量比较大的焊缝。
如带盖板的双工字钢构件,应先焊盖板的对接焊缝,后焊盖板和工字钢之间的角焊缝,使对接焊缝能自由收缩,从而减少内应力。
先焊工作时受力较大的焊缝,如在工地焊接梁的接头时,应先留出一段翼缘角焊缝最后焊接,先焊受力最大的翼缘对接焊缝,然后焊接腹板对接焊缝,最后再焊接翼缘角焊缝。
这样的焊接次序可以使受力较大的翼缘焊缝预先承受压应力,而腹板则为拉应力。
翼缘角焊缝留在最后焊接,则可使腹板有一定的收缩余地,同时也可以在焊接翼缘板对接焊缝时采取反变形措施,防止产生角变形。
试析焊接残余应力对钢结构性能的影响作用
试析焊接残余应力对钢结构性能的影响作用作者张红随着社会经济及科学技术的发展,钢结构以其材料强度高、自重轻、延性及抗震性好、工业化程度高、施工速度快等多个优点在现代化建设中得到了广泛的应用。
钢结构是利用钢材设计制作成构件后通过一定的连接方式将构件连接形成的,焊接是常用的钢构件连接方法,焊接过程中产生的焊接残余应力对钢结构有着较大的影响,是实际工程中需关注的主要问题之一。
1焊接残余应力的产生原因焊接残余应力产生的主要原因是焊接过程中的局部不均匀热输入。
按应力分布形式分以下三种:1.1纵向残余应力沿焊缝长度方向的残余应力称为纵向残余应力(如下图1),钢材焊接是一个不均匀的加热和冷却过程,在焊接时,温度很高的焊缝及其附近区域和温度较低的临近区域会产生不均匀的温度场,进而产生不均匀的膨胀,低温度区的钢材膨胀小,限制高温度区钢材膨胀,产生热塑性压缩,冷却时,焊缝两侧钢材又会限制塑性压缩引起的焊缝缩短,产生纵向拉应力,由于焊接残余应力是一种内应力,无荷载作用,需要在焊件内部自相平衡,从而导致焊件上距焊缝稍远产生压应力。
图1纵向残余应力分布图2横向残余应力分布1.2横向残余应力横向残余应力是指垂直于焊缝方向的残余应力(如上图2),受到塑性压缩焊缝的纵向收缩可使焊缝两侧的钢板形成反向弯曲变形,在两块钢板间会产生横向的拉应力,同时钢板的两端形成压应力;焊接时,焊缝焊接的先后顺序不同,先焊接的焊缝先凝固,可限制后焊接焊缝的膨胀,引起横向塑性压缩变形,冷却时,先焊接已凝固的焊缝限制后焊接焊缝的收缩形成横向拉应力,同时最后焊接的焊缝末端产生拉应力,两块钢板间的横向拉应力及两端的压应力与先焊接焊缝的横向拉应力及焊缝末端的拉应力合成最终形成焊缝的横向应力。
1.3沿厚度方向的残余应力焊件采用厚钢板时,焊接时需要多层施焊,由于焊接时不同厚度方向的温度分布不均匀,冷却时表面冷却较中间快,可在焊缝中间层形成拉应力,在外层形成压应力,从而形成除纵向和横向残余应力外的沿厚度方向的残余应力。
钢结构焊接残余应力产生的原因
钢结构焊接残余应力产生的原因1. 概述钢结构焊接残余应力是指焊接过程中产生的应力,其主要原因有以下几个方面。
2. 材料本身的性质钢材具有较高的热导率和热膨胀系数,当焊接时,焊缝附近会受到高温热源的加热,导致局部区域温度升高。
由于热膨胀系数的差异,焊接区域与周围区域的线膨胀不一致,产生残余应力。
3. 焊接过程中的温度变化焊接过程中,焊缝区域会经历高温、中温和低温阶段的温度变化。
在高温阶段,焊缝区域受到热源的加热,温度升高,材料发生热膨胀。
在冷却过程中,焊缝区域受到快速冷却的影响,温度迅速下降,材料发生收缩。
这种温度变化导致焊接区域产生应力。
4. 焊接变形引起的应力焊接过程中,焊缝区域会发生热胀冷缩变形,导致焊接件产生塑性变形。
塑性变形会引起应力集中,从而产生残余应力。
5. 焊接过程中的约束焊接过程中,焊接件通常由多个部件组成,这些部件之间会存在约束。
约束会限制焊接件的自由变形,导致焊缝区域产生应力。
6. 焊接工艺参数的选择焊接工艺参数的选择直接影响焊接过程中的温度变化和应力分布。
不合理的焊接工艺参数选择会导致焊接残余应力的产生。
7. 焊接残余应力的影响焊接残余应力对钢结构的性能和使用寿命有着重要的影响。
它可能导致焊接件的变形、开裂和疲劳破坏等问题。
7.1 变形焊接残余应力会引起焊接件的变形,导致尺寸偏差和形状不规则,影响钢结构的装配和使用。
7.2 开裂焊接残余应力会使焊接区域的应力超过材料的承受能力,导致开裂的产生。
开裂会降低钢结构的强度和耐久性。
7.3 疲劳破坏焊接残余应力会使焊接区域的应力集中,从而导致疲劳破坏的产生。
疲劳破坏是由于应力循环加载引起的,会减少钢结构的使用寿命。
8. 焊接残余应力的控制与消除为了减少焊接残余应力的影响,可以采取以下措施:8.1 合理选择焊接工艺参数合理选择焊接工艺参数,控制焊接过程中的温度变化和应力分布,减少焊接残余应力的产生。
8.2 采用预加热和后热处理通过预加热和后热处理,可以改变焊接区域的温度分布,减小焊接残余应力的大小。
建筑钢结构焊接残余应力的有限元预测与控制3篇
建筑钢结构焊接残余应力的有限元预测与控制3篇建筑钢结构焊接残余应力的有限元预测与控制1建筑钢结构焊接残余应力的有限元预测与控制建筑钢结构作为施工中常用的一种结构材料,在工程中扮演着至关重要的角色。
随着工程结构的不断复杂化和精度的提高,建筑钢结构在建设中所遭受的挑战也越来越多。
其中,建筑钢结构焊接残余应力的问题已经成为制约其使用的重要性问题之一。
焊接残余应力会导致结构失去平衡、刚度降低、易发生疲劳断裂和变形,甚至引发塑性坍塌等重大事故,因此建筑钢结构焊接残余应力的预测与控制显得十分必要。
有限元方法是当下理论分析的一种重要方法,它将一个复杂的结构分割成有限个单元,用数学模型对每一个单元进行分析。
通过运用计算机模拟技术,可以对建筑钢结构焊接残余应力进行有限元模型计算,既能够确定焊接残余应力的大小和分布情况,也可通过改变焊接工艺和条件的相应参数,从而实现焊接残余应力的控制的目的。
建筑钢结构焊接残余应力的预测与控制,离不开正确的计算方法和理论支持。
首先需要标准化设计和施工操作,遵守焊接规范和标准,保证焊接工艺符合设计和建设要求。
同时还应根据工程实际情况进行参数分析和优化设计,确保结构牢固、稳定,最大程度地减少焊接残余应力对建筑钢结构的危害。
对于建筑钢结构的设计者和工人而言,掌握一定的实际技能及理论知识显得尤为重要。
他们需要对材料的物理特性和焊接工艺进行充分了解,熟练掌握相关的计算方法和理论,从而能在实践中发挥更大的作用。
在建筑钢结构施工过程中,应配备专业焊接技术人员,使用适当的材料和设备,采用有效的检测和控制措施,来降低建筑钢结构焊接残余应力的风险。
总之,建筑钢结构焊接残余应力的有限元预测和控制是现代建筑工程中一项非常重要的技术,它对于保障人民生命财产安全起到了至关重要的作用。
随着建筑行业的不断发展,有限元方法也将不断完善,我们有理由相信,通过我们的不懈努力,建筑结构焊接技术必将取得更好的发展与应用在建筑钢结构焊接工程中,焊接残余应力是一个非常重要的问题。
浅析钢结构焊接变形与残余应力控制方法
浅析钢结构焊接变形与残余应力控制方法摘要:在国内建筑工程中,钢结构作为建筑结构主体结构框架,具有绿色环保、空间大和强度高等特点,在网架结构和塔桅建筑、超高层建筑以及大型工业厂房中等建筑工程中得到广泛应用。
随着建筑结构超高层化和大跨度化,高性能钢材应用增多,分析和讨论建筑钢结构焊接生产效率,对于提高建筑工程质量和效率具有重要意义。
关键词:钢结构; 焊接变形; 残余应力; 控制方法引言在钢结构工程的焊接施工中难免会出现焊接应力和焊接变形的情况,这对于焊接接头的强度以及焊接结构尺寸的精度都会产生一定的影响,严重的话会导致构件报废。
此外,钢结构在日后使用中的承载力也与焊接应力与焊接变形有着很大的关联。
因此相关施工人员要切实把握好焊接技术,加强对焊接重难点的技术控制,采取有效措施提高钢结构的质量。
1焊接变形和残余应力(1)焊接变形是焊接过程中不可避免的,施焊电弧高温引起钢构件在焊接处发生缩短、弯曲及角度等变化,即焊接变形。
焊接变形可分为两种形式,一种是因高温导致的变形,该变形在温度冷却后可恢复,为瞬时变形;第二种是因焊接作业产生的永久性变形。
焊接变形对结构安装的精确度影响较大,产生焊接变形极易导致结构无法安装。
(2)残余应力产生于钢构件的焊接及热影响区域,其对钢构件最直接的影响是降低构件的承载能力和增大开裂的可能性,钢构件的开裂大多发生在焊接区域。
在焊接区域,当构件的残余应力和荷载共同作用效果超过焊缝的承载力时,焊缝处就开始产生裂纹,并逐渐扩大成裂缝,构件也就易从裂缝处产生断裂,而此时构件承受的荷载并未达到其极限承载力,却因焊缝的断裂导致整个构件的失效。
2造成导致钢结构发生焊接变形的原因(1)焊接工艺。
即使是材料相同、设备相同,不同工人在焊接过程中,由于焊接工艺会造成焊接变形的出现。
比如焊接过程中,预热时应该结合当地的实际温度、光照亮度等多种因素进行确定等。
由此可见,钢结构的焊接变形受到焊接工艺的影响比较大。
钢结构焊接中的残余应力分析方法
能够兼顾计算精度和计算效率,适用于大型复杂 焊接结构的残余应力分析。
03
钢结构焊接中的残余应力测量技术
X射线衍射法
01
02
03
04
原理
利用X射线在晶体中的衍射现 象,通过测量衍射角的变化来 计算残余应力。
优点
非破坏性测量,对试样无损伤 ,可测量小区域和复杂形状的 构件。
缺点
设备昂贵,操作复杂,需要专 业人员进行操作和分析。
将数值模拟得到的残余应力分布结果与实验结果 进行对比分析,验证模拟的准确性。
模拟结果优化
针对误差来源进行模拟结果的优化和改进,提高 数值模拟的精度和可靠性。
ABCD
误差来源分析
分析数值模拟中可能存在的误差来源,如模型简 化、材料参数不准确等,并提出改进措施。
工程应用探讨
探讨数值模拟在钢结构焊接残余应力分析中的工 程应用前景和局限性。
原理
利用超声波在材料中的传播速 度与应力之间的关系,通过测 量超声波传播速度的变化来计
算残余应力。
优点
设备相对简单,操作方便,可 实现在线测量。
缺点
对材料表面粗糙度和温度等因 素敏感,测量结果易受干扰。
应用范围
适用于各种金属材料和构件的 表面残余应力测量。
应变片法
原理
在构件表面粘贴应变片,通过测量应 变片电阻值的变化来计算残余应力。
求解过程
采用合适的数值方法求解边界积分方 程,得到焊接过程中的温度场和应力
场分布。
材料本构关系与热源模拟
定义材料的本构关系和焊接热源模型 ,以模拟焊接过程中的热力学行为。
结果分析与验证
对求解结果进行可视化处理和数据分 析,评估残余应力的分布和影响,并 与实验结果进行对比验证。
钢结构焊接残余应力的X射线衍射法定量测试
1 5 6 . 4 5 。 , 校准仪器状态, 直到对标准试样的测试值在± 8 M P a 以内。 电阻 应变片采用半桥连接法, 并加温度补偿片。
矿
2 1 1 G P a , v - - 0 . 3 0 ) 应力测量值相差 4 %, 表1 中的测量值是采用等强度梁 实际弹性模量和泊松 比计算的结果。 由于电阻应变片和应变花只能测量应力的变化量,所以将未加载 时的等强度梁应力平衡为 0 ,而 X R S A可以测等强度梁本身的残余应 力, 在后面的加载和卸载中测量的也是梁内部的真实应力值 , 是初始残 余应力和载荷应力叠加的结果 ,更接近于梁实际的应力水平。由图 2 , X R S A测量的变化趋势与理论值基本一致。为了将 X R S A的测量值与 理论值进行对比, 将 换算为初始应力为 0 的等效应力 。 由于经过 校准的仪器的结果误差在+ 8 M p a 以内, 所以当测量值小于 3 0 MP a 时, 测 量的标准偏差较大 ; 而对于 3 0 M P a 以上的应力 , 仪器的标准偏差基本都 小于 1 0 %, 具有较好的准确度。 实验表明, X R S A对较大残余应力( > 3 0 M P a ) 的测量标准偏差基本 在1 0 %以内, 满足项 目对球罐残余应力的定量测试要求, 但对于较小的 残余应力( < 3 0 MP a ) 的测量 由于受仪器本身系统误差的影响, 导致标准 偏差较大。 2表面处理对 X射线衍射法定量测试的影响 实验采用j E 京万泰机电技术开发公司生产 的 D C 一 3 0 2 A型便携式 电解抛光仪 , 电解质为 1 0 %N 0 a C I 溶液, 采用恒流模式 , 每抛光 l m i n 使
钢结构残余应力测定中应力释放系数的有限元分析
不 同板厚 的分析 , 发现应力释放 系数 A 随板厚增 大而增 大, B则相反。 关键词 :钢结构 盲孔法 中图分类号 : TU3 1 4 1. 1 应力释放 系数 有 限元 文章编 号 :O4 15 2 1 )3 0 2 3 1 0 —6 3 (0 2o 一O 5 一O 文献标识 码 : A
d cess s / cess whl vr t no oe i tr k tl i lec nA dB b oue a e f a dBsihl i— er e di r e - i ai i h l da e elt f ne a .A slt v l n g t a aD n a e ao f me ma i e n u o n u o A l yn
冯 文 鲑
( 同济大学建筑工程系
上海
20 9 ) 0 0 2
摘 要 : 盲孔 法是测 量钢 结构残余应力 的高效简单 的方 法, 应力释放 系数 A、 B对 盲孔法测量 结果 的精确 性有重 要意义 。应用有 限元分析软件 ANs S 建立 带盲孔 的板件 的有限元模型 , Y, 施加单 向均 匀拉伸应力场 , 对盲孔 法应力释放 系数 A、 的测定进行 有 B 限元分析计算 。通过对测量 距离 D、 孔径 、 孔深、 等参 数的分 析 , 发现盲孔 附近应力释放 大致 在 D/ <5范围 内, 此范 围 内, B d 在 A、
d ne h t h t s ees go ru dte oegn rl y mo gwh r D d 5 ntiae , bouevleo n ecdta tesr srl i r inao n l e eal l s e an e g hh y a a n ee / < .I s ra a slt au f a dB h A
钢结构的焊接残余应力与消除方法
钢结构的焊接残余应力与消除方法摘要:钢结构在焊接的过程中,经常会有焊接参与应力的存在,这会对其总体的施工质量及使用质量产生一定的影响,为了消除这种焊接残余应力,要对其形成原因及影响因素进行分析,在此基础上提出相关的消除措施,本文就针对此予以简单分析。
关键词:钢结构;焊接残余应力;消除在钢结构的施工过程中,其中一种非常重要的施工工艺就是焊接,这是一个非常复杂的过程,其中涉及到力学、冶金、传热、电弧物理等各个学科的,在进行钢结构的焊接时,为了保证其焊接质量及各种使用性能参数,对其焊接残余应力的产生原因进行分析,并提出相关的消除方法是非常必要的。
一、焊接残余应力的概念在进行钢结构中的相关构件的焊接时,会产生一定的内应力即焊接应力,而这种焊接应力的作用时间的长短是有一定的区别的,按照其作用时间的长短有焊接残余应力与焊接瞬时应力的区别,焊接瞬时应力的作用会在焊接之后的短时间内消失,而另一部应力会在焊接结束之后残留于构件之中,继续作用,这种焊接应力就是焊接残余应力。
二、钢结构焊接残余应力的产生原因通过试验分析发现,产生焊接残余应力的原因是多种多样的,对其主要的产生原因进行分析,可以得出以下几点:(1)焊接方法及焊接顺序的不合理会导致焊接残余应力的出现,尤其是对于一些焊接部位较多,焊接程序复杂的构建来说,采用不同的焊接顺序进行焊接,最终产生的焊接应力也是不尽相同的。
(2)焊接工艺参数设置不合理,在构件的焊接过程中,需要综合考虑构建的结构、材质、厚度等各种因素才能进行焊接方法的选择及焊接参数的设置,否则很容易在焊接的过程中形成凹坑、气孔、裂纹等缺陷。
(3)焊缝的位置及数量分布的不合理,如果在构件的焊接过程中具有较多的封闭焊缝,并且不同焊缝的疏密程度具有较大差别,甚至出现焊缝的相互交叉,这种现象的存在,很容易导致较大焊接残余应力的产生。
(4)焊缝的接头形式、尺寸等设计不合理,焊缝尺寸的大小与焊接应力的大小有着直接的关系,并且焊接间隙、焊接坡口形式、焊接零件之间的搭接方式等都会对焊接残余应力的大小产生直接的影响。
浅谈钢结构焊接残余应力及焊接变形控制
浅谈钢结构焊接残余应力及焊接变形控制钢结构焊接在安装过程中较为常见,焊接连接在具有其独特的优点的同时,也存在着其不可避免的缺陷,即焊接残余应力及焊接变形。
本文就施工现场的工艺钢结构及炉壳焊接,结合连续退火炉结构安装工程实际,浅谈焊接的残余应力及焊接变形的原因,以及现场施工过程中如何控制及解决办法。
标签:钢结构;焊接;应力;变形;控制措施【Abstract】Steel structure welding is more common in the installation process,welding connection has its unique advantages,but at the same time it also has the inevitable defects,namely welding residual stress and deformation. This article is showing the reasons of residual stress of welding and welding deformation ,and also give methods to control and solve the problem what is said above in the process of the construction site ,according to the scene of the process steel structure and the furnace shell welding,combined with the engineering practice of the furnace structure installation of Continuous Annealing Line.【Key Words】steel structure,welding,stress,deformation ,control measures引言:焊接连接是钢结构主要的连接方法,其优点是构造简单、不削弱构件截面、节约钢材、加工方便、易于采用自动化操作、密封性好、刚度大等特性。
钢结构焊接残余应力及焊接变形控制技术分析
内燃机与配件0引言焊接是钢结构材料的主要连接方法,其具有操作简单、连接快速以及节约钢材等优点,被广泛地应用于钢结构的连接过程中。
但是在实际的焊接过程中,钢结构的焊接质量会受到多种因素的影响,当没有将这些不利因素控制在合理范围内,就会导致钢结构的焊接质量发生不同程度的降低,甚至导致其焊接质量不合格,无法满足安全生产的要求。
通过对钢结构焊接的整个过程进行系统全面的分析,明确焊接残余应力和变形的形成原因,进而采取有针对性的改善措施,从而确保钢结构的焊接质量符合要求。
1钢结构焊接残余应力的形成分析1.1钢结构材料性能以及力学性能不达标钢结构在进行焊接的过程中,其所受到的焊接加热温度分布不均匀,这就会导致钢结构在横向或纵向梯度上出现一定的残余应力。
钢结构加热温度不均匀主要是由钢结构材料性能以及力学性能不达标造成的,首先,不同的金属材料在受热时的温度感应不尽相同,进而导致结构的比热容发生变化,进而导致焊接部位出现变化;其次,钢结构焊接部位的密度、导热系数以及热膨胀系数等也会对热传导造成影响,进而导致钢结构中出现残余应力。
1.2热源不同热源对于钢结构的焊接质量也具有十分重要的影响,当采用不同的热源进行焊接操作时,就会导致钢结构在焊接过程中的受热情况不同,进而可能导致钢结构中出现残余应力。
在钢结构实际的焊接过程中,当前所采用的热源一般为电能和化学能两种不同的形式,进而在焊接过程中形成电弧焊热源和电子束热源。
当焊接钢结构的过程中,所采用的热源之间存在较大差异时,就会导致在钢结构中形成的温度场也具有明显的区别,进而造成焊接后的钢结构中形成残余应力以及发生不同程度的变形。
1.3其它因素钢结构残余应力的形成除了受到以上两种因素的影响,还会受到其他因素的不利影响,这与钢结构自身的情况和焊接环境具有一定的关系。
当钢结构进行焊接操作之前,对其内部的构件进行一定的轧刹处理,也会对钢结构的焊接过程造成不同程度的影响,进而导致残余应力的出现。
焊接残余应力和焊接变形对钢结构的影响以及消除和调整的措施
焊接残余应力和焊接变形对钢结构的影响以及消除和调整的措施作者:李廷凯李玉振来源:《世界家苑》2018年第02期摘要:随着焊接技术也已经发展的越来越普及,但是焊接残余应力和焊接变形对钢结构的影响非常大,必须加强对焊接质量研究。
本文对焊接残余应力和焊接变形对钢结构的影响以及消除和调整进行了探讨分析。
关键词:焊接残余应力;焊接变形;钢结构;消除和调整1 焊接残余应力产生的原因1.1 塑性压缩造成的纵向残余应力在焊接的过程中,由于温度上的差距,焊缝及其周围都会受到因热膨胀和周围温度较低的金属的拘束,从而产生压缩塑性应变。
当焊接完成之后,温度骤减,母性材料就会制约着焊缝和近缝区域之间的收缩,这就在很大程度上导致了残余应力的存在。
并且残余应力的范围将会和高温环境下造成的塑性范围相一致,弹性拉伸区域和残余拉应力也是相对应的。
从这些都可以看出来,塑性压缩就是造成焊接过程中纵向残余应力的主要原因。
1.2 塑性压缩的应变导致的横向残余应力塑性压缩的应变,除了能够说成是造成纵向残余应力的主要原因,同时也能理解为造成横向残余应力的原因之一,但是造成横向残余应力的主要原因是母材的收缩。
当对母材进行焊接时,母材会出现膨胀现象,并且当焊接缝的金属材料逐渐形成固体时,膨胀中的母材必定会受到压缩,这种塑性压缩是横向收缩中的重要的一部分,焊缝自身那一小部分收缩仅仅只占到横向收缩的十分之一左右。
主要的横向收缩那部分存在于焊接缝沿着焊缝轴线进行切割后的中心区域,那才是拉应力中的横向应力。
2消除残余应力的方法2.1 热处理的方法这种方法对于焊件的性能有着至关重要的作用,它不仅可以消除残余应力,还能够改进焊接接头的性能。
热处理方法就是在焊件还处在高温条件下的时候,去降低屈服点和蠕变现象,从而实现去除残余应力的一种方法。
这种方法分为两个步骤,首先就是总体热处理,其次是局部热处理。
在总体热处理的过程中,加热的温度和保温时间和加热以及冷却速度都会影响到去除焊接残余应力的效果。
钢结构焊接残余应力的影响因素与控制
钢结构焊接残余应力的影响因素与控制摘要焊接残余应力对钢结构的刚度、稳定性、疲劳性能产生影响。
焊接残余应力的影响因素、控制。
关键词焊接残余应力;因素;控制钢结构焊接是局部被高温加热、熔化,加热区域受热膨胀,随后连续冷却收缩凝固的过程。
过程中焊件存在应力场、温度场和变形场及显微组织状态场的变化,且相互影响。
当产生的热应力、相变应力、超过材料屈服极限时,在焊缝及近焊缝区产生拉应力和母材的压应力在数值上达到自身平衡时的应力状态,称为焊接残余应力。
焊接残余应力沿焊缝横向、纵向及板材厚度方向分布,对钢结构的刚度、稳定性、疲劳性能产生影响。
1 焊接残余应力的影响因素1)焊接热源。
焊接时对焊件进行局部加热,热源中心温度达1600 ℃以上,焊件上每一点距焊缝的距离不同,其温度在瞬间都在变化,温度场随时改变。
且热输入的不均匀性更增加了焊件的温度梯度,影响焊接残余应力的大小。
焊件冷却时一般是在自然条件下进行的,从800 ℃冷却至500 ℃所需的时间t8/5决定热影响区域的金相组织,影响焊接残余应力、应变的大小。
2)焊接材料。
母材的熔化温度Tm高时引起高的焊接残余应力。
线膨胀系数a、弹性模量E、屈服强度σS随温度变化,影响焊接残余应力的大小。
不同的母材其变化的总体规律是:高温条件下线膨胀系数α随温度的增加而呈线性增加;屈服强度σS、弹性模量E根据母材的不同在不同的温度区间呈曲线或直线下降。
3)相变时比容变化。
钢材加热及冷却发生相变引起比容及性能的变化。
一般情况下钢材由奥氏体转变为铁素体、珠光体的温度在700 ℃以上,不影响残余应力。
但随着冷却速度的加快或合金及碳元素的增加,在低温下发生γ-α相变,体积膨胀,产生压缩焊接残余应力。
4)焊接参数。
正常焊接条件下,在保持焊接电流不变的情况下,提高焊接速度,焊接温度场变细长,温度梯度增加,焊接残余应力增大;在保持焊接速度不变的情况下,增大焊接电流,焊接温度场变长且宽,温度梯度增加,焊接残余应力增大。
残余应力的产生
残余应力的产生残余应力的产生、影响及防控措施崔曙东摘要:对钢结构而言,残余应力的存在,是影响结构脆断、疲劳破损和结构稳定性降低的重要因素。
本文试图对残余应力的产生、对结构的影响和如何有效降低残余应力及影响作简单分析。
关键词:残余应力脆断疲劳破损刚度稳定性1引言钢结构自问世以来,由于其具备的强度高、自重轻、抗震性能好、、施工速度快、地基基础费用省、结构占用面积少、工业化程度高等一系列优点,钢结构在建筑领域被广泛应用。
但是,也不能否认,钢结构还存在着许多缺陷和隐患,例如稳定性从一开始就一直是钢结构中无法回避的问题,还有随着钢结构建筑的深入发展,脆断和疲劳破损等问题也越来越突出。
而上述的诸多问题,无一不与构件内部的残余应力存在密切联系,本文试图从实际出发,探讨残余应力的产生过程、对结构或构件的影响以及如何有效降低残余应力及影响。
多,计算残余应力又极为复杂,因此给残余应力的研究带来了许多困难,对焊接结构的残余应力研究就显得尤为重要。
[1]2.1.1沿焊缝轴线方向的纵向焊接残余应力施焊时,焊缝附近温度最高,在焊缝区以外,温度则急剧下降。
焊缝区受热而纵向膨胀,但这种膨胀因变形的平截面规律(变形前的平截面,变形后仍保持平面)而受到其相邻较低温度区的约束,使焊缝区产生纵向压应力。
由于钢材在高温时呈塑性状态(称为热塑状态),因而高温区这种压应力使焊缝区的钢材产生塑性压缩变形,这种塑性变形当温度下降、压应力消失时是不能恢复的。
在焊后的冷却过程中,如假设焊缝区金属能自由变形,冷却后钢材因已有塑性变形而不能恢复其原来长度。
事实上由于焊缝区与其邻近钢材是连续的,焊缝区因冷却产生的收缩变形又因平截面变形的平截面规律受到邻近低温区的钢材的约束,使焊缝区产生拉应力。
这个拉应力当焊件完全冷却后仍残留在焊缝区的钢材内,故名焊接残余应力,对于低合金钢材焊接后的残余应力常可达到其屈服点。
又因截面上残余应力必须自相平衡,焊缝区以外的钢材截面内必然有残余压应力。
钢结构焊接残余应力产生的原因
钢结构焊接残余应力产生的原因引言:钢结构焊接是一种常见的连接方法,但在焊接过程中会产生残余应力。
了解焊接残余应力产生的原因对于有效控制焊接质量和延长结构寿命至关重要。
本文将就钢结构焊接残余应力产生的原因进行探讨。
一、热应力引起的残余应力焊接过程中,高温会导致焊接区域的局部膨胀,而冷却后又会收缩。
这种温度变化引起的热应力会在焊接接头中产生残余应力。
热应力主要来源于以下几个方面:1.1. 焊接热源焊接电弧产生的高温会使焊接接头局部加热,导致局部膨胀。
当焊接材料冷却后,由于不同部位的冷却速度不同,会产生不均匀的收缩,进而引起残余应力。
1.2. 焊接过程中的热传导焊接过程中,焊接热源会引发热传导,使焊接接头周围的材料温度升高。
随着温度的升高,材料的热膨胀系数也会增大,从而产生热应力。
1.3. 相变引起的体积变化在焊接过程中,金属材料会经历固态到液态的相变,这个过程伴随着体积的变化。
当焊接材料冷却后,由于相变引起的体积变化不均匀,会导致残余应力的产生。
二、冷却引起的残余应力焊接完成后,焊接接头会经历冷却过程。
冷却过程中,焊接接头会逐渐降温,从而引发残余应力。
冷却引起的残余应力主要有以下几个原因:2.1. 不均匀的冷却速度焊接接头不同部位的冷却速度不同,由于冷却速度的差异,会导致焊接接头内部产生不均匀的残余应力。
例如,焊接接头的外侧由于与外界的接触,冷却速度较快,而内部由于受到周围材料的影响,冷却速度较慢。
2.2. 不同材料的热膨胀系数不同焊接接头通常由多种材料组成,而不同材料的热膨胀系数也不相同。
在冷却过程中,由于不同材料的收缩率不同,会导致焊接接头产生残余应力。
2.3. 结构约束焊接接头通常是固定在结构中的一部分,而结构的约束会限制焊接接头的自由收缩。
当焊接接头因冷却而收缩时,受到结构的约束,会产生残余应力。
三、应力集中引起的残余应力焊接接头通常是由多个焊缝组成的,而焊缝的几何形状和尺寸会导致应力集中。
焊接残余应力产生原因分析及消除方法
焊接残余应力产生原因分析及消除方法摘要:焊接应力即是在焊接结构时由于焊接而产生的内应力,它可以依据产生作用的时间被分为焊接瞬时应力和焊接残余应力。
所谓焊接瞬时应力是指在焊接的过程中某一个焊接瞬时产生的焊接应力,它是会跟着时间的变化而发生变化的,而在焊接之后,某一个受到焊接的焊件内还残留的焊接应力被称为焊接残余应力。
关键词:焊接残余应力;原因;消除方法1产生焊接残余应力的原因之所以会产生焊接残余应力,主要是由于焊件在焊接的过程中所受到的加热是不均匀的。
按照焊接残余应力的发生来源,可将焊接残余应力分为直接应力、间接应力和组织应力三种。
(1)直接的焊接应力是焊接残余应力所产生的最主要的原因,它是受到不均匀的加热和冷却之后所产生的,根据加热和冷却时的温度梯度而发生变化。
(2)间接的焊接应力则是焊件由于焊前的加工状况造成的应力。
焊件在受到轧制和拉拔时会产生一定的残余应力。
间接的残余应力如果在某一种场合下叠加到焊接的残余应力上去,焊件受到焊接发生变形,也会将其影响附加到焊接残余应力上去。
而且,焊件一旦受到外来的某一种约束,产生相应的附加应力,也属于间接应力的范畴。
(3)组织应力也就是由相变造成的比容变化而产生的应力,它的产生是由于焊件的组织发生了变化。
虽说组织应力会由于含碳量和材料其他成分的不同而产生差异,但我们一般都会将其所产生的影响进行分析研究。
2焊接残余应力控制方法2.1焊接结构焊接是产生焊接残余应力的根本原因,减少焊缝数量和尺寸能有效减少焊接量,通过控制焊接量可有效减少应力。
在同等焊接强度下,焊缝尺寸较小的,其焊接残余应力较小。
应尽量避免多条焊缝在同一部位集中,焊缝距离过近时,焊缝间会产生耦合,形成复杂残余应力场,焊缝间距离一般应大于3倍板厚且不小于100mm。
应尽量采用刚度较小的焊接接头形式,其结构拘束度小,能够通过变形释放焊接应力,残余应力较小。
2.2焊接工艺结构组件拆分、焊前预热、焊接参数设置、焊接顺序等对焊接应力影响较大。
焊接后热处理技术及焊接残余应力的影响分析
焊接后热处理技术及焊接残余应力的影响分析焊件施焊后,结构受加热影响会出现局部塑性变形情况,温度降低后,焊件内部会残余部分应力,直接弱化工件机械强度,继而引发裂纹等不良现象。
作为技术人员试验后,应明确掌握焊接残余应力的影响因素与热处理技术,实现残余应力峰值的有效控制,确保焊接质量。
标签:焊接;热处理技术;残余应力受焊接原材料、热源等因素影响,焊接后会残余部分应力,直接降低焊接结构的静力、疲劳强度与刚度,缩短工件使用寿命。
热处理技术可有效消除焊接残余应力,但前提是合理模拟温度与应力场数值,确保焊接残余应力有效消除且处于平稳状态。
一、焊接残余应力主要影响因素1焊接原材料焊接残余应力直接受原材料熔化温度影响,两者存在正相关。
除此之外,残余应力还受弹性模量、屈服强度与膨胀系数等因素影响。
不同的原材料种类,弹性模量、屈服强度等反应不同,残余应力大小也不同。
尤其是膨胀系数,当去处于高温环境中时,温度会持续增加,呈线性增加状态[1]。
2焊接参数通常情况下,要求焊接电流不变,需要提高焊接效率,与此同时,此时焊接温度场将延长,焊接梯度、残余应力随之增加。
要求焊接速度不变,需要提升焊接电流强度,与此同时,焊接温度场长宽拓展,焊接梯度、残余应力随之增加。
3焊接热源焊接属于不均匀的局部加热过程,热源中心温度持续升高,焊缝施焊后,焊件不同点温度发生变化,温度场随之改变。
与此同时,焊件温度梯度、残余应力也受到影响。
4焊接比容焊件加热、冷却后,会出现相变作用,继而引起比容与性能等发生变化。
当钢材温度超过700℃时,会实现奥氏体、铁素体的转变,残余应力可不计,随着温度降低,碳元素数量与合金数量等不断增加,钢结构逐渐产生相变,在体积快速膨胀作用下,会形成残余应力[2]。
二、焊接残余应力对构件的危害1焊件静力强度下降焊件结构在承载力影响下,会产生一定的塑性变形能力。
屈服强度区域应力随者荷载力的增加而加大,不在屈服强度的区域应力也随之改变,此时,静力强度不受焊接残余应力影响。
建筑钢结构工程技术 2.5 焊接残余应力和残余变形
焊接残余应力和残余变形一、焊接残余应力和残余变形的成因钢结构的焊接过程是一个不均匀加热和冷却的过程。
在施焊时,焊件上产生不均匀的温度场,焊缝及附近温度最高,达1600℃以上,其邻近区域则温度急剧下降。
不均匀的温度场要求产生不均匀的膨胀和收缩。
而高温处钢材的膨胀和收缩要受到两侧温度较低、胀缩较小的钢材的限制,从而使焊件内部产生残存应力并引起变形,此即通称的焊接残余应力和残余变形。
二、焊接残余应力和残余变形(一)焊接残余应力焊接残余应力按其方向可分为纵向残余应力、横向残余应力和厚度方向残余应力。
1. 纵向残余应力。
图2-38是焊接残余应力的示例。
图2-38(a)是两块钢板平接连接,焊接时钢板焊缝一边受热,将沿焊缝方向纵向伸长。
但伸长量会因钢板的整体性,受到钢板两侧未加热区域的限制,由于这时焊缝金属是熔化塑性状态,伸长虽受限,却不产生应力(相当于塑性受压)。
随后焊缝金属冷却恢复弹性,收缩受限将导致焊缝金属纵向受拉,两侧钢板则因焊缝收缩倾向牵制而受压,形成图2-38(b)所示的纵向焊接残余应力分布。
它是一组在外荷载作用之前就已产生的自相平衡的内应力。
2. 横向残余应力。
图2-38所示两块钢板平接除产生上述纵向残余应力外,还可能产生垂直于长度方向的残余应力。
由图中可以看到,焊缝纵向收缩将使两块钢板有相向弯曲变形的趋势(如图2-38a中虚线所示)。
但钢板已焊成一体,弯曲变形将受到一定的约束,因此在焊缝中段将产生横向拉应力,在焊缝两侧将产生横向压应力,如图2-38(c)所示。
此外,焊缝冷却时除了纵向收缩外,焊缝横向也将产生收缩。
由于施焊是按一定顺序进行,先焊好的部分冷却凝固恢复弹性较早,将阻碍后焊部分自由收缩,因此,先焊部分就会横向受压,而后焊部分横向受拉,形成如图2-38(d)所示的应力分布。
图2-38(e)是上述两项横向残余应力的叠加,它也是一组自相平衡的内应力。
3. 厚度方向残余应力对于厚度较大的焊缝,外层焊缝因散热较快先冷却,故内层焊缝的收缩将受其限制,从而可能沿厚度方向也产生残余应力,形成三相应力场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉理工大学
硕士学位论文
钢结构焊接残余应力分析
姓名:李义
申请学位级别:硕士
专业:结构工程
指导教师:蒋沧如
20070401
图44有限元模型图
4.4.3温度场与应力场计算
温度场计算:不同的焊接方法,其热源分布特性各不相同,本实例分析计算中选取高按斯函数分布的热源模型。
按高斯分布公式计算出热流密度进行加载。
由于加热电弧是移动的,为了更真实地模拟焊接过程,本文采用移动的高斯热源模型。
对于移动的实现,可以采取两种方法实现。
第一种方法是利用ANSYs的APDL语-言来编写子程序,依次读取所要加载表面的节点坐标,利用ANSYS数组和函数功能,定义好相应节点位置的面载荷值,然后通过循环语句在节点上施加面载荷。
具体做法是:沿焊接方向将焊缝长度L分为N段,将各段的后点作为热源中心,加载高斯分布热源进行计算,计算时问为U(NV),每段计算为一个载荷步;在进行下一个载荷步时,需消除上一段所加的高斯热流密度,而且上一次加载计算的温度值作为下一段加载计算的初始条件。
如此循环计算即可模拟热源的移动,实现焊接瞬态温度场的计算。
第二种方法就是利用ANSYS的函数加载功能,在每个载荷步内,以热源中心点为中心,按高斯热源的变化在
面上加载,随着热源的移动,每个载荷步内的热源中心点也就相应的改变,这样通过控制热源中心点,使其随时间变化,同样可以实现模拟热源的移动。
当热源移动时,该温度场也与热源一起移动。
在焊缝上节点温度很快达到最大值.随着一些节点距离焊缝中心越远,其最高温度值越来越小。
随着冷却时间的增加,各个节点的温度逐渐趋于一致,在800s左右,温度场温度基本趋于一致,整体温度达N50℃,各单元节点之间的最大温度差值小于2℃,此时可以认为温度已经达到室温状态了。
在离热源相对远的地方,温度变化很小,温度对结构力的影响很小。
计算热源移动方向的温度曲线如下:
图4-5焊缝中心处(第191节点)温度随时问变化分布曲线
图4-6离焊缝中心0.125m处(第216节点)温随时间变化分布曲线
图4-7离焊缝中心0.25m处(第2122节点)温度随时问变化分布曲线
图4-8边界2223节点处温度随时同变化曲线
应力场计算:采用改变单元法进行计算,焊接温度场计算结束后,利用间接耦合法进行了焊接应力场模拟。
将热分析转化为结构分析,单元类型由solid70自动转化为solid45单元,同时将各个不同时刻温度场的节点温度代入到应力场中,进行计算,然后得到应力场数值模拟结果。
下为改变单元属性法程序:
/prep7
etchg,stt(变结构单元为热单元)
finish
/postl
set,i'last,1,(读取第i载荷步最后一个子步的温度值)
nsel,s,temp,1500,3000,,0(选中温度范围为1500-3000的节点)
esln,s,1(选中上述满足要求的节点所在的单元)
finish
/prep7
emodif,all,mat,1(改变上述单元的材料属性)
allsel
etchg,Its(变热单元为结构单元)
finish
边界条件的加载:首先是加载温度边晃条件,也被称为第一类边界条件,参考式(3.2),所加的温度边界条件为20"C。
其次要加载按高斯热源模型施加的热流密度边界条件,也被称为第二类边界条件,参考式(3.3)。
最后还要加载热对流边界条件,也被称为第三类边界条件,参考式“34)焊板在焊接过程中与周围空气进行热交换,应把此类边界条件加在所有焊板与空气接触的面上。
加载位移约束条件时,一般为了防止在有限元计算过程中产生刚体位移,所以必须对所建立的模型进行位移约束,而所加的约束又不能严重阻碍焊接过程中的自由变形。
边界条件加载如图4.9所示。
图4-9边界条件加载模型图
4.4.4焊接残余应力ANSYS计算结果及分析
纵向残余应力,把平行于焊缝方向的应力称为纵向应力,用吒表示
横向残余应力,把垂直于焊缝方向的应力称为横向应力,mo.表示
沿厚度方向的应力称为厚度残余应力,用以表示
图4—10纵向残余应力等值线图
图4一11纵向残余应力沿长度方向的变化曲线
图4-12横向残余应力等值线图
图4一13横向残余应力沿宽度方向的变化曲线
40
武汉理工大学硕士学位论文
图4一14厚度方向残余应力等值线图
图4一15厚度方向残余应力变化曲线
41
图5.1纵向残余应力等值线图
图5-2纵向残余应力沿长度方向变化曲线
图5-3横向残余应力等值线图
图5-4横向残余应力沿宽度方向变化曲线。