Plastic Deformation Behavior and Processing Maps of 35CrMo steel

合集下载

材料科学基础-第五章

材料科学基础-第五章
hcp:1个(0001)面 3个<1120>方向 1×3=3个滑移系
bcc: {110}面共有6组,每个{110}上有2个<111>方向 12组 24组 {112} {123} 1个 1个
故共有6×2+12×1+24×1=48个滑移系 一般滑移系愈多,滑移过程中可能采取的空间取向也就愈 多,这种材料的塑性就愈好。
滑移 Slip 塑性变形 孪生 Twinning 晶界滑动 Grain boundary Sliding 扩散性蠕变 Diffusional Creep
一 滑移(Slip)

1.现象
滑移带(Slip band)
单晶体的拉伸试验 塑性变形的不均匀性
h ~ 200 nm
滑移线 (Slip line)

不同晶体结构往往有不同孪生面和孪生方向: fcc:{111}<112> hcp:{1012}<1011> bcc: {112}<111>
2. 孪晶的形成
变形(机械)孪晶:变形产生 呈透镜状或片状
生 长 退 火 孪 晶 孪 晶 :晶体生长过程中形成 :退火过程中形成 形核 长大
变形孪晶的生长大致可分为
转动的原因
两对力偶:
为上下两滑移面的法向分应力 在该力偶作用下,使滑移面转至轴 向平行
s1 s
2
t 1 t 2 垂直于滑移方向的分切应力
在该力偶作用下,使滑移方向转到最大 分切应力方向
t 1 t 2
是//滑移方向的真正引起滑 移的有效分切应力
晶体 取决晶体中原子间的结合力,即与晶体类型、纯度(杂
质)、温度以及变形速度有关,与外力无关。
一切影响位错滑移难易程度的因素均影响 tc

不同建筑固废再生骨料取代率下粗粒土填料永久变形特性及安定行为研究

不同建筑固废再生骨料取代率下粗粒土填料永久变形特性及安定行为研究

第 55 卷第 3 期2024 年 3 月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.55 No.3Mar. 2024不同建筑固废再生骨料取代率下粗粒土填料永久变形特性及安定行为研究肖源杰1, 2,王政1,AMINU Umar Faruk 1,王萌1,李昀博1,孔坤锋3,陈宇亮4,周震5,李志勇4(1. 中南大学 土木工程学院,湖南 长沙,410075;2. 重载铁路工程结构教育部重点实验室 (中南大学),湖南 长沙,410075;3. 中国铁道科学研究院集团有限公司 铁道建筑研究所,北京,100081;4. 湖南省交通科学研究院有限公司,湖南 长沙,410015;5. 广东省交通规划设计研究院集团股份有限公司,广东 广州,510440)摘要:为探究城市建筑拆除固废再生骨料部分或全部取代天然骨料用于粗粒土路基填料的可行性,开展不同再生骨料取代率、含水率、围压和剪应力比等组合下的室内大型静动三轴试验,定量研究土性参数和应力状态对试样抗剪强度和累积塑性应变特性的影响规律。

基于半对数坐标下累积塑性应变发展的多阶段特征,分别考虑不同阶段塑性变形累积速率以及相邻两阶段的塑性变形累积速率的差异,提出适用于建筑固废再生骨料路基填料的新型安定行为判定准则。

研究结果表明:再生骨料路基填料试样的累积塑性应变随含水率和剪应力比的增大而增大,当再生骨料路基填料试样在剪应力比为0.3和0.5时,抗累积变形性能与天然骨料路基填料试验所得的抗累积变形性能接近,综合考虑抗剪强度和累积塑性变形特性的再生骨料路基填料最优取代率为85%;新安定行为判定准则具有较高的准确性,可为相似路基填料的长期路用性能评定提供理论依据。

关键词:道路工程;建筑固废;再生骨料;永久变形;安定行为中图分类号:TU43 文献标志码:A 文章编号:1672-7207(2024)03-1008-15Permanent deformation characteristics and shakedown behavior of coarse-grained fill materials incorporating different proportions ofaggregates recycled from building demolition wastes收稿日期: 2023 −06 −20; 修回日期: 2023 −08 −20基金项目(Foundation item):国家自然科学基金资助项目(52178443);国家重点研发计划项目(2019YFC1904704);交通运输部重点科技项目(2022-MS5-122);中南大学研究生自主探索创新项目(2023ZZTS0019) (Project(52178443) supported by the National Natural Science Foundation of China; Project(2019YFC1904704) supported by the National Key Research & Development Program of China; Project(2022-MS5-122) supported by the Ministry of Transport Key Science & Technology Program of China; Project(2023ZZTS0019) supported by the Graduate Student Free Exploration Innovation Program of Central South University)通信作者:王萌,博士研究生,从事路基工程研究;E-mail :**************.cnDOI: 10.11817/j.issn.1672-7207.2024.03.015引用格式: 肖源杰, 王政, AMINU Umar Faruk, 等. 不同建筑固废再生骨料取代率下粗粒土填料永久变形特性及安定行为研究[J]. 中南大学学报(自然科学版), 2024, 55(3): 1008−1022.Citation: XIAO Yuanjie, WANG Zheng, AMINU Umar Faruk, et al. Permanent deformation characteristics and shakedown behavior of coarse-grained fill materials incorporating different proportions of aggregates recycled from building demolition wastes[J]. Journal of Central South University(Science and Technology), 2024, 55(3): 1008−1022.第 3 期肖源杰,等:不同建筑固废再生骨料取代率下粗粒土填料永久变形特性及安定行为研究XIAO Yuanjie1, 2, WANG Zheng1, AMINU Umar Faruk1, WANG Meng1, LI Yunbo1, KONG Kunfeng3,CHEN Yuliang4, ZHOU Zhen5, LI Zhiyong4(1. School of Civil Engineering, Central South University, Changsha 410075, China;2. MOE Key Laboratory of Engineering Structure of Heavy Haul Railway(Central South University),Changsha 410075, China;3. Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited,Beijing 100081, China;4. Hunan Communications Research Institute Co. Ltd., Changsha 410015, China;5. Guangdong Communication Planning & Design Institute Group Co. Ltd., Guangzhou 510440, China)Abstract:In order to address the feasibility of the mixed subgrade filling of natural aggregate and recycled aggregates from construction and demolition waste(RAW), laboratory static/dynamic triaxial tests under different conditions of recycled aggregate replacement rate, moisture content, confining pressure and shear stress ratio were carried out, and the effect of index properties and stress states on the shear strength and accumulative plastic strain characteristics of the specimen were explored. Based on the multi-stage characteristics of plastic strain development under semi-logarithmic coordinates, and considering the plastic deformation accumulation rate at different stages and the difference in plastic deformation accumulation rate in adjacent two stages, a new shakedown behavior determination criterion suitable for subgrade filling mixed with RAW was proposed. The results show that the accumulative plastic strain of the specimen increases with the increase of moisture content and shear stress ratio, and the specimens mixed with RAW show similar plastic deformation resistance ability compared to natural aggregate when the shear stress ratio is 0.3 and 0.5. After comprehensive comparative analysis of strength and deformation characteristics, it is recommended to use recycled aggregate subgrade filled with 85% replacement rate. The new shakedown behavior determination criterion has high accuracy and can provide a theoretical basis for the long-term pavement performance evaluation of similar subgrade fillings.Key words: road engineering; construction and demolition waste; recycled aggregates; permanent deformation;shakedown behavior随着中国城市化进程迅速发展,新建基础设施和老旧城区改造产生的建筑垃圾量急剧攀升[1],但综合循环再生利用率距《“十四五”循环经济发展规划》提出的“到2025年,建筑垃圾综合利用率达到60%”这一目标仍存在差距。

高分子材料常用专业术语中英对照表

高分子材料常用专业术语中英对照表

加工processing反应性加工reactive processing等离子体加工plasma processing加工性processability熔体流动指数melt [flow] index门尼粘度Mooney index塑化plasticizing增塑作用plasticization内增塑作用internal plasticization外增塑作用external plasticization增塑溶胶plastisol增强reinforcing增容作用compatibilization相容性compatibility相溶性intermiscibility生物相容性biocompatibility血液相容性blood compatibility组织相容性tissue compatibility混炼milling, mixing素炼mastication塑炼plastication过炼dead milled橡胶配合rubber compounding共混blend捏和kneading冷轧cold rolling压延性calenderability压延calendaring埋置embedding压片performing模塑molding模压成型compression molding压缩成型compression forming冲压模塑impact moulding, shock moulding叠模压塑stack moulding复合成型composite molding注射成型injection molding注塑压缩成型injection compression molding 射流注塑jet molding无流道冷料注塑runnerless injection molding 共注塑coinjection molding气辅注塑gas aided injection molding注塑焊接injection welding传递成型transfer molding树脂传递成型resin transfer molding铸塑cast熔铸fusion casting铸塑成型cast molding单体浇铸monomer casting挤出extrusion共挤出coextrusion多层挤塑multi-layer extrusion共挤吹塑coextrusion blow molding同轴挤塑coaxial extrusion吹胀挤塑blown extrusion挤出吹塑extrusion blow molding挤拉吹塑成型extrusion draw blow molding反应性挤塑reactive extrusion固相挤出solid-phase extrusion发泡expanding foam后发泡post expansion物理发泡physical foam化学发泡chemical foam吹塑blow molding多层吹塑multi-layer blow molding拉伸吹塑成型stretch blow molding滚塑rotational moulding反应注射成型reaction injection molding, RIM 真空成型vacuum forming无压成型zero ressure molding真空烧结vacuum sintering真空袋成型vacuum bag molding热成型thermal forming拉伸热成型stretch thermoforming袋模塑bag molding糊塑paste molding镶铸imbedding冲压成型impact molding触压成型impression molding层压材料laminate泡沫塑料成型foam molding包模成型drape molding充气吹胀inflation橡胶胶乳rubber latex胶乳latex高分子胶体polymer colloid生橡胶raw rubber,crude rubber硬质胶ebonite再生胶reclaimed rubber充油橡胶oil-extended rubber母胶masterbatch交联crosslinking固化cure光固化photo-cure硫化vulcanization后硫化post cure,post vulcanization自硫[化] bin cure自交联self crosslinking , self curing过硫over cure返硫reversion欠硫under cure动态硫化dynamic vulcanization不均匀硫化heterogeneous vulcanization开始[硫化]效应set-up effect自动硫化self-curing, self-vulcanizing焦烧scorching无压硫化non-pressure cure模压硫化moulding curing常温硫化auto-vulcanization热硫化heat curing蒸汽硫化steam curing微波硫化micro wave curing辐射硫化radiation vulcanization辐射交联radiation crosslinking连续硫化continuous vulcanization无模硫化open vulcanization成纤fiber forming可纺性spinnability纺丝spinning干纺dry spinning湿纺wet spinning干湿法纺丝dry wet spinning干喷湿法纺丝dry jet wet spinning溶液纺丝solution spinning乳液纺丝emulsion spinning乳液闪蒸纺丝法emulsion flash spinning process 喷射纺丝jet spinning喷纺成形spray spinning液晶纺丝liquid crystal spinning熔纺melt spinning共混纺丝blended spinning凝胶纺[丝] gel spinning反应纺丝reaction spinning静电纺丝electrostatic spinning高压纺丝high-pressure spinning复合纺丝conjugate spinning无纺布non-woven fabrics单丝monofilament, monofil复丝multifilament全取向丝fully oriented yarn中空纤维hollow fiber皮芯纤维sheath core fiber共纺cospinning冷拉伸cold drawing, cold stretching单轴拉伸uniaxial drawing,uniaxial elongation 双轴拉伸biaxial drawing多轴拉伸multiaxial drawing皮心效应skin and core effect皮层效应skin effect防缩non-shrink熟成ripening垂挂sag定型sizing起球现象pilling effect捻度twist旦denier特tex纱yarn股strand粘合adhesion反应粘合reaction bonding压敏粘合pressure sensitive adhesion底漆primer浸渍impregnation浸渍树脂solvent impregnated resin基体matrix聚合物表面活性剂polymeric surfactant高分子絮凝剂polymeric flocculant预发颗粒pre-expanded bead高分子膜polymeric membraneH-膜H-filmLB膜Langmuir Blodgett film (LB film)半透膜semipermeable membrane反渗透膜Reverse osmosis membrance多孔膜porous membrane各向异性膜anisotropic membrane正离子交换膜cation exchange membrane 负离子交换膜anionic exchange membrane 吸附树脂polymeric adsorbent添加剂additive固化剂curing agent潜固化剂latent curing agent硫化剂vulcanizing agent给硫剂sulfur donor agent, sulfur donor硫化促进剂vulcanization accelerator硫化活化剂vulcanization activator活化促进剂activating accelerator活化剂activator防焦剂scorch retarder抗硫化返原剂anti-reversion agent塑解剂peptizer偶联剂coupling agent硅烷偶联剂silane coupling agent钛酸酯偶联剂titanate coupling agent铝酸酯偶联剂aluminate coupling agent增强剂reinforcing agent增硬剂hardening agent惰性填料inert filler增塑剂plasticizer辅增塑剂coplasticizer增粘剂tackifier增容剂compatibilizer增塑增容剂plasticizer extender分散剂dispersant agent结构控制剂constitution controller色料colorant荧光增白剂optical bleaching agent抗降解剂antidegradant防老剂anti-aging agent防臭氧剂antiozonant抗龟裂剂anticracking agent抗疲劳剂anti-fatigue agent抗微生物剂biocide防蚀剂anti-corrosion agent光致抗蚀剂photoresist防霉剂antiseptic防腐剂rot resistor防潮剂moisture proof agent除臭剂re-odorant抗氧剂antioxidant热稳定剂heat stabilizer抗静电添加剂antistatic additive抗静电剂antistatic agent紫外线稳定剂ultraviolet stabilizer紫外光吸收剂ultraviolet absorber光稳定剂light stabilizer, photostabilizer光屏蔽剂light screener发泡剂foaming agent物理发泡剂physical foaming agent化学发泡剂chemical foaming agent脱模剂releasing agent内脱模剂internal releasing agent外脱模剂external releasing agent阻燃剂flame retardant防火剂fire retardant烧蚀剂ablator润滑剂lubricant湿润剂wetting agent隔离剂separant增韧剂toughening agent抗冲改性剂impact modifier消泡剂antifoaming agent减阻剂drag reducer破乳剂demulsifier粘度改进剂viscosity modifier增稠剂thickening agent, thickener阻黏剂abhesive洗脱剂eluant附聚剂agglomerating agent后处理剂after-treating agent催干剂drier防结皮剂anti-skinning agent纺织品整理剂textile finishing agent aggregation 聚集体aggregate凝聚、聚集coalescence链缠结chain entanglement凝聚缠结cohesional entanglement物理缠结physical entanglement凝聚态condensed state凝聚过程condensing process临界聚集浓度critical aggregation concentration 线团-球粒转换coil-globule transition受限链confined chain受限态confined state物理交联physical crosslinking交联度degree of crosslinking网络network溶胶-凝胶转化sol-gel transformation摩尔质量平均molar mass average数均分子量number-average molecular weight, number-average molar mass 重均分子量weight-average molecular weight, weight-average molar massZ均分子量Z(Zaverage)-average molecular weight, Z-molar mass黏均分子量viscosity-average molecular weight,viscosity-average molar mass 聚合度degree of polymerization分子量分布molecular weight distribution,MWD多分散性指数polydispersity index,PID结晶聚合物crystalline polymer半结晶聚合物semi-crystalline polymer聚合物形态学morphology of polymer成核作用nucleation分子成核作用molecular nucleation阿夫拉米方程Avrami equation织构texture液晶态liquid crystal state相分离phase separation微相microphase界面相boundary phase相容性compatibility混容性miscibility增容作用compatiibilization最低临界共溶(溶解)温度lower critical solution temperature, LCST最高临界共溶(溶解)温度upper critical solution temperature , UCST橡胶态rubber state玻璃态glassy state高弹态elastomeric state黏流态viscous flow state伸长elongation高弹形变high elastic deformation回缩性,弹性复原nerviness拉伸比draw ratio, extension ratio泊松比Poisson's ratio杨氏模量Young's modulus本体模量bulk modulus剪切模量shear modulus法向应力normal stress剪切应力shear stress剪切应变shear strain屈服yielding颈缩现象necking屈服应力yield stress屈服应变yield strain脆性断裂brittle fracture脆性开裂brittle cracking脆-韧转变brittle ductile transition脆化温度brittleness(brittle) temperature冲击强度impact strength拉伸强度tensile strength抗撕强度tearing strength弯曲强度flexural strength, bending strength 弯曲模量bending modulus剪切强度shear strength剥离强度peeling strength疲劳强度fatigue strength, fatigue resistance 挠曲deflection压缩强度compressive strength洛氏硬度Rockwell hardness布氏硬度Brinell hardness抗刮性scrath resistance断裂力学fracture mechanics力学破坏mechanical failure应力强度因子stress intensity factor断裂伸长elongation at break屈服强度yield strength断裂韧性fracture toughness弹性形变elastic deformation弹性滞后elastic hysteresis弹性elasticity弹性模量modulus of elasticity弹性回复elastic recovery不可回复形变irrecoverable deformation裂缝crack银纹craze形变;变形deformation永久变形deformation set剩余变形residual deformation剩余伸长residual stretch回弹,回弹性resilience延迟形变retarded deformation延迟弹性retarded elasticity可逆形变reversible deformation应力开裂stress cracking应力-应变曲线stress strain curve拉伸应变stretching strain拉伸应力弛豫tensile stress relaxation热历史thermal history热收缩thermoshrinking扭辫分析torsional braid analysis,TBA应力致白stress whitening应变能strain energy应变张量strain tensor剩余应力residual stress应变硬化strain hardening应变软化strain softening电流变液electrorheological fluid假塑性pseudoplastic拉胀性auxiticity牛顿流体Newtonian fluid非牛顿流体non-Newtonian fluid宾汉姆流体Bingham fluid冷流cold flow牛顿剪切黏度Newtonian shear viscosity剪切黏度shear viscosity表观剪切黏度apparent shear viscosity剪切变稀shear thinning触变性thixotropy塑性形变plastic deformation塑性流动plastic flow体积弛豫volume relaxation拉伸黏度extensional viscosity黏弹性viscoelasticity线性黏弹性linear viscoelasticity非线性黏弹性non-linear viscoelasticity蠕变creep弛豫[作用] relaxation弛豫模量relaxation modulus蠕变柔量creep compliance热畸变温度heat distortion temperature弛豫谱relaxation spectrum推迟[时间]谱retardation [time] spectrum 弛豫时间relaxation time推迟时间retardation time动态力学行为dynamic mechanical behavior 动态黏弹性dynamic viscoelasticity热-机械曲线thermo-mechanical curve动态转变dynamic transition储能模量storage modulus损耗模量loss modulus复数模量complex modulus复数柔量complex compliance动态黏度dynamic viscosity复数黏度complex viscosity复数介电常数complex dielectric permittivity介电损耗因子dielectric dissipation factor介电损耗常数dielectric loss constant介电弛豫时间dielectric relaxation time玻璃化转变glass transition玻璃化转变温度glass-transition temperature次级弛豫secondary relaxation次级转变secondary transition次级弛豫温度secondary relaxation temperature开尔文模型Kelvin model麦克斯韦模型Maxwell model时-温叠加原理time-temperature superposition principle玻耳兹曼叠加原理Boltzmann superposition principle平移因子shift factor WLF公式WLF[Williams-Lendel-Ferry] equation 软化温度softening temperature平衡熔点equilibrium melting point物理老化physical ageing光老化photoageing热老化thermal ageing热氧老化thermo-oxidative ageing人工老化artificial ageing加速老化accelerated ageing计算机模拟computer simulation分子动力学模拟molecular dynamics simulation蒙特卡洛模拟Monte Carlo simulation。

聚碳酸酯挤压形变力学行为有限元模拟

聚碳酸酯挤压形变力学行为有限元模拟

第 3 期第 90-99 页材料工程Vol.52Mar. 2024Journal of Materials EngineeringNo.3pp.90-99第 52 卷2024 年 3 月聚碳酸酯挤压形变力学行为有限元模拟Finite element simulation on mechanical behavior of press -induced deformation of polycarbonate王博伦1,2,王韬1,2*,霍钟祺1,2,孙琦伟1,2,李茂源3,张云3,陈宇宏1,2,颜悦1,2*(1 中国航发北京航空材料研究院,北京100095;2 北京市先进运载系统结构透明件工程技术研究中心,北京100095;3 华中科技大学 材料成形与模具技术国家重点实验室,武汉430074)WANG Bolun 1,2,WANG Tao 1,2*,HUO Zhongqi 1,2,SUN Qiwei 1,2,LI Maoyuan 3,ZHANG Yun 3,CHEN Yuhong 1,2,YAN Yue 1,2*(1 AECC Beijing Institute of Aeronautical Materials ,Beijing 100095,China ;2 Beijing Engineering Research Center of Advanced Structural Transparencies for the Modern Traffic System ,Beijing 100095,China ;3 State Key Laboratory of Material Processing and Die & Mold Technology ,Huazhong University of Science andTechnology ,Wuhan 430074,China )摘要:采用有限元方法研究了聚碳酸酯在中应变率下挤压形变的力学行为。

塑性变形

塑性变形

改变,形成镜面对称关系
小于孪晶方向上的原子间 距,较小 有限,总变形量小 所需临界分切应力远高于 滑移 滑移困难时发生 分位错运动的结果
16
变形机制
Plastic Deformation in Single Crystals
Plastically deformed zinc single crystal.
Slip dislocation interactions may immobilize dislocations in a single crystal reduces strain rate
20

5
滑移时晶体的转动
位向和晶面的变化 拉伸时,滑移面和滑移方向趋于平行于力轴方向 压缩时,晶面逐渐趋于垂直于压力轴线。 取向因子的变化 几何硬化:、远离45,滑移变得困难; 几何软化;、接近45,滑移变得容易。 滑移的分类 多滑移:在多个滑移系上同时或交替进行的滑移。 双滑移 单滑移 等效滑移系:各滑移系的滑移面和滑移方向 与力轴夹角分别相等的一组滑移系。
滑移:在切应力作用下,晶体的一部分相对于另一部分沿着一 定的晶面(滑移面)和晶向(滑移方向)产生相对位移,且不 破坏晶体内部原子排列规律性的塑变方式。
11
Translational Glide (滑移)



The principle mode of plastic deformation Slip planes: preferred planes with greatest interplanar distance, e.g., (111) in fcc crystals Slip directions: with lowest resistance, e.g., closed packed direction Slip lines: intersection of a slip plane with a free surface Slip band: many parallel slip lines very closely spaced together

机械工程材料ch04-Plastic deformation and strengthening

机械工程材料ch04-Plastic deformation and strengthening
Mechanical Engineering Materials
(Bilingual Course)
Chapter Four
Contents
Plastic Deformation of Pure Metals Plastic Deformation of Alloys Microstructure and Properties Changes During Plastic Deformation
⑵ 晶格与晶粒发生扭曲,产生内应力及亚晶粒
金属经大量的塑性变形后,由于位错密度的增大和位错间
的交互作用,使位错分布不均匀。大量位错聚集在局部地区,
并将原晶粒分割成许多位向略有差异的小晶块,即亚晶粒。
碎晶
Microstructure change during Plastic Deformation
For a single-crystal specimen
that is stressed in tension,
deformation will be as in
Figure, where slip occurs along
a number of equivalent and
most favorably oriented planes and directions at various
1、多晶体的塑性变形实质 是:处于软位向的晶粒发
生塑性变形,在此过程中,
晶向发生转动,带动周围 晶粒转动。
Plastic deformation of polycrystalline metals
2.晶粒间位向差阻碍滑移
在多晶体中晶粒间有位向差,使变 形不能同时进行。当一个晶粒发生塑性 变形时,周围的晶粒如不发生塑性变形, 则必须要产生弹性变形来与之协调配合,

高分子专业术语中英文对照表

高分子专业术语中英文对照表

高分子专业术语中英文对照表加工processing反应性加工reactive processing等离子体加工plasma processing加工性processability熔体流动指数melt [flow] index门尼粘度Mooney index塑化plasticizing增塑作用plasticization内增塑作用internal plasticization外增塑作用external plasticization增塑溶胶plastisol增强reinforcing增容作用compatibilization相容性compatibility相溶性intermiscibility生物相容性biocompatibility血液相容性blood compatibility组织相容性tissue compatibility混炼milling, mixing素炼mastication塑炼plastication过炼dead milled橡胶配合rubber compounding共混blend捏和kneading冷轧cold rolling压延性calenderability压延calendering埋置embedding压片preforming模塑molding模压成型compression molding压缩成型compression forming冲压模塑impact moulding, shock moulding叠模压塑stack moulding复合成型composite molding注射成型injection molding注塑压缩成型injection compression molding射流注塑jet molding无流道冷料注塑runnerless injection molding共注塑coinjection molding气辅注塑gas aided injection molding注塑焊接injection welding传递成型transfer molding树脂传递成型resin transfer molding铸塑cast熔铸fusion casting铸塑成型cast molding单体浇铸monomer casting挤出extrusion共挤出coextrusion多层挤塑multi-layer extrusion共挤吹塑coextrusion blow molding同轴挤塑coaxial extrusion吹胀挤塑blown extrusion挤出吹塑extrusion blow molding挤拉吹塑成型extrusion draw blow molding 反应性挤塑reactive extrusion固相挤出solid-phase extrusion发泡expanding foam后发泡post expansion物理发泡physical foam化学发泡chemical foam吹塑blow molding多层吹塑multi-layer blow molding拉伸吹塑成型stretch blow molding滚塑rotational moulding反应注射成型reaction injection molding, RIM 真空成型vacuum forming无压成型zero ressure molding真空烧结vacuum sintering真空袋成型vacuum bag molding热成型thermal forming拉伸热成型stretch thermoforming袋模塑bag molding糊塑paste molding镶铸imbedding冲压成型impact molding触压成型impression molding层压材料laminate泡沫塑料成型foam molding包模成型drape molding充气吹胀inflation橡胶胶乳rubber latex胶乳latex高分子胶体polymer colloid生橡胶raw rubber,crude rubber硬质胶ebonite再生胶reclaimed rubber充油橡胶oil-extended rubber母胶masterbatch交联crosslinking固化cure光固化photo-cure硫化vulcanization后硫化post cure,post vulcanization自硫[化] bin cure自交联self crosslinking , self curing过硫over cure返硫reversion欠硫under cure动态硫化dynamic vulcanization不均匀硫化heterogeneous vulcanization开始[硫化]效应set-up effect自动硫化self-curing, self-vulcanizing焦烧scorching无压硫化non-pressure cure模压硫化moulding curing常温硫化auto-vulcanization热硫化heat curing蒸汽硫化steam curing微波硫化micro wave curing辐射硫化radiation vulcanization辐射交联radiation crosslinking连续硫化continuous vulcanization无模硫化open vulcanization成纤fiber forming可纺性spinnability纺丝spinning干纺dry spinning湿纺wet spinning干湿法纺丝dry wet spinning干喷湿法纺丝dry jet wet spinning溶液纺丝solution spinning乳液纺丝emulsion spinning乳液闪蒸纺丝法emulsion flash spinning process 喷射纺丝jet spinning喷纺成形spray spinning液晶纺丝liquid crystal spinning熔纺melt spinning共混纺丝blended spinning凝胶纺[丝] gel spinning反应纺丝reaction spinning静电纺丝electrostatic spinning高压纺丝high-pressure spinning复合纺丝conjugate spinning无纺布non-woven fabrics单丝monofilament, monofil复丝multifilament全取向丝fully oriented yarn中空纤维hollow fiber皮芯纤维sheath core fiber共纺cospinning冷拉伸cold drawing, cold stretching单轴拉伸uniaxial drawing,uniaxial elongation双轴拉伸biaxial drawing多轴拉伸multiaxial drawing皮心效应skin and core effect皮层效应skin effect防缩non-shrink熟成ripening垂挂sag定型sizing起球现象pilling effect捻度twist旦denier特tex纱yarn股strand粘合adhesion反应粘合reaction bonding压敏粘合pressure sensitive adhesion 底漆primer浸渍impregnation浸渍树脂solvent impregnated resin基体matrix聚合物表面活性剂polymeric surfactant 高分子絮凝剂polymeric flocculant预发颗粒pre-expanded bead高分子膜polymeric membraneH-膜H-filmLB膜Langmuir Blodgett film (LB film) 半透膜semipermeable membrane反渗透膜Reverse osmosis membrance多孔膜porous membrane各向异性膜anisotropic membrane正离子交换膜cation exchange membrane 负离子交换膜anionic exchange membrane 吸附树脂polymeric adsorbent添加剂additive固化剂curing agent潜固化剂latent curing agent硫化剂vulcanizing agent给硫剂sulfur donor agent, sulfur donor硫化促进剂vulcanization accelerator硫化活化剂vulcanization activator活化促进剂activating accelerator活化剂activator防焦剂scorch retarder抗硫化返原剂anti-reversion agent塑解剂peptizer偶联剂coupling agent硅烷偶联剂silane coupling agent钛酸酯偶联剂titanate coupling agent铝酸酯偶联剂aluminate coupling agent增强剂reinforcing agent增硬剂hardening agent惰性填料inert filler增塑剂plasticizer辅增塑剂coplasticizer增粘剂tackifier增容剂compatibilizer增塑增容剂plasticizer extender分散剂dispersant agent结构控制剂constitution controller色料colorant荧光增白剂optical bleaching agent抗降解剂antidegradant防老剂anti-aging agent防臭氧剂antiozonant抗龟裂剂anticracking agent抗疲劳剂anti-fatigue agent抗微生物剂biocide防蚀剂anti-corrosion agent光致抗蚀剂photoresist防霉剂antiseptic防腐剂rot resistor防潮剂moisture proof agent除臭剂re-odorant抗氧剂antioxidant热稳定剂heat stabilizer抗静电添加剂antistatic additive抗静电剂antistatic agent紫外线稳定剂ultraviolet stabilizer紫外光吸收剂ultraviolet absorber光稳定剂light stabilizer, photostabilizer光屏蔽剂light screener发泡剂foaming agent物理发泡剂physical foaming agent化学发泡剂chemical foaming agent脱模剂releasing agent内脱模剂internal releasing agent外脱模剂external releasing agent阻燃剂flame retardant防火剂fire retardant烧蚀剂ablator润滑剂lubricant湿润剂wetting agent隔离剂separant增韧剂toughening agent抗冲改性剂impact modifier消泡剂antifoaming agent减阻剂drag reducer破乳剂demulsifier粘度改进剂viscosity modifier增稠剂thickening agent, thickener阻黏剂abhesive洗脱剂eluant附聚剂agglomerating agent后处理剂after-treating agent催干剂drier防结皮剂anti-skinning agent纺织品整理剂textile finishing agent-----------------------高物高化类:结构单元constitutional unit重复结构单元constitutional repeating unit构型单元configurational unit立构重复单元stereorepeating unit立构规整度tacticity等规度, 全同立构[规整]度isotacticity间同度,间同立构[规整]度syndiotacticity无规度,无规立构度atacticity嵌段block规整嵌段regular block非规整嵌段irregular block立构嵌段stereoblock有规立构嵌段isotactic block无规立构嵌段atactic block单体单元monomeric unit二单元组diad三单元组triad四单元组tetrad五单元组pentad无规线团random coil自由连接链freely-jointed chain自由旋转链freely-rotating chain蠕虫状链worm-like chain柔性链flexible chain链柔性chain flexibility刚性链rigid chain棒状链rodlike chain链刚性chain rigidity聚集aggregation聚集体aggregate凝聚、聚集coalescence链缠结chain entanglement凝聚缠结cohesional entanglement物理缠结physical entanglement拓扑缠结topological entanglement凝聚相condensed phase凝聚态condensed state凝聚过程condensing process临界聚集浓度critical aggregation concentration 线团-球粒转换coil-globule transition受限链confined chain受限态confined state物理交联physical crosslinking统计线团statistical coil等效链equivalent chain统计链段statistical segment链段chain segment链构象chain conformation无规线团模型random coil model无规行走模型random walk model自避随机行走模型self avoiding walk model卷曲构象coiled conformation高斯链Gaussian chain无扰尺寸unperturbed dimension扰动尺寸perturbed dimension热力学等效球thermodynamically equivalent sphere近程分子内相互作用short-range intramolecular interaction远程分子内相互作用long-range intramolecular interaction链间相互作用interchain interaction链间距interchain spacing长程有序long range order近程有序short range order回转半径radius of gyration末端间矢量end-to-end vector链末端chain end末端距end-to-end distance无扰末端距unperturbed end-to-end distance均方根末端距root-mean-square end-to-end distance伸直长度contour length相关长度persistence length主链;链骨架chain backbone支链branch chain链支化chain branching短支链short-chain branch长支链long-chain branch支化系数branching index支化密度branching density支化度degree of branching交联度degree of crosslinking网络network网络密度network density溶胀swelling平衡溶胀equilibrium swelling分子组装,分子组合molecular assembly自组装self assembly微凝胶microgel凝胶点gel point可逆[性]凝胶reversible gel溶胶-凝胶转化sol-gel transformation临界胶束浓度critical micelle concentration,CMC组成非均一性constitutional heterogenity, compositional heterogenity摩尔质量平均molar mass average数均分子量number-average molecular weight, number-average molar mass重均分子量weight-average molecular weight, weight-average molar massZ均分子量Z(Zaverage)-average molecular weight, Z-molar mass黏均分子量viscosity-average molecular weight,viscosity-average molar mass 表观摩尔质量apparent molar mass表观分子量apparent molecular weight聚合度degree of polymerization动力学链长kinetic chain length单分散性monodispersity临界分子量critical molecular weight分子量分布molecular weight distribution,MWD多分散性指数polydispersity index,PID平均聚合度average degree of polymerization质量分布函数mass distribution function数量分布函数number distribution function重量分布函数weight distribution function舒尔茨-齐姆分布Schulz-Zimm distribution最概然分布most probable distribution对数正态分布logarithmic normal distribution聚合物溶液polymer solution聚合物-溶剂相互作用polymer-solvent interaction溶剂热力学性质thermodynamic quality of solvent均方末端距mean square end to end distance均方旋转半径mean square radius of gyrationθ温度theta temperatureθ态theta stateθ溶剂theta solvent良溶剂good solvent不良溶剂poor solvent位力系数Virial coefficient排除体积excluded volume溶胀因子expansion factor溶胀度degree of swelling弗洛里-哈金斯理论Flory-Huggins theory哈金斯公式Huggins equation哈金斯系数Huggins coefficientχ(相互作用)参数χ-parameter溶度参数solubility parameter摩擦系数frictional coefficient流体力学等效球hydrodynamically equivalent sphere流体力学体积hydrodynamic volume珠-棒模型bead-rod model球-簧链模型ball-spring [chain] model流动双折射flow birefringence, streaming birefringence动态光散射dynamic light scattering小角激光光散射low angle laser light scattering沉降平衡sedimentation equilibrium沉降系数sedimentation coefficient沉降速度法sedimentation velocity method沉降平衡法sedimentation equilibrium method相对黏度relative viscosity相对黏度增量relative viscosity increment黏度比viscosity ratio黏数viscosity number[乌氏]稀释黏度计[Ubbelohde] dilution viscometer毛细管黏度计capillary viscometer落球黏度计ball viscometer落球黏度ball viscosity本体黏度bulk viscosity比浓黏度reduced viscosity比浓对数黏度inherent viscosity, logarithmic viscosity number 特性黏数intrinsic viscosity, limiting viscosity number黏度函数viscosity function零切变速率黏度zero shear viscosity端基分析analysis of end group蒸气压渗透法vapor pressure osmometry, VPO辐射的相干弹性散射coherent elastic scattering of radiation折光指数增量refractive index increment瑞利比Rayleigh ratio超瑞利比excess Rayleigh ratio粒子散射函数particle scattering function粒子散射因子particle scattering factor齐姆图Zimm plot散射的非对称性dissymmetry of scattering解偏振作用depolarization分级fractionation沉淀分级precipitation fractionation萃取分级extraction fractionation色谱分级chromatographic fractionation柱分级column fractionation洗脱分级,淋洗分级elution fractionation热分级thermal fractionation凝胶色谱法gel chromatography摩尔质量排除极限molar mass exclusion limit溶剂梯度洗脱色谱法solvent gradient [elution] chromatography 分子量排除极限molecular weight exclusion limit洗脱体积elution volume普适标定universal calibration加宽函数spreading function链轴chain axis等同周期identity period链重复距离chain repeating distance晶体折叠周期crystalline fold period构象重复单元conformational repeating unit几何等效geometrical equivalence螺旋链helix chain构型无序configurational disorder链取向无序chain orientational disorder构象无序conformational disorder锯齿链zigzag chain双[股]螺旋double stranded helix[分子]链大尺度取向global chain orientation结晶聚合物crystalline polymer半结晶聚合物semi-crystalline polymer高分子晶体polymer crystal高分子微晶polymer crystallite结晶度degree of crystallinity, crystallinity高分子[异质]同晶现象macromolecular isomorphism 聚合物形态学morphology of polymer片晶lamella, lamellar crystal轴晶axialite树枝[状]晶体dendrite纤维晶fibrous crystal串晶结构shish-kebab structure球晶spherulite折叠链folded chain链折叠chain folding折叠表面fold surface折叠面fold plane折叠微区fold domain相邻再入模型adjacent re-entry model接线板模型switchboard model缨状微束模型fringed-micelle model折叠链晶体folded-chain crystal平行链晶体parallel-chain crystal伸展链晶体extended-chain crystal球状链晶体globular-chain crystal长周期long period近程结构short-range structure远程结构long-range structure成核作用nucleation分子成核作用molecular nucleation阿夫拉米方程Avrami equation主结晶primary crystallization后期结晶secondary crystallization外延结晶,附生结晶epitaxial crystallization外延晶体生长,附生晶体生长epitaxial growth织构texture液晶态liquid crystal state溶致性液晶lyotopic liquid crystal热致性液晶thermotropic liquid crystal热致性介晶thermotropic mesomorphism近晶相液晶smectic liquid crystal近晶中介相smectic mesophase近晶相smectic phase条带织构banded texture环带球晶ringed spherulite向列相nematic phase盘状相discotic phase解取向disorientation分聚segregation非晶相amorphous phase非晶区amorphous region非晶态amorphous state非晶取向amorphous orientation链段运动segmental motion亚稳态metastable state相分离phase separation亚稳相分离spinodal decompositionbimodal decomposition微相microphase界面相boundary phase相容性compatibility混容性miscibility不相容性incompatibility不混容性immiscibility增容作用compatiibilization最低临界共溶(溶解)温度lower critical solution temperature, LCST 最高临界共溶(溶解)温度upper critical solution temperature , UCST 浓度猝灭concentration quenching激基缔合物荧光excimer fluorescence激基复合物荧光exciplex fluorescence激光共聚焦荧光显微镜laser confocal fluorescence microscopy单轴取向uniaxial orientation双轴取向biaxial orientation, biorientation取向度degree of orientation橡胶态rubber state玻璃态glassy state高弹态elastomeric state黏流态viscous flow state伸长elongation高弹形变high elastic deformation回缩性,弹性复原nerviness拉伸比draw ratio, extension ratio泊松比Poisson's ratio杨氏模量Young's modulus本体模量bulk modulus剪切模量shear modulus法向应力normal stress剪切应力shear stress剪切应变shear strain屈服yielding颈缩现象necking屈服应力yield stress屈服应变yield strain脆性断裂brittle fracture脆性开裂brittle cracking脆-韧转变brittle ductile transition脆化温度brittleness(brittle) temperature延性破裂ductile fracture冲击强度impact strength拉伸强度tensile strength极限拉伸强度ultimate tensile strength抗撕强度tearing strength弯曲强度flexural strength, bending strength 弯曲模量bending modulus弯曲应变bending strain弯曲应力bending stress收缩开裂shrinkage crack剪切强度shear strength剥离强度peeling strength疲劳强度fatigue strength, fatigue resistance 挠曲deflection压缩强度compressive strength压缩永久变形compression set压缩变形compressive deformation压痕硬度indentation hardness洛氏硬度Rockwell hardness布氏硬度Brinell hardness抗刮性scrath resistance断裂力学fracture mechanics力学破坏mechanical failure应力强度因子stress intensity factor断裂伸长elongation at break屈服强度yield strength断裂韧性fracture toughness弹性形变elastic deformation弹性滞后elastic hysteresis弹性elasticity弹性模量modulus of elasticity弹性回复elastic recovery不可回复形变irrecoverable deformation 裂缝crack银纹craze形变;变形deformation永久变形deformation set剩余变形residual deformation剩余伸长residual stretch回弹,回弹性resilience延迟形变retarded deformation延迟弹性retarded elasticity可逆形变reversible deformation应力开裂stress cracking应力-应变曲线stress strain curve拉伸应变stretching strain拉伸应力弛豫tensile stress relaxation热历史thermal history热收缩thermoshrinking扭辫分析torsional braid analysis,TBA 应力致白stress whitening应变能strain energy应变张量strain tensor剩余应力residual stress应变硬化strain hardening应变软化strain softening电流变液electrorheological fluid假塑性pseudoplastic拉胀性auxiticity牛顿流体Newtonian fluid非牛顿流体non-Newtonian fluid宾汉姆流体Bingham fluid冷流cold flow牛顿剪切黏度Newtonian shear viscosity 剪切黏度shear viscosity表观剪切黏度apparent shear viscosity剪切变稀shear thinning触变性thixotropy塑性形变plastic deformation塑性流动plastic flow体积弛豫volume relaxation拉伸黏度extensional viscosity黏弹性viscoelasticity线性黏弹性linear viscoelasticity非线性黏弹性non-linear viscoelasticity蠕变creep弛豫[作用] relaxation弛豫模量relaxation modulus蠕变柔量creep compliance热畸变温度heat distortion temperature弛豫谱relaxation spectrum推迟[时间]谱retardation [time] spectrum弛豫时间relaxation time推迟时间retardation time动态力学行为dynamic mechanical behavior动态黏弹性dynamic viscoelasticity热-机械曲线thermo-mechanical curve动态转变dynamic transition储能模量storage modulus损耗模量loss modulus复数模量complex modulus复数柔量complex compliance动态黏度dynamic viscosity复数黏度complex viscosity复数介电常数complex dielectric permittivity介电损耗因子dielectric dissipation factor介电损耗常数dielectric loss constant介电弛豫时间dielectric relaxation time玻璃化转变glass transition玻璃化转变温度glass-transition temperature次级弛豫secondary relaxation次级转变secondary transition次级弛豫温度secondary relaxation temperature开尔文模型Kelvin model麦克斯韦模型Maxwell model时-温叠加原理time-temperature superposition principle 玻耳兹曼叠加原理Boltzmann superposition principle平移因子shift factorWLF公式WLF[Williams-Lendel-Ferry] equation软化温度softening temperature平衡熔点equilibrium melting point物理老化physical ageing光老化photoageing热老化thermal ageing热氧老化thermo-oxidative ageing人工老化artificial ageing加速老化accelerated ageing计算机模拟computer simulation分子动力学模拟molecular dynamics simulation蒙特卡洛模拟Monte Carlo simulation---------------------------------聚合反应类:单体monomer官能度functionality平均官能度average functionality双官能[基]单体bifunctional monomer三官能[基]单体trifunctional monomer乙烯基单体vinyl monomer1,1-亚乙烯基单体,偏[二]取代乙烯单体vinylidene monomer1,2-亚乙烯基单体,1,2-二取代乙烯单体vinylene monomer双烯单体,二烯单体diene monomer极性单体polar monomer非极性单体non polar monomer共轭单体conjugated monomer非共轭单体non conjugated monomer活化单体activated monomer官能单体functional monomer大分子单体macromer, macromonomer环状单体cyclic monomer共聚单体comonomer聚合[反应]polymerization均聚反应homopolymerization低聚反应,齐聚反应(曾用名) oligomerization调聚反应telomerization自发聚合spontaneous polymerization预聚合prepolymerization后聚合post polymerization再聚合repolymerization铸塑聚合, 浇铸聚合cast polymerization链[式]聚合chain polymerization烯类聚合,乙烯基聚合vinyl polymerization双烯[类]聚合diene polymerization加[成]聚[合]addition polymerization自由基聚合,游离基聚合(曾用名) free radical polymerization,radical polymerization控制自由基聚合,可控自由基聚合controlled radical polymerization,CRP活性自由基聚合living radical polymerization原子转移自由基聚合atom transfer radical polymerization,ATRP反向原子转移自由基聚合reverse atom transfer radical polymerization,RATRP 可逆加成断裂链转移reversible addition fragmentation chaintransfer,RAFT氮氧[自由基]调控聚合nitroxide mediated polymerization稳定自由基聚合stable free radical polymerization,FRP自由基异构化聚合free radical isomerization polymerization自由基开环聚合radical ring opening polymerization氧化还原聚合redox polymerization无活性端聚合,死端聚合(曾用名) dead end polymerization光[致]聚合photo polymerization光引发聚合light initiated polymerization光敏聚合photosensitized polymerization四中心聚合four center polymerization电荷转移聚合charge transfer polymerization辐射引发聚合radiation initiated polymerization热聚合thermal polymerization电解聚合electrolytic polymerization等离子体聚合plasma polymerization易位聚合metathesis polymerization开环易位聚合ring opening metathesis polymerization,ROMP精密聚合precision polymerization环化聚合cyclopolymerization拓扑化学聚合topochemical polymerization平衡聚合equilibrium polymerization离子[型]聚合ionic polymerization辐射离子聚合radiation ion polymerization离子对聚合ion pair polymerization正离子聚合,阳离子聚合cationic polymerization碳正离子聚合carbenium ion polymerization,carbocationic polymerization假正离子聚合pseudo cationic polymerization假正离子活[性]聚合pseudo cationic living polymerization活性正离子聚合living cationic polymerization负离子聚合,阴离子聚合anionic polymerization碳负离子聚合carbanionic polymerization活性负离子聚合living anionic polymerization负离子环化聚合anionic cyclopolymerization负离子电化学聚合anionic electrochemical polymerization负离子异构化聚合anionic isomerization polymerization烯丙基聚合allylic polymerization活[性]聚合living polymerization两性离子聚合zwitterion polymerization齐格勒-纳塔聚合Ziegler Natta polymerization配位聚合coordination polymerization配位离子聚合coordinated ionic polymerization配位负离子聚合coordinated anionic polymerization配位正离子聚合coordinated cationic polymerization插入聚合insertion polymerization定向聚合,立构规整聚合stereoregular polymerization, stereospecific polymerization 有规立构聚合tactic polymerization全同立构聚合isospecific polymerization不对称诱导聚合asymmetric induction polymerization不对称选择性聚合asymmetric selective polymerization不对称立体选择性聚合asymmetric stereoselective polymerization对映[体]不对称聚合enantioasymmetric polymerization对映[体]对称聚合enantiosymmetric polymerization异构化聚合isomerization polymerization氢转移聚合hydrogen transfer polymerization基团转移聚合group transfer polymerization,GTP消除聚合elimination polymerization模板聚合matrix polymerization,template polymerization插层聚合intercalation polymerization无催化聚合uncatalyzed polymerization开环聚合ring opening polymerization活性开环聚合living ring opening polymerization不死的聚合immortal polymerization酶聚合作用enzymatic polymerization聚加成反应,逐步加成聚合(曾用名) polyaddition偶联聚合coupling polymerization序列聚合sequential polymerization闪发聚合,俗称暴聚flash polymerization氧化聚合oxidative polymerization氧化偶联聚合oxidative coupling polymerization逐步[增长]聚合step growth polymerization缩聚反应condensation polymerization,polycondensation酯交换型聚合transesterification type polymerization, ester exchange polycondensation自催化缩聚autocatalytic polycondensation均相聚合homogeneous polymerization非均相聚合heterogeneous polymerization相转化聚合phase inversion polymerization本体聚合bulk polymerization, mass polymerization固相聚合solid phase polymerization气相聚合gaseous polymerization,gas phase polymerization吸附聚合adsorption polymerization溶液聚合solution polymerization沉淀聚合precipitation polymerization淤浆聚合slurry polymerization悬浮聚合suspension polymerization反相悬浮聚合reversed phase suspension polymerization 珠状聚合bead polymerization, pearl polymerization分散聚合dispersion polymerization反相分散聚合inverse dispersion polymerization种子聚合seeding polymerization乳液聚合emulsion polymerization无乳化剂乳液聚合emulsifier free emulsion polymerization 反相乳液聚合inverse emulsion polymerization微乳液聚合micro emulsion polymerization连续聚合continuous polymerization半连续聚合semicontinuous polymerization分批聚合,间歇聚合batch polymerization原位聚合in situ polymerization均相缩聚homopolycondensation活化缩聚activated polycondensation熔融缩聚melt phase polycondensation固相缩聚solid phase polycondensation体型缩聚three dimensional polycondensation界面聚合interfacial polymerization界面缩聚interfacial polycondensation环加成聚合cycloaddition polymerization环烯聚合cycloalkene polymerization环硅氧烷聚合cyclosiloxane polymerization引发剂initiator引发剂活性activity of initiator聚合催化剂polymerization catalyst自由基引发剂radical initiator偶氮[类]引发剂azo type initiator2,2′偶氮二异丁腈2,2'- azobisisobutyronitrile, AIBN过氧化苯甲酰benzoyl peroxide, BPO过硫酸盐引发剂persulphate initiator复合引发体系complex initiation system氧化还原引发剂redox initiator电荷转移复合物,电荷转移络合物charge transfer complex, CTC聚合加速剂,聚合促进剂polymerization accelerator光敏引发剂photoinitiator双官能引发剂bifunctional initiator,difunctional initiator三官能引发剂trifunctional initiator大分子引发剂macroinitiator引发-转移剂initiator transfer agent, inifer引发-转移-终止剂initiator transfer agent terminator, iniferter光引发转移终止剂photoiniferter热引发转移终止剂thermoiniferter正离子催化剂cationic catalyst正离子引发剂cationic initiator负离子引发剂ionioic initiator共引发剂coinitiator烷基锂引发剂alkyllithium initiator负离子自由基引发剂anion radical initiator烯醇钠引发剂alfin initiator齐格勒-纳塔催化剂Ziegler Natta catalyst过渡金属催化剂transition metal catalyst双组分催化剂bicomponent catalyst后过渡金属催化剂late transition metal catalyst金属络合物催化剂metal complex catalyst[二]茂金属催化剂metallocene catalyst甲基铝氧烷methylaluminoxane, MAOμ氧桥双金属烷氧化物催化剂bimetallic μ-oxo alkoxides catalyst双金属催化剂bimetallic catalyst桥基茂金属bridged metallocene限定几何构型茂金属催化剂constrained geometry metallocene catalyst 均相茂金属催化剂homogeneous metallocene catalyst链引发chain initiation热引发thermal initiation染料敏化光引发dye sensitized phtoinitiation电荷转移引发charge transfer initiation诱导期induction period引发剂效率initiator efficiency诱导分解induced decomposition再引发reinitiation链增长chain growth, chain propagation增长链端propagating chain end活性种reactive species活性中心active center持续自由基persistent radical聚合最高温度ceilling temperature of polymerization链终止chain termination双分子终止bimolecular termination初级自由基终止primary radical termination扩散控制终止diffusion controlled termination歧化终止disproportionation termination偶合终止coupling termination单分子终止unimolecular termination自发终止spontaneous termination终止剂terminator链终止剂chain terminating agent假终止pseudotermination自发终止self termination自由基捕获剂radical scavenger旋转光闸法rotating sector method自由基寿命free radical lifetime凝胶效应gel effect自动加速效应autoacceleration effect链转移chain transfer链转移剂chain transfer agent尾咬转移backbitting transfer退化链转移degradation (degradative) chain transfer加成断裂链转移[反应]addition fragmentation chain transfer 链转移常数chain transfer constant①缓聚作用②延迟作用retardation阻聚作用inhibition缓聚剂retarder缓聚剂,阻滞剂retarding agent阻聚剂inhibitor封端[反应]end capping端基terminal group聚合动力学polymerization kinetics聚合热力学polymerization thermodynamics聚合热heat of polymerization共聚合[反应]copolymerization二元共聚合binary copolymerization三元共聚合ternary copolymerization竞聚率reactivity ratio自由基共聚合radical copolymerization离子共聚合ionic copolymerization无规共聚合random copolymerization理想共聚合ideal copolymerization交替共聚合alternating copolymerization恒[组]分共聚合azeotropic copolymerization 接枝共聚合graft copolymerization嵌段共聚合block copolymerization开环共聚合ring opening copolymerization共聚合方程copolymerization equation共缩聚copolycondensation逐步共聚合step copolymerization同种增长homopropagation自增长self propagation交叉增长cross propagation前末端基效应penultimate effect交叉终止cross terminationQ值Q valuee值e valueQ,e概念Q, e scheme序列长度分布sequence length distribution侧基反应reaction of pendant group扩链剂,链增长剂chain extender交联crosslinking化学交联chemical crosslinking自交联self crosslinking光交联photocrosslinking交联度degree of crosslinking硫化vulcanization固化curing硫[黄]硫化sulfur vulcanization促进硫化accelerated sulfur vulcanization过氧化物交联peroxide crosslinking无规交联random crosslinking交联密度crosslinking density交联指数crosslinking index解聚depolymerization①降解②退化degradation链断裂chain breaking解聚酶depolymerase细菌降解bacterial degradation生物降解biodegradation化学降解chemical degradation辐射降解radiation degradation断链降解chain scission degradation自由基链降解free radical chain degradation无规降解random degradation水解降解hydrolytic degradation热降解thermal degradation热氧化降解thermal oxidative degradation光降解photodegradation光氧化降解photo oxidative degradation力化学降解mechanochemical degradation接枝聚合graft polymerization活化接枝activation grafting接枝点grafting site链支化chain branching支化度degree of branching接枝效率efficiency of grafting接枝度grafting degree辐射诱导接枝radiation induced grafting嵌段聚合block polymerization---------------------------通用类:高分子macromolecule, polymer超高分子supra polymer天然高分子natural polymer无机高分子inorganic polymer有机高分子organic polymer无机-有机高分子inorganic organic polymer金属有机聚合物organometallic polymer元素高分子element polymer高聚物high polymer聚合物polymer低聚物oligomer二聚体dimer三聚体trimer调聚物telomer预聚物prepolymer均聚物homopolymer无规聚合物random polymer无规卷曲聚合物random coiling polymer头-头聚合物head-to-head polymer头-尾聚合物head-to-tail polymer尾-尾聚合物tail-to-tail polymer反式有规聚合物transtactic polymer顺式有规聚合物cistactic polymer。

材料科学基础第八章

材料科学基础第八章

The combination of a crystallographic plane and, within that plane, a crystallographic direction along which slip (i.e., dislocation motion) occurs.
SLIP SYSTEMS = slip plane+ slip direction
This discrepancy in mechanical strengths could be explained by a type of linear crystalline defect
2020/5/29
Chapter 8 Deformation and Strengthening
4
mechanism
增殖和消亡等现象。至此位错理论得到广泛承认。
2020/5/29
Chapter 8 Deformation and Strengthening
5
mechanism
8-A DEFORMATION MECHANISMS FOR METALS
Dislocation Theory of Crystal Deformation
Chapter 8 Deformation and Strengthening mechanism
第八章 (固体材料的)变 形和强化机制
Why Study Deformation and Strengthening Mechanisms?
the nature of dislocations and the role they play in the plastic deformation process

放电等离子体烧结Al-4.5Cu合金的组织与性能

放电等离子体烧结Al-4.5Cu合金的组织与性能

第27卷第1期粉末冶金材料科学与工程2022年2月V ol.27 No.1 Materials Science and Engineering of Powder Metallurgy Feb. 2022DOI:10.19976/ki.43-1448/TF.2021088放电等离子体烧结Al-4.5Cu合金的组织与性能穆迪琨祺1,曹磊1,张震1,梁加淼1,张德良2,王俊1(1. 上海交通大学上海市先进高温材料及其精密成型重点实验室,上海200240;2. 东北大学材料科学与工程学院,沈阳110819)摘要:利用放电等离子烧结制备Al-4.5Cu(质量分数,%)合金,并对其进行固溶、淬火和时效处理。

通过X 射线衍射、扫描电镜和透射电镜进行结构表征以及拉伸力学性能测试,研究颗粒界面结构和界面析出行为及其对力学性能影响。

结果表明:放电等离子烧结Al-4.5Cu合金颗粒界面由Al2O3纳米颗粒、粗大CuAl2相和纳米微孔组成。

热处理后,Al-4.5Cu合金颗粒界面附近析出尺寸为150~600 nm的CuAl2相,同时形成宽度为40~60 nm 的无析出区。

屈服强度和抗拉强度分别从95 MPa 和229 MPa增加至280 MPa和378 MPa,断后伸长率从11.8%下降为6.0%。

强度增加主要归因于热处理过程中析出相的弥散分布,以及材料的致密化;塑性下降主要是由于拉伸变形过程中,无析出区率先发生塑性变形,导致位错从无析出区向颗粒界面附近的CuAl2相堆积,造成应力集中,促使裂纹沿颗粒界面扩展,材料伸长率下降。

关键词:粉末冶金;颗粒界面;析出;微观组织;力学性能中图分类号:TG156文献标志码:A 文章编号:1673-0224(2022)01-24-10The microstructure and mechanical properties ofAl-4.5Cu alloyAll Rights Reserved.fabricated by spark plasma sinteringMU Dikunqi1, CAO Lei1, ZHANG Zhen1, LIANG Jiamiao1, ZHANG Deliang2, WANG Jun1(1. Shanghai Key Laboratory of Advanced High-Temperature Materials and Forming,Shanghai Jiao Tong University, Shanghai 200240, China;2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China)Abstract:Al-4.5Cu (mass fraction, %) alloy was prepared by spark plasma sintering (SPS) followed by solution,quenching and aging. The X-ray diffraction, scanning electron microscopy, transmission electronmicroscopy and tensiletests were carried out. The effect of interparticle boundary (IPB) and precipitation behavior on mechanical properties ofthe Al-4.5Cu alloy were investigated in detail. The results show that the IPB consists of Al2O3 nanoparticles, CuAl2 phaseand residual nanopores. After T6 aging, coarse CuAl2 phases with a diameter of 150−600 nm precipitate at the IPB, andthe precipitation free zone (PFZ) with a width of 40−60 nm is formed. An improvement of yield strength and ultimatetensile strength from 95 MPa and 229 MPa to 280 MPa and 378 MPa is achieved respectively after T6 aging, while theelongation to fracture decreases from 11.8% to 6%. The increase in strength is mainly due to the well dispersion ofprecipitates and the densification of the material during T6 aging. The decrease in plasticity may result from the earlierplastic deformation in the PFZ during tensile deformation, leading to the accumulation of dislocations from PFZ to CuAl2phase nearby the IPB, as a result, stress concentrationis formed, which consequently promotes cracksexp and along theIPB and decreases the ductility of the material.Keywords: powder metallurgy; interparticle boundary; precipitation; microstructure; mechanical properties基金项目:国家自然科学基金资助项目(51971143)收稿日期:2021−10−25;修订日期:2021−12−01通信作者:梁加淼,工程师,博士。

塑性成形理论-introduction

塑性成形理论-introduction
plasticity)
4
0. Introduction
0.1 Definition and scope of the subject
Plastic forming theory Theory of plasticity
Physical metallurgy
The theory of plasticity is concerned with the mathematical study on stress and strain in plastically deformed solids with particular to metals.
Plasticity – The material’s ability of being permanently shaped or formed without fracture .
3
Plastic forming theory
The study of Plastic Forming Theory to find answers to the following questions:
7
8
9
10
0. Introduction
0.3 Features of plastic deformation
(1) The stress-strain relation is generally nonlinear.
11
0. Introduction
0.3 Features of plastic deformation
based on the theory of plasticity. (2) Computing the forming parameters such as loads,

《材料科学与工程基础》英文影印版习题及思考题及答案

《材料科学与工程基础》英文影印版习题及思考题及答案

《材料科学与工程基础》英文习题及思考题及答案第二章习题和思考题Questions and Problems2.6 Allowed values for the quantum numbers ofelectrons are as follows:The relationships between n and the shell designationsare noted in Table 2.1.Relative tothe subshells,l =0 corresponds to an s subshelll =1 corresponds to a p subshelll =2 corresponds to a d subshelll =3 corresponds to an f subshellFor the K shell, the four quantum numbersfor each of the two electrons in the 1s state, inthe order of nlmlms , are 100(1/2 ) and 100(-1/2 ).Write the four quantum numbers for allof the electrons inthe L and M shells, and notewhich correspond to the s, p, and d subshells.2.7 Give the electron configurations for the followingions: Fe2+, Fe3+, Cu+, Ba2+,Br-, andS2-.2.17 (a) Briefly cite the main differences betweenionic, covalent, and metallicbonding.(b) State the Pauli exclusion principle.2.18 Offer an explanation as to why covalently bonded materials are generally lessdense than ionically or metallically bonded ones.2.19 Compute the percents ionic character of the interatomic bonds for the followingcompounds: TiO2 , ZnTe, CsCl, InSb, and MgCl2 .2.21 Using Table 2.2, determine the number of covalent bonds that are possible foratoms of the following elements: germanium, phosphorus, selenium, and chlorine.2.24 On the basis of the hydrogen bond, explain the anomalous behavior of waterwhen it freezes. That is, why is there volume expansion upon solidification?3.1 What is the difference between atomic structure and crystal structure?3.2 What is the difference between a crystal structure and a crystal system?3.4Show for the body-centered cubic crystal structure that the unit cell edge lengtha and the atomic radius R are related through a =4R/√3.3.6 Show that the atomic packing factor for BCC is 0.68. .3.27* Show that the minimum cation-to-anion radius ratio for a coordinationnumber of 6 is 0.414. Hint: Use the NaCl crystal structure (Figure 3.5), and assume that anions and cations are just touching along cube edges and across face diagonals.3.48 Draw an orthorhombic unit cell, and within that cell a [121] direction and a(210) plane.3.50 Here are unit cells for two hypothetical metals:(a)What are the indices for the directions indicated by the two vectors in sketch(a)?(b) What are the indices for the two planes drawn in sketch (b)?3.51* Within a cubic unit cell, sketch the following directions:.3.53 Determine the indices for the directions shown in the following cubic unit cell:3.57 Determine the Miller indices for the planesshown in the following unit cell:3.58Determine the Miller indices for the planes shown in the following unit cell: 3.61* Sketch within a cubic unit cell the following planes:3.62 Sketch the atomic packing of (a) the (100)plane for the FCC crystal structure, and (b) the (111) plane for the BCC crystal structure (similar to Figures 3.24b and 3.25b).3.77 Explain why the properties of polycrystalline materials are most oftenisotropic.5.1 Calculate the fraction of atom sites that are vacant for lead at its meltingtemperature of 327_C. Assume an energy for vacancy formation of 0.55eV/atom.5.7 If cupric oxide (CuO) is exposed to reducing atmospheres at elevatedtemperatures, some of the Cu2_ ions will become Cu_.(a) Under these conditions, name one crystalline defect that you would expect toform in order to maintain charge neutrality.(b) How many Cu_ ions are required for the creation of each defect?5.8 Below, atomic radius, crystal structure, electronegativity, and the most commonvalence are tabulated, for several elements; for those that are nonmetals, only atomic radii are indicated.Which of these elements would you expect to form the following with copper:(a) A substitutional solid solution having complete solubility?(b) A substitutional solid solution of incomplete solubility?(c) An interstitial solid solution?5.9 For both FCC and BCC crystal structures, there are two different types ofinterstitial sites. In each case, one site is larger than the other, which site isnormally occupied by impurity atoms. For FCC, this larger one is located at the center of each edge of the unit cell; it is termed an octahedral interstitial site. On the other hand, with BCC the larger site type is found at 0, __, __ positions—that is, lying on _100_ faces, and situated midway between two unit cell edges on this face and one-quarter of the distance between the other two unit cell edges; it is termed a tetrahedral interstitial site. For both FCC and BCC crystalstructures, compute the radius r of an impurity atom that will just fit into one of these sites in terms of the atomic radius R of the host atom.5.10 (a) Suppose that Li2O is added as an impurity to CaO. If the Li_ substitutes forCa2_, what kind of vacancies would you expect to form? How many of thesevacancies are created for every Li_ added?(b) Suppose that CaCl2 is added as an impurity to CaO. If the Cl_ substitutes forO2_, what kind of vacancies would you expect to form? How many of thevacancies are created for every Cl_ added?5.28 Copper and platinum both have the FCC crystal structure and Cu forms asubstitutional solid solution for concentrations up to approximately 6 wt% Cu at room temperature. Compute the unit cell edge length for a 95 wt% Pt-5 wt% Cu alloy.5.29 Cite the relative Burgers vector–dislocation line orientations for edge, screw, andmixed dislocations.6.1 Briefly explain the difference between selfdiffusion and interdiffusion.6.3 (a) Compare interstitial and vacancy atomic mechanisms for diffusion.(b) Cite two reasons why interstitial diffusion is normally more rapid thanvacancy diffusion.6.4 Briefly explain the concept of steady state as it applies to diffusion.6.5 (a) Briefly explain the concept of a driving force.(b) What is the driving force for steadystate diffusion?6.6Compute the number of kilograms of hydrogen that pass per hour through a5-mm thick sheet of palladium having an area of 0.20 m2at 500℃. Assume a diffusion coefficient of 1.0×10- 8 m2/s, that the concentrations at the high- and low-pressure sides of the plate are 2.4 and 0.6 kg of hydrogen per cubic meter of palladium, and that steady-state conditions have been attained.6.7 A sheet of steel 1.5 mm thick has nitrogen atmospheres on both sides at 1200℃and is permitted to achieve a steady-state diffusion condition. The diffusion coefficient for nitrogen in steel at this temperature is 6×10-11m2/s, and the diffusion flux is found to be 1.2×10- 7kg/m2-s. Also, it is known that the concentration of nitrogen in the steel at the high-pressure surface is 4 kg/m3. How far into the sheet from this high-pressure side will the concentration be 2.0 kg/m3?Assume a linear concentration profile.6.24. Carbon is allowed to diffuse through a steel plate 15 mm thick. Theconcentrations of carbon at the two faces are 0.65 and 0.30 kg C/m3 Fe, whichare maintained constant. If the preexponential and activation energy are 6.2 _10_7 m2/s and 80,000 J/mol, respectively, compute the temperature at which the diffusion flux is 1.43 _ 10_9 kg/m2-s.6.25 The steady-state diffusion flux through a metal plate is 5.4_10_10 kg/m2-s at atemperature of 727_C (1000 K) and when the concentration gradient is _350kg/m4. Calculate the diffusion flux at 1027_C (1300 K) for the sameconcentration gradient and assuming an activation energy for diffusion of125,000 J/mol.10.2 What thermodynamic condition must be met for a state of equilibrium to exist? 10.4 What is the difference between the states of phase equilibrium and metastability?10.5 Cite the phases that are present and the phase compositions for the followingalloys:(a) 90 wt% Zn–10 wt% Cu at 400℃(b) 75 wt% Sn–25wt%Pb at 175℃(c) 55 wt% Ag–45 wt% Cu at 900℃(d) 30 wt% Pb–70 wt% Mg at 425℃(e) 2.12 kg Zn and 1.88 kg Cu at 500℃(f ) 37 lbm Pb and 6.5 lbm Mg at 400℃(g) 8.2 mol Ni and 4.3 mol Cu at 1250℃.(h) 4.5 mol Sn and 0.45 mol Pb at 200℃10.6 For an alloy of composition 74 wt% Zn–26 wt% Cu, cite the phases presentand their compositions at the following temperatures: 850℃, 750℃, 680℃, 600℃, and 500℃.10.7 Determine the relative amounts (in terms of mass fractions) of the phases forthe alloys and temperatures given inProblem 10.5.10.9 Determine the relative amounts (interms of volume fractions) of the phases forthe alloys and temperatures given inProblem 10.5a, b, and c. Below are given theapproximate densities of the various metalsat the alloy temperatures:10.18 Is it possible to have a copper–silveralloy that, at equilibrium, consists of a _ phase of composition 92 wt% Ag–8wt% Cu, and also a liquid phase of composition 76 wt% Ag–24 wt% Cu? If so, what will be the approximate temperature of the alloy? If this is not possible,explain why.10.20 A copper–nickel alloy of composition 70 wt% Ni–30 wt% Cu is slowly heatedfrom a temperature of 1300_C .(a) At what temperature does the first liquid phase form?(b) What is the composition of this liquid phase?(c) At what temperature does complete melting of the alloy occur?(d) What is the composition of the last solid remaining prior to completemelting?10.28 .Is it possible to have a copper–silver alloy of composition 50 wt% Ag–50 wt%Cu, which, at equilibrium, consists of _ and _ phases having mass fractions W_ _0.60 and W_ _ 0.40? If so, what will be the approximate temperature of the alloy?If such an alloy is not possible, explain why.10.30 At 700_C , what is the maximum solubility (a) of Cu in Ag? (b) Of Ag in Cu?第三章习题和思考题3.3If the atomic radius of aluminum is 0.143nm, calculate the volume of its unitcell in cubic meters.3.8 Iron has a BCC crystal structure, an atomic radius of 0.124 nm, and an atomicweight of 55.85 g/mol. Compute and compare its density with the experimental value found inside the front cover.3.9 Calculate the radius of an iridium atom given that Ir has an FCC crystal structure,a density of 22.4 g/cm3, and an atomic weight of 192.2 g/mol.3.13 Using atomic weight, crystal structure, and atomic radius data tabulated insidethe front cover, compute the theoretical densities of lead, chromium, copper, and cobalt, and then compare these values with the measured densities listed in this same table. The c/a ratio for cobalt is 1.623.3.15 Below are listed the atomic weight, density, and atomic radius for threehypothetical alloys. For each determine whether its crystal structure is FCC,BCC, or simple cubic and then justify your determination. A simple cubic unitcell is shown in Figure 3.40.3.21 This is a unit cell for a hypotheticalmetal:(a) To which crystal system doesthis unit cell belong?(b) What would this crystal structure be called?(c) Calculate the density of the material, given that its atomic weight is 141g/mol.3.25 For a ceramic compound, what are the two characteristics of the component ionsthat determine the crystal structure?3.29 On the basis of ionic charge and ionic radii, predict the crystal structures for thefollowing materials: (a) CsI, (b) NiO, (c) KI, and (d) NiS. Justify your selections.3.35 Magnesium oxide has the rock salt crystal structure and a density of 3.58 g/cm3.(a) Determine the unit cell edge length. (b) How does this result compare withthe edge length as determined from the radii in Table 3.4, assuming that theMg2_ and O2_ ions just touch each other along the edges?3.36 Compute the theoretical density of diamond given that the CUC distance andbond angle are 0.154 nm and 109.5°, respectively. How does this value compare with the measured density?3.38 Cadmium sulfide (CdS) has a cubic unit cell, and from x-ray diffraction data it isknown that the cell edge length is 0.582 nm. If the measured density is 4.82 g/cm3 , how many Cd 2+ and S 2—ions are there per unit cell?3.41 A hypothetical AX type of ceramic material is known to have a density of 2.65g/cm 3 and a unit cell of cubic symmetry with a cell edge length of 0.43 nm. The atomic weights of the A and X elements are 86.6 and 40.3 g/mol, respectively.On the basis of this information, which of the following crystal structures is (are) possible for this material: rock salt, cesium chloride, or zinc blende? Justify your choice(s).3.42 The unit cell for Mg Fe2O3 (MgO-Fe2O3) has cubic symmetry with a unit celledge length of 0.836 nm. If the density of this material is 4.52 g/cm 3 , compute its atomic packing factor. For this computation, you will need to use ionic radii listed in Table 3.4.3.44 Compute the atomic packing factor for the diamond cubic crystal structure(Figure 3.16). Assume that bonding atoms touch one another, that the angle between adjacent bonds is 109.5°, and that each atom internal to the unit cell is positioned a/4 of the distance away from the two nearest cell faces (a is the unit cell edge length).3.45 Compute the atomic packing factor for cesium chloride using the ionic radii inTable 3.4 and assuming that the ions touch along the cube diagonals.3.46 In terms of bonding, explain why silicate materials have relatively low densities.3.47 Determine the angle between covalent bonds in an SiO44—tetrahedron.3.63 For each of the following crystal structures, represent the indicated plane in themanner of Figures 3.24 and 3.25, showing both anions and cations: (a) (100)plane for the rock salt crystal structure, (b) (110) plane for the cesium chloride crystal structure, (c) (111) plane for the zinc blende crystal structure, and (d) (110) plane for the perovskite crystal structure.3.66 The zinc blende crystal structure is one that may be generated from close-packedplanes of anions.(a) Will the stacking sequence for this structure be FCC or HCP? Why?(b) Will cations fill tetrahedral or octahedral positions? Why?(c) What fraction of the positions will be occupied?3.81* The metal iridium has an FCC crystal structure. If the angle of diffraction forthe (220) set of planes occurs at 69.22°(first-order reflection) when monochromatic x-radiation having a wavelength of 0.1542 nm is used, compute(a) the interplanar spacing for this set of planes, and (b) the atomic radius for aniridium atom.4.10 What is the difference between configuration and conformation in relation topolymer chains? vinyl chloride).4.22 (a) Determine the ratio of butadiene to styrene mers in a copolymer having aweight-average molecular weight of 350,000 g/mol and weight-average degree of polymerization of 4425.(b) Which type(s) of copolymer(s) will this copolymer be, considering thefollowing possibilities: random, alternating, graft, and block? Why?4.23 Crosslinked copolymers consisting of 60 wt% ethylene and 40 wt% propylenemay have elastic properties similar to those for natural rubber. For a copolymer of this composition, determine the fraction of both mer types.4.25 (a) Compare the crystalline state in metals and polymers.(b) Compare thenoncrystalline state as it applies to polymers and ceramic glasses.4.26 Explain briefly why the tendency of a polymer to crystallize decreases withincreasing molecular weight.4.27* For each of the following pairs of polymers, do the following: (1) state whetheror not it is possible to determine if one polymer is more likely to crystallize than the other; (2) if it is possible, note which is the more likely and then cite reason(s) for your choice; and (3) if it is not possible to decide, then state why.(a) Linear and syndiotactic polyvinyl chloride; linear and isotactic polystyrene.(b) Network phenol-formaldehyde; linear and heavily crosslinked ci s-isoprene.(c) Linear polyethylene; lightly branched isotactic polypropylene.(d) Alternating poly(styrene-ethylene) copolymer; randompoly(vinylchloride-tetrafluoroethylene) copolymer.4.28 Compute the density of totally crystalline polyethylene. The orthorhombic unitcell for polyethylene is shown in Figure 4.10; also, the equivalent of two ethylene mer units is contained within each unit cell.5.11 What point defects are possible for MgO as an impurity in Al2O3? How manyMg 2+ ions must be added to form each of these defects?5.13 What is the composition, in weight percent, of an alloy that consists of 6 at% Pband 94 at% Sn?5.14 Calculate the composition, in weight per-cent, of an alloy that contains 218.0 kgtitanium, 14.6 kg of aluminum, and 9.7 kg of vanadium.5.23 Gold forms a substitutional solid solution with silver. Compute the number ofgold atoms per cubic centimeter for a silver-gold alloy that contains 10 wt% Au and 90 wt% Ag. The densities of pure gold and silver are 19.32 and 10.49 g/cm3 , respectively.8.53 In terms of molecular structure, explain why phenol-formaldehyde (Bakelite)will not be an elastomer.10.50 Compute the mass fractions of αferrite and cementite in pearlite. assumingthat pressure is held constant.10.52 (a) What is the distinction between hypoeutectoid and hypereutectoid steels?(b) In a hypoeutectoid steel, both eutectoid and proeutectoid ferrite exist. Explainthe difference between them. What will be the carbon concentration in each?10.56 Consider 1.0 kg of austenite containing 1.15 wt% C, cooled to below 727_C(a) What is the proeutectoid phase?(b) How many kilograms each of total ferrite and cementite form?(c) How many kilograms each of pearlite and the proeutectoid phase form?(d) Schematically sketch and label the resulting microstructure.10.60 The mass fractions of total ferrite and total cementite in an iron–carbon alloyare 0.88 and 0.12, respectively. Is this a hypoeutectoid or hypereutectoid alloy?Why?10.64 Is it possible to have an iron–carbon alloy for which the mass fractions of totalferrite and proeutectoid cementite are 0.846 and 0.049, respectively? Why orwhy not?第四章习题和思考题7.3 A specimen of aluminum having a rectangular cross section 10 mm _ 12.7 mmis pulled in tension with 35,500 N force, producing only elastic deformation. 7.5 A steel bar 100 mm long and having a square cross section 20 mm on an edge ispulled in tension with a load of 89,000 N , and experiences an elongation of 0.10 mm . Assuming that the deformation is entirely elastic, calculate the elasticmodulus of the steel.7.7 For a bronze alloy, the stress at which plastic deformation begins is 275 MPa ,and the modulus of elasticity is 115 Gpa .(a) What is the maximum load that may be applied to a specimen with across-sectional area of 325mm, without plastic deformation?(b) If the original specimen length is 115 mm , what is the maximum length towhich it may be stretched without causing plastic deformation?7.8 A cylindrical rod of copper (E _ 110 GPa, Stress (MPa) ) having a yield strengthof 240Mpa is to be subjected to a load of 6660 N. If the length of the rod is 380 mm, what must be the diameter to allow an elongation of 0.50 mm?7.9 Consider a cylindrical specimen of a steel alloy (Figure 7.33) 10mm in diameterand 75 mm long that is pulled in tension. Determine its elongation when a load of 23,500 N is applied.7.16 A cylindrical specimen of some alloy 8 mm in diameter is stressed elasticallyin tension. A force of 15,700 N produces a reduction in specimen diameter of 5 _ 10_3 mm. Compute Poisson’s ratio for this material if its modulus of elasticity is 140 GPa .7.17 A cylindrical specimen of a hypothetical metal alloy is stressed in compression.If its original and final diameters are 20.000 and 20.025 mm, respectively, and its final length is 74.96 mm, compute its original length if the deformation is totally elastic. The elastic and shear moduli for this alloy are 105 Gpa and 39.7 GPa,respectively.7.19 A brass alloy is known to have a yield strength of 275 MPa, a tensile strength of380 MPa, and an elastic modulus of 103 GPa . A cylindrical specimen of thisalloy 12.7 mm in diameter and 250 mm long is stressed in tension and found to elongate 7.6 mm . On the basis of the information given, is it possible tocompute the magnitude of the load that is necessary to produce this change inlength? If so, calculate the load. If not, explain why.7.20A cylindrical metal specimen 15.0mmin diameter and 150mm long is to besubjected to a tensile stress of 50 Mpa; at this stress level the resulting deformation will be totally elastic.(a)If the elongation must be less than 0.072mm,which of the metals in Tabla7.1are suitable candidates? Why ?(b)If, in addition, the maximum permissible diameter decrease is 2.3×10-3mm,which of the metals in Table 7.1may be used ? Why?7.22 Cite the primary differences between elastic, anelastic, and plastic deformationbehaviors.7.23 diameter of 10.0 mm is to be deformed using a tensile load of 27,500 N. It mustnot experience either plastic deformation or a diameter reduction of more than7.5×10-3 mm. Of the materials listed as follows, which are possible candidates?Justify your choice(s).7.24 A cylindrical rod 380 mm long, having a diameter of 10.0 mm, is to besubjected to a tensile load. If the rod is to experience neither plastic deformationnor an elongation of more than 0.9 mm when the applied load is 24,500 N,which of the four metals or alloys listed below are possible candidates?7.25 Figure 7.33 shows the tensile engineering stress–strain behavior for a steel alloy.(a) What is the modulus of elasticity?(b) What is the proportional limit?(c) What is the yield strength at a strain offset of 0.002?(d) What is the tensile strength?7.27 A load of 44,500 N is applied to a cylindrical specimen of steel (displaying thestress–strain behavior shown in Figure 7.33) that has a cross-sectional diameter of 10 mm .(a) Will the specimen experience elastic or plastic deformation? Why?(b) If the original specimen length is 500 mm), how much will it increase inlength when t his load is applied?7.29 A cylindrical specimen of aluminumhaving a diameter of 12.8 mm and a gaugelength of 50.800 mm is pulled in tension. Usethe load–elongation characteristics tabulatedbelow to complete problems a through f.(a)Plot the data as engineering stressversusengineering strain.(b) Compute the modulus of elasticity.(c) Determine the yield strength at astrainoffset of 0.002.(d) Determine the tensile strength of thisalloy.(e) What is the approximate ductility, in percent elongation?(f ) Compute the modulus of resilience.7.35 (a) Make a schematic plot showing the tensile true stress–strain behavior for atypical metal alloy.(b) Superimpose on this plot a schematic curve for the compressive truestress–strain behavior for the same alloy. Explain any difference between thiscurve and the one in part a.(c) Now superimpose a schematic curve for the compressive engineeringstress–strain behavior for this same alloy, and explain any difference between this curve and the one in part b.7.39 A tensile test is performed on a metal specimen, and it is found that a true plasticstrain of 0.20 is produced when a true stress of 575 MPa is applied; for the same metal, the value of K in Equation 7.19 is 860 MPa. Calculate the true strain that results from the application of a true stress of 600 Mpa.7.40 For some metal alloy, a true stress of 415 MPa produces a plastic true strain of0.475. How much will a specimen of this material elongate when a true stress of325 MPa is applied if the original length is 300 mm ? Assume a value of 0.25 for the strain-hardening exponent n.7.43 Find the toughness (or energy to cause fracture) for a metal that experiences bothelastic and plastic deformation. Assume Equation 7.5 for elastic deformation,that the modulus of elasticity is 172 GPa , and that elastic deformation terminates at a strain of 0.01. For plastic deformation, assume that the relationship between stress and strain is described by Equation 7.19, in which the values for K and n are 6900 Mpa and 0.30, respectively. Furthermore, plastic deformation occurs between strain values of 0.01 and 0.75, at which point fracture occurs.7.47 A steel specimen having a rectangular cross section of dimensions 19 mm×3.2mm (0.75in×0.125in.) has the stress–strain behavior shown in Figure 7.33. If this specimen is subjected to a tensile force of 33,400 N (7,500lbf ), then(a) Determine the elastic and plastic strain values.(b) If its original length is 460 mm (18 in.), what will be its final length after theload in part a is applied and then released?7.50 A three-point bending test was performed on an aluminum oxide specimenhaving a circular cross section of radius 3.5 mm; the specimen fractured at a load of 950 N when the distance between the support points was 50 mm . Another test is to be performed on a specimen of this same material, but one that has a square cross section of 12 mm length on each edge. At what load would you expect this specimen to fracture if the support point separation is 40 mm ?7.51 (a) A three-point transverse bending test is conducted on a cylindrical specimenof aluminum oxide having a reported flexural strength of 390 MPa . If the speci- men radius is 2.5 mm and the support point separation distance is 30 mm ,predict whether or not you would expect the specimen to fracture when a load of 620 N is applied. Justify your prediction.(b) Would you be 100% certain of the prediction in part a? Why or why not?7.57 When citing the ductility as percent elongation for semicrystalline polymers, it isnot necessary to specify the specimen gauge length, as is the case with metals.Why is this so?7.66 Using the data represented in Figure 7.31, specify equations relating tensilestrength and Brinell hardness for brass and nodular cast iron, similar toEquations 7.25a and 7.25b for steels.8.4 For each of edge, screw, and mixed dislocations, cite the relationship between thedirection of the applied shear stress and the direction of dislocation line motion.8.5 (a) Define a slip system.(b) Do all metals have the same slip system? Why or why not?8.7. One slip system for theBCCcrystal structure is _110__111_. In a manner similarto Figure 8.6b sketch a _110_-type plane for the BCC structure, representingatom positions with circles. Now, using arrows, indicate two different _111_ slip directions within this plane.8.15* List four major differences between deformation by twinning and deformationby slip relative to mechanism, conditions of occurrence, and final result.8.18 Describe in your own words the three strengthening mechanisms discussed inthis chapter (i.e., grain size reduction, solid solution strengthening, and strainhardening). Be sure to explain how dislocations are involved in each of thestrengthening techniques.8.19 (a) From the plot of yield strength versus (grain diameter)_1/2 for a 70 Cu–30 Zncartridge brass, Figure 8.15, determine values for the constants _0 and ky inEquation 8.5.(b) Now predict the yield strength of this alloy when the average grain diameteris 1.0 _ 10_3 mm.8.20. The lower yield point for an iron that has an average grain diameter of 5 _ 10_2mm is 135 MPa . At a grain diameter of 8 _ 10_3 mm, the yield point increases to 260MPa. At what grain diameter will the lower yield point be 205 Mpa ?8.24 (a) Show, for a tensile test, thatif there is no change in specimen volume during the deformation process (i.e., A0 l0 _Ad ld).(b) Using the result of part a, compute the percent cold work experienced bynaval brass (the stress–strain behavior of which is shown in Figure 7.12) when a stress of 400 MPa is applied.8.25 Two previously undeformed cylindrical specimens of an alloy are to be strainhardened by reducing their cross-sectional areas (while maintaining their circular cross sections). For one specimen, the initial and deformed radii are 16 mm and11 mm, respectively. The second specimen, with an initial radius of 12 mm, musthave the same deformed hardness as the first specimen; compute the secondspecimen’s radius after deformation.8.26 Two previously undeformed specimens of the same metal are to be plasticallydeformed by reducing their cross-sectional areas. One has a circular cross section, and the other is rectangular is to remain as such. Their original and deformeddimensions are as follows:Which of these specimens will be the hardest after plastic deformation, and why?8.27 A cylindrical specimen of cold-worked copper has a ductility (%EL) of 25%. Ifits coldworked radius is 10 mm (0.40 in.), what was its radius beforedeformation?8.28 (a) What is the approximate ductility (%EL) of a brass that has a yield strengthof 275 MPa ?(b) What is the approximate Brinell hardness of a 1040 steel having a yieldstrength of 690 MPa?8.41 In your own words, describe the mechanisms by which semicrystalline polymers(a) elasticallydeform and (b) plastically deform, and (c) by which elastomerselastically deform.8.42 Briefly explain how each of the following influences the tensile modulus of asemicrystallinepolymer and why:(a) molecular weight;(b) degree of crystallinity;(c) deformation by drawing;(d) annealing of an undeformed material;(e) annealing of a drawn material.8.43* Briefly explain how each of the following influences the tensile or yieldstrength of a semicrystalline polymer and why:(a) molecular weight;。

Mechanical Behavior of Materials

Mechanical Behavior of Materials

SAN JOSE STATE UNIVERSITYDepartment of Chemical and Materials EngineeringMatE 195 Fall 2000 W. Richard Chung Engr.-385EMechanical Behavior of MaterialsObjectives: The course is designed to help materials engineering seniors understand the basic mechanical responses of engineering materials. Emphasis will beplaced on how to perform various mechanical tests, how to apply statisticalmethods to the analysis of mechanical properties data, and how mechanicalbehavior influences the load-bearing limit for a selected material in a givenapplication.Prerequisites: CE 99, MatE 115 and MatE 141.Class Hours: Lecture on Mondays from 0830 to 1020, in IS113Laboratory on Wednesdays from 0830 to 1120, in E-225Office Hours: Mondays & Wednesdays: 1300-1500, other times by appointment only. Office Room: E-385EOffice Phone: (408) 924-3927E-mail address: wrchung@Textbook: Norman E. Dowling, Mechanical Behavior of Materials, Prentice-Hall, Upper Saddle River, New Jersey, 2nd Edition, 1999. (ISBN0-13-905720-X) References: S.D. Antolovich, R.O. Ritchie, and W.W. Gerberich (editors), Mechanical Properties and Phase Transformations in Engineering Materials, APublication of the Metallurgical Society, Warrendale, Pennsylvania, 1986.(ISBN 0-87339-012-1) TA 401.3 M4155Craig R. Barrett, William D. Nix, and Alan S. Tetelman, The Principles ofEngineering Materials, Prentice-Hall, Englewood Cliffs, New Jersey,1973. (ISBN 0-13-709394-2) TA403.B24.David Broek, Elementary Engineering Fracture Mechanics, MartinusNijhoff Publishers, Hingham, Massachusetts, 3rd Edition, 1984. (ISBN 90-247-2656-5)Thomas H. Courtney, Mechanical Behavior of Materials, McGraw Hill,New York, 2nd Edition, 2000. (ISBN0-07-028594-2) TA405.C859George E. Dieter, Mechanical Metallurgy, McGraw Hill, New York, 3rdEdition, 1986. (ISBN 0-07-016853-8) TA405.D53W.A. Green and M. Micunovic (editors), Mechanical Behavior ofComposites and Laminates, Elsevier Applied Science Publishing, NewYork, 1986. (ISBN 1-85166-144-1) TA418.9C6 E976James M. Gere and Steven P. Timoshenko, Mechanics of Materials,PWS-KENT Publishing, Boston, Massachusetts, 3rd Edition, 1990. (ISBN0-534-92174-4) TA405.G44Richard W. Hertzberg, Deformation and Fracture Mechanics ofEngineering Materials, John Wiley & Sons, New York, 3 Edition, 1989.(ISBN 0-471-63589-8) TA417.6H46Donald Peckner (editor) The Strengthening of Metals, ReinholdPublishing,New York, 2nd Edition, 1967.Grading Basis: There will be two midterm examinations and one final examination.Examinations are comprehensive; including subjects from all assignedreadings, lectures, laboratory activities, and classroom demonstrations.Homework assignments will consist of essay questions and problemsolving cases. The laboratory component affects 25% of the course grade.A term project must be completed and submitted by November 29th. Thedetails will follow.Homework assignments………………………………………………….15%Two midterm exams at 15% each………………..……………..…….….30%Laboratory activities.….…………………………………………………25%Term project with oral presentation……………………………………...15%Final Examination………………………………………………………..15%Total: 100% For all graded work, course letter grades will be assigned according to thecorresponding ranges of cumulative averages listed below.A+ 97 -- 100 A 94 -- 96 A- 90 -- 93B+ 87 -- 89 B 84 -- 86 B- 80 -- 83C+ 77 -- 79 C 74 -- 76 C- 70 -- 73D+ 67 -- 69 D 64 -- 66 D- 60 -- 63F below 60Add/Drop Policy:Students wanting to enroll in the class must sign the roster and receive an enrollment code, provided space is available. Students may drop this classfrom now until September 15 without “W” grade assigned.Important Dates:Midterm examination dates: October 11 and November 15Final exam date: Tuesday, December 19, 0715-0930Term project report submission date: Nov. 29Reserve Desk:The Reserve Desk is located by the book checkout area in the ClarkLibrary. To help your study in the course material, the instructor hasreserved some reference books, technical articles, and supplemental lecturenotes.Homework: Work the homework problems on one side of a sheet of paper only. Youneed to number all the pages if more than one page is submitted. On top ofeach page write down your name, the course number, the semester, and thesubmission date. List the problem numbers in the Dowling textbook andrestate the statement of the problem including simple sketches, ifapplicable. Show your working steps and circle the numeric solutions. It isvery important to have one or two sentences describing your conclusions.This is a brief statement used to state the physical significance orimplication of your answer. Underline them and don’t forget units! Theinstructor will pay additional attention to this requirement. The homeworkassignments are collected in class on Sept. 25, Oct. 23, and Nov. 20. Nolate assignments will be accepted, as the problem solutions will be postedimmediately after the class due date.Laboratory: A Laboratory Activity Logbook will be purchased and kept by eachstudent. It must be brought to be checked and initialed by the instructorbefore beginning the first lab exercise. The logbook must be 8 1/2 x 11inches, NOT spiral bound. You will use it to record a detailed log of all labactivities, data, sketches of experimental setups and results, and records ofreferences used for class projects. Mark it clearly on the cover with yourname, group number, class and section, instructor, and semester. Eachpage should be numbered and dated and each lab activity labeled.Record your partners’ names, phone numbers, and schedules inside thecover.Term Project: A Term Project must be completed. The term project will involve amaterial's testing activity, which you design, initiate, and conduct in agroup (not more than three members) and must be supported by costanalysis, technical drawings, and related references. A few topics will bediscussed in class at a later date. Completed term project reports will befrom 10 pages in length, double spaced not including illustrations orappendices, and will follow the class format. A writing format will beprovided at a later date. An oral presentation on the term project must beconducted in the end of class (November 27).A group's oral presentation on the term project is expected to last at least20 minutes, followed by a 5-minute discussion period. All members of agroup project must present together, but are graded separately. Thepresentation should be technical and include view graphs or visual aidsrelated to the chosen subject area. Transparencies, films, LCD projector,and/or VCR recordings (VHS) can be used, but may not replace spokenreporting. A guideline with tips of presentation requirements will bedistributed at a later date.Mat E 195 Course Activity OutlineFinal Examination on Tuesday, December 19th from 0715 to 0930 hoursWeek StartingDate Reading: Chapter #Homework AssignmentsLaboratory1 Aug. 28 Ch.1 IntroductionProb. 1.1, 1.3, and 1.5 Lab Tour/Safety 2 Sept. 4 Labor Day --No Class on Sept. 4 Prob. 5.2, 5.5, 5.10Types of Material Failure3Sept. 11Ch.5 Stress-Strain Relationships Prob. 5.20, 5.22, 5.23 Tension Tests 4 Sept. 18Ch.5 Stress-Strain RelationshipsCh. 4 Mechanical Testing (Tension Test)Prob. 5.26, 5.30, 5.32 Mechanical Tests(Impact, Izod,Hardness, etc.) 5 Sept. 25 Ch. 4 Mechanical Testing (Tension Test)Prob. 4.4, 4.5, 4.7Problem Solving6 Oct. 2 Ch. 4 Mechanical Testing (Other Tests)Prob. 4.16, 4.18, 4.28 DMA 7 Oct. 9 Ch. 4 Mechanical Testing (Other Tests)Prob. 4.31, 4. 34, 4.37, 4.38 Exam 1 – Oct.11 8 Oct. 16 Ch.6 Complex and Principal States of Stress and StrainProb. 6.1, 6.7, 6.10Mohr’s Circles/ Term project9 Oct. 23 Ch.6 Complex and Principal States of Stress and Strain Prob. 6.14, 6.16, 6.28 SEM Fractography 10 Oct. 30 Ch. 8 Fracture of Cracked MembersProb. 8.3, 8.4, 8.7 2024-TT6 Aluminum 11 Nov. 6 Ch. 9 Fatigue of Materials Prob. 9.6, 9.7, 9.14 Fatigue Test 12 Nov. 13 Ch. 9 Fatigue of Materials Prob. 9.16, 9.20 Exam 2 –Nov. 15 13 Nov. 20 Ch. 11 Fatigue Crack Growth Prob. 11.4, 11.8, 11.13Polymers/Composites 14 Nov. 27 Ch. 12 Plastic DeformationBehavior and Models for Materials Prob. 12.1, 12.13 Term Paper Due (Nov. 29) 15 Dec. 4 Ch. 15 Time-Dependent Behavior: Creep and Damping Prob. 15.2, 15.6, 15.16 Problem Solving 16Dec. 11Review of the CourseLast Day of InstructionMatE 195 Course Learning ObjectivesUpon the completion of this course, the student will be able to:1. Understand the basic test methods to characterize the mechanical behavior of engineering materials: tension, compression, hardness, impact, fatigue, and creep.2. Apply the basic theory of elasticity and plasticity and the importance of brittle-ductile transformation and elastic and plastic behavior of materials to industrial applications.3. Learn the concept of fracture mechanics and its application to product design, manufacturing method, and service reliability.4. Perform the mathematical calculation of a multi-axial or complex stress state and relate it to the uni-axial stress state and the yielding condition.5. Describe and predict the mechanical behavior of crystalline solids using the concepts of dislocation theory and a micro-mechanical approach.6. Improve fracture toughness and deflect a crack’s propagation through the understanding of the microstructural alignment and the associated mechanical anisotropy.。

材料科学基础-第五章ppt

材料科学基础-第五章ppt

*** 晶体在滑移过程中的位错增殖, 位错密度增大, 相互作用,导 致强化, 即加工硬化.
1 0
0 Gb 2
2. 孪生的机制
孪晶区域各晶面的相对位移距离是孪生方向原子 间距的分数值,这表明孪生时每层晶面的位移应借一 个不全位错的移动而造成。
位错增殖的极轴机制:fcc 中 OA、OB和OC三 条位错线相交于结点O,OA、OB不在滑移面上,属 不动位错——极轴位错,OC为可动的不全位错,且 只能绕极轴转动,每当它在(111)面上扫过一圈, 就产生一个单原子层的孪晶,同时又沿着螺旋面上升 一层,这样不断转动,上述过程逐层地重复进行,就 在晶体中形成一个孪晶区域。
1. 对室温机械性能的影响 晶粒愈细、晶界愈多→强化效应↑-细晶强化
s b HV Strengthening by Grain Size Re-duction
较好塑性,因细晶的晶内和晶界附近应变差较小,变形较均匀, 有可能断裂前承受大量的变形
细晶具有良好的综合机械性能。
平衡时
n
k 0 L Gb
根据每个位错的受力情况,可导出每个位错的位置,以
综上所述,滑移变形的基本特点:
Ⅰ) 滑移变形系不均匀的切变,它只集中在某些晶面上;
Ⅱ) 滑移结果两部分晶体产生相对移动,移动的距离△=nb,
仍保持晶体学的一致性; Ⅲ) 沿着一定的晶面和晶向进行,滑移系较多的材料为(fcc)
一般具有较好塑性; Ⅳ) 在切应力作用下,且> c; Ⅴ)滑移同时,滑移面和滑移方向将发生转动; Ⅵ)实质位错沿滑移面的运动过程
4. 晶体在滑移时的转动 (rotation)
晶体滑移
滑移面上发生相对位移 晶体转动 空间取向发生变化
在拉伸时使滑移面和滑移方 向逐渐转到与应力轴平行

弹性力学基础-中英

弹性力学基础-中英

return to initial
3. PLASTIC DEFORMATION (METALS) and PLASTICITY
(塑性变形与塑性)
Plastic means permanent!
Plastic deformation---it is irreversible or permanent.
curve.
Engineering tensile stress,
smaller toughness (ceramics)
larg er toughness (metals, PMCs)
smaller toughnessunreinforced polymers
Engineering tensile strain,
Applied Mechanics – Rigid Body Mechanics Statics Dynamics – Kinematics, – Kinetics – Deformable Body Mechanics Elasticity Plasticity Viscoelasticity – Fluid Mechanics Liquids Gases
The tension test is the standard test for determine E, the elastic or Young’s modulus. Test that load a cylindrical specimen in torsion are used to measure the shear modulus G. Knowing E and G, Poisson’s ratio may be obtained from the relationship we derived in the previous section.

材料成型及控制专业英语考点

材料成型及控制专业英语考点

一、词组(英译汉、汉译英)mechanical property 机械(力学)性能metallic bond 金属键critical part and element 关键零部件electrostatic attraction 静电吸引plastic deformation 塑性变形self-strengthening 自强化deoxidation脱氧stress concentrator 应力集中点corrosion resistance 耐腐蚀plain carbon steel 普通碳钢hot-rolled steel 热轧钢alloying element 合金元素harmful impurity 有害杂质low alloy steel 低合金钢stress relief 应力松驰austenitic 奥氏体ferritic 铁素体martensite马氏体dislocation 位错viscosity 粘性shrinkage 收缩slip system 滑移系thermosetting 热固性的thermoplastic 热塑性的heating rate 加热速度constitutional diagram 状态图inhomogeneous 不均匀的inherent 内在的,本质的free energy 自由能center of crystallization 结晶核心sorbite索氏体troostite屈氏体isothermal decomposition 等温分解annealing 退火work hardening 加工硬化thermomechanical treatment 形变热处理normalizing 正火critical strain 临界应变stress-strain curve 应力应变曲线hardening 淬火holding temperature 保温温度activation energy 激活能tempering 回火holding time 保温时间yield or flow stress 屈服或流动应力nucleation rate 成核率driving force 驱动力two phase region 两相区linear dependence 线性关系defect 缺陷superplastic formability 超塑性成形forging 锻件,锻造drop stamping 锤上模锻difficult-to-machine alloy 难切削合金vapor cushioning 蒸汽垫final forging 终锻closed impression die 闭式压锻模rotary bending 旋转模弯曲fine blanking 精密冲裁cutting punch 冲裁凸模shearing zone 剪切区burr 毛刺confined chamber 闭式模锻wire drawing 拔丝stretch forming 拉伸成形hydrostatic extrusion 静液挤压tensile strength 拉应力stretch draw forming 拉深成形cold rolled sheet 冷轧板strain hardening 应变强化teach and playback 示教和重现explosive forming 爆炸成形strain gradient 应变梯度ejection 脱模,出坯,挤出magnetic forming 磁力成形injection mold 注射模compression mold 压模,压铸模plastics-processing 塑性加工multicavity mold 多型腔注射模milling 研磨,铣削grinding 磨削,研磨three-plate mold 三板式注射模polishing 磨光,抛光二、句子翻译1.Among numerous properties possessed by materials, their mechanical properties, in the majority of cases, are the most essential and there fore, they will be given much consideration in the book.在一些主要的应用场合,力学性能是材料的各种性能中最重要的性能,因此本书中将重点讨论。

超声振动辅助塑性成形及形性预测研究进展

超声振动辅助塑性成形及形性预测研究进展

第15卷第7期王海洋,等:TA1纯钛微型杯件软模微拉深成形工艺研究47NITHEESHWAR R K, et al. Variation of Force Due toCo-Efficient of Friction & Blank Diameter in Deep Drawing[J]. Materials Today: Proceedings, 2022, 68: 2189-2194.[28] FU M W, CHAN W L. A Review on the State-of-the-ArtMicroforming Technologies[J]. The International Jour-nal of Advanced Manufacturing Technology, 2013, 67(9): 2411-2437.[29] DEHGHANI F, SALIMI M. Analytical and Experimen-tal Analysis of the Formability of Copper-Stainless-Steel304L Clad Metal Sheets in Deep Drawing[J]. The In-ternational Journal of Advanced Manufacturing Tech-nology, 2016, 82(1): 163-177.[30] WANG Chuan-jie, XUE Shao-xi, CHEN Gang, et al.Investigation on Formability of Bipolar Plates during Flexible Micro Forming of Cu/Ni Clad Foils[J]. Journalof Manufacturing Processes, 2020, 53: 293-303.[31] MENG B, FU M W. Size Effect on Deformation Be-havior and Ductile Fracture in Microforming of Pure Copper Sheets Considering Free Surface Roughening[J].Materials & Design, 2015, 83: 400-412.[32] PENG Lin-fa, XU Zhu-tian, GAO Zhao-yang, et al. AConstitutive Model for Metal Plastic Deformation at Micro/Meso Scale with Consideration of Grain Orienta-tion and Its Evolution[J]. International Journal of Me-chanical Sciences, 2018, 138/139: 74-85.[33] ADZIMA F, BALAN T, MANACH P Y, et al. CrystalPlasticity and Phenomenological Approaches for the Simulation of Deformation Behavior in Thin Copper Alloy Sheets[J]. International Journal of Plasticity, 2017, 94: 171-191.责任编辑:蒋红晨精 密 成 形 工 程第15卷 第7期48 JOURNAL OF NETSHAPE FORMING ENGINEERING2023年7月收稿日期:2023–05–18 Received :2023-05-18基金项目:国家重点研发计划(2022YFB4602502);国家自然科学基金(42241149,52005199);广东省自然科学基金面上资助项目(2021A1515011991);湖北省揭榜项目(2021BEC010);湖北省重点研发计划(2022BAA057);武汉市基础研究知识创新项目(2022010801010203);深圳市基础研究项目(JCYJ20200109150425085);深圳市中央引导地方科技发展专项资金(2021Szvup158,2021Szvup159);深圳市科技项目(JSGG20201103100001004) Fund :The National Key Research and Development Program of China(2022YFB4602502); National Natural Science Foundation of China(42241149, 52005199); the Guangdong Basic and Applied Basic Research Foundation(2021A1515011991); the Science and Technology Reveal System Project of Hubei Province(2021BEC010); the Key Research and Development Program Fund of Hubei Province(2022BAA057); the Knowledge Innovation Program of Wuhan-Basic Research(2022010801010203); the Shenzhen Fundamental Research Program of China(JCYJ20200109150425085); the Free Exploration Basic Research Project of Local Science and Technology Development Funds Guided by the Central Government(2021Szvup158, 2021Szvup159); the Shenzhen Science and Technology Program of China(JSGG20201103100001004)作者简介:韩光超(1974—),男,博士,教授,主要研究方向为超声辅助微塑性成形工艺。

Understanding the Mechanics of Plastic Deformation

Understanding the Mechanics of Plastic Deformation

Understanding the Mechanics of PlasticDeformation塑性变形机理的理解我们看到大多数物质在一定程度上都是具有塑性的,这也就是我们所知道的“可塑性”。

而这种塑性变形是由原子和分子的微小运动所引起的,非常重要的是他们的运动非常依靠力的作用。

如何理解这种力的作用呢?本文将为您介绍一些基本的物理和化学原理,从而帮助我们更好地理解塑性变形机理。

1. 结构级别的变化从一个宏观的角度来看,我们可以想象想象一个金属杆,当我们施加力的时候,它会变形,这种变形和它的形状、结构等都有着密切的联系。

那么这些结构的变化是如何引起的呢?一般来说,金属有着复杂的结构,我们选择其中一种,如铜的原子结构。

在铜中,每个原子都是由一个原子核和一些电子组成的,这些电子通过与周围的原子相互作用,形成了一共密集的结构。

当受到外力的作用时,这些原子就会受到推拉的作用,这就会产生一个叫做位错的缺口。

随着力的增加,位错的数量也随之增加,原子的排列也会产生变化,从而导致杆的变形。

2. 细节级别的变化除了结构级别的变化之外,我们还需要注意细节级别的变化。

这些细节包括一些微小的原子和电子的变化,通过认真分析这种变化可以帮助我们更好地理解整个过程。

最重要的细节之一是晶格中的点缺陷。

点缺陷是指一个晶格空间中的一处缺失,它会影响到周围的原子,从而引起更多的位错。

当我们施加外力时,这些位错就会继续增加,而杆的变形也会不断加剧。

此外,电子的运动也非常重要,它们会通过电场、温度等作用,改变金属的结构。

例如,当一个电钻在工作时,高温和外力就会改变钻头的形状,以适应其工作的需求。

3. 影响杆变形的各种因素我们深入探究塑性变形机理的时候,还需要考虑很多因素。

其中最重要的一个是金属的粘度。

如果一个金属非常粘稠,那么当受到外力的作用时,它就会比较困难地发生位错,从而不会产生明显的变形。

相反,如果这个金属非常松散,它就很容易发生位错,从而产生塑性变形。

材料的塑性变形-回复与再结晶

材料的塑性变形-回复与再结晶
2.3 塑性变形的力学性能指标
22:11
19
• 复习 : • 一 、塑变对金属组织的影响
塑变后组织变化: 纤维组织、位错胞、织构。
22:11
20
2.2.1 塑性变形对材料性能的影响
☺(一)加工硬化 ☺(二)残余内应力 ☺(三)储存能
(四) 对物理、化学性能的影响 导电率、导磁率下降,比重、热导率下降; 结构缺陷增多,扩散加快; 化学活性提高,腐蚀加快。
三、多晶陶瓷的塑性变形特点
四、非晶体陶瓷的塑性变形
2.1.3 高分子材料的塑性变形机理
一、线性非晶态高分子材料的塑性变形
Plastic deformation of Linear amorphous polymers 二、结晶态高聚物的塑性变形
Plastic deformation of Crystalline polymers
1)第二类内应力:
✓晶粒变形不均匀,
晶粒内或晶粒之间, (软取向和硬取向)。
✓ 引起
应力腐蚀开裂:
22:11
30
2.2.1塑性变形对材料性能的影响
2)第三类内应力:
✓ 晶格畸变应力
(位错、空位等引起), 占残余内应力的80%-90%。
✓ ??三类内应力---
对加工硬化的作用大小?
✓ 第三类内应力是产生
(1)形变量越大; (2)变形温度越低,形变速度越大; (3)应力状态越复杂,
→储存能越大。
22:11
33
2.2.1塑性变形对材料性能的影响
问题:如何----? ➢降低残余拉应力? ➢消除加工硬化? ➢降低储存能?
→减少点阵缺陷?
激活高能量的金属
☺提供能量: ☺加热,热能!

高分子材料常用专业术语中英对照表解析

高分子材料常用专业术语中英对照表解析

加工processing反响性加工reactiveprocessing等离子体加工plasmaprocessing加工性processability熔体流动指数melt[flow]index门尼粘度Mooneyindex塑化plasticizing增塑作用plasticization内增塑作用internalplasticization外增塑作用externalplasticization增塑溶胶plastisol增强reinforcing增容作用compatibilization相容性compatibility相溶性intermiscibility生物相容性biocompatibility血液相容性bloodcompatibility组织相容性tissuecompatibility混炼milling,mixing素炼mastication塑炼plastication过炼deadmilled橡胶配合rubbercompounding共混blend捏和kneading冷轧coldrolling压延性calenderability压延calendaring埋置embedding压片performing模塑molding模压成型compressionmolding压缩成型compressionforming冲压模塑impactmoulding,shockmoulding叠模压塑stackmoulding复合成型compositemolding注射成型injectionmolding注塑压缩成型injectioncompressionmolding 射流注塑jetmolding无流道冷料注塑runnerlessinjectionmolding 共注塑coinjectionmolding气辅注塑gasaidedinjectionmolding注塑焊接injectionwelding传递成型transfermolding树脂传递成型resintransfermolding铸塑cast熔铸fusioncasting铸塑成型castmolding单体浇铸monomercasting挤出extrusion共挤出coextrusion多层挤塑multi-layerextrusion共挤吹塑coextrusionblowmolding同轴挤塑coaxialextrusion吹胀挤塑blownextrusion挤出吹塑extrusionblowmolding挤拉吹塑成型extrusiondrawblowmolding反响性挤塑reactiveextrusion固相挤出solid-phaseextrusion发泡expandingfoam后发泡postexpansion物理发泡physicalfoam化学发泡chemicalfoam吹塑blowmolding多层吹塑multi-layerblowmolding拉伸吹塑成型stretchblowmolding滚塑rotationalmoulding反响注射成型reactioninjectionmolding,RIM 真空成型vacuumforming无压成型zeroressuremolding真空烧结vacuumsintering真空袋成型vacuumbagmolding热成型thermalforming拉伸热成型stretchthermoforming袋模塑bagmolding糊塑pastemolding镶铸imbedding冲压成型impactmolding触压成型impressionmolding层压材料laminate泡沫塑料成型foammolding包模成型drapemolding充气吹胀inflation橡胶胶乳rubberlatex胶乳latex高分子胶体polymercolloid生橡胶rawrubber ,cruderubber硬质胶ebonite再生胶reclaimedrubber充油橡胶oil-extendedrubber母胶masterbatch交联crosslinking固化cure光固化photo-cure硫化vulcanization后硫化postcure ,postvulcanization自硫[化]bincure自交联selfcrosslinking,selfcuring过硫overcure返硫reversion欠硫undercure动态硫化dynamicvulcanization不均匀硫化heterogeneousvulcanization开始[硫化]效应set-upeffect自动硫化self-curing,self-vulcanizing焦烧scorching无压硫化non-pressurecure模压硫化mouldingcuring常温硫化auto-vulcanization热硫化heatcuring蒸汽硫化steamcuring微波硫化microwavecuring辐射硫化radiationvulcanization辐射交联radiationcrosslinking连续硫化continuousvulcanization无模硫化openvulcanization成纤fiberforming可纺性spinnability纺丝spinning干纺dryspinning湿纺wetspinning干湿法纺丝drywetspinning干喷湿法纺丝dryjetwetspinning溶液纺丝solutionspinning乳液纺丝emulsionspinning乳液闪蒸纺丝法emulsionflashspinningprocess 喷射纺丝jetspinning喷纺成形sprayspinning液晶纺丝liquidcrystalspinning熔纺meltspinning共混纺丝blendedspinning凝胶纺[丝]gelspinning反响纺丝reactionspinning静电纺丝electrostaticspinning高压纺丝high-pressurespinning复合纺丝conjugatespinning无纺布non-wovenfabrics单丝monofilament,monofil复丝multifilament全取向丝fullyorientedyarn中空纤维hollowfiber皮芯纤维sheathcorefiber共纺cospinning冷拉伸colddrawing,coldstretching单轴拉伸uniaxialdrawing,uniaxialelongation 双轴拉伸biaxialdrawing多轴拉伸multiaxialdrawing皮心效应skinandcoreeffect皮层效应skineffect防缩non-shrink熟成ripening垂挂sag定型sizing起球现象pillingeffect捻度twist旦denier特tex纱yarn股strand粘合adhesion反响粘合reactionbonding压敏粘合pressuresensitiveadhesion底漆primer浸渍impregnation浸渍树脂solventimpregnatedresin基体matrix聚合物外表活性剂polymericsurfactant高分子絮凝剂p olymericflocculant预发颗粒pre-expandedbead高分子膜polymericmembraneH-膜H-filmLB膜LangmuirBlodgettfilm(LBfilm)半透膜semipermeablemembrane反渗透膜Reverseosmosismembrance多孔膜porousmembrane各向异性膜anisotropicmembrane正离子交换膜cationexchangemembrane 负离子交换膜anionicexchangemembrane 吸附树脂polymericadsorbent添加剂additive固化剂curingagent潜固化剂latentcuringagent硫化剂vulcanizingagent给硫剂sulfurdonoragent,sulfurdonor硫化促进剂vulcanizationaccelerator硫化活化剂vulcanizationactivator活化促进剂activatingaccelerator活化剂activator防焦剂scorchretarder抗硫化返原剂anti-reversionagent塑解剂peptizer偶联剂couplingagent硅烷偶联剂silanecouplingagent钛酸酯偶联剂titanatecouplingagent铝酸酯偶联剂aluminatecouplingagent增强剂reinforcingagent增硬剂hardeningagent惰性填料inertfiller增塑剂plasticizer辅增塑剂coplasticizer增粘剂tackifier增容剂compatibilizer增塑增容剂plasticizerextender分散剂dispersantagent结构控制剂constitutioncontroller色料colorant荧光增白剂opticalbleachingagent抗降解剂antidegradant防老剂anti-agingagent防臭氧剂antiozonant抗龟裂剂anticrackingagent抗疲劳剂anti-fatigueagent抗微生物剂biocide防蚀剂anti-corrosionagent光致抗蚀剂photoresist防霉剂antiseptic防腐剂rotresistor防潮剂moistureproofagent除臭剂re-odorant抗氧剂antioxidant热稳定剂heatstabilizer抗静电添加剂antistaticadditive抗静电剂antistaticagent紫外线稳定剂ultravioletstabilizer紫外光吸收剂ultravioletabsorber光稳定剂lightstabilizer,photostabilizer光屏蔽剂lightscreener发泡剂foamingagent物理发泡剂physicalfoamingagent化学发泡剂chemicalfoamingagent脱模剂releasingagent内脱模剂internalreleasingagent外脱模剂externalreleasingagent阻燃剂flameretardant防火剂fireretardant烧蚀剂ablator润滑剂lubricant湿润剂wettingagent隔离剂separant增韧剂tougheningagent抗冲改性剂impactmodifier消泡剂antifoamingagent减阻剂dragreducer破乳剂demulsifier粘度改进剂viscositymodifier增稠剂thickeningagent,thickener阻黏剂abhesive洗脱剂eluant附聚剂agglomeratingagent后处理剂after-treatingagent催干剂drier防结皮剂anti-skinningagent纺织品整理剂textilefinishingagentaggregation 聚集体aggregate凝聚、聚集coalescence链缠结chainentanglement凝聚缠结cohesionalentanglement物理缠结physicalentanglement凝聚态condensedstate凝聚过程condensingprocess临界聚集浓度criticalaggregationconcentration 线团-球粒转换coil-globuletransition受限链confinedchain受限态confinedstate物理交联physicalcrosslinking交联度degreeofcrosslinking网络network溶胶-凝胶转化sol-geltransformation摩尔质量平均molarmassaverage数均分子量number-averagemolecularweight,number-averagemolarmass重均分子量weight-averagemolecularweight,weight-averagemolarmassZ均分子量Z(Zaverage)-averagemolecularweight,Z-molarmass黏均分子量viscosity-averagemolecularweight,viscosity-averagemolarmass聚合度degreeofpolymerization分子量分布molecularweightdistribution,MWD多分散性指数polydispersityindex,PID结晶聚合物crystallinepolymer半结晶聚合物semi-crystallinepolymer聚合物形态学morphologyofpolymer成核作用nucleation分子成核作用molecularnucleation阿夫拉米方程Avramiequation织构texture液晶态liquidcrystalstate相别离phaseseparation微相microphase界面相boundaryphase相容性compatibility混容性miscibility增容作用compatiibilization最低临界共溶(溶解)温度lowercriticalsolutiontemperature,LCST最高临界共溶(溶解)温度uppercriticalsolutiontemperature,UCST橡胶态rubberstate玻璃态glassystate高弹态elastomericstate黏流态viscousflowstate伸长elongation高弹形变highelasticdeformation回缩性,弹性复原nerviness拉伸比drawratio,extensionratio泊松比Poisson'sratio杨氏模量Young'smodulus本体模量bulkmodulus剪切模量shearmodulus法向应力normalstress剪切应力shearstress剪切应变shearstrain屈服yielding颈缩现象necking屈服应力yieldstress屈服应变yieldstrain脆性断裂brittlefracture脆性开裂brittlecracking脆-韧转变brittleductiletransition脆化温度brittleness(brittle)temperature冲击强度impactstrength拉伸强度tensilestrength抗撕强度tearingstrength弯曲强度flexuralstrength,bendingstrength 弯曲模量bendingmodulus剪切强度shearstrength剥离强度peelingstrength疲劳强度fatiguestrength,fatigueresistance 挠曲deflection压缩强度compressivestrength洛氏硬度Rockwellhardness布氏硬度Brinellhardness抗刮性scrathresistance断裂力学fracturemechanics力学破坏mechanicalfailure应力强度因子stressintensityfactor断裂伸长elongationatbreak屈服强度yieldstrength断裂韧性fracturetoughness弹性形变elasticdeformation弹性滞后elastichysteresis弹性elasticity弹性模量modulusofelasticity弹性回复elasticrecovery不可回复形变irrecoverabledeformation裂缝crack银纹craze形变;变形deformation永久变形deformationset剩余变形residualdeformation剩余伸长residualstretch回弹,回弹性resilience延迟形变retardeddeformation延迟弹性retardedelasticity可逆形变reversibledeformation应力开裂stresscracking应力-应变曲线stressstraincurve拉伸应变stretchingstrain拉伸应力弛豫tensilestressrelaxation热历史thermalhistory热收缩thermoshrinking扭辫分析torsionalbraidanalysis应力致白stresswhitening应变能strainenergy应变张量straintensor剩余应力residualstress应变硬化strainhardening应变软化strainsoftening电流变液electrorheologicalfluid假塑性pseudoplastic,TBA 拉胀性auxiticity牛顿流体Newtonianfluid非牛顿流体non-Newtonianfluid宾汉姆流体Binghamfluid冷流coldflow牛顿剪切黏度Newtonianshearviscosity剪切黏度shearviscosity表观剪切黏度apparentshearviscosity剪切变稀shearthinning触变性thixotropy塑性形变plasticdeformation塑性流动plasticflow体积弛豫volumerelaxation拉伸黏度extensionalviscosity黏弹性viscoelasticity线性黏弹性linearviscoelasticity非线性黏弹性non-linearviscoelasticity蠕变creep弛豫[作用]relaxation弛豫模量relaxationmodulus蠕变柔量creepcompliance热畸变温度heatdistortiontemperature弛豫谱relaxationspectrum推迟[时间]谱retardation[time]spectrum弛豫时间relaxationtime推迟时间retardationtime动态力学行为dynamicmechanicalbehavior 动态黏弹性dynamicviscoelasticity热-机械曲线thermo-mechanicalcurve动态转变dynamictransition储能模量storagemodulus损耗模量lossmodulus复数模量complexmodulus复数柔量complexcompliance动态黏度dynamicviscosity复数黏度complexviscosity复数介电常数complexdielectricpermittivity介电损耗因子dielectricdissipationfactor介电损耗常数dielectriclossconstant介电弛豫时间dielectricrelaxationtime玻璃化转变glasstransition玻璃化转变温度glass-transitiontemperature次级弛豫secondaryrelaxation次级转变secondarytransition次级弛豫温度secondaryrelaxationtemperature开尔文模型Kelvinmodel麦克斯韦模型Maxwellmodel时-温叠加原理time-temperaturesuperpositionprinciple玻耳兹曼叠加原理Boltzmannsuperpositionprinciple平移因子shiftfactorWLF公式WLF[Williams-Lendel-Ferry]equation 软化温度softeningtemperature平衡熔点equilibriummeltingpoint物理老化physicalageing光老化photoageing热老化thermalageing热氧老化thermo-oxidativeageing人工老化artificialageing加速老化acceleratedageing计算机模拟computersimulation分子动力学模拟moleculardynamicssimulation蒙特卡洛模拟MonteCarlosimulation。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Plastic Deformation Behavior and Processing Mapsof 35CrMo SteelZheng-bing Xiao,Yuan-chun Huang,and Yu Liu(Submitted October 21,2015;in revised form December 27,2015;published online February 16,2016)Hot deformation behavior of 35CrMo steel was investigated by compression tests in the temperature range of 850to 1150°C and strain rate range of 0.01to 20s 21on a Gleeble-3810thermal simulator.According to processing maps constructed based on the experimental data and using the principle of dynamic materials modeling (DMM),when the strain is 0.8,three safe regions with comparatively high efficiency of power dissipation were identified:(850to 920)°C/(0.01to 0.02)s 21,(850to 900)°C/(10to 20)s 21,and (1050to 1150)°C/(0.01to 1)s 21.And the domain of (920to 1150)°C/(2.7to 20)s 21is within the instability range,whose efficiency of power dissipation is around 0.05.The deformed optical microstructure indicated that the combination of low deformation temperature (850°C)and a relatively high strain rate (20s 21)resulted in the smallest dynamic recrystallized grains,but coarser grains were obtained when a much higher strain rate was employed (50s 21).A lower strain rate or a higher temperature will accelerate the growth of grains,and both high temperature and high strain rate can cause microcracks in the deformed steel.Integration of the processing map into the optical microstructure identified the region of (850to 900)°C/(10to 20)s 21as the ideal condition for the hot deformation of 35CrMo steel.Keywords35CrMo steel,hot workability,microstructure,pro-cessing map1.IntroductionMaterial flow behavior is complex and is an important issue for hot forming processes (Ref 1–3).The microstructure evolution of a part during its deformation is significantly affected by the processing parameters such as temperature,strain rate,and the resulting strain.The mechanical properties of the finally formed part are heavily dependent on the microstructure.Understanding the flow behavior and kinetics of metallurgical transformations is of great importance for mate-rial processing designers.The concept of processing map was first put forward by Prasad et al.(Ref 4)based on the dynamic materials modeling (DMM),which aims to correlate the constitutive behavior with flow instability,hot workability and microstructure evolution.It has been used extensively to separate the safe domains with optimized deformation temperature and strain rate from the unsafe zones,for the hot working of metals such as steels,aluminum alloys,magnesium alloys,and super alloys (Ref 5–11).Wen et al.and Zhang et al.have optimized the hot working parameters for two kinds of Ni-based super alloys by using theDMM,which agreed well with experimental results (Ref 8,12).Through the analysis of the data obtained from hot compression tests using DMM,Aneta et al.have plotted the processing maps and hardness maps of the Ti-3Al-8V-6Cr-4Zr-4Mo alloy and ascertained the influence of recrystallization and dynamic recovery on the strength of the alloy (Ref 9).Using the processing maps,Zhou et al.have characterized the workability of a SiCp/AZ91enforced magnesium matrix composite and identified the optimum working temperature range as (270to 370)°C with a strain rate of (0.001to 0.01)s À1,where the dissipation efficiency was found to be as high as 38%.The characteristics of the predicted microstructures agreed well with the optical microscopy observations (Ref 6).Moreover,the processing maps were revealed for AZ31magnesium alloy (Ref 13),Al-6.2Zn-0.70Mg-0.3Mn-0.17Zr alloy (Ref 14),plain eutectoid steels (Ref 15),Nickel-based corrosion resistant alloy (Ref 16),etc.These works serve to highlight the significance of processing maps in predicting the optimal parameters to be used as guidelines for plastic forming.Due to its excellent mechanical properties,especially the optimized combination of strength,wear resistance,and toughness,35CrMo steel has been widely used in bearings,gears,transmission shafts,etc.In the past,considerable attention has been focused on the microstructure evolution and flow behavior of 42CrMo steel (Ref 17–25).However,for 35CrMo steel,more efforts were concentrated on the surface treatment procedures such as nitrocarburizing and post-oxida-tion or the influence of the inclusion size on the fatigue behavior (Ref 26–28).Despite the fact that that there is only a minor difference in composition between 42CrMo and 35CrMo (C levels,Mn and Cr contents),their mechanical properties are significantly different.For 42CrMo,the higher C content contributes to more carbide,and finer grains are obtained after quenching.Both r b (‡1080MPa for 42CrMo and ‡985MPa for 35CrMo)and r s (‡930MPa for 42CrMo and ‡835MPa for 35CrMo)values of 42CrMo are much higher than those of 35CrMo (Ref 29).Therefore,the conclu-Zheng-bing Xiao ,School of Mechanical and Electrical Engineering,Central South University,Changsha 410083,China and Collaborative Innovation Center of Advanced Nonferrous Structural Materials and Manufacturing,Changsha 410012,China;Yuan-chun Huang ,School of Mechanical and Electrical Engineering,Central South University,Changsha 410083,China and Light Alloy Research Institute,Central South University,Changsha 410012,China;and Yu Liu ,Light Alloy Research Institute,Central South University,Changsha 410012,China.Contact e-mails:xiaozb@,science@,and 249120777@.JMEPEG (2016)25:1219–1227ÓASM International DOI:10.1007/s11665-016-1933-71059-9495/$19.00sions obtained for42CrMo are not applicable for35CrMo.To the best of our knowledge,there is little literature available on the workability characteristics and processing maps of35CrMo steel and these aspects need to be investigated further.In the present study,flow stress,hot deformation behaviors, and microstructures of35CrMo steel were studied using isothermal compression tests at different temperatures and under different strain rates.Simultaneously,the processing maps under different strains were plotted based on the DMM, and the optical microstructures in the feasible and dangerous zones were obtained to verify the maps and determine the appropriate working parameters for35CrMo steel.2.Materials and Experimental DetailsThe chemical compositions(wt.%)of the35CrMo studied are as follows:0.344C-0.21Si-0.56Mn-0.018P-0.005S-0.95Cr-0.19Mo-0.0032Al-(bal.)Fe.Cylindrical specimens with a diam-eter of10mm and a height of12mm were machined from the cast ingot.Frictions between the specimens and the upsetting dies were minimized by using a graphite foil with the thickness of0.1and15mm in diameter between them.As shown in Fig.1,the specimens were heated to1200°C at a heating rate of10°C/s and kept at this temperature for 6min,then cooled to the deformation temperature at a rate of 10°C/s and held for2min to eliminate the thermal gradient before loading.Hot compression tests were carried out on a Gleeble-3810thermo-simulation machine atfive different strain rates(0.01,0.1,1,10and20sÀ1)under four different temperatures(850,950,1050,and1150°C),with60% reduction in height and a true strain of0.85.After the hot compression,specimens were quenched in water immediately to preserve the hot deformation microstructure.Then,the deformed samples were sliced along the axial section,polished, and etched in the solution consisting of picric acid(2.5g)+H2O(50ml)+HCl(1ml)+detergent(2g)at60 to80°C for4to10min before microstructural analysis. During the compression tests,the true stress,strain,and temperature were automatically controlled and recorded using a computer.3.Results and Discussion3.1True Stress-Strain CurvesTypical true stress-strain curves obtained from the hot deformation tests are shown in Fig.2.Obviously,the true stress is susceptible to the deformation temperature,the strain rate, and the true strain.For afixed true strain,theflow stress decreases markedly with increase in temperature or reduction in strain rate.For the investigated steel,it is found that,in the initial stage, all theflow curves show a sharp increasing trend;after reaching the peak stresses,the curves begin to separate into three types. Thefirst type drops to a fairly constant value(0.01sÀ1),the second remains almost at the peak stress(0.1and1sÀ1),and the third falls gradually without reaching a plateau(10and 20sÀ1).It is well known that the characteristics of the true stress-strain curves represent the competition between work hardening and dynamic recovery/recrystallization(Ref30,31).In the beginning,when the true strain is small,the instant generationFig.2Typical true stress-strain curves of the studied35CrMo steel at0.01sÀ1(a)and850°C(b)and multiplication of dislocations result in the work hardening effect playing the dominant role,but the dislocation climbing, cross-slip,and sliding caused by the dynamic recovery process are too weak to relieve the work hardening effect,and as a result,theflow stress increases rapidly.When the true strain reaches the critical strain e c,for thefirst type of curve,the combined effect of the softening of the dynamic recovery process and dynamic recrystallization becomes strong enough to counteract the effect of work hardening,leading to a steady-state dynamic equilibrium(Ref32–34).For the second type,it is assumed that only the dynamic recovery process is operative, even though it is not possible to judge solely from the true strain-stress curve,whether or not dynamic recrystallization occurred(Ref35).For the third type,it is believedthat Fig.3Relationships between theflow stress and strain rate under strains of(a)0.1;(b)0.2;(c)0.3;(d)0.4;(e)0.5;(f)0.6;(g)0.7;(h)0.8 (symbols for the experimental results;solid line for thefitting curves)extensive dynamic recrystallization contributes to the continual reduction offlow stress,which was proven by microscopic examination,as described in section3.4.3.2Theory of Processing MapsAccording to the DMM initially proposed by Prasad et al. (Ref4),a power dissipater can be used to characterize the hot deformation process in materials.Generally,the power dissi-pation P representing the total energy absorbed by the object during the hot deformation can be divided into two parts,the G content and the J co-content,where G stands for the power dissipated in the plastic deformation and J the power absorbed during the microstructure transformation(Ref36).The total power consumed by the deformed object can be defined asP¼r_e¼GþJ¼Z_e0r d_eþZ r_e d r:ðEq1Þ_e in the equation is the strain rate in sÀ1,and r is theflow stress in MPa.For the object compressed at a constant temperature and strain,r can be calculated asr¼K_e m;ðEq2Þwhere K is a material constant;m is the strain rate sensitivity coefficient(at constant T and e)and can be represented as fol-lows:m¼dJ¼dðln rÞe;T:ðEq3ÞThe value of the J can be calculated by substituting the value of m in the equation shown below:J¼Z r_e d r¼mmþ1r_e:ðEq4ÞThe efficiency of power dissipation,g,for a non-ideal linear dissipation process is determined as follows:g¼JJ max¼2mmþ1:ðEq5ÞUsually,a higher value of g indicates a better processability.The following equation,proposed by Prasad et al.(Ref4, 37),can be used in hot deformation to determine the instability regions on the power dissipation maps:nð_eÞ¼@ln mmþ1@ln_eþm0:ðEq6ÞA cubic spline function is adopted tofit the ln r and ln_e curves,so that the value of m for a certain strain and temperature can be expressed as m¼AþB ln_eþC ln_e2; where A,B,C,andD are constants.Thus,Eq6can be rewritten asTable1Coefficients for strain rate sensitivity m vs.ln_e,T=850to1150°C,and e=0.01to20s21Strain T(°C)m/ln_e relation0.1850m¼0:07239þ0:02368ln_eþ0:00792ln_e2950m¼0:10936þ0:0002563ln_eþ0:0005859ln_e21050m¼0:10902À0:000059ln_e0:000393ln_e21150m¼0:14615À0:02138ln_eÀ0:0081ln_e20.2850m¼0:05869þ0:02144ln_eþ0:00999ln_e2950m¼0:12731À0:02244ln_eÀ0:00741ln_e21050m¼0:10524À0:01142ln_eþ0:003271ln_e21150m¼0:15582À0:03456ln_eÀ0:00543ln_e20.3850m¼0:04768þ0:02464ln_eþ0:01359ln_e2950m¼0:13449À0:02536ln_eÀ0:00627ln_e21050m¼0:13801À0:01476ln_eÀ0:00146ln_e21150m¼0:20559À0:0421ln_eÀ0:01164ln_e20.4850m¼0:0406þ0:023ln_eþ0:01584ln_e2950m¼0:15059À0:02694ln_eÀ0:00876ln_e21050m¼0:15387À0:01884ln_eÀ0:00414ln_e21150m¼0:19933À0:03824ln_eÀ0:00777ln_e20.5850m¼0:03938þ0:01576ln_eþ0:01491ln_e2950m¼0:15449À0:03218ln_eÀ0:01074ln_e21050m¼0:15308À0:02464ln_eÀ0:00588ln_e21150m¼0:19298À0:04642ln_eÀ0:008161ln_e2 0.6850m¼0:0274þ0:01936ln_eþ0:01716ln_e2950m¼0:13587À0:02718ln_eÀ0:00711ln_e21050m¼0:13599À0:0222ln_eÀ0:00345ln_e21150m¼0:16298À0:04478ln_eÀ0:00312ln_e20.7850m¼0:02334þ0:01828ln_eþ0:01665ln_e2950m¼0:12065À0:02788ln_eÀ0:00537ln_e21050m¼0:12392À0:02876ln_eÀ0:00474ln_e21150m¼0:14375À0:0562ln_eÀ0:003451ln_e20.8850m¼0:01517þ0:01517ln_eþ0:0159ln_e2950m¼0:10062À0:03218ln_eÀ0:00426ln_e21050m¼0:10777À0:03892ln_eÀ0:00666ln_e21150m¼0:11555À0:0691ln_eÀ0:00351ln_e2nð_eÞ¼@ln mmþ1@ln eþm¼Bþ2C ln_e1þAþB ln_eþC ln_e2ðÞþAþB ln_eþC ln_e20:ðEq7ÞHere,the instability index n is a dimensionless parameter;avalue of n£0indicatesflow instability,and that the domain isnot‘‘safe’’for hot working.3.3Processing Maps for the35CrMo SteelThe relationships between ln r and ln_e under differentconditions are illustrated in Fig.3;all the curves havebeenFig.4Hot processing maps of tested35CrMo steel at different true strains.(a)0.1;(b)0.2;(c)0.3;(d)0.4;(e)0.5;(f)0.6;(g)0.7;(h)0.8fitted by cubic splines,referring to the equations in Table1.By increasing the strain rate to more than10sÀ1(20sÀ1in this study),the stress values of the compressed samples(except for the one deformed at850°C)did not increase in the same way as for lower strains but was equal to or even lower than that for 10sÀ1,especially at high strains.It is believed that massive nucleation and dynamic recrystallization after the peak stress at the strain rate of20sÀ1was responsible for the phenomenon, and this is demonstrated by the optical microstructure obser-vation results as described in section3.4.The processing map can be constructed by superimposing the instability map for index n onto the power dissipation map with index g,which can be used to optimize the processing parameters.According to the criterion given by Eq7,the material will exhibit instability if nð_eÞbecomes negative.The processing maps under different strains are shown in Fig.4.The contour numbers in thefigures represent the efficiency of power dissipation,g.The gray areas are the domains with negative g, and thosefilled by slash are the instability regions with negative n.It is easy to infer from Fig.4that all the areas with negative values of g are covered by instability regions with negative n values,which is in accordance with the conclusion that a negative value for power dissipation efficiency indicates the formation of microstructure defects(Ref38).As the true strain increases,the instability region is seen to expand,which is in accordance with the results reported in other studies(Ref39–41).It can be seen that the instability region appears in all the figures,irrespective of the value of the true strain.During the processing of steel,such areas should be avoided to prevent the occurrence of instability phenomena such asflow localization, adiabatic shear band,and cracking,which will significantly hamper the mechanical properties of the processed material.Apart from the dangerous areas,the left part in the processing maps is the zone that is‘‘safe’’for processing. Usually,the higher the value of power dissipation efficiency in the stable regions,the more is the fraction of energy consumed for microstructure transformations,such as dynamic recrystal-lization and dynamic recovery,which are,in turn,more favorable for materials processing.Therefore,the regions with high power dissipation efficiencies in the stable region are ideal for the hot deformation.As marked in thefigures,there are three domains with comparatively high g values in the‘‘safe’’zones as the true strain increases to0.8,specifically,(850to900)°C/(10to 20)sÀ1(marked as A),(850to920)°C/(0.01to0.02)sÀ1(-marked as B)and(1050to1150)°C/(0.01to1)sÀ1(marked as C).However,the area with(920to1150)°C/(2.7to20)sÀ1 (marked as D)lies in the instability region.For the samples deformed at low temperatures with high strain rate(marked as A),more deformation energies are stored in the deformed blocks,for the dislocation multiplication,and effective pinning of the dislocation movement for the second phases in the matrix.Meanwhile,the elongated and broken grains and sub-grains will act as nuclei for dynamic recrystal-lization and,when combined with the power dissipated in plastic deformation,would lead to a temperature rise and afford little incubation time for recrystallization.All these factors promote dynamic recrystallization,resulting in a high power dissipation efficiency,which is in accordance with theflow curves in Fig.2(b)and the optical microstructure in Fig.4(b). However,as the deformation temperature becomes higher (marked as D),more energy is consumed for the vigorous dislocation mobility,annihilation and the relaxation of the lattice distortion,and the energy for microstructural evolution accounts for a lower fraction of the total.In this situation,a low strain rate(marked as B and C)would be favorable to the growth of grains and has a higher efficiency of power dissipation.3.4Microstructure ObservationFigure5(a)shows the optical microstructure of the sample before deformation,the deformed microstructures of the steel at different zones marked as A,B,C,and D in Fig.4,and other conditions are illustrated in Fig.5(b)to(h),and the grain sizes estimated from the images are shown in Table2.The figures and the measured grain sizes for all the deformed samples show dynamic recrystallization,and that the grain sizes are more sensitive to the deformation temperature than to the strain rate in the studied range of process parameters.Thefinal grain sizes of the samples deformed at1150°C are much higher than those deformed at850°C,for the strain rate of20 or0.01sÀ1.By raising the temperature,the mobility of the grain boundaries is increased,as also the annihilation of dislocation,which favors the grain growth,and due to the lesser number of nuclei for dynamic recrystallization,the grain size is increased.Microcracks,both transgranular and along the grain boundaries were found in the sample deformed at1150°C/ 20sÀ1,as illustrated in Fig.5(d),which belongs to the instability region in the processing map(Fig.4h).It is well known that dynamic recrystallization starts at the grain boundaries with a high dislocation density and a high stored energy.Raising the strain rate would increase work hardening rate,which is beneficial for the recrystallization,for more energy,and dislocations are introduced(Ref42).At a low temperature(850°C),raising the strain rate,on one hand,will be disadvantageous for dislocation annihilation,which in-creases the dislocation density and the energy stored,so that the number of nuclei for dynamic recrystallization rises sharply.On the other hand,the time for the growth of dynamically recrystallized grains is reduced.As a result,a high strain rate (20sÀ1)leads tofiner grains,as shown in Fig.5(b).However, by continuing to increase the strain rate to50sÀ1,the grains become bigger.Table2Grain sizes of the photos presented in Fig.5Fig.a b c d e f g h Deformation condition Temperature,°C (8508501150115085010501050)Strain rate,sÀ1…200.01200.01501020 Grain size,l m273.57.2911.8629.3953.3313.7728.4523.731150°C/20sÀ1,(e)1150°C/0.01sÀ1,(f)850°C/50sÀ1,(g)1050°C/10sÀ1,and(h)1050°C/20sÀ1Following the investigations by Mejı´a et al.(Ref2), Ebrahimi et al.(Ref43),and Luton et al.(Ref32),unlike the flow curves with several oscillations,recrystallization cycles would begin before the end of a previous one for theflow curve with a single peak(just as the curves obtained in this investigation),and the material showing such a behavior is, therefore,always in a partly recrystallized state after thefirst pared to the strain rate of50sÀ1,the time for the hot deformation is increased for those deformed at the strain rate of 20sÀ1,given that the newly formed nuclei in the subsequent cycles have a greater chance to grow into grains,or even more subsequent cycles of recrystallization,and thus refine the grains.For the strain rate of50sÀ1,there is little time for the newly formed nuclei to grow into recrystallized grains or less cycles of recrystallization,and hence,numerous tiny nuclei are found along the grain boundaries as depicted in Fig.5(f).The efficiency of power dissipation was calculated to be0.1527, which is much smaller than that for850°C/20sÀ1.By lowering the strain rate,the energy and dislocation caused by work hardening decrease,while the time for the growth of grains increases substantially,and therefore,the grains in Fig.5(c)become coarser.Under the condition of 1150°C/0.01sÀ1,both the high temperature and low strain rate allow the grains to steadily grow to the largest observed size as shown in Fig.5(e).As for the condition of1150°C/20sÀ1, though the high strain rate could possibly increase the number of nuclei sharply,the high temperature will quicken the annihilation of dislocations and the atomic mobility to reduce the area with a high dislocation density.Hence,very little energy is consumed by the microstructure evolution,conform-ing to the processing map of Fig.4(h),which shows that the sample deformed at1150°C/20sÀ1has only a power dissipa-tion of0.05.In summary,a comparatively higher strain rate, 20sÀ1in this study,along with a lower deformation temper-ature will result infiner recrystallized grains for35CrMo steel.Additionally,as can be seen from Fig.5(g)and(h),the grain size becomes smaller when the strain rate increases from10to 20sÀ1,and the same phenomenon is also observed in the samples deformed at950and1150°C.Apparently,the volume fraction of dynamic recrystallization increased with increase in strain rate,and the corresponding increase of the stress was compensated by the resultant softening effect,as shown in Fig.3.Based on the processing maps,in combination with optical microstructures,the most suitable processing condition for 35CrMo is concluded to be(850to900)°C/(10to20)sÀ1.In order to avoidflow instability,the material should not be forged under the condition of(920to1150)°C/(2.7to20)sÀ1.4.ConclusionsThe hot deformation behavior of35CrMo steel has been investigated at a temperature range of850to1150°C and strain rate range of0.01to20sÀ1.The following conclusions can be drawn from this research:1.The true stress-strain curves of35CrMo steel are sensi-tive to the deformation temperature and strain rate and can be classified into three types.The true stress in-creases with decrease in deformation temperature or in-crease in strain rate when the strain rate is below10sÀ1,after which the true stress increases or even decreases with further increase in strain rate depending on the deformation temperature.2.According to the processing maps constructed,there arethree domains with a relatively high efficiency of power dissipation when thefinal strain is0.8,which are benefi-cial for the hot processing,namely,(850to920)°C/(0.01 to0.02)sÀ1,(850to900)°C/(10to20)sÀ1,and(1050 to1150)°C/(0.01to1)sÀ1.The instability domains are mainly located in the(920to1150)°C/(2.7to20)sÀ1 zone,the areas of both the instability domains and the feasible domains mentioned above increased with increasing true strain.3.Optical microstructure observations indicated that dy-namic recrystallization is easy to occur in35CrMo steel during hot deformation,and conditions of high strain rate (20sÀ1)along with low deformation temperature (850°C)will sharply decrease the grain size,for the driving force and energy introduced by much higher work hardening rate,and also shorter time at compara-tively high strain rate.However,by increasing the strain rate to50sÀ1,the time for the newly formed nuclei to grow during subsequent recrystallization cycles was re-duced,which resulted in coarser grain sizes and much lower efficiency of power dissipation.Lowering the strain rate or/and increasing the temperature(850°C/0.01sÀ1 and1150°C/0.01sÀ1)will lead to coarser grains.Condi-tions with both high temperature and high strain rate (1150°C/20sÀ1)will not only reduce the number of nu-clei but also significantly prevent the growth of grains, resulting in a small number of dynamic recrystallized grains,and microcracks along the grain boundaries,cor-responding to a5%efficiency of power dissipation.Fi-nally,the condition(850to900)°C/(10to20)sÀ1is found to be ideal for the hot deformation of35CrMo, whereas the condition(920to1150)°C/(2.7to20)sÀ1 corresponds toflow instability.AcknowledgmentsThe authors are grateful for thefinancial support from the National Program on Key Basic Research Project of China(No. 2014CB046702)and to Wang Zi in the School of Powder Metallurgy Research Institute of Central South University,Chang-sha,for providing the testing facilities for carrying out of the present investigation.References1.N.Park,A.Shibata,D.Terada,and N.Tsuji,Flow Stress Analysis forDetermining the Critical Condition of Dynamic Ferrite Transformation in6Ni-0.1C Steel,Acta Mater.,2013,61,p163–1732.I.Mejı´a, A.Bedolla Jacuinde, C.Maldonado,and J.M.Cabrera,Determination of the Critical Conditions for the Initiation of Dynamic Recrystallization in Boron Microalloyed Steels,Mater.Sci.Eng.A, 2011,528,p4133–41403.G.Z.Quan,G.C.Luo,J.T.Liang,D.S.Wu,A.Mao,and Q.Liu,Modelling for the Dynamic Recrystallization Evolution of Ti-6Al-4V Alloy in Two-Phase Temperature Range and a Wide Strain Rate Range, Comput.Mater.Sci.,2015,97,p136–1474.Y.V.R.K.Prasad,H.L.Gegel,S.M.Doraivelu,J.C.Malas,J.T.Morgan,rk,and D.R.Barker,Modeling of Dynamic Material Behavior in Hot Deformation:Forging of Ti-6242,MTA,1984,15,p1883–18925.T.D.Kil,J.M.Lee,and Y.H.Moon,Formability Estimation of RingRolling Process by using Deformation Processing Map,Proc.Eng., 2014,81,p298–3036.S.S.Zhou,K.K.Deng,J.C.Li,K.B.Nie,F.J.Xu,H.F.Zhou,and J.F.Fan,Hot Deformation Behavior and Workability Characteristics of Bimodal Size SiCp/AZ91Magnesium Matrix Composite with Pro-cessing Map,Mater.Des.,2014,64,p177–1847.M.El Mehtedi,F.Gabrielli,and S.Spigarelli,Hot Workability in ProcessModeling of a Bearing Steel by Using Combined Constitutive Equa-tions and Dynamic Material Model,Mater.Des.,2014,53,p398–404 8.P.Zhang,C.Hu,C.G.Ding,Q.Zhu,and H.Y.Qin,Plastic DeformationBehavior and Processing Maps of a Ni-Based Superalloy,Mater.Des., 2015,65,p575–5849.A.Łukaszek Sołek and J.Krawczyk,The Analysis of the HotDeformation Behaviour of the Ti-3Al-8V-6Cr-4Zr-4Mo Alloy,Using Processing Maps,a Map of Microstructure and of Hardness,Mater.Des.,2015,65,p165–17310.Y.Liu,Y.Ning,Y.Nan,H.Liang,Y.Li,and Z.Zhao,Characterizationof Hot Deformation Behavior and Processing Map of FGH4096-GH4133B Dual Alloys,J.Alloys Compd.,2015,633,p505–515 11.A.Amiri,M.H.Sadeghi,and G.R.Ebrahimi,Characterization of HotDeformation Behavior of AMS5708Nickel-Based Superalloy Using Processing Map,J.Mater.Eng.Perform.,2013,22,p3940–3945 12.D.X.Wen,Y.C.Lin,H.B.Li,X.M.Chen,J.Deng,and L.T.Li,HotDeformation Behavior and Processing Map of a Typical Ni-Based Superalloy,Mater.Sci.Eng.A,2014,591,p183–19213.X.Shang,J.Zhou,X.Wang,and Y.Luo,Optimizing and Identifyingthe Process Parameters of AZ31Magnesium Alloy in Hot Compression on the Base of Processing Maps,J.Alloys Compd.,2015,629,p155–16114.J.Yan,Q.L.Pan,B.Li,Z.Q.Huang,Z.M.Liu,and Z.M.Yin,Researchon the Hot Deformation Behavior of Al-6.2Zn-0.70Mg-0.3Mn-0.17Zr Alloy Using Processing Map,J.Alloys Compd.,2015,632,p549–557 15.H.Rastegari, A.Kermanpur, A.Najafizadeh, D.Porter,and M.Somani,Warm Deformation Processing Maps for the Plain Eutectoid Steels,J.Alloys Compd.,2015,626,p136–14416.L.Wang,F.Liu,J.J.Cheng,Q.Zuo,and C.F.Chen,Hot DeformationCharacteristics and Processing Map Analysis for Nickel-Based Corro-sion Resistant Alloy,J.Alloys Compd.,2015,623,p69–7817.Y.C.Lin,M.S.Chen,and J.Zhong,Microstructural Evolution in42CrMo Steel During Compression at Elevated Temperatures,Mater.Lett.,2008,62,p2132–213518.Y.C.Lin,M.S.Chen,and J.Zhong,Constitutive Modeling for ElevatedTemperature Flow Behavior of42CrMo Steel,Comput.Mater.Sci., 2008,42,p470–47719.Y.Li,S.Zhao,S.Fan,and G.Yan,Study on the Material Characteristicand Process Parameters of the Open-Die Warm Extrusion Process of Spline Shaft with42CrMo Steel,J.Alloys Compd.,2013,571,p12–20 20.Y.C.Lin,M.-S.Chen,and J.Zhong,Prediction of42CrMo steelflowstress at high temperature and strain rate,mun.,2008, 35,p142–15021.Y.C.Lin,M.-S.Chen,and J.Zhong,Effect of Temperature and StrainRate on the Compressive Deformation Behavior of42CrMo Steel,J.Mater.Process.Technol.,2008,205,p308–31522.Y.C.Lin,M.S.Chen,and J.Zhang,Modeling of Flow Stress of42CrMo Steel Under Hot Compression,Mater.Sci.Eng.A,2009,499, p88–9223.G.Kang,Y.Liu,J.Ding,and Q.Gao,Uniaxial Ratcheting and FatigueFailure of Tempered42CrMo Steel:Damage Evolution and Damage-Coupled Visco-Plastic Constitutive Model,Int.J.Plast.,2009,25, p838–86024.Y.C.Lin,M.S.Chen,and J.Zhong,Numerical Simulation for Stress/Strain Distribution and Microstructural Evolution in42CrMo Steel During Hot Upsetting Process,Comput.Mater.Sci.,2008,43,p1117–112225.Y.C.Huang,Y.C.Lin,J.Deng,G.Liu,and M.-S.Chen,Hot TensileDeformation Behaviors and Constitutive Model of42CrMo Steel, Mater.Des.,2014,53,p349–35626.J.W.Zhang,L.T.Lu,K.Shiozawa,W.N.Zhou,and W.H.Zhang,Effectof Nitrocarburizing and Post-Oxidation on Fatigue Behavior of 35CrMo Alloy Steel in Very High Cycle Fatigue Regime,Int.J.Fatigue,2011,33,p880–88627.J.Zhang,L.Lu,G.Cui,X.Shen,H.Yi,and W.Zhang,Effect ofProcess Temperature on the Microstructure and Properties of Gas Oxynitrocarburized35CrMo Alloy Steel,Mater.Des.,2010,31,p 2654–265828.J.W.Zhang,L.T.Lu,P.B.Wu,J.J.Ma,G.G.Wang,and W.H.Zhang,Inclusion Size Evaluation and Fatigue Strength Analysis of35CrMo Alloy Railway Axle Steel,Mater.Sci.Eng.A,2013,562,p211–217 29.Elevated-Temperature Properties of Ferritic Steels:Metals Handbook,10th ed.,ASM International,Materials Park,Ohio,1990,V ol.1, p617–652,Int.J.Fatigue.doi:10.1016/0142-1123(91)90190-A 30.Z.Q.Sheng and R.Shivpuri,Modeling Flow Stress of Magnesium Alloysat Elevated Temperature,Mater.Sci.Eng.A,2006,419,p202–208 31.R.E.Smallman and R.J.BiShop,Chapter7—Mechanical Behaviour ofMaterials,Modern Physical Metallurgy and Materials Engineering,6th ed.,R.E.Smallman and R.J.BiShop,Ed.,Butterworth-Heinemann, Oxford,1999,p197–25832.M.J.Luton and C.M.Sellars,Dynamic Recrystallization in Nickel andNickel-Iron Alloys During High Temperature Deformation,Acta Metall.,1969,17,p1033–104333.A.Najafizadeh and J.J.Jonas,Predicting the Critical Stress for Initiationof Dynamic Recrystallization,ISIJ Int.,2006,46,p1679–168434.S.Solhjoo,Determination of Critical Strain for Initiation of DynamicRecrystallization,Mater.Des.,2010,31,p1360–136435.H.Sun,Y.Sun,R.Zhang,M.Wang,R.Tang,and Z.Zhou,Study onHot Workability and Optimization of Process Parameters of a Modified 310Austenitic Stainless Steel Using Processing Maps,Mater.Des., 2015,67,p165–17236.Y.V.R.K.Prasad and T.Seshacharyulu,Modelling of Hot Deformationfor Microstructural Control,Int.Mater.Rev.,1998,43,p243–258 37.Y.V.R.K.Prasad and T.Seshacharyulu,Processing Maps for HotWorking of Titanium Alloys,Mater.Sci.Eng.A,1998,243,p82–88 38.S.V.S.N.Murty and B.N.Rao,On the Development of InstabilityCriteria During Hotworking with Reference to IN718,Mater.Sci.Eng.A,1998,254,p76–8239.Z.Yang,F.Zhang,C.Zheng,M.Zhang,B.Lv,and L.Qu,Study onHot Deformation Behaviour and Processing Maps of Low Carbon Bainitic Steel,Mater.Des.A,2015,66,p258–26640.Y.Wang,Q.Pan,Y.Song,C.Li,and Z.Li,Hot Deformation andProcessing Maps of X-750Nickel-Based Superalloy,Mater.Des., 2013,51,p154–16041.J.Luo,L.Li,and M.Q.Li,The Flow Behavior and Processing MapsDuring the Isothermal Compression of Ti17Alloy,Mater.Sci.Eng.A, 2014,606,p165–17442.F.Chen,Z.Cui,and S.Chen,Recrystallization of30Cr2Ni4MoVUltra-Super-Critical Rotor Steel During Hot Deformation.Part I: Dynamic Recrystallization,Mater.Sci.Eng.A,2011,528,p5073–508043.R.Ebrahimi and E.Shafiei,Mathematical Modeling of Single PeakDynamic Recrystallization Flow Stress Curves in Metallic Alloys, Recrystallization,P.K.Sztwiertnia,Ed.,Rijeka,InTech,2012,。

相关文档
最新文档