单相半控桥式整流电路
单相半波整流电路和单相桥式整流电路
单相半波整流电路和单相桥式整流电路是两种常见的单相交流到直流的整流电路。
1. 单相半波整流电路:
单相半波整流电路是一种简单的整流电路,适用于小功率应用。
它由一个二极管和负载组成,二极管用于将输入的交流电信号转换为单向的脉冲电流。
在每个半个周期中,只有一个半波被整流,另一个半波被阻断。
因此,输出的直流电流是存在间断的脉冲性质。
这种电路的缺点是输出的直流电压有较大的脉动,因为在每个半周期中只有一半时间是有效的。
2. 单相桥式整流电路:
单相桥式整流电路是一种更常用的整流电路,适用于较高功率的应用。
它由四个二极管和负载组成,可以将输入的交流电信号转换为稳定的直流电流。
在每个半个周期中,交流电源的两个极性都能够提供电流给负载。
通过适当的二极管导通和截止控制,可以实现交流信号的无间断整流。
因此,输出的直流电流相对更稳定,脉动较小。
这种电路的优点是输出的直流电压质量较好,适用于对电压稳定性要求较高的应用。
需要注意的是,整流电路中的二极管需要选择适当的额定电压和电流来匹配所需的电流和电压要求。
此外,为了进一步减小输出直流电压的脉动,还可以添加滤波电容器来平滑输出波形。
在实际应用中,还可能涉及到过流保护、温度保护等其他电路设计考虑因素。
以上是对单相半波整流电路和单相桥式整流电路的简要介绍,具体的电路参数设计和分析需要根据具体应用和要求进行进一步的研究和计算。
单相半控桥整流电路实验报告
目录一、实验基本内容----------------------------------21.实验项目名称-----------------------------------2-----------------------------------23.实验完成目标-----------------------------------3二、实验条件描述-----------------------------------31.主要设备仪器-----------------------------------3三、实验过程描述-----------------------------------41.实现同步---------------------------------------42.半控桥纯阻性负载试验---------------------------43.半控桥阻-感性负载〔串联L=200mH〕实验-----------6四、实验仿真---------------------------------------9五、实验数据处理及讨论-----------------------------18六、实验思考---------------------------------------22一、实验基本内容:单相半控桥整流电路实验2.实验已知条件:单相半控桥整流电路如下图,图中晶闸管VT1,二极管VD4组成一对桥臂,VT3,VD2组成另一对桥臂,变压器u2加在桥臂的中间。
(1)阻性负载电源电压u2在〔0,α〕,VD2,VT3承受反向阳极电压处于截止状态,由于VT1未加触发脉冲而使VT1,VD4处于正向阻断状态,此时ud=0 , uVT1=u2, uVD2= -u2, uVT3=0, uVD4=0;wt=α时刻,触发VT1,VT1,VD4立即导通,VD2,VT3承受反向电压关断,此时ud= u2 , uVT1= 0, uVD2= -u2, uVT3=-u2, uVD4=0;u2在负半周〔π,π+α〕期间,VT3,VD2虽然承受正向阳极电压但由于门极没有触发信号而正向阻断,此时ud=0,uVT1=0,uVD4=u2,uVT3= -u2,uVD2=0; wt=π+α时刻触发VT3,则VT3,VD2,此时ud= u2,uVT1=-u2,uVD4=u2, uVT3=0, uVD2=0。
第3讲 整流(单相半波可控整流电路)
w t1
wt wt
Id
wt
Id p-a p+a
施加反压使其关断,L储存的能量保
证了电流id在L-R-VDR回路中流通, 此过程通常称为续流。 √若L足够大,id连续,且id波形接 近一条水平线 。
i VD
f) g)
O
R
wt
O u VT O
wt
wt
图3-4 单相半波带阻感负载有 续流二极管的电路及波形
◆改变触发时刻,ud和id波形随之改变,直流输出电压ud为极性不变但 瞬时值变化的脉动直流,其波形只在u2正半周内出现,故称“半波”整 流。 ◆电路中采用了可控器件晶闸管,且交流输入为单相,故该电路称为单 相半波可控整流电路。整流电压ud波形在一个电源周期中只脉动 1次, 故该电路为单脉波整流电路。 ◆基本数量关系 ☞a:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度 称为触发延迟角,也称触发角或控制角。 ☞q:晶闸管在一个电源周期中处于通态的电角度称为导通角。
T a) u1 u2
VT u VT id ud R
u2 b)
0
ug
wt
1
p
2p
wt
c)
0 ud
wt
d)
0 u VT
a
q
wt
e) 0
wt
图3-1 单相半波可控整流电路及波形
u2 b) 0 ug c) 0 ud d)
wt
1
p
2p
wt
wt
0
u VT
a
q
wt
e) 0
wt
图3-1 单相半波可控整流电路及波形
wt
图3-2 带阻感负载的单相半 波可控整流电路及其波形
单相桥式半控整流电路
图3 单相半控桥电感性负载不接续流二极管的情况分析
四、单相桥式半控接续流二极管整流电路
➢有 续 流 二极 管 VDR 时 , 续 流过 程 由 VDR完成,晶闸管关断,避免了某一 个晶闸管持续导通从而导致失控的现 象。同时,续流期间导电回路中只有 一个管压降,有利于降低损耗。
图4单相桥式半控整流电路接续流二极管的电路及波形
单相桥式半控整流电路
一、单相桥式半控整流电路(不接续流二极管)
单相全控桥中,每个导电回路中有2个 晶闸管,为了对每个导电回路进 行控制, 只需1个晶闸管就可以了,另1个晶闸管可 以用二极管代替,从而简化整个电路。如 此即成为单相桥式半控整流电路。(该电 路未接续流二极管)
图1 单相桥式半控带感性负载电路
图2 单相桥式半控整流电路,阻感负载时 的电路及波形
二、单相桥式半控整流电路工作原理
在u2负半周触发角α时刻触发VT3,VT3 导通,则向VT1加反压使之关断,u2经 VT3和VD2向负载供电。u2过零变正时, VD4导通,VD2关断。VT3和VD4续流,ud
又为零。 半控整流电路与全控整流电路在电阻负载 时的工作情况相同。
二、单相桥式半控整流电路工作原理
在u2正半周,触发角α处给晶闸管VT
加触发脉冲,u2经VT1和VD4向负载供电。
当u2过零变负时,因电感作用使电流
连续,VT1继续导通。但因α点电位低于b 点 电 位 , 使 得 电 流 从 VD4 转 移 至 VD2, VD4关断,电流不再流经变压器二次绕组, 而是由VT1和VD2续流。
五、接续流二极管整流电路数量关系
➢晶闸管和二极管电流有效值 ➢续流二极管电流有效值 ➢变压器二次侧电流有效值
I DR I d
单相半控桥式整流电路
➢ 负载输出电压的平均值为
VT1 VT2
u1
u2
Rd
VD3 VD
4
ud
ωt ug
i2
ωt
ωt
阻感性负载单相桥式半控整流电路
假设负载中电感很大 工作原理-无触发〔0,α〕
u2
T i2
VT1 VT2
+
u1
u2
-
VD3 VD4
id L ud R
Thank you! Bye
单相可控整流电路的分析方法
• 1.可假设第一个触发脉冲前管子均关断。 • 2.确定触发脉冲时相应的SCR A-K两端电压是否正
偏,若是则导通; • 3.电压过零点时注意负载性质(阻性则电流同时
过零SCR关断;大电感性则电流量连续可继续导通 到另一组SCR触发导通时换相)。 • 4.负载端带续流二极管情况:输出电压不可能小 于零。
0α π
2π ωt
阻感性负载单相桥式半控整流电路
工作原理-有触发〔π +α,2 π 〕
T i2
VT1 VT2
-
u1
u2
u2
+
VHale Waihona Puke 3 VD4id L ud R
0α π ud
0α π id
0α π i2
2π ωt
• ωt= π+ α 时,给VT2加触发信号:
2π
ωt
• •
VT2、VD3导通 iVT2 = iVD3 = id =- i2
阻感性负载单相桥式半控整流电路
u2
O ud u
u1
wt
T i2 u2
VT1
第3章 整流电路3-2 单相桥式半控整流电路
• 器件:uVT3 = uVD4 = 0,iVT3 = iVD4 = 0
o
ωt
12:27
第3章 整流电路
6
3.1.4 单相桥式半控整流电路
VT3
VT1
带阻性负载时的工作情况
小结
• 输出电压平均值为
1π
������d
=
π
න
������
2������2sin(������������)������(������������൯
oα π
2π
ωt
• 无门极触发
ug
ug1
ug3
– VD4阴极电位低,导通,两端电压为0
o ud
ωt
– VT3经VD4和负载短接,两端电压为0
id o
ωt
– VT1承受正压u2,VD2承受反压–u2
α uVT1
• 负载:ud = 0,id = 0,i2 = 0
o
ωt
• 器件:uVT1 = –uVD2 = u2,iVT1 = iVD2 = 0 uVD2
第3章 整流电路
VD2
a b 2π
Id Id
VD4
id
L
ud R
ωt
ωt Id
ωt Id
ωt Id
ωt
ωt
ωt Id
ωt
13
3.1.4 单相桥式半控整流电路
带阻感负载时的工作情况—失控现象
实际中,当突然增大至180或触发脉冲丢
失时,会导致正在导通的晶闸管一直导通 ,两个二极管轮导通,此时触发信号对输
VT3
VT1
带续流二极管的阻感负载的工作情况
i2
T
+a
单相全波可控整流电路单相桥式半控整流电路
单相全波可控整流电路、单相桥式半控整流电路一.单相全波可控整流电路单相全波可控整流电路(Single Phase Full Wave Controlled Rectifier),又称单相双半波可控整流电路。
图1 单相全波可控整流电路及波形单相全波与单相全控桥从直流输出端或从交流输入端看均是基本一致的。
变压器不存在直流磁化的问题。
单相全波与单相全控桥的区别是:单相全波中变压器结构较复杂,材料的消耗多。
单相全波只用2个晶闸管,比单相全控桥少2个,相应的,门极驱动电路也少2个;但是晶闸管承受的最大电压是单相全控桥的2倍。
单相全波导电回路只含1个晶闸管,比单相桥少1个,因而管压降也少1个。
因此,单相全波电路有利于在低输出电压的场合应用1.电路结构图2.单相桥式半控整流电路,有续流二极管,阻感负载时的电路及波形单相全控桥中,每个导电回路中有2个晶闸管,1个晶闸管可以用二极管代替,从而简化整个电路。
如此即成为单相桥式半控整流电路(先不考虑VDR)。
单相全控桥式整流电路带电阻性负载的电路图如2所示,四个晶间管组成整流桥,其中vTl、vT4组成一对桥臂,vT 2、vT3组成另一对桥臂,vTl和vT3两只晶闸管接成共阴极,VT2和VT 4两只品间管接成共阳极,变压器二次电压比接在a、b两点,u2=1.414U2sin(wt)2.电阻负载半控电路与全控电路在电阻负载时的工作情况相同。
其工作过程如下:a)在u2正半周,u2经VT1和VD4向负载供电。
b) u2过零变负时,因电感作用电流不再流经变压器二次绕组,而是由VT1和VD2续流。
c)在u2负半周触发角a时刻触发VT3,VT3导通,u2经VT3和VD2向负载供电。
d)u2过零变正时,VD4导通,VD2关断。
VT3和VD4续流,u d又为零。
3.续流二极管的作用1)避免可能发生的失控现象。
2)若无续流二极管,则当a突然增大至180 或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使u d成为正弦半波,其平均值保持恒定,称为失控。
电力电子应用技术 第5版答案 第2章 思考题和习题
思考题和习题1. 单相全控桥式整流电路带大电感负载,U2=220V,R d=4Ω,计算α=60︒时,整流输出电压U d、电流平均值I d。
如果负载端并接续流二极管,其U d和I d又为多少?并求流过晶闸管和续流二极管的平均电流和有效值电流,画出这两种情况的电压和电流波形。
解:(1) 因为电路带大电感负载,所以电流连续。
整流输出电压U d = 0.9U2cosα =0.9220cosα⨯⨯= 99V;电流平均值I d = U d/R d = 24.75A;流过晶闸管的平均电流I dVT = 12I d = 12.375A;流过晶闸管的有效电流I VT = 12I d = 17.50A。
(2) 若负载端并接续流二极管,则整流输出电压U d = 0.9U21cos2α+=1cos600.92202+⨯⨯= 148.5V;电流平均值I d = U d/R d = 37.125A;流过晶闸管的平均电流I dVT = 2παπ-I d = 32πππ-I d = 12.375A ;流过晶闸管的有效电流I VT =2παπ-I d = 21.43A ; 流过续流二极管的平均电流I dVDR = απI d = 13I d = 12.375A ;流过续流二极管的有效电流I VDR =απI d = 21.43A 。
2. 单相全控桥式整流电路,U 2=200V ,R d =2Ω,电感L 极大,反电动势E =100V , 当α=45︒时,试求:(1)画出u d 、i d 、i VT1、i 2和u VT1的波形。
(2)计算整流输出电压U d 、电流平均值I d 、晶闸管电流的平均值I dVT 和有效 值I VT 以及变压器二次电流有效值I 2。
(3)按2倍裕量确定晶闸管的额定电流。
解:(1)(2) 整流输出电压U d = 0.9U 2cos α = 127.28V ; 电流平均值 I d =d dU ER -=13.64A ; 晶闸管电流的平均值I dVT = d2I =6.82A ; 晶闸管电流的有效值I VT =d2; 变压器二次电流有效值I 2 = I d = 13.64A 。
单相半控桥式整流电路
单相半控桥式整流电路单相半控桥式整流电路怎样工作?这是一个广泛应用于电源和机电设备的电路系统,可以将交流电压转化为平滑直流电压,以保证稳定可靠的功率输出。
接下来,我们将分步骤阐述单相半控桥式整流电路的原理和工作过程。
步骤1:整流桥首先,让我们看看整流桥是如何工作的。
我们通常使用四个二极管组成一个整流桥,其中两个二极管被反向极性放置,另外两个被正向极性放置。
一个正半周期的输入信号将流入前两个二极管(正向极性),而负半周期则流入后两个二极管(反向极性)。
在两个负半周期之间,输出是一个直流脉动。
为了得到清晰的输出,我们需要使用一个滤波电容器。
步骤2:半波控制在半波整流电路中,整个输入周期只利用了正半周期,而浪费了负半周期。
因此,半波整流电路的电流利用率很低。
为了提高这一点,我们可以使用半波控制技术,这可以使我们正常地使用负半周期。
整个系统由一个触发器、一个晶闸管和一个电感器组成。
当触发器触发时,晶闸管表现为导通状态,然后将负半周期交流信号流入电感器,将其称为直流。
当晶闸管关闭时,电流不能流过电感器,因此在电容器上放置的电荷继续供电。
步骤3:全波控制半波控制只能利用输入信号的一半,因此电流利用率仍然很低。
为了解决这个问题,我们可以使用全波控制。
全波控制器是由一个触发器、一个晶闸管和两个二极管组成的。
每个输入周期都利用了两个半周期,以提高电流转换效率。
这里再次使用与半波控制相同的技术,但两个二极管能够允许两个不同的电路路径,以使电流能够流向电感器并在电容器上升高。
总结单相半控桥式整流电路是一种常用的电源系统,能够将输入的交流信号转化为稳定的直流电力。
通过整流桥和半波或全波控制技术,我们可以实现高效的电力变换,确保设备的可靠性和稳定性。
了解这种恒定电源电路的工作原理,将有助于了解电源系统的结构和原理,并有助于实际应用中对电源系统的维护和升级。
单相半控桥式整流电路
单相半控桥式整流电路
单相半控桥式整流电路是一种常见的电路结构,广泛应用于各种电子设备中。
本文将从电路原理、工作特点、应用范围等方面进行详细介绍。
一、电路原理
单相半控桥式整流电路由四个二极管和两个可控硅构成,其中两个二极管为正向导通,两个二极管为反向截止。
两个可控硅可以通过控制电压来实现导通和截止,从而实现对电路的控制。
二、工作特点
1. 正半周
当输入电压为正半周时,可控硅1被触发,电流通过可控硅1和二极管D1,输出电压为正半周的正脉冲。
同时,可控硅2被阻止导通,二极管D2被反向截止,输出电压为0。
2. 负半周
当输入电压为负半周时,可控硅2被触发,电流通过可控硅2和二极管D2,输出电压为负半周的负脉冲。
同时,可控硅1被阻止导通,二极管D1被反向截止,输出电压为0。
3. 输出波形
通过控制可控硅的导通和截止,可以控制输出波形。
当可控硅1和可控硅2交替导通时,输出波形为全波整流的直流电压,可以用于各种电子设备的供电。
三、应用范围
单相半控桥式整流电路广泛应用于各种电子设备中,如电视机、电脑、音响、电动工具等。
它具有体积小、效率高、稳定性好等优点,可以满足各种电子设备的供电需求。
四、结论
单相半控桥式整流电路是一种常见的电路结构,具有广泛的应用范围。
通过控制可控硅的导通和截止,可以实现对电路的控制,满足各种电子设备的供电需求。
单相桥式半控整流电路(阻感性负载不带续流二极管)(精)
单相桥式半控整流电路电路选择在 MATLAB 软件中搭建实验模拟电路,在模拟电路中仿真并且观察各数据的波形。
元件可以从 MATLAB 软件的 Simulink 和 Power System元件库中的找到有关元件。
一、单相桥式半控整流电路原理图及原理单相桥式半控整流电路原理图如下:L u2二、单相桥式半控整流电路工作原理1、若是感性负载,当 u2在正半周时,在ωt =α处给晶闸管 VT1加触发脉冲, VT1导通后,电流从 u2正端→ VT1→ L → R → VD4→ u2负端向负载供电。
u2过零变负时,因电感 L 的作用使电流连续, VT1继续导通。
但 a 点电位低于 b 点,使电流从 VD4转移至 VD2, VD4关断,电流不再流经变压器二次绕组,而是经 VT1和VD2续流,则 ud=0。
2、在 u2负半周ωt =π+α时刻触发 VT3使其导通,则向 VT1加反压使之关断, u2经VT3→ L → R → VD2→ u2端向负载供电。
u2过零变正时, VD4导通, VD2关断。
VT3和 VD4续流, ud 又为零。
此后重复以上过程。
三、单相桥式半控整流电路仿真电路建模在 MATAB 软件中建立的单相桥式半控整流电路的仿真图图 1 单相桥式半控整流电路原理图图 2 单相桥式半控整流电路建摸图四、仿真电路中各参数的设置1、晶闸管的参数设置图 3 晶闸管的参数2、交流电源参数的设置图 4 交流电源的参数 3、晶闸管触发脉冲的参数设置图 5 第一个脉冲的参数设置图 6 第二个脉冲的参数设置 4、二极管的参数设置图 7 二极管的参数5、阻感负载的参数设置图 8 负载参数设置五、仿真波形由于电路中需要测量的参数比较多 , 因此在仿真电路中使用了两个示波器 , 这样观察波形更方便 , 也更清晰 .这次防真中选取了四个触发角来观察波形 , 分别为 20度 ,60度 ,80度和 150度 , 以下是防真中的波形 ,每两图是一组波形 .图 9 触发角为 20度 (示波器 1图 10 触发角为 20 度(示波器 2 图 11 触发角为 60 度(示波器 1图 12 触发角为 60 度(示波器 2 图 13 触发角为 80 度(示波器 1图 14 触发角为 80 度(示波器 2 图 15 触发角为 150 度(示波器 1图 16 触发角为 150 度(示波器 2 六、结论结合以上波形图,我们可以分析出单相桥式半控整流电路具有以下的特点: 1、电感在电路中具有续流作用; 2、晶闸管在触发时换流,二极管则在电源过零时刻换流; 3、尽管电路具有续流作用,但还应该加续流二极管。
单相半控桥式整流电路
0 uT1
0
uD1
π
2π ωt
π
2π ωt
0
π
2π ωt
在无触发信号时电路分析
π~2π区间
u2
0
π
VT1
uT1
VT2
u2
Rd
0
π
VD2
VD1
uD1
0
π
2π ωt
2π ωt
2π
ωt
在无触发信号时电路分析
π~2π区间
u2
0
π
2π ωt
uT1
VT1
VT2
u2
VD2
Rd VD1
0
uD1
π
2π ωt
0
2π
10/8/2023
各电量的计算
Ud = 0.9u2(1+cosα )/2 uTM =1.414u2 0≤α ≤π
10/8/2023
电感性负载波形分析
ωt1~ωt2区间
VT1
+
ud VT2
0 ωt1
ωt2
ωt
VD2
Rd VD1
10/8/2023
电感性负载波形分析
ωt1~ωt2区间
VT1
+
ud VT2
0≤α ≤π 二极管只承受反压而不承受正压,最大值是0。
VT2
晶 9u闸2(管1V+Tc1o、suαVT2)2共/2阴极接法,二极管VD1、VD2共阳极接法。
uTM =1.
Rd
Hale Waihona Puke - 9u2(1+cosα )/2
uTM =1.
9u2(1+cosα )/2 uTM =1.
单相桥式半控整流电路原理
单相桥式半控整流电路原理
嘿,朋友们!今天咱要来聊聊单相桥式半控整流电路原理啦!这玩意儿就像是电路世界里的神奇魔法,能把交流电变成直流电。
你想想看啊,家里的那些电器,不都需要直流电才能好好工作嘛。
单相桥式半控整流电路就像是个超级英雄,默默在背后工作,为电器们提供稳定的直流电!比如说,你正在用的手机充电器,里面可就有它的功劳呢!
那它到底是怎么工作的呢?简单来说,就是通过一些二极管和晶闸管的组合啦。
这就好像是一个团队在协作,每个成员都有自己的任务,大家一起合作,才能完成把交流电变成直流电这个大目标!哎呀,这是不是很神奇呢?就好比一个交响乐团,各种乐器一起奏响美妙的乐章!
在这个电路里,二极管就像是坚定的卫士,一直坚守岗位,让电流只能按照规定的方向流动。
而晶闸管呢,就像是个聪明的指挥官,可以控制电流的通断。
哇塞,这也太牛了吧!比如说,在一些需要调节电流大小的场合,晶闸管就发挥大作用啦,是不是很厉害?
来举个例子吧,咱家里的调光台灯,不就能调节亮度嘛,这背后可就有单相桥式半控整流电路在帮忙呢!它可以根据你的需要,控制台灯的亮度,是不是超级贴心?
单相桥式半控整流电路真的是电路世界里不可或缺的一部分啊!它就像是一个默默付出的无名英雄,虽然我们平时不太会注意到它,但它却一直在为我们的生活提供便利。
怎么样,现在是不是对它超感兴趣啦?我觉得,我们真应该好好感谢这些默默工作的电路元件,它们让我们的生活变得更加美好和方便呀!
总之,单相桥式半控整流电路原理真的太有趣了,值得我们好好去探索和学习!。
5单相桥式半控整流电路—电感性负载
5单相桥式半控整流电路—电感性负载单相桥式半控整流电路是一种常见的电力电子电路,广泛应用于各种需要变压、整流、控制的场合,如电机控制、电动车充电器等。
本文将介绍单相桥式半控整流电路在电感性负载下的工作原理和特点。
电感性负载是指接在电源电压上的一个交流感应电感器件,它的电流和电压之间存在相位差,也称为电感负载。
电感器件通常由线圈或电磁铁组成,常常用于电机、变压器等设备中。
在单相桥式半控整流电路中,当晶闸管的控制电压为正,晶闸管导通,电流由上方的电源通向下方的负载;当晶闸管的控制电压为零或负电压,晶闸管关断,负载电流无法通过晶闸管。
通过适时地控制晶闸管的导通与关断,可以实现电流的控制。
在电感性负载下,单相桥式半控整流电路的工作原理如下:1.半波整流:当晶闸管导通时,电流从上方的电源通过感抗负载到达下方,此时只有一个晶闸管导通,称为半波整流。
2.电源方波:当晶闸管导通后,电流在电源与感抗负载之间形成一个尖顶的方波。
晶闸管导通时间越长,方波的高度越大,即感抗负载上的电流越大。
3.电源电压:在晶闸管导通期间,电源电压与感抗负载之间存在相位差,即电源电压滞后于感抗负载电流。
相位差越大,负载上的电压越小。
4.低压区:当晶闸管关断后,感抗负载产生电动势反向作用于电源,此时感抗负载上电压较低且反向。
单相桥式半控整流电路在电感性负载下的特点如下:1.电源功率因数较低:由于电感性负载的存在,电流与电压之间存在相位差,使得电源的功率因数较低。
这要求电源电压的频率较高,以减小相位差,提高功率因数。
2.感抗负载电流具有回流性:当晶闸管关断后,感抗负载通过电源产生的电动势反向作用于电源,使电流具有回流性。
这就要求电源能够承受感抗负载产生的反向电流,否则容易损坏电源。
3.对晶闸管的控制要求较高:晶闸管的导通与关断对电流的方向和大小都有较大影响。
在实际应用中,需要合理地控制晶闸管的导通与关断时机,以实现对负载电流的精确控制。
总之,单相桥式半控整流电路在电感性负载下具有功率因数低、电流回流和对控制的要求较高等特点。
单相桥式半控整流电路电感量大小对负载电流的影响
单相桥式半控整流电路电感量大小对负载电流的影响在单相桥式半控整流电路中,电感的大小对于负载电流有着重要的影响。
在本文中,我们将从生动、全面、有指导意义的角度来探讨这一问题。
首先,我们来了解一下单相桥式半控整流电路的基本构造和工作原理。
该电路由四个电子器件组成,包括两个可控硅元件和两个二极管。
可控硅元件可以根据控制信号进行导通或者关断,实现对负载电流的控制。
而二极管则起到了使电流只能在一个方向流动的作用。
在这种电路中,电感的作用是将交流输入电压转换为直流输出电压。
电感可以延缓电流的变化速度,阻止突变的电流波形。
当负载电流发生变化时,电感能够通过储存和释放能量来平滑电流波形,稳定输出电压。
因此,电感的大小直接影响到负载电流的稳定性。
接下来,让我们来探讨一下电感量大小对负载电流的具体影响。
首先,当电感的值较小时,电感的储能能力较弱,对电流波形的平滑作用也较弱。
在这种情况下,负载电流会受到较大的冲击,波形可能出现明显的峰值和谷值。
这会引起负载电流的不稳定,可能给负载带来较大的损害,甚至导致系统失效。
而当电感的值逐渐增大时,电感的储能能力也逐渐增强。
电感能够吸收电流的峰值部分,并在峰值消失时释放能量。
这使得负载电流的变化相对平缓,电流波形更加平稳。
对于负载电流要求较高或者需要稳定输出电压的场合,我们可以适当增大电感的值,以确保负载电流的稳定性。
然而,电感的值过大也会带来一些问题。
当电感的值过大时,会增加电路中的电感阻抗。
这会导致整流电路的功耗增加,且与耦合电容等其他元件配合不当时,可能导致整流电路的性能下降,损耗增大。
因此,在选择电感的大小时,需要进行合理的权衡,并根据实际应用需求进行选择。
综上所述,电感的大小对单相桥式半控整流电路的负载电流有着重要的影响。
适当选择合适的电感值,可以保证负载电流的稳定性,避免电流突变给负载带来的损害。
然而,电感值过大也会带来功耗增加等问题,因此需要进行合理的选择。
在实际应用中,我们需要根据具体需求和实际情况,选择合适的电感大小,以确保整流电路的性能和可靠性。
图1 由单结晶体管触发的单相半控桥式整流电路
图1 由单结晶体管触发的单相半控桥式整流电路改变电位器RP的数值可以调节输出脉冲电压的频率。
但是(RP+R)的阻值不能太小,否则在单结晶体管导通之后,电源经过RP和R供给的电流较大,单结晶体管的电流不能降到谷点电流之下,电容电压始终大于谷点电压,因此,单结晶体管就不能截止,造成单结晶体管的直通现象。
选用谷点电流大一些的管子,可以减少这种现象。
当然,(RP+R)的阻值也不能太大,否则充电太慢,使晶闸管的最大导通角受到限制,减小移相范围。
一般(RP +R)是几千欧到几十千欧。
单结晶体管触发电路输出的脉冲电压的宽度,主要决定于电容器放大电的时间常数。
R1或C太小,放电快,触发脉冲的宽度小,不能使晶闸管触发。
因为晶闸管从阻断状态到完全导通需要一定时间,一般在10uf以下,所以触发脉冲的宽度必须在10uf以上。
如选用C=0.1~1uF,R1=250~100Ω,就可得到数十微秒的脉冲宽度。
但是,若C值太大,由于充电时间常数(RP+R)C的最小值决定于最小控制角,则(RP+R)就必须很小,如上所述,这将引起单结晶体管的直通现象。
如果R1太大,当单结晶体管尚未导通时,其漏电流就可能在R1上产生较大的电压,这个电压加在晶闸管的控制极上而导致误触发。
一般规定,晶闸管的不触发电压为0.15~0.3V,所以上述电压不应大于这个数值。
脉冲电压的幅度决定于直流电源电压和单结晶体管的分压比。
如电源电压为20V,晶体管的分压比为0.5,则在单结晶体管导通时,电容器上的电压约为10V,除去管压降外,可以获得幅度为7~8V的输出脉冲电压。
根据上述数据,输出脉冲的宽度和幅度都能满足触发晶闸管的要求。
图1中的电阻R2是作温度补偿用的。
因为在U P=U BB+U D的式中,分压比几乎不随温度而变,而U D将随温度上升而略有下降。
这样,UP就要随温度而变,这是不希望的。
当接入R2(及R1)后,UBB是由稳压电源的电压UZ经R2、RBB、R1分压而得,而RBB 随温度上升而增大,因此在温度上升后,RBB增大,电流就减小,R1和R2上的压降也相应减小,UBB就增大一些,于是补偿了UD因温度上升而下降之值,从而使峰点电压UP保持不变⑴稳压管的作用是将整流电压uo变换成梯形波(削去顶上一块,所谓削波),稳定在一个电压值UZ,使单结晶体管输出的脉冲幅度和每半周产生第一个脉冲(第一个脉冲使晶闸管触发导通后,后面的脉冲都是无用的)的时间不受交流电源电压波动的影响。
单相桥式半控整流电路实验原理
三.实验原理单相桥式半控整流电路在电阻性负载时的工作情况与全控电路完全相同,这里只介绍电感性负载时的工作情况。
单相桥式半控整流电路原理图如下图所示。
假设负载中电感很大,且电路已工作于稳态。
当电源电压 u 2 在正半周期,控制角为 a 时触发晶闸管 VT1 使其导通,电源经 VT1 和 VD4 向负载供电。
当 u 2 过零变负时,由于电感的作用使 VT1 继续导通。
因a 点电位低于 b 点电位,使得电流从 VD4 转移至 VD2 ,电流不再流经变压器二次绕组,而是由 VT1 和 VD2 续流。
此阶段忽略器件的通态压降,则u d = 0 ,不像全控电路那样出现 u d 为负的情况。
在 u 2 负半周控制角为 a 时触发 VT3 使其导通,则向 VT1 加反压使之关断, u 2 经 VT3 和 VD2 向负载供电。
u 2 过零变正时, VD4 导通。
VT3 和VD4 续流, u d 又为零。
此后重复以上过程。
若无续流二极管,则当 a 突然增大至180 ° 或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使 u d 成为正弦半波,即半周期 u d 为正弦,另外半周期 u d 为零,其平均值保持恒定,称为失控。
有续流二极管 VD 时,续流过程由 VD 完成,在续流阶段晶闸管关断,避免了某一个晶闸管持续导通从而导致失控的现象。
单相桥式半控整流电路原理图四.实验内容⒈ 接线在实验装置断电的情况下,按单相桥式半控整流电路实验线路图及接线图进行接线。
图中可调电阻器 R d ,选用 MEL ﹣ 03 中的其中一组可调电阻器并联, R d 的初始电阻值应调到最大值。
⒉ 触发电路调试在主电路断电情况下调试触发电路。
当给定电压 U g = 0V ,调节偏移电压使触发脉冲初始相位 a =180 °,然后逐渐调节给定电压 U g ,观察触发脉冲移相范围是否满足 a =30 °~180 °。