2014-2015学年辽宁省沈阳市铁路实验中学高二(上)期中数学试卷(文科)

合集下载

辽宁省大连二十中2014-2015学年高二第二学期期末数学试卷(文科) Word版含解析

辽宁省大连二十中2014-2015学年高二第二学期期末数学试卷(文科) Word版含解析

2014-2015学年辽宁省大连二十中高二(下)期末数学试卷(文科)一、选择题:(本大题共12小题,每题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.已知i是虚数单位,则=()A. 1﹣2i B. 2﹣i C. 2+i D. 1+2i2.已知集合A={x|1<x<4},B={x|x2﹣2x﹣3≤0},则A∩B=()A.(﹣1,3) B.(1,3] C. [3,4) D. [﹣1,4)3.“若x,y∈R且x2+y2=0,则x,y全为0”的否命题是()A.若x,y∈R且x2+y2≠0,则x,y全不为0B.若x,y∈R且x2+y2≠0,则x,y不全为0C.若x,y∈R且x,y全为0,则x2+y2=0D.若x,y∈R且xy≠0,则x2+y2≠04.若命题“p或q”为真,“非p”为真,则()A. p真q真 B. p假q真 C. p真q假 D. p假q假5.若函数f(+1)=x2﹣2x,则f(3)=()A. 0 B. 1 C. 2 D. 36.已知U={y|y=log2x,x>1},P={y|y=,x>2},则∁U P=()A. [,+∞) B.(0,) C.(0,+∞) D.(﹣∞,0)∪(,+∞)7.若θ∈[,],cos2θ=﹣则sinθ=()A. B. C. D.8.设函数f(x)=xe x,则()A. x=1为f(x)的极大值点 B. x=1为f(x)的极小值点C. x=﹣1为f(x)的极大值点 D. x=﹣1为f(x)的极小值点9.已知p:x≥k,q:(x+1)(2﹣x)<0,如果p是q的充分不必要条件,则k的取值范围是()A. [2,+∞) B.(2,+∞) C. [1,+∞) D.(﹣∞,﹣1]10.已知函数f(x)=sinx﹣cosx,x∈R,若f(x)≥1,则x的取值范围为()A. {x|kπ+≤x≤kπ+π,k∈Z} B. {x|2kπ+≤x≤2kπ+π,k∈Z}C. {x|kπ+≤x≤kπ+,k∈Z} D. {x|2kπ+≤x≤2kπ+,k∈Z}11.函数y=Asin(ωx+φ)(ω>0,|ϕ|<,x∈R)的部分图象如图所示,则函数表达式为()A. y=﹣4sin() B. y=4sin()C. y=﹣4sin() D. y=4sin()12.设函数g(x)=x2﹣2(x∈R),f(x)=,则f(x)的值域是()A. [﹣,0]∪(1,+∞) B. [0,+∞) C. [,+∞) D. [﹣,0]∪(2,+∞)二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)..13.已知复数z=(3+i)2(i为虚数单位),则|z|= .14.若函数f(x)=x2﹣(2a﹣1)x+a+1是区间(1,2)上的单调函数,则实数a的取值范围是.15.若曲线y=ln(﹣x)上点P处的切线平行于直线2x+y+1=0,则点P的坐标是.16.已知函数f(x)=sin(ωx+φ),其中ω>0,|φ|<,cos•cosφ﹣sin•sin φ=0且函数f(x)的图象的相邻两条对称轴之间的距离等于,函数f(x)的图象向左平移m个单位所对应的函数是偶函数.则最小正实数m的值为.三、解答题(17题10,其余每题12分)17.已知函数f(x)=tan(2x+),求f(x)的定义域与最小正周期.18.已知a为实数,函数f(x)=(x2+1)(x+a).若f′(﹣1)=0,求函数y=f(x)在[﹣,1]上的最大值.19.已知f(x)=ln(e x+a)是定义域为R的奇函数,g(x)=λf(x).(1)求实数a的值;(2)若g(x)≤xlog2x在x∈[2,3]上恒成立,求λ的取值范围.20.已知函数.(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在区间上的最大值和最小值.21.已知函数f(x)=(1)若a=1,求函数f(x)的零点;(2)若函数f(x)在[﹣1,+∞)上为增函数,求a的范围.22.已知函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)若对于任意的x∈(0,+∞),都有f(x)≤,求k的取值范围.2014-2015学年辽宁省大连二十中高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题:(本大题共12小题,每题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.已知i是虚数单位,则=()A. 1﹣2i B. 2﹣i C. 2+i D. 1+2i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由题意,可对复数代数式分子与分母都乘以1+i,再由进行计算即可得到答案.解答:解:故选D点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握.2.已知集合A={x|1<x<4},B={x|x2﹣2x﹣3≤0},则A∩B=()A.(﹣1,3) B.(1,3] C. [3,4) D. [﹣1,4)考点:交集及其运算.专题:集合.分析:求出B中不等式的解集,确定出B,求出两集合的交集即可.解答:解:由B中的不等式变形得:(x﹣3)(x+1)≤0,解得:﹣1≤x≤3,即B=[﹣1,3],∵A=(1,4),∴A∩B=(1,3].故选:B.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.“若x,y∈R且x2+y2=0,则x,y全为0”的否命题是()A.若x,y∈R且x2+y2≠0,则x,y全不为0B.若x,y∈R且x2+y2≠0,则x,y不全为0C.若x,y∈R且x,y全为0,则x2+y2=0D.若x,y∈R且xy≠0,则x2+y2≠0考点:四种命题.专题:计算题.分析:否定“若x,y∈R且x2+y2=0,则x,y全为0”的题设,得到否命题的题设,再否定“若x,y∈R且x2+y2=0,则x,y全为0”的结论,得到否命题的结论.由此能够得到命题“若x,y∈R且x2+y2=0,则x,y全为0”的否命题.解答:解:先否定“若x,y∈R且x2+y2=0,则x,y全为0”的题设,得到否命题的题设“若x,y∈R且x2+y2≠0”,再否定“若x,y∈R且x2+y2=0,则x,y全为0”的结论,得到否命题的结论“则x,y不全为0”.由此得到命题“若x,y∈R且x2+y2=0,则x,y全为0”的否命题是:若x,y∈R且x2+y2≠0,则x,y不全为0.故选B.点评:本题考查四种命题的互换,是基础题.解题时要认真审题,仔细解答,注意全为0和否定形式是不全为0.4.若命题“p或q”为真,“非p”为真,则()A. p真q真 B. p假q真 C. p真q假 D. p假q假考点:复合命题的真假.专题:简易逻辑.分析:根据“非p”为真,得到p假,根据命题“p或q”为真,则p真或q真,从而得到答案.解答:解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,∴p假q真,故选:B.点评:本题考查了复合命题的真假的判断,是一道基础题.5.若函数f(+1)=x2﹣2x,则f(3)=()A. 0 B. 1 C. 2 D. 3考点:函数的值.专题:函数的性质及应用.分析:由函数的性质得f(3)=f()=22﹣2×2=0.解答:解:∵函数f(+1)=x2﹣2x,∴f(3)=f()=22﹣2×2=0.故选:A.点评:本题考查函数值的求法,是基础题,解题时要注意函数性质的合理运用.6.已知U={y|y=log2x,x>1},P={y|y=,x>2},则∁U P=()A. [,+∞) B.(0,) C.(0,+∞) D.(﹣∞,0)∪(,+∞)考点:对数函数的单调性与特殊点;补集及其运算.专题:计算题.分析:先求出集合U中的函数的值域和P中的函数的值域,然后由全集U,根据补集的定义可知,在全集U中不属于集合P的元素构成的集合为集合A的补集,求出集合P的补集即可.解答:解:由集合U中的函数y=log2x,x>1,解得y>0,所以全集U=(0,+∞),同样:P=(0,),得到C U P=[,+∞).故选A.点评:此题属于以函数的值域为平台,考查了补集的运算,是一道基础题.7.若θ∈[,],cos2θ=﹣则sinθ=()A. B. C. D.考点:二倍角的余弦.专题:三角函数的求值.分析:根据余弦函数的倍角公式即可得到结论.解答:解:∵cos2θ=﹣=1﹣2sin2θ,∴sin2θ=,∵θ∈[,],∴sinθ=,故选:B点评:本题主要考查三角函数求值,根据余弦函数的倍角公式是解决本题的关键.8.设函数f(x)=xe x,则()A. x=1为f(x)的极大值点 B. x=1为f(x)的极小值点C. x=﹣1为f(x)的极大值点 D. x=﹣1为f(x)的极小值点考点:利用导数研究函数的极值.专题:导数的概念及应用.分析:由题意,可先求出f′(x)=(x+1)e x,利用导数研究出函数的单调性,即可得出x=﹣1为f(x)的极小值点解答:解:由于f(x)=xe x,可得f′(x)=(x+1)e x,令f′(x)=(x+1)e x=0可得x=﹣1令f′(x)=(x+1)e x>0可得x>﹣1,即函数在(﹣1,+∞)上是增函数令f′(x)=(x+1)e x<0可得x<﹣1,即函数在(﹣∞,﹣1)上是减函数所以x=﹣1为f(x)的极小值点故选:D点评:本题考查利用导数研究函数的极值,解题的关键是正确求出导数及掌握求极值的步骤,本题是基础题,9.已知p:x≥k,q:(x+1)(2﹣x)<0,如果p是q的充分不必要条件,则k的取值范围是()A. [2,+∞) B.(2,+∞) C. [1,+∞) D.(﹣∞,﹣1]考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:求出不等式的等价条件,利用充分条件和必要条件的定义即可得到结论.解答:解:由:(x+1)(2﹣x)<0<0得x>2或x<﹣1,即q:x>2或x<﹣1,∵p是q的充分不必要条件,∴k>2,故选:B.点评:本题主要考查充分条件和必要条件的判断,根据不等式的解法,求出不等式的等价条件是解决本题的关键.10.已知函数f(x)=sinx﹣cosx,x∈R,若f(x)≥1,则x的取值范围为() A. {x|kπ+≤x≤kπ+π,k∈Z} B. {x|2kπ+≤x≤2kπ+π,k∈Z}C. {x|kπ+≤x≤kπ+,k∈Z} D. {x|2kπ+≤x≤2kπ+,k∈Z}考点:三角函数的化简求值.专题:三角函数的图像与性质.分析:利用两角差的正弦函数化简函数f(x)=sinx﹣cosx为一个角的一个三角函数的形式,根据f(x)≥1,求出x的范围即可.解答:解:函数f(x)=sinx﹣cosx=2sin(x﹣),因为f(x)≥1,所以2sin(x ﹣)≥1,所以,所以f(x)≥1,则x的取值范围为:{x|2kπ+≤x≤2kπ+π,k∈Z}故选:B点评:本题是基础题,考查三角函数的化简,三角函数不等式的解法,考查计算能力,常考题型.11.函数y=Asin(ωx+φ)(ω>0,|ϕ|<,x∈R)的部分图象如图所示,则函数表达式为()A. y=﹣4sin() B. y=4sin()C. y=﹣4sin() D. y=4sin()考点:由y=Asin(ωx+φ)的部分图象确定其解析式.分析:先由图象的最高点、最低点的纵坐标确定A(注意A的正负性),再通过周期确定ω,最后通过特殊点的横坐标确定φ,则问题解决.解答:解:由图象得A=±4,=8,∴T=16,∵ω>0,∴ω==,①若A>0时,y=4sin(x+φ),当x=6时,φ=2kπ,φ=2kπ﹣,k∈Z;又|φ|<,∴φ∈∅;②若A<0时,y=﹣4sin(x+φ),当x=﹣2时,φ=2kπ,φ=2kπ+,k∈z;又|φ|<,∴φ=.综合①②该函数解析式为y=﹣4sin().故选A.点评:本题主要考查由三角函数部分图象信息求其解析式的基本方法.12.设函数g(x)=x2﹣2(x∈R),f(x)=,则f(x)的值域是()A. [﹣,0]∪(1,+∞) B. [0,+∞) C. [,+∞) D. [﹣,0]∪(2,+∞)考点:分段函数的应用.专题:计算题;函数的性质及应用.分析:当x<g(x)时,x>2 或x<﹣1,f(x)=g(x)+x+4=x2﹣2+x+4=x2+x+2=(x+0.5)2+1.75,其值域为:(2,+∞).当x≥g(x)时,﹣1≤x≤2,f(x)=g(x)﹣x=x2﹣2﹣x=(x﹣0.5)2﹣2.25,其值域为:[﹣2.25,0].由此能得到函数值域.解答:解:当x<g(x),即x<x2﹣2,(x﹣2)(x+1)>0时,x>2 或x<﹣1,f(x)=g(x)+x+4=x2﹣2+x+4=x2+x+2=(x+0.5)2+1.75,∴其最小值为f(﹣1)=2,其最大值为+∞,因此这个区间的值域为:(2,+∞).当x≥g(x)时,﹣1≤x≤2,f(x)=g(x)﹣x=x2﹣2﹣x=(x﹣0.5)2﹣2.25其最小值为f(0.5)=﹣2.25,其最大值为f(2)=0因此这区间的值域为:[﹣2.25,0].综合得:函数值域为:[﹣2.25,0]U(2,+∞),故选D.点评:本题考查f(x)的值域的求法.解题时要认真审题,注意分类讨论思想的合理运用.二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)..13.已知复数z=(3+i)2(i为虚数单位),则|z|= 10 .考点:复数求模;复数代数形式的乘除运算.专题:计算题.分析:利用复数的模的平方等于复数的模的乘积,直接计算即可.解答:解:复数z=(3+i)2(i为虚数单位),则|z|=|3+i||3+i|==10.故答案为:10.点评:本题考查复数模的求法,复数代数形式的乘除运算,考查计算能力.14.若函数f(x)=x2﹣(2a﹣1)x+a+1是区间(1,2)上的单调函数,则实数a的取值范围是{a|或} .考点:函数单调性的性质.专题:函数的性质及应用.分析:先求出二次函数的对称轴,由题意知,区间(1,2)在对称轴的左侧或者右侧,列出不等式解出实数a的取值范围.解答:解:∵二次函数f(x)=x2﹣(2a﹣1)x+a+1 的对称轴为 x=a﹣,f(x)=x2﹣(2a﹣1)x+a+1是区间(1,2)上的单调函数,∴区间(1,2)在对称轴的左侧或者右侧,∴a﹣≥2,或a﹣≤1,∴a≥,或 a≤,故答案为:{a|a≥,或 a≤}.点评:本题考查二次函数的性质,体现了分类讨论的数学思想.15.若曲线y=ln(﹣x)上点P处的切线平行于直线2x+y+1=0,则点P的坐标是(﹣,﹣ln2).考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用;直线与圆.分析:先设P(x,y),对函数求导,由在点P处的切线与直线2x+y+1=0平行,即斜率相等,求出x,最后求出y.解答:解:设P(x,y),则y=ln(﹣x),∵y′=,在点P处的切线与直线2x+y+1=0平行,令=﹣2,解得x=﹣,∴y=ln(﹣x)=﹣ln2,故P(﹣,﹣ln2).故答案为:(﹣,﹣ln2).点评:本题考查了导数的几何意义,即点P处的切线的斜率是该点处的导数值,以及切点在曲线上和切线上的应用.16.已知函数f(x)=sin(ωx+φ),其中ω>0,|φ|<,cos•cosφ﹣sin•sin φ=0且函数f(x)的图象的相邻两条对称轴之间的距离等于,函数f(x)的图象向左平移m个单位所对应的函数是偶函数.则最小正实数m的值为.考点:函数y=Asin(ωx+φ)的图象变换.专题:计算题;三角函数的图像与性质.分析:利用特殊角的三角函数值化简cos cosφ﹣sin sinφ=0,根据|φ|<直接求出φ的值,若函数f(x)的图象的相邻两条对称轴之间的距离等于,求出周期,求出ω,得到函数f(x)的解析式,函数f(x)的图象向左平移m个单位所对应的函数是偶函数.推出m=+(k∈Z),可求最小正实数m.解答:解:由cos cosφ﹣sin sinφ=0,解得cos cosφ﹣sin sinφ=0,即cos (+φ)=0,又∵|φ|<,∴φ=,可得解析式:f(x)=sin(ωx+),∵依题意,=,又T=,故解得:ω=3,∴f(x)=sin(3x+),∵函数f(x)的图象向左平移m个单位后所对应的函数为g(x)=sin[3(x+m)+],∴g(x)是偶函数当且仅当3m+=kπ+(k∈Z),即m=+(k∈Z),从而解得,最小正实数m=.故答案为:.点评:本题是中档题,考查三角函数的字母变量的求法,三角函数的图象的平移,偶函数的性质,转化思想的应用,考查计算能力,是常考题.三、解答题(17题10,其余每题12分)17.已知函数f(x)=tan(2x+),求f(x)的定义域与最小正周期.考点:正切函数的图象.专题:三角函数的图像与性质.分析:由条件利用正切函数的定义域和周期性,求得f(x)的定义域与最小正周期.解答:解:由函数f(x)=tan(2x+),可得2x+≠kπ+,k∈Z,求得x≠+,可得f(x)的定义域为{x|x≠+,k∈Z}.函数f(x)的最小正周期为.点评:本题主要考查正切函数的定义域和周期性,属于基础题.18.已知a为实数,函数f(x)=(x2+1)(x+a).若f′(﹣1)=0,求函数y=f(x)在[﹣,1]上的最大值.考点:利用导数求闭区间上函数的最值.专题:导数的概念及应用.分析:先求出a的值,得到函数f(x)的单调区间,从而求出区间上的最大值.解答:解:∵f′(﹣1)=0,∴3﹣2a+1=0,即a=2,∴f′(x)=3x2+4x+1=3(x+)(x+1).由f′(x)>0,得x<﹣1或x>﹣;由f′(x)<0,得﹣1<x<﹣.因此,函数f(x)在[﹣,1]上的单调递增区间为[﹣,﹣1],[﹣,1],单调递减区间为[﹣1,﹣].∴f(x)在x=﹣1处取得极大值为f(﹣1)=2;又∵f(1)=6,∴f(x)在[﹣,1]上的最大值为f(1)=6点评:本题考查了函数的单调性、最值问题,考查导数的应用,是一道基础题.19.已知f(x)=ln(e x+a)是定义域为R的奇函数,g(x)=λf(x).(1)求实数a的值;(2)若g(x)≤xlog2x在x∈[2,3]上恒成立,求λ的取值范围.考点:对数函数图象与性质的综合应用;函数奇偶性的判断.专题:函数的性质及应用.分析:(1)令f(0)=0,解得a=0,可得函数f(x)=ln(e x)=x,经检验满足条件,故所求实数a的值为0.(2)根据f(x)=x,g(x)=λx,可得λ≤log2x在x∈[2,3]上恒成立,求出函数y=log2x 在x∈[2,3]上的最小值为log22=1,可得λ的取值范围.解答:解:(1)函数f(x)=ln(e x+a)是定义域为R的奇函数,令f(0)=0,即ln(1+a)=0,解得a=0,故函数f(x)=ln(e x)=x.…(4分)显然有f(﹣x)=﹣f(x),函数f(x)=x是奇函数,满足条件,所求实数a的值为0.…(6分)(2)f(x)=x,g(x)=λx,则λx≤xlog2x在x∈[2,3]上恒成立,即λ≤log2x在x∈[2,3]上恒成立,…(8分)∵函数y=log2x在x∈[2,3]上的最小值为log22=1,…(11分)∴λ≤1,即λ的取值范围为(﹣∞,1].…(12分)点评:本题主要考查函数的奇偶性,对数函数的图象和性质,属于中档题.20.已知函数.(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在区间上的最大值和最小值.考点:三角函数的周期性及其求法;两角和与差的余弦函数;三角函数的最值.专题:三角函数的图像与性质.分析:(Ⅰ)利用两角和公式和二倍角公式对函数的解析式进行化简整理后,利用正弦函数的性质求得函数的最小正周期.(Ⅱ)利用x的范围确定2x+的范围,进而利用正弦函数的单调性求得函数的最大和最小值.解答:解:(Ⅰ)∵,=4cosx()﹣1=sin2x+2cos2x﹣1=sin2x+cos2x=2sin(2x+),所以函数的最小正周期为π;(Ⅱ)∵﹣≤x≤,∴﹣≤2x+≤,∴当2x+=,即x=时,f(x)取最大值2,当2x+=﹣时,即x=﹣时,f(x)取得最小值﹣1.点评:本题主要考查了三角函数的周期性及其求法,三角函数的最值.解题的关键是对函数解析式的化简整理.21.已知函数f(x)=(1)若a=1,求函数f(x)的零点;(2)若函数f(x)在[﹣1,+∞)上为增函数,求a的范围.考点:函数零点的判定定理;函数单调性的判断与证明.专题:函数的性质及应用.分析:(1)由f(x)=0,可得①,或②,分别解①和②,求得x的值,即为所求.(2)显然,函数g(x)=x﹣在[+∞)上递增,且g()=﹣;h(x)=x2+2x+a﹣1在[﹣1 ]也递增,且h()=a+,则由题意可得a+≤﹣,由此求得a的范围.解答:解:(1)若a=1,由f(x)=0,可得①,或②.解①求得x=,解②求得x=0,或 x=﹣2.综上可得,函数f(x)的零点为,0,﹣2.(2)显然,函数g(x)=x﹣在[+∞)上递增,且g()=﹣;函数h(x)=x2+2x+a﹣1在[﹣1 ]也递增,且h()=a+,故若函数f(x)在[﹣1+∞)上为增函数,则 a+≤﹣,即a≤﹣.点评:本题主要考查求函数的零点,函数的单调性的判断以及性质应用,体现了分类讨论的数学思想,属于基础题22.已知函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)若对于任意的x∈(0,+∞),都有f(x)≤,求k的取值范围.考点:利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.专题:函数的性质及应用;导数的概念及应用.分析:(I)求导,令导数等于零,解方程,跟据f′(x),f(x)随x的变化情况即可求出函数的单调区间;(Ⅱ)根据若对于任意的x∈(0,+∞),都有f(x)≤,利用导数求函数f(x)在区间(0,+∞)的最大值,即可求出k的取值范围.解答:解:(Ⅰ)=,令f′(x)=0,得x=±k当k>0时,f′(x)f(x)随x的变化情况如下:x (﹣∞,﹣k)﹣k (﹣k,k) k (k,+∞)f′(x) + 0 ﹣ 0 +F(x)递增 4k2e﹣1递减 0 递增所以,f(x)的单调递增区间是(﹣∞,﹣k),和(k,+∞),单调递减区间是(﹣k,k);当k<0时,f′(x)f(x)随x的变化情况如下:x (﹣∞,k) k (k,﹣k)﹣k (﹣k,+∞)f′(x)﹣ 0 + 0 ﹣F(x)递减 0 递增 4k2e﹣1递减所以,f(x)的单调递减区间是(﹣∞,k),和(﹣k,+∞),单调递增区间是(k,﹣k);(Ⅱ)当k>0时,有f(k+1)=,不合题意,当k<0时,由(I)知f(x)在(0,+∞)上的最大值是f(﹣k)=,∴任意的x∈(0,+∞),f(x)≤,⇔f(﹣k)=≤,解得﹣,故对于任意的x∈(0,+∞),都有f(x)≤,k的取值范围是﹣.点评:此题是个难题.考查利用导数研究函数的单调性和在闭区间上的最值问题,对方程f'(x)=0根大小进行讨论,体现了分类讨论的思想方法,特别是(II)的设置,有关恒成立问题一般转化为求函数的最值问题,体现了转化的思想,增加了题目的难度.。

2014-2015学年辽宁省沈阳市铁路实验中学高二(上)期初数学试卷

2014-2015学年辽宁省沈阳市铁路实验中学高二(上)期初数学试卷

2014-2015学年辽宁省沈阳市铁路实验中学高二(上)期初数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共36.0分)1.某学校有高中学生900人,其中高一有400人,高二300人,高三200人,采用分层抽样的方法抽取一个容量为45的样本,那么高一、高二、高三各年级抽取的学生人数为()A.25、15、5B.20、15、10C.30、10、5D.15、15、15【答案】B【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三各年级抽取的学生人数分别为400×=20,300×=15,200×=10,故选B.先求出每个个体被抽到的概率,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数.本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.2.已知向量,,,,若向量与垂直,则k的值为()A. B.7 C. D.【答案】A【解析】解:∵,,,∴=(4-k,3+2k),=(5,1)∵向量与垂直,∴()•()=0可得:(4-k)×5+(3+2k)×1=0∴20-5k+3+2k=0⇒k=故选A根据向量坐标运算的公式,结合,,,,可得向量与的坐标.再根据向量与互相垂直,得到它们的数量积等于0,利用两个向量数量积的坐标表达式列方程,解之可得k的值.本题根据两个向量垂直,求参数k的值,着重考查了向量坐标的线性运算、向量数量积的坐标公式和两个向量垂直的充要条件等知识点,属于基础题.3.袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球.从袋中任取两球,两球颜色不同的概率为()A. B. C. D.【答案】D【解析】解:令红球、白球、黑球分别为A,a,b,1,2,3,则从袋中任取两球有(A,a),(A,b),(A,1),(A,2),(A,3),(a,1),(a,2),(a,2),(a,b),(b,1),(b,2),(b,3),(1,2),(1,3),(2,3),共15种取法,其中两球颜色相同有(a,b),(1,2),(1,3),(2,3)共4种取法,由古典概型及对立事件的概率公式可得P=1-.故选D.用列举法列出从6个球中任取两个球的所有方法,查出两球颜色相同的方法种数,求出两球颜色相同的概率,然后由对立事件的概率计算公式得答案.本题考查了古典概型及其概率计算公式,考查了互斥事件和对立事件的概率计算公式,解答的关键是列举时做到不重不漏,是基础题.4.等差数列{a n}的前n项和为S n,若S2=2,S4=10,则S6等于()A.12B.18C.24D.42【答案】C【解析】解:∵等差数列{a n}的前n项和为S n,∴S2,S4-S2,S6-S4成等差数列,即2,8,S6-10成等差数列,∴2+S6-10=8×2,∴S6=24,故选C.利用等差数列的性质s2,s4-s2,s6-s4成等差数列进行求解.本题使用了等差数列的一个重要性质,即等差数列的前n项和为s n,则s n,s2n-s n,s3n-s2n,…成等差数列.5.在△ABC中,a=3,b=5,sin A=,则sin B=()A. B. C. D.1【答案】B【解析】解:∵a=3,b=5,sin A=,∴由正弦定理得:sin B===.故选B由正弦定理列出关系式,将a,b及sin A的值代入即可求出sin B的值.此题考查了正弦定理,熟练掌握正弦定理是解本题的关键.6.已知两个等差数列{a n}和{b n}的前n项和分别为A n和B n,且,则使得为整数的正整数n的个数是()A.2B.3C.4D.5【答案】D【解析】解:由等差数列的前n项和及等差中项,可得=(n∈N*),故n=1,2,3,5,11时,为整数.故选D充分利用等差数列前n项和与某些特殊项之间的关系解题.本题主要考查等差数列的性质、等差中项的综合应用以及分离常数法,数的整除性是传统问题的进一步深化,对教学研究有很好的启示作用.已知两个等差数列{a n}和{b n}的前n项和分别为A n和B n,则有如下关系=.7.设{a n}(n∈N*)是等差数列,S n是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是()A.d<0B.a7=0C.S9>S5D.S6与S7均为S n的最大值【答案】C【解析】解:由S5<S6得a1+a2+a3+…+a5<a1+a2++a5+a6,即a6>0,又∵S6=S7,∴a1+a2+…+a6=a1+a2+…+a6+a7,∴a7=0,故B正确;同理由S7>S8,得a8<0,∵d=a7-a6<0,故A正确;而C选项S9>S5,即a6+a7+a8+a9>0,可得2(a7+a8)>0,由结论a7=0,a8<0,显然C选项是错误的.∵S5<S6,S6=S7>S8,∴S6与S7均为S n的最大值,故D正确;故选C.利用结论:n≥2时,a n=s n-s n-1,易推出a6>0,a7=0,a8<0,然后逐一分析各选项,排除错误答案.本题考查了等差数列的前n项和公式和s n的最值问题,熟练应用公式是解题的关键.8.设tanα、tanβ是方程x2+3x+4=0的两根,且α、β∈(-,),则α+β的值为()A.-B.C.或-D.-或【答案】A【解析】解:依题意得tanα+tanβ=-3<0,tanα•tanβ=4>0,∴tan(α+β)===.易知tanα<0,tanβ<0,又α,β∈(-,),∴α∈(-,0),β∈(-,0),∴α+β∈(-π,0),∴α+β=-.故选A.由tanα,tanβ是方程x2+3x+4=0的两个根,根据韦达定理表示出两根之和与两根之积,表示出所求角度的正切值,利用两角和的正切函数公式化简后,将表示出的两根之和与两根之积代入即可求出tan(α+β)的值,然后根据两根之和小于0,两根之积大于0,得到两根都为负数,根据α与β的范围,求出α+β的范围,再根据特殊角的三角函数值,由求出的tan(α+β)的值即可求出α+β的值.此题考查学生灵活运用韦达定理及两角和的正切函数公式化简求值,是一道中档题.本题的关键是找出α+β的范围.9.△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则ab的值为()A. B. C.1 D.【答案】A【解析】解:∵△ABC的边a、b、c满足(a+b)2-c2=4,∴c2=(a+b)2-4=a2+b2+2ab-4,又C=60°,由余弦定理得c2=a2+b2-2abcos C=a2+b2-ab,∴2ab-4=-ab,∴ab=.故选:A.将(a+b)2-c2=4化为c2=(a+b)2-4=a2+b2+2ab-4,又C=60°,再利用余弦定理得c2=a2+b2-2abcos C=a2+b2-ab即可求得答案.本题考查余弦定理,考查代换与运算的能力,属于基本知识的考查.10.在△ABC中,点P是AB上一点,且,Q是BC中点,AQ与CP交点为M,又,则t=()A. B. C. D.【答案】C【解析】解:∵∴∴即P是AB的一个三等分点,过点Q作PC的平行线交AB于D,∵Q是BC中点,∴QD=PC,且D是PB的中点,从而QD=2PM,∴PC=4PM,∴CM=CP,又,则t=故选C.先根据向量关系得即P是AB的一个三等分点,利用平面几何知识,过点Q作PC的平行线交AB于D,利用三角形的中位线定理得到PC=4PM,结合向量条件即可求得t值.本小题主要考查向量在几何中的应用、两个向量的加减法的法则,以及其几何意义,利用向量的加法的法则,以及其几何意义等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.11.若,则cosα+sinα的值为()A. B. C. D.【答案】C【解析】解:∵,∴,故选C题目的条件和结论都是三角函数式,第一感觉是先整理条件,用二倍角公式和两角差的正弦公式,约分后恰好是要求的结论.本题解法巧妙,能解的原因是要密切注意各公式间的内在联系,熟练地掌握这些公式的正用、逆用以及某些公式变形后的应用.12.设O点在△ABC内部,且有,则△ABC的面积与△AOC的面积的比为()A.2B.C.3D.【答案】C【解析】解:分别取AC、BC的中点D、E,∵,∴,即2=-4,∴O是DE的一个三等分点,∴=3,故选C.根据,变形得∴,利用向量加法的平行四边形法则可得2=-4,从而确定点O的位置,进而求得△ABC 的面积与△AOC 的面积的比.此题是个基础题.考查向量在几何中的应用,以及向量加法的平行四边形法则和向量共线定理等基础知识,同时考查学生灵活应用知识分析解决问题的能力和计算能力.二、填空题(本大题共4小题,共12.0分)13.执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为______ .【答案】9【解析】解:程序在运行过程中各变量的聚会如下表示:是否继续循环a b循环前/12第一圈是32第二圈是52第三圈是72第四圈是92第五圈否故最终输出的a值为9.故答案为:9.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环累加a值,并判断满足a>8时输出a的值.根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.14.已知sinα=2cosα,则tan(+α)的值等于______ .【答案】-3【解析】解:∵sinα=2cosα,∴tanα=2,∴tan(+α)==-3,故答案为:-3.由条件求得tanα=2,再根据tan(+α)=计算求得结果.本题主要考查偷偷能够交三角函数的基本关系、两角和的正切公式的应用,属于基础题.15.若函数f(x)=A sin(2x+φ)(A>0,-<φ<)的部分图象如图所示,则f(0)= ______ .【答案】-1【解析】解:∵f(x)=A sin(2x+∅)(A>0),∴由图知,A=2;又f()=2,∴2×+∅=2kπ+,k∈Z,∴∅=2kπ-,k∈Z.又-<∅<,∴∅=-.∴f(x)=2sin(2x-),∴f(0)=2sin(-)=-1.故答案为:-1.,由图可求得A=2,再由2×+∅=2kπ+可求得∅,从而可求得f(0).本题考查由y=A sin(ωx+φ)的部分图象确定其解析式,求∅是难点,属于中档题.16.若向量,满足||=1,||=2,且与的夹角为,则|2|= ______ .【答案】2【解析】解:∵||=1,||=2,且与的夹角为,∴=4+4•+=4×12+4×1×2×cos+22=4+4+4=12;∴|2|==2;故答案为:2.利用平面向量的数量积求出模长的值,从而求出模长.本题考查了利用平面向量的数量积求模长的问题,是基础题.三、解答题(本大题共6小题,共72.0分)17.已知:sinα=,cos(α+β)=-,0<α<,π<α+β<π,求cosβ的值.【答案】解因为sinα=,0<α<,∴cosα==.∵cos(α+β)=-,π<α+β<π,∴sin(α+β)=-=-.∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=-×+(-)×=-1.【解析】由条件利用同角三角函数的基本关系求出cosα、sin(α+β)的值,再根据cosβ=cos[(α+β)-α],利用两角差的余弦公式,计算求得结果.本题主要考查同角三角函数的基本关系,两角和差的余弦公式的应用,以及三角函数在各个象限中的符号,属于基础题.18.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一的学生达标的概率;(3)为了分析学生的体能与身高,体重等方面的关系,必须再从样本中按分层抽样方法抽出50人作进一步分析,则体能在[120,130)的这段应抽多少人?【答案】解:(1)第二小组频率为:=0.08,样本容量为:=150.(2)=0.88.(3)×150×=15.【解析】(1)第二小组的频率是第二小组在整体中的比重,样本容量=频数;频率(2)用频率估计概率;(3)求出体能在[120,130)的人数,再用分层抽样抽取体能在[120,130)的这段的人数.本题考查了频率分布直方图的应用及分层抽样的方法,属于基础题.19.已知sinα=,,(1)求sin2α-cos2的值;(2)求函数f(x)=cosαsin2x-cos2x的最小正周期和单调增区间.【答案】解:(1)∵sinα=,,∴cosα=-=-(舍正)∴sin2α-cos2=2sinαcosα-(1+cosα)=2××(-)-(1-)=-.(2)由(1)的结论,可得f(x)=×(-)×sin2x-cos2x=-sin2x-cos2x=-sin(2x+)∴函数f(x)的最小正周期==π,由+2kπ≤2x+≤+2kπ(k∈Z),得+kπ≤x≤+kπ(k∈Z).∴函数f(x)的增区间为[+kπ,+kπ].(k∈Z)【解析】(1)由二倍角的三角函数公式化简,得原式=2sinαcosα-(1+cosα).根据sinα=,利用同角三角函数的关系算出cosα=-,代入化简后的式子即可得到所求式子的值.(2)由(1)知f(x)=-sin2x-cos2x,利用辅助角公式化简得f(x)=-sin(2x+),再根据三角函数的周期公式和单调区间的公式加以计算,即可得出函数f(x)的最小正周期和单调增区间.本题求三角函数式的值,并依此求函数f(x)的最小正周期和单调增区间.着重考查了同角三角函数的基本关系、二倍角的三角函数公式和三角函数的图象与性质等知识,属于中档题.20.已知△ABC的内角A,满足coa2A-cos A+1≤0.(1)求A的取值范围;(2)求函数f(A)=λ(sin A+cos A)+sin A cos A的最小值.【答案】解:(1)△ABC中,由coa2A-cos A+1≤0,得2cos2A-cos A≤0,求得0≤cos A≤,∴A∈[,].(2)设sin A+cos A=t,则sin A cos A=,所以原函数化为y=+λt-,它的对称轴t=-λ.又t=sin(A+),由A∈[,]可得A+∈[,],∴t∈[1,].当-λ<1,即λ>-1时,y min=λ.当1≤-λ≤,即-≤λ≤-1时,y min=-.当-λ>,即λ>-时,y min=+λ.【解析】(1)△ABC中,由条件求得0≤cos A≤,可得A的范围.(2)设sin A+cos A=t,则sin A cos A=,所以原函数化为y=+λt-,它的对称轴t=-λ.再根据t的范围(用区间表示),分类讨论对称轴与区间的关系,求出函数的最小值.本题主要考查二倍角的余弦公式,正弦函数的定义域和值域,二次函数的性质,体现了分类讨论、转化的数学思想,属于基础题.21.已知等差数列{a n}的前n项和为S n,a3=5,S3=21,数列b n=|a n|,求数列{b n}的前n项和T n.【答案】解:已知等差数列{a n}的前n项和为S n,a3=5,S3=21解得:∴a n=11-2n当1≤n≤5时,|a n|=a n=11-2nT n=10n-n2当n≥6时|a n|=-a nT n=a1+…+a5-a6-…-a n=2(a1+a5)-(a1+a2+a3+…+a n)=n2-10n+50综上所述:T n=故答案为:【解析】首先根据已知条件建立方程组求得a n=11-2n,然后进行分类讨论当1≤n≤5时,|a n|=a n=11-2nT n=10n-n2当n≥6时|a n|=-a nT n=a1+…+a5-a6-…-a n=2(a1+a5)-(a1+a2+a3+…+a n)=n2-10n+50综上所述:T n=本题考查的知识点:等差数列的通项公式,等差数列的前n项和公式,以及分类讨论问题,恒等变换问题.22.数列{a n}满足a n+1+a n=4n-3(n∈N*)(Ⅰ)若{a n}是等差数列,求其通项公式;(Ⅱ)若{a n}满足a1=2,S n为{a n}的前n项和,求S2n+1.【答案】解:(I)由题意得a n+1+a n=4n-3…①a n+2+a n+1=4n+1…②.…(2分)②-①得a n+2-a n=4,∵{a n}是等差数列,设公差为d,∴d=2,(4分)∵a1+a2=1∴a1+a1+d=1,∴.(6分)∴.(7分)(Ⅱ)∵a1=2,a1+a2=1,∴a2=-1.(8分)又∵a n+2-a n=4,∴数列的奇数项与偶数项分别成等差数列,公差均为4,S2n+1=(a1+a3+…+a2n+1)+(a2+a4+…+a2n)(12分)==4n2+n+2.(14分)【解析】(I)由题意得a n+1+a n=4n-3,a n+2+a n+1=4n+1.所以a n+2-a n=4,由{a n}是等差数列,公差d=2,能求出.(Ⅱ)由a1=2,a1+a2=1,知a2=-1.因为a n+2-a n=4,所以数列的奇数项与偶数项分别成等差数列,公差均为4,故a2n-1=4n-2,a2n=4n-5.由此能求出S2n+1.本题数列的性质和应用,数学思维的要求比较高,有一定的探索性.综合性强,难度大,易出错.解题时要认真审题,注意等差数列的通项公式和前n项和公式的灵活运用.。

2023-2024学年广东省实验中学高二(上)期中数学试卷【答案版】

2023-2024学年广东省实验中学高二(上)期中数学试卷【答案版】

2023-2024学年广东省实验中学高二(上)期中数学试卷一.单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线l 的方向向量是e →=(−1,√3),则直线l 的倾斜角是( ) A .π6B .π3C .2π3D .5π62.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长为4,焦距为2,则椭圆C 的上顶点到右焦点的距离为( )A .6B .√5C .2√5D .43.已知e 1→,e 2→,e 3→为空间内三个不共线的向量,平面α和平面β的法向量分别为a →=e 1→+λe 2→+3e 3→和b→=−e 1→+2e 2→+μe 3→,若α∥β,则λ+μ=( ) A .5B .﹣5C .3D .﹣34.为做好“甲型流感”传染防控工作,某校坚持每日测温报告,以下是高三一班,二班各10名同学的体温记录(从低到高):高三一班:36.1,36.2,m ,36.4,36.5,36.7,36.7,36.8,36.8,37.0(单位:℃), 高三二班:36.1,36.1,36.3,36.3,36.4,36.4,36.5,36.7,n ,37.1(单位:℃) 若这两组数据的第25百分位数、第90百分位数都分别对应相等,则n ﹣m 为( ) A .0.6B .0.5C .0.4D .0.35.已知f(x)=sin2x −√3cos2x ,若方程f(x)=23在(0,π)的解为x 1,x 2,则sin (x 1+x 2)=( ) A .12B .−12C .−√32D .√326.若命题“关于x 的二次方程x 2+2mx +2m +1=0在(﹣1,3)上至多有一个解”是假命题,则m 的取值范围是( ) A .(−3,−54)B .(−3,1−√2)C .(−54,1)D .(−54,1−√2)7.已知cos α=35,α∈(0,π2),角β的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P(7√210,√210)且β∈(0,π),则α﹣β=( )A .π4B .−π4C .π6D .−π68.“曼哈顿距离”是由赫尔曼•闵可夫斯基所创的词汇,是一种使用在几何度量空间的几何学用语,例如在平面直角坐标系中,点P (x 1,y 1)、Q (x 2,y 2)的曼哈顿距离为:L PQ =|x 1﹣x 2|+|y 1﹣y 2|.若点P (1,2),点Q 为圆C :x 2+y 2=4上一动点,则L PQ 的最大值为( )A .1+√2B .1+2√2C .3+√2D .3+2√2二.多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分) 9.若复数z =m 2﹣2m ﹣3+(m 2﹣1)i (m ∈R ),则下列正确的是( ) A .当m =1或m =﹣1时,z 为实数 B .若z 为纯虚数,则m =﹣1或m =3C .若复数z 对应的点位于第二象限,则1<m <3D .若复数z 对应的点位于直线y =2x 上,则z =12+24i 10.下列对各事件发生的概率的判断正确的是( )A .一个袋子中装有2件正品和2件次品,任取2件,“两件都是正品”与“至少有1件是次品”是对立事件B .三人独立地破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是相互独立的,则此密码被破译的概率为25C .甲袋中有除颜色外其他均相同的8个白球,4个红球,乙袋中有除颜色外其他均相同的6个白球,6个红球,从甲、乙两袋中各任取一个球,则取到同色球的概率为12D .设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率是2311.已知f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,且f (x ),g (x )在(﹣∞,0]单调递减,则( ) A .f (f (1))<f (f (2)) B .f (g (1))<f (g (2)) C .g (f (1))<g (f (2))D .g (g (1))<g (g (2))12.如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,O 为正方体的中心,M 为DD 1的中点,F 为侧面正方形AA 1D 1D 内一动点,且满足B 1F ∥平面BC 1M ,则( )A .若P 为面ABCD 上一点,则满足△OP A 的面积为√22的点的轨迹是椭圆的一部分 B .动点F 的轨迹是一条线段C .三棱锥F ﹣BC 1M 的体积是随点F 的运动而变化的D .若过A ,M ,C 1三点作正方体的截面Ω,Q 为截面Ω上一点,则线段A 1Q 长度的取值范围为[2√63,2√2] 三.填空题(本大题共4小题,每小题5分,共20分)13.已知直线l 1:(a ﹣3)x +(4﹣a )y +1=0与l 2:2(a ﹣3)x ﹣2y +3=0平行,则a = . 14.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1,F 2,椭圆上一点P 满足|PF 2|=|F 1F 2|,且cos ∠PF 1F 2=14,则椭圆的离心率为 . 15.已知a >0,b >0,1a +12b=1,则3a a−1+4b2b−1的最小值为 .16.已知圆C 1:(x +1)2+(y −3m −3)2=4m 2(m ≠0),直线l 的方程y =x +m +2,圆C 1关于直线l 对称的圆为C 2,则C 2所表示的一系列圆的公切线方程为 .四.解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)为增强学生的数学应用能力,某中学举行了一次“数学应用能力竞赛”.为了解参加本次竞赛学生的成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分100分)作为样本(样本容量为n )进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(茎叶图中仅列出了得分在[50,60),[90,100]的数据),如图所示.(1)试估测本次竞赛学生成绩的平均数;(2)在[70,80),[80,90)内按分层抽样的方法抽取5名学生的成绩,从这5名学生中随机抽取2人,求2人成绩都在[70,80)的概率.18.(12分)已知分别过定点A ,B 的直线l 1:ax +y ﹣3=0,l 2:3x +(a ﹣2)y ﹣4a ﹣1=0,l 2与x 轴交于C 点.(1)若l 1为△ABC 中,边BC 上的高所在直线,求边BC 上的中线所在直线方程;(2)若l 1为△ABC 中,边BC 上的中线所在直线,求边BC 上的高所在直线方程.19.(12分)如图,已知四棱锥P ﹣ABCD 的底面为菱形,且∠ABC =60°,AB =PC =2,PA =PB =√2. (1)证明:面P AB ⊥面ABCD .(2)M 是棱PD 上的中点,若过点C ,M 的平面α与BD 平行,且交P A 于点Q ,求面CQM 与面PCB 夹角的余弦值.20.(12分)在平面直角坐标系xOy 中,已知圆x 2+y 2﹣4x =0及点A (﹣1,0),B (1,2). (1)若直线l 平行于AB ,与圆C 相交于D ,E 两点,且DE =AB ,求直线l 的方程;(2)在圆C 上是否存在点P ,使得|P A |2+|PB |2=12?若存在,求点P 的个数;若不存在,说明理由. 21.(12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,2csinAcosB +bsinB =52csinA . (1)求sinA sinC.(2)若a >c ,角B 的平分线交AC 于D , (Ⅰ)求证:BD 2=BA •BC ﹣DA •DC . (Ⅱ)若a =1,求DB •AC 的最大值.22.(12分)如图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =√22,过左焦点F 1作x 轴的垂线交椭圆于A 、A ′两点,|AA ′|=4. (Ⅰ)求该椭圆的标准方程;(Ⅱ)取平行于y 轴的直线与椭圆相交于不同的两点P 、P ′,过P 、P ′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.求△PP 'Q 的面积S 的最大值,并写出对应的圆Q 的标准方程.2023-2024学年广东省实验中学高二(上)期中数学试卷参考答案与试题解析一.单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线l 的方向向量是e →=(−1,√3),则直线l 的倾斜角是( ) A .π6B .π3C .2π3D .5π6解:∵直线l 的方向向量是e →=(−1,√3), ∴倾斜角α的正切值为tan α=√3−1=−√3;又α∈[0,π), 则l 的倾斜角为α=2π3, 故选:C . 2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长为4,焦距为2,则椭圆C 的上顶点到右焦点的距离为( ) A .6B .√5C .2√5D .4解:根据题意可得2b =4,2c =2, ∴b =2,c =1,∴a =√5,∴椭圆C 的上顶点到右焦点的距离为√b 2+c 2=a =√5. 故选:B .3.已知e 1→,e 2→,e 3→为空间内三个不共线的向量,平面α和平面β的法向量分别为a →=e 1→+λe 2→+3e 3→和b→=−e 1→+2e 2→+μe 3→,若α∥β,则λ+μ=( ) A .5B .﹣5C .3D .﹣3解:因为e 1→,e 2→,e 3→为空间内三个不共面的向量,所以e 1→,e 2→,e 3→可以作为空间内的一组基底, 又平面α和平面β的法向量分别为a →=e 1→+λe 2→+3e 3→和b →=−e 1→+2e 2→+μe 3→,且α∥β, 所以a →∥b →,则a →=tb →,即e 1→+λe 2→+3e 3→=t (−e 1→+2e 2→+μe 3→), 所以{−t =12t =λtμ=3,解得{t =−1λ=−2μ=−3,所以λ+μ=﹣5.故选:B .4.为做好“甲型流感”传染防控工作,某校坚持每日测温报告,以下是高三一班,二班各10名同学的体温记录(从低到高):高三一班:36.1,36.2,m ,36.4,36.5,36.7,36.7,36.8,36.8,37.0(单位:℃), 高三二班:36.1,36.1,36.3,36.3,36.4,36.4,36.5,36.7,n ,37.1(单位:℃) 若这两组数据的第25百分位数、第90百分位数都分别对应相等,则n ﹣m 为( ) A .0.6B .0.5C .0.4D .0.3解:高三一班的第25百分位数是m ,第90百分位数是12×(36.8+37.0)=36.9; 高三二班的第25百分位数是36.3,第90百分位数是12(n +37.1);所以m =36.3,12(n +37.1)=36.9,解得n =36.7,所以n ﹣m =0.4. 故选:C .5.已知f(x)=sin2x −√3cos2x ,若方程f(x)=23在(0,π)的解为x 1,x 2,则sin (x 1+x 2)=( ) A .12B .−12C .−√32D .√32解:f(x)=sin2x −√3cos2x =2sin(2x −π3),x ∈(0,π) 所以−π3<2x −π3<5π3, 故sin(2x −π3)=13,根据函数的对称性2x 1−π3+2x 2−π3=2×π2, 故x 1+x 2=5π6, 所以sin (x 1+x 2)=12. 故选:A .6.若命题“关于x 的二次方程x 2+2mx +2m +1=0在(﹣1,3)上至多有一个解”是假命题,则m 的取值范围是( ) A .(−3,−54)B .(−3,1−√2)C .(−54,1)D .(−54,1−√2)解:由题意可得命题“关于x 的二次方程x 2+2mx +2m +1=0在(﹣1,3)上有两个不同的解”是真命题, 令f (x )=x 2+2mx +2m +1在(﹣1,3)上有两个不同的零点,即{ f(−1)>0f(3)>0−1<−m <3f(−m)<0,即{ 2>010+8m >0−3<m <1−m 2+2m +1<0,解得:−54<m <1−√2. 故m 的范围为(−54,1−√2). 故选:D .7.已知cos α=35,α∈(0,π2),角β的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P(7√210,√210)且β∈(0,π),则α﹣β=( )A .π4B .−π4C .π6D .−π6解:cos α=35,α∈(0,π2), 所以sinα=45,角β的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P(7√210,√210)且β∈(0,π), 所以sinβ=√210,cosβ=7√210;且β∈(0,π2), 由于cos β>cos α,所以α>β, 故cos (α﹣β)=cos αcos β+sin αsin β=35×7√210+45×√210=25√250=√22; 故α−β=π4. 故选:A .8.“曼哈顿距离”是由赫尔曼•闵可夫斯基所创的词汇,是一种使用在几何度量空间的几何学用语,例如在平面直角坐标系中,点P (x 1,y 1)、Q (x 2,y 2)的曼哈顿距离为:L PQ =|x 1﹣x 2|+|y 1﹣y 2|.若点P (1,2),点Q 为圆C :x 2+y 2=4上一动点,则L PQ 的最大值为( ) A .1+√2B .1+2√2C .3+√2D .3+2√2解:由题意设Q (2cos θ,2sin θ)(0≤θ<2π), 则L PQ =|1﹣2cos θ|+|2﹣2sin θ|, 当cos θ≥12时,即当θ∈[0,π3]∪[5π3,2π)时,L PQ =2cos θ﹣1+2﹣2sin θ=1+2√2cos (θ+π4), ∵θ∈[0,π3]∪[5π3,2π),∴θ+π4∈[π4,7π12]∪[23π12,94π),则当θ+π4=2π时,L PQ 的最大值为1+2√2;当cos θ<12时,即当θ∈(π3,5π3)时,L PQ =1﹣2cos θ+2﹣2sin θ=3−2√2sin (θ+π4), ∵θ∈(π3,5π3)∴θ+π4∈(7π12,23π12),则当θ+π4=32π时,L PQ 的最大值为3+2√2. 综上所述,L PQ 的最大值为3+2√2. 故选:D .二.多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分) 9.若复数z =m 2﹣2m ﹣3+(m 2﹣1)i (m ∈R ),则下列正确的是( ) A .当m =1或m =﹣1时,z 为实数 B .若z 为纯虚数,则m =﹣1或m =3C .若复数z 对应的点位于第二象限,则1<m <3D .若复数z 对应的点位于直线y =2x 上,则z =12+24i解:对于A ,当m =1或m =﹣1时,m 2﹣1=0,故z 为实数,故A 正确, 对于B ,若z 为纯虚数,则{m 2−2m −3=0m 2−1≠0,解得m =3,故B 错误, 对于C ,∵复数z 对应的点位于第二象限, ∴{m 2−2m −3<0m 2−1>0,解得1<m <3,故C 正确, 对于D ,∵复数z 对应的点位于直线y =2x 上, ∴m 2﹣1=2(m 2﹣2m ﹣3),解得m =5或m ﹣1, ∴z =12+24i 或z =0,故D 错误. 故选:AC .10.下列对各事件发生的概率的判断正确的是( )A .一个袋子中装有2件正品和2件次品,任取2件,“两件都是正品”与“至少有1件是次品”是对立事件B .三人独立地破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是相互独立的,则此密码被破译的概率为25C .甲袋中有除颜色外其他均相同的8个白球,4个红球,乙袋中有除颜色外其他均相同的6个白球,6个红球,从甲、乙两袋中各任取一个球,则取到同色球的概率为12D .设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率是23解:对于A ,袋中有2件正品和2件次品,任取2件,“两件都是正品”与“至少有1件是次品”是对立事件,故A 正确;对于B ,密码被破译的概率为P =1﹣(1−15)(1−13)(1−14)=35,故B 错误; 对于C ,设从甲袋中取到白球为事件A ,则P (A )=812=23, 从乙袋中取到白球为事件B ,则P (A )=612=12, ∴取到同色球的概率为P =23×12+13×12=12,故C 正确;对于D ,∵P (A ∩B )=P (B ∩A ),∴P (A )P (B )=P (B )P (A ), ∴P (A )[1﹣P (B )]=P (B )[1﹣P (A )],∴P (A )=P (B ), ∵两个独立事件A 和B 都不发生的概率为19,∴P (A )=P (B )=13,∴P (A )=23,故D 正确. 故选:ACD .11.已知f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,且f (x ),g (x )在(﹣∞,0]单调递减,则( ) A .f (f (1))<f (f (2)) B .f (g (1))<f (g (2)) C .g (f (1))<g (f (2))D .g (g (1))<g (g (2))解:f (x )是定义在R 上的偶函数,f (x )在(﹣∞,0]单调递减,所以f (x )在(0,+∞)上是增函数,g (x )是定义在R 上的奇函数,g (x )在(﹣∞,0]单调递减,所以g (x )在(0,+∞)上是减函数, 所以g (x )在R 上是减函数,所以f (1)<f (2),g (0)=0,f (1)<f (2),但是不能判定两个的正负,所以A 不正确; 0>g (1)>g (2),可得f (g (1))<f (g (2)),所以B 正确; g (f (1))>g (f (2)),所以C 不正确; g (g (1))<g (g (2)),所以D 正确; 故选:BD .12.如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,O 为正方体的中心,M 为DD 1的中点,F 为侧面正方形AA 1D 1D 内一动点,且满足B 1F ∥平面BC 1M ,则( )A .若P 为面ABCD 上一点,则满足△OP A 的面积为√22的点的轨迹是椭圆的一部分 B .动点F 的轨迹是一条线段C .三棱锥F ﹣BC 1M 的体积是随点F 的运动而变化的D .若过A ,M ,C 1三点作正方体的截面Ω,Q 为截面Ω上一点,则线段A 1Q 长度的取值范围为[2√63,2√2]解:对于A ,设O 为底面正方形ABCD 的中心,连接AO ,AO ′,OO ′, 则AO ′=12AC =√2,OO ′=12AA 1=1,所以△OO ′A 的面积为12AO′⋅OO′=12×√2×1=√22, 所以在底面ABCD 上点P 与点O 必重合,同理正方形ABB 1A 1的中心,正方形ADD 1A 1的中心都满足题意,又当点P 为正方体各条棱的中点时也满足△OP A 的面积为√22,故A 不正确; 对于B ,如图,分别取AA 1,A 1D 1的中点H ,G 连接B 1G ,GH ,HB 1,AD 1, 因为B 1H ∥C 1M ,B 1H ⊂平面BGH ,C 1M ⊄平面BGH , 所以C 1M ∥平面BGH ,因为GH ∥BC 1,GH ⊂平面BGH ,BC 1⊄平面BGH , 所以BC 1∥平面BGH ,C 1M ⊂平面BC 1M ,BC 1⊂平面BC 1M ,BC 1∩C 1M =C 1, 所以平面B 1GH ∥平面BC 1M ,而B 1F ∥平面BC 1M ,所以B 1F ⊂平面B 1GH ,所以点F 轨迹为线段GH ,故B 正确;由选项B 可知,点F 的轨迹为线段GH ,因为GH ∥平面BC 1M ,则点F 到平面BC 1M 的距离为定值, 又△BC 1M 的面积为定值,从而可得三棱锥F ﹣BC 1M 的体积是定值,故C 不正确; 如图,设截面Ω与平面BAA 1B 1交于AN ,N 在BB 1上, 因为截面Ω∩平面DAA 1D 1=AM ,平面DAA 1D 1∥平面CBB 1C 1,所以AM ∥NC 1,同理可证AN ∥MC 1,所以截面AMC 1N 为平行四边形,所以点N 为BB 1中点, 在四棱锥A 1﹣AMC 1N 中,侧棱A 1C 1最长,且A 1C 1=2√2,设四棱锥A 1﹣AMC 1N 的高为h , 因为AM =MC 1=√5,所以四边形AMC 1N 为菱形,所以△AMC 1的边AC 1上的高为面对角线的一半,即为√2,又AC 1=2√3, 则S △AMC 1=12×2√3×√2=√6,V C 1−AA 1M =13S △AA 1M •D 1C 1=13×12×2×2×2=43, 所以V A 1−AMC 1=13S △AMC 1וh =√63h =V C 1−AA 1M =43,解得h =2√63, 综上,可知线段A 1Q 长度的取值范围为[2√63,2√2],故D 正确.故选:BD .三.填空题(本大题共4小题,每小题5分,共20分)13.已知直线l 1:(a ﹣3)x +(4﹣a )y +1=0与l 2:2(a ﹣3)x ﹣2y +3=0平行,则a = 3或5 . 解:当a =3时两条直线平行, 当a ≠3时有2=−24−ka ≠3所以a =5 故答案为:3或5.14.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1,F 2,椭圆上一点P 满足|PF 2|=|F 1F 2|,且cos ∠PF 1F 2=14,则椭圆的离心率为 23 .解:如图;因为|PF 2|=|F 1F 2|=2c ,可得|PF 1|=2a ﹣2c ,cos ∠PF 1F 2=14,可得|PF 2|2=|F 1F 2|2+|PF 1|2﹣2|PF 1|•|PF 2|•cos ∠PF 1F 2, 即:(2c )2=(2a ﹣2c )2+(2c )2﹣2×2c ×(2a ﹣2c )×14, 解得a =32c ,(a =c 舍). 故离心率e =c a =23. 故答案为:23. 15.已知a >0,b >0,1a +12b=1,则3a a−1+4b2b−1的最小值为 5+2√6 .解:因为a >0,b >0,1a+12b=1,所以0<a <1,且2b =a a−1, 所以3a a−1+4b 2b−1=3(a−1)+3a−1+2(2b−1)+22b−1=3+3a−1+2+22b−1=5+3a−1+2aa−1−1=5+3a−1+2(a ﹣1)≥5+2√3a−1×2(a −1)=5+2√6,当且仅当3a−1=2(a ﹣1),即a =1+√62时等号成立.故答案为:5+2√6.16.已知圆C 1:(x +1)2+(y −3m −3)2=4m 2(m ≠0),直线l 的方程y =x +m +2,圆C 1关于直线l 对称的圆为C 2,则C 2所表示的一系列圆的公切线方程为 y =−34x +74或x =1 . 解:圆C 1的圆心为C 1(﹣2,3m +3)设C 1关于直线l 对称点为C 2(a ,b ),则{b−3m−3a+1=−13m+3+b 2=a−12+m +2,解得:{a =2m +1b =m +1,∴圆C 2的方程为(x ﹣2m ﹣1)2+(y ﹣m ﹣1)2=4m 2. 设直线y =kx +b 与圆系中的所有圆都相切,则√1+k 2=2|m|.即(﹣4k ﹣3)m 2+2(2k ﹣1)(k +b ﹣1)m +(k +b ﹣1)2=0,∵直线y =kx +b 与圆系中的所有圆都相切,所以上述方程对所有的m 值都成立, 所以有:{−4k −3=02(2k −1)(k +b −1)=0(k +b)2=0,解得:{k =−34b =74,所以C 2所表示的一系列圆的公切线方程为:y =−34x +74. 当切线的斜率不存在时,圆C 2的方程为(x ﹣2m ﹣1)2+(y ﹣m ﹣1)2=4m 2. 圆心(2m +1,m +1),半径为2m ,此时切线方程为:x =1. 综上,圆的公切线方程为:y =−34x +74或x =1. 故答案为:y =−34x +74或x =1.四.解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)为增强学生的数学应用能力,某中学举行了一次“数学应用能力竞赛”.为了解参加本次竞赛学生的成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分100分)作为样本(样本容量为n )进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(茎叶图中仅列出了得分在[50,60),[90,100]的数据),如图所示.(1)试估测本次竞赛学生成绩的平均数;(2)在[70,80),[80,90)内按分层抽样的方法抽取5名学生的成绩,从这5名学生中随机抽取2人,求2人成绩都在[70,80)的概率. 解:(1)由题意知样本容量n =80.016×10=50,y =250×10=0.004,x =0.1﹣0.004﹣0.010﹣0.016﹣0.04=0.030. ∴估测本次竞赛学生成绩的平均数为:x =55×0.16+65×0.3+75×0.4+85×0.1+95×0.04=70.6.(2)在[70,80),[80,90)内的学生人数分别为0.040×10×50=20人和0.010×10×50=5人,在[70,80),[80,90)内按分层抽样的方法抽取5名学生的成绩, 则在[70,80),[80,90)内各抽取4人和1人,设成绩在[70,80)内的学生为A ,B ,C ,D ,成绩在[80,90)的学生为E , 则从这5人中抽取2人有10种情况,分别为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ), 2人成绩都在[70,80)的情况有6种,分别为:(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D ),∴从这5名学生中随机抽取2人,2 人成绩都在[70,80)的概率为P =35.18.(12分)已知分别过定点A ,B 的直线l 1:ax +y ﹣3=0,l 2:3x +(a ﹣2)y ﹣4a ﹣1=0,l 2与x 轴交于C 点.(1)若l 1为△ABC 中,边BC 上的高所在直线,求边BC 上的中线所在直线方程; (2)若l 1为△ABC 中,边BC 上的中线所在直线,求边BC 上的高所在直线方程. 解:(1)直线l 1:ax +y ﹣3=0可知直线恒过A (0,3),l 2:3x +(a ﹣2)y ﹣4a ﹣1=0整理可得:a (y ﹣4)+3x ﹣2y ﹣1=0,恒过B (3,4), 直线l 2与x 轴的交点C (4a+13,0),k BC =43−4a+13=32−a ,由题意可得:﹣a •32−a=−1,可得a =12,即C (1,0),所以BC 的中点D (2,2),k AD =3−20−2=−12, 所以BC 边的中线为y =−12x +3,即x +2y ﹣6=0; (2)由(1)可得BC 的中点D (4a+13+32,42),即D (2a+53,2),由题意可得D 在BC 的中线l 1上,即a •2a+53+2﹣3=0,即2a 2+5a ﹣3=0,可得a =12或a =﹣3, 当a =12时,C (1,0),所以k BC =43−1=2, 所以BC 边上的高的斜率为−12,所以BC 边上的高的所在的直线方程为:y =−12x +3,即x +2y ﹣6=0; 当a =﹣3时,C (−113,0),此时k BC =43−−113=35,BC边上的高的斜率为−53,所以BC边上的高所在的直线方程为:y=−53x+3,即5x+3y﹣9=0.所以BC边上的高所在的直线方程为:x+2y﹣6=0或5x+3y﹣9=0.19.(12分)如图,已知四棱锥P﹣ABCD的底面为菱形,且∠ABC=60°,AB=PC=2,PA=PB=√2.(1)证明:面P AB⊥面ABCD.(2)M是棱PD上的中点,若过点C,M的平面α与BD平行,且交P A于点Q,求面CQM与面PCB 夹角的余弦值.证明:(1)取AB中点O,连接OP和OC,如图所示,由于AB=BC=2,∠ABC=60°,所以△ABC为等边三角形,所以OC⊥AB,且OC=√3,又因为PA=PB=√2,AB=2,所以P A2+PB2=AB2,则P A⊥PB,OP⊥AB,所以OP=12AB=1,所以PO2+OC2=PC2,所以OP⊥OC,因为OP⊥AB,OP⊥OC,AB∩OC=O,AB、OC⊂面ABCD,所以OP⊥面ABCD,又因为OP⊂面P AB,所以面P AB⊥面ABCD;解:(2)由(1)知,OC,OB,OP两两互相垂直,以O为坐标原点,OC,OB,OP所在直线分别为x,y,z轴建立如图所示的建立空间直角坐标系,则P (0,0,1),A (0,﹣1,0),B (0,1,0),C (√3,0,0), D(√3,−2,0),M(√32,−1,12)所以BD →=(√3,−3,0),BC →=(√3,−1,0),CP →=(−√3,0,1),CM →=(−√32,−1,12),AP →=(0,1,1),CA →=(−√3,−1,0),取PB 的中点N ,因为M 为PD 的中点,则MN ∥BD , 因为BD ⊄平面CMN ,MN ⊂平面CMN ,所以BD ∥平面CMN , 所以平面CMN 和平面CQM 是同一平面, 则N (0,12,12),所以MN →=(−√32,32,0), 设平面CMN 的法向量为m →=(x 1,y 1,z 1),则{m →⋅CM →=−√32x 1−y 1+12z 1=0m →⋅MN →=−√32x 1+32y 1=0, 解得{y 1=√33x 1z 1=5√33x 1,令x 1=3,则y 1=√3,z 1=5√3,所以m →=(3,√3,5√3),即平面CQM 的一个法向量为m →=(3,√3,5√3),解得{y 2=√3x 2z 2=√3x 2,令x 2=1,则y 2=√3,z 2=√3,所以n →=(1,√3,√3),设平面CQM 与平面PCB 的夹角为θ,cos θ=|cos <m →,n →>|=|m →⋅n →||m →||n →|=√3×√3+5√3×√3|9+3+75×7=√60929,所以平面CQM 与平面PCB 的夹角的余弦值√60929. 20.(12分)在平面直角坐标系xOy 中,已知圆x 2+y 2﹣4x =0及点A (﹣1,0),B (1,2). (1)若直线l 平行于AB ,与圆C 相交于D ,E 两点,且DE =AB ,求直线l 的方程;(2)在圆C 上是否存在点P ,使得|P A |2+|PB |2=12?若存在,求点P 的个数;若不存在,说明理由. 解:(1)圆C 的标准方程为(x ﹣2)2+y 2=4,所以圆心C (2,0),半径为2. 因为l ∥AB ,A (﹣1,0),B (1,2),所以直线l 的斜率为2−01−(−1)=1,设直线l 的方程为x ﹣y +m =0, 则圆心C 到直线l 的距离为d =|2+m|√2. 因为DE =AB =√22+22=2√2,而CD 2=d 2+(MN2)2,所以4=(2+m)22+2, 解得m =0或m =﹣4,故直线l 的方程为x ﹣y =0或x ﹣y ﹣4=0.(2)假设圆C 上存在点P ,设P (x ,y ),则(x ﹣2)2+y 2=4, P A 2+PB 2=(x +1)2+(y ﹣0)2+(x ﹣1)2+(y ﹣2)2=12, 即x 2+y 2﹣2y ﹣3=0,即x 2+(y ﹣1)2=4, 因为|2﹣2|<√(2−0)2+(0−1)2<2+2,所以圆(x ﹣2)2+y 2=4与圆x 2+(y ﹣1)2=4相交, 所以点P 的个数为2.21.(12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,2csinAcosB +bsinB =52csinA . (1)求sinA sinC.(2)若a >c ,角B 的平分线交AC 于D , (Ⅰ)求证:BD 2=BA •BC ﹣DA •DC . (Ⅱ)若a =1,求DB •AC 的最大值. 解:(1)因为2csinAcosB +bsinB =52csinA ,结合正弦定理和余弦定理可得2ac ⋅a 2+c 2−b 22ac +b 2=52ac , 即2a 2+2c 2﹣5ac =0,方程两边同时除以c 2(c ≠0), 得2(ac )2+2−5ac =0,令a c =t(t >0),所以2t 2+2﹣5t =0,解得t =2或12,即a c=2或12,所以sinA sinC=a c=2或12;(2)(Ⅰ)证明:在△ABD 中,由正弦定理得AD sin∠ABD=AB sin∠ADB①,由余弦定理得AB 2=AD 2+BD 2﹣2AD •BD cos ∠ADB ②, 同理在△BCD 中,则CD sin∠CBD=BC sin∠CDB③,BC 2=CD 2+BD 2﹣2CD •BD cos ∠CDB ④,因为BD 是∠ABC 的角平分线,则∠ABD =∠CBD , 所以sin ∠ABD =sin ∠CBD ,又∠ADB +∠CDB =π, 则sin ∠ADB =sin ∠CDB ,cos ∠ADB +cos ∠CDB =0, ①÷③得AD CD=AB BC⑤,所以AD AC=AB AB+BC,CD AC=BC AB+BC,CD ×②+AD ×④得CD •AB 2+AD •BC 2=CD •AD (AD +CD )+(CD +AD )•BD 2 =CD •AD •AC +AC •BD 2,所以BD 2=CD⋅AB 2+AD⋅BC 2AC −CD ⋅AD =BC⋅AB 2+AB⋅BC 2AB+BC−CD ⋅AD =BA ⋅BC −DA ⋅DC ,得证.(Ⅱ)因为a >c ,所以sinA sinC =2,即a =2c =1,由⑤式可知AD CD=AB BC=12,所以AD =13AC ,DC =23AC , 由(1)得BD 2=12−29AC 2, 所以BD 2+29AC 2=12,BD 2+29AC 2≥2√23BD ⋅AC ,当且仅当BD =12,AC =3√24时等号成立, 所以BD ⋅AC ≤3√28,故DB •AC 的最大值为3√28. 22.(12分)如图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =√22,过左焦点F 1作x 轴的垂线交椭圆于A 、A ′两点,|AA ′|=4. (Ⅰ)求该椭圆的标准方程;(Ⅱ)取平行于y 轴的直线与椭圆相交于不同的两点P 、P ′,过P 、P ′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.求△PP 'Q 的面积S 的最大值,并写出对应的圆Q 的标准方程.解:(Ⅰ)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),左焦点F 1(﹣c ,0),将横坐标﹣c 代入椭圆方程,得y =±b 2a ,所以b 2a=2①,ca =√22②,a 2=b 2+c 2③,联立①②③解得a =4,b =2√2, 所以椭圆方程为:x 216+y 28=1;(Ⅱ)设Q (t ,0)(t >0),圆的半径为r ,直线PP ′方程为:x =m (m >t ), 则圆Q 的方程为:(x ﹣t )2+y 2=r 2, 由{(x −t)2+y 2=r 2x 216+y 28=1得x 2﹣4tx +2t 2+16﹣2r 2=0,由Δ=0,即16t 2﹣4(2t 2+16﹣2r 2)=0,得t 2+r 2=8,①把x =m 代入x 216+y 28=1,得y 2=8(1−m 216)=8−m 22,所以点P 坐标为(m ,√8−m 22),代入(x ﹣t )2+y 2=r 2,得(m −t)2+8−m22=r 2,②由①②消掉r 2得4t 2﹣4mt +m 2=0,即m =2t , S △PP′Q=12|PP′|(m −t)=√8−m 22×(m ﹣t )=√8−2t 2×t =√2(4−t 2)t 2≤√2×(4−t 2)+t 22= 2√2, 当且仅当4﹣t 2=t 2即t =√2时取等号,此时t +r =√2+√6<4,椭圆上除P 、P ′外的点在圆Q 外,所以△PP 'Q 的面积S 的最大值为2√2,圆Q 的标准方程为:(x −√2)2+y 2=6.当圆心Q、直线PP′在y轴左侧时,由对称性可得圆Q的方程为(x+√2)2+y2=6,△PP'Q的面积S的最大值仍为2√2.。

高中高二数学上学期第二次月考试卷 文(含解析)-人教版高二全册数学试题

高中高二数学上学期第二次月考试卷 文(含解析)-人教版高二全册数学试题

2014-2015学年某某省某某市安吉县上墅私立高中高二(上)第二次月考数学试卷(文科)一、选择题:(本大题共10小题,每小题3分,共30分.)1.在△ABC中,“A=”是“cosA=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,>x,则下列说法中正确的是() A.命题p∨q是假命题 B.命题p∧q是真命题C.命题p∨(¬q)是假命题 D.命题p∧(¬q)是真命题3.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A. B. C. D.4.若直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,则实数m=() A.﹣或1 B. 1 C. 1或2 D.﹣5.直线2x+3y+1=0与直线4x+my+7=0平行,则它们之间的距离为() A. 4 B. C. D.6.设l,m是不同的直线,α,β,γ是不同的平面()A.若l⊥α,l⊥m,则m∥α B.若l⊂α,m⊂β,α∥β,则l∥mC.若l∥α,m⊥α,则l⊥m D.若α∩β=l,l⊥γ,m⊥β,则m∥γ7.过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2时,直线l的斜率为()A. B. C.±1 D.8.若双曲线的离心率为,则其渐近线方程为()A. y=±2x B. C. D.9.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交过圆心 B.相交不过圆心 C.相切 D.相离10.下列结论正确的是()A.命题“若a>b>0,则a2>b2”的逆命题是假命题B.若函数f(x)=sinx,则函数f(x)为周期函数的逆命题是真命题C.向量,的夹角为钝角的充要条件是•<0D.“x2>2”是“x2﹣3x+2≥0”的充分不必要条件二、填空题:(本大题共7小题,每小题3分,共21分.)11.由命题“存在x∈R,使x2+2x+m≤0”是假命题,则实数m的取值X围为.12.已知命题p:m<0,命题q:∀x∈R,x2+mx+1>0成立,若“p∧q”为真命题,则实数m 的取值X围是.13.两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,则a=.14.两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的连心线方程为.15.已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x﹣3)2+y2=1内切,则动圆圆心M的轨迹方程是.16.一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.17.下列四个命题:①“∃x∈R,x2﹣x+1≤0”的否定;②“若x2+x﹣6≥0,则x>2”的否命题;③在△ABC中,“A>30°”是“sinA>”的充分不必要条件④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ.(k∈Z)”,其中真命题的序号是.三、解答题:(本大题共5小题,共49分.)18.设p:实数x满足x2+2ax﹣3a2<0(a>0),q:实数x满足x2+2x﹣8<0,且q是p的必要不充分条件,求a的取值X围.19.求满足下列条件的椭圆方程:(1)长轴在x轴上,长轴长等于12,离心率等于;(2)椭圆经过点(﹣6,0)和(0,8);(3)椭圆的一个焦点到长轴两端点的距离分别为10和4.20.如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求直线AB与平面EBC所成角的大小.21.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.22.已知圆C:x2+y2=4和直线l:3x+4y+12=0,点P是圆C上的一动点,直线与坐标轴的交点分别为点A、B,(1)求与圆C相切且平行直线l的直线方程;(2)求△PAB面积的最大值.2014-2015学年某某省某某市安吉县上墅私立高中高二(上)第二次月考数学试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分.)1.在△ABC中,“A=”是“cosA=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分必要条件的定义结合三角形的性质,分别证明充分性和必要性,从而得到答案.解答:解:在△ABC中,若A=,则cosA=,是充分条件,在△ABC中,若cosA=,则A=或A=,不是必要条件,故选:A.点评:本题考查了充分必要条件,考查了三角形中的三角函数值问题,是一道基础题.2.已知命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,>x,则下列说法中正确的是() A.命题p∨q是假命题 B.命题p∧q是真命题C.命题p∨(¬q)是假命题 D.命题p∧(¬q)是真命题考点:复合命题的真假.专题:简易逻辑.分析:容易判断命题p是真命题,q是假命题,所以根据p∨q,p∧q,¬q的真假和p,q的关系即可找出正确选项.解答:解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;x<0时,无解,∴命题q是假命题;∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;∴D正确.故选D.点评:考查真命题,假命题的概念,以及p∨q,p∧q,¬q的真假和p,q真假的关系.3.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A. B. C. D.考点:椭圆的简单性质.专题:计算题.分析:直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),依题意得.解答:直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A.点评:本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型.4.若直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,则实数m=() A.﹣或1 B. 1 C. 1或2 D.﹣考点:直线的一般式方程与直线的平行关系.专题:直线与圆.分析:由直线的平行可得m的方程,解得m代回验证可得.解答:解:∵直线(m+2)x+3y+3=0与直线x+(2m﹣1)y+m=0平行,∴(m+2)(2m﹣1)﹣3×1=0,解得m=﹣或1经验证当m=1时,两直线重合,应舍去,故选:D点评:本题考查直线的一般式方程和平行关系,属基础题.5.直线2x+3y+1=0与直线4x+my+7=0平行,则它们之间的距离为() A. 4 B. C. D.考点:两条平行直线间的距离.专题:直线与圆.分析:通过直线的平行求出m,然后利用平行线之间的距离求解即可.解答:解:直线2x+3y+1=0与直线4x+my+7=0平行,所以m=6,直线4x+my+7=0化为直线4x+6y+7=0即2x+3y+3.5=0,它们之间的距离为:d==.故选:C.点评:本题考查两条平行线之间是距离的求法,基本知识的考查.6.设l,m是不同的直线,α,β,γ是不同的平面()A.若l⊥α,l⊥m,则m∥α B.若l⊂α,m⊂β,α∥β,则l∥mC.若l∥α,m⊥α,则l⊥m D.若α∩β=l,l⊥γ,m⊥β,则m∥γ考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:利用空间中线线、线面、面面间的位置关系求解.解答:解:若l⊥α,l⊥m,则m∥α或m⊂α,故A错误;若l⊂α,m⊂β,α∥β,则l与m平行或异面,故B错误;若l∥α,m⊥α,则由直线与平面平行的性质得l⊥m,故C正确;若α∩β=l,l⊥γ,m⊥β,则m∥γ或m⊂γ,故D错误.故选:C.点评:本题考查命题真假的判断,是基础题,解题时要注意空间思维能力的培养.7.过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2时,直线l的斜率为() A. B. C.±1 D.考点:直线与圆的位置关系.专题:直线与圆.分析:设直线l的方程为:y=kx﹣2k,由已知条件结合圆的性质和点到直线的距离公式推导出=2,由此能求出直线的斜率.解答:解:设直线l的斜率为k,则直线l的方程为:y=kx﹣2k,(x﹣2)2+(y﹣3)2=9的圆心C(2,3),半径r=3,∵过P(2,0)的直线被圆(x﹣2)2+(y﹣3)2=9截得的线段长为2,∴圆心C(2,3)到直线AB的距离d==2,∵点C(2,3)到直线y=kx﹣2k的距离d==2,∴•2=3,解得k=±.故选:A.点评:本题考查直线的斜率的求法,是中档题,解题时要认真审题,注意点到直线的距离公式的合理运用.8.若双曲线的离心率为,则其渐近线方程为()A. y=±2x B. C. D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:通过双曲线的离心率,推出a、b关系,然后直接求出双曲线的渐近线方程.解答:解:由双曲线的离心率,可知c=a,又a2+b2=c2,所以b=a,所以双曲线的渐近线方程为:y==±x.故选B.点评:本题考查双曲线的基本性质,渐近线方程的求法,考查计算能力.9.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交过圆心 B.相交不过圆心 C.相切 D.相离考点:直线与圆的位置关系.专题:直线与圆.分析:求出圆心(0,0)到直线l:x+y﹣4=0的距离d正好等于半径,可得直线和圆相切.解答:解:由于圆心(0,0)到直线l:x+y﹣4=0的距离为d==2=r(半径),故直线和圆相切,故选:C.点评:本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.10.下列结论正确的是()A.命题“若a>b>0,则a2>b2”的逆命题是假命题B.若函数f(x)=sinx,则函数f(x)为周期函数的逆命题是真命题C.向量,的夹角为钝角的充要条件是•<0D.“x2>2”是“x2﹣3x+2≥0”的充分不必要条件考点:命题的真假判断与应用.专题:简易逻辑.分析: A.“若a>b>0,则a2>b2”的逆命题为“若a2>b2,则a>b>0”是假命题;B.函数f(x)=sinx,则函数f(x)为周期函数的逆命题为“函数f(x)为周期函数,则f (x)=sinx”,显然不正确;C.向量,的夹角为钝角⇒•<0,反之不成立,由于非零向量反向共线时,满足<0;D.“x2>2”⇒或x,而x2﹣3x+2=﹣≥﹣,反之也不成立.解答:解:A.“若a>b>0,则a2>b2”的逆命题为“若a2>b2,则a>b>0”是假命题,正确;B.函数f(x)=sinx,则函数f(x)为周期函数的逆命题为“函数f(x)为周期函数,则f (x)=sinx”是假命题,不正确;C.向量,的夹角为钝角⇒•<0,反之不成立,由于向量反向共线时,其<0,因此不正确;D.“x2>2”⇒或x,此时x2﹣3x+2=﹣≥﹣,反之也不成立,因此“x2>2”是“x2﹣3x+2≥0”的既不充分也不必要条件,不正确.综上可得:只有A.故选:A.点评:本题考查了函数的性质、简易逻辑的判定、向量的数量积及其夹角公式,考查了推理能力,属于基础题.二、填空题:(本大题共7小题,每小题3分,共21分.)11.由命题“存在x∈R,使x2+2x+m≤0”是假命题,则实数m的取值X围为(1,+∞).考点:特称命题.专题:计算题.分析:原命题为假命题,则其否命题为真命题,得出∀x∈R,都有x2+2x+m>0,再由△<0,求得m.解答:解:∵“存在x∈R,使x2+2x+m≤0”,∴其否命题为真命题,即是说“∀x∈R,都有x2+2x+m>0”,∴△=4﹣4m<0,解得m>1.∴m的取值X围为(1,+∞).故答案为:(1,+∞)点评:本题考查了存在命题的否定,不等式恒成立问题.考查转化、计算能力.12.已知命题p:m<0,命题q:∀x∈R,x2+mx+1>0成立,若“p∧q”为真命题,则实数m 的取值X围是﹣2<m<0 .考点:复合命题的真假.专题:简易逻辑.分析:根据复合命题的真假性判断出命题p、q都是真命题,再逐一求出m的X围,最后求它们的交集.解答:解:因为“p∧q”为真命题,所以命题p、q都是真命题,若命题q是真命题,则∀x∈R,x2+mx+1>0横成立,所以△=m2﹣4<0,解得﹣2<m<2,又命题p:m<0,也是真命题,所以实数m的取值X围是:﹣2<m<0,故答案为:﹣2<m<0.点评:本题考查了复合命题的真假性,以及二次函数的性质,属于基础题.13.两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,则a= 0或﹣1 .考点:直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:由已知得a(a﹣1)+2a=0,由此能求出a.解答:解:∵两直线l1:ax+2y﹣1=0,l2:(a﹣1)x+ay+1=0垂直,∴a(a﹣1)+2a=0,解得a=0或a=﹣1.故答案为:0或﹣1.点评:本题考查实数值的求法,是基础题,解题时要认真审题,注意直线与直线垂直的性质的合理运用.14.两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的连心线方程为3x﹣y﹣9=0 .考点:圆与圆的位置关系及其判定.专题:计算题;直线与圆.分析:求出圆心坐标,利用点斜式,可得方程.解答:解:两圆x2+y2﹣4x+6y=0和x2+y2﹣6x=0的圆心坐标分别为(2,﹣3),(3,0),∴连心线方程为y﹣0=(x﹣3),即3x﹣y﹣9=0.故答案为:3x﹣y﹣9=0.点评:本题考查圆与圆的位置关系及其判定,考查直线方程,比较基础.15.已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x﹣3)2+y2=1内切,则动圆圆心M的轨迹方程是﹣=1(x≥2).考点:直线与圆的位置关系.专题:直线与圆.分析:找出两圆圆心坐标与半径,设设动圆圆心M(x,y),半径为r,根据动圆M与圆C1外切且与圆C2内切,即可确定出M轨迹方程.解答:解:由圆C1:(x+3)2+y2=9,圆心C1(﹣3,0),半径r1=3,圆C2:(x﹣3)2+y2=1,圆心C2(3,0),r2=1,设动圆圆心M(x,y),半径为r,根据题意得:,整理得:|MC1|﹣|MC2|=4,则动点M轨迹为双曲线,a=2,b=,c=3,其方程为﹣=1(x≥2).故答案为:﹣=1(x≥2)点评:此题考查了直线与圆的位置关系,以及动点轨迹方程,熟练掌握双曲线定义是解本题的关键.16.一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.考点:由三视图求面积、体积.专题:立体几何.分析:几何体是圆锥与圆柱的组合体,判断圆柱与圆锥的高及底面半径,代入圆锥与圆柱的体积公式计算.解答:解:由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,∴几何体的体积V=π×12×4+×π×22×2=4π+π=π.故答案为:.点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.17.下列四个命题:①“∃x∈R,x2﹣x+1≤0”的否定;②“若x2+x﹣6≥0,则x>2”的否命题;③在△ABC中,“A>30°”是“sinA>”的充分不必要条件④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ.(k∈Z)”,其中真命题的序号是①②.考点:命题的真假判断与应用.专题:简易逻辑.分析:①按照特称命题的否定要求改写,然后判断真假;②先写出原命题,然后再按照否条件、否结论进行改写;③双向推理,然后进行判断,此例可以举反例;④结合奇函数的性质进行推导,从左推右,然后反推化简.解答:解:①原命题的否定是:∀x∈R,x2﹣x+1>0;因为,故①为真命题;②原命题的否命题是:若x2+x﹣6<0,则x≤2.由x2+x﹣6<0,得(x+3)(x﹣2)<0,所以﹣3<x<2,故②为真命题;③当A=150°时,.所以故在△ABC中,“A>30°”是“sinA>”的不充分条件.故③是假命题;④若函数f(x)为奇函数,则f(0)=tanφ=0,或y轴为图象的渐近线,所以φ=kπ(k∈Z);或tanφ不存在,则φ=,(k∈Z)所以前者是后者的不充分条件.故④为假命题.故答案为:①,②点评:本题以简易逻辑为载体,考查了命题的否定及否命题的写法以及真假判断,充分必要性的判断方法,属于基础题,难度不大.三、解答题:(本大题共5小题,共49分.)18.设p:实数x满足x2+2ax﹣3a2<0(a>0),q:实数x满足x2+2x﹣8<0,且q是p的必要不充分条件,求a的取值X围.考点:必要条件、充分条件与充要条件的判断.专题:不等式的解法及应用.分析:先分别化简两个不等式,再利用q是p的必要不充分条件,转化为,然后某某数a的取值X围.解答:解:由x2+2ax﹣3a2<0得(x+3a)(x﹣a)<0,又a>0,所以﹣3a<x<a,(2分)x2+2x﹣8<0,∴﹣4<x<2,p为真时,实数x的取值X围是:﹣3a<x<a;q为真时,实数x的取值X围是:﹣4<x<2(6分)因为q是p的必要不充分条件,所以有(10分)所以实数a的取值X围是≤a≤2.(14分)点评:本题考查一元二次不等式的解法,必要条件、充分条件与充要条件的判断,考查计算能力,转化思想,是中档题.19.求满足下列条件的椭圆方程:(1)长轴在x轴上,长轴长等于12,离心率等于;(2)椭圆经过点(﹣6,0)和(0,8);(3)椭圆的一个焦点到长轴两端点的距离分别为10和4.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(1)设椭圆方程为+=1(a>b>0),运用离心率公式和a,b,c的关系,解得a,b,即可得到椭圆方程;(2)设椭圆方程为mx2+ny2=1,(m,n>0),由题意代入点(﹣6,0)和(0,8),解方程即可得到椭圆方程;(3)讨论椭圆的焦点的位置,由题意可得a﹣c=4,a+c=10,解方程可得a,c,再由a,b,c 的关系解得b,即可得到椭圆方程.解答:解:(1)设椭圆方程为+=1(a>b>0),由题意可得,2a=12,e=,即有a=6,=,即有c=4,b===2,即有椭圆方程为+=1;(2)设椭圆方程为mx2+ny2=1,(m,n>0),由题意代入点(﹣6,0)和(0,8),可得36m+0=1,且0+64n=1,解得m=,n=,即有椭圆方程为+=1;(3)当焦点在x轴上时,可设椭圆方程为+=1(a>b>0),由题意可得a﹣c=4,a+c=10,解得a=7,c=3,b==2,即有椭圆方程为+=1;同理,当焦点在y轴上时,可得椭圆方程为+=1.即有椭圆方程为+=1或+=1.点评:本题考查椭圆的方程和性质,主要考查椭圆的方程的求法,注意运用椭圆的方程的正确设法,以及椭圆性质的运用,属于基础题.20.如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求直线AB与平面EBC所成角的大小.考点:直线与平面所成的角;平面与平面垂直的判定.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(1)建立空间直角坐标,利用向量法证明线面垂直.(2)利用向量法求线面角的大小.解答:解:∵四边形ACDE是正方形,所以EA⊥AC,AM⊥EC,∵平面ACDE⊥平ABC,∴EA⊥平面ABC,∴可以以点A为原点,以过A点平行于BC的直线为x轴,分别以直线AC和AE为y轴和z轴,建立如图所示的空间直角坐标系A﹣xyz.设EA=AC=BC=2,则A(0,0,0),B(2,2,0),C(0,2,0),E(0,0,2),∵M是正方形ACDE的对角线的交点,∴M(0,1,1) (3)=(0,1,1),=(0,2,0)﹣(0,0,2)=(0,2,﹣2),=(2,2,0)﹣(0,2,0)=(2,0,0),∴,,∴AM⊥EC,AM⊥CB,∴AM⊥平面EBC.…(5分)(2)∵AM⊥平面EBC,∴为平面EBC的一个法向量,∵=(0,1,1),=(2,2,0),∴cos.∴=60°.∴直线AB与平面EBC所成的角为30°.…(12分)点评:本题主要考查向量法证明线面垂直以及利用向量法求线面角的大小,运算量较大.21.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.考点:轨迹方程;椭圆的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:(1)设椭圆方程为,根据题意可得a=2且c=,从而b==1,得到椭圆的标准方程;(2)设点P(x0,y0),线段PA的中点为M(x,y),根据中点坐标公式将x0、y0表示成关于x、y的式子,将P(x0,y0)关于x、y的坐标形式代入已知椭圆的方程,化简整理即可得到线段PA的中点M的轨迹方程.解答:解:(1)由题意知椭圆的焦点在x轴上,设椭圆的标准方程是∵椭圆经过点D(2,0),左焦点为,∴a=2,,可得b==1因此,椭圆的标准方程为.(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),由根据中点坐标公式,可得,整理得,∵点P(x0,y0)在椭圆上,∴可得,化简整理得,由此可得线段PA中点M的轨迹方程是.点评:本题给出椭圆满足的条件,求椭圆方程并求与之有关的一个轨迹方程,着重考查了椭圆的标准方程、简单几何性质和轨迹方程的求法等知识点,属于中档题.22.已知圆C:x2+y2=4和直线l:3x+4y+12=0,点P是圆C上的一动点,直线与坐标轴的交点分别为点A、B,(1)求与圆C相切且平行直线l的直线方程;(2)求△PAB面积的最大值.考点:直线和圆的方程的应用.专题:直线与圆.分析:(1)根据题意设所求方程为3x+4y+a=0,根据直线与圆相切时,圆心到直线的距离d=r求出a的值,即可确定出所求直线方程;(2)当直线与AB平行,且与圆相切时,△PAB面积的最大值,如图所示,求出|AB|与|MN|的长,即可确定出△PAB面积的最大值.解答:解:(1)设所求直线方程为3x+4y+a=0,由题意得:圆心(0,0)到直线的距离d=r,即=2,解得:a=±10,则所求直线方程为3x+4y±10=0;(2)当直线与AB平行,且与圆相切时,△PAB面积的最大值,此时直线方程为3x+4y﹣10=0,∵点C到直线AB的距离||=,CM=2,∴|MN|=+2=,∵A(﹣4,0),B(0,3),即OA=4,OB=3,∴|AB|=5,则△PAB面积最大值为×5×=11.点评:此题考查了直线与圆的方程的应用,涉及的知识有:点到直线的距离公式,两直线平行时斜率的关系,以及直线与圆相切的性质,熟练掌握公式及性质是解本题的关键.。

辽宁省沈阳铁路实验中学2019-2020学年高二下学期期中考试数学试题 Word版含解析

辽宁省沈阳铁路实验中学2019-2020学年高二下学期期中考试数学试题 Word版含解析

沈阳铁路实验中学2019-2020学年度下学期第二次月考数学试卷一.选择题(每题只有一个选项正确,每题5分) 1.函数1y x x=+的导数是( ) A. 211x -B. 11x-C. 211x +D. 11x+【答案】A 【解析】试题分析:因为1y x x =+,由1()n n x nx -='可得211y x'=-,选A. 考点:导数的运算.2.某天的值日工作由4名同学负责,且其中1人负责清理讲台,另1人负责扫地,其余2人负责拖地,则不同的分工共有( ) A. 6种 B. 12种 C. 18种 D. 24种【答案】B 【解析】方法数有1134C C 12=种.故选B.3.2101()x x+的展开式中含5x 项的系数为( ) A. 160 B. 210 C. 120 D. 252【答案】D 【解析】 【分析】由二项式定理及其二项展开式通项得:210203110101()()rrr r r r T C x C x x--+==,令2035r -=,解得r 的值,进而求得其系数.【详解】()102203110101rrrr rr T C xC xx --+⎛⎫== ⎪⎝⎭, 当=5r 时,555610252T C x x ==. 故选:D.【点睛】本题考查了二项式定理及其二项式展开式的通项,属于基础题.4.设()f x 、()g x 在[],a b 上可导,且()()f x g x ''>,则当a x b <<时有( ) A. ()()f x g x >B. ()()f x g x <C. ()()()()f x g b g x f b +>+D. ()()()()f x g a g x f a +>+【答案】D 【解析】 【分析】构造函数()()()F x f x g x =-,利用导数推导函数()y F x =在区间(),a b 上的单调性,进而可得出结果.【详解】设()()()F x f x g x =-,当a x b ≤≤时,()()f x g x ''>,则()()()0F x f x g x '''=->,所以,函数()y F x =在区间[],a b 上是增函数, 当a x b <<时,()()()F a F x F b <<,所以,()()()()f x g x f a g a ->-,即()()()()f x g a g x f a +>+;()()()()f x g x f b g b -<-,即()()()()f x g b g x f b +<+.故选:D.【点睛】本题考查函数不等式正误的判断,利用导数不等式的结构构造合适的函数是解答的关键,考查分析问题和解决问题的能力,属于中等题. 5.()()4221x x x -+-的展开式中x 项的系数为( )A. 9-B. 5-C. 7D. 8【答案】A 【解析】 【分析】 将()()4221x x x -+-化简为:2444(1)(1)2(1)x x x x x --+--,写出4(1)x -二项展开式的通项公式(4)14(1)r r r r T C x-+=⋅-,即可求得答案.【详解】()()42244421(1)(1)2(1)x x x x x x x x -+---+-=-4(1)x -二项展开式的通项公式(4)14(1)r r r r T C x -+=⋅- 24(1)x x -中不含x 项,无需求解.4(1)x x --中含x 项,即当4r =时(44444)(1)x C xx --⋅⋅=--42(1)x -中含x 项,即当3r =时(43)34328(1)C x x -⋅=-- ∴ ()()4221x x x -+-的展开式中x 项9x -故选:A.【点睛】本题考查求二项式展开式中常数项,解题关键是掌握二项展开式的通项公式,考查分析能力和计算能力,属基础题. 6.在61(1)x x+-的展开式中,含5x 项的系数为( ) A. 6 B. 6-C. 24D. 24-【答案】B 【解析】 【分析】 把x+1x 看作一项,写出61(1)x x +-的展开式的通项,再写出61()r x x-+的展开式的通项,由x 的指数为5求得r 、s 的值,则答案可求. 【详解】61(1)x x +-的展开式的通项为6161()(1)rr r r T C x x-+=⋅+⋅-. 61()r x x -+的展开式的通项为6161()s r s s s r T C x x--+-=⋅⋅=626s r s r C x ---⋅.由6﹣r ﹣2s=5,得r+2s=1, ∵r,s ∈N ,∴r=1,s=0. ∴在61(1)x x+-的展开式中,含x 5项的系数为10656C C -⋅=-. 故选B .【点睛】求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r +1项,再由特定项的特点求出r 值即可. (2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r +1项,由特定项得出r 值,最后求出其参数.7.已知函数()2ln 38f x x x =+,则0(12)(1)lim x f x f x∆→-∆-∆的值为( )A. 20-B. 10-C. 10D. 20【答案】A 【解析】 【分析】利用导数的运算法则可得(1)10f '=,由导数的定义可得()0(12)(1)1lim 2x f x f f x∆→-∆-'=-∆,即可得解.【详解】由题意可得2()8f x x '=+,则2(1)8101f '=+=, 由导数的概念可得()0(12)(1)1lim102x f x f f x∆→-∆-'==-∆, 则00(12)(1)(12)(1)lim2lim 202x x f x f f x f x x∆→∆→-∆--∆-=-=-∆-∆. 故选:A.【点睛】本题考查了导数的定义和运算,属于基础题.8.如图,将一个四棱锥的每一个面染上一种颜色,使每两个具有公共棱的面染成不同颜色,如果只有4种颜色可供使用,则不同的染色方法总数为( )A. 36B. 48C. 72D. 108【答案】C 【解析】 【分析】对面SAB 与面SDC 同色和不同色进行分类,结合分步乘法计算原理,即可得出答案. 【详解】当面SAB 与面SDC 同色时,面ABCD 有4种方法,面SDC 有3种方法,面SAD 有2种方法,面SAB 有1种方法,面SBC 有2种方法,即4321248⨯⨯⨯⨯=种当面SAB 与面SDC 不同色时,面ABCD 有4种方法,面SDC 有3种方法,面SAD 有2种方法,面SAB 有1种方法,面SBC 有1种方法,即4321124⨯⨯⨯⨯=种 即不同的染色方法总数为482472+=种。

辽宁省实验中学2016-2017学年高一上学期期中考试数学试卷Word版含答案

辽宁省实验中学2016-2017学年高一上学期期中考试数学试卷Word版含答案

辽宁省实验中学 2016 — 2017学年度上学期期中阶段测试咼一数学试卷考试时间: 120分钟 试题满分:150分 命题人: 王晓强校对人:石慧媛是符合题目要求的)1.设 U 二{1,2,3,4,5},若 A 二{1 ,3,5}, B 二{1 ,2,3,4} , (C d Ap B=( )、选择题(本大题共 12小题,每题 5分,满分60分.在每题给出的四个选项中,只有一个A {1 ,2,4}B . {1 ,2}C{1 ,4}D• {2 ,4}2.以下各组两个函数是相同函数的是( A. f x = . x -1 一 x 1 ,g x = . x 2 -1B. _______ 2f x -、2x -5 ,g x i=2x -5C.f (x) =| x -1|, g(x)二,x 2 - 2x 1D. f (n) =2n -1(n Z), g(n) =2n 1(n Z)3. 函数f (x )二 1 -x 2 2」 (x :: 1)f(f(-2))=( A.B.4. 函数f (x)x二 e -eA. 奇函数, C. 偶函数, (x-1)C.2D.且在(_::,•::)上是增函数奇函数,且在 (-::,=)上是减函数 且在(」:,丫:)上是增函数偶函数,且在 (-::,=)上是减函数5.已知函数2f (x )二log 2(4x - X ),函数的值域A.(0 , 4)B. (一::,2]C.(0 , 2)D.(」=,2)6.幕函数y =x >的图像如右图所示,则 :的值可以为(8.二次函数y =ax 2・bx 与指数函数y =(—)x 的图象只可能是()a19.已知f (x) =X 3 -()心则其零点所在区间为()2A. (3,4)B. (2,3)C. (1,2)D. (0,1)② 函数图像关于原点中心对称; ③ 函数是值域是R ;④ 函数图像经过第一、三象限 .其中正确命题的个数是(A. 3B. -3C. 2D.-27.已知 X =1.10.1, 1.1y=0.9z 二 log 42 ,则(33A. x y zB.y x z C. y z xD.110. 定义在R 上的奇函数f (x),满足f (? x)A f (0.3) ::: f ( 、2) :: f(20)B.C. f (0.3) ::: f (20) :: f(、2)D.11. 关于函数y =lnC x 2,1 -x)有如下命题:① 函数是R 上的单调递减函数; 1 1= f(—-x),在区间[,0]上递增,则()2 2f(20) :: f (0.3) ::: f C ,2)12. 定义在R 上的奇函数f (x),当X _ 0时,x ・[t,t ・2], f(x ・t)_2f(x)恒成立,则实数t 的范围是(、填空题(本大题共 4小题,每小题5分,共20分) 13.已知函数f(x) =a x +b(a >0且a 幻)的图像经过点(1, —2),它的反函数的图像经过点 (-4, 0),则 f (2)=a b1 1 1 nt[14. 已知 2 =7 = m ,•则 m =a 2b 215. 函数f (x) =| x 2 • 2x -4| _k 有两个不同的零点则 k 的取值范围是16. 定义区间 c,d 、C,d 、c,d 1、lc,d 1的长度均为d-cd c .已知实数a, b a b .23则满足1的x 构成的区间的长度之和为x-a x-b三、解答题(本大题共 6小题,满分70分.解答须写出必要的文字说明或演算步骤) 17. (本小题满分10分)已知关于x 的方程(m 2「1)x 2「(m • 1)x 「2 = 0 (x • R),若方程的两根一个比 「1大,一个比-1小,求实数m 的取值范围18. (本小题满分12分)记函数f(x)=lg(x -X-2)的定义域为集合 A ,函数g(x)「3-|x|的定义域为集合 B . (1) 求 A - B 和 A_ B ;(2) 若= ^x| 4x p :: 0}, C 二A ,求实数p 的取值范围. 19. (本小题满分12分)1 133A.4B. 3C. 2D. 1of (x) =x ,对任意的A. t _ 2B.t _2 C.已知函数f(x)=( - -) x310 -1 2(1)求函数f (x)的定义域;⑵判定并证明f(x)的奇偶性;⑶求证:f (x) 020. (本小题满分12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元, 但实际出厂单价不能低于51元。

高二数学第二学期期末复习试卷 文(二)(含解析)-人教版高二全册数学试题

高二数学第二学期期末复习试卷 文(二)(含解析)-人教版高二全册数学试题

2014-2015学年某某省某某市罗湖区翠圆中学高二(下)期末数学复习试卷(文科)(二)一、选择题(本大题共10小题,每小题5分,满分50分)1.已知集合A={x|x+1>0},B={x|x2﹣x<0},则A∪B=()A. {x|x>﹣1} B. {x|﹣1<x<1} C. {x|0<x<1} D. {x|﹣1<x<0}2.角α的终边过点(﹣1,2),则cosα的值为()A. B. C.﹣ D.﹣3.(文)设a∈R,则a>1是<1的()A.必要但不充分条件 B.充分但不必要条件C.充要条件 D.既不充分也不必要条件4.如图所示为一个简单几何体的三视图,则其对应的几何体是()A. B. C.D.5.一个容量为 n 的样本,分成若干组,已知某组频数和频率分别为 36 和0.25,则n=() A. 9 B. 36 C. 72 D. 1446.已知函数y=xlnx,则其在点x=1处的切线方程是()A. y=2x﹣2 B. y=2x+2 C. y=x﹣1 D. y=x+17.已知向量=(2,1),+=(1,k),若⊥,则实数k等于()A. B. 3 C.﹣7 D.﹣28.已知等差数列{a n}的公差为﹣2,且a2,a4,a5成等比数列,则a2等于()A.﹣4 B.﹣6 C.﹣8 D. 89.若函数f(x)=x2+2x+3a没有零点,则实数a的取值X围是()A. B. C. D.10.已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是等腰直角三角形,则这个椭圆的离心率是()A. B. C. D.二、填空题(本大题共3小题,每小题5分,满分15分,其中11-13题是必做题,14-15题是选做题,考生只能选做一题,两题都答的,只计算前一题得分)11.若函数y=sin(ωx+)(ω>0)的最小正周期是,则ω=.12.定义运算,复数z满足,则复数z=.13.在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=.类比到空间,在长方体中,一条对角线与从某一顶点出发的三条棱所成的角分别是α,β,γ则有正确的式子是.【极坐标与参数方程选做题】14.在极坐标系中,ρ=4sinθ是圆的极坐标方程,则点A(4,)到圆心C的距离是.【几何证明选讲选做题】15.(几何证明选讲选做题)如图,MN是圆O的直径,MN的延长线与圆O上过点P的切线PA相交于点A,若∠M=30°,切线AP长为,则圆O的直径长为.三、解答题(本大题共6小题,满分80分,解答须出文字说明、证明过程和演算步骤)16.设函数f(x)=2cosx(sinx+cosx)﹣1将函数f(x)的图象向左平移a个单位,得到函数y=g(x)的图象.(1)求函数f(x)的最小正周期;(2)若0<a<,且g(x)是偶函数,求a的值.17.已知集合A={﹣2,0,1,3},在平面直角坐标系中,点M的坐标(x,y)满足x∈A,y ∈A.(Ⅰ)请列出点M的所有坐标;(Ⅱ)求点M不在y轴上的概率;(Ⅲ)求点M正好落在区域上的概率.18.如图(1)所示,正△ABC的边长为2a,CD是AB边上的高,E,F分别是AC,BC的中点.现将△ABC沿CD翻折,使翻折后平面ACD⊥平面BCD(如图(2)),(1)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;(2)求三棱锥C﹣DEF的体积.19.已知椭圆的中心在原点,焦点在x轴上,离心率为,且椭圆经过圆C:x2+y2﹣4x+2y=0的圆心C.(1)求椭圆的方程;(2)设直线l过椭圆的焦点且与圆C相切,求直线l的方程.20.已知函数f(x)=(1)求函数f(x)的单调递增区间;(2)求函数f(x)的零点.21.数列{a n}的前n项和为S n,已知.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{}满足,求数列{}的前n项和T n.(Ⅲ)X三同学利用第(Ⅱ)题中的T n设计了一个程序流程图,但李四同学认为这个程序如果被执行会是一个“死循环”(即程序会永远循环下去,而无法结束).你是否同意李四同学的观点?请说明理由.2014-2015学年某某省某某市罗湖区翠圆中学高二(下)期末数学复习试卷(文科)(二)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,满分50分)1.已知集合A={x|x+1>0},B={x|x2﹣x<0},则A∪B=()A. {x|x>﹣1} B. {x|﹣1<x<1} C. {x|0<x<1} D. {x|﹣1<x<0}考点:并集及其运算.专题:计算题.分析:分别求出A与B中不等式的解集确定出A与B,找出两集合的并集即可.解答:解:由A中不等式解得:x>﹣1,即A={x|x>﹣1},由B中不等式变形得:x(x﹣1)<0,解得:0<x<1,即B={x|0<x<1},则A∪B={x|x>﹣1},故选:A.点评:此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.2.角α的终边过点(﹣1,2),则cosα的值为()A. B. C.﹣ D.﹣考点:任意角的三角函数的定义.专题:计算题.分析:先求出 x=﹣1,y=2,r=,利用cosα的定义,求出cosα的值.解答:解:∵角α的终边过点(﹣1,2),∴x=﹣1,y=2,r=,cosα===﹣,故选D.点评:本题考查任意角的三角函数的定义,两点间的距离公式的应用.3.(文)设a∈R,则a>1是<1的()A.必要但不充分条件 B.充分但不必要条件C.充要条件 D.既不充分也不必要条件考点:不等关系与不等式;充要条件.专题:计算题.分析:根据由a>1,一定能得到<1.但当<1时,不能推出a>1 (如 a=﹣1时),从而得到结论.解答:解:由a>1,一定能得到<1.但当<1时,不能推出a>1 (如 a=﹣1时),故a>1是<1 的充分不必要条件,故选 B.点评:本题考查充分条件、必要条件的定义,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.4.如图所示为一个简单几何体的三视图,则其对应的几何体是()A. B. C.D.考点:由三视图还原实物图.专题:计算题;空间位置关系与距离.分析:根据题意,B、D两项的视图中都应该有对角线为虚线的矩形,故不符合题意;C项的正视图矩形的对角线方向不符合,也不符合题意,而A项符合题意,得到本题答案.解答:解:对于A,该几何体的三视图恰好与已知图形相符,故A符合题意;对于B,该几何体的正视图的矩形中,对角线应该是虚线,故不符合题意;对于C,该几何体的正视图的矩形中,对角线应该是从左上到右下的方向,故不符合题意;对于D,该几何体的侧视图的矩形中,对角线应该是虚线,不符合题意故选:A点评:本题给出三视图,要求我们将其还原为实物图,着重考查了对三视图的理解与认识,考查了空间想象能力,属于基础题.5.一个容量为 n 的样本,分成若干组,已知某组频数和频率分别为 36 和0.25,则n=() A. 9 B. 36 C. 72 D. 144考点:频率分布表.专题:计算题.分析:根据一个容量为n的样本,某组频数和频率分别为 36 和0.25,写出这三者之间的关系式,得到关于n的方程,解方程即可.解答:解:∵一个容量为n的样本,某组频数和频率分别为 36 和0.25,∴0.25=∴n=144故选D.点评:本题考查频率分布表,本题解题的关键是知道频率,频数和样本容量之间的关系,这三者可以做到知二求一.6.已知函数y=xlnx,则其在点x=1处的切线方程是()A. y=2x﹣2 B. y=2x+2 C. y=x﹣1 D. y=x+1考点:导数的几何意义.分析:运用求导公式计算x=1时的斜率,再结合曲线上一点求出切线方程.解答:解:y=xlnx y'=1×lnx+x•=1+lnx y'(1)=1 又当x=1时y=0∴切线方程为y=x﹣1 故选C.点评:此题主要考查导数的计算,比较简单.7.已知向量=(2,1),+=(1,k),若⊥,则实数k等于()A. B. 3 C.﹣7 D.﹣2考点:数量积判断两个平面向量的垂直关系.专题:计算题.分析:先根据+=(1,k),⊥,求出坐标,再代入+=(1,k),即可求出k值.解答:解:设=(x,y),则=(2+x,1+y)=(1,k),∴2+x=1,1+y=k∵,∴=0,即2x+y=0,∴y=2,∴k=3故选B点评:本题考查向量加法的坐标运算,以及向量的数量积判断两个向量的垂直关系,考查计算能力,是基础题.8.已知等差数列{a n}的公差为﹣2,且a2,a4,a5成等比数列,则a2等于()A.﹣4 B.﹣6 C.﹣8 D. 8考点:等差数列的通项公式.专题:计算题;等差数列与等比数列.分析:根据等差数列与等比数列的通项公式与性质,列出方程,求出且a2的值.解答:解:等差数列{a n}的公差为﹣2,且a2,a4,a5成等比数列,∴=a2•a5,即=a2•(a2﹣6),解得a2=8.故选:D.点评:本题考查了等差与等比数列的通项公式与应用问题,是基础题目.9.若函数f(x)=x2+2x+3a没有零点,则实数a的取值X围是()A. B. C. D.考点:函数的零点;二次函数的性质.专题:计算题.分析:函数f(x)=x2+2x+3a没有零点,等价于方程x2+2x+3a=0无解,由根的判别式能求出结果.解答:解:∵函数f(x)=x2+2x+3a没有零点,∴x2+2x+3a=0无解,∴△=4﹣12a<0,∴a>.故选C.点评:本题考查函数的零的求法和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.10.已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是等腰直角三角形,则这个椭圆的离心率是()A. B. C. D.考点:椭圆的简单性质.专题:计算题.分析:由△ABF2是等腰直角三角形可知|AF1|=|F1F2|,即=2c,由此推导出这个椭圆的离心率.解答:解:由△ABF2是等腰直角三角形可知|AF1|=|F1F2|,∴=2c又∵c2=a2﹣b2∴a2﹣c2﹣2ac=0∴e2+2e﹣1=0解之得:e=﹣1或e=﹣﹣1 (负值舍去).故选C点评:题主要考查了椭圆的简单性质.椭圆的离心率是高考中选择填空题常考的题目.应熟练掌握圆锥曲线中a,b,c和e的关系.二、填空题(本大题共3小题,每小题5分,满分15分,其中11-13题是必做题,14-15题是选做题,考生只能选做一题,两题都答的,只计算前一题得分)11.若函数y=sin(ωx+)(ω>0)的最小正周期是,则ω= 6 .考点:三角函数的周期性及其求法;正弦函数的图象.专题:三角函数的图像与性质.分析:由条件根据函数y=Asin(ωx+φ)的周期为,可得结论.解答:解:函数y=sin(ωx+)(ω>0)的最小正周期是=,则ω=6,故答案为:6.点评:本题主要考查函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为,属于基础题.12.定义运算,复数z满足,则复数z= 2﹣i .考点:复数代数形式的乘除运算.专题:新定义.分析:根据给出的定义把化简整理后,运用复数的除法运算求z.解答:解:由,得.故答案为2﹣i.点评:本题考查了复数的代数形式的乘除运算,复数的除法采用分子分母同时乘以分母的共轭复数,是基础题.13.在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β= 1 .类比到空间,在长方体中,一条对角线与从某一顶点出发的三条棱所成的角分别是α,β,γ则有正确的式子是cos2α+cos2β+cos2γ=1 .考点:类比推理.专题:探究型.分析:本题考查的知识点是类比推理,由在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1,我们根据平面性质可以类比推断出空间性质,我们易得答案.解答:解:我们将平面中的两维性质,类比推断到空间中的三维性质.由在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1,我们楞根据平面性质可以类比推断出空间性质,即在长方体中,一条对角线与从某一顶点出发的三条棱所成的角分别是α,β,γ,则有cos2α+cos2β+cos2γ=1.故答案为:1,cos2α+cos2β+cos2γ=1点评:本题考查的知识点是类比推理,在由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质,或是将平面中的两维性质,类比推断到空间中的三维性质.【极坐标与参数方程选做题】14.在极坐标系中,ρ=4sinθ是圆的极坐标方程,则点A(4,)到圆心C的距离是2.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:把极坐标化为直角坐标,利用两点之间的距离公式即可得出.解答:解:由ρ=4sinθ化为ρ2=4ρsinθ,∴x2+y2=4y,化为x2+(y﹣2)2=4,可得圆心C (0,2).点A(4,)化为A.∴点A到圆心C的距离d==2.故答案为:2.点评:本题考查了把极坐标化为直角坐标、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.【几何证明选讲选做题】15.(几何证明选讲选做题)如图,MN是圆O的直径,MN的延长线与圆O上过点P的切线PA相交于点A,若∠M=30°,切线AP长为,则圆O的直径长为 4 .考点:与圆有关的比例线段;圆的切线的判定定理的证明.专题:计算题;压轴题;直线与圆.分析:连接PN,由题设条件推导出△MPN中,ON=r,PM=2,MN=2r,∠MPN=90°,由此能求出圆O的直径长.解答:解:连接PN,∵MN是圆O的直径,MN的延长线与圆O上过点P的切线PA相交于点A,∠M=30°,切线AP长为,∴∠MPN=∠APO=90°,∠PNO=∠PON=60°,∴∠A=30°,PM=2,∴△MPN中,ON=r,PM=2,MN=2r,∠MPN=90°,∴(4r)2=r2+(2)2,解得r=2.∴圆O的直径长为4.故答案为:4.点评:本题考查与圆有关的比例线段的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.三、解答题(本大题共6小题,满分80分,解答须出文字说明、证明过程和演算步骤)16.设函数f(x)=2cosx(sinx+cosx)﹣1将函数f(x)的图象向左平移a个单位,得到函数y=g(x)的图象.(1)求函数f(x)的最小正周期;(2)若0<a<,且g(x)是偶函数,求a的值.考点:三角函数的周期性及其求法;函数奇偶性的性质;函数y=Asin(ωx+φ)的图象变换.专题:计算题;综合题.分析:(1)利用降次以及两角和的正弦,化简为一个角的一个三角函数的形式,求函数f (x)的最小正周期;(2)0<a<,化简g(x)利用它是偶函数,根据0<a<,求a的值.解答:解:(1)∵f(x)=2sinxcosx+2cos2x﹣1=sin2x+cos2x=sin(2x+)∴f(x)的最小正周期T==π(2)g(x)=f(x+a)=sin[2(x+α)+]=sin(2x+2α+)g(x)是偶函数,则g(0)=±=sin(2α+)∴2α+=kπ+,k∈Zα=( k∈Z)∵0<a<,∴α=点评:本题考查三角函数的周期性及其求法,函数奇偶性的应用,函数y=Asin(ωx+φ)的图象变换,考查计算能力,逻辑思维能力,是基础题.17.已知集合A={﹣2,0,1,3},在平面直角坐标系中,点M的坐标(x,y)满足x∈A,y ∈A.(Ⅰ)请列出点M的所有坐标;(Ⅱ)求点M不在y轴上的概率;(Ⅲ)求点M正好落在区域上的概率.考点:等可能事件的概率.专题:计算题.分析:(Ⅰ)根据题意,依次列举符合条件的M即可,(Ⅱ)由(Ⅰ)列举的结果,分析可得在y轴的点有4个,即可得不在y轴上的点的个数,由等可能事件的概率公式,计算可得答案;(Ⅲ)由(Ⅰ)列举的结果,验证可得符合不等式组的点的个数,由等可能事件的概率公式,计算可得答案.解答:解:(Ⅰ)根据题意,符合条件的点M有:(﹣2,﹣2)、(﹣2,0)、(﹣2,1)、(﹣2,3)、(0,﹣2)、(0,0)、(0,1)、(0,3)、(1,﹣2)、(1,0)、(1,1)、(1,3)、(3,﹣2)、(3,0)、(3,1)、(3,3);共16个;(Ⅱ)其中在y轴上,有(﹣2,0)、(0,0)、(1,0)、(3,0),共4个,则不在y轴的点有16﹣4=12个,点M不在y轴上的概率为=;(Ⅲ)根据题意,分析可得,满足不等式组的点有(1,1)、(1,3)、(3,1),共3个;则点M正好落在区域上的概率为.点评:本题考查等可能事件的概率计算,关键是用列举法得到符合条件的点的个数,注意(Ⅲ)中是古典概型,而不是几何概型.18.如图(1)所示,正△ABC的边长为2a,CD是AB边上的高,E,F分别是AC,BC的中点.现将△ABC沿CD翻折,使翻折后平面ACD⊥平面BCD(如图(2)),(1)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;(2)求三棱锥C﹣DEF的体积.考点:平面与平面垂直的性质;棱柱、棱锥、棱台的体积;空间中直线与平面之间的位置关系.专题:计算题.分析:(1)判断:AB∥平面DEF,再由直线与平面平行的判定定理进行证明.(2)过点E作EM⊥DC于点M,由面ACD⊥面BCD,面ACD∩面BCD=CD,而EM⊂面ACD,知EM是三棱锥E﹣CDF的高,由此能求出三棱锥C﹣DEF的体积.解答:解:(1)判断:AB∥平面DEF,(2分)证明:因在△ABC中,E,F分别是AC,BC的中点,∴EF∥AB,(5分)又因AB⊄平面DEF,∴EF⊂平面DEF,(6分)所以AB∥平面DEF,(7分)(2)过点E作EM⊥DC于点M,∵面ACD⊥面BCD,面ACD∩面BCD=CD,而EM⊂面ACD故EM⊥平面BCD 于是EM是三棱锥E﹣CDF的高,(9分)又△CDF的面积为S△CDF====,EM=,(11分)故三棱锥C﹣DEF的体积==.点评:本题考查直线与平面的位置关系的判断,考查三棱锥的体积的求法,解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题.19.已知椭圆的中心在原点,焦点在x轴上,离心率为,且椭圆经过圆C:x2+y2﹣4x+2y=0的圆心C.(1)求椭圆的方程;(2)设直线l过椭圆的焦点且与圆C相切,求直线l的方程.考点:椭圆的标准方程;直线的一般式方程.专题:计算题.分析:(1)把圆C的方程化为标准方程,进而求得圆心和半径,设椭圆的标准方程,根据题设得方程组求得a和b,则椭圆的方程可得.(2)跟椭圆方程求得焦点坐标,根据两点间的距离求得|F2C|小于圆的半径,判断出F2在圆C内,过F2没有圆C的切线,设直线的方程,求得点C到直线l的距离进而求得k,则直线方程可得.解答:解:(1)圆C方程化为:(x﹣2)2+(y+)2=6,圆心C(2,﹣),半径r=设椭圆的方程为=1(a>b>0),则所以所求的椭圆的方程是:=1.(2)由(1)得到椭圆的左右焦点分别是F1(﹣2,0),F2(2,0),|F2C|==<∴F2在C内,故过F2没有圆C的切线,设l的方程为y=k(x+2),即kx﹣y+2k=0点C(2,﹣)到直线l的距离为d=,由d=得=解得:k=或k=﹣,故l的方程为x﹣5y+2=0或x+y+2=0点评:本题主要考查了椭圆的标准方程.考查了学生综合运用所学知识解决问题的能力.20.已知函数f(x)=(1)求函数f(x)的单调递增区间;(2)求函数f(x)的零点.考点:利用导数研究函数的单调性;函数零点的判定定理.分析:(1)当x>时,对函数f(x)求导,令导函数大于0求x的X围;当x≤时根据二次函数的图象和性质可得答案.(2)当x>时根据函数的单调性与极值点可求出零点;当x≤时对函数判别式进行分析可得答案.解答:解(1)当x>时,f′(x)=1﹣=由f′(x)>0得x>1.∴f(x)在(1,+∞)上是增函数.当x≤时,f(x)=x2+2x+a﹣1=(x+1)2+a﹣2,∴f(x)在上是增函数∴f(x)的递增区间是(﹣1,)和(1,+∞).(2)当x>时,由(1)知f(x)在(,1)上递减,在(1,+∞)上递增且f′(1)=0.∴f(x)有极小值f(1)=1>0,此时f(x)无零点.当x≤时,f(x)=x2+2x+a﹣1,△=4﹣4(a﹣1)=8﹣4a.当△<0,即a>2时,f(x)无零点.当△=0,即a=2时,f(x)有一个零点﹣1.当△>0,且f()≥0时,即∴时f(x)有两个零点:x=或x=,即x=﹣1+或x=﹣1﹣当△>0且f()<0,即∴a<﹣时,f(x)仅有一个零点﹣1﹣点评:本题主要考查函数的单调性与其导函数的正负之间的关系和函数零点的求法.属中档题.21.数列{a n}的前n项和为S n,已知.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{}满足,求数列{}的前n项和T n.(Ⅲ)X三同学利用第(Ⅱ)题中的T n设计了一个程序流程图,但李四同学认为这个程序如果被执行会是一个“死循环”(即程序会永远循环下去,而无法结束).你是否同意李四同学的观点?请说明理由.考点:数列的求和;等差数列的前n项和.专题:综合题;等差数列与等比数列.分析:(Ⅰ)利用,a1=S1;当n>1时,a n=S n﹣S n﹣1可求(Ⅱ)根据题意需要分类讨论:当n为偶数和n为奇数两种情况,结合等差数列与等比数列的求和公式可求(Ⅲ)记d n=T n﹣P,结合(II)中的求和可得d n,进而可判断d n的单调性,分n为偶数,奇数两种情况讨论d n的X围,结合所求d n可判断其循环规律,从而可知判断解答:解:(Ⅰ)当n=1时,a1=S1=2;当n>1时,a n=S n﹣S n﹣1=n+1,则(Ⅱ)当n为偶数时,当n为奇数时,n﹣1为偶数,则(Ⅲ)记d n=T n﹣P当n为偶数时,.所以从第4项开始,数列{d n}的偶数项开始递增,而且d2,d4,…,d10均小于2012,d12>2012,则d n≠2012(n为偶数).当n为奇数时,.所以从第5项开始,数列{d n}的奇数项开始递增,而且d1,d3,…,d11均小于2012,d13>2012,则d n≠2012(n为奇数).故李四同学的观点是正确的.点评:本题以程序框图为载体综合考查了利用数列的递推公式求解数列的通项公式及数列的和的求解,体现了分类讨论思想的应用,。

辽宁省沈阳铁路实验中学2019-2020学年高二下学期期中考试数学试题 Word版含答案

辽宁省沈阳铁路实验中学2019-2020学年高二下学期期中考试数学试题 Word版含答案

沈阳铁路实验中学2019-2020学年度下学期第二次月考数学试卷命题人: 校对人 : 时间:120分钟一.选择题(每题只有一个选项正确,每题5分) 1.函数1y x x=+的导数是( ) A .211x -B .11x -C .211x +D .11x+ 2.某天的值日工作由4名同学负责,且其中1人负责清理讲台,另1人负责扫地,其余2人负责拖地,则不同的分工共有( ) A .6种B .12种C .18种D .24种3.2101()x x+的展开式中含5x 项的系数为( ) A .160B .210C .120D .2524. 设f(x),g(x)在[a ,b]上可导,且f′(x)>g′(x),则当a<x<b 时,有( ) A .f(x)>g(x) B .f(x)<g(x)C .f(x)+g(a)>g(x)+f(a)D .f(x)+g(b)>g(x)+f(b)5.()()4221x x x -+-的展开式中x 项的系数为 ( )A .9-B .5-C .7D .86.在61(1)x x+-的展开式中,含5x 项的系数为 ( ) A .6 B .6-C .24D .24-7.已知函数()2ln 38,f x x x =+则0(12)(1)limx f x f x∆→-∆-∆的值为 ( )A .-20B .-10C .10D .208.如图,将一个四棱锥的每一个面染上一种颜色,使每两个具有公共棱的面染成不同颜色,如果只有4种颜色可供使用,则不同的染色方法总数为( ) A .36B .48C .72D .1089已知()0112nn n x a a x a x +=++⋅⋅⋅+,其中01243n a a a ++⋅⋅⋅+=,则123452345a a a a a ++++ =( )A .405B .810C .324D . 64810如果一个三位数,各位数字之和等于10,但各位上数字允许重复,则称此三位数为“十全九美三位数”(如235,505等),则这种“十全九美三位数”的个数是( )A .5 4B .50C .60D .5811.设函数,则 ( )A.有极大值且为最大值 B.有极小值,但无最小值C.若方程恰有3个实根,则D.若方程恰有一个实根,则12. 设)(x f '为函数)(x f 的导函数,已知21()()ln ,()x f x xf x x f e e'+==,则下列结论正确的是 A .()f x 在(0,)+∞即有极大值又有极小值 B .()f x 在(0,)+∞既无极大值又无极小值 C .()f x 在(0,)+∞上有极大值 D .()f x 在(0,)+∞上有极小值二.填空题 (每题5分)13. 10个相同的小球放在三个编号为1,2,3的盒中,每盒至少1个,有 种方法? 14.函数在处的切线方程为______15.已知函数,若∀x 1,x 2∈(0,+∞),都有f (x 1)≥g (x 2)恒成立,则实数a 的取值范围为__________16.若0<x 1<x 2<1,且1<x 3<x 4,下列命题正确的有①3443ln ln x x e e x x ->- ② 2121ln ln x x e e x x ->- ③.3232x x x e x e < ④ 1221x x x e x e >三.解答题17.(请写出式子再写计算结果)有4个不同的小球,4个不同的盒子,现在要把球全部放入盒内: (1)共有多少种方法?(2)若每个盒子不空,共有多少种不同的方法?(3)恰有一个盒子不放球,共有多少种放法?18.二项式n 的二项式系数和为256.(1)求展开式中二项式系数最大的项; (2)求展开式中各项的系数和;(3)展开式中是否含有有理项,若有,求系数;若没有,说明理由.19. 设函数xe x xf 221)(=. (1)求函数)(x f 的单调区间;(2)若当]2,2[-∈x 时,不等式m x f <)(恒成立,求实数m 的取值范围.20已知函数f(x)=x 3-3ax 2+3x +1. (1)设a =2,求f(x)的单调区间;(2)设f(x)在区间(2,3)中至少有一个极值点,求a 的取值范围.21. 已知函数()2ln ,f x x ax x a R =+-∈.(1)若函数()f x 在[]1,2上是减函数,求实数a 的取值范围;(2)令()()2g x f x x =-,是否存在实数a ,当(]0,x e ∈(e 是自然常数)时,函数()g x 的最小值是3,若存在,求出a 的值;若不存在,说明理由;22. (1)当0a =时,求()f x 的极值; (2)当0a <时,求()f x 的单调区间;(3)方程()0f x =的根的个数能否达到3,若能,请求出此时a 的范围,若不能,请说明理由.答案1.A2. B方法数有1143C C 12=种.故选B.3.D()102203110101rrrr rr T C xC xx --+⎛⎫== ⎪⎝⎭, 当=5r 时,555610252T C x x ==. 4.C 5.AQ ()()42244421(1)(1)2(1)x x x x x x x x -+---+-=-4(1)x -二项展开式的通项公式(4)14(1)r r r r T C x -+=⋅- Q 24(1)x x -中不含x 项,无需求解.Q 4(1)x x --中含x 项,即当4r =时(44444)(1)x C x x --⋅⋅=-- Q 42(1)x -中含x 项,即当3r =时(43)34328(1)C x x -⋅=--∴ ()()4221x x x -+-的展开式中x 项9x -6.B61(1)x x +-的展开式的通项为6161()(1)rr r r T C x x -+=⋅+⋅-. 61()r x x -+的展开式的通项为6161()s r s s s r T C x x--+-=⋅⋅=626s r s r C x ---⋅.由6﹣r ﹣2s=5,得r+2s=1, ∵r ,s ∈N ,∴r=1,s=0. ∴在61(1)x x+-的展开式中,含x 5项的系数为10656C C -⋅=-. 7.A 8.C当面SAB 与面SDC 同色时,面ABCD 有4种方法,面SDC 有3种方法,面SAD 有2种方法,面SAB 有1种方法,面SBC 有2种方法,即4321248⨯⨯⨯⨯=种当面SAB 与面SDC 不同色时,面ABCD 有4种方法,面SDC 有3种方法,面SAD 有2种方法,面SAB 有1种方法,面SBC 有1种方法,即4321124⨯⨯⨯⨯=种 即不同的染色方法总数为482472+=种 9.B 10. A利用分类计数原理,分成有重复数字和无重复数字的情况:(1)无重复数字:109,190,901,910,127,172,271,217,721,712,136,163,316,361,613,631,145,154,451,415,514,541,208,280,802,820,235,253,352,325,523,532,307,370,703,730,406,460,604,640,共40个,(2)有重复数字:118,181,811,226,262,622,334,343,433,442,424,244,550,505,共14个. 11.C12 B 试题分析:由2'()()ln x f x xf x x +=,得ln '()()x xf x f x x +=,从而ln [()]'xxf x x=,令()()g x xf x =,则()()g x f x x =,∴22'()()ln ()'()xg x g x x g x f x x x --==,令()ln ()h x x g x =-,则11ln 1ln '()'()x xh x g x x x x x-=-=-=(0x >), 令'()0h x >,即1ln 0x ->,因此当0x e <<时,()h x 是增函数, 令'()0h x <,即1ln 0x -<,因此当x e >时,()h x 是减函数,由1()f e e=,得()()1g e ef e ==, ∴()h x 在(0,)+∞上有极大值()ln ()110h e e g e =-=-=,也是最大值. ∴()0h x ≤,即'()0f x ≤,当且仅当x e =时,'()0f x =, ∴()f x 在(0,)+∞上为减函数. 13. 36 14.15. 1-1-≤ea16. (1),(4)17. 解:(1)每个球都有4种方法,故有4×4×4×4=256种,(2)每个盒子不空,共有4424A =不同的方法,(3)四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒,说明恰有一个盒子中有2个小球,从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列,故共有2344144C A =种不同的放法.18因为二项式n的二项式系数和为256,所以2256n=, 解得8n =.(1)∵8n =,则展开式的通项818rrr T C-+=⋅ 823812r rrC x --⎛⎫=⋅⋅ ⎪⎝⎭. ∴二项式系数最大的项为445813528T C ⎛⎫=-=⎪⎝⎭;(2)令二项式中的1x =,则二项展开式中各项的系数和为88111122256⎛⎫⎛⎫-==⎪ ⎪⎝⎭⎝⎭. (3)由通项公式及08r ≤≤且r Z ∈得当1,4,7r =时为有理项;系数分别为118142C ⎛⎫-=- ⎪⎝⎭,44813528C ⎛⎫-= ⎪⎝⎭,77811216C ⎛⎫-=- ⎪⎝⎭.19.【解】(1))2(2121)(2+=+='x x e e x xe x f xx x , …2分 令0)2(>+x x e x,得20-<>x x 或,∴)(x f 的增区间为)2,(-∞-和),0(∞+,………4分 令0)2(<+x x e x,得02<<-x ,∴)(x f 的减区间为)0,2(-.………………………………………………6分 (2)因为]2,2[-∈x ,令0)(='x f ,得2-=x ,或0=x ,又由(1)知,2-=x ,0=x 分别为)(x f 的极小值点和极大值点, ………8分 ∵22)2(ef =-,22)2(e f =,0)0(=f , ∴]2,0[)(2e xf ∈, ……………………………………………………………11分 ∴22e m >. …………20. 【解析】(1)当a =2时,f(x)=x 3-6x 2+3x +1. f′(x)=3x 2-12x +3 =3(x 2-4x +1)=3(x -2-2.当x <2x >2时,得f′(x)>0;当2<x <2时,得f′(x)<0.因此f(x)的递增区间是(-∞,2与(2,+∞);f(x)的递减区间是(2,2. (2)f′(x)=3x 2-6ax +3,Δ=36a 2-36,由Δ>0得,a >1或a <-1,又x 1x 2=1, 可知f′(2)<0,且f′(3)>0, 解得54<a <53, 因此a 的取值范围是55,43⎛⎫⎪⎝⎭.综上,存在实数2a e =,使得当(]0,x e ∈时()g x 有最小值3.22解析:(1)()f x 其定义域为(0,)+∞. 当0a =时, 令()0f x '=,解得1x =,当01x <<时,()0f x '<;当1x>时,()0f x '>. 所以()f x 的单调递减区间是(0,1),单调递增区间是(1,)+∞. 所以1x =时,()f x 有极小值为(1)1f =,无极大值.(2 令()0f x '=,得当10a -<<时,得01x <<或令()0f x '>,当1a =-时,当1a <-时,令()0f x '<,或1x >,令()0f x '>, 综上所述:当10a -<<时,()f x 的单调递减区间是 当1a =-时,()f x 的单调递减区间是(0,)+∞;当1a <-时, (3)0a ≥时,∵∴()0(0)f x x '=>仅有1解,方程()0f x =至多有两个不同的解. (注:也可用min ()(1)10f x f a ==+>说明.)由(2)知10a -<<时,极小值(1)10f a =+>,方程()0f x =至多在区间1个解;1a =-时()f x 单调,方程()0f x =至多有1个解;1a <-时,,方程()0f x =仅在区间1个解.故方程()0f x =的根的个数不能达到3.。

高中高三数学上学期周测试卷 文(1.28,含解析)-人教版高三全册数学试题

高中高三数学上学期周测试卷 文(1.28,含解析)-人教版高三全册数学试题

2014-2015学年某某省某某高中高三(上)周测数学试卷(文科)(1.28)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题P:∀x>0,x3>0,那么¬P是()A.∃x≤0,x3≤0 B.∀x>0,x3≤0 C.∃x>0,x3≤0 D.∀x<0,x3≤0 2.已知集合M={x|x﹣2<0},N={x|x<a},若M⊆N,则实数a的取值X围是()A.[2,+∞)B.D.(﹣∞,0]3.设i是虚数单位,若复数是纯虚数,则m的值为()A.﹣3 B.﹣1 C.1 D.34.已知点P(a,b)是抛物线x2=20y上一点,焦点为F,|PF|=25,则|ab|=()A.100 B.200 C.360 D.4005.(5分)为了检查某超市货架上的饮料是否含有塑化剂,要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,用每部分选取的间隔一样的系统抽样方法确定所选取的5瓶饮料的编号可能是()A.5,10,15,20,25 B.2,4,6,8,10C.1,2,3,4,5 D.7,17,27,37,476.(5分)(2015某某一模)一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是()A.B.C.D.7.如图所示的程序框图中,若f(x)=x2﹣x+1,g(x)=x+4,且h(x)≥m恒成立,则m 的最大值是()A.0 B.1 C.3 D.48.已知点P(x,y)的坐标满足条件,则x2+y2的最大值为()A.17 B.18 C.20 D.219.(5分)已知定义在R上的函数f(x)满足f(﹣3)=f(5)=1,f'(x)为f(x)的导函数,且导函数y=f′(x)的图象如图所示.则不等式f(x)<1的解集是()A.(﹣3,0)B.(﹣3,5)C.(0,5)D.(﹣∞,﹣3)∪(5,+∞)10.已知函数f(x)=Asin(πx+φ)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的直线与该图象交于D,E两点,则的值为()A.﹣1 B.C.D.211.(5分)(2015某某二模)设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+1的某一个对称中心,并利用对称中心的上述定义,可得到f(﹣2015)+f(﹣2014)+f(﹣2013)+…+f(2014)+f(2015)=()A.0 B.2014 C.4028 D.403112.在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且,则的取值X围为()A.[3,6] B.[4,6] C.D.[2,4]二、填空题:每小题5分,共20分.13.(5分)已知数列{a n}是等比数列,若a4=,a6=6,则a10=.14.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数是.15.(5分)(2015某某二模)已知体积为的正三棱锥V﹣ABC的外接球的球心为O,满足,则该三棱锥外接球的体积为.16.(5分)(2015某某模拟)给定方程:()x+sinx﹣1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(﹣∞,0)内有且只有一个实数解;④若x0是该方程的实数解,则x0>﹣1.则正确命题是.三、解答题:本大题共6道题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(12分)(2015某某一模)在△ABC中,角A、B、C的对边分别为a,b,c,且满足,2bsinA=a,BC边上中线AM的长为.(Ⅰ)求角A和角B的大小;(Ⅱ)求△ABC的面积.18.(12分)(2014秋禅城区校级期中)年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:健康指数 2 1 0 ﹣160岁至79岁的人数120 133 32 1580岁及以上的人数9 18 14 9其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,﹣1代表“生活不能自理”.(Ⅰ)随机访问该小区一位80岁以下的老龄人,该老龄人生活能够自理的概率是多少?(Ⅱ)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.求被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率.19.(12分)(2016凉山州模拟)如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD||BC,PD⊥底面ABCD,∠ADC=90°,AD=2BC,Q为AD的中点,M为棱PC的中点.(Ⅰ)证明:PA∥平面BMQ;(Ⅱ)已知PD=DC=AD=2,求点P到平面BMQ的距离.20.(12分)(2015某某一模)已知动点P到定点F(1,0)和直线l:x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合)(Ⅰ)求曲线E的方程;(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ACBD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.21.(12分)(2014秋涪城区校级月考)已知函数f(x)=e x﹣ax﹣1(e为自然对数的底数),a>0.(Ⅰ)若函数f(x)恰有一个零点,证明:a a=e a﹣1;(Ⅱ)若f(x)≥0对任意x∈R恒成立,某某数a的取值集合.请考生在第22、23、24三题中任选一题作答,如果多做.则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.【选修4-1:几何证明选讲】22.(10分)(2016某某一模)如图所示,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(Ⅰ)求证:AB为圆的直径;(Ⅱ)若AC=BD,AB=5,求弦DE的长.【选修4-4:坐标系与参数方程】23.(2015某某一模)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线l的参数方程为(t 为参数),直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB面积的最大值.【选修4-5:不等式选讲】24.(2015某某一模)已知函数f(x)=m﹣|x﹣1|﹣2|x+1|.(Ⅰ)当m=5时,求不等式f(x)>2的解集;(Ⅱ)若二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,某某数m的取值X围.2014-2015学年某某省某某高中高三(上)周测数学试卷(文科)(1.28)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题P:∀x>0,x3>0,那么¬P是()A.∃x≤0,x3≤0 B.∀x>0,x3≤0 C.∃x>0,x3≤0 D.∀x<0,x3≤0 【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以,命题P:∀x>0,x3>0,那么¬P是∃x>0,x3≤0.故选:C.【点评】本题考查命题的否定特称命题与全称命题的否定关系,基本知识的考查.2.已知集合M={x|x﹣2<0},N={x|x<a},若M⊆N,则实数a的取值X围是()A.[2,+∞)B.D.(﹣∞,0]【分析】解出集合M,根据子集的概念即可求得实数a的取值X围.【解答】解:M={x|x<2};∵M⊆N;∴a≥2;∴a的取值X围是[2,+∞).故选A.【点评】考查子集的概念,描述法表示集合,可借助数轴求解.3.设i是虚数单位,若复数是纯虚数,则m的值为()A.﹣3 B.﹣1 C.1 D.3【分析】利用复数代数形式的乘除运算化简,然后由实部等于0求得m的值.【解答】解:∵为纯虚数,∴m+3=0,即m=﹣3.故选:A.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.4.已知点P(a,b)是抛物线x2=20y上一点,焦点为F,|PF|=25,则|ab|=()A.100 B.200 C.360 D.400【分析】根据抛物线的定义,把到焦点的距离转化为到准线的距离,从而求出b,进而求ab 的值.【解答】解:根据抛物线是定义,准线方程为:y=﹣5,|PF|=b+5=25,∴b=20,又点P(a,b)是抛物线x2=20y上一点,∴a2=20×20,∴a=±20,∴|ab|=400,故选D.【点评】本题主要考查抛物线的定义,抛物线上的点到焦点的距离与到准线的距离相等.5.(5分)为了检查某超市货架上的饮料是否含有塑化剂,要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,用每部分选取的间隔一样的系统抽样方法确定所选取的5瓶饮料的编号可能是()A.5,10,15,20,25 B.2,4,6,8,10C.1,2,3,4,5 D.7,17,27,37,47【分析】根据系统抽样的定义求出样本间隔进行判断即可.【解答】解:要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,则样本间隔为50÷5=10,则只有7,17,27,37,47满足条件.,故选:D.【点评】本题主要考查系统抽样的应用,根据条件求出样本间隔是解决本题的关键.比较基础.6.(5分)(2015某某一模)一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是()A.B.C.D.【分析】由三视图的作法规则,长对正,宽相等,对四个选项进行比对,找出错误选项.【解答】解:本题中给出了正视图与左视图,故可以根据正视图与俯视图长对正,左视图与俯视图宽相等来找出正确选项A中的视图满足三视图的作法规则;B中的视图满足三视图的作法规则;C中的视图不满足三视图的作法规则中的宽相等,故其为错误选项;D中的视图满足三视图的作法规则;故选C【点评】本题考查三视图的作法,解题的关键是掌握住三视图的作法规则即长对正,宽相等,高平齐,利用这些规则即可选出正确选项.7.如图所示的程序框图中,若f(x)=x2﹣x+1,g(x)=x+4,且h(x)≥m恒成立,则m 的最大值是()A.0 B.1 C.3 D.4【分析】由已知中的程序框图可得该程序的功能是计算并输出分段函数:h(x)=的值,数形结合求出h(x)的最小值,可得答案.【解答】解:由已知中的程序框图可得该程序的功能是:计算并输出分段函数:h(x)=的值,在同一坐标系,画出f(x)=x2﹣x+1,g(x)=x+4的图象如下图所示:由图可知:当x=﹣1时,h(x)取最小值3,又∵h(x)≥m恒成立,∴m的最大值是3,故选:C【点评】本题考查的知识点是程序框图,分段函数的应用,函数恒成立,难度中档.8.已知点P(x,y)的坐标满足条件,则x2+y2的最大值为()A.17 B.18 C.20 D.21【分析】作出不等式组对应的平面区域,利用数形结合即可得到结论.【解答】解:设z=x2+y2,则z的几何意义为区域内的点到原点的距离的平方,作出不等式组对应的平面区域如图:由图象可知,则OC的距离最大,由,解得,即C(3,3),则z=x2+y2=9+9=18,故选:B【点评】本题主要考查线性规划的应用,结合数形结合是解决本题的关键.9.(5分)已知定义在R上的函数f(x)满足f(﹣3)=f(5)=1,f'(x)为f(x)的导函数,且导函数y=f′(x)的图象如图所示.则不等式f(x)<1的解集是()A.(﹣3,0)B.(﹣3,5)C.(0,5)D.(﹣∞,﹣3)∪(5,+∞)【分析】由图象可以判断出f(x)的单调性情况,由f(﹣3)与f(5)的取值,即可得出答案.【解答】解:由f′(x)的图象可得,f(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,又由题意可得,f(﹣3)=f(5)=1,∴f(x)<1的解集是(﹣3,5),故选:B.【点评】本题考查导函数图象与函数单调性的关系,考查学生灵活转化题目条件的能力,属于中档题.10.已知函数f(x)=Asin(πx+φ)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的直线与该图象交于D,E两点,则的值为()A.﹣1 B.C.D.2【分析】根据三角函数的图象和性质,求出函数的周期,利用向量的基本运算和向量的数量积定义即可得到结论.【解答】解:∵函数f(x)=sin(2πx+φ)的周期T==2,则BC==1,则C点是一个对称中心,则根据向量的平行四边形法则可知: =2, =∴=2=2||2=2×12=2.故选:D.【点评】本题主要考查向量的数量积运算,利用三角函数的图象和性质是解决本题的关键.11.(5分)(2015某某二模)设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+1的某一个对称中心,并利用对称中心的上述定义,可得到f(﹣2015)+f(﹣2014)+f(﹣2013)+…+f(2014)+f(2015)=()A.0 B.2014 C.4028 D.4031【分析】函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,1),即x1+x2=0时,总有f (x1)+f(x2)=2,再利用倒序相加,即可得到结论【解答】解:∵f(x)=x3+sinx+1,∴f′(x)=3x2﹣cosx,f''(x)=6x+sinx又∵f''(0)=0而f(x)+f(﹣x)=x3+sinx+1+﹣x3﹣sinx+1=2,函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,1),即x1+x2=0时,总有f(x1)+f(x2)=2,∴f(﹣2015)+f(﹣2014)+f(﹣2013)+…+f(2014)+f(2015)=2×2015+f(0)=4030+1=4031.故选:D.【点评】本题考查函数的对称性,确定函数的对称中心,利用倒序相加x1+x2=0时,总有f (x1)+f(x2)=2,是解题的关键.12.在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且,则的取值X围为()A.[3,6] B.[4,6] C.D.[2,4]【分析】通过建立直角坐标系求出AB所在直线的方程,设出M,N的坐标,将=2(b ﹣1)2+4,0≤b≤2,求出X围即可.【解答】解:以C为坐标原点,CA为x轴建立平面坐标系,则A(3,0),B(0,3),∴AB所在直线的方程为: =1,则y=3﹣x,设N(a,3﹣a),M(b,3﹣b),且0≤a≤3,0≤b≤3不妨设a>b,∵MN=,∴(a﹣b)2+(b﹣a)2=2,∴a﹣b=1,∴a=b+1,∴0≤b≤2,∴=(a,3﹣a)(b,3﹣b)=2ab﹣3(a+b)+9,=2(b2﹣2b+3)=2(b﹣1)2+4,0≤b≤2,∴当b=0或b=2时有最大值6;当b=1时有最小值4.∴的取值X围为[4,6]故选B.【点评】熟练掌握通过建立直角坐标系、数量积的坐标运算是解题的关键.二、填空题:每小题5分,共20分.13.(5分)已知数列{a n}是等比数列,若a4=,a6=6,则a10= 96 .【分析】由已知求出等比数列的公比的平方,再代入等比数列的通项公式求得a10.【解答】解:在等比数列{a n}中,∵a4=,a6=6,∴,∴.故答案为:96.【点评】本题考查了等比数列的通项公式,是基础的计算题.14.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数是50 .【分析】由已知中的频率分布直方图,我们可以求出成绩低于60分的频率,结合已知中的低于60分的人数是15人,结合频数=频率×总体容量,即可得到总体容量.【解答】解:∵成绩低于60分有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20则成绩低于60分的频率P=(0.005+0.010)×20=0.3,又∵低于60分的人数是15人,则该班的学生人数是=50.故答案为:50【点评】本题考查的知识点是频率分布直方图,结合已知中的频率分布直方图,结合频率=矩形的高×组距,求出满足条件的事件发生的频率是解答本题的关键.15.(5分)(2015某某二模)已知体积为的正三棱锥V﹣ABC的外接球的球心为O,满足,则该三棱锥外接球的体积为.【分析】由题意球的三角形ABC的位置,以及形状,利用球的体积,求出球的半径,求出棱锥的底面边长,利用棱锥的体积求出该三棱锥外接球的体积即可.【解答】解:正三棱锥D﹣ABC的外接球的球心O满足,说明三角形ABC在球O的大圆上,并且为正三角形,设球的半径为:R,棱锥的底面正三角形ABC的高为:底面三角形ABC的边长为: R正三棱锥的体积为:××(R)2×R=解得R3=4,则该三棱锥外接球的体积为=.故答案为:.【点评】本题考查球的内接体问题,球的体积,棱锥的体积,考查空间想象能力,转化思想,计算能力,是中档题.16.(5分)(2015某某模拟)给定方程:()x+sinx﹣1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(﹣∞,0)内有且只有一个实数解;④若x0是该方程的实数解,则x0>﹣1.则正确命题是②③④.【分析】根据正弦函数的符号和指数函数的性质,可得该方程存在小于0的实数解,故①不正确;根据指数函数的图象与正弦函数的有界性,可得方程有无数个正数解,故②正确;根据y=()x﹣1的单调性与正弦函数的有界性,分析可得当x≤﹣1时方程没有实数解,当﹣1<x<0时方程有唯一实数解,由此可得③④都正确.【解答】解:对于①,若α是方程()x+sinx﹣1=0的一个解,则满足()α=1﹣sinα,当α为第三、四象限角时()α>1,此时α<0,因此该方程存在小于0的实数解,得①不正确;对于②,原方程等价于()x﹣1=﹣sinx,当x≥0时,﹣1<()x﹣1≤0,而函数y=﹣sinx的最小值为﹣1且用无穷多个x满足﹣sinx=﹣1,因此函数y=()x﹣1与y=﹣sinx的图象在[0,+∞)上有无穷多个交点因此方程()x+sinx﹣1=0有无数个实数解,故②正确;对于③,当x<0时,由于x≤﹣1时()x﹣1≥1,函数y=()x﹣1与y=﹣sinx的图象不可能有交点当﹣1<x<0时,存在唯一的x满足()x=1﹣sinx,因此该方程在(﹣∞,0)内有且只有一个实数解,得③正确;对于④,由上面的分析知,当x≤﹣1时()x﹣1≥1,而﹣sinx≤1且x=﹣1不是方程的解∴函数y=()x﹣1与y=﹣sinx的图象在(﹣∞,﹣1]上不可能有交点因此只要x0是该方程的实数解,则x0>﹣1.故答案为:②③④【点评】本题给出含有指数式和三角函数式的方程,讨论方程解的情况.着重考查了指数函数的单调性、三角函数的周期性和有界性、函数的值域求法等知识,属于中档题.三、解答题:本大题共6道题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(12分)(2015某某一模)在△ABC中,角A、B、C的对边分别为a,b,c,且满足,2bsinA=a,BC边上中线AM的长为.(Ⅰ)求角A和角B的大小;(Ⅱ)求△ABC的面积.【分析】(Ⅰ)利用余弦定理表示出cosA,将已知等式变形后代入求出cosA的值,确定出角A的度数,将2bsinA=a利用正弦定理化简求出sinB的值,即可确定出角B的大小;(Ⅱ)由A=B,利用等角对等边得到AC=BC,设AC=BC=x,利用余弦定理列出关于x的方程,求出方程的解得到x的值,确定出AC与BC的长,再由sinC的值,利用三角形面积公式即可求出三角形ABC面积.【解答】解:(Ⅰ)由a2﹣b2﹣c2+bc=0得:a2﹣b2﹣c2=﹣bc,即b2+c2﹣a2=bc,∴由余弦定理得:cosA==,∵A为三角形内角,∴A=,由2bsinA=a,利用正弦定理化简得:2sinBsinA=sinA,即sinB=,则B=;(Ⅱ)由A=B,得到AC=BC=x,可得C=,由余弦定理得AM2=x2+﹣2x(﹣)=14,解得:x=2,则S△ABC=ACBCsinC=×2×2×=2.【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.18.(12分)(2014秋禅城区校级期中)年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:健康指数 2 1 0 ﹣160岁至79岁的人数120 133 32 1580岁及以上的人数9 18 14 9其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,﹣1代表“生活不能自理”.(Ⅰ)随机访问该小区一位80岁以下的老龄人,该老龄人生活能够自理的概率是多少?(Ⅱ)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.求被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率.【分析】(Ⅰ)求出该小区80岁以下的老龄人数,即可求解老龄人生活能够自理的概率.(Ⅱ)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.写出5人中抽取3人的基本事件总数,被访问的3位老龄人中恰有1位老龄人的个数,即可求解健康指数不大于0的概率.【解答】解:(Ⅰ)解:该社区80岁以下的老龄人共有120+133+32+15=300人,…(1分)其中生活能够自理的人有120+133+32=285人,…(2分)记“随机访问该小区一位80岁以下的老龄人,该老人生活能够自理”为事件A,则P(A)==.…(4分)(Ⅱ)根据表中数据可知,社区健康指数大于0的老龄人共有280人,不大于0的老龄人共有70人,…(5分)所以,按照分层抽样,被抽取的5位老龄人中,有位为健康指数大于0的,依次记为:a,b,c,d,有一位健康指数不大于0的,记为e.…(7分)从这5人中抽取3人的基本事件有:(a,b,c)(a,b,d)(a,b,e)(a,c,d)(a,c,e)(a,d,e)(b,c,d)(b,c,e)(b,d,e)(c,d,e)共10种,…(9分)其中恰有1位老龄人的健康指数不大于0的事件有:(a,b,e)(a,c,e)(a,d,e)(b,c,e)(b,d,e)(c,d,e)共6种,…(10分)记“被访问的3位老龄人中恰有1位老龄人的健康指数不大于0”为事件B,则P(B)=…(12分)【点评】本题考查分层抽样,古典概型概率公式的应用,基本知识的考查.19.(12分)(2016凉山州模拟)如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD||BC,PD⊥底面ABCD,∠ADC=90°,AD=2BC,Q为AD的中点,M为棱PC的中点.(Ⅰ)证明:PA∥平面BMQ;(Ⅱ)已知PD=DC=AD=2,求点P到平面BMQ的距离.【分析】(1)连结AC交BQ于N,连结MN,只要证明MN∥PA,利用线面平行的判定定理可证;(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离.【解答】解:(1)连结AC交BQ于N,连结MN,因为∠ADC=90°,Q为AD的中点,所以N 为AC的中点.…(2分)当M为PC的中点,即PM=MC时,MN为△PAC的中位线,故MN∥PA,又MN⊂平面BMQ,所以PA∥平面BMQ.…(5分)(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离,所以V P﹣BMQ=V A﹣BMQ=V M﹣ABQ,取CD的中点K,连结MK,所以MK∥PD,,…(7分)又PD⊥底面ABCD,所以MK⊥底面ABCD.又,PD=CD=2,所以AQ=1,BQ=2,,…(10分)所以V P﹣BMQ=V A﹣BMQ=V M﹣ABQ=.,…(11分)则点P到平面BMQ的距离d=…(12分)【点评】本题考查了线面平行的判定定理的运用以及利用三棱锥的体积求点到直线的距离.20.(12分)(2015某某一模)已知动点P到定点F(1,0)和直线l:x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合)(Ⅰ)求曲线E的方程;(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ACBD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.【分析】(1)设点P(x,y),由题意可得,,化简即可得出;(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得m2+1=n2,直线与椭圆方程联立可得.利用根与系数的关系可得,再利用基本不等式的性质即可得出.【解答】解:(1)设点P(x,y),由题意可得,,整理可得:.∴曲线E的方程是.(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得:,即m2+1=n2,联立消去y得.,,所以,,==.当且仅当,即时等号成立,此时.经检验可知,直线和直线符合题意.【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、四边形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.21.(12分)(2014秋涪城区校级月考)已知函数f(x)=e x﹣ax﹣1(e为自然对数的底数),a>0.(Ⅰ)若函数f(x)恰有一个零点,证明:a a=e a﹣1;(Ⅱ)若f(x)≥0对任意x∈R恒成立,某某数a的取值集合.【分析】(Ⅰ)求出函数的导数,通过导数为0,判断函数的单调性,利用函数的最小值证明a a=e a﹣1;(Ⅱ)利用(Ⅰ)函数的最小值,结合f(x)≥0对任意x∈R恒成立,构造函数,求出新函数的最小值利用恒成立,某某数a的取值集合.【解答】(Ⅰ)证明:由f(x)=e x﹣ax﹣1,得f'(x)=e x﹣a.…(1分)由f'(x)>0,即e x﹣a>0,解得x>lna,同理由f'(x)<0解得x<lna,∴f(x)在(﹣∞,lna)上是减函数,在(lna,+∞)上是增函数,于是f(x)在x=lna取得最小值.又∵函数f(x)恰有一个零点,则f(x)min=f(lna)=0,…(4分)即e lna﹣alna﹣1=0.…(5分)化简得:a﹣alna﹣1=0,即alna=a﹣1,于是lna a=a﹣1,∴a a=e a﹣1.…(6分)(Ⅱ)解:由(Ⅰ)知,f(x)在x=lna取得最小值f(lna),由题意得f(lna)≥0,即a﹣alna﹣1≥0,…(8分)令h(a)=a﹣alna﹣1,则h'(a)=﹣lna,由h'(a)>0可得0<a<1,由h'(a)<0可得a>1.∴h(a)在(0,1)上单调递增,在(1,+∞)上单调递减,即h(a)max=h(1)=0,∴当0<a<1或a>1时,h(a)<0,∴要使得f(x)≥0对任意x∈R恒成立,a=1.∴a的取值集合为{1}…(13分)【点评】本题考查函数的导数的应用,函数的最值的求法,考查逻辑推理能力,构造新函数是解题本题的关键.请考生在第22、23、24三题中任选一题作答,如果多做.则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.【选修4-1:几何证明选讲】22.(10分)(2016某某一模)如图所示,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(Ⅰ)求证:AB为圆的直径;(Ⅱ)若AC=BD,AB=5,求弦DE的长.【分析】(Ⅰ)由已知PG=PD,得到∠PDG=∠PGD,由切割弦定理得到∠PDA=∠DBA,进一步得到∠EGA=∠DBA,从而∠PFA=∠BDA.最后可得∠BDA=90°,说明AB为圆的直径;(Ⅱ)连接BC,DC.由AB是直径得到∠BDA=∠ACB=90°,然后由Rt△BDA≌Rt△ACB,得到∠DAB=∠CBA.再由∠DCB=∠DAB可推得DC∥AB.进一步得到ED为直径,则ED长可求.【解答】(Ⅰ)证明:∵PG=PD,∴∠PDG=∠PGD,由于PD为切线,故∠PDA=∠DBA,又∵∠EGA=∠PGD,∴∠EGA=∠DBA,∴∠DBA+∠BAD=∠EGA+∠BAD,从而∠PFA=∠BDA.又AF⊥EP,∴∠PFA=90°,则∠BDA=90°,故AB为圆的直径.(Ⅱ)解:连接BC,DC.由于AB是直径,故∠BDA=∠ACB=90°.在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而得Rt△BDA≌Rt△ACB,于是∠DAB=∠CBA.又∵∠DCB=∠DAB,∴∠DCB=∠CBA,故DC∥AB.∵AB⊥EP,∴DC⊥EP,∠DCE为直角,∴ED为直径,又由(1)知AB为圆的直径,∴DE=AB=5.【点评】本题考查了直线和圆的位置关系,考查了圆的切割线定理的应用,是中档题.【选修4-4:坐标系与参数方程】23.(2015某某一模)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线l的参数方程为(t 为参数),直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB面积的最大值.【分析】(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入即可得出.(II)把直线的参数方程化为普通方程,利用点到直线的距离公式可得圆心到直线的距离d,再利用弦长公式可得|AB|=2,利用三角形的面积计算公式即可得出.【解答】解:(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入可得:圆C的普通方程为x2+y2﹣2x+2y=0,即(x﹣1)2+(y+1)2=2.∴圆心坐标为(1,﹣1),∴圆心极坐标为;(Ⅱ)由直线l的参数方程(t为参数),把t=x代入y=﹣1+2t可得直线l的普通方程:,∴圆心到直线l的距离,∴|AB|=2==,点P直线AB距离的最大值为,.【点评】本题考查了把直线的参数方程化为普通方程、极坐标化为直角坐标方程、点到直线的距离公式、弦长公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.【选修4-5:不等式选讲】24.(2015某某一模)已知函数f(x)=m﹣|x﹣1|﹣2|x+1|.(Ⅰ)当m=5时,求不等式f(x)>2的解集;(Ⅱ)若二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,某某数m的取值X围.【分析】(Ⅰ)当m=5时,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(Ⅱ)由二次函数y=x2+2x+3=(x+1)2+2在x=﹣1取得最小值2,f(x)在x=﹣1处取得最大值m﹣2,故有m﹣2≥2,由此求得m的X围.【解答】解:(Ⅰ)当m=5时,,由f(x)>2可得①,或②,或③.解①求得﹣<x<﹣1,解②求得﹣1≤x<0,解③求得x∈∅,易得不等式即4﹣3x>2 解集为.(2)由二次函数y=x2+2x+3=(x+1)2+2,该函数在x=﹣1取得最小值2,因为在x=﹣1处取得最大值m﹣2,所以要使二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,只需m﹣2≥2,求得m≥4..【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解;还考查了函数的恒成立问题,体现了转化的数学思想,属于中档题.。

数学丨辽宁省实验中学2023届高考高三上学期期中数学试卷及答案

数学丨辽宁省实验中学2023届高考高三上学期期中数学试卷及答案

辽宁省实验中学2022-2023学年度上学期期中阶段测试高三数学试卷考试时间:120分钟 试题满分:150分命题人:张竹岩 刚道明 校对人:刚道明 张竹岩一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数(12)()z i a i =+-在复平面内对应的点位于第四象限,则实数a 的取值范围是A.1,22⎛⎫- ⎪⎝⎭B.12,2⎛⎫- ⎪⎝⎭C.1,22⎛⎫⎪⎝⎭D.1(,2),2⎛⎫-∞-+∞ ⎪⎝⎭2.已知,m n 为两条不同的直线,,,αβγ为三个不同的平面,则下列命题正确的是A.若,mn αα,则m n B.若,αβγβ⊥⊥,且m αγ=,则m β⊥C.若,,,m n m n αααβ⊂⊂,则αβD.若,,m n αβαβ⊥⊥,则m n ⊥3.某科技研发公司2021年全年投入的研发资金为300万元,在此基础上,计划每年投入的研发资金比上一年增加10%,则该公司全年投入的研发资金开始超过600万元的年份是(注:lg20.301,lg30.477,lg50.699,lg11 1.041≈≈≈≈)A.2027年 B.2028年C.2029年D.2030年4.已知函数222,(),x mx m x mf x xm xm,若2(4)(3)f a f a ,则实数a 的取值范围是 A.(1,4)B.(,1)(4,) C.(4,1) D.(,4)(4,)5.甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一个球放入乙箱中,再从乙箱中随机取出一球,则由乙箱中取出的是红球的概率为A.913B.910C.911D.9226.数学家欧拉于1765年在其著作《三角形的几何学》中首次提出:ABC ∆的外心O ,重心G ,垂心H 依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,该直线被称为欧拉线.若4,2AB AC ==,则下列各式中不正确的是 A.40AG BC ⋅-= B.2GO GH =- C.60AO BC ⋅+= D.OH OA OB OC=++7.已知等差数列{}n a ,n S 是数列{}n a 的前n 项和,对任意的*n N ∈,均有6n S S ≤恒成立,则107a a 不可能的值为 A.3B.4C.5D.68.已知实数12,x x 满足131x x e e =,()622ln 3x x e -=,则12x x =A.2eB.5eC.6eD.7e 二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.已知,0x y >,260x y xy ++-=,则A.,x yB.2x y +的最小值为4C.x y +的最小值为3 D.22(2)(1)x y +++的最小值为110.已知函数()sin ,(0)3f x x πωω⎛⎫=-> ⎪⎝⎭在[0,]π上有且只有三个零点,则下列说法正确的是A.在(0,)π上存在12,x x ,使得()()122f x f x -=B.ω的取值范围为710,33⎡⎫⎪⎢⎣⎭C.()f x 在0,4π⎛⎫⎪⎝⎭上单调递增 D.()f x 在(0,)π上有且只有一个最大值点11.函数()f x 的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,该结论可以推广为:函数()y f x =的图象关于点(,)P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数已知函数2()(0)2x g x m m=>+A.若1m =,则函数()1y g x =-为奇函数B.若1m =,则(10)(9)(9)(10)20g g g g -+-+++=C.函数()g x 的图象必有对称中心D.[][]222,log (2)log (2)x g m x g m x mR ∀∈++-<12.已知正四面体ABCD 的棱长为3,其外接球的球心为O .点E 满足AE ABλ=(01)λ<<,过点E 作平面α平行于AC 和BD ,设α分别与该正四面体的棱,,BC CD DA 相交于点,,F G H ,则A.四边形EFGH 的周长为定值B.当12λ=时,四边形EFGH 为正方形C.当13λ=时,α截球O 所得的截面的周长为134πD.四棱锥A EFGH -三、填空题:本题共4小题,每小题5分,共20分.13.若212nx x ⎛⎫- ⎪⎝⎭展开式的二项式系数之和为64,则展开式中3x 项的系数为________.14.已知三棱锥P ABC -的棱,,AP AB AC两两垂直,AP AB AC ===P为球心,4为半径做一个球,球面与该三棱锥的表面相交得到四段弧,则最长弧的弧长为________.15.在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是____.16.若函数(),()f x g x 在R 上可导,且()()f x g x =,则()()f x g x =''.英国数学家泰勒发现了一个恒等式22012xnn ea a x a x a x =+++++,则0a =____,1011n n na na +==∑____.四、解答题:本题共6小题,共70分。

辽宁省沈阳铁路实验中学2014-2015学年高二数学上学期期中试题 文

辽宁省沈阳铁路实验中学2014-2015学年高二数学上学期期中试题 文

辽宁省沈阳铁路实验中学2014-2015学年高二上学期期中考试数学〔文〕试题一、选择题:〔每题5分共60分〕1命题“对任意x R ∈都有21x ≥〞的否认是〔 〕A . 对任意x R ∈,都有21x <B .不存在x R ∈,使得21x <C .存在0x R ∈,使得201x ≥D .存在0x R ∈,使得201x <2 .a ,b ,c 是△ABC 三边之长,假设满足等式(a +b -c )(a +b +c )=ab , 如此角C 的大小为( )A .60° B.90° C.120° D.150°3.椭圆的长轴长是短轴长的2倍,如此椭圆的离心率等于( ) A.12B.22C.2D.324 .在△ABC 中,sin A cos B =sin C ,那么△ABC 一定是( ) A .直角三角形 B .等腰三角形C .等腰直角三角形 D .正三角形5 .如果0a b <<,那么如下不等式成立的是〔 〕A .11a b< B .2ab b <C .2ab a -<-D .11a b-<- 6 .目标函数y x z +=2,变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,如此有 〔 〕A .3,12min max ==z zB .,12max =z z 无最小值C .z z ,3min =无最大值D .z 既无最大值,也无最小值7 .如下有关命题的说法正确的答案是A .命题“假设21x =,如此1=x 〞的否命题为:“假设21x =,如此1x ≠〞; B .命题“x R ∃∈,使得210x x ++<〞的否认是:“x R ∀∈,均有210x x ++<〞; C .在ABC ∆中,“B A >〞是“B A 22cos cos <〞的充要条件;D .“2x ≠或1y ≠〞是“3x y +≠〞的非充分非必要条件. 8.等比数列{}n a 中,对任意自然数n ,12321n n a a a a ++++=-,如此2222123na a a a +++等于( ) A .()221n -B .()1213n -C .41n -D .()1413n - 9 .等差数列{}n a 的前n 项和为n S ,111a =-,564a a +=-,n S 取得最小值时n 的值为〔〕A .6B .7C .8D .910.椭圆222a x +222b y =1〔a >b >0〕与双曲线22a x -22by =1有一样的焦点,如此椭圆的离心率为A .22B .21C .36 D .66二.填空题〔每题5分共20分〕 13.不等式022>++bx ax 的解集是)31,21(-,如此a +b 的值是 14.假设双曲线的两条渐进线的夹角为 60,如此该双曲线的离心率为________15.假设实数,x y 满足221x y xy ++=,如此x y +的最大值___________;16.数列{}n a 满足133a =,12n n a a n +-=,如此na n的最小值为____. 三、解答题(每题12分)17.命题P :关于x 的不等式0422>++ax x 对于一切R x ∈恒成立,命题Q :[],0,2,12≥-∈∀a x x 假设pVq为真,q p Λ为假,求实数a 的取值范围。

辽宁省沈阳市铁路实验中学高二数学上学期期中试卷文(含解析)

辽宁省沈阳市铁路实验中学高二数学上学期期中试卷文(含解析)

2015-2016学年辽宁省沈阳市铁路实验中学高二(上)期中数学试卷(文科)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等比数列前n项和为S n,若S2=4,S4=16,则S8=( )A.160 B.64 C.﹣64 D.﹣1602.下列说法正确的是( )A.函数y=x+的最小值为2B.函数y=sinx+(0<x<π)的最小值为2C.函数y=|x|+的最小值为2D.函数y=lgx+的最小值为23.已知命题p:若x>y,则﹣x<﹣y;命题q:若x<y,则x2>y2;在下列命题中:(1)p∧q;(2)p∨q;(3)p∧(¬q);(4)(¬p)∨q,真命题是( )A.(1)(3) B.(1)(4) C.(2)(3) D.(2)(4)4.等差数列{a n}中,若a1+a4+a7=39,a3+a6+a9=27,则前9项的和S9等于( )A.66 B.99 C.144 D.2975.若A:a∈R,|a|<1,B:x的二次方程x2+(a+1)x+a﹣2=0的一个根大于零,另一根小于零,则A是B的( )A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知数列{a n}中,a1=1,a n+1=2n a n(n∈N+),则数列{a n}的通项公式为( )A.a n=2n﹣1B.a n=2n C.a n=2D.a n=27.△ABC的内角A、B、C的对边分别为a、b、c,则“a>b”是“cos2A<cos2B”的( ) A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.若直线2ax﹣by+2=0(a>0,b>0)恰好平分圆x2+y2+2x﹣4y+1=0的面积,则的最小值( )A.B.C.2 D.49.根据下列情况,判断三角形解的情况,其中正确的是( )A.a=8,b=16,A=30°,有两解B.b=18,c=20,B=60°,有一解C.a=5,c=2,A=90°,无解D.a=30,b=25,A=150°,有一解10.在△ABC中,内角A,B,C所对的边分别是a,b,c,若a=4,A=,则该三角形面积的最大值是( )A.2 B.3 C.4 D.411.在△ABC中,若lgsinA﹣lgcosB﹣lgsinC=lg2,则是( )A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形12.已知x,y满足,且z=2x+y的最大值是最小值的4倍,则a的值是( ) A.B.C.D.4二、填空题:本题共4小题,每小题5分,共计20分.13.设△ABC的内角A,B,C所对的边长分别为a,b,c且acosB﹣bcosA=c,则的值为__________.14.若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=__________时,{a n}的前n项和最大.15.已知函数f(x)=x2+mx+1,若命题“∃x0>0,f(x0)<0”为真,则m的取值范围是__________.16.已知正数x,y满足x+2y=2,则的最小值为__________.三、计算题:本题共6小题,共计70分,解答时应写出文字说明,证明过程或演算步骤.17.设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.18.已知等比数列{a n}满足:a1=2,a2•a4=a6.(1)求数列{a n}的通项公式;(2)记数列b n=,求该数列{b n}的前n项和S n.19.解关于x的不等式ax2﹣(2a+2)x+4>0.20.在△ABC中,.(Ⅰ)求角A的大小;(Ⅱ)若a=3,sinB=2sinC,求S△ABC.21.已知数列{a n}的首项a l=1,a n+1=(n∈N*).(I)证明:数列{﹣}是等比数列;(Ⅱ)设b n=,求数列{b n}的前n项和Sn.22.设数列{a n}的前n项和为S n,已知a1=a(a≠3),a n+1=S n+3n,n∈N*.(Ⅰ)设b n=S n﹣3n,求证:数列{b n}是等比数列,并写出数列{b n}的通项公式;(Ⅱ)若a n+1>a n对n∈N*任意都成立,求实数a的取值范围.2015-2016学年辽宁省沈阳市铁路实验中学高二(上)期中数学试卷(文科)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等比数列前n项和为S n,若S2=4,S4=16,则S8=( )A.160 B.64 C.﹣64 D.﹣160【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】由等比数列的性质可得S2,S4﹣S2,S6﹣S4,S8﹣S6成等比数列,由题意求出公比,再由等比数列的通项公式分别求出S6和S8的值.【解答】解:由等比数列的性质可得S2,S4﹣S2,S6﹣S4,S8﹣S6成等比数列,又S2=4,S4=16,故S4﹣S2=12,所以公比为3,由等比数列可得:S6﹣S4=36,S8﹣S6=108,解得S6=52,S8=160,故选:A.【点评】本题考查等比数列的前n项和的性质,即片段和性质,属于中档题.2.下列说法正确的是( )A.函数y=x+的最小值为2B.函数y=sinx+(0<x<π)的最小值为2C.函数y=|x|+的最小值为2D.函数y=lgx+的最小值为2【考点】基本不等式.【专题】导数的综合应用;不等式的解法及应用.【分析】A.x<0时无最小值;B.令sinx=t,由0<x<π,可得sinx∈(0,1),即t∈(0,1],令f(t)=t+,利用导数研究函数的单调性极值与最值即可得出;C.令|x|=t>0,令f(t)=t+,利用导数研究函数的单调性极值与最值即可得出;D.当0<x<1时,lgx<0,无最小值.【解答】解:A.x<0时无最小值;B.令sinx=t,∵0<x<π,∴sinx∈(0,1),即t∈(0,1],令f(t)=t+,f′(t)=1﹣=<0,∴函数f(t)在t∈(0,1]上单调递减,∴f(t)≥f(1)=3.因此不正确.C.令|x|=t>0,令f(t)=t+,f′(t)=1﹣==,∴函数f(t)在t∈(0,]上单调递减,在t∈∴s in(B﹣C)=0.∴B=C.△ABC为等腰三角形.选:A.【点评】本题主要考查了对数的运算性质及三角函数的诱导公式、和差角公式的综合应用,属于中档试题.12.已知x,y满足,且z=2x+y的最大值是最小值的4倍,则a的值是( ) A.B.C.D.4【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用z的几何意义,结合目标函数z=2x+y的最大值是最小值的4倍,建立方程关系,即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线的截距最大,此时z最大,由,解得即A(1,1),此时z=2×1+1=3,当直线y=﹣2x+z经过点B时,直线的截距最小,此时z最小,由,解得,即B(a,a),此时z=2×a+a=3a,∵目标函数z=2x+y的最大值是最小值的4倍,∴3=4×3a,即a=.故选:B【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.二、填空题:本题共4小题,每小题5分,共计20分.13.设△ABC的内角A,B,C所对的边长分别为a,b,c且acosB﹣bcosA=c,则的值为4.【考点】正弦定理的应用.【专题】计算题.【分析】先根据正弦定理得到sinAcosB﹣sinBcosA=sinC,再由两角和与差的正弦公式进行化简可得到sinAcosB=4sinBcosA,然后转化为正切的形式可得到答案.【解答】解:由acosB﹣bcosA=c及正弦定理可得sinAcosB﹣sinBcosA=sinC,即sinAcosB﹣sinBcosA=sin(A+B),即5(sinAcosB﹣sinBcosA)=3(sinAcosB+sinBcosA),即sinAcosB=4sinBcosA,因此tanA=4tanB,所以=4.故答案为:4【点评】本题主要考查正弦定理的应用和切化弦的基本应用.三角函数的公式比较多,要注意公式的记忆和熟练应用.14.若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=8时,{a n}的前n项和最大.【考点】等差数列的性质.【专题】等差数列与等比数列.【分析】可得等差数列{a n}的前8项为正数,从第9项开始为负数,进而可得结论.【解答】解:由等差数列的性质可得a7+a8+a9=3a8>0,∴a8>0,又a7+a10=a8+a9<0,∴a9<0,∴等差数列{a n}的前8项为正数,从第9项开始为负数,∴等差数列{a n}的前8项和最大,故答案为:8.【点评】本题考查等差数列的性质和单调性,属中档题.15.已知函数f(x)=x2+mx+1,若命题“∃x0>0,f(x0)<0”为真,则m的取值范围是(﹣∞,﹣2).【考点】特称命题.【专题】计算题;函数的性质及应用.【分析】根据“命题“∃x0>0,f(x0)<0”为真”,不等式对应的是二次函数,利用二次的图象与性质加以解决即可.【解答】解:因为函数f(x)=x2+mx+1的图象过点(0,1),若命题“∃x0>0,f(x0)<0”为真,则函数f(x)=x2+mx+1的图象的对称轴必在y轴的右侧,且与x轴有两个交点,∴△=m2﹣4>0,且﹣>0,即m<﹣2,则m的取值范围是:(﹣∞,﹣2).故答案为:(﹣∞,﹣2).【点评】本题考查特称命题、二次不等式恒成立,解决此类问题要结合二次函数的图象处理.16.已知正数x,y满足x+2y=2,则的最小值为9.【考点】基本不等式.【专题】不等式的解法及应用.【分析】利用“乘1法”和基本不等式即可得出.【解答】解:∵正数x,y满足x+2y=2,∴===9,当且仅当x=4y=时取等号.∴的最小值为9.故答案为:9.【点评】本题考查了“乘1法”和基本不等式的性质,属于基础题.三、计算题:本题共6小题,共计70分,解答时应写出文字说明,证明过程或演算步骤.17.设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.【考点】复合命题的真假;必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】(1)现将a=1代入命题p,然后解出p和q,又p∧q为真,所以p真且q真,求解实数a的取值范围;(2)先由¬p是¬q的充分不必要条件得到q是p的充分不必要条件,然后化简命题,求解实数a的范围.【解答】解:(1)当a=1时,p:{x|1<x<3},q:{x|2<x≤3},又p∧q为真,所以p真且q真,由得2<x<3,所以实数x的取值范围为(2,3)(2)因为¬p是¬q的充分不必要条件,所以q是p的充分不必要条件,又p:{x|a<x<3a}(a>0),q:{x|2<x≤3},所以解得1<a≤2,所以实数a的取值范围是(1,2]【点评】充要条件要抓住“大能推小,小不能推大”规律去推导.18.已知等比数列{a n}满足:a1=2,a2•a4=a6.(1)求数列{a n}的通项公式;(2)记数列b n=,求该数列{b n}的前n项和S n.【考点】数列的求和;等比数列的性质.【专题】等差数列与等比数列.【分析】(1)设等比数列{a n}的公比为q,根据等比数列的通项公式和条件,列出关于q 的方程求出q,再代入化简即可;(2)由(1)求出a2n﹣1、a2n+1的表达式,代入化简后裂项,代入数列{b n}的前n项和S n,利用裂项相消法进行化简.【解答】解:(1)设等比数列{a n}的公比为q,由a1=2,a2•a4=a6得,(2q)(2q3)=2q5,解得q=2,则=2n,(2)由(1)得,,,∴==,则S n=b1+b2+b3+…+b n=(1﹣==【点评】本题考查了等比数列的通项公式,对数的运算,以及裂项相消法求数列的前n项和,属于中档题.19.解关于x的不等式ax2﹣(2a+2)x+4>0.【考点】一元二次不等式的解法.【专题】计算题;分类讨论;分类法;不等式的解法及应用.【分析】已知不等式左边分解因式后,分a=0与a≠0两种情况求出解集即可.【解答】解:不等式ax2﹣(2a+2)x+4>0,因式分解得:(ax﹣2)(x﹣2)>0,若a=0,不等式化为﹣2(x﹣2)>0,则解集为{x|x<2};若a≠0时,方程(ax﹣2)(x﹣2)=0的两根分别为,2,①若a<0,则<2,此时解集为{x|<x<2};②若0<a<1,则>2,此时解集为{x|x<2或x>};③若a=1,则不等式化为(x﹣2)2>0,此时解集为{x|x≠2};④若a>1,则<2,此时解集为{x|x>2或x<}.【点评】此题考查了一元二次不等式的解法,利用了分类讨论的思想,熟练掌握运算法则是解本题的关键.20.在△ABC中,.(Ⅰ)求角A的大小;(Ⅱ)若a=3,sinB=2sinC,求S△ABC.【考点】解三角形;正弦定理;余弦定理.【专题】综合题.【分析】(I)利用条件,结合二倍角公式,即可求得角A的大小;(II)利用正弦定理,求得b=2c,再利用余弦定理,即可求得三角形的边,从而可求三角形的面积.【解答】解:(I)由已知得:,…∴.…∵0<A<π,∴.…(II)由可得:…∴b=2c…∵…∴…∴.…(13分)【点评】本题考查二倍角公式的运用,考查正弦定理、余弦定理,考查三角形面积的计算,属于中档题.21.已知数列{a n}的首项a l=1,a n+1=(n∈N*).(I)证明:数列{﹣}是等比数列;(Ⅱ)设b n=,求数列{b n}的前n项和Sn.【考点】数列的求和;等比关系的确定.【专题】等差数列与等比数列.【分析】(Ⅰ)a n+1=(n∈N*),两边取倒数可得:=,变形为=,利用等差数列的通项公式即可得出.(Ⅱ)(Ⅰ)知=,即=,b n==,再利用“错位相减法”、等差数列与等比数列的前n项和公式即可得出.【解答】(Ⅰ)证明:∵a n+1=(n∈N*),∴=,变形为=,又a1=1,∴﹣=,所以数列是以为首项,为公比的等比数列.(Ⅱ)解:由(Ⅰ)知==,即=,∴b n==.设T n=+…+,①则=+…++,②由①﹣②得,=+…+﹣=﹣=1﹣.∴T n=2﹣.又=.∴数列{b n}的前n项和S n=2﹣+.【点评】本题考查了递推关系的应用、“错位相减法”、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.22.设数列{a n}的前n项和为S n,已知a1=a(a≠3),a n+1=S n+3n,n∈N*.(Ⅰ)设b n=S n﹣3n,求证:数列{b n}是等比数列,并写出数列{b n}的通项公式;(Ⅱ)若a n+1>a n对n∈N*任意都成立,求实数a的取值范围.【考点】数列的求和;等比数列的通项公式.【专题】等差数列与等比数列.【分析】(Ⅰ)通过S n+1﹣S n=S n+3n,可得S n+1﹣3n+1=2(S n﹣3n),利用b1=a﹣3≠0,可得数列{b n}是首项为a﹣3,公比为2的等比数列,计算即可;(Ⅱ)通过(I)知,(a﹣3)•2n﹣1+2•3n﹣>0对n∈N*任意都成立,计算即可.【解答】解:(Ⅰ)∵a n+1=S n+3n,∴S n+1﹣S n=S n+3n,∴S n+1=2S n+3n,∴S n+1﹣3n+1=2(S n﹣3n),又∵b n=S n﹣3n,∴=2,又∵b1=S1﹣3=a﹣3≠0,∴数列{b n}是首项为a﹣3,公比为2的等比数列,∴b n=(a﹣3)•2n﹣1;(Ⅱ)由(I)知,S n﹣3n=b n=(a﹣3)•2n﹣1,∴S n=(a﹣3)•2n﹣1+3n,∴a n+1=S n+3n=(a﹣3)•2n﹣1+2•3n,∴a n=(a﹣3)•2n﹣2+2•3n﹣1(n≥2),∵a n+1>a n,即a n+1﹣a n>0对n∈N*任意都成立,∴(a﹣3)•2n﹣1+2•3n﹣>0,化简得(n≥2),即,解得a>﹣9,而当n=1时,a2﹣a1=3>0,综上所述:a∈(﹣9,3)∪(3,+∞).【点评】本题考查数列的递推公式、等比数列的通项公式,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.。

辽宁省沈阳铁路实验中学1415高二上学期第二次月考——

辽宁省沈阳铁路实验中学1415高二上学期第二次月考——

辽宁省沈阳铁路实验中学2014—2015学年度上学期第二次月考高二数学文试题时间:100分钟 总分:120分第Ⅰ卷 (60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“”的否定是( )A . B.C. D.2.设,且,则 ( )A .B .C .D .3.若数列的通项公式是,则( )A .15B .12C .-12D .-154.已知椭圆过点和点,则此椭圆的标准方程是( )A.y 225+x 2=1B.x 225+y 2=1或x 2+y 225=1C.x 225+y 2=1 D .以上均不正确 5.有下列四个命题:①“若xy =1,则x 、y 互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③若“A ∪B =B ,则A ⊇B ”的逆否命题.其中的真命题有( )个。

A .0B .1C .2D .36.若双曲线的焦点到其渐近线的距离等于实轴长,则它的离心率为( )A 、5B 、 5C 、 2D 、27.已知命题2:,0p x R x x ∀∈+>“”,命题:q a c b d a b c d +>+>>“是且的充分不必要条件”,则下列结论正确的是( )A .命题“”是真命题 B. 命题“(”是真命题C. 命题“”是真命题D. 命题“”是假命题8.若曲线 y= x 2 上P 点处的切线平行于 2x-y+1=0, 则点P 的坐标是( )A. ( 1,-1) B . ( -1,1) C. ( 1,1) D. ( -1 , -1)9.在△ABC 中,BC =2,B =,当△ABC 的面积等于时,sin C = ( )A .B .C .D .10.已知a>0,b>0,a+b=2,则+的最小值是( )A. B.4 C. D.511.“”是数列“2*2()n a n n n N λ=-∈为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.已知2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且的最大值是最小值的3倍,则的值是( ) A . B . C . D .第Ⅱ卷 (60分)二、填空题:本大题共2小题,每小题4分,共8分.把答案填在答题纸上.13.已知是直线被椭圆所截得的线段的中点,则直线的方程为 .14.若函数f(x)在x=a 的导数为m, 则xx a f x a f ∆∆--∆+)2()2( = . 三、解答题:本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分10分)已知函数的图像与轴无交点;方程表示椭圆;若为真命题,试求实数的取值范围.16.(本小题满分10分)已知锐角中,角A 、B 、C 的对边长分别为a 、b 、c ,向量m =(,1), n =(,),且mn .(1) 求角C 的大小;(2)若边c=2,求面积的最大值.18.(本小题满分10分)已知直线被抛物线C :截得的弦长.(1)求抛物线C 的方程;(2)若抛物线C 的焦点为F ,求三角形ABF 的面积 .19.(本小题满分12分)(0,1)的直线与椭圆相交于两点.(1)求椭圆的方程;(2)若点在椭圆上且满足,求直线的斜率的值。

辽宁省沈阳铁路实验中学2014届高三上学期期中考试数学(文)试题Word版含答案

辽宁省沈阳铁路实验中学2014届高三上学期期中考试数学(文)试题Word版含答案

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={-1,0,1},N={x|x2≤x},则M∩N=()A.{0} B.{0,1} C.{-1,1} D.{-1,0 }2已知复数,则·i在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.是“”的( )A.充分而不必要条件B.必要而不充分条C.充要条件D.既不充分也不必要4.下列命题错误的是( )A.命题“若,则“的逆否命题为”若B若命题,则C.若为假命题,则,均为假命题D.的充分不必要条件5在中,分别为三个内角A、B、C所对的边,设向量mn,若向量m⊥n,则角A 的大小为()A.B.C.D.6. 函数在上为减函数,则实数的取值范围是()A. B. C. D.7.定义在R上的偶函数时单调递增,则()A.B.C.D.8.已知函数在R上可导,且,则与的大小关系为A.= B.C.D.不确定10.函数(其中)的图象如图1所示,为了得到的图象,则只需将的图象( )A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位图111.在△中,若,则△是( )A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形12. 已知为定义在上的可导函数,且对于恒成立,设(为自然对数的底), 则( )A. B.C. D.与的大小不确定二、填空题:本大题共4小题,每小题5分.13.函数为偶函数,则实数14. 已知;,若是的充分不必要条件,则实数的取值范围是___________________15. 、定义运算为:例如,,则函数f(x)=的值域为16 .给定下列命题①半径为2,圆心角的弧度数为的扇形的面积为;②若a、为锐角,,则;③若A、B是△ABC的两个内角,且sinA<sinB,则BC<AC;④若a、b、c分别是△ABC的三个内角A、B、C所对边的长,且<0则△ABC一定是钝角三角形.其中真命题的序号是.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。

辽宁省沈阳铁路实验中学高二数学上学期期中试题 理

辽宁省沈阳铁路实验中学高二数学上学期期中试题 理

沈阳铁路实验中学2015-2016学年度上学期期中考试高二数学(理)时间:150分钟 分数:150分第I 卷(选择题60分)一、选择题:共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.有关命题的说法错误的是 ( )A .命题“若x 2-3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2-3x+2≠0”B .“x=1”是“x 2-3x+2=0”的充分不必要条件 C .若p ∧q 为假命题,则p 、q 均为假命题D .对于命题p: ∃ x ∈R ,使得x 2+x+1<0,则:p x ⌝∀∈R ,均有x 2+x+1≥02.等差数列99637419,27,39,}{S a a a a a a a n 项和则前已知中=++=++的值为( ) A .66 B .99 C .144 D .297 3.若1:1,:1p x q x><,则p 是q 的 ( ) (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 4.已知命题:,p x R ∃∈使得12,x x+<命题2:,10q x R x x ∀∈++>,下列命题为真的是 A .()p q ⌝∧ B .p ∧q C .()p q ∧⌝ D .()()p q ⌝∧⌝5.设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S 取最小值时,n = A .6 B .7 C .8 D .9 6.设等比数列}{n a 的前n 项和为n S ,若63S S =3则69S S = ( )A .2B .73 C .83D .3 7.下列说法正确的是 A .函数x x y 2+=的最小值为.函数)0(sin 2sin π<<+=x xx y的最小值为C .函数xx y 2+=的最小值为 D .函数x x y lg 2lg +=的最小值为8.变量x ,y 满足约束条件3602030x y x y y +-≥⎧⎪--≤⎨⎪-≤⎩,则目标函数z=y-2x 的最小值为( )A .-7B .-4C .1D .29. 已知12-1,,,4a a - 成等差数列,且1231,b ,b ,b ,4--成等比数列,则212b a a -的值为( )A .—21B .21C .21或—21D .4110.设0a >,1b >,若2a b +=,且不等式24181m m a b +>+-恒成立,则m 的取值范围是( )A .9m >或1m <-B .1m >或9m <-C .91m -<<D .19m -<<11.已知变量x ,y 满足2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩则31x y u x +=+的值范围是( )A .514[,]25 B .11[,]25-- C .15[,]22- D .514[,]25- 12.若等差数列{}n a 的前n 项和为n S 满足17180,0S S ><,则17121217,,,S S S a a a L 中最大的项 A .66S a B .77S a C .88S a D .99Sa13.已知a>0,b>0,ab -(a +b )=1,求a +b 的最小值 .14.变量x 、y 满足线性约束条件2200x y x y y +≤⎧⎪-≥⎨⎪≥⎩,则使目标函数()0z ax y a =+>取得最大值的最优解有无数个,则a 的值为 .15.数列{}n a 是等比数列,若22a =,514a =,则12231n n a a a a a a +++⋅⋅⋅+=.16.下列命题中:①ABC ∆中,B A B A sin sin >⇔>②数列{}n a 的前n 项和221n S n n =-+,则数列{}n a 是等差数列.③锐角三角形的三边长分别为3,4,a ,则a 的取值范围是57<<a . ④若22n n S a =-,则{}n a 是等比数列 真命题的序号是 .17.(本小题满分10分)设命题p :实数x 满足22430x ax a -+<,其中0a >,命题q :实数x 满足2260,280.x x x x ⎧--≤⎪⎨+->⎪⎩.(1)若1,a =且p q ∧为真,求实数x 的取值范围;(2)若p ⌝是⌝q 的充分不必要条件,求实数a 的取值范围.18.(本小题满分12分)在ABC ∆中,角A 、B 、C 的对边分别为c b a 、、,已知b ac B C A -=-2cos cos 2cos 。

辽宁省沈阳市铁路实验中学高三数学上学期期中试卷 文(含解析)

辽宁省沈阳市铁路实验中学高三数学上学期期中试卷 文(含解析)

辽宁省沈阳市铁路实验中学2015届高三上学期期中数学试卷(文科)一、选择题(每小题5分,共60分)1.集合M={1,2},N={3,4,5},P={x|x=a+b,a∈M,b∈N},则集合P的元素个数为( ) A.3 B.4 C.5 D.6考点:元素与集合关系的判断.专题:集合.分析:根据集合元素之间的关系,分别讨论a,b的取值即可得到结论.解答:解:∵M={1,2},N={3,4,5},a∈M,b∈N∴a=1或2,b=3或4或5,当a=1时,x=a+b=4或5或6,当a=2时,x=a+b=5或6或7,即P={4,5,6,7},故选:B.点评:本题主要考查集合元素个数的判断,比较基础.2.已知=1﹣ni,其中m,n∈R,i为虚数单位,则m+ni=( )A.1+2i B.2+i C.1﹣2i D.2﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用复数代数形式的乘除运算化简,然后利用复数相等的条件求得m,n的值,则答案可求.解答:解:∵==1﹣ni,∴,解得.∴m+ni=2+i.故选:B.点评:本题考查了复数代数形式的乘除运算,考查了复数相等的条件,是基础题.3.若变量x,y满足约束条件,则目标函数z=3x﹣y的最小值为( ) A.﹣4 B.0 C.D.4考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用z的几何意义,结合数形结合即可得到结论.解答:解:作出不等式组对应的平面区域如图:由z=3x﹣y得y=3x﹣z,平移直线y=3x﹣z由图象可知当直线y=3x﹣z经过点A时,直线y=3x﹣z的截距最大,此时z最小.由,解得,即A(1,3),此时z=3﹣3=0,故选:B.点评:本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.4.若,则sin4θ+cos4θ的值为( )A.B.C.D.1考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:已知等式利用二倍角的余弦函数公式化简,求出cos2θ与sin2θ的值,代入原式计算即可得到结果.解答:解:∵cos2θ=2cos2θ﹣1=1﹣2sin2θ=,∴cos2θ=,sin2θ=,则原式=+=.故选:C.点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.5.若向量,的夹角为,且||=2,||=1,则与+2的夹角为( ) A.B.C.D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用数量积运算性质、向量的夹角公式即可得出.解答:解:∵向量,的夹角为,且||=2,||=1,∴===1.∴==22+2×1=6,==.∴===,∴与+2的夹角为.故选:A.点评:本题考查了数量积运算性质、向量的夹角公式,属于基础题.6.若按如图的算法流程图运行后,输出的结果是,则输入的N的值为( )A.5 B.6 C.7 D.8考点:程序框图.专题:算法和程序框图.分析:由已知中的程序框图可知:程序的功能是利用循环计算并输出变量S的值,模拟程序的运行过程,根据输出的结果是,可分析出判断框中的条件.解答:解:进行循环前k=1,S=0,进行循环后S=,不满足退出循环的条件;k=2,S=,不满足退出循环的条件;k=3,S=,不满足退出循环的条件;k=4,S=,不满足退出循环的条件;k=5,S=,不满足退出循环的条件;k=6,S=,满足退出循环的条件;故满足条件的N值为6,故选B点评:本题考查的知识点是程序框图,模拟程序的运行过程,分析满足退出循环时的k值,是解答的关键.7.直线截圆x2+y2=4所得劣弧所对圆心角为( )A.B.C.D.考点:直线与圆的位置关系.分析:先解劣弧所对圆心角的一半,就是利用弦心距和半径之比求之.解答:解:圆到直线的距离为:=1,又因为半径是2,设劣弧所对圆心角的一半为α,cosα=0.5,∴α=60°,劣弧所对圆心角为120°.故选 D.点评:直线与圆的关系中,弦心距、半径、弦长的关系,是2015届高考考点,本题是基础题.8.在同一个坐标系中画出函数y=a x,y=sinax的部分图象,其中a>0且a≠1,则下列所给图象中可能正确的是( )A.B.C.D.考点:指数函数的图像与性质;正弦函数的图象.专题:压轴题;数形结合.分析:本题是选择题,采用逐一排除法进行判定,再根据指对数函数和三角函数的图象的特征进行判定.解答:解:正弦函数的周期公式T=,∴y=sinax的最小正周期T=;对于A:T>2π,故a<1,因为y=a x的图象是减函数,故错;对于B:T<2π,故a>1,而函数y=a x是增函数,故错;对于C:T=2π,故a=1,∴y=a x=1,故错;对于D:T>2π,故a<1,∴y=a x是减函数,故对;故选D点评:本题主要考查了指数函数的图象,以及对三角函数的图象,属于基础题.9.一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为( )A.9 B.10 C.11 D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由已知中的三视图可得:该几何体是一个长宽高分别为2,2,3的直棱柱,截去了一个底面两直角边为1,2,高为3的三棱锥,代入体积公式可得答案.解答:解:由已知中的三视图可得:该几何体是一个长宽高分别为2,2,3的直棱柱,截去了一个底面两直角边为1,2,高为3的三棱锥,故V=2×2×3﹣××1×2×3=11.故选C.点评:本题考查的知识点是几何体的三视图,棱柱和棱锥的体积,其中分析出几何体的形状是解答的关键.10.设定义在R上的奇函数y=f(x),满足对任意t∈R都有f(t)=f(1﹣t),且x时,f(x)=﹣x2,则f(3)+f(﹣的值等于( )A.﹣B.﹣C.﹣D.﹣考点:函数的值.专题:函数的性质及应用.分析:利用奇函数的性质和对任意t∈R都有f(t)=f(1﹣t),即可分别得到f(3)=f(0),.再利用x时,f(x)=﹣x2,即可得出答案.解答:解:∵定义在R上的奇函数y=f(x),满足对任意t∈R都有f(t)=f(1﹣t),∴f(3)=f(1﹣3)=f(﹣2)=﹣f(2)=﹣f(1﹣2)=f(1)=f(1﹣1)=f(0),=.∵x时,f(x)=﹣x2,∴f(0)=0,,∴f(3)+f(﹣=0.故选C.点评:熟练掌握函数的奇偶性和对称性是解题的关键.11.己知球的直径SC=4,A,B是该球球面上的两点.AB=2,∠ASC=∠BSC=45°,则棱锥S﹣ABC的体积为( )A.B.C.D.考点:棱柱、棱锥、棱台的体积;球内接多面体.专题:计算题.分析:由题意求出SA=AC=SB=BC=2,∠SAC=∠SBC=90°,说明球心O与AB的平面与SC垂直,求出OAB的面积,即可求出棱锥S﹣ABC的体积.解答:解:如图:由题意球的直径SC=4,A,B是该球球面上的两点.AB=2,∠ASC=∠BSC=45°,求出SA=AC=SB=BC=2,∠SAC=∠SBC=90°,所以平面ABO与SC垂直,则进而可得:V S﹣ABC=V C﹣AOB+V S﹣AOB,所以棱锥S﹣ABC的体积为:=.故选C.点评:本题是基础题,考查球的内接三棱锥的体积,考查空间想象能力,计算能力,球心O与AB的平面与SC垂直是本题的解题关键,常考题型.12.在平面直角坐标系xOy中,已知P是函数f(x)=xlnx﹣x的图象上的动点,该曲线在点P处的切线l交y轴于点M(0,y M),过点P作l的垂线交y轴于点N(0,y N).则的范围是( )A.(﹣∞,﹣1]∪∪考点:利用导数研究曲线上某点切线方程.专题:综合题;导数的概念及应用.分析:设出P的坐标,求导函数,可得曲线在点P处的切线l的方程,过点P作l的垂线的方程,令x﹣0,可得y M=﹣a,y N=alna﹣a+,进而可求=﹣lna+1﹣,利用基本不等式,即可求出的范围.解答:解:设P(a,alna﹣a),则∵f(x)=xlnx﹣x,∴f′(x)=lnx,∴曲线在点P处的切线l的方程为y﹣alna+a=lna(x﹣a),即y=﹣a+xlna.令x=0,可得y M=﹣a,过点P作l的垂线的方程为y﹣alna+a=﹣(x﹣a),令x=0,可得y N=alna﹣a+,∴=﹣lna+1﹣,∵lna+≥2或lna+≤﹣2,∴﹣(lna+)≤﹣2或﹣(lna+)≥2,∴=﹣lna+1﹣的范围是(﹣∞,﹣1]∪,即x2+(y2﹣1)=2x2﹣4x+2+2y2,整理,得(x﹣2)2+y2=1,∴+=(x,y﹣1)+(x,y+1)=(2x,2y),∴==2;如图所示,;∴的最大值是2(|OC|+|CP|)=2×(2+1)=6;故答案为:6.点评:本题考查了平面向量的数量积以及数形结合的知识,是基础题.三、解答题((第17-21每小题12分,选做题10,共70分))17.△ABC中内角A,B,C所对的边分别是a,b,c,且sinC=2sinB (1)若A=60°,求;(2)求函数f(B)=cos(2B+)+2cos2B的值域.考点:三角函数中的恒等变换应用;正弦定理.专题:三角函数的图像与性质;解三角形.分析:(1)由正弦定理和已知可得c=2b,由余弦定理可求a=,故可求;(2)函数可化简为f(B)=sin(2B+φ)+1,故可求其值域.解答:解:(1)由正弦定理知,sinC=2sinB⇒c=2b,由余弦定理知,a2=b2+c2﹣2bccosA=3b2⇒a=,故有=.(2)f(B)=cos(2B+)+2cos2B=cos(2B)cos﹣sin(2B)sin+1+cos(2B)=cos2B﹣sin2B+1=sin(2B+φ)+1,其中tanφ==﹣.=sin(2B+φ)+1,故其值域为.点评:本题主要考察了三角函数中的恒等变换应用,正弦定理、余弦定理的应用,属于基础题.18.在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,P为DN的中点.(Ⅰ)求证:BD⊥MC;(Ⅱ)在线段AB是否存在点E,使得AP∥平面NEC,若存在,说明其位置,并加以证明;若不存在,请说明理由.考点:直线与平面垂直的性质;直线与平面平行的判定.专题:空间位置关系与距离.分析:(Ⅰ)易得BD⊥AC,MA⊥平面ABCD,进而可得MA⊥BD,结合AC∩MA=A,由线面垂直的判定可得BD⊥平面AMC,进而可得结论;(2)当E为线段AB中点时,会使AP∥平面NEC,取NC中点F,可证四边形AEPF为平行四边形,可得AP∥EF,由线面垂直的判定可得结论.解答:解:(Ⅰ)因为四边形ABCD是菱形,所以BD⊥AC,又ADNM是矩形,平面ADNM⊥平面ABCD,所以MA⊥平面ABCD,所以MA⊥BD,又因为AC∩MA=A,由线面垂直的判定可得BD⊥平面AMC又因为AC⊂平面AMC,所以BD⊥MC;(2)当E为线段AB中点时,会使AP∥平面NEC,下面证明:取NC中点F,连接EF,PF,可得AE∥CD,且AE=CD,由三角形的中位线可知,PF∥CD,且PF=CD,故可得AE∥PF,且AE=PF,即四边形AEPF为平行四边形,故可得AP∥EF,又AP⊄平面NEC,EF⊂平面NEC,所以AP∥平面NEC,故当E为线段AB中点时,会使AP∥平面NEC点评:本题考查直线与平面平行的判定,以及直线与直线垂直的证明,属中档题.19.某车间20名工人年龄数据如下表:年龄(岁)工人数(人)19 128 329 330 531 432 340 1合计20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.考点:极差、方差与标准差;茎叶图;众数、中位数、平均数.专题:概率与统计.分析:(1)根据众数和极差的定义,即可得出;(2)根据画茎叶图的步骤,画图即可;(3)利用方差的计算公式,代入数据,计算即可.解答:解:(1)这这20名工人年龄的众数为30,极差为40﹣19=21;(2)茎叶图如下:(3)年龄的平均数为:=30.这20名工人年龄的方差为S2==12.6.点评:本题考查了众数,极差,茎叶图,方差的基本定义,属于基础题.20.设数列{a n}的前n项和为S n,点(a n,S n)在直线上.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)在a n与a n+1之间插入n个数,使这n+2个数组成公差为d n的等差数列,求数列的前n项和T n.考点:等差数列与等比数列的综合;数列的函数特性.专题:综合题;等差数列与等比数列.分析:(Ⅰ)由题设知,﹣1,得﹣1(n∈N*,n≥2),两式相减可得数列递推式,由此可判断数列{a n}为等比数列,从而可得其通项公式;(Ⅱ)由(Ⅰ)可得a n+1,a n,根据等差数列的通项公式可得d n,从而可得,令,,利用错位相减法即可求得T n;解答:解:(Ⅰ)由题设知,﹣1,得﹣1(n∈N*,n≥2),两式相减得:,即a n=3a n﹣1(n∈N*,n≥2),又S1=得a1=2,所以数列{a n}是首项为2,公比为3的等比数列,所以;(Ⅱ)由(Ⅰ)知,,因为a n+1=a n+(n+1)d n,所以,所以=,令,则①,②,①﹣②得﹣==,∴;点评:本题考查数列的函数特性、由数列递推式求通项公式、等差数列及错位相减法求数列的前n项和,考查学生综合运用知识解决问题的能力,综合性较强,能力要求较高.21.设a∈R,函数f(x)=ax2﹣(2a+1)x+lnx.(Ⅰ)当a=1时,求f(x)的极值;(Ⅱ)设g(x)=e x﹣x﹣1,若对于任意的x1∈(0,+∞),x2∈R,不等式f(x1)≤g(x2)恒成立,求实数a的取值范围.考点:利用导数研究函数的极值;导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(Ⅰ)当a=1时,函数f(x)=x2﹣3x+lnx,.令f'(x)=0得:.列出表格即可得出函数的单调性极值;(II)对于任意的x1∈(0,+∞),x2∈R,不等式f(x1)≤g(x2)恒成立,则有f(x)max≤g (x)min.利用导数分别在定义域内研究其单调性极值与最值即可.解答:解:(Ⅰ)当a=1时,函数f(x)=x2﹣3x+lnx,.令f'(x)=0得:当x变化时,f'(x),f(x)的变化情况如下表:x 1 (1,+∞)f'(x)+ 0 ﹣0 +f(x)单调递增极大单调递减极小单调递增因此,当时,f(x)有极大值,且;当x=1时,f(x)有极小值,且f(x)极小值=﹣2.(Ⅱ)由g(x)=e x﹣x﹣1,则g'(x)=e x﹣1,令g'(x)>0,解得x>0;令g'(x)<0,解得x<0.∴g(x)在(﹣∞,0)是减函数,在(0,+∞)是增函数,即g(x)最小值=g(0)=0.对于任意的x1∈(0,+∞),x2∈R,不等式f(x1)≤g(x2)恒成立,则有f(x1)≤g(0)即可.即不等式f(x)≤0对于任意的x∈(0,+∞)恒成立.(1)当a=0时,,令f'(x)>0,解得0<x<1;令f'(x)<0,解得x>1.∴f(x)在(0,1)是增函数,在(1,+∞)是减函数,∴f(x)最大值=f(1)=﹣1<0,∴a=0符合题意.(2)当a<0时,,令f'(x)>0,解得0<x<1;令f'(x)<0,解得x>1.∴f(x)在(0,1)是增函数,在(1,+∞)是减函数,∴f(x)最大值=f(1)=﹣a﹣1≤0,得﹣1≤a<0,∴﹣1≤a<0符合题意.(3)当a>0时,,f'(x)=0得,时,0<x1<1,令f'(x)>0,解得或x>1;令f'(x)<0,解得.∴f(x)在(1,+∞)是增函数,而当x→+∞时,f(x)→+∞,这与对于任意的x∈(0,+∞)时f(x)≤0矛盾.同理时也不成立.综上所述:a的取值范围为.点评:本题考查了利用导数研究函数的单调性极值与最值,考查了恒成立问题的等价转化方法,考查了分类讨论的思想方法,考察了推理能力和计算能力,属于难题.四、解答题(共2小题,满分10分)22.已知直线l的参数方程为(t为参数),曲线C的极坐标方程是以极点为原点,极轴为x轴正方向建立直角坐标系,点M(﹣1,0),直线l与曲线C交于A,B两点.(1)写出直线l的极坐标方程与曲线C的普通方程;(2)线段MA,MB长度分别记|MA|,|MB|,求|MA|•|MB|的值.考点:简单曲线的极坐标方程;直线的参数方程.专题:计算题;综合题.分析:(1)将直线l的参数方程消去参数t得直线的普通方程,再化成直线l的极坐标方程,曲线C的极坐标方程化成:ρsinθ=ρ2cos2θ,最后再化成普通方程即可;(2)将直线的参数方程代入y=x2得关于t的一元二次方程,再结合根与系数的关系即得|MA|•|MB|=|t1t2|=2.解答:解(1)将直线l的参数方程消去参数t得:x=﹣1+y,∴直线l的极坐标方程,曲线C的极坐标方程化成:ρsinθ=ρ2cos2θ,其普通方程是:y=x2(2)将代入y=x2得,3分∵点M(﹣1,0)在直线上,∴|MA|•|MB|=|t1t2|=2.点评:本题考查点的极坐标和直角坐标的互化、直线的参数方程,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.23.设函数f(x)=|x﹣1|+|x﹣2|(1)求不等式f(x)≤3的解集;(2)若不等式||a+b|﹣|a﹣b||≤|a|f(x)(a≠0,a∈R,b∈R)恒成立,求实数x的范围.考点:绝对值不等式;函数恒成立问题.专题:计算题;压轴题.分析:(1)根据绝对值的代数意义,去掉函数f(x)=|x﹣1|+|x﹣2|中的绝对值符号,画出函数函数f(x)的图象,根据图象求解不等式f(x)≤3,(2)由||a+b|﹣|a﹣b||≤2|a|,得2|a|≤|a|f(x),由a≠0,得2≤f(x),从而解得实数x的范围.解答:解:(1),… 所以解集…(2)由||a+b|﹣|a﹣b||≤2|a|,…得2|a|≤|a|f(x),由a≠0,得2≤f(x),…解得x或x…点评:考查了绝对值的代数意义,去绝对值体现了分类讨论的数学思想;根据函数图象求函数的最值,体现了数形结合的思想.属中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年辽宁省沈阳市铁路实验中学高二(上)期中数学试卷(文科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.命题“对任意x∈R都有x2≥1”的否定是()A.对任意x∈R,都有x2<1B.不存在x∈R,使得x2<1C.存在x0∈R,使得x02≥1D.存在x0∈R,使得x02<1【答案】D【解析】解:因为全称命题的否定是特称命题,所以命题“对任意x∈R都有x2≥1”的否定是:存在x0∈R,使得<.故选:D.利用汽车媒体的否定是特称命题写出结果判断即可.本题考查全称命题的否定,注意量词以及形式的改变,基本知识的考查.2.若△ABC的三边长a,b,c满足(a+b-c)(a+b+c)=ab,则角C的大小是()A.60°B.90°C.120°D.150°【答案】C【解析】解:∵(a+b-c)(a+b+c)=ab∴(a+b)2-c2=ab即a2+b2-c2=-ab根据余弦定理可知cos C===-∴∠C=120°故选C.首先将已知的式子进行化简得出a2+b2-c2=-ab,然后利用余弦定理求出C的大小.本题考查了余弦定理的运用,解题的关键是利用平方差公式将所给式子进行化简,属于基础题.3.已知椭圆的长轴长是短轴长的倍,则椭圆的离心率等于()A. B. C. D.【答案】B【解析】解:∵椭圆的长轴长是短轴长的倍∴2a=•2b,即a=b∴a2=2b2c2=a2-b2=2b2-b2=b2∴e2===∴e=故选B先根据椭圆的长轴长是短轴长的2倍得a=2b,进而根据c2=a2-b2用b表示c,进而代入e2=求得e.本题主要考查椭圆的性质.属基础题.4.在△ABC中,已知2sin A cos B=sin C,那么△ABC一定是()A.直角三角形B.等腰三角形C.等腰直角三角形D.正三角形【答案】B【解析】解:由2sin A cos B=sin C知2sin A cos B=sin(A+B),∴2sin A cos B=sin A cos B+cos A sin B.∴cos A sin B-sin A cos B=0.∴sin(B-A)=0,∵A和B是三角形的内角,∴B=A.故选B根据三角形三个内角和为180°,把角C变化为A+B,用两角和的正弦公式展开移项合并,公式逆用,得sin(B-A)=0,因为角是三角形的内角,所以两角相等,得到三角形是等腰三角形.在三角形内会有一大部分题目出现,应用时要抓住三角形内角和是180°,就有一部分题目用诱导公式变形,对于题目中正用、逆用两角和的正弦和余弦公式,必须在复杂的式子中学会辨认公式应用公式.5.如果a<b<0,那么下列不等式成立的是()A.<B.ab<b2C.-ab<-a2D.<【答案】D【解析】解:由于a<b<0,不妨令a=-2,b=-1,可得=-1,∴>,故A不正确.可得ab=2,b2=1,∴ab>b2,故B不正确.可得-ab=-2,-a2=-4,∴-ab>-a2,故C不正确.故选D.由于a<b<0,不妨令a=-2,b=-1,代入各个选项检验,只有D正确,从而得出结论.本题主要考查不等式与不等关系,利用特殊值代入法比较几个式子在限定条件下的大小关系,是一种简单有效的方法,属于基础题.6.目标函数z=2x+y,变量x,y满足<,则有()A.z max=12,z min=3B.z max=12,z无最小值C.z min=3,z无最大值D.z既无最大值,也无最小值【答案】C【解析】解:先根据约束条件画出可行域,由得A(5,2),由得B(1,1).当直线z=2x+y过点A(5,2)时,z最大是12,当直线z=2x+y过点B(1,1)时,z最小是3,但可行域不包括A点,故取不到最大值.故选C.先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最值情况即可.借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.7.下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.命题“∃x∈R使得x2+x+1<0”的否定是:“γx∈R,均有x2+x+1<0”C.在△ABC中,“A>B”是“cos2A<cos2B”的充要条件D.“x≠2或y≠1”是“x+y≠3”的非充分非必要条件【答案】C【解析】解:A不正确∵不符合否命题的定义;B不正确没有否定结论;C、∵A、B是三角形内角,∴0<A<B<1800⇔cos2A<cos2B正确D、“x≠2或y≠1”有三种情况:一是x≠2且y=1;二是x=2且y≠1;三是x≠2且y≠1∴是必要不充分条件.故选C.A不符合否命题的定义;B没有否定结论;C、0<A<B<1800⇔cos2A<cos2B;D、“x≠2或y≠1”有三种情况:一是x≠2且y=1二是x=2且y≠1三是x≠2且y≠1本题主要通过常用逻辑用语来考查多个知识点.8.等比数列{a n}中,已知对任意自然数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2=()A.(2n-1)2B.C.4n-1D.【答案】D【解析】解:设等比数列的公比为q,则由等比数列的性质可知数列{}是以q2为公比的等比数列S n=a1+a2+…+a n=2n-1∵a1=S1=1,a n=S n-S n-1=2n-1-(2n-1-1)=2n-1适合n=1∴,则由等比数列的性质可知数列{}是以q2=4为公比,以1为首项的等比数列∴==故选D由于S n=a1+a2+…+a n=2n-1,则可得a1=S1=1,a n=S n-S n-1可求a n,然后由等比数列的性质可知数列{}是以q2为公比,以为首项的等比数列,利用等比数列的求和公式可求本题主要考查了利用数列的递推公式,等比数列的性质的应用,等比数列的求和公式的应用9.已知等差数列{a n}的前n项和为S n,a1=-11,a5+a6=-4,S n取得最小值时n的值为()A.6B.7C.8D.9【答案】A【解析】解:【解法一】在等差数列{a n}中,设公差为d,∵a1=-11,a5+a6=-4,∴(a1+4d)+(a1+5d)=-22+9d=-4;∴d=2,∴a n=a1+(n-1)d=-11+2(n-1)=2n-13,由2n-13≤0,得n≤,∴当n=6时,S n取得最小值;【解法二】在等差数列{a n}中,设公差为d,∵a1=-11,a5+a6=-4,∴(a1+4d)+(a1+5d)=-22+9d=-4,∴d=2,∴前n项和S n=na1+=-11n+=n2-12n,∴当n=6时,S n取得最小值;故选:A.【解法一】求出{a n}的通项公式a n,在a n≤0时,前n项和S n取得最小值,可以求出此时的n;【解法二】求出{a n}的前n项和S n的表达式,利用表达式是二次函数,有最小值时求对应n的值.本题考查了等差数列的通项公式与前n项和综合应用问题,是基础题.10.已知椭圆+=1(a>b>0)与双曲线-=1有相同的焦点,则椭圆的离心率为()A. B. C. D.【答案】D【解析】解:∵椭圆方程为+=1(a>b>0)∴椭圆焦点坐标为F(±c,0)其中c满足:c2=2a2-2b2…①又∵双曲线方程为-=1且与已知椭圆有相同的焦点∴双曲线焦点坐标也为F(±c,0),满足c2=a2+b2…②.对照①②,得2a2-2b2=a2+b2,∴a2=3b2⇒a=,可得椭圆的长半轴m=a=b短半轴n=b∴半焦距c==2b离心率e=,即则椭圆的离心率为.故选D.根据椭圆与双曲线有相同的焦点,结合它们的方程得出关于a,b的等式,找到a=,再根据这个关系得到椭圆的长半轴m=a=b,而短半轴n=b,从而得到c用b表示的关系式,用离心率的公式可得到此椭圆的离心率.本小题考查双曲线与椭圆的关系,考查圆锥曲线的基本元素之间的关系问题,同时双曲线、椭圆的相应知识也进行了综合性考查.11.若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为()A.2B.3C.6D.8【答案】C【解析】解:由题意,F(-1,0),设点P(x0,y0),则有,解得,因为,,,,所以=,此二次函数对应的抛物线的对称轴为x0=-2,因为-2≤x0≤2,所以当x0=2时,取得最大值,故选C.先求出左焦点坐标F,设P(x0,y0),根据P(x0,y0)在椭圆上可得到x0、y0的关系式,表示出向量、,根据数量积的运算将x0、y0的关系式代入组成二次函数进而可确定答案.本题考查椭圆的方程、几何性质、平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程序以及知识的综合应用能力、运算能力.12.设x,y满足约束条件,,若目标函数z=ax+by(a>0,b>0)的值是最大值为12,则的最小值为()A. B. C. D.4【答案】A【解析】解:不等式表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大12,即4a+6b=12,即2a+3b=6,而=,故选A.已知2a+3b=6,求的最小值,可以作出不等式的平面区域,先用乘积进而用基本不等式解答.本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值.二、填空题(本大题共1小题,共5.0分)13.不等式ax2+bx+2>0的解集是(-,),则a+b的值是______ .【答案】-14【解析】解:∵不等式ax2+bx+2>0的解集是(-,),∴<,解得:a=-12,b=-2;故答案为:-14.由不等式ax2+bx+2>0的解集是(-,),可得a<0且方程ax2+bx+2=0的解为-,;从而求解.本题考查了二次不等式与二次方程及二次函数的关系,属于基础题.三、解答题(本大题共1小题,共5.0分)14.已知双曲线两条渐近线的夹角为60°,求该双曲线的离心率是多少.【答案】解:设双曲线方程为(a>0,b>0),由题意得=或,∴e2=1+=4或e2=,∴e=2或e=.【解析】先由双曲线的两条渐近线的夹角为60°,得=或,利用e2=1+,即可得到结论.本题主要考查了双曲线的性质.当涉及两直线的夹角问题时要注意考虑两个方面.四、填空题(本大题共2小题,共10.0分)15.若实数x,y满足x2+y2+xy=1,则x+y的最大值是______ .【答案】【解析】解:∵x2+y2+xy=1∴(x+y)2=1+xy∵xy≤∴(x+y)2-1≤,整理求得-≤x+y≤∴x+y的最大值是故答案为:利用基本不等式,根据xy≤把题设等式整理成关于x+y的不等式,求得其范围,则x+y的最大值可得.本题主要考查了基本不等式.应熟练掌握如均值不等式,柯西不等式等性质.16.已知数列{a n}满足a1=33,a n+1-a n=2n,则的最小值为______ .【答案】【解析】解:a n=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1=2[1+2+…+(n-1)]+33=33+n2-n 所以设f(n)=,令f′(n)=>,则f(n)在,上是单调递增,在,上是递减的,因为n∈N+,所以当n=5或6时f(n)有最小值.又因为,,所以的最小值为由累加法求出a n=33+n2-n,所以,设f(n)=,由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.本题考查了递推数列的通项公式的求解以及构造函数利用导数判断函数单调性,考查了同学们综合运用知识解决问题的能力.五、解答题(本大题共6小题,共70.0分)17.命题p:关于x的不等式x2+2ax+4>0对于一切x∈R恒成立,命题q:∀x∈[1,2],x2-a≥0,若p∨q为真,p∧q为假.求实数a的取值范围.【答案】解:设g(x)=x2+2ax+4,由于关于x的不等式x2+2ax+4>0对于一切x∈R恒成立,所以函数g(x)的图象开口向上且与x轴没有交点,故△=4a2-16<0,∴-2<a<2.…(2分)若q为真命题,a≤x2恒成立,即a≤1.…(4分)由于p或q为真,p且q为假,可知p、q一真一假.…(5分)①若p真q假,则∴1<a<2;…(7分)②若p假q真,则∴a≤-2;…(9分)综上可知,所求实数a的取值范围是{a|1<a<2或a≤-2}…(10分)【解析】根据二次函数的图象和性质我们可以求出命题p:关于x的不等式x2+2ax+4>0对于一切x∈R恒成立时,及命题q:∀x∈[1,2],x2-a≥0时,a的取值范围,根据p∨q为真,p∧q为假,结合复合命题的真值表,可得p、q一真一假,分类讨论后可得实数a的取值范围.本题以复合命题的真假判断为载体考查了二次不等式恒成立问题,其中根据二次函数的图象和性质,分别求出对应的a值,是解答本题的关键.18.已知椭圆C的焦点F1(-2,0)和F2(2,0),长轴长6.(1)求椭圆C的标准方程;(2)设直线y=x+2交椭圆C于A,B两点,求线段AB的长.【答案】解:(1)∵椭圆C的焦点F1(-2,0)和F2(2,0),长轴长6,∴椭圆的焦点在x轴上,c=2,a=3,∴b=1,∴椭圆C的标准方程为;(2)直线y=x+2代入椭圆方程可得10x2+36x+27=0,设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=,∴|AB|=•=【解析】(1)根据焦点坐标得出椭圆的焦点在x轴上,由椭圆的焦点坐标得出c的值,再由长轴的值求出a的值,进而利用椭圆的性质求出b的值,确定出椭圆的标准方程;(2)与直线y=x+2联立,消去y得到关于x的一元二次方程,设出两交点A与B的坐标,利用根与系数的关系、弦长公式,即可求线段AB的长.本题考查椭圆方程的求法,考查弦长公式的应用,考查学生的计算能力,属于中档题.19.在△ABC中,A、B、C的对边分别是a,b,c,且bcos B是acos C,ccos A的等差中项.(1)求∠B的大小;(2)若a+c=,,求△ABC的面积.【答案】解:(1)∵bcos B是acos C,ccos A的等差中项,∴acos C+ccos A=2bcos B,由正弦定理,得sin A cos C+cos A sin C=2sin B cos B,即sin(A+C)=2sin B cos B,∵A+C=π-B,0<B<π,∴sin(A+C)=sin B≠0,∴cos B=,B=.(2)由B=,得=,即,∴ac=2,∴.【解析】(1)利用等差中项的性质,知acos C+ccos A=2bcos B,由正弦定理,得sin A cos C+cos A sin C=2sin B cos B,由此结合三角函数的性质能够求出∠B.(2)由(1)知B=,利用余弦定理得到=,再利用三角形面积公式,能求出△ABC的面积.本题考查等差中项,正弦定理、余弦定理、三角形面积等公式的应用,解题时要认真审题,注意三角函数恒等变换的灵活运用.20.在公差不为零的等差数列{a n}中,a2=3,a1,a3,a7成等比数列.(1)求数列{a n}的通项公式;(2)设数列{a n}的前n项和为S n,记b n=.求数列{b n}的前n项和T n.【答案】解:(1)设{a n}的公差为d,依题意得,…(3分)解得a1=2,d=1…(5分)∴a n=2+(n-1)×1即a n=n+1.…(6分)(2).…(9分)故T n=.…(12分)【解析】(1)由等差数列及等比数列的定义,列出方程组求解;(2)利用裂项相消法求数列的和.本题主要考查等差数列、等比数列的性质的应用及裂项相消法求数列和的知识,考查学生的运算能力及方程思想的运用能力,属中档题.21.已知各项均为正数的数列{a n}前n项和为S n,首项为2,且2,a n,S n成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=log2a n,c n=,求数列{c n}的前n项和T n.【答案】解:(Ⅰ)由题意知2a n=S n+2,a n>0,a1=2,(1分)当n≥2时,S n=2a n-2,S n-1=2a n-1-2,两式相减得a n=2a n-2a n-1整理得:=2,(4分)∴数列{a n}是以2为首项,2为公比的等比数列.∴=2×2n-1=2n.(6分)(Ⅱ)由(Ⅰ)知,∴b n=n,,(7分)T n=,…①=,…②①-②得=,(10分)∴=1-,(11分)∴T n=2-.(12分)【解析】(Ⅰ)由已知条件推导出=2,从而数列{a n}是以2为首项,2为公比的等比数列.由此能求出数列{a n}的通项公式.(Ⅱ)由(Ⅰ)知,从而b n=n,,由此利用错位相减法能求出数列{c n}的前n项和T n.本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.22.在直角坐标系xoy上取两个定点A1(-2,0),A2(2,0),再取两个动点N1(0,m),N2(0,n)且mn=3.(1)求直线A1N1与A2N2交点的轨迹M的方程;(2)已知F2(1,0)设直线l:y=kx+m与(1)中的轨迹M交于P,Q两点,直线F2P,F2Q的倾斜角分别为α,β,且α+β=π,求证:直线L过定点,并求该定点的坐标.【答案】解:(I)依题意知直线A1N1的方程为:y=(x+2)…①;直线A2N2的方程为:y=-(x-2)…②设Q(x,y)是直线A1N1与A2N2交点,①、②相乘,得y2=-(x2-4)由mn=3整理得:,∵N1、N2不与原点重合,可得点A1(-2,0),A2(2,0)不在轨迹M上,∴轨迹M的方程为,(x≠±2).(II)由题意,可得直线l的斜率存在且不为零由消去y,得(3+4k2)x2+8kmx+4m2-12=0.设P(x1,y1),Q(x2,y2),可得x1+x2=且x1x2=,∵α+β=π,=,=,∴+==0,化简得2kx1x2+(m-k)(x1+x2)-2m=0.即2k+(m-k)•-2m=0,整理得m=-4k因此,直线l:y=kx+m即y=k(x-4),经过定点(4,0).综上所述,直线l过定点,该点的坐标为(4,0).【解析】(I)由直线方程的点斜式列出A1N1和A2N2的方程,联解并结合mn=3化简整理得,(x≠±2),再由N1、N2不与原点重合,可得直线A1N1与A2N2交点的轨迹M的方程;(II)由直线l方程与(Ⅰ)中求出的方程消去y,得到关于x的一元二次方程.利用根与系数的关系和直线的斜率公式,结合α+β=π化简整理,解出m=-4k,所以直线l:y=kx+m即y=k(x-4),可得直线l过定点(4,0).本题着重考查了动点轨迹的求法、椭圆的标准方程与简单几何性质、直线与圆锥曲线的位置关系和一元二次方程根与系数的关系等知识,属于中档题.。

相关文档
最新文档