2020届高三理数一轮讲义:4.5-函数y=Asin(ωx+φ)的图象及应用(含答案)
高考数学一轮复习函数y=Asin(ωx+φ)的图象及应用
/目录
01
目录
1.函数y=Asin(ωx+φ)的有关概念
y=Asin(ωx+φ)
(A>0,ω>0)
振幅
周期
频率
A
2
T=
ω
1
ω
f= =
T 2
相位
初相
ωx+φ
φ
目录
2.用“五点法”画y=Asin(ωx+φ)(A>0,ω>0)一个周期内的简图
用“五点法”画y=Asin(ωx+φ)(A>0,ω>0)一个周期内的简图时,要找
区间.如果已知图象上有最值点,最好代入最值点求解.
目录
1.如图,函数y= 3tan 2 +
△DEF的面积为
(
π
A.
4
π
B.
2
C.π
D.2π
π
6
的部分图象与坐标轴分别交于点D,E,F,则
)
解析:A 在y= 3tan 2 +
π
6
中,令x=0,可得y=1,所以D(0,1);令y=
π
π
0,解得x= - (k∈Z),故E
,0
6
2
12
12
D. −
5π
,0
12
.
A.8π
π
−
2 6
1
图象上所有点的横坐标缩小到原来的 ,则所得函数的最
2
)
B.4π
C.2π
解析:C 所得函数解析式为y=sin
π
−
6
D.π
,周期为2π.
目录
1
3
4.函数y= sin
3
2
1
答案:
高考一轮复习:函数y=Asin(ωx+φ)的图像及应用
解析
(1)y=2sin(2x+)的振幅 A=2,周期 T= =π,初相φ=.
(2)令 X=2x+ ,则 y=2sin(2x+ )=2sin X.
高考总复习·数学(理科)
列表如下:
x
-
X
0
y=sin X
0
解析
数 f(x)的图象向左平移 个长度单位后得到 g(x)=2cos[ω
(+)
]的图象,且
(x+ )+]=2cos[ωx+
(+)
=kπ,k∈Z,所以ω的最小值是
答案
1
1.
g(x)为偶函数,所以
高考总复习·数学(理科)
见《自学听讲》P74
已知函数 f(x)=5sin(ωx+φ)(ω>0,|φ|<)满足
解析
+
由图象可以得出当 x=
= ,把 x= ,代入
f(x)=2sin(2x+φ)+1=1,得 sin(2× +φ)=0,从图象可以看出在该
点处图象往下走.
∴ +φ=π+2kπ,k∈Z,φ=2kπ+,又∵|φ|<,
∴φ= ,∴f(x)=2sin(2x+ )+1.
∞)
初相
φ
高考总复习·数学(理科)
2020版高考数学一轮复习 函数y=Asin(ωx+φ)的图象及应用讲义理(含解析)
第4讲函数y=A sin(ωx+φ)的图象及应用1.“五点法”作函数y=A sin(ωx+φ)(A>0,ω>0)的简图“五点法”作图的五点是在一个周期内的最高点、最低点及与x轴相交的三个点,作图时的一般步骤为:(1)定点:如下表所示.(2)作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y=A sin(ωx+φ)在一个周期内的图象.(3)扩展:将所得图象,按周期向两侧扩展可得y=A sin(ωx+φ)在R上的图象.2.函数y=sin x的图象经变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象的步骤1.概念辨析(1)将函数y =3sin2x 的图象左移π4个单位长度后所得图象的解析式是y =3sin ⎝⎛⎭⎪⎫2x +π4.( ) (2)利用图象变换作图时,“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( )(3)将函数y =2sin x 的图象上所有点的横坐标缩短为原来的12,纵坐标不变,得函数y=2sin x2的图象.( )(4)由图象求解析式时,振幅A 的大小是由一个周期内图象中最高点的值与最低点的值确定的.( )答案 (1)× (2)× (3)× (4)√ 2.小题热身(1)函数y =2sin ⎝ ⎛⎭⎪⎫2x +π4的振幅、频率和初相分别为( ) A .2,1π,π4B .2,12π,π4 C .2,1π,π8D .2,12π,-π8答案 A解析 函数y =2sin ⎝⎛⎭⎪⎫2x +π4的振幅是2,周期T =2π2=π,频率f =1T =1π,初相是π4,故选A.(2)用五点法作函数y =sin ⎝⎛⎭⎪⎫x -π6在一个周期内的图象时,主要确定的五个点是________、________、__________、________、________.答案 ⎝⎛⎭⎪⎫π6,0⎝ ⎛⎭⎪⎫2π3,1⎝ ⎛⎭⎪⎫7π6,0⎝ ⎛⎭⎪⎫5π3,-1⎝ ⎛⎭⎪⎫13π6,0解析 列表:五个点依次是⎝ ⎛⎭⎪⎫π6,0、⎝ ⎛⎭⎪⎫2π3,1、⎝ ⎛⎭⎪⎫7π6,0、⎝ ⎛⎭⎪⎫5π3,-1、⎝ ⎛⎭⎪⎫13π6,0.(3)将函数f (x )=-12cos2x 的图象向右平移π6个单位长度后,再将图象上各点的纵坐标伸长到原来的2倍,得到函数y =g (x )的图象,则g ⎝⎛⎭⎪⎫3π4=________.答案32解析 函数f (x )=-12cos2x 的图象向右平移π6个单位长度后得函数y =-12cos2⎝ ⎛⎭⎪⎫x -π6=-12cos ⎝ ⎛⎭⎪⎫2x -π3,再将图象上各点的纵坐标伸长到原来的2倍,得到函数g (x )=-cos ⎝ ⎛⎭⎪⎫2x -π3,所以g ⎝ ⎛⎭⎪⎫3π4=-cos ⎝ ⎛⎭⎪⎫3π2-π3=sin π3=32.(4)(2018·长春模拟)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为________.答案 f (x )=2sin ⎝⎛⎭⎪⎫2x +π3 解析 由图象可知A =2,T 4=7π12-π3=π4,所以2πω=π,ω=2,所以f (x )=2sin(2x+φ),又f ⎝⎛⎭⎪⎫7π12=-2,所以2×7π12+φ=2k π+3π2,k ∈Z ,φ=2k π+π3,k ∈Z ,又|φ|<π,所以φ=π3,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +π3.题型 一 函数y =A sin(ωx +φ)的图象及变换1.(2017·全国卷Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2答案 D解析 由C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3=sin ⎝ ⎛⎭⎪⎫2x +π6+π2=cos ( 2x +π6 )=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12. 根据三角函数图象变换的规律,可得D 正确.2.(2018·蚌埠一模)已知ω>0,顺次连接函数y =sin ωx 与y =cos ωx 的任意三个相邻的交点都构成一个等边三角形,则ω=( )A .π B.6π2 C.4π3D.3π 答案 B解析 当正弦值等于余弦值时,函数值为±22,故等边三角形的高为2,由此得到边长为2×33×2=263,边长即为函数的周期,故2πω=263,ω=6π2.3.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上单调递增,求ω的最大值.解 函数f (x )=2sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤-π2ω,π2ω上单调递增,所以⎣⎢⎡⎦⎥⎤-π3,π4⊆⎣⎢⎡⎦⎥⎤-π2ω,π2ω,所以⎩⎪⎨⎪⎧-π2ω≤-π3,π2ω≥π4.解得0<ω≤32,所以ω的最大值为32.4.已知函数y =cos ⎝ ⎛⎭⎪⎫2x -π3.(1)求它的振幅、周期、初相;(2)用“五点法”作出它在区间[0,π]内的图象;(3)说明y =cos ⎝⎛⎭⎪⎫2x -π3的图象可由y =cos x 的图象经过怎样的变换而得到.解 (1)函数y =cos ⎝ ⎛⎭⎪⎫2x -π3的振幅为1,周期T =2π2=π,初相是-π3. (2)列表:描点,连线.(3)解法一:把y =cos x 的图象上所有的点向右平移π3个单位长度,得到y =cos ⎝ ⎛⎭⎪⎫x -π3的图象;再把y =cos ⎝ ⎛⎭⎪⎫x -π3的图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到y =cos ⎝⎛⎭⎪⎫2x -π3的图象.解法二:将y =cos x 的图象上所有点的横坐标缩短为原来的12(纵坐标不变),得到y =cos2x 的图象;再将y =cos2x 的图象向右平移π6个单位长度,得到y =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6=cos ⎝ ⎛⎭⎪⎫2x -π3的图象.作函数y =A sin(ωx +φ)(A >0,ω>0)的图象常用的两种方法(1)五点法作图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,3π2,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象的变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.1.要想得到函数y =sin2x +1的图象,只需将函数y =cos2x 的图象( ) A.向左平移π4个单位长度,再向上平移1个单位长度B.向右平移π4个单位长度,再向上平移1个单位长度C.向左平移π2个单位长度,再向下平移1个单位长度D.向右平移π2个单位长度,再向下平移1个单位长度答案 B解析 先将函数y =cos2x 的图象向右平移π4个单位长度,得到y =sin2x 的图象,再向上平移1个单位长度,即得y =sin2x +1的图象,故选B.2.(2018·青岛模拟)将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图象向左平移π12个单位得到函数g (x )的图象,在g (x )图象的所有对称轴中,离原点最近的对称轴方程为( )A.x =-π24B .x =π4C.x =5π24D .x =π12答案 A解析 当函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3图象上的每个点的横坐标缩短为原来的一半,纵坐标不变时,此时函数解析式可表示为f 1(x )=2sin ⎝ ⎛⎭⎪⎫4x +π3,再将所得图象向左平移π12个单位得到函数g (x )的图象,则g (x )可以表示为g (x )=2sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x +π12+π3=2sin ⎝ ⎛⎭⎪⎫4x +2π3.则函数g (x )的图象的对称轴可表示为4x +2π3=π2+k π,k ∈Z ,即x =-π24+k π4,k∈Z .则g (x )的图象离原点最近的对称轴,即g (x )的图象离y 轴最近的对称轴为x =-π24.题型 二 由图象确定y =A sin(ωx +φ)的解析式1.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π),其导函数f ′(x )的图象如图所示,则f ⎝ ⎛⎭⎪⎫π2的值为( )A .2 2 B. 2 C .-22 D .-24答案 D解析 依题意得f ′(x )=Aωcos(ωx +φ),结合函数y =f ′(x )的图象,则T =2πω=4⎝⎛⎭⎪⎫3π8-π8=π,ω=2.又Aω=1,因此A =12.因为0<φ<π,3π4<3π4+φ<7π4,且f ′⎝ ⎛⎭⎪⎫3π8=cos ⎝ ⎛⎭⎪⎫3π4+φ=-1,所以3π4+φ=π,即φ=π4,所以f (x )=12sin ⎝ ⎛⎭⎪⎫2x +π4,f ⎝ ⎛⎭⎪⎫π2=12sin ⎝⎛⎭⎪⎫π+π4=-12×22=-24. 2.设f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π),其图象上最高点M 的坐标是(2,2),曲线上的点P 由点M 运动到相邻的最低点N 时,在点Q (6,0)处越过x 轴.(1)求A ,ω,φ的值;(2)函数f (x )的图象能否通过平移变换得到一个奇函数的图象?若能,写出变换方法;若不能,说明理由.解 (1)由题意知A =2,T =(6-2)×4=16,所以ω=2πT =π8.又因为Q (6,0)是零值点,且|φ|<π,所以π8×6+φ=π,所以φ=π4,经验证,符合题意.所以A =2,ω=π8,φ=π4.(2)f (x )的图象经过平移变换能得到一个奇函数的图象.由(1)知f (x )=2sin ⎝ ⎛⎭⎪⎫π8x +π4,当f (x )的图象向右平移2个单位长度后,所得图象的函数解析式为g (x )=2sin π8x ,是奇函数.确定y =A sin(ωx +φ)+b (A >0,ω>0)中参数的方法(1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m2,b =M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT;(3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下:1.(2018·四川绵阳诊断)如图是函数f (x )=cos(πx +φ)⎝⎛⎭⎪⎫0<φ<π2的部分图象,则f (3x 0)=( )A.12 B .-12C.32D .-32答案 D解析 ∵f (x )=cos(πx +φ)的图象过点⎝ ⎛⎭⎪⎫0,32, ∴32=cos φ,结合0<φ<π2,可得φ=π6.∴由图象可得cos ⎝⎛⎭⎪⎫πx 0+π6=32,πx 0+π6=2π-π6,解得x 0=53. ∴f (3x 0)=f (5)=cos ⎝⎛⎭⎪⎫5π+π6=-32.2.已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2,y =f (x )的部分图象如图所示,则f ⎝ ⎛⎭⎪⎫π24等于________.答案3解析 观察图象可知T 2=3π8-π8,所以π2ω=π4,ω=2,所以f (x )=A tan(2x +φ).又因为函数图象过点⎝⎛⎭⎪⎫3π8,0,所以0=A tan ⎝ ⎛⎭⎪⎫2×3π8+φ,所以3π4+φ=k π(k ∈Z ),所以φ=k π-3π4(k ∈Z ).又因为|φ|<π2,所以φ=π4.又图象过点(0,1),所以A =1.综上知,f (x )=tan ⎝⎛⎭⎪⎫2x +π4,故f ⎝ ⎛⎭⎪⎫π24=tan ⎝ ⎛⎭⎪⎫2×π24+π4= 3.题型 三 三角函数图象性质的应用角度1 三角函数模型的应用1.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A.5 B .6 C .8 D .10答案 C解析 由图象可知,y min =2,因为y min =-3+k ,所以-3+k =2,解得k =5,所以这段时间水深的最大值是y max =3+k =3+5=8.角度2 函数零点(方程根)问题2.已知关于x 的方程2sin ⎝ ⎛⎭⎪⎫x +π6+1-a =0在区间⎣⎢⎡⎦⎥⎤0,2π3上存在两个根,则实数a的取值范围是________.答案 [2,3)解析 2sin ⎝ ⎛⎭⎪⎫x +π6+1-a =0化为sin ⎝ ⎛⎭⎪⎫x +π6=a -12,令t =x +π6,由x ∈⎣⎢⎡⎦⎥⎤0,2π3得,t =x +π6∈⎣⎢⎡⎦⎥⎤π6,5π6,画出函数y =sin t ,t ∈⎣⎢⎡⎦⎥⎤π6,5π6的图象和直线y =a -12,当12≤a -12<1,即2≤a <3时,函数y =sin t ,t ∈⎣⎢⎡⎦⎥⎤π6,5π6的图象和直线y =a -12有两个公共点,原方程有两个根.角度3 三角函数图象性质的综合3.函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图,则( )A .函数f (x )的对称轴方程为x =4k π+π4(k ∈Z )B.函数f (x )的递减区间为⎣⎢⎡⎦⎥⎤8k π+π4,8k π+5π4(k ∈Z )C.函数f (x )的递增区间为[8k +1,8k +5](k ∈Z )D.f (x )≥1的解集为⎣⎢⎡⎦⎥⎤8k -13,8k +73(k ∈Z )答案 D解析 由题图知,A =2,函数f (x )的最小正周期T =4×(3-1)=8,故ω=2π8=π4,所以f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +φ,因为点(1,2)在图象上,所以2sin ⎝ ⎛⎭⎪⎫π4+φ=2,因为|φ|<π2,所以φ=π4,即f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +π4,由π4x +π4=k π+π2(k ∈Z )得x =4k +1,即函数f (x )的对称轴方程为x =4k +1(k ∈Z ),所以A 项错误;由2k π+π2≤π4x +π4≤2k π+3π2(k ∈Z )得8k +1≤x ≤8k +5,即函数f (x )的单调减区间为[8k +1,8k +5](k ∈Z ),所以B ,C两项错误;由2sin ⎝ ⎛⎭⎪⎫π4x +π4≥1,得sin ⎝ ⎛⎭⎪⎫π4x +π4≥12,所以2k π+π6≤π4x +π4≤2k π+5π6(k ∈Z ),解得8k -13≤x ≤8k +73(k ∈Z ),即不等式f (x )≥1的解集为⎣⎢⎡⎦⎥⎤8k -13,8k +73(k ∈Z ),故选D.(1)三角函数模型在实际应用中体现的两个方面①已知三角函数模型,利用三角函数的有关性质解决问题,其关键是准确理解自变量的意义及自变量与函数之间的对应法则;②把实际问题抽象转化成数学问题,建立三角函数模型,再利用三角函数的有关知识解决问题,其关键是建模.(2)三角函数的零点、不等式问题的求解思路①把函数表达式转化为正弦型函数形式y =A sin(ωx +φ)+B (A >0,ω>0); ②画出一个周期上的函数图象;③利用图象解决有关三角函数的方程、不等式问题.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想解题.1.设函数f (x )=⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫x +π3(x ∈R ),则f (x )( )A.在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数B.在区间⎣⎢⎡⎦⎥⎤-π,-π2上是减函数 C.在区间⎣⎢⎡⎦⎥⎤-π3,π4上是增函数D.在区间⎣⎢⎡⎦⎥⎤π3,5π6上是减函数答案 A解析 函数f (x )=⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3(x ∈R )的图象如图所示,由图象可知函数f (x )=⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3(x ∈R )在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数.故选A.2.一个大风车的半径为8 m,12 min 旋转一周,它的最低点P 0离地面2 m ,风车翼片的一个端点P 从P 0开始按逆时针方向旋转,则点P 离地面距离h (m)与时间t (min)之间的函数关系式是( )A .h (t )=-8sin π6t +10B.h (t )=-cos π6t +10C.h (t )=-8sin π6t +8D.h (t )=-8cos π6t +10答案 D解析 设h (t )=A cos ωt +B ,因为12 min 旋转一周, 所以2πω=12,所以ω=π6,由于最大值与最小值分别为18,2.所以⎩⎪⎨⎪⎧-A +B =18,A +B =2,解得A =-8,B =10.所以h (t )=-8cos π6t +10.3.若函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)满足f (0)=f ⎝ ⎛⎭⎪⎫π3,且函数在⎣⎢⎡⎦⎥⎤0,π2上有且只有一个零点,则f (x )的最小正周期为( )A.π2 B .π C.3π2D .2π 答案 B解析 依题意,函数f (x )图象的一条对称轴为x =0+π32=π6,又因为函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上有且只有一个零点,所以π6-0≤T 4≤π2-π6,所以2π3≤T ≤4π3.根据选项可得,f (x )的最小正周期为π.。
高三一轮复习题组函数y=Asin(ωx+φ)的图象及应用(有详细答案)
§4.5 函数y =A sin(ωx +φ)的图象及应用1. y =A sin(ωx +φ)的有关概念2. 如下表所示.3. 函数y1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)作函数y =sin(x -π6)在一个周期内的图象时,确定的五点是(0,0),(π2,1),(π,0),(3π2,-1),(2π,0)这五个点.( × )(2)将y =3sin 2x 的图象向左平移π4个单位后所得图象的解析式是y =3sin(2x +π4).( × )(3)y =sin(x -π4)的图象是由y =sin(x +π4)的图象向右移π2个单位得到的.( √ ) (4)y =sin(-2x )的递减区间是(-3π4-k π,-π4-k π),k ∈Z .( × ) (5)函数f (x )=sin 2x 的最小正周期和最小值分别为π,0.( √ )(6)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.( √ )2. 把函数y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),再将图象向右平移π3个单位,那么所得图象的一条对称轴方程为 ( )A .x =-π2B .x =-π4C .x =π8D .x =π4答案 A解析 将y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y =sin(2x +π6);再将图象向右平移π3个单位,得到函数y =sin[2(x -π3)+π6]=sin(2x -π2),x =-π2是其图象的一条对称轴方程.3. (2013·四川)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是 ( )A .2,-π3B .2,-π6C .4,-π6D .4,π3答案 A解析 34T =5π12-⎝⎛⎭⎫-π3,T =π,∴ω=2, ∴2×5π12+φ=2k π+π2,k ∈Z ,∴φ=2k π-π3,又φ∈⎝⎛⎭⎫-π2,π2,∴φ=-π3,选A. 4. 设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于 ( )A.13B .3C .6D .9答案 C解析 由题意可知,nT =π3 (n ∈N *),∴n ·2πω=π3(n ∈N *),∴ω=6n (n ∈N *),∴当n =1时,ω取得最小值6.5. 已知简谐运动f (x )=2sin ⎝⎛⎭⎫π3x +φ (|φ|<π2)的图象经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为__________. 答案 6,π6解析 由题意知1=2sin φ,得sin φ=12,又|φ|<π2,得φ=π6;而此函数的最小正周期为T =2π÷⎝⎛⎭⎫π3=6.题型一 函数y =A sin(ωx +φ)的图象及变换例1 设函数f (x )=sin ωx +3cos ωx (ω>0)的周期为π.(1)求它的振幅、初相;(2)用五点法作出它在长度为一个周期的闭区间上的图象;(3)说明函数f (x )的图象可由y =sin x 的图象经过怎样的变换而得到.思维启迪 将f (x )化为一个角的一个三角函数,由周期是π求ω,用五点法作图要找关键点.解 (1)f (x )=sin ωx +3cos ωx=2(12sin ωx +32cos ωx )=2sin(ωx +π3),又∵T =π,∴2πω=π,即ω=2.∴f (x )=2sin(2x +π3).∴函数f (x )=sin ωx +3cos ωx 的振幅为2,初相为π3.(2)令X =2x +π3,则y =2sin ⎝⎛⎭⎫2x +π3=2sin X . 列表,并描点画出图象:(3)方法一 把y =sin x 的图象上所有的点向左平移π3个单位,得到y =sin ⎝⎛⎭⎫x +π3的图象,再把y =sin ⎝⎛⎭⎫x +π3的图象上的点的横坐标缩短到原来的12倍(纵坐标不变),得到y =sin ⎝⎛⎭⎫2x +π3的图象,最后把y =sin ⎝⎛⎭⎫2x +π3上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎫2x +π3的图象. 方法二 将y =sin x 的图象上每一点的横坐标x 缩短为原来的12倍,纵坐标不变,得到y=sin 2x 的图象;再将y =sin 2x 的图象向左平移π6个单位,得到y =sin 2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象;再将y =sin ⎝⎛⎭⎫2x +π3的图象上每一点的横坐标保持不变,纵坐标伸长为原来的2倍,得到y =2sin ⎝⎛⎭⎫2x +π3的图象. 思维升华 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.已知函数f (x )=3sin ⎝⎛⎭⎫12x -π4,x ∈R .(1)画出函数f (x )在长度为一个周期的闭区间上的简图; (2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象? 解 (1)列表取值:(2)先把y =sin x 的图象向右平移π4个单位,然后把所有的点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到f (x )的图象. 题型二 求函数y =A sin(ωx +φ)的解析式例2 (1)已知函数f (x )=2sin(ωx +φ)(其中ω>0,|φ|<π2)的最小正周期是π,且f (0)=3,则( )A .ω=12,φ=π6B .ω=12,φ=π3C .ω=2,φ=π6D .ω=2,φ=π3(2)已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示,则该函数的解析式为____________. 思维启迪 (1)根据周期确定ω,据f (0)=3和|φ|<π2确定φ;(2)由点(0,1)在图象上和|φ|<π2确定φ,再根据“五点作图法”求ω.答案 (1)D (2)f (x )=2sin ⎝⎛⎭⎫2x +π6 解析 (1)∵f (x )(ω>0,|φ|<π2)的最小正周期为π,∴T =2πω=π,ω=2.∵f (0)=2sin φ=3,即sin φ=32(|φ|<π2),∴φ=π3. (2)观察图象可知:A =2且点(0,1)在图象上, ∴1=2sin(ω·0+φ),即sin φ=12.∵|φ|<π2,∴φ=π6.又∵1112π是函数的一个零点,且是图象递增穿过x 轴形成的零点,∴11π12ω+π6=2π,∴ω=2.∴f (x )=2sin ⎝⎛⎭⎫2x +π6. 思维升华 根据y =A sin(ωx +φ)+k 的图象求其解析式的问题,主要从以下四个方面来考虑:①A 的确定:根据图象的最高点和最低点,即A =最高点-最低点2;②k 的确定:根据图象的最高点和最低点,即k =最高点+最低点2;③ω的确定:结合图象,先求出周期T ,然后由T =2πω(ω>0)来确定ω;④φ的确定:由函数y =A sin(ωx +φ)+k 最开始与x 轴的交点(最靠近原点)的横坐标为-φω(即令ωx +φ=0,x =-φω)确定φ.如图为y =A sin(ωx +φ)的图象的一段.(1)求其解析式;(2)若将y =A sin(ωx +φ)的图象向左平移π6个单位长度后得y =f (x ),求f (x )的对称轴方程. 解 (1)由图象知A =3,以M ⎝⎛⎭⎫π3,0为第一个零点,N ⎝⎛⎭⎫5π6,0为第二个零点. 列方程组⎩⎨⎧ω·π3+φ=0,ω·5π6+φ=π,解之得⎩⎪⎨⎪⎧ω=2,φ=-2π3.∴所求解析式为y =3sin ⎝⎛⎭⎫2x -2π3. (2)f (x )=3sin ⎣⎡⎤2⎝⎛⎭⎫x +π6-2π3 =3sin ⎝⎛⎭⎫2x -π3, 令2x -π3=π2+k π(k ∈Z ),则x =512π+k π2 (k ∈Z ),∴f (x )的对称轴方程为x =512π+k π2 (k ∈Z ).题型三 函数y =A sin(ωx +φ)的应用例3 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2,x ∈R )的图象的一部分如下图所示.(1)求函数f (x )的解析式;(2)当x ∈[-6,-23]时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值.解 (1)由图象知A =2,T =8, ∵T =2πω=8,∴ω=π4.又图象经过点(-1,0),∴2sin(-π4+φ)=0.∵|φ|<π2,∴φ=π4.∴f (x )=2sin(π4x +π4).(2)y =f (x )+f (x +2)=2sin(π4x +π4)+2sin(π4x +π2+π4)=22sin(π4x +π2)=22cos π4x .∵x ∈[-6,-23],∴-3π2≤π4x ≤-π6,∴当π4x =-π6,即x =-23时,y =f (x )+f (x +2)取得最大值6;当π4x =-π,即x =-4时,y =f (x )+f (x +2)取得最小值-2 2. 思维升华 利用函数的图象确定解析式后,求出y =f (x )+f (x +2),然后化成一个角的一个三角函数形式,利用整体思想(将ωx +φ视为一个整体)求函数最值.(1)已知函数y =2sin(ωx +θ)为偶函数(0<θ<π),其图象与直线y =2的某两个交点的横坐标为x 1、x 2,若|x 2-x 1|的最小值为π,则( )A .ω=2,θ=π2B .ω=12,θ=π2C .ω=12,θ=π4D .ω=2,θ=π4(2)如图,单摆从某点开始来回摆动,离开平衡位置O 的距离s cm 和时间t s 的函数关系式为s =6sin(2πt +π6),那么单摆来回摆动一次所需的时间为( ) A .2π sB .π sC .0.5 sD .1 s答案 (1)A (2)D解析 (1)∵y =2sin(ωx +θ)为偶函数,∴θ=π2.∵图象与直线y =2的两个交点的横坐标为 x 1、x 2且|x 2-x 1|min =π, ∴2πω=π,ω=2. (2)T =2π2π=1,∴选D.三角函数图象与性质的综合问题典例:(12分)(2013·山师附中模拟)已知函数f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π).(1)求f (x )的最小正周期.(2)若将f (x )的图象向右平移π6个单位,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.思维启迪 (1)先将f (x )化成y =A sin(ωx +φ)的形式再求周期;(2)将f (x )解析式中的x 换成x -π6,得g (x ),然后利用整体思想求最值.规范解答解 (1)f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π)=3cos x +sin x [3分] =2sin(x +π3)[5分]于是T =2π1=2π.[6分](2)由已知得g (x )=f (x -π6)=2sin(x +π6)[8分]∵x ∈[0,π],∴x +π6∈[π6,7π6]∴sin(x +π6)∈[-12,1],[10分]∴g (x )=2sin(x +π6)∈[-1,2][11分]故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.[12分]答题模板解决三角函数图象与性质的综合问题的一般步骤: 第一步:将f (x )化为a sin x +b cos x 的形式. 第二步:构造f (x )=a 2+b 2(sin x ·a a 2+b 2+cos x ·ba 2+b 2). 第三步:和角公式逆用f (x )=a 2+b 2sin(x +φ)(其中φ为辅助角). 第四步:利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. 第五步:反思回顾,查看关键点、易错点和答题规范. 温馨提醒 (1)在第(1)问的解法中,使用辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=ba ),或a sin α+b cos α=a 2+b 2cos(α-φ)(其中tan φ=ab ),在历年高考中使用频率是相当高的,几乎年年使用到、考查到,应特别加以关注.(2)求g (x )的最值一定要重视定义域,可以结合三角函数图象进行求解.方法与技巧1. 五点法作图及图象变换问题(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图象变换时的伸缩、平移总是针对自变量x 而言,而不是看角ωx +φ的变化. 2. 由图象确定函数解析式由函数y =A sin(ωx +φ)的图象确定A 、ω、φ的题型,常常以“五点法”中的第一个零点⎝⎛⎭⎫-φω,0作为突破口,要从图象的升降情况找准第一个零点的位置.要善于抓住特殊量和特殊点. 3. 对称问题函数y =A sin(ωx +φ)的图象与x 轴的每一个交点均为其对称中心,经过该图象上坐标为(x ,±A )的点与x 轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻平衡点间的距离). 失误与防范1. 由函数y =sin x 的图象经过变换得到y =A sin(ωx +φ)的图象,如先伸缩,则平移时要把x前面的系数提出来.2. 复合形式的三角函数的单调区间的求法.函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx +φ看做一个整体.若ω<0,要先根据诱导公式进行转化.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题1. 为得到函数y =cos(2x +π3)的图象,只需将函数y =sin 2x 的图象( )A .向左平移5π12个单位长度B .向右平移5π12个单位长度C .向左平移5π6个单位长度D .向右平移5π6个单位长度答案 A解析 y =cos(2x +π3)=sin[π2+(2x +π3)]=sin(2x +5π6).故要得到y =sin(2x +5π6)=sin 2(x +5π12)的图象,只需将函数y =sin 2x 的图象向左平移5π12个单位长度.2. 已知函数f (x )=2sin(ωx +φ)(ω>0,且|φ|<π2)的部分图象如图所示,则函数f (x )的一个单调递增区间是 ( )A .[-7π12,5π12]B .[-7π12,-π12]C .[-π12,7π12]D .[-π12,5π12]答案 D解析 由函数的图象可得14T =23π-512π,∴T =π,则ω=2.又图象过点(512π,2),∴2sin(2×512π+φ)=2,∴φ=-π3+2k π,k ∈Z ,取k =0,即得f (x )=2sin(2x -π3),其单调递增区间为[k π-π12,k π+5π12],k ∈Z ,取k =0,即得选项D.3. 将函数y =sin(x +φ)的图象F 向左平移π6个单位长度后得到图象F ′,若F ′的一个对称中心为⎝⎛⎭⎫π4,0,则φ的一个可能取值是 ( )A.π12B.π6C.5π6D.7π12答案 D解析 图象F ′对应的函数y =sin ⎝⎛⎭⎫x +π6+φ, 则π4+π6+φ=k π,k ∈Z ,即φ=k π-5π12,k ∈Z , 令k =1时,φ=7π12,故选D.4. 设ω>0,函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是 ( )A.23B.43C.32D .3答案 C解析 由函数向右平移4π3个单位后与原图象重合,得4π3是此函数周期的整数倍.又ω>0, ∴2πω·k =4π3,∴ω=32k (k ∈Z ),∴ωmin =32. 5. 已知函数f (x )=2sin ωx 在区间[-π3,π4]上的最小值为-2,则ω的取值范围是 ( )A .(-∞,-92]∪[6,+∞)B .(-∞,-92]∪[32,+∞)C .(-∞,-2]∪[6,+∞)D .(-∞,-32]∪[32,+∞)答案 D解析 当ω>0时,-π3ω≤ωx ≤π4ω,由题意知-π3ω≤-π2,即ω≥32;当ω<0时,π4ω≤ωx ≤-π3ω,由题意知-π3ω≥π2,即ω≤-32.综上可知,ω的取值范围是(-∞,-32]∪[32,+∞).二、填空题6. 已知f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=_________________________________________________________________. 答案143解析 依题意,x =π6+π32=π4时,y 有最小值,∴sin ⎝⎛⎭⎫π4·ω+π3=-1,∴π4ω+π3=2k π+3π2(k ∈Z ). ∴ω=8k +143 (k ∈Z ),因为f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,所以π3-π4<πω,即ω<12,令k =0, 得ω=143.7. 若f (x )=2sin(ωx +φ)+m 对任意实数t 都有f ⎝⎛⎭⎫π8+t =f ⎝⎛⎭⎫π8-t ,且f ⎝⎛⎭⎫π8=-3,则实数m 的值等于________. 答案 -1或-5解析 依题意得,函数f (x )的图象关于直线x =π8对称,于是当x =π8时,函数f (x )取得最值,因此有±2+m =-3,解得m =-5或m =-1.8. 某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6) (x =1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值为________℃. 答案 20.5解析 由题意得⎩⎪⎨⎪⎧ a +A =28,a -A =18, ∴⎩⎪⎨⎪⎧a =23,A =5,∴y =23+5cos ⎣⎡⎦⎤π6(x -6), x =10时,y =23+5×⎝⎛⎭⎫-12=20.5. 三、解答题9. (2013·天津)已知函数f (x )=-2sin ⎝⎛⎭⎫2x +π4+6sin x cos x -2cos 2x +1,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. 解 (1)f (x )=-2sin 2x ·cos π4-2cos 2x ·sin π4+3sin 2x -cos 2x=2sin 2x -2cos 2x =22sin ⎝⎛⎭⎫2x -π4. 所以,f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间⎣⎡⎦⎤0,3π8上是增函数,在区间⎣⎡⎦⎤3π8,π2上是减函数.又f (0)=-2,f ⎝⎛⎭⎫3π8=22,f ⎝⎛⎭⎫π2=2,故函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值为22,最小值为-2. 10.已知函数f (x )=3sin ωx ·cos ωx -cos 2ωx (ω>0)的周期为π2.(1)求ω的值和函数f (x )的单调递增区间;(2)设△ABC 的三边a 、b 、c 满足b 2=ac ,且边b 所对的角为x ,求此时函数f (x )的值域. 解 (1)f (x )=32sin 2ωx -12(cos 2ωx +1)=sin(2ωx -π6)-12,由f (x )的周期T =2π2ω=π2,得ω=2,∴f (x )=sin(4x -π6)-12,由2k π-π2≤4x -π6≤2k π+π2(k ∈Z ),得-π12+k π2≤x ≤π6+k π2(k ∈Z ),即f (x )的单调递增区间是 [-π12+k π2,π6+k π2](k ∈Z ). (2)由题意,得cos x =a 2+c 2-b 22ac ≥2ac -ac 2ac =12,又∵0<x <π,∴0<x ≤π3,∴-π6<4x -π6≤7π6,∴-12<sin(4x -π6)≤1,∴-1<sin(4x -π6)-12≤12,∴f (x )的值域为(-1,12].B 组 专项能力提升 (时间:25分钟,满分:43分)1. 电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如右图所示,则当t =1100秒时,电流强度是( )A .-5安B .5安C .53安D .10安答案 A解析 由图象知A =10,T 2=4300-1300=1100,∴ω=2πT=100π.∴I =10sin(100πt +φ).⎝⎛⎭⎫1300,10为五点中的第二个点,∴100π×1300+φ=π2.∴φ=π6.∴I =10sin ⎝⎛⎭⎫100πt +π6, 当t =1100秒时,I =-5安.2. 函数y =sin(ωx +φ)(ω>0且|φ|<π2)在区间[π6,2π3]上单调递减,且函数值从1减小到-1,那么此函数图象与y 轴交点的纵坐标为( )A.12B.22C.32D.6+24答案 A解析 函数y =sin(ωx +φ)的最大值为1,最小值为-1,由该函数在区间[π6,2π3]上单调递减,且函数值从1减小到-1,可知2π3-π6=π2为半周期,则周期为π,ω=2πT =2ππ=2,此时原函数式为y =sin(2x +φ),又由函数y =sin(ωx +φ)的图象过点(π6,1),代入可得φ=π6,因此函数为y =sin(2x +π6),令x =0,可得y =12. 3. 已知函数f (x )=sin(ωx +φ) (ω>0,-π2≤φ≤π2)的图象上的两个相邻的最高点和最低点的距离为22,且过点⎝⎛⎭⎫2,-12,则函数解析式f (x )=________________. 答案 sin ⎝⎛⎭⎫πx 2+π6解析 据已知两个相邻最高及最低点距离为22,可得⎝⎛⎭⎫T 22+(1+1)2=22,解得T =4,故ω=2πT =π2,即f (x )=sin ⎝⎛⎭⎫πx 2+φ,又函数图象过点⎝⎛⎭⎫2,-12,故f (2)=sin(π+φ)=-sin φ=-12,又-π2≤φ≤π2,解得φ=π6,故f (x )=sin ⎝⎛⎭⎫πx 2+π6. 4. 已知函数f (x )=sin(2x +π6)+sin(2x -π6)-cos 2x +a (a ∈R ,a 为常数).(1)求函数f (x )的最小正周期和单调增区间;(2)若函数f (x )的图象向左平移m (m >0)个单位后,得到函数g (x )的图象关于y 轴对称,求实数m 的最小值.解 (1)f (x )=sin(2x +π6)+sin(2x -π6)-cos 2x +a=3sin 2x -cos 2x +a =2sin(2x -π6)+a .∴f (x )的最小正周期为2π2=π,当2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),即k π-π6≤x ≤k π+π3(k ∈Z )时,函数f (x )单调递增,故所求函数f (x )的单调增区间为[k π-π6,k π+π3](k ∈Z ).(2)函数f (x )的图象向左平移m (m >0)个单位后得g (x )=2sin[2(x +m )-π6]+a 要使g (x )的图象关于y 轴对称,只需2m -π6=k π+π2(k ∈Z ).即m =k π2+π3(k ∈Z ),所以m 的最小值为π3.5. (2012·湖南)已知函数f (x )=A sin(ωx +φ)(x ∈R ,ω>0,0<φ<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)求函数g (x )=f ⎝⎛⎭⎫x -π12-f ⎝⎛⎭⎫x +π12的单调递增区间. 解 (1)由题设图象知,周期T =2⎝⎛⎭⎫11π12-5π12=π, 所以ω=2πT =2.因为点⎝⎛⎭⎫5π12,0在函数图象上, 所以A sin ⎝⎛⎭⎫2×5π12+φ=0,即sin ⎝⎛⎭⎫5π6+φ=0. 又因为0<φ<π2,所以5π6<5π6+φ<4π3.从而5π6+φ=π,即φ=π6.又点(0,1)在函数图象上,所以A sin π6=1,解得A =2.故函数f (x )的解析式为f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+π6-2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π6 =2sin 2x -2sin ⎝⎛⎭⎫2x +π3 =2sin 2x -2⎝⎛⎭⎫12sin 2x +32cos 2x=sin 2x -3cos 2x =2sin ⎝⎛⎭⎫2x -π3. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .所以函数g (x )的单调递增区间是⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z .。
高考数学一轮复习函数y=Asin(ωx+φ)的图象及应用完整文ppt课件
.
2
基考课础点堂诊突总断破结
知识梳理 1.“五点法”作函数 y=Asin(ωx+φ)(A>0,ω>0)的简图
“五点法”作图的五点是在一个周期内的最高点、最低点 及与 x 轴相交的三个点,作图时的一般步骤为:
.
3
基考课础点堂诊突总断破结
• (1)定点:如下表所示.
x
-ωφ
π2-φ ω
π-φ ω
32π-φ ω
为A,最小值为-A.
×
•( )
.(3)函数 f(x)=Asin(ωx+φ)的图象的两个相邻对称轴间的距离为 一个周期.
(×) (4)函数 y=Acos(ωx+φ)的最小正周期为 T,那么函数图象的两 个相邻对称中心之间的距离为T2.
(√ )
.
9
基考课础点堂诊突总断破结
• 2.(2014·四川卷)为了得到函数y=sin(x+1) 的图象,只需把函数y=sin x的图象上所有 的点
叫做周期,f=T1叫做频率,
ωx+φ 叫做相位,φ 叫做初相.
.
7
基考课础点堂诊突总断破结
• 诊断自测
• 1.思考辨析(在括号内打“√”或“×”)
• (1)利用图象变换作图时“先平移,后伸
缩”与“先伸缩,后平移”中向左或向右
平移的长度一样.
×
•( )
• (2)函数f(x)=Asin(ωx+φ)(A≠0)的最大值
.
16
基考课础点堂诊突总断破结
考点一 函数 y=Asin(ωx+φ)的图象及变换 【例 1】 设函数 f(x)=sin ωx+ 3cos ωx(ω>0)的周期为 π.
(1)求它的振幅、初相; (2)用五点法作出它在长度为一个周期的闭区间上的图象; (3)说明函数 f(x)的图象可由 y=sin x 的图象经过怎样的变换 而得到.
2020届高三文理科数学一轮复习《函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用》专题汇编(教师版).pdf
π 2x+6
+
1+
a,
2π ∵ f(x)的最大值为 2,∴ a=- 1,最小正周期 T= 2 = π.
π (2)由 (1) 知 f(x)= 2sin 2x+ 6 ,列表:
x π
2x+6
0
π 5π 2π 11π
6
12
3
12
π
ππ
3π
13 π
6
2
π
2
2π
6
π f(x) =2sin 2x+6
1
2
0
-2
0
1
1.将函数
y=
2sin2
x+
π的图像向右平移 6
1个周期后,所得图像对应的函数为 4
(
)
π A . y= 2sin 2x+ 4
π B . y= 2sin 2x+3
C.y= 2sin
2x-
π 4
D . y= 2sin 2x-π3
解析 : D,函数
y= 2sin
2x+
π 6
的周期为
π,将函数
y= 2sin 2x+ π6 的图像向右平移
π
5π
π
π
7π
x+6
-6
-2
0
2
π
6
2π
π
π
5π
x
-π
-3
-6
3
6
π
y
-1
-2
0
2
0
-1
作图如图:
π 9.已知函数 f(x)= sin 2x+ 6 .
(1)请用“五点法”画出函数 f(x)在一个周期上的图像;
(2)求 f (x)在区间
π, 12
2020届高考数学一轮复习学霸提分秘籍专题4.5 函数y=Asin(ωx+ψ)的图像与性质(解析版)
第四篇三角函数与解三角形专题4.05函数y=Asin(ωx+φ)的图象与性质【考试要求】1.结合具体实例,了解y=A sin(ωx+φ)的实际意义;能借助图象理解参数ω,φ,A的意义,了解参数的变化对函数图象的影响;2.会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模型.【知识梳理】1.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示.2.函数y=Asin(ωx+φ)的有关概念3.函数y=sin x的图象经变换得到y=A sin(ωx+φ)的图象的两种途径4.三角函数应用(1)用正弦函数可以刻画三种周期变化的现象:简谐振动(单摆、弹簧等),声波(音叉发出的纯音),交变电流.(2)三角函数模型应用题的关键是求出函数解析式,可以根据给出的已知条件确定模型f (x )=A sin(ωx +φ)+k 中的待定系数.(3)把实际问题翻译为函数f (x )的性质,得出函数性质后,再把函数性质翻译为实际问题的答案.【微点提醒】1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.2.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2(k ∈Z )确定;对称中心由ωx +φ=k π(k ∈Z )确定其横坐标.3.音叉发出的纯音振动可以用三角函数表达为y =A sin ωx ,其中x 表示时间,y 表示纯音振动时音叉的位移,|ω|2π表示纯音振动的频率(对应音高),A 表示纯音振动的振幅(对应音强).4.交变电流可以用三角函数表达为y =A sin(ωx +φ),其中x 表示时间,y 表示电流,A 表示最大电流,|ω|2π表示频率,φ表示初相位.【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)将函数y =3sin 2x 的图象左移π4个单位长度后所得图象的解析式是y =3sin ⎝⎛⎭⎫2x +π4.( ) (2)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( ) (3)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.( ) (4)由图象求解析式时,振幅A 的大小是由一个周期内图象中最高点的值与最低点的值确定的.( )【答案】 (1)× (2)× (3)√ (4)√【解析】 (1)将函数y =3sin 2x 的图象向左平移π4个单位长度后所得图象的解析式是y =3cos2x .(2)“先平移,后伸缩”的平移单位长度为|φ|,而“先伸缩,后平移”的平移单位长度为⎪⎪⎪⎪φω.故当ω≠1时平移的长度不相等.【教材衍化】2.(必修4P56T3改编)y =2sin ⎝⎛⎭⎫12x -π3的振幅、频率和初相分别为( ) A.2,4π,π3B.2,14π,π3C.2,14π,-π3D.2,4π,-π3【答案】 C【解析】 由题意知A =2,f =1T =ω2π=14π,初相为-π3.3.(必修4P62例4改编)某地农业监测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现.下表是今年前四个月的统计情况:选用一个正弦型函数来近似描述收购价格(元/斤)与相应月份之间的函数关系为________________________. 【答案】 y =6-cos π2x【解析】 设y =A sin(ωx +φ)+B (A >0,ω>0),由题意得A =1,B =6,T =4,因为T =2πω,所以ω=π2,所以y =sin ⎝⎛⎭⎫π2x +φ+6.因为当x =2时,y =7,所以sin(π+φ)+6=7,即sin φ=-1,则φ=-π2+2k π(k ∈Z ),可取φ=-π2.所以y =sin ⎝⎛⎭⎫π2x -π2+6=6-cos π2x . 【真题体验】4.(2019·北京通州区模拟)函数y =2cos ⎝⎛⎭⎫2x +π6的部分图象是( )【答案】 A【解析】 由y =2cos ⎝⎛⎭⎫2x +π6可知,函数的最大值为2,故排除D ;又因为函数图象过点⎝⎛⎭⎫π6,0,故排除B ;又因为函数图象过点⎝⎛⎭⎫-π12,2,故排除C. 5.(2016·全国Ⅰ卷)若将函数y =2sin ⎝⎛⎭⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( )A.y =2sin ⎝⎛⎭⎫2x +π4 B.y =2sin ⎝⎛⎭⎫2x +π3 C.y =2sin ⎝⎛⎭⎫2x -π4D.y =2sin ⎝⎛⎭⎫2x -π3 【答案】 D【解析】 函数y =2sin ⎝⎛⎭⎫2x +π6的周期为π,将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期即π4个单位,所得函数为y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π6=2sin ⎝⎛⎭⎫2x -π3,故选D. 6.(2018·济南模拟改编)y =cos(x +1)图象上相邻的最高点和最低点之间的距离是________. 【答案】π2+4【解析】 相邻最高点与最低点的纵坐标之差为2,横坐标之差恰为半个周期π,故它们之间的距离为π2+4.【考点聚焦】考点一 函数y =A sin(ωx +φ)的图象及变换【例1】 某同学用“五点法”画函数f (x )=A sin(ωx +φ) ⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值. 【答案】见解析【解析】(1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0)(k ∈Z ). 令2x +2θ-π6=k π,k ∈Z ,解得x =k π2+π12-θ(k ∈Z ).由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12(k ∈Z ),解得θ=k π2-π3(k ∈Z ). 由θ>0可知,当k =1时,θ取得最小值π6.【规律方法】 作函数y =A sin(ωx +φ)(A >0,ω>0)的图象常用如下两种方法:(1)五点法作图,用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象;(2)图象的变换法,由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.【训练1】 (1)(2017·全国Ⅰ卷)已知曲线C 1:y =cos x ,C 2:y =sin ⎝⎛⎭⎫2x +2π3,则下面结论正确的是( )A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2(2)(2018·青岛调研)若把函数y =sin ⎝⎛⎭⎫ωx -π6的图象向左平移π3个单位长度,所得到的图象与函数y =cos ωx 的图象重合,则ω的一个可能取值是( ) A.2B.32C.23D.12【答案】 (1)D (2)A【解析】 (1)易知C 1:y =cos x =sin ⎝⎛⎭⎫x +π2,把曲线C 1上的各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y =sin ⎝⎛⎭⎫2x +π2的图象,再把所得函数的图象向左平移π12个单位长度,可得函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π2=sin ⎝⎛⎭⎫2x +2π3的图象,即曲线C 2,因此D 项正确. (2)y =sin ⎝⎛⎭⎫ωx +ω3π-π6和函数y =cos ωx 的图象重合,可得ω3π-π6=π2+2k π,k ∈Z ,则ω=6k +2,k ∈Z .∴2是ω的一个可能值. 考点二 求函数y =A sin(ωx +φ)的解析式【例2】 (1)(一题多解)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为________.(2)(2019·长郡中学、衡阳八中联考)函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图所示,已知A ⎝⎛⎭⎫5π12,1,B ⎝⎛⎭⎫11π12,-1,则f (x )图象的对称中心为( )A.⎝⎛⎭⎫k π2+5π6,0(k ∈Z ) B.⎝⎛⎭⎫k π+5π6,0(k ∈Z ) C.⎝⎛⎭⎫k π2+π6,0(k ∈Z )D.⎝⎛⎭⎫k π+π6,0(k ∈Z ) 【答案】 (1)f (x )=2sin ⎝⎛⎭⎫2x +π3 (2)C 【解析】 (1)由题图可知A =2, 法一T 4=7π12-π3=π4, 所以T =π,故ω=2, 因此f (x )=2sin(2x +φ),又⎝⎛⎭⎫π3,0对应五点法作图中的第三个点,因此2×π3+φ=π+2k π(k ∈Z ),所以φ=π3+2k π(k ∈Z ).又|φ|<π2,所以φ=π3.故f (x )=2sin ⎝⎛⎭⎫2x +π3. 法二 以⎝⎛⎭⎫π3,0为第二个“零点”,⎝⎛⎭⎫7π12,-2为最小值点, 列方程组⎩⎨⎧ω·π3+φ=π,ω·7π12+φ=3π2,解得⎩⎪⎨⎪⎧ω=2,φ=π3, 故f (x )=2sin ⎝⎛⎭⎫2x +π3.(2)T =2⎝⎛⎭⎫11π12-5π12=π=2πω,∴ω=2, 因此f (x )=sin(2x +φ).由五点作图法知A ⎝⎛⎭⎫5π12,1是第二点,得2×5π12+φ=π2, 2×5π12+φ=π2+2k π(k ∈Z ),所以φ=-π3+2k π(k ∈Z ),又|φ|<π2,所以φ=-π3,∴f (x )=sin ⎝⎛⎭⎫2x -π3. 由2x -π3=k π(k ∈Z ),得x =k π2+π6(k ∈Z ).∴f (x )图象的对称中心为⎝⎛⎭⎫k π2+π6,0(k ∈Z ).【规律方法】 1.已知f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,利用周期性求ω,难点是“φ”的确定. 2.y =A sin(ωx +φ)中φ的确定方法(1)代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.(2)五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.【训练2】 (1)(2019·衡水中学一模)已知函数f (x )=-2cos ωx (ω>0)的图象向左平移φ⎝⎛⎭⎫0<φ<π2个单位,所得的部分函数图象如图所示,则φ的值为( )A.π6B.5π6C.π12D.5π12(2)(2019·山东省重点中学质检)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,|φ|<π2,ω>0的图象的一部分如图所示,则f (x )图象的对称轴方程是________.【答案】 (1)C (2)x =k π2+π6(k ∈Z )【解析】 (1)由题图知,T =2⎝⎛⎭⎫11π12-5π12=π, ∴ω=2πT =2,∴f (x )=-2cos 2x ,∴f (x +φ)=-2cos(2x +2φ),则由图象知,f ⎝⎛⎭⎫512π+φ=-2cos ⎝⎛⎭⎫56π+2φ=2. ∴5π6+2φ=2k π+π(k ∈Z ),则φ=π12+k π(k ∈Z ). 又0<φ<π2,所以φ=π12.(2)由图象知A =2,又1=2sin(ω×0+φ),即sin φ=12,又|φ|<π2,∴φ=π6.又11π12×ω+π6=2π,∴ω=2, ∴f (x )=2sin ⎝⎛⎭⎫2x +π6, 令2x +π6=π2+k π(k ∈Z ),得x =k π2+π6(k ∈Z ).∴f (x )=2sin ⎝⎛⎭⎫2x +π6的对称轴方程为x =k π2+π6(k ∈Z ). 考点三 y =A sin(ωx +φ)图象与性质的应用 角度1 三角函数模型的应用【例3-1】 如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O 离地面1米,点O 在地面上的射影为A .风车圆周上一点M 从最低点O 开始,逆时针方向旋转40秒后到达P 点,则点P 到地面的距离是________米.【答案】 4【解析】 以圆心O 1为原点,以水平方向为x 轴方向,以竖直方向为y 轴方向建立平面直角坐标系,则根据大风车的半径为2米,圆上最低点O 离地面1米,12秒转动一周,设∠OO 1P =θ,运动t (秒)后与地面的距离为f (t ),又周期T =12,所以θ=π6t ,则f (t )=3+2sin ⎝⎛⎭⎫θ-π2=3-2cos π6t (t ≥0), 当t =40 s 时,f (t )=3-2cos ⎝⎛⎭⎫π6×40=4. 角度2 三角函数性质与图象的综合应用【例3-2】 已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π. (1)求函数f (x )的单调递增区间;(2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值. 【答案】见解析【解析】(1)f (x )=2sin ωx cos ωx +3(2sin 2ωx -1) =sin 2ωx -3cos 2ωx =2sin ⎝⎛⎭⎫2ωx -π3. 由最小正周期为π,得ω=1, 所以f (x )=2sin ⎝⎛⎭⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),整理得k π-π12≤x ≤k π+5π12(k ∈Z ),所以函数f (x )的单调递增区间是⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ). (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到y =2sin 2x +1的图象;所以g (x )=2sin 2x +1.令g (x )=0,得x =k π+7π12或x =k π+11π12(k ∈Z ),所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可.所以b 的最小值为4π+11π12=59π12.【规律方法】1.三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题,二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题. 2.方程根的个数可转化为两个函数图象的交点个数.3.研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.【训练3】 (1)某城市一年中12个月的平均气温与月份的关系可近似地用函数y =a +A cos ⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高为28 ℃,12月份的月平均气温最低为18 ℃,则10月份的平均气温为________℃. 【答案】 20.5【解析】 因为当x =6时,y =a +A =28; 当x =12时,y =a -A =18,所以a =23,A =5, 所以y =f (x )=23+5cos ⎣⎡⎦⎤π6(x -6), 所以当x =10时,f (10)=23+5cos ⎝⎛⎭⎫π6×4 =23-5×12=20.5.(2)已知函数f (x )=5sin x cos x -53cos 2x +523(其中x ∈R ),求:①函数f (x )的最小正周期;②函数f (x )的单调区间;③函数f (x )图象的对称轴和对称中心. 【答案】见解析【解析】①因为f (x )=52sin 2x -532(1+cos 2x )+532=5(12sin 2x -32cos 2x )=5sin ⎝⎛⎭⎫2x -π3, 所以函数的最小正周期T =2π2=π. ②由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ),所以函数f (x )的递增区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ). 由2k π+π2≤2x -π3≤2k π+3π2(k ∈Z ),得k π+5π12≤x ≤k π+11π12(k ∈Z ),所以函数f (x )的递减区间为⎣⎡⎦⎤k π+5π12,k π+11π12(k ∈Z ). ③由2x -π3=k π+π2(k ∈Z ),得x =k π2+5π12(k ∈Z ),所以函数f (x )的对称轴方程为x =k π2+5π12(k ∈Z ).由2x -π3=k π(k ∈Z ),得x =k π2+π6(k ∈Z ),所以函数f (x )的对称中心为⎝⎛⎭⎫k π2+π6,0(k ∈Z ). 【反思与感悟】1.五点法作图及图象变换问题(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图象变换时的伸缩、平移总是针对自变量x 而言,而不是看角ωx +φ的变化. 2.由图象确定函数解析式解决由函数y =A sin(ωx +φ)的图象确定A ,ω,φ的问题时,常常以“五点法”中的五个点作为突破口,要从图象的升降情况找准第一个“零点”和第二个“零点”的位置.要善于抓住特殊量和特殊点. 【易错防范】1.由函数y =sin x 的图象经过变换得到y =A sin(ωx +φ)的图象,如先伸缩再平移时,要把x 前面的系数提取出来.2.复合形式的三角函数的单调区间的求法.函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx +φ看作一个整体.若ω<0,要先根据诱导公式进行转化.3.求函数y =A sin(ωx +φ)在x ∈[m ,n ]上的最值,可先求t =ωx +φ的范围,再结合图象得出y =A sin t 的值域. 【核心素养提升】【逻辑推理与数学运算】——三角函数中有关ω的求解数学运算是解决数学问题的基本手段,通过运算可促进学生思维的发展;而逻辑推理是得到数学结论、构建数学体系的重要方式.运算和推理贯穿于探究数学问题的始终,可交替使用,相辅相成.类型1 三角函数的周期T 与ω的关系【例1】 为了使函数y =sin ωx (ω>0)在区间[0,1]上至少出现50次最大值,则ω的最小值为( ) A.98π B.1972π C.1992π D.100π【答案】 B【解析】 由题意,至少出现50次最大值即至少需用4914个周期,所以1974T =1974·2πω≤1,所以ω≥1972π.【评析】 解决此类问题的关键在于结合条件弄清周期T =2πω与所给区间的关系,从而建立不等关系.类型2 三角函数的单调性与ω的关系【例2】 若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤π3,π2上单调递减,则ω的取值范围是( )A.0≤ω≤23B.0≤ω≤32C.23≤ω≤3D.32≤ω≤3 【答案】 D【解析】 令π2+2k π≤ωx ≤32π+2k π(k ∈Z ),得π2ω+2k πω≤x ≤3π2ω+2k πω,因为f (x )在⎣⎡⎦⎤π3,π2上单调递减,所以⎩⎨⎧π2ω+2k πω≤π3,π2≤3π2ω+2k πω,得6k +32≤ω≤4k +3.又ω>0,所以k ≥0,又6k +32<4k +3,得0≤k <34,所以k =0.故32≤ω≤3. 【评析】 根据正弦函数的单调递减区间,确定函数f (x )的单调递减区间,根据函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤π3,π2上单调递减,建立不等式,即可求ω的取值范围. 类型3 三角函数对称性、最值与ω的关系【例3】 (1)(2019·枣庄模拟)已知f (x )=sin ωx -cos ωx ⎝⎛⎭⎫ω>23,若函数f (x )图象的任何一条对称轴与x 轴交点的横坐标都不属于区间(π,2π),则ω的取值范围是________.(结果用区间表示)(2)已知函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上的最小值为-2,则ω的取值范围是________. 【答案】 (1)⎣⎡⎦⎤34,78 (2)⎩⎨⎧⎭⎬⎫ω|ω≤-2或ω≥32 【解析】 (1)f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4, 令ωx -π4=π2+k π(k ∈Z ),解得x =3π4ω+k πω(k ∈Z ).当k =0时,3π4ω≤π,即34≤ω,当k =1时,3π4ω+πω≥2π,即ω≤78.综上,34≤ω≤78.(2)显然ω≠0,分两种情况:若ω>0,当x ∈⎣⎡⎦⎤-π3,π4时,-π3ω≤ωx ≤π4ω. 因函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上的最小值为-2,所以-π3ω≤-π2,解得ω≥32. 若ω<0,当x ∈⎣⎡⎦⎤-π3,π4时,π4ω≤ωx ≤-π3ω, 因函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上的最小值为-2,所以π4ω≤-π2,解得ω≤-2. 综上所述,符合条件的实数ω≤-2或ω≥32.【评析】 这类三角函数题除了需要熟练掌握正弦函数、余弦函数、正切函数的单调性外,还必须知晓一个周期里函数最值的变化,以及何时取到最值,函数取到最值的区间要求与题目给定的区间的关系如何. 【分层训练】【基础巩固题组】(建议用时:40分钟) 一、选择题1.函数y =A sin(ωx +φ)的部分图象如图所示,则( )A.y =2sin ⎝⎛⎭⎫2x -π6B.y =2sin ⎝⎛⎭⎫2x -π3C.y =2sin ⎝⎛⎭⎫x +π6D.y =2sin ⎝⎛⎭⎫x +π3 【答案】 A【解析】 由题图可知,A =2,T =2⎣⎡⎦⎤π3-⎝⎛⎭⎫-π6=π, 所以ω=2,由五点作图法知2×π3+φ=π2+2k π(k ∈Z ),所以φ=-π6,所以函数的解析式为y =2sin ⎝⎛⎭⎫2x -π6. 2.(2019·杭州期中)将函数y =sin ⎝⎛⎭⎫x +φ2·cos ⎝⎛⎭⎫x +φ2的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的取值不可能是( ) A.-3π4B.-π4C.π4D.5π4【答案】 B【解析】 将y =sin ⎝⎛⎭⎫x +φ2cos ⎝⎛⎭⎫x +φ2=12sin(2x +φ)的图象向左平移π8个单位后得到的图象对应的函数为y =12sin ⎝⎛⎭⎫2x +π4+φ,由题意得π4+φ=k π+π2(k ∈Z ),∴φ=k π+π4(k ∈Z ),当k =-1,0,1时,φ的值分别为-3π4,π4,5π4,φ的取值不可能是-π4. 3.(2019·咸阳模拟)已知点P (32,-332)是函数y =A sin(ωx +φ)(ω>0)图象上的一个最低点,M ,N 是与点P 相邻的两个最高点,若∠MPN =60°,则该函数的最小正周期是( ) A.3 B.4 C.5 D.6 【答案】 D【解析】 由P 是函数y =A sin(ωx +φ)(ω>0)图象上的一个最低点,M ,N 是与P 相邻的两个最高点,知|MP |=|NP |,又∠MPN =60°,所以△MPN 为等边三角形. 由P (32,-332),得|MN |=2×3323×2=6.∴该函数的最小正周期T =6.4.(2018·天津卷)将函数y =sin ⎝⎛⎭⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( )A.在区间⎣⎡⎦⎤-π4,π4上单调递增 B.在区间⎣⎡⎦⎤-π4,0上单调递减 C.在区间⎣⎡⎦⎤π4,π2上单调递增 D.在区间⎣⎡⎦⎤π2,π上单调递减【解析】 y =sin ⎝⎛⎭⎫2x +π5=sin 2⎝⎛⎭⎫x +π10,将其图象向右平移π10个单位长度,得到函数y =sin 2x 的图象.由2k π-π2≤2x ≤2k π+π2,k ∈Z ,得k π-π4≤x ≤k π+π4,k ∈Z .令k =0,可知函数y=sin 2x 在区间⎣⎡⎦⎤-π4,π4上单调递增. 5.(2019·张家界模拟)将函数f (x )=3sin 2x -cos 2x 的图象向左平移t (t >0)个单位后,得到函数g (x )的图象,若g (x )=g ⎝⎛⎭⎫π12-x ,则实数t 的最小值为( ) A.5π24 B.7π24C.5π12D.7π12【答案】 B【解析】 由题意得,f (x )=2sin ⎝⎛⎭⎫2x -π6, 则g (x )=2sin ⎝⎛⎭⎫2x +2t -π6, 从而2sin ⎝⎛⎭⎫2x +2t -π6=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫π12-x +2t -π6=-2sin(2x -2t )=2sin(2x -2t +π),又t >0, 所以当2t -π6=-2t +π+2k π(k ∈Z )时,即t =7π24+k π2(k ∈Z ),实数t min =724π.二、填空题6.将函数y =sin x 的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是________________. 【答案】 y =sin ⎝⎛⎭⎫12x -π10―————————―→横坐标伸长到原来的2倍y =sin ⎝⎛⎭⎫12x -π10. 7.(2018·沈阳质检)函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,则f ⎝⎛⎭⎫π4=________.【解析】 由图象可知A =2,34T =11π12-π6=3π4,∴T =π,∴ω=2.∵当x =π6时,函数f (x )取得最大值,∴2×π6+φ=π2+2k π(k ∈Z ),∴φ=π6+2k π(k ∈Z ),∵0<φ<π,∴φ=π6,∴f (x )=2sin ⎝⎛⎭⎫2x +π6, 则f ⎝⎛⎭⎫π4=2sin ⎝⎛⎭⎫π2+π6=2cos π6= 3. 8.已知f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=____________________________________. 【答案】143【解析】 依题意,x =π6+π32=π4时,y 有最小值,∴sin ⎝⎛⎭⎫π4·ω+π3=-1,∴π4ω+π3=2k π+3π2 (k ∈Z ). ∴ω=8k +143(k ∈Z ),因为f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值, 所以π3-π4≤πω,即ω≤12,令k =0,得ω=143.三、解答题9.某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差. 【答案】见解析【解析】(1)f (8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8 =10-3cos2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2(32cos π12t +12sin π12t ) =10-2sin ⎝⎛⎭⎫π12t +π3, 又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝⎛⎭⎫π12t +π3≤1. 当t =2时,sin ⎝⎛⎭⎫π12t +π3=1; 当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1. 于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天的最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.10.已知函数f (x )=3sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻最高点的距离为π. (1)求f ⎝⎛⎭⎫π4的值;(2)将函数y =f (x )的图象向右平移π12个单位后,得到y =g (x )的图象,求g (x )的单调递减区间.【答案】见解析【解析】(1)因为f (x )的图象上相邻最高点的距离为π, 所以f (x )的最小正周期T =π,从而ω=2πT =2.又f (x )的图象关于直线x =π3对称,所以2×π3+φ=k π+π2(k ∈Z ),因为-π2≤φ<π2,所以k =0,所以φ=π2-2π3=-π6,所以f (x )=3sin ⎝⎛⎭⎫2x -π6, 则f ⎝⎛⎭⎫π4=3sin ⎝⎛⎭⎫2×π4-π6=3sin π3=32. (2)将f (x )的图象向右平移π12个单位后,得到f ⎝⎛⎭⎫x -π12的图象, 所以g (x )=f ⎝⎛⎭⎫x -π12=3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6=3sin ⎝⎛⎭⎫2x -π3. 当2k π+π2≤2x -π3≤2k π+3π2(k ∈Z ),即k π+5π12≤x ≤k π+11π12(k ∈Z )时,g (x )单调递减.因此g (x )的单调递减区间为⎣⎡⎦⎤k π+5π12,k π+11π12(k ∈Z ). 【能力提升题组】(建议用时:20分钟)11.(2019·天津和平区调研)已知x =π12是函数f (x )=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f (x )的图象向右平移3π4个单位长度后得到函数g (x )的图象,则函数g (x )在⎣⎡⎦⎤-π4,π6上的最小值为( ) A.-2 B.-1C.- 2D.- 3【答案】 B【解析】 ∵x =π12是f (x )=2sin ⎝⎛⎭⎫2x +π6+φ图象的一条对称轴,∴π3+φ=k π+π2(k ∈Z ),即φ=k π+π6(k ∈Z ).∵0<φ<π,∴φ=π6,则f (x )=2sin ⎝⎛⎭⎫2x +π3, ∴g (x )=-2sin ⎝⎛⎭⎫2x -π6在⎣⎡⎦⎤-π4,π6上的最小值为g ⎝⎛⎭⎫π6=-1. 12.函数f (x )=220sin 100πx -220sin ⎝⎛⎭⎫100πx +2π3,且已知对任意x ∈R ,有f (x 1)≤f (x )≤f (x 2)恒成立,则|x 2-x 1|的最小值为( ) A.50π B.1100πC.1100D.440【答案】 C【解析】 f (x )=220sin 100πx -220sin ⎝⎛⎭⎫100πx +2π3 =220⎣⎡⎦⎤sin 100πx -⎝⎛⎭⎫sin 100πx ·cos 2π3+cos 100πx sin 2π3 =220⎝⎛⎭⎫sin 100πx +12sin 100πx -32cos 100πx=2203⎝⎛⎭⎫32sin 100πx -12cos 100πx=2203×sin ⎝⎛⎭⎫100πx -π6, 则由对任意x ∈R ,有f (x 1)≤f (x )≤f (x 2)恒成立得当x =x 2时,f (x )取得最大值,当x =x 1时,f (x )取得最小值,所以|x 2-x 1|的最小值为12T =12×2π100π=1100(T 为f (x )的最小正周期),故选C.13.(2019·广东省际名校联考)将函数f (x )=1-23·cos 2x -(sin x -cos x )2的图象向左平移π3个单位,得到函数y =g (x )的图象,若x ∈⎣⎡⎦⎤-π2,π2,则函数g (x )的单调递增区间是________. 【答案】 ⎣⎡⎦⎤-5π12,π12 【解析】 ∵f (x )=1-23cos 2 x -(sin x -cos x )2=sin 2x -3cos 2x -3=2sin ⎝⎛⎭⎫2x -π3-3, ∴g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3-π3-3=2sin ⎝⎛⎭⎫2x +π3-3, 由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z ), 得-5π12+k π≤x ≤π12+k π(k ∈Z ), ∵x ∈⎣⎡⎦⎤-π2,π2, ∴函数g (x )在⎣⎡⎦⎤-π2,π2上的单调递增区间是⎣⎡⎦⎤-5π12,π12. 14.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)将函数y =f (x )的图象上各点的纵坐标保持不变,横坐标缩短到原来的12倍,再把所得的函数图象向左平移π6个单位长度,得到函数y =g (x )的图象,求函数g (x )在区间⎣⎡⎦⎤0,π8上的最小值.【答案】见解析【解析】(1)设函数f (x )的最小正周期为T ,由题图可知A =1,T 2=2π3-π6=π2, 即T =π,所以π=2πω,解得ω=2, 所以f (x )=sin(2x +φ),又过点⎝⎛⎭⎫π6,0,由0=sin ⎝⎛⎭⎫2×π6+φ可得π3+φ=2k π(k ∈Z ),则φ=2k π-π3(k ∈Z ),因为|φ|<π2,所以φ=-π3, 故函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎫2x -π3. (2)根据条件得g (x )=sin ⎝⎛⎭⎫4x +π3, 当x ∈⎣⎡⎦⎤0,π8时,4x +π3∈⎣⎡⎦⎤π3,5π6, 所以当x =π8时,g (x )取得最小值,且g (x )min =12. 【新高考创新预测】15.(多填题)已知函数f (x )=23sin ωx 2cos ωx 2+2cos 2ωx 2-1(ω>0)的最小正周期为π,当x ∈⎣⎡⎦⎤0,π2时,方程f (x )=m 恰有两个不同的实数解x 1,x 2,则x 1+x 2=________,f (x 1+x 2)=________.【答案】 π31 【解析】 函数f (x )=23sin ωx 2cos ωx 2+2cos 2ωx 2-1=3sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π6. 由T =2πω=π,可得ω=2,∴f (x )=2sin ⎝⎛⎭⎫2x +π6. ∵x ∈⎣⎡⎦⎤0,π2,∴π6≤2x +π6≤7π6,∴-1≤f (x )≤2. 画出f (x )的图象(图略),结合图象知x 1+x 2=π3, 则f (x 1+x 2)=f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫2π3+π6=2sin 5π6=1.。
2020年高三数学第一轮复习教案-三角函数-第六节 函数y=Asin(ωx+φ)的图像及应用
第六节 函数Y=ASIN(ΩX+Φ)的图像及应用
【知识必备】
知识点一 用五点法画y=Asin(ωx+φ)一个周期内的简图
【知识必备】
知识点二 函数y=Asin(ωx+φ)的有关概念
【知识必备】
知识点三 函数y=sinx的图象经变换得到y=Asin(ωx+φ)的图象的两种途径
A
【典题演练】
D
A
【典题演练】
D
【典题演练】
【作 业】
1、完成新数学中的【典例剖析】 2、完成课时作业(二十二)
再见
【知识必备】
1.由 y=sinωx 到 y=sin(ωx+φ)(ω>0,φ>0)的变换:向左平移ωφ个 单位长度而非 φ 个单位长度.
2.函数 y=Asin(ωx+φ)的对称轴由 ωx+φ=kπ+π2(k∈Z)确定; 对称中心的横坐标由 ωx+φ=kπ(k∈Z)确定.
【典型例题】
【典型例题】
【典型例题】
2020届高三一轮复习理科数学课件 函数y=Asin(ωx+φ)的图象及应用
解析 由图可知
2π T=4× 3
4π 2π 3 π - = 3 ,则 ω= T =2. 3
π π 6.把函数 y=sin5x-2的图象向右平移 个单位,再把所得函数图象 4 7π 1 y=sin10x- 4 上各点的横坐标缩短为原来的 ,所得的函数解析式为 y=sin .
夯实双击 自主梳理
1.函数 y=Asin(ωx+φ)中各量的物理意义 当函数 y=Asin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示简谐振动时, 几个相关的概念如表:
简谐振动 y=Asin(ωx+φ)(A>0, ω>0),x∈[0,+∞)
振幅 A
周期
频率 1 f= T
相位
初相
2π T= ω
2. 要得到函数
π y=sin2x- 只需将函数 的图象, 3
y=sin 2x 的图象( B )
π A.向左平移 个单位长度 6 π B.向右平移 个单位长度 6 π C.向左平移 个单位长度 3 π D.向右平移 个单位长度 3
π 解析 将函数 y=sin 2x 的图象向右平移 个单位长度,可得函数 y= 6
1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)作函数
π y=sinx- 在一个周期内的图象时,确定的五点是(0,0), 6
π 3π ,-1 ,1,(π,0), ,(2π,0)这五个点.( 2 2
× )
解析
3π -φ 2 ω
2π-φ ω
00 0
π 2
π
π 0
3π 2
2π π 2
A
-A
0
(2)作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到 y =Asin(ωx+φ)在一个周期内的图象. (3)扩展:将所得图象,按周期向两侧扩展可得 y=Asin(ωx+φ)在 R 上 的图象.
通用版2020版高考数学大一轮复习第20讲函数y=Asin(ωx+φ)的图像及三角函数模型的简单应用(解析版)
第20讲函数y=A sin(ωx+φ)的图像及三角函数模型的简单应用1.y=A sin(ωx+φ)的有关概念2.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点,如下表所示:3.函数y=sin x的图像经变换得到y=A sin(ωx+φ)的图像的步骤图3-20-1题组一常识题1.[教材改编]函数y=sin x的图像上所有点的横坐标不变,纵坐标伸长为原来的2倍得到的图像对应的函数解析式是.2.[教材改编]某函数的图像向右平移个单位长度后得到的图像对应的函数解析式是y=sin,则原函数的解析式是.3.[教材改编]函数y=cos-的周期为,单调递增区间为.4.[教材改编]已知简谐运动f(x)=2sin x+φ的图像经过点(0,1),则该简谐运动的初相φ为.题组二常错题◆索引:图像平移多少单位长度容易搞错;不能正确理解三角函数图像对称性的特征;三角函数的单调区间把握不准导致出错;确定不了函数解析式中φ的值.5.为得到函数y=cos的图像,只需将函数y=sin 2x的图像向平移个单位长度.6.设ω>0,若函数f(x)=sin ωx在区间-上单调递增,则ω的取值范围是.7.若f(x)=2sin(ωx+φ)+m对任意实数t都有f=f-,且f=-3,则实数m= .图3-20-28.已知函数f (x )=sin(ωx+φ)ω>0,|φ|<的部分图像如图3-20-2所示,则φ= .探究点一 函数y=A sin(ωx+φ)的图像变换例1 (1)将函数f (x )=sin的图像沿x 轴向左平移个单位长度后所得图像对应的函数解析式为 ( )A .y=cos 2xB .y=-cos 2xC .y=sinD .y=sin -(2)若由函数y=sin的图像变换得到y=sin2x +的图像,则可以通过以下两个步骤完成:第一步,把y=sin 2x+图像上所有点的横坐标变为原来的4倍,纵坐标不变;第二步,把所得图像沿x 轴 ( ) A .向右平移个单位长度 B .向右平移 个单位长度 C .向左平移 个单位长度 D .向左平移个单位长度[总结反思] 由y=sin x 的图像变换到y=A sin(ωx+φ)的图像,两种变换中平移的量的区别:先平移再伸缩,平移的量是|φ|个单位长度;而先伸缩再平移,平移的量是(ω>0)个单位长度.特别提醒:平移变换和伸缩变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值.变式题 (1)[2018·江西八所重点中学联考] 将函数y=sin x-的图像上所有的点向右平移个单位长度,再把所得图像上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得图像对应的函数解析式为 ( ) A .y=sin -B .y=sin 2xC .y=sin2x - D .y=sin 2x - (2)为了得到函数y=sin 3x 的图像,可以将y=cos 3x 的图像 ( )A .向右平移个单位长度B .向左平移个单位长度C .向右平移个单位长度 D .向左平移个单位长度探究点二 函数y=A sin(ωx+φ)的图像与解析式例2 (1)已知函数f (x )=A sin(ωx+θ)(A>0,|θ|<π)的部分图像如图3-20-3所示,将函数y=f (x )的图像向右平移个单位长度得到函数y=g (x )的图像,则函数g (x )的解析式为( )A .g (x )=2sin 2xB .g (x )=2sinC .g (x )=2sinD .g (x )=2sin -图3-20-3(2)已知函数y=sin(ωx+φ)(ω>0,-π≤φ<π)的部分图像如图3-20-4所示,则φ= .图3-20-4[总结反思] 利用图像求函数y=A sin(ωx+φ)(A>0,ω>0)的解析式主要从以下三个方面考虑:(1)根据最大值或最小值求出A的值.(2)根据周期求出ω的值.(3)求φ的常用方法如下:①代入法:把图像上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图像的最高点或最低点代入.②五点法:确定φ的值时,往往以寻找“五点法”中的特殊点作为突破口.图3-20-5变式题已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)的部分图像如图3-20-5所示,且A,1,B(π,-1),则φ的值为.探究点三函数y=A sin(ωx+φ)的图像与性质例3 [2018·湖北八市联考]函数f(x)=sin(ωx+φ)ω>0,|φ|<在它的某一个周期内的单调递减区间是.将y=f(x)的图像先向左平移个单位长度,再将所得图像上所有点的横坐标变为原来的(纵坐标不变),所得到的图像对应的函数记为g(x).(1)求g(x)的解析式;(2)求g(x)在区间上的最大值和最小值.[总结反思] 三角函数图像与性质综合问题的求解思路:(1)将函数整理成y=A sin(ωx+φ)+B(ω>0)的形式;(2)把ωx+φ看成一个整体;(3)借助正弦函数y=sin x的图像与性质(如定义域、值域、最值、周期性、对称性、单调性等)解决相关问题.变式题 (1)[2018·益阳调研]将函数f(x)=cos(2x+θ)的图像向右平移个单位长度后得到函数g(x)的图像,若g(x)的图像关于直线x=对称,则θ=()A.B.C.-D.-(2)[2018·葫芦岛二模]已知函数f(x)=A sin(ωx+φ)A>0,ω>0,<φ<π的部分图像如图3-20-6所示,则下列说法正确的是()图3-20-6A.函数f(x)的周期为πB.函数y=f(x-π)为奇函数C.函数f(x)在-上单调递增D.函数f(x)的图像关于点,0对称探究点四三角函数模型的简单应用例4 如图3-20-7所示,制图工程师要用两个同中心且边长均为4的正方形合成一个八角形图形,由对称性知,图中8个三角形都是全等的三角形,设∠AA1H1=α.图3-20-7(1)试用α表示△AA1H1的面积;(2)求八角形所覆盖面积的最大值,并指出此时α的大小.[总结反思] 三角函数模型在实际问题中的应用体现在两个方面:(1)已知函数模型,利用三角函数的有关性质解决问题,其关键是准确理解自变量的含义及自变量与函数之间的对应法则;(2)把实际问题抽象转化成三角函数模型问题,关键是利用三角函数表示实际问题中的有关量,建立模型.变式题某城市一年12个月的月平均气温与月份的关系可近似地用函数y=a+A cos(x-6)(x=1,2,3,…,12)来表示,已知6月份的平均气温最高,为28 ℃ 月份的平均气温最低,为18 ℃ 则10月份的平均气温为℃.第20讲函数y=A sin(ωx+φ)的图像及三角函数模型的简单应用考试说明 1.了解函数y=A sin(ωx+φ)的物理意义;能画出函数y=A sin(ωx+φ)的图像,了解参数A,ω,φ对函数图像变化的影响.2.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.【课前双基巩固】知识聚焦1.ωx+φφ2.-----0π2π3.|φ|对点演练1.y=2sin x [解析] 根据函数图像变换法则可得.2.y=sin[解析] 函数y=sin的图像向左平移个单位长度后得到y=sin=sin的图像,即原函数的解析式为y=sin x+.3.π-(k∈Z)[解析] y=cos-=sin 2x,所以函数的周期T==π.由-+2kπ≤2x≤+2kπ(k∈Z),得-+kπ≤x≤+kπ(k∈Z),故函数的单调递增区间为-(k∈Z).4.[解析] 将点(0,1)代入函数解析式,可得2sin φ=1,即sin φ=.∵ φ|<,∴φ=.5.左[解析] y=cos=sin+=sin.故要得到y=sin=sin 2的图像,只需将函数y=sin 2x的图像向左平移个单位长度.6.(0,1][解析] 因为函数f(x)=sin ωx在区间-上单调递增,所以=≥+=π,所以ω≤1,又因为ω>0,所以ω∈(0,1].7.-5或-1[解析] 由f=f-得,函数f(x)的图像的对称轴为直线x=.故当x=时,函数取得最大值或最小值,于是有-2+m=-3或2+m=-3,即m=-1或m=-5.8.-[解析] 由图像可知,T=4×-=π,所以ω==2.因为f=sin+φ=1,所以+φ=+2kπ(k∈Z),即φ=-+2kπ(k∈Z),又|φ|<,所以φ=-.【课堂考点探究】例1[思路点拨] 根据图像平移“左加右减”的规则以及平移量确定结果.(1)A (2)A [解析] (1)由题意知,将f (x )=sin 的图像向左平移个单位长度后,得到y=sin=sin=cos 2x 的图像,故选A .(2)把y=sin 图像上所有点的横坐标变为原来的4倍,得到函数y=sin2x的图像,再把所得图像沿x 轴向右平移个单位长度,可以得到y=sin-=sin的图像.故选A .变式题 (1)C (2)A [解析] (1)将函数y=sin -的图像向右平移个单位长度,得到y=sin -的图像,再把所得图像上各点的横坐标扩大到原来的2倍(纵坐标不变),得到y=sin2x -的图像,故选C . (2)由题意知,y=cos 3x=sin=sin 3,将函数y=sin 3的图像向右平移个单位长度,得到y=sin 3-=sin 3x 的图像,故选A .例2 [思路点拨] (1)先根据图像确定A ,T ,ω,θ,再根据平移得函数g (x )的解析式;(2)结合函数的图像首先确定ω的值,然后确定φ的值即可. (1)D (2)[解析] (1)由题图得,A=2,T=- - =π,∴ω==2.∵当x=-= 时,y=2,∴2× +θ=+2k π(k ∈Z),∴θ=+2k π(k ∈Z),又∵ θ|<π,∴θ=,∴f (x )=2sin, ∴g (x )=2sin -=2sin -,故选D .(2)由题意可知,函数的最小正周期T=2× -=π,则ω===.当x=2π时,ωx+φ= ×2π+φ=2k π+(k ∈Z), 则φ=2k π-π(k ∈Z),由于-π≤φ<π,故φ=. 变式题 -[解析] 根据函数f (x )=2sin(ωx+φ)(ω>0,|φ|<π)的图像,且A,1,B (π,-1),可得从点A 到点B 正好经过了半个周期,即×=π-,∴ω=2.再把点A ,B 的坐标代入函数解析式,可得2sin 2×+φ=-2sin φ=1,2sin(2×π+φ )=2sinφ=-1,∴sin φ=-,∴φ=2k π-或φ=2k π-,k ∈Z .再结合“五点作图法”,可得φ=-.例3 [思路点拨] (1)根据已知求得ω的值,然后求出φ的值,从而可求出f (x )的解析式,进而得到g (x )的解析式;(2)确定g (x )的单调性,然后求出最值. 解:(1)由题意可知,2x = - = ,∴ω=2,又sin =1,|φ|< ,∴φ=-, ∴f (x )=sin -,∴g (x )=sin.(2)由(1)可知,g (x )在上为增函数,在上为减函数,∴g (x )max =g=1,又∵g (0)= ,g =- ,∴g (x )min =g =- ,故函数g (x )在上的最大值和最小值分别为1和-.变式题 (1)A (2)B [解析] (1)由题意知,g (x )=cos 2x -+θ=cos 2x-+θ,令2x-+θ=k π(k ∈Z),则函数g (x )的图像的对称轴为直线x= - +(k ∈Z),令 - + =(k ∈Z),则θ=+k π(k ∈Z),又|θ|<,所以θ=.故选A .(2)观察图像可得,函数的最小值为-2,所以A=2.由图像可知函数过点(0, ), 所以 =2sin φ,又因为<φ<π,所以φ=.由图像可知,·ω+=+2k π,k ∈Z,解得ω= +k ,k ∈Z,又 = >,所以0<ω< ,所以ω=,则f (x )=2sin.显然A 选项错误;对于B,f (x-π)=2sin(x-π)+=2sinx ,是奇函数,故B 选项正确;对于C,观察图像可知,f (x )在 -上不单调,故C 选项错误; 对于D,f=2sin×+=2sin≠0,故D 选项错误.故选B .例4 [思路点拨] (1)注意到BA 1=AA 1,AH 1=H 1H ,从而知△AA 1H 1的周长为4,设AH 1=x ,从而可求得 △ ;(2)令t=sin α+cos α,用t 表示 △ ,根据t ∈(1, ]可求得最大值. 解:(1)设AH 1=x ,由题意知,x++=4,∴ =,∴ △=·=,α∈.(2)令t=sin α+cos α,∵α∈,∴ ∈(1,].当八角形所覆盖的面积最大时,△取得最大值.由(1)可知,△=-=4-,∴当t=,即α=时,△取得最大值,此时八角形所覆盖的面积最大,设为S,则S=16+4×=64-32,∴八角形所覆盖面积的最大值为64-32.变式题20.5[解析] 因为当x=6时,y=a+A=28,当x=12时,y=a-A=18,所以a=23,A=5, 所以y=23+5cos(x-6),所以当x=10时,y=23+5cos=23-5×=20.5.【备选理由】例1考查正切函数的图像,是对例题中正弦、余弦函数图像问题的补充;例2重点考查函数的对称性,对正弦函数图像的对称轴与对称中心加深理解;例3主要考查了三角函数图像与性质的综合应用问题,着重考查了推理与运算能力;例4是实际应用题目,要根据条件转化为数学中的知识.例1[配合例2使用] 已知函数f(x)=A tan(ωx+φ)x x的部分图像如图所示,则f= ()A.3B.C.1D.[解析] A由题可知,=-=,∴ =,∴ω==2.由图像可知,×2+φ=kπ(k∈Z),得φ=-+kπ(k∈Z),又|φ|<,∴φ=,∴f(x)=A tan.又f(0)=A tan=1,∴A=,∴f(x)=tan,∴f=tan=tan=3.故选A.例2[配合例3使用] [2018·长沙长郡中学二模]已知函数f(x)=sin(ωx+φ)ω>0,|φ|<,其图像相邻两条对称轴之间的距离为,将函数y=f(x)的图像向左平移个单位长度后,得到的图像关于y轴对称,那么函数y=f(x)的图像()A.关于点-对称B.关于点对称C.关于直线x=对称D.关于直线x=-对称[解析] B∵函数y=f(x)的图像相邻两条对称轴之间的距离为,∴函数的周期T=,∴ω==4,∴f(x)=sin(4x+φ).将函数y=f(x)的图像向左平移个单位长度后,得到函数y=sin的图像,∵所得图像关于y轴对称,∴4×+φ=kπ+,k∈Z,即φ=kπ-,k∈Z,又|φ|<,∴φ=-,∴f(x)=sin-.令4x-=kπ,k∈Z,解得x=+,k∈Z,令k=0,得f(x)的图像关于点对称.故选B.例3[配合例3使用] 已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图像如图所示.(1)求函数f(x)的单调递增区间;(2)若x∈-,求函数f(x)的值域.解:(1)由图像可知,=--=,∴ =π,∴ω==2.又函数的最大值为2,且A>0,∴A=2.∵f-=2,∴2×-+φ=+2kπ,k∈Z,∴φ=+2kπ,k∈Z,又∵ φ|<π,∴φ=,∴f(x)=2sin.由-+2kπ≤2x+≤+2kπ,k∈Z,得-+kπ≤x≤-+kπ,k∈Z,∴函数f(x)的单调递增区间为--,k∈Z.(2)∵ ∈-,∴2x+∈,∴当2x+=,即x=时,f(x)min=-,当2x+=,即x=-时,f(x)max=2,∴函数f(x)在-上的值域为[-,2].例4[配合例4使用] 一根长a cm的线一端固定,另一端悬挂一个小球,小球摆动时,离开平衡位置的位移s(cm)和时间t(s)的函数关系式是s=3cos x,t∈[0,+∞),则小球摆动的周期为s.[答案][解析] ∵小球的位移s与时间t的函数关系式为s=3cos,t∈[0,+∞),∴小球摆动的周期T==.。
高考理科数学一轮函数y=asin(ωx+φ)的图象及三角函数模型的简单应用
1.已知函数 y=sin2x + 3cos2x(x∈R).
(1)作出此函数在一个周期上的简图; (2)写出该函数的振幅、周期、初相、最值.
【解】(1)y=sin2x +
3cos2x=2
1 2
������������������
������ 2
+
3 2
������������������
x 2
=2sin
第 4 讲 函数 y=Asin(ωx+φ)的图象 及三角函数模型的简单应用
考纲展示
考纲解读
1.了解函数 y=Asin(ωx+φ)的物理 意义;能画出函数 y=Asin(ωx+φ) 的图象;了解参数 A,ω,φ 对函数 图象变化的影响. 2.会 用 三 角 函 数 解 决一 些 简 单 实际问题 ,了解三 角函数 是描述 周期变化现象的重要函数模型.
振 幅 y=Asin(ωx+φ)(A>0,ω>0),x∈[0,+∞) 表 示 一个振动量时 A
周期 频率
初 相位
相
2������
T= ω
f=
1 T
=
ω
ωx+φ
φ
2������
2.用五点法画函数 y=Asin(ωx+φ)(A>0,ω>0)一个周期内的简图时,要找
五个特征点.如下表所示.
x
0-φ ω
������ 2
π 6
,因此选 D.
5.(2013 届·重庆摸底考试)已知函数 f(x)=sin(ωx+φ)(ω>0)的图象如图所示,
则 ω=
.
【答案】3
2
【解析】由题意设函数周期为
高考数学(理科)第一轮复习课件和练习:函数y=Asin(ωx+φ)的图像及三角函数模型的简单应用
课时提升作业(二十)一、选择题1.要得到函数y=sinx的图像,只需将函数y=cos(x-)的图像( )(A)向右平移个单位(B)向右平移个单位(C)向左平移个单位(D)向左平移个单位2.已知函数f(x)=sin(ωx+)(ω>0)的最小正周期为π,则该函数的图像( )(A)关于直线x=对称(B)关于点(,0)对称(C)关于直线x=-对称(D)关于点(,0)对称3.(2018·上饶模拟)已知函数f(x)的部分图像如图所示,则f(x)的解析式可能为( )(A)f(x)=2cos(-)(B)f(x)=cos(4x+)(C)f(x)=2sin(-)(D)f(x)=2sin(4x+)4.(2018·新余模拟)已知函数f(x)=sin(2x+),其中x∈R,则下列结论中正确的是( )(A)f(x)是最小正周期为π的偶函数(B)f(x)的一条对称轴是x=(C)f(x)的最大值为2(D)将函数y=sin2x的图像左移个单位得到函数f(x)的图像5.(2018·咸阳模拟)设函数f(x)=sin(ωx+φ+)(ω>0,|φ|<)的最小正周期为π,且f(-x)=f(x),则( )(A)y=f(x)在(0,)是减少的(B)y=f(x)在(,)是减少的(C)y=f(x)在(0,)是增加的(D)y=f(x)在(,)是增加的二、填空题6.在函数f(x)=Asin(ωx+φ)(A>0,ω>0)的一个周期内,当x=时,有最大值,当x=时,有最小值-,若φ∈(0,),则函数解析式f(x)= .7.(2018·宜春模拟)已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图像如图所示,则ω·φ= .8.(能力挑战题)设函数y=sin(ωx+φ)(ω>0,φ∈(-,))的最小正周期为π,且其图像关于直线x=对称,则在下面四个结论中:①图像关于点(,0)对称;②图像关于点(,0)对称;③在[0,]上是增加的;④在[-,0]上是增加的.正确结论的编号为.三、解答题9.(2018·安庆模拟)已知函数y=Asin(ωx+φ)+b(A>0,|φ|<π,b为常数)的一段图像(如图所示).(1)求函数的解析式.(2)求这个函数的单调区间.10.(能力挑战题)已知f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期为2,且当x=时,f(x)的最大值为2.(1)求f(x)的解析式.(2)在闭区间[,]上是否存在f(x)的对称轴?如果存在求出其对称轴.若不存在,请说明理由.答案解析1. 【解析】选A.y=sinx=cos(-x)=cos(x-)=cos(x--),故只需将y=cos(x-)的图像向右平移个单位即得.2.【解析】选B.由T=π,∴=π,得ω=2.故f(x)=sin(2x+).当x=时,2×+=π,此时sinπ=0,故f(x)=sin(2x+)的图像关于点(,0)对称.【变式备选】(2018·赣州模拟)为得到函数y=cos(2x+)的图像,只需将函数y=sin2x的图像( )(A)向左平移个长度单位(B)向右平移个长度单位(C)向左平移个长度单位(D)向右平移个长度单位【思路点拨】先将两函数化为同名函数,再判断平移方向及平移的长度单位.【解析】选A.y=cos(2x+)=sin[+(2x+)]=sin(2x+)=sin2(x+)故将函数y=sin2x的图像向左平移个单位可得函数y=cos(2x+)的图像.3.【思路点拨】将图中特殊点的坐标代入解析式中验证即可.【解析】选A.对于选项C,D,点B(0,1)的坐标不满足;对于选项B,点A(,2)的坐标不满足;对于选项A,点A,B,C的坐标都满足,故选A.4.【解析】选D.f(x)=sin(2x+)=sin 2(x+),故A错,不是偶函数;B错,x=不是对称轴;C错,最大值为.D正确.5.【思路点拨】先确定y=f(x)的解析式,再判断.【解析】选A.由周期为π知ω==2;又f(-x)=f(x),故函数为偶函数,所以φ+=kπ+(k∈Z).又|φ|<,所以φ=.从而f(x)=sin(2x+)=cos2x.所以f(x)在(0,)是减少的.6.【解析】由最大值,最小值得A=,且T=-=,故T=,∴ω=3.由sin(3×+φ)=得,sin(+φ)=1,又∵0<φ<,故φ=,所以f(x)=sin(3x+).答案:sin(3x+)7.【解析】由图形知=-=,∴T=π,∴ω=2,∴f(x)=sin(2x+φ).方法一:由五点作图法知,2×+φ=,∴φ=-,∴ω·φ=2×(-)=-.方法二:把点(,1)的坐标代入f(x)=sin(2x+φ)得, sin(+φ)=1,∴+φ=+2kπ(k∈Z),∴φ=-+2kπ(k∈Z),又|φ|<,∴φ=-,∴ω·φ=2×(-)=-.答案:-8.【解析】∵y=sin(ωx+φ)最小正周期为π,∴ω==2.又其图像关于直线x=对称,∴2×+φ=kπ+(k∈Z).∴φ=kπ+,k∈Z.由φ∈(-,),得φ=,∴y=sin(2x+).令2x+=kπ(k∈Z),得x=-(k∈Z).∴y=sin(2x+)关于点(,0)对称,故②正确.令2kπ-≤2x+≤2kπ+(k∈Z),得kπ-≤x≤kπ+(k∈Z),∴函数y=sin(2x+)的递增区间为[kπ-,kπ+](k∈Z).∵[-,0][kπ-,kπ+](k∈Z),∴④正确.答案:②④9.【解析】(1)由条件知解得A=b=,又==-(-)=,∴ω=.∴y=sin(x+φ)+,将点(,0)坐标代入上式,得sin(+φ)=-1,∴+φ=+2kπ(k∈Z),∴φ=+2kπ(k∈Z).又|φ|<π,∴φ=π,∴y=sin(x+)+.(2)由2kπ-≤x+≤2kπ+(k∈Z),得-≤x≤-(k∈Z).由2kπ+≤x+≤2kπ+(k∈Z),得-≤x≤+(k∈Z).∴所求递增区间为[-,-](k∈Z),递减区间为[-,+](k∈Z).【方法技巧】由图像求解析式和性质的方法和技巧(1)给出图像求y=Asin(ωx+φ)+b的解析式的难点在于ω,φ的确定,本质为待定系数,基本方法是①寻找特殊点(平衡点、最值点)代入解析式;②图像变换法,即考察已知图像可由哪个函数的图像经过变换得到,通常可由平衡点或最值点确定周期T,进而确定ω.(2)由图像求性质的时候,首先确定解析式,再根据解析式求其性质,要紧扣基本三角函数的性质.例如,单调性、奇偶性、周期性和对称性等都是考查的重点和热点.【变式备选】函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图像如图所示.(1)求f(x)的最小正周期及解析式.(2)设g(x)=f(x)-cos2x,求函数g(x)在区间[0,]上的最大值和最小值. 【解析】(1)由图可得A=1,=-=,所以T=π,所以ω=2.当x=时,f(x)=1,可得sin(2×+φ)=1,因为|φ|<,所以φ=.所以f(x)的解析式为f(x)=sin(2x+).(2)g(x)=f(x)-cos2x=sin(2x+)-cos2x=sin2xcos+cos2xsin-cos2x=sin2x-cos2x=sin(2x-).因为0≤x≤,所以-≤2x-≤.当2x-=,即x=时,g(x)取最大值为1;当2x-=-,即x=0时,g(x)取最小值为-.10.【解析】(1)由T=2知=2得ω=π.又因为当x=时f(x)的最大值为2,所以A=2.且π+φ=2kπ+(k∈Z),故φ=2kπ+(k∈Z).∴f(x)=2sin(πx+2kπ+)=2sin(πx+),k∈Z,故f(x)=2sin(πx+).(2)令πx+=kπ+(k∈Z),得x=k+(k∈Z).由≤k+≤.得≤k≤,又k∈=5.故在[,]上存在f(x)的对称轴, 其方程为x=.。
2020年高考数学一轮总复习函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用课件理
方法2 数形结合法求解三角不等式、三角方程 【例4】 设f(x)=sin x(sin x+cos x)+2cos2x. (1)求函数f(x)的最大值与最小正周期; (2)求使不等式f(x)≥32成立的x的取值集合.
[解析] f(x)=sin2x+sin xcos x+2cos2x =32+12sin 2x+12cos 2x = 22sin2x+π4+32,
[答案] (1)C (2)C
名师点拨 确定y=Asin(ωx+φ)+b(A>0,ω>0)的思维和步骤 (1)求A,b,确定函数的最大值M和最小值m,则A=M-2 m,b=M+2 m. (2)求ω,确定函数的周期T,则可得ω=2Tπ.
(3)求φ,常用的方法有:
①代入法:把图象上的一个已知点代入(此时A,ω,b已知)或代入图象与直线y=b
3sinπ6x+φ+k.据此函数可知,这段时间水深(单位:m)的最大值为(
)
A.5 C.8
B.6 D.10
(2)(2018·咸阳期末)如图,某地一天中6时至14时的温度变化曲线近似满足函数T= Asin(ωt+φ)+20(其中A>0,ω>0,0<φ<π),那么该函数的解析式是( ) A.T=20sinπ4t+34π+20 B.T=10sinπ4t+34π+20 C.T=10sinπ8t+34π+20 D.T=20sinπ8t+π4+20
第四节 函数y=Asin(ωx+φ)的图象及三角 函数模型的简单应用
栏目 导航
教材回顾 考点突破
最新考纲
考情考向分析
1.了解函数y=Asin(ωx+φ)的物理意
以考查函数y=Asin(ωx+φ)的图象
义;能画出y=Asin(ωx+φ)的图 的五点法画图、图象之间的平移伸缩变
高考数学一轮总复习课件第四章 第三节y=Asin(ωx+φ)的图象和性质及其综合应用
►两类求解:三角方程、三角不等式. (4)[解三角方程,只需在一个周期内找出与三角函数值对应的
角,利用终边相同角的集合表示和角的整体思想代入求解]方
①代入法:把图象上的一个已知点代入(此时 A,ω,b 已知)
或代入曲线与直线 y=b 的交点求解(此时要注意交点在上升 区间上还是在下降区间上).
②五点法:确定 φ 值时,往往以寻找“五点法”中的第一个点 为突破口.具体方法如下:
“第一点”(即图象上升时与 x 轴的交点)时,ωx+φ=0; “第二点”(即图象的“峰点”)时,ωx+φ=π2 ; “第三点”(即图象下降时与 x 轴的交点)时,ωx+φ=π; “第四点”(即图象的“谷点”)时,ωx+φ=3π 2 ; “第五点”时,ωx+φ=2π.
(5)形如 y=bacsoins xx++cd型的函数的最值,可考虑数形结合(常用到
直线斜率的几何意义).
►一个易错点:求φ值考虑不全面致误. (1)[求 φ 值时,一般利用函数最值点或图象的对称中心求解, 选择其它点时,所得三角方程的解有两种形式,容易遗漏] 已知函数 f(x)=sin(2x+φ)π2 ≤φ<π的图象过点π 12, 23, 则 φ=________.
(3)函数y=sin x+cos x+2sin xcos x的最大值是______.
解析 令 sin x+cos x=t,则- 2≤t≤ 2, 平方得 1+2sin xcos x=t2, 所以 2sin xcos x=t2-1, 则 y=t+t2-1=t+122-54, 函数图象对称轴为 t=-12, 所以当 t= 2时,ymax= 2+( 2)2-1= 2+1.
+Bcos 2x+c= A2+B2sin(2x+φ)+c.其中 tan
用有界性处理.
2020年高考数学(文)一轮复习专题4.5 函数y=Asin(ωx+φ)的图象及应用(讲)(解析版)
将函数 y f (x) 的向右平移 个单位长度后,可得 y sin(2x ) 的图象,
6Hale Waihona Puke 3根据得到的图象关于 y 轴对称,可得 k , k Z ,∴ , f (x) sin(2x ) .
3
2
6
6
当
x
时,
f
(x)
y=Asin(ωx+φ)
振幅
周期
(A>0,ω>0)
A
T=2π ω
2.用五点法画 y=Asin(ωx+φ)一个周期内的简图
频率 f=1= ω
T 2π
相位 ωx+φ
初相 φ
用五点法画 y=Asin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示:
x ωx+φ
-φ
π -φ
ω
2ω ω
0
π 2
π-φ ω
2π 1 2
2π, ∴
2,
g(π) 2
又4
,∴ A 2 ,
∴
f
(x)
2 sin
2x
,
f
(3π ) 8
2.
故选 C。
【方法技巧】确定 y=Asin(ωx+φ)+b(A>0,ω>0)的步骤和方法
(1)求 A,b:确定函数的最大值 M 和最小值 m,则 A=M-m,b=M+m;
2
2
(2)求ω:确定函数的周期 T,则可得ω=2π; T
2
倍,纵坐标不变,再把得到的曲线向右平移π个单位长度,得 6
到曲线 C2 B.把 C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移 π 个单位长度, 12
2020届高三理数一轮讲义:4.5-函数y=Asin(ωx+φ)的图象及应用(含答案)
的部分图象
如图所示,已知 A
5π,1 12
,B
11π,-1 12
,则
f(x)图象的对称中心为(
)
A.
kπ+5π,0 26
(k∈Z)
C.
kπ+π,0 26
(k∈Z)
解析 (1)由题图可知 A= 2,
法一 T=7π-π=π, 4 12 3 4
所以 T=π,故ω=2,
B.
kπ+5π,0 6
(k∈Z)
D.
2
6
又11π×ω+π=2π,∴ω=2,
12
6
∴f(x)=2sin
2x+π 6
,
令 2x+π=π+kπ(k∈Z),得 x=kπ+π(k∈Z).
62
26
∴f(x)=2sin
2x+π 6
的对称轴方程为
x=kπ+π(k∈Z).
26
答案 (1)C (2)x=kπ+π(k∈Z) 26
考点三 y=Asin(ωx+φ)图象与性质的应用 多维探究
移 π 个单位长度,得到曲线 12
C2
C.把
C1
上各点的横坐标缩短到原来的1倍,纵坐标不变,再把得到的曲线向右平 2
移π个单位长度,得到曲线 6
C2
D.把
C1
上各点的横坐标缩短到原来的1倍,纵坐标不变,再把得到的曲线向左平 2
移 π 个单位长度,得到曲线 12
C2
(2)(2018·石家庄调研)若把函数 y=sin
ω·π+φ=π, 3ω=2,列方程组ω·7π+φ=3π,解得
12
2
φ=π, 3
故 f(x)=
2sin
2x+π 3
.
(2)T=2
11π-5π 12 12
2020高考数学一轮复习 专题4-5 函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用(讲)
【2019最新】精选高考数学一轮复习 专题4-5 函数y =Asin (ωx +φ)的图象及三角函数模型的简单应用(讲)【考纲解读】考 点考纲内容5年统计分析预测函数y =Asin(ωx +φ)的图象及三角函数模型的简单应用了解函数 y =A sin (ωx +φ) 的物理意义,掌握 y =A sin (ωx +φ) 的图象,了解参数 A , ω,φ 对函数图象变化的影响.2013浙江文6理4;2014浙江文4,理4; 2016浙江文11,理10.1.“五点法”作图;2.函数图象的变换;3.三角函数模型的应用问题.4.往往将恒等变换与图象和性质结合考查 5.备考重点:(1) 掌握函数图象的变换; (2) 掌握三角函数模型的应用.【知识清单】1.求三角函数解析式(1)的有关概念()sin y A x ωϕ=+()sin y A x ωϕ=+()0,0A ω>>, [)0,x ∈+∞表示一个振动量时振幅 周期频率 相位初相A2T πω=12f T ωπ==x ωϕ+ ϕ (2sin y A x ωϕ=+用五点法画一个周期内的简图时,要找五个关键点,如下表所示:()sin y A x ωϕ=+xϕω-2ϕπωω-+πϕω- 32ϕπωω-+2πϕω-x ωϕ+2π π 32π 2π ()sin y A x ωϕ=+ 0A-A(3)由的图象求其函数式:()sin y A x ωϕ=+已知函数的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求;由函数的周期确定;确定常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.()sin y A x ωϕ=+A ωϕ,0ϕω⎛⎫- ⎪⎝⎭(4)利用图象变换求解析式:由的图象向左或向右平移个单位,,得到函数,将图象上各点的横坐标变为原来的倍(),便得,将图象上各点的纵坐标变为原来的倍(),便得.sin y x =()0ϕ>()0ϕ<ϕ()sin y x ϕ=+1ω0ω>()sin y x ωϕ=+A 0A >()sin y A x ωϕ=+2.三角函数图象的变换1.函数图象的变换(平移变换和上下变换) 平移变换:左加右减,上加下减把函数向左平移个单位,得到函数的图像;()y f x =()0ϕϕ>()y f x ϕ=+ 把函数向右平移个单位,得到函数的图像;()y f x =()0ϕϕ>()y f x ϕ=- 把函数向上平移个单位,得到函数的图像;()y f x =()0ϕϕ>()y f x ϕ=+ 把函数向下平移个单位,得到函数的图像.()y f x =()0ϕϕ>()y f x ϕ=- 伸缩变换:把函数图像的纵坐标不变,横坐标伸长到原来的,得到函数的图像;()y f x =1ω()()01y f x ωω=<<把函数图像的纵坐标不变,横坐标缩短到原来的,得到函数的图像;()y f x =1ω()()1y f x ωω=>把函数图像的横坐标不变,纵坐标伸长到原来的,得到函数的图像;()y f x =A ()()1y Af x A =>把函数图像的横坐标不变,纵坐标缩短到原来的,得到函数的图像.()y f x =A ()()01y Af x A =<<2.由的图象变换出的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换,利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少.sin y x =()sin y x ωϕ=+()0ω>x途径一:先平移变换再周期变换(伸缩变换)先将的图象向左或向右平移个单位,再将图象上各点的横坐标变为原来的倍(),便得的图象.sin y x =()0ϕ>()0ϕ<ϕ1ω0ω>()sin y x ωϕ=+途径二:先周期变换(伸缩变换)再平移变换:先将的图象上各点的横坐标变为原来的倍(),再沿轴向左()或向右()平移个单位,便得的图象.sin y x=1ω0ω>x 0ϕ>0ϕ<ωϕ||()sin y x ωϕ=+注意:函数的图象,可以看作把曲线上所有点向左(当时)或向右(当时)平行移动个单位长度而得到.sin() y x ωϕ=+sin y x ω=0ϕ>0ϕ<ϕω3 .函数的图像与性质的综合应用()sin y A x ωϕ=+ (1)的递增区间是,递减区间是.x y sin =⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈ (2)对于和来说,对称中心与零点相联系,对称轴与最值点联系.sin()y A x ωφ=+cos()y A x ωφ=+sin )y A x ωϕ=+(的图象有无穷多条对称轴,可由方程解出;它还有无穷多个对称中心,它们是图象与轴的交点,可由,解得,即其对称中心为.()2x k k Z πωϕπ+=+∈x ()x k k Z ωϕπ+=∈()k x k Z πϕω-=∈(),0k k Z πϕω-⎛⎫∈⎪⎝⎭(3)若为偶函数,则有;若为奇函数则有.sin()y A x ωϕ=+()2k k Z πϕπ=+∈()k k Z ϕπ=∈(4)的最小正周期都是.()sin()f x A x ωϕ=+2||T πω=【重点难点突破】考点1求三角函数解析式【1-1】【2018届河北省石家庄二中三模】将周期为的函数的图象向右平移个单位后,所得的函数解析式为( )A. B.C. D.【答案】A【1-2】【2018云南省师范大学附属中学适应性月考卷一】将函数的图象向左平移个单位,所得的图象所对应的函数解析式是( )()sin 23f x x π⎛⎫=+ ⎪⎝⎭6πA. B. C. D. sin2y x =cos2y x =2sin 23y x π⎛⎫=+⎪⎝⎭sin 26y x π⎛⎫=- ⎪⎝⎭【答案】C【解析】的图象向左平移单位得到的图象,即将函数的图象向左平移个单位,所得的图象所对应的函数解析式是,故选C.23y sin x π⎛⎫=+ ⎪⎝⎭6π222633y sin x sin x πππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()sin 23f x x π⎛⎫=+ ⎪⎝⎭6π2sin 23y x π⎛⎫=+ ⎪⎝⎭【领悟技法】1.根据的图象求其解析式的问题,主要从以下四个方面来考虑:()sin y A x h ωϕ=++()0,0A ω>>(1) 的确定:根据图象的最高点和最低点,即=;A A (2) 的确定:根据图象的最高点和最低点,即=;h h(3) 的确定:结合图象,先求出周期,然后由 ()来确定;ωT 2T πω=0ω>ω(4) 求,常用的方法有:ϕ①代入法:把图像上的一个已知点代入(此时已知)或代入图像与直线的交点求解(此时要注意交点在上升区间上还是在下降区间上).,,A h ωy h =②五点法:确定值时,由函数最开始与轴的交点的横坐标为 (即令,)确定.将点的坐标代入解析式时,要注意选择的点属于“五点法”中的哪一个点,“第一点”(即图象上升时与轴的交点)为,其他依次类推即可.ϕ()sin y A x k ωϕ=++x ϕω-0x ωϕ+=x ϕω=-ϕx 002x k ωϕπ+=+ 2.注意:(1)函数图象在其对称轴处取得最大值或最小值,且相邻的最大值与最小值间的距离为其函数的半个周期;(2)函数图象与x 轴的交点是其对称中心,相邻两对称中心间的距离也是其函数的半个周期;(3)函数取最值的点与相邻的与x 轴的交点间的距离为其函数的个周期.41【触类旁通】【变式一】【2018安徽省巢湖一中、合肥八中、淮南二中等高中十校联盟摸底】已知函数的图象如图所示,若将函数的图象向左平移个单位,则所得图象对应的函数可以为( )()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭()f x 2πA. B. 32sin 24y x π⎛⎫=-+⎪⎝⎭32sin 24y x π⎛⎫=+ ⎪⎝⎭ C. D. 52sin 24y x π⎛⎫=-+⎪⎝⎭52sin 24y x π⎛⎫=+ ⎪⎝⎭【答案】A【解析】由图易知: , ,∴,即,2A =3T 2π88ππ⎛⎫=+= ⎪⎝⎭2ω=()()2cos 2f x x ϕ=+ 由五点法作图知: ,得: ,∴3cos 218πϕ⎛⎫⨯+=- ⎪⎝⎭32π8πϕ⨯+=4πϕ=即,将函数的图象向左平移个单位,得: ,()2cos 24f x x π⎛⎫=+ ⎪⎝⎭()f x 2πy 2cos 224x ππ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦即=53y 2cos 22cos 2424x x πππ⎡⎤⎛⎫⎛⎫=+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦32sin 24x π⎛⎫-+ ⎪⎝⎭故选A.【变式二】【2018安徽省××市××县第一中学上学期第一次月考】函数 的部分图象如图所示,将的图象向左平移个单位后的解析式为( )A. B. C. D.【答案】B【解析】根据函数的部分图象知,,解得,根据五点法画正弦函数图象,知时,,解得,将的图象向左平移个单位后,得到,故选 B.考点2 三角函数图象的变换【2-1】【2018届浙江省××市第一中学高三上期中】为了得到函数的图象,可以将函数的图象( )sin 26y x π⎛⎫=+ ⎪⎝⎭cos2y x =A. 向右平移个单位B. 向右平移个单位6π3π C. 向左平移个单位 D. 向左平移个单位6π3π 【答案】A【2-2】【2018黑龙江省大庆实验中学上学期期初考】已知函数的最小正周期为,则函数的图象( )()cos (0)6f x x ωπωω⎛⎫=-> ⎪⎝⎭π()f xA. 可由函数的图象向左平移个单位而得()cos2g x x=3π B. 可由函数的图象向右平移个单位而得()cos2g x x =3πC. 可由函数的图象向左平移个单位而得()cos2g x x =6πD. 可由函数的图象向右平移个单位而得()cos2g x x =6π【答案】D【解析】由已知得, 则的图象可由函数的图象向右平移个单位而得,故选D.22πωπ==()cos 23f x x π⎛⎫=- ⎪⎝⎭()cos2g x x =6π【领悟技法】1. 在解决函数图像的变换问题时,要遵循“只能对函数关系式中的变换”的原则,写出每一次的变换所得图象对应的解析式,这样才能避免出错.,x y2. 图像变换法.若函数图像可由某个基本函数的图像经过平移、翻折、对称得到,可利用图像变换作出,但要意函数图象平移的规律,是先平移再伸缩,还是先伸缩再平移.对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.注3.解决图象变换问题时,要分清变换的对象及平移(伸缩)的大小,避免出现错误.4.特别提醒:进行三角函数的图象变换时,要注意无论进行什么样的变换都是变换变量本身;要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数. 【触类旁通】【变式一】【2018届福建省两大名校一模】将函数的图象向左平移()个单位长度,所得图象对应的函数为偶函数,则的最小值为( )A. B. C. D.【答案】C【解析】分析:根据辅助角公式,我们可将函数化为余弦函数型函数的形式,进而得到平移后函数的解析式,结合所得图象对应的函数为偶函数及余弦型函数的性质,即可求出答案.详解:,将其图象向左平移()个单位长度,所得图象对应的解析式为,由于为偶函数,则,则,由于,故当时,.故选:C.【变式二】【2018届浙江省××市第一中学9月测试】由函数的图象,变换得到函数的图象,这个变换可以是( )A. 向左平移B. 向右平移C. 向左平移D. 向右平移【答案】B【解析】由函数的图象,变换得到函数的图象向右平移.故选:B考点3函数的图像与性质的综合应用()sin y A x ωϕ=+【3-1】【2018年理天津卷】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】分析:由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可.详解:由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:,即,令可得一个单调递减区间为:.本题选择A 选项.【3-2】【2017浙江杭州二模】设函数.()()()2cos cos 3sin f x x x x R =+∈ (1)求函数的周期和单调递增区间;()y f x =(2)当时,求函数的最大值.0,2x π⎡⎤∈⎢⎥⎣⎦()f x【答案】(1);(2)3.(),36k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭试题解析:(1)因为 .()()2cos cos 3sin f x x x x =+=2sin 216x π⎛⎫++ ⎪⎝⎭2226k x πππ-≤+≤Q , ,22k ππ+36k x k ππππ∴-≤≤+∴函数的单调递增区间为: ;()y f x =,36k k ππππ⎛⎫-+ ⎪⎝⎭()k Z ∈(2), ,0,3x π⎡⎤∈⎢⎥⎣⎦Q 72,666x πππ⎡⎤∴+∈⎢⎥⎣⎦1sin 2,162x π⎛⎫⎡⎤∴+∈- ⎪⎢⎥⎝⎭⎣⎦,()2sin 216f x x π⎛⎫∴=++ ⎪⎝⎭的最大值是3.【3-3】平潭国际“花式风筝冲浪”集训队,在平潭龙凤头海滨浴场进行集训,海滨区域的某个观测点观测到该处水深(米)是随着一天的时间呈周期性变化,某天各时刻的水深数据的近似值如下表:y ()024,t t ≤≤单位小时t0 3 6 9 12 15 18 21 241.52.41.50.61.42.41.60.61.5(Ⅰ)根据表中近似数据画出散点图(坐标系在答题卷中).观察散点图,从 ①, ②,③()sin y A t ωφ=+()cos b y A t ωφ=++sin y A t b ω=-+(A 0,0,0)ωπφ>>-<<中选择一个合适的函数模型,并求出该拟合模型的函数解析式;(Ⅱ)为保证队员安全,规定在一天中的5~18时且水深不低于1.05米的时候进行训练,根据(Ⅰ) 中的选择的函数解析式,试问:这一天可以安排什么时间段组织训练,才能确保集训队员的安全.【答案】(1) 选②做为函数模型, ;(2) 这一天可以安排早上5点至7点以及11点至18点的时间段组织训练.()cos b y A t ωφ=++0.9sin 1.56y t π⎛⎫=+ ⎪⎝⎭才能确保集训队员的安全.【解析】试题分析 :(1)先画出散点图,可知选②做为函数模型,同时可求出各参数, , 代最值点可求.(2)由(Ⅰ)知: ,令,可解得 .max min max min 2,,22b A T πω+-===φπy 0.9sin t 1.56⎛⎫=+ ⎪⎝⎭5t 18≤≤y 1.05≥5t 711t 18≤≤≤≤或试题解析:(Ⅰ)根据表中近似数据画出散点图,如图所示:-依题意,选②做为函数模型,()cos b y A t ωφ=++(Ⅱ)由(Ⅰ)知: 0.9sin 1.56y t π⎛⎫=+ ⎪⎝⎭令,即 1.05y ≥0.9sin 1.5 1.056t π⎛⎫+≥ ⎪⎝⎭又518t ≤≤Q∴这一天可以安排早上5点至7点以及11点至18点的时间段组织训练, 才能确保集训队员的安全. 【领悟技法】1. 求形如或 (其中A ≠0,)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“ ()”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与 (), ()的单调区间对应的不等式方向相同(反).()sin y A x ωϕ=+()cos y A x ωϕ=+0ω>x ωϕ+0ω>sin y x =x R ∈cos y x =x R ∈ 2. 如何确定函数当时函数的单调性sin()(0)y A x A ωϕ=+>0ω<对于函数求其单调区间,要特别注意的正负,若为负值,需要利用诱导公式把负号提出来,转化为的形式,然后求其单调递增区间,应把放在正弦函数的递减区间之内;若求其递减区间,应把放在正弦函数的递增区间之内.sin()y A x ωϕ=+ωsin()y A x ωϕ=---x ωϕ--x ωϕ--3.求函数 (或,或)的单调区间的步骤:sin()y A x ωϕ=+cos()y A x ωϕ=+tan()y A x ωϕ=+ (1)将化为正.ω(2)将看成一个整体,由三角函数的单调性求解.x ωϕ+4.特别提醒:解答三角函数的问题时,不要漏了“”. 三角函数存在多个单调区间时易错用“∪”联结.求解三角函数的单调区间时若的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域.k Z ∈x 【触类旁通】【变式一】【2018年天津卷文】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间 上单调递增B. 在区间 上单调递减C. 在区间 上单调递增D. 在区间 上单调递减【答案】A【解析】分析:首先确定平移之后的对应函数的解析式,然后逐一考查所给的选项是否符合题意即可.详解:由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得函数的一个单调递增区间为,选项A 正确,B 错误;函数的单调递减区间满足:,即,令可得函数的一个单调递减区间为,选项C ,D 错误;本题选择A 选项.【变式二】【2018福建省闽侯第六中学第一次月考】将函数的图象上各点的横坐标变为原来的(纵坐标不变),再往上平移1个单位,所得图象对应的函数在下面哪个区间上单调递增( )sin 6y x π⎛⎫=+ ⎪⎝⎭12A. B. C. D. ,36ππ⎛⎫- ⎪⎝⎭,22ππ⎛⎫- ⎪⎝⎭,33ππ⎛⎫- ⎪⎝⎭2,63ππ⎛⎫- ⎪⎝⎭ 【答案】A【易错试题常警惕】易错典例:将函数的图像向右平移个单位长度后得到函数的图像,若,的图像都经过点,则的值可以是( )()()sin 2,22f x x ππθθ⎛⎫=+-<< ⎪⎝⎭()0ϕϕ>()g x ()f x ()g x 3P ⎛ ⎝⎭ϕA. B. C. D.53π56π2π6π易错分析:函数的图像向右平移个单位长度误写成.()()sin 2f x x θ=+ϕ()()sin 2g x x ϕθ=++正确解析:依题意,因为,的图像都经过点,所以,又因为,所以,或,即或,,在,中,取,即得,故选B.()()()sin 2sin 22g x x x ϕθθϕ=-+=+-⎡⎤⎣⎦()f x ()g x 30,2P ⎛⎫ ⎪ ⎪⎝⎭()3sin 23sin 22θθϕ⎧=⎪⎪⎨⎪-=⎪⎩22ππθ-<<3πθ=2233k ππϕπ-=+22233k ππϕπ-=+k ϕπ=-6k πϕπ=--k Z ∈6k πϕπ=--k Z ∈1k =-56ϕπ=温馨提醒:(1)三角函数图像变换是高考的一个重点内容.解答此类问题的关键是抓住“只能对函数关系式中的变换”的原则.(2)对于三角函数图像平移变换问题,其移变换规则是“左加右减”,并且在变换过程中只变换其中的自变量,如果的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向,另外,当两个函数的名称不同时,首先要将函数名称统一,其次要把变换成,最后确定平移的单位,并根据的符号确定平移的方向.,x y x x x ωϕ+x ϕωω⎛⎫+ ⎪⎝⎭ϕω【学科素养提升之思想方法篇】数形结合百般好,隔裂分家万事休——数形结合思想我国著名数学家华罗庚曾说过:"数形结合百般好,隔裂分家万事休.""数"与"形"反映了事物两个方面的属性.我们认为,数形结合,主要指的是数与形之间的一一对应关系.数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过"以形助数"或"以数解形"即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.【典例】【2018届××市城六区一模】函数()的部分图象如图所示,()()3sin f x x ωϕ=+0,2πωϕ><其中是函数的一个零点.0x ()f x (I)写出及的值;ωϕ,0x(Ⅱ)求函数在区间上的最大值和最小值.()f x ,02π⎡⎤-⎢⎥⎣⎦【答案】(Ⅰ);(Ⅱ)最小值为;最大值为.0112,,.612x ππωϕ===3-32【解析】试题分析:(Ⅰ)结合函数的最小正周期可得,由时的函数值可得,函数的解析式为: ,则.2ω=0x =6πϕ=()3sin 26f x x π⎛⎫=+ ⎪⎝⎭01112x π=(Ⅱ)由(Ⅰ)可知, ,结合正弦函数的性质可得函数在区间上的最小值为;最大值为.()3sin 26f x x π⎛⎫=+ ⎪⎝⎭()f x ,02π⎡⎤-⎢⎥⎣⎦3-32(Ⅱ)由(Ⅰ)可知, ,()3sin 26f x x π⎛⎫=+ ⎪⎝⎭因为,所以,,02x π⎡⎤∈-⎢⎥⎣⎦52,666x πππ⎡⎤+∈-⎢⎥⎣⎦ 当即时, 的最小值为.2=,62x ππ+-=3x π-()f x 3-当即时, 的最大值为.2=,66x ππ+=0x ()f x 32。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识梳理
=sin(ωx+φ)(ω>0,φ>0)的变换:向左平移φ
ω
+φ)的对称轴由ωx+φ=kπ+π
(k∈Z)确定;对称中心由
1.判断下列结论正误
⎭
⎪⎫+π6可知,函数的最大值为2,故排除;又因为函数图象过点⎝ ⎛⎭⎪⎫
-π12,2,故排除若将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期后,所得图象对
考点一函数y=A sin(ωx+φ)的图象及变换
长郡中学、衡阳八中联考)函数f (x )=sin(ωx +B ⎝ ⎛⎭
⎪⎫
11π12,-1,则f (x )图象的对称中心为
C.π12
⎝ ⎛⎭⎪⎫
A >0,|φ|<π2,ω>0________.
⎭
⎪⎫
-5π12=π,
,
多维探究
为原点,以水平方向为x轴方向,以竖直方向为面直角坐标系,则根据大风车的半径为2米,圆上最低点
[思维升华]
逻辑推理与数学运算——三角函数中有关ω的求解
基础巩固题组 B.y =2sin D.y =2sin ⎤
π⎛⎫-π
―————————―→横坐标伸长到y =sin ⎛⎪⎫1x -π.
的图象上各点的纵坐标保持不变,横坐标缩短到原来的。