压力容器分析设计的应力分类法与塑性分析法
压力容器设计基础讲义
![压力容器设计基础讲义](https://img.taocdn.com/s3/m/f1534cfb846a561252d380eb6294dd88d0d23dd6.png)
压⼒容器设计基础讲义压⼒容器设计基础讲义第⼀部分、压⼒容器设计基础知识第⼀章压⼒容器失效模式压⼒容器在载荷作⽤下丧失了正常的⼯作能⼒称为失效。
压⼒容器所考虑的失效模式主要为断裂、泄漏、过度变形和失稳。
压⼒容器失效常以三种形式表现出来:强度、刚度、稳定性。
压⼒容器建造标准中主要考虑的失效模式:1)短期失效模式:(1)脆性断裂(2)韧性断裂(3)超量变形引起的接头泄漏(4)超量局部应变引起的裂纹形成或韧性剪切(5)弹性、塑性或弹塑性失稳2)长期失效模式:(1)蠕变断裂(2)蠕变超量变形(3)蠕变失稳(4)冲蚀、腐蚀(5)环境助长开裂,如:应⼒腐蚀开裂3)循环失效(1)扩展性塑性变形(2)交替塑性(3)弹性应变疲劳或弹-塑性应变疲劳(4)环境助长疲劳,如:腐蚀疲劳第⼆章 GB150适⽤范围(1)适⽤的设计压⼒①对于钢制容器不⼤于35MPa;②其它⾦属材料制容器的设计压⼒适⽤范围按相应引⽤标准确定。
(2)适⽤的设计温度范围①设计温度范围:-269℃~900℃。
②钢制容器不得超过按GB 150.2 中列⼊材料的允许使⽤温度范围。
③其他⾦属材料制容器按本部分相应引⽤标准中列⼊的材料允许使⽤温度确定。
(3)下列各类容器不在标准的适⽤范围内:①设计压⼒低于0.1MPa且真空度低于0.02MPa的容器;②《移动式压⼒容器安全监察规程》管辖的容器;③旋转或往复运动机械设备中⾃成整体或作为部件的受压器室(如泵壳、压缩机外壳、涡轮机外壳、液压缸等);④核能装置中存在中⼦辐射损伤失效风险的容器;⑤直接⽕焰加热的容器;⑥内直径(对⾮圆形截⾯,指截⾯内边界的最⼤⼏何尺⼨,如:矩形为对⾓线,椭圆为长轴)⼩于150mm的容器;⑦搪玻璃容器和制冷空调⾏业中另有国家标准或⾏业标准的容器。
(4)对不能按 GB 150.3确定结构尺⼨的容器或受压元件,允许采⽤以下⽅法进⾏设计:①按照附录C的规定,进⾏验证性实验分析(如实验应⼒分析、验证性液压试验)。
球形封头开孔补强四种设计方法对比
![球形封头开孔补强四种设计方法对比](https://img.taocdn.com/s3/m/9aa5b0a90875f46527d3240c844769eae009a327.png)
球形封头开孔补强四种设计方法对比孙 禹∗ 华陆工程科技有限责任公司 西安 710065摘要 本文简要介绍了如何使用解析法、应力分类法、极限载荷法和弹塑性分析法确定压力容器结构的最大允许载荷,并以球壳模型和球壳+接管模型为算例,分别使用上述四种方法确定结构的最大允许载荷,通过对数值计算结果的对比分析得出以下结论:常规设计方法的安全裕量随着厚径比的增大而逐渐减小,在使用常规设计法确定结构尺寸时,对于壁厚较大的设备应适当提高设计裕量;使用应力分类法确定厚壁容器的结构尺寸时可能偏于危险,此时应采用更为合理的极限载荷分析法或者弹塑性应力分析法。
关键词 解析法 应力分类法 极限载荷分析法 弹塑性应力分析法 最大允许载荷。
∗ 孙 禹:工程师。
2015年毕业于北京化工大学 动力工程及工程热物理专业获硕士学位。
现主要从事压力容器设计工作。
联系电话:029-********,E-mail :************************。
压力容器的设计根据计算方法不同可以分为常规设计法和分析设计法。
因为一般压力容器厚度方向尺寸远远小于另外两向尺寸,所以常规设计将压力容器简化为薄壳结构,以回转薄壳无力矩理论为基础,求得结构尺寸的解析解。
经过多年的发展,常规设计理论已经日趋完善,目前工程领域中绝大多数压力容器均可以通过常规设计完成设计工作。
近年来,随着计算机处理能力的不断提升,以有限单元法为理论基础的分析设计取得了很大的发展,在压力容器设计领域逐渐占有一席之地,尤其在常规设计无法解决的领域发挥了极大的作用,帮助设计人员完成设计工作,使得在复杂温度场、交变载荷等苛刻工况作用下的设备得以安全运行[1]。
壳体与接管相贯的结构在压力容器中最为常见,壳体开孔处的强度问题也直接影响设备的安全。
常规设计对壳体的开孔补强主要采用等面积补强法;分析设计根据材料模型和结构响应不同可分为弹性分析和塑性分析,目前,国际上广泛应用的主要有应力分类法、极限载荷分析法、弹塑性应力分析法。
压力容器接管区应力集中弹塑性有限元分析
![压力容器接管区应力集中弹塑性有限元分析](https://img.taocdn.com/s3/m/6be7a2e277a20029bd64783e0912a21614797fc7.png)
压力容器接管区应力集中弹塑性有限元分析压力容器在石油化工企业生产过程中是一种非常常见的设备,压力容器设备具有储存液体、气体的作用。
压力容器主要包括:储运容器、反应容器、热换器以及分离器。
压力容器接管区的主要目的是为了符合工艺需求,但是也造成接管区出现复杂的应力状态,通过对压力容器接管区应力进行对比和分析,在掌握压力容器的筒体、接管以及连接部位应力状况的基础上,对比压力容器接管区应力集中弹性塑形变化,并提出相关的解决措施,能够有效提高压力容器接管区的强度。
不断对压力容器进行改进,使压力容器的设计,制造,检验以及使用等环节都能得到充分保障,实现了压力容器的迅速发展。
标签:压力容器;应力集中;有限元分析压力容器是一种广泛应用于石油化工企业的常用设备,压力容器由于结构和工艺要求存在差异性,一般情况下需要进行开孔装接管。
但是压力容器在运行过程中具有突变的几何形,在接管区域往往会形成不连续的应力变化,导致接管区出现应力集中的情况,引起压力容器局部发生高应力现象,因此,需要利用有限元分析开孔接管区的应力集中变化,确保压力容器能够安全运行。
一般情况下,压力容器接管器具有复杂的应力状况,导致该现象的原因主要包括:第一,对压力容器进行开孔会对容器壳体造成破坏,缩小容器承载面积,导致压力容器边缘接管区域出现应力集中。
第二,压力容器接管区会出现断层性结构,接管区域和壳体在受到内压影响下会发生变形,在协调变形中会出现边缘应力,因此,需要利用有限元分析法进行压力容器应力集中计算。
1模型的有限元分析1.1几何模型机载荷在进行模拟过程中使用有限元模型主要是根据压力容器的结构特性和荷载特征。
但是在实际应用过程中,压力容器的结构特征和载荷特征为轴对称,因此在实验过程中,可以在对称面施加一定的对称约束力,并且在接管端不施加轴向移位约束,并对压力容器的筒体以及接管区域施加压力载荷,可以忽略重力及外压对计算结果的影响。
1.2网格划分基于仅是对于在内压作用下接管应力的研究,因此针对这些情况,可以实行结构对称性应用,利用有限元模型对接关系进行建模,接管除外伸长度与筒体长度都要比起边缘应力缩减长度要大。
压力容器的弹塑性应力及可靠性分析
![压力容器的弹塑性应力及可靠性分析](https://img.taocdn.com/s3/m/f24f2b250066f5335a8121a7.png)
=
=
( u -P ) P- 1 n+
- R _ +丁 K n n C n 1 n
( 性) 鳢
式 中, 比;
1 风 分 别 为第 n层 内外 半径 , 一和 P 分 别为第 n层 内外 界面上 的压 力 。 为第 n层 外 内半径 和 l
为材料 体积 弹性模量 ;C 为 与材料 性 能相 关的量 。对于 双层 容器 ,当材 质不 同的两层 容器均 部分 进
采用基于均值和信息熵不变原则的随机一模糊参量转换方法及相应的随机可靠性方法或模糊可靠性方法可以同时对含随机模糊因素的厚壁压力容器的安全可靠性进行近似分析但随机方法更适用于随机特征更强的问题而模糊方法适用于模糊特征更强的问题
维普资讯
工
程
15 2
采用 基于 实数 编码 的遗传算 法对 复杂布 局 问题进 行求解 ,并对 实数编 码遗 传算 法进 行 改进 ,直接将 问
进行预处理,主要包括问题的简化、相关工程因素的处理等。求解过程 中,首先引入模拟退火算法的思想
对 中间过 程解 进行选 择 ,以防止算 法 出现 “ 熟 ” 象( 早 现 即防止算 法 出现 超级 个体 而导 致其控 制整个 进化群
体) ;然后 对离 散变量 采用 直接交 叉 的方法 ,对 离散变 量 采用整 体算 术交 叉 的方法 ,并 在连 续变 量变 异前对 其 随机加 一 个扰动 量 ,以控 制其搜 索 范 围;在算法 进化 过程 中 ,对求 解 的中 间结果 按最优 保 留策略进行 处
可靠性 分析 ,将 问题 中的模 糊参 量等 效转 换为 随机参 量 ,再与强度 极 限结合 ,得 容器 可靠度 为 9. %。同 54 5 样按 “ 均值 ”和 信息熵 不变 原则 ,将 问题 中的随 机参量 等效 转换 为正态 型模 糊参量 ,再利用 水平截集 法,
第二章压力容器应力分析
![第二章压力容器应力分析](https://img.taocdn.com/s3/m/62e1c5731fd9ad51f01dc281e53a580216fc50bd.png)
《过程设备设计基础》教案2—压力容器应力分析课程名称:过程设备设计基础专业:过程装备与控制工程任课教师:第2章 压力容器应力分析§2-1 回转薄壳应力分析一、回转薄壳的概念薄壳:(t/R )≤0.1 R----中间面曲率半径 薄壁圆筒:(D 0/D i )max ≤1.1~1.2 二、薄壁圆筒的应力图2-1、图2-2 材料力学的“截面法”三、回转薄壳的无力矩理论1、回转薄壳的几何要素(1)回转曲面、回转壳体、中间面、壳体厚度 * 对于薄壳,可用中间面表示壳体的几何特性。
tpD td pR tpD Dt D p i 22sin 24422====⨯⎰θπθϕϕσσαασπσπ(2)母线、经线、法线、纬线、平行圆(3)第一曲率半径R1、第二曲率半径R2、平行圆半径r(4)周向坐标和经向坐标2、无力矩理论和有力矩理论(1)轴对称问题轴对称几何形状----回转壳体载荷----气压或液压应力和变形----对称于回转轴(2)无力矩理论和有力矩理论a、外力(载荷)----主要指沿壳体表面连续分布的、垂直于壳体表面的压力,如气压、液压等。
P Z= P Z(φ)b、内力薄膜内力----Nφ、Nθ(沿壳体厚度均匀分布)弯曲内力---- Qφ、Mφ、Mθ(沿壳体厚度非均匀分布)c、无力矩理论和有力矩理论有力矩理论(弯曲理论)----考虑上述全部内力无力矩理论(薄膜理论)----略去弯曲内力,只考虑薄膜内力●在壳体很薄,形状和载荷连续的情况下,弯曲应力和薄膜应力相比很小,可以忽略,即可采用无力矩理论。
●无力矩理论是一种近似理论,采用无力矩理论可是壳地应力分析大为简化,薄壁容器的应力分析和计算均以无力矩理论为基础。
在无力矩状态下,应力沿厚度均匀分布,壳体材料强度可以得到合理的利用,是最理想的应力状态。
(3)无力矩理论的基本方程a、无力矩理论的基本假设小位移假设----壳体受载后,壳体中各点的位移远小于壁厚。
考虑变形后的平衡状态时壳用变形前的尺寸代替变形后的尺寸直法线假设----变形前垂直于中面的直线变形后仍为直线,且垂直于变形后的中面。
欧盟压力容器标准EN13445分析设计标准概述定稿
![欧盟压力容器标准EN13445分析设计标准概述定稿](https://img.taocdn.com/s3/m/afd6657e82c4bb4cf7ec4afe04a1b0717fd5b397.png)
为了克服弹塑性增量有限元法的困难,提出了许 多求极限载荷的简化分析方法:
(1) R. Seshadri提出的广义的局部应力应变节点重 新分布法[GLOSS] 与真实的极限载荷差别 较大
(2) D. Mackenzie和J. T. Boyle首先提出的弹性补 偿法 求得极限载荷的值比用弹塑性分析求 得的值小11%~20%,其准确性受网格密度和 单元阶的影响非常大
分析设计最初引入时,在承压设备设计中主 要的分析方法是薄壳不连续分析,它是基于薄壳 理采用有限元法进行承压设备响应分析计算后, 由于有限元分析是基于弹性理论而不是薄壳理论 得到应力数值解,除壳体特别薄以外,应力沿壁 厚呈非线性分布。
以Hechmer和Hollinger等为代表的美国压力 容器研究委员会(PVRC)开展了三维应力 数值解评估技术研究,但难以取得突破性 进展。究其原因,是迄今为止仍未解决以 下几个问题:
1.2.1 极限分析
1.2.2 塑性分析
1.2.1 极限分析
极限分析是假设材料为理想弹塑性(或理想 刚塑性)、结构处于小变形状态时,研究塑性极 限状态下的结构特性。
极限分析的上、下限定理可以用来确定结构的 极限载荷,通常是根据下限定理来求结构的下限 极限载荷。只有比较简单的问题如轴对称结构的 简单容器、环板才能求得其极限载荷。对一些复 杂的结构还无法求出极限载荷的解析解。数值解 多数是根据有限元法和数学规划法相结合而建立 的。
(7) 三倍弹性变形准则
Schroeder将弹性响应的变形取为切线交点变 形,并定义塑性载荷为载荷—变形曲线上测定 变形等于3倍弹性变形时的载荷。
(8) 塑性功准则
该准则是由Gerdeen于1979年提出的。 他建议参数选择原则是:载荷参数与相对 应的变形参数的乘积表示功,例如:力和 位移、弯矩和转角。这时,载荷—变形曲 线下的面积就表示载荷对容器所做的功, 总的功由弹性功和塑性功组成。塑性功可
压力容器分析设计的塑性分析方法
![压力容器分析设计的塑性分析方法](https://img.taocdn.com/s3/m/8e1fed6c9b6648d7c1c746d2.png)
支持 科研技 术人 员参 加压 力容器 学会 组 织的学 术交 流活 动 , 特从 这 次 学术会 议 交 流论 文 中挑 选 了数篇
文章 , 杂志上 刊登 , 在 以飨读 者 。
E up n set n& R sac ntue B in 0 0 3 C ia q imet np c o I i eerh Istt, e ig10 1 , hn ) i j
Absr t Plsi n lss meh d o e in b n l sso r su e v s esa e ito uc d a d r ve d t ac : a t a a y i t o sf rd sg y a ay i fp e s r e s l r n r d e n e iwe c
中 图分 类 号 : 6 1T 15 T一 5 ;B 2 文 献标 识 码 : A 文 章 编 号 :0 1— 8 7 2 1 ) 1 0 3 0 10 4 3 (0 1O ~ 0 3— 7
di1 .9 9 ji n 10 — 87 2 1. 10 7 o:0 3 6/.s .0 1 4 3 .0 10 .0 s
i hsp p r h ME Ⅷ 一2 2 0 s tk n a h il e o h nr d cin n h uo e n n ti a e .T e AS 0 7 i a e ste mani fte it u t .a d t e E rp a n o o
d ci n u to .
Ke r s:i t—la n lss ea t y wo d lmi o d a ay i ; lsi c—p a tc sr s nay i d r c o t d sg y a ay i fp e — lsi te s a l ss; ie tr u e; e in b n l ss o r s
EN13445分析设计基本内容
![EN13445分析设计基本内容](https://img.taocdn.com/s3/m/ae90df255a8102d277a22f09.png)
以Hechmer和Hollinger等为代表的美国压力容器研究委员 会(PVRC)开展了三维应力数值解评估技术研究,但 难以取得突破性进展。究其原因,是迄今为止仍未解 决以下几个问题: (1) 应力分类线或面如何选择 (2) 哪些应力分量应当线性化 (3) 三维有限元分析中的应力如何线性化
1.2 直接方法(非弹性方法)的现状与问题
(4) 两倍的弹性斜率准则
自 1975 年至今, ASME 锅炉与压力容器规范 一直采用的准则。的分散性。但多数情况下塑性 载荷值偏于保守。 Kirkwood 和Moffat对受内压作用的直径相 等的三通结构进行了极限载荷的计算,得出对于 给定的结构按两倍的弹性斜率准则得到的塑性载 荷是不确定的。 Arturs Kalnlns 和 Dean P. Updike 对承受 内压作用的锥形封头、碟形封头与球冠形封头进 行了塑性分析,认为:对同一构件,当选用不同 的载荷—应变(或变形)曲线时,按两倍的弹性 斜率准则确定的塑性载荷误差最大。
(7) 三倍弹性变形准则
EN13445分析设计基本内容
前言
欧盟标准化委员会用了9年时间,起草了欧盟非 直接接触火焰压力容器标准草案prEN13445。该草 案于1999年提交各成员国评议。在2002年3月为欧 盟成员国正式表决通过了修改后的标准EN13445, 并于同年5月30日颁布了该标准第一版。 EN13445-3有两个附录介绍分析设计 即附录B和C。 本文介绍欧盟压力容器标准EN13445分析设计标 准的思想思路和基本内容。
(5) 0.2%残余应变准则
该准则曾经被 ASME1971 年版采用。在由 实验确定载荷—最大应变曲线时,由于最大应变 不易直接测出,故此法实用性并不强。 (6) Demir & Drucker 准则 Demir和Drucker于1963年建议取实验极限载荷 为实际位移等于弹性响应变形(即假设材料仍为 初始弹性响应时的变形)的三倍时的载荷。此定 义的实质就是三倍弹性斜率准则。
压力容器设计制造100问答精要(五)
![压力容器设计制造100问答精要(五)](https://img.taocdn.com/s3/m/6567c0c2866fb84ae45c8de2.png)
1. 《固容规》对容积是怎样定义的?对于管壳式换热器壳程和管程、夹套容器中夹套内的容积如何计算?答:容积是指压力容器的几何容积,即由设计图样标注的尺寸计算(不考虑制造公差)并圆整,且不扣除内件体积的容积。
对于管壳式换热器,壳程容积为不扣除壳程内换热管等内件体积的壳程几何容积,管程容积为管箱几何容积与换热管内容积之和。
对于夹套容器,夹套内的容积为扣除内容器所占体积的夹套几何容积。
2. 压力容器设计单位的职责是什么?答:1.设计单位应对设计文件的正确性和完整性负责;2.容器的设计檔至少应包括设计计算书和设计图样;3.容器设计总图应盖有压力容器设计单位批准书标志。
3. 压力容器的介质毒性程度和易燃介质如何划分?答:(一)压力容器中化学介质毒性程度和易燃介质的划分参照HG20660《压力容器中化学介质毒性危害和爆炸危险程度分类》的规定。
无规定时,按下述原则确定毒性程度:1.极度危害(Ⅰ级)最高容许浓度<0.1mg/m3;2.高度危害(Ⅱ级)最高容许浓度0.1~<1.0mg/m3;3.中度危害(Ⅲ级)最高容许浓度1.0~<10mg/m3;4.轻度危害(Ⅳ级)最高容许浓度≥10mg/m3。
(二)压力容器中介质为混合物质时,应以介质的组分并按上述毒性程度或易燃介质的划分原则,由设计单位的工艺设计或使用单位的生产技术部门提供介质毒性程度或是否属于易燃介质的依据,无法提供依据时,按毒性危害程度或爆炸危险程度最高的介质确定。
4. 多腔压力容器的类别如何划分?答:多腔压力容器按类别高的压力腔的类别作为该多腔容器的类别,但应按每个压力腔各自的类别分别提出设计、制造技术要求。
5. 如何选择压力容器用钢?答:选择压力容器用钢应考虑容器的使用条件、焊接性能、制造工艺以及经济合理性。
6. 碳素钢镇静钢Q235钢号A级、B级、C级三个等级的区别是什么?答:Q235A级不做冲击;Q235B级做20℃ V型冲击试验;Q235C级做0℃ V型冲击试验。
使用SW6―2011计算压力容器开孔补强的几个问题-2019年文档
![使用SW6―2011计算压力容器开孔补强的几个问题-2019年文档](https://img.taocdn.com/s3/m/729034bc6aec0975f46527d3240c844769eaa0ad.png)
使用SW6―2011计算压力容器开孔补强的几个问题-2019年文档使用SW6―2011计算压力容器开孔补强的几个问题0 引言为满足工艺或结构需要,在压力容器设计中开孔是必不可少的。
容器开孔接管后会引起开孔或接管部位的应力集中,再加上接管上会有各种外载荷所产生的应力及热应力,以及容器材料和制造缺陷等各种因素的综合作用,使得开孔和接管附近就成为压力容器的薄弱部位。
虽然标准和规范对设计和计算都作了较为详细的规定,但在使用SW6-2011过程设备强度计算软件计算开孔补强时需要注意对标准规范中有关定义的理解和把握,灵活运用软件,必要时对有关数据进行调整,才能得到正确的结论,保证设备的安全可靠性。
1 补强方法及适用范围1.1 计算时应注意的问题在使用SW6-2011计算开孔补强之前要先判断接管的直径和壁厚是否满足GB150.3-2011中6.1.3不另行补强的最大开孔直径[1]的要求,满足要求的可以不进行计算,没有进行判断直接输入数据的,生成计算书会显示满足不另行补强的最大开孔直径的要求,不予进行计算。
还需要注意的是单个孔开孔补强计算合格,然而该孔的有效补强区B=2d范围内还有其他开孔,形成孔桥的,则应按孔桥处理。
在计算两相邻开孔中心的间距或者任意两孔中心的间距时对曲面间距应按弧长计算,按照弦长或中心线垂直距离计算是不正确的。
1.2 补强计算方法及适用范围的理解SW6-2011补强计算方法给出四种:等面积补强法、另一补强方法、分析方法和压力面积法。
计算软件中的等面积补强法是指单个开孔的等面积法,联合补强法是指多个开孔的等面积法。
等面积法是开孔补强计算方法中最广泛应用的计算方法,该法是以补偿开孔局部截面的一次拉伸强度作为补强准则的,是以无限大平板上开有小圆孔时孔边的应力集中作为理论基础的,即仅考虑容器壳体中存在的拉伸薄膜应力,对开孔边缘的二次应力的安定性问题是通过限制开孔形状,长短径之比和开孔范围(开孔率)间接考虑的[2],使用该法应考虑开孔是否满足GB150.3-2011中6.1.1的规定。
压力容器的应力分析
![压力容器的应力分析](https://img.taocdn.com/s3/m/ed347c762bf90242a8956bec0975f46527d3a7c7.png)
按应用情况
反应压力容器(R)完成物理、化学反应,如反应器、反应釜、分解锅、聚合釜、变换炉等; 换热压力容器(E)热量交换,如热交换器、管壳式余热锅炉、冷却器、冷凝器、蒸发器等; 分离压力容器(S)流体压力平衡缓冲和气体净化分离,如分离器、过滤器、缓冲器、吸收塔、干燥塔等; 储存压力容器:(C,球罐为B)储存、盛装气体、液体、液化气体等介质,如各种形式的贮罐、贮槽、高位槽、计量槽、槽车等。
图片
压力容器的结构图
零部件的二个基本参数:公称直径DN
对于用钢板卷制的容器筒体而言,其公称直径的数值等于筒体内径。 当容器筒体直径较小时,可直接采用无缝钢管制作时,这时容器的公称直径等于钢管的外径。 管子的公称直径(通径)既不是管子的内径也不是管子的外径,而是一个略小于外径的数值。 见P181 表14-1压力容器的公称直径DN
球形壳体
球壳R1=R2=D/2,得: 直径与内压相同,球壳内应力仅是圆筒形壳体环向应力的一半,即球形壳体的厚度仅需圆筒容器厚度的一半。 当容器容积相同时,球表面积最小,故大型贮罐制成球形较为经济。
圆锥形壳体
圆锥形壳半锥角为a,A点处半径为r,厚度为d,则在A点处:
圆锥形壳体
锥形壳体环向应力是经向应力两倍,随半锥角a的增大而增大;a角要选择合适,不宜太大。 在锥形壳体大端r=R时,应力最大,在锥顶处,应力为零。因此,一般在锥顶开孔。
工程上常用的应力分析方法:
有力矩理沦:不仅承受拉应力,还承受弯矩和弯曲应力; 无力矩理沦:只承受拉压应力,不能承受力矩的作用 无力矩理沦有近似性和局限性,其误差在工程计算允许的范围内,计算方法大大简化,该方法常被采用。 应用条件:
圆筒的应力计算
作用力: 由内压作用在端盖上产生轴向拉应力 ,称为经向应力或轴向应力; 由内压作用使圆筒向外均匀膨胀,在圆周切线方向所产生的拉力称为环形应力或周向应力,用表示 常为薄壁容器,筒壁较薄, 可认为 是均匀分布的,径向应力 可忽略不计
压力容器应力分析设计方法的进展和评述
![压力容器应力分析设计方法的进展和评述](https://img.taocdn.com/s3/m/44b49dc8cd22bcd126fff705cc17552707225ef4.png)
压力容器应力分析设计方法的进展和评述发布时间:2021-09-06T15:00:53.153Z 来源:《科学与技术》2021年12期4月作者:樊军康[导读] 压力容器是用来承装液体或者气体的一种容器,整体呈现密闭性,压力容器樊军康博思特能源装备(天津)股份有限公司;天津市摘要:压力容器是用来承装液体或者气体的一种容器,整体呈现密闭性,压力容器的设计方式有两种,分别是规则设计(又称常规设计)以及应力分析设计,本文对压力容器应力分析谈一点看法,并对其设计进行一定的阐述。
关键词:压力容器;应力分析;方法评述引言:随着社会经济的不断发展,我国的综合国力水平也在不断的提升,国家面对更大的竞争挑战。
压力容器最常应用在石油或者化工企业中,对国家的生产生活带来很大的帮助,所以合理的设计压力容器就十分重要了。
压力容器设计得不合理就有可能会对安全造成很大的影响,压力容器内装的易燃易爆有毒物质会危害人的生命健康与安全,造成企业的经济损失。
一、应力分析设计方法压力容器是在工业的制造生产中常用的一种工具,在工业的发展中起到了重要的作用,因为压力容器的存放物有时是易燃易爆或者有毒的物质,所以具有一定的危险性,对工作人员的人身安全有一定的影响,对环境也会产生一定的影响,压力容器的损坏会产生很严重的后果。
所谓的压力容器应力是指材料内部的一种的力量,在周围生产环境的影响下,工作条件的变化会使材料内部产生相互的作用力,这种力的产生能够抵抗外部的因素,使容器恢复变形之前的状态。
应力分析设计方法就是对应力所产生变化进行分析,以应力为基础进行的设计,应力分析设计方法包括了几个方面。
首先,可以采用一定的方法对压力容器进行弹性的应力分析,一般会采用三种方法,有理论分析方法、数值计算方法以及试验测定方法这三种,对弹力的计算结果相对的正确。
其次,为了防止循环失败可以采用极限载荷控制应力,或者采用安定载荷控制一次加二次应力,还有第三种方法就是使用疲劳寿命来对最大的总应力进行控制,这些方法还能够防止整体的塑性垮塌失效。
机械设计与机械制造专业55道压力容器、压力管道设计考试题(问答题、分析题)
![机械设计与机械制造专业55道压力容器、压力管道设计考试题(问答题、分析题)](https://img.taocdn.com/s3/m/9d5228ff6c175f0e7dd137c8.png)
机械设计与机械制造专业55道压力容器、压力管道设计考试题(问答题、分析题)1、什么叫设计压力?什么叫计算压力?如何确定?答:设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为载荷条件,其值不低于工作压力。
确定设计压力时,应考虑:容器上装有超压泄放装置时,应按附录B(标准的附录)的规定确定设计压力。
对于盛装液化气体的容器,在规定的充装系数范围内,设计压力应根据工作条件下可能达到的最高金属温度确定。
确定外压容器的设计压力时,应考虑到在正常工作情况下可能出现的最大内外压力差。
确定真空容器的壳体厚度时,设计压力按承受外压考虑。
当装有安全控制装置(如真空泄放阀)时,设计压力取1.25倍最大内外压力差或0.1MPa两者的低值;当无安全控制装置时,取0.1MPa。
由两室或两个以上压力室组成的容器,如夹套容器,确定设计压力时,应考虑各室之间的最大压力差。
计算压力指在相应的设计温度下,用以确定元件厚度的压力,其中包括液柱静压力。
当元件所承受的液柱静压力小于5%设计压力时,可忽略不计。
2、固定式液化气体容器设计时,如何确定设计压力?答:盛装临界温度大于等于50℃的液化气体的压力容器,如设计有可靠保冷设施,其设计压力应为所盛装液化气体在可能达到的最高工作温度下的饱和蒸汽压力;如无保冷设施,其设计压力不得低于该液化气体在50℃时的饱和蒸汽压力。
盛装临界温度小于50℃的液化气体压力容器,如设计有可靠的保冷设施,并且能确保低温储存的,其设计压力不得低于试验实测的最高温度下的饱和蒸汽压力;没有实测数据或没有保冷设施的压力容器,其设计压力不得低于所装液化气体在规定的最大充装量时,温度为50℃时的气体压力。
3、压力容器的常规设计法与分析设计法有何主要区别?答:目前压力容器的主要设计方法有常规设计法与分析设计法两种。
常规设计法:是以弹性失效为准则,以薄膜应力为基础,来计算元件的厚度。
限定最大应力不超过一定的许用值(通常为1倍许用应力)。
压力容器应力分析
![压力容器应力分析](https://img.taocdn.com/s3/m/f4b45a11bd64783e09122b4b.png)
r——平行圆半径; R1(经线在B点的曲率半径)——第一曲率半径; R2(与经线在B点处的切线相垂直的平面截交回转曲面得一平面曲线,该
平面曲线在B点的曲率半径)——第二曲率半径,R2=r/sinφ 考虑 壁厚,含纬线的正交圆锥面能截出真实壁厚,含 平行圆的横截面不能截出真实壁厚。
t
gx
, 则
(0 gx)R
t
注:容器上方是封闭的
23
p0
t
R
σφ
σφ
径向朝外的p0相互抵消,产生σθ而与σφ无关,朝下的p0由筒底承担, 筒底将力又传给支座和基础,朝上的p0与σφ相平衡:
2πRtσφ=πR2p0
则
p0R 2t
若容器上方是开口的,或无气体压力(p0=0)时,σφ=0
cos
将R1、R2代入混合方程得:σθ=2σφ
代入区域方程得:
pr , 2t cos
则
pr
t cos
可见:① 平行圆半径 r 越小,应力σφ、σθ也越小,锥顶处应力
为零
② 倾角α越小,应力σφ、σθ也越小,α=0时,与圆筒应
力相同,α=90°时,与平板应力相同
18
压力容器应力分析
14
图2-6中:mom′——由纬经锥面mdm′截取的部分壳体,称 为区域壳体。
rm——纬线mm′的平行圆半径 σφ——意义同前 α——σφ方向线与回转轴oo′的夹角,α=90°-φ,
sinφ=r/R2 nn——由两个正交锥面切割得到的、经向宽度为
dl的环带
r 、dr ——nn 环带的平行圆半径及其增量
11
在图b中:因壳体沿经线的曲率常有变化,故Nφ随φ变化,因 abcd是微元体,故Nφ随φ的变化量很小,可忽略, 则σφ+dσφ≈σφ;Nφ+dNφ≈Nφ
压力容器设计综合知识要点
![压力容器设计综合知识要点](https://img.taocdn.com/s3/m/5fc3d5225e0e7cd184254b35eefdc8d377ee1459.png)
压力容器设计综合知识要点压力容器是广泛应用于化工、石油、航空、航天等领域的一种特殊设备,其设计和制造要求十分严格。
设计压力容器需要掌握大量综合知识,本文将从压力容器基本概念、设计规范、材料选择、受力分析以及安全性评价等方面,进行深入剖析。
一、压力容器基本概念压力容器是一种密闭容器,能够在设计压力下承受内外静、动力作用,并能保证容器内介质不泄漏的设备。
其主要部件有壳体、封头、支承和附件等。
在使用中,压力容器必须经过设计定型、制造、安装验收、使用和维护检查等多个环节,确保其安全可靠。
二、设计规范压力容器的设计必须符合规范,主要包括国家标准、行业标准、地方标准和企业标准等。
其中最为常见的有《蒸汽锅炉安全技术监察规程》、《压力容器安全技术监察规程》、《压力容器设计规范》等。
设计时必须按照国家和行业标准的要求进行设计、计算和制造。
同时,必须进行设计审查、制造过程控制、技术文件管理等程序,确保设计、制造、使用过程中的安全可靠。
三、材料选择压力容器的材料选择必须符合规范要求和技术条件。
常用的材料有碳钢、合金钢、不锈钢、铜合金等。
材料的选择主要考虑材料的化学成分、机械性能、耐腐蚀性、温度下限和上限等多种因素。
在选择材料时要尽可能选择好的材料,确保容器在使用中的安全可靠。
四、受力分析受力分析是压力容器设计的核心内容,其主要包括静力分析和动力分析。
静力分析主要考虑容器在静止状态下的受力情况,包括内外压力、重力、温度应力等;动力分析主要考虑容器在运行状态下受到的动态载荷以及荷载的频率和幅值等。
同时,在分析中还需考虑材料的弹性和塑性变形,以及应力应变的限制等因素。
五、安全性评价压力容器的使用安全性评价是指在容器运行过程中,通过数据收集、安全分析等多种手段获取相关信息,判断容器的实际运行状态和安全状况。
主要包括容器的安全工况评价、安全控制评价、检测与监控评价等。
安全性评价可通过计算模拟、试验监测等方法进行,旨在最大程度地保证容器的安全性和稳定性。
压力容器分析设计
![压力容器分析设计](https://img.taocdn.com/s3/m/10c8d3ccb14e852458fb5736.png)
2 应力特性
2.4 壳体不连续区
2 应力特性
2.4 壳体不连续区
边缘应力的特点: (Ⅰ)边缘局部范围,并非遍及整个容器; (Ⅱ)具有自限性; (Ⅲ)边缘应力中,内力引起均匀分布的正应力,内力 矩引起线性分布的弯曲应力,均匀分布应力的危害大于 线性分布应力的。
2 应力特性
2.5 容器支座区
2 应力特性
1分析设计概述 1.3 与常规设计的规范比较
2 应力特性
2.1 中低压容器
薄膜应力特点:
(Ⅰ)应力值决定于第一曲率半径与第二曲率半径;
(Ⅱ)存在整个壳体,沿壁厚均匀分布; (Ⅲ)与外载平衡,增大载荷,应力增大,无自限; (Ⅳ)承受外压,为薄膜压应力,失稳的临界应力。
1分析设计概述 1.2 分析设计的基本思想 分析设计的主要特点
(Ⅰ)采用塑性失效设计准则; (Ⅱ)进行详细应力分析; (Ⅲ)对不同性质的应力区别对待; (Ⅳ)引入虚拟应力概念。
分析设计的三大环节
(Ⅰ)应力分析:对容器各部位的各种应力进行详细计 算,或对模拟容器的应力进行实验测试; (Ⅱ)应力分类:根据不同应力引起失效的危害程度不 同,进行应力分类; (Ⅲ)应力评定:对不同类型的应力进行分析、组合,形 成当量应力,采用不同的失效准则给予限定。
(3)一次弯曲应力(代号
)
作用于整体结构,由机械载荷引起,沿截面线性分布
3 应力分类
3.2 二次应力(代号 )
特点:由变形不连续引起,自限性,总体结
构不连续引起的弯曲应力
3.3 峰值应力(代号 )
特点:由局部结构变形不连续引起,有自限 性,不引起结构明显变形,导致疲劳
4 应力评定
1 应力强度 应力强度:按一定强度理论对复杂应力状态组合为与 单向应力可以比较的当量应力。 具体内涵:按一定标准(强度理论),确定一个与应 力状态无关的应力值(当量应力),认为 一旦达到该应力值,材料就发生破坏。 应力强度 =2×最大剪应力 或
3 压力容器设计
![3 压力容器设计](https://img.taocdn.com/s3/m/25018d2110661ed9ad51f342.png)
3 压力容器设计主要内容1 基于失效模式的设计理念2 压力容器设计准则3 容器设计的基本概念4 常见结构的设计计算方法5 分析设计一应力分类法1 基于失效模式的设计理念1.1 容器的失效1.2 失效模式分类1.3 我国标准考虑的失效模式1.4 失效模式1.5 失效判据1 基于失效模式的设计理念压力容器的设计步骤针对失效模式的设计理念成为压力容器设计标准的发展方向。
压力容器的一般设计步骤为:·确定容器最有可能发生的失效模式;·选择适当的失效判据和设计准则;·确定适用的设计规范标准;·按规范标准要求进行设计和校核。
1.1 容器的失效1)定义:压力容器在规定的使用环境和时间内,因尺寸、形状或材料性能发生改变而完全失去或不能达到包括功能和设计寿命等的现象,称为压力容器失效。
2)表现形式:破裂、过度变形、泄漏3)引起原因:工艺条件、载荷、介质1.2 失效模式分类1)IS016528归为三大类、14种失效模式。
第一大类:短期失效模式:第二大类:长期失效模式:第三大类:循环失效模式:2)《承压设备损伤模式识别》(GB/T30579-2014)第1类:腐蚀减薄(25种)第2类:环境开裂(13种)第3类:材质劣化(15种)第4类:机械损伤(11种)第5类:其他损伤(9种)1.3 我国标准所考虑的失效模式1)GB 150 基于失效模式设计的考虑脆性断裂(Brittle fracture)韧性断裂(Ductile rupture)蠕变断裂(Creep rupture)接头泄露(Leakage at joints)弹性或塑性失稳(Elastic or plastic instability)2)JB/T4732基于失效模式设计的考虑脆性断裂(Brittle fracture)韧性断裂(Ductile rupture)螺变断裂(Creep rupture)疲劳(Patigue rupture)接头泄漏(Leakage at joints)弹性或塑性失稳(Elastic or plastic instability)1.4 失效模式1)过度变形容器的总体或局部发生过度变形,包括过量的弹性变形,过量的塑性变形,塑性失稳(增量垮坍),例如总体上大范围鼓胀,或局部鼓胀,应认为容器已失效,不能保障使用安全。
容器失效准则强度理论计算法则
![容器失效准则强度理论计算法则](https://img.taocdn.com/s3/m/e8ade215227916888486d784.png)
压力容器强度计算概述——计算公式筒体
六、计算公式 1. 内压圆筒体计算公式
Pc Di t 2 PC
2. 内压球壳计算公式
Pc Di t 4 PC
注意:1、公式中各参数的含义、单位制、确定原则及注意事项。 2、δ d=δ +C2 (设计厚度=计算厚度+腐蚀裕量) δ n=δ +C2+C1+△(圆整)(名义厚度= ) δ e=δ +△ (有效厚度=)
三、例题——必须会进行强度校核
压力容器强度校核——压力试验应力校核
压力容器强度校核——压力试验应力校核
(3)夹套容器 对于带夹套的容器,应在图样上分别注明内筒和夹套的试验压力。 当内筒设计压力为正值时,按内压确定试验压力。当内筒设计压 力为负值时,按外压进行液压试验。在内筒液压试验合格后,再 焊接夹套。并对夹套进行压力试验,在确定了试验压力后,必须 校核内筒在该试验外压力作用下的稳定性。如果不能满足稳定要 求,则应规定在作夹套的液压试验时,必须同时在内筒保持一定 压力,以使整个试验过程(包括升压、保压和卸压)中的任一时 间内,夹套和内筒的压力差不超过设计压差。图样上应注明这一 要求,以及试验压力和允许压差。 (4)对立式容器卧置进行液压试验时,试验压力应为立置时的试验
谢铁军
提纲
压力容器强度计算概述
压力容器强度校核 压力容器的结构概述
压力容器应力分类和局部应力
压力容器分析设计概述
压力容器强度计算概述——设计压力范围
一、 常用设计规范及适用的压力范围
GB150-1998《钢制压力容器》,弹性失效准则,第一强度理论。 设计压力P:0.1~35 MPa ; 真空度:≥0.02 MPa JB4732-95《钢制压力容器-分析设计标准》,弹塑性失效准则,第三强度理论。 设计压力P:0.1~100 MPa; 真空度:≥0.02 MPa 疲劳载荷;高温蠕变 因为容规的监察范围是以最高工作压力定义,而容器的分类以设计压力分类,故 假设有一个设计压力1MPa而最大工作压力0.08的容器,则不受《容规》监察。 GB151-1999《管壳式换热器》 设计压力P:0.1~35 MPa ;真空度:≥0.02 MPa GB12337-1998《钢制球形储罐》 设计压力:P≤4MPa;公称容积:V≥50M3
防止塑性垮塌的新准则
![防止塑性垮塌的新准则](https://img.taocdn.com/s3/m/0fe716c685254b35eefdc8d376eeaeaad0f31651.png)
防止塑性垮塌的新准则陆明万;段成红;孙禹【摘要】介绍了作者最新提出的防止塑性垮塌的新准则,并与ASME Ⅷ-2规范和EN 13445标准中的相应准则进行比较.新准则吸收了ASME和EN标准的优点,并能较好地处理屈强比较低或几何强化较明显的情况.%A new protection criterion against plastic collapse presented by authors is introduced in this parison of this criterion with corresponding one of the ASMEⅧ-2 code and the EN 13445 standard is given.The new criterion is not only able to absorb the advantages of the ASME code and EN standard but also able to deal well with the conditions of low yield-strength ratio materials and remarkably geometrical strengthening effects.【期刊名称】《压力容器》【年(卷),期】2017(034)001【总页数】5页(P41-44,40)【关键词】防止塑性垮塌;极限载荷分析;弹塑性应力分析;分析设计【作者】陆明万;段成红;孙禹【作者单位】清华大学航天航空学院,北京 100084;北京化工大学机电工程学院,北京 100029;华陆工程科技有限责任公司,陕西西安 710065【正文语种】中文【中图分类】TH49;T-652.6欧盟标准EN-13445—2002[1]和美国ASME Ⅷ-2—2007规范[2]的颁布开创了压力容器弹塑性分析设计的新阶段。
塑性垮塌是压力容器部件在一次加载情况下的失效模式,欧盟EN标准和美国ASME规范分别给出了不同的防止塑性垮塌的准则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压力容器分析设计的应力分类法与塑性分析法
作者:宋诚
来源:《石油研究》2020年第07期
摘要:压力容器在石油化工行业的应用非常广泛,通过分析压力容器分析设计的应力分类法与塑性分析法的发展,可以实现压力容器应用前景的扩大,并为其良好运行提供参考意见。
进一步推动压力容器在石油化工行业的应用,有效提高压力容器的经济效益。
关键词:压力容器;应力分类法;塑性分析法
近年来很多研究学者对压力容器的工作原理、性能等方面进行研究,并取得了显著效果。
以往的压力容器在设计过程中,都是采用薄膜应力的方式进行设计,将其他应力影响包括在安全系数之中。
但是在实际应用过程中,压力容器及承压部件中,除去介质压力所形成的薄膜应力之外,还会受到热胀冷缩变形而导致的温差应力以及局部应力,因此,在进行压力分析设计时,需要利用应力分类法和塑性分析法,才能够明确不同应力对压力容器安全性的影响,从而有效提高压力容器的科学性和合理性。
1应力分类法
1.1一次应力
一次应力是指压力容器因为受到外载荷的影响,压力容器部件出现剪应力。
一次应力超过材料屈服极限时压力容器就会发生变形破坏。
主要可以分为以下几种情况:第一,总体薄膜应力。
因压力容器受到内压的影响在壳体上出现薄膜应力,总体薄膜应力会在整个壳体上均匀分布,当应力超过材料屈服极限时,壳体壁厚的材料会发生变形。
第二,局部薄膜应力。
是指压力容器的局部范围内,应受到机械载荷或者压力所导致的薄膜应力,其中主要包括支座应力以及力距所形成的薄膜应力。
第三,一次弯曲应力。
由于压力容器受到内压作用的影响,在平板盖中央位置会出现弯曲引力,随着载荷的不断增加,应力会进行重新调整。
1.2二次应力
二次应力是指压力容器部件受到约束而出现的剪应力。
二次应力满足变形条件。
例如,在压力容器的半球形封头以及薄壁圆筒的连接位置,由于受到压力容器内压的作用,两者会出现不同的径向位移,因此两者的连接部位会形成相互约束关系,出现变形协调情况。
在这种情况下,连接部位会附加剪力应力,从而形成二次应力。
二次应力的出现,也是由于局部范围之内材料出现少量变形,相连部位之间约束缓和,变形协调化,变形不会继续发展,将应力值限制
在一定范围之内。
二次应力与其他应力叠加之后,如果不超过规定值,就不会导致压力容器出现损坏。
1.3峰值应力
压力容器的小孔边缘、小圆角半径以及接管根部等区域,由于结构出现变化或者是因为载荷变化,而导致局部压力集中,则压力容器就会产生峰值应力,峰值应力就是压力容器最高应力值。
峰值应力的出现会导致压力容器出现断裂、疲劳破坏的情况。
并不会导致整个压力容器的变形,局部热应力属于峰值应力,因为局部热应力不会导致压力容器整个结构出现明显变形。
2塑性分析法
2.1非线性分析
(1)材料模型。
压力容器的选钢一般具有良好的延展性,在一定范围内的压力变化始终服从胡可定律,当超过弹性极限以后压力容器的材料应力变化不再是线性关系。
因此在设计时需要使用应力分类法进行分析设计,假设材料始终属于弹性形变,在进行弹塑性分析时需要考虑材料的非線性。
在计算极限载荷过程中,可以忽略弹性应变,仅考虑塑性应变,将材料简化为刚塑性模型。
在刚塑性模型基础上,需要准确的考虑压力容器弹性阶段的特性,即理想塑性模型,考虑塑性变形后对材料的强化作用,使其应力应变曲线在塑性阶段近似直线可以表示出塑性强化特性。
(2)屈服准则。
对压力容器进行单向拉伸实验中所得出的应力应变曲线,能够有效判断压力容器材料是否达到屈服值,然而,结合一般应力状态需要结合屈服准则,判断压力容器是否发生塑性变形,在分析设计过程中,应当合理利用屈服准则。
(3)流动准则。
流动准则主要是对压力容器材料屈服过程中塑性应变方向进行充分描述,在进行压力容器分析设计过程中,对于金属材料可以选择关联流动准则。
2.2几何非线性分析
在进行压力容器分析设计的过程中,压力容器结构的总刚度取决于每个单元方向以及单刚,压力容器结构变形会导致单元形状发生改变,从而影响压力容器的总刚度。
小变形对于总高度不会产生过大影响,这主要是由于在最初期几何形状的结构刚度中可以计算出小变形所发生的位移情况。
利用有限元分析法计算出通过激活大应变效应以及几何非线性的影响,大应变
分析是根据当前结构形状而发生的刚度矩阵更新,因此为了确保压力容器分析设计,需要对几何非线性进行详细分析,并将其分析结果进行合理应用。
2.3塑性失效分析
压力容器在进行分析设计的过程中,塑性失效是最为常见的问题之一,因此需要对其进行控制。
塑性失效具有多种模式,塑性失效主要与加载历史有关。
一次加载情况下导致的塑性失效模式是属性垮塌,就是产生过量的塑性变形,并使压力容器丧失承载能力。
一次加载是指载荷由零开始递增逐渐增加到最大值的加载情况。
在进行加载过程中,随着载荷的不断增加,压力容器结构会发生弹性失效,塑性区不断扩张进而发生塑性失效。
假如采用理想塑性材料,复兴区真的应力,只能限于压力容器的屈服值。
当压力容器结构承载能力的各个界面上所有应力分布达到屈服极限时,结构将变成几何变形从而丧失整个承载能力。
因此在进行分析设计过程中,为了确保压力容器的设计效果,就需要对塑性失效问题进行研究,确保压力容器的稳定性和安全性。
3结束语
压力容器的应用非常广泛,为了提高压力容器设计的经济性、合理性、安全性等方面,需要对作用于压力容器的应力进行分类,针对压力容器所承受的不同应力,应力限制范围也会有所不同。
因此,在实际应用过程中,需要选择合适的压力容器设计方法,才能够确保压力容器的正常运行,提高压力容器的工作效率能够有效推动我国工业化建设的加快。
参考文献:
[1]王震宇[1],吴坚[1],薛明德[1],李世玉[2].压力容器球冠形中间封头的应力分析与设计方法[J].压力容器,2018
[2]许守龙.压力容器应力分类分析设计方法[J].一重技术,2018,No.182(02):20-22.
[3]王超,何帅.分析压力容器应力分析设计方法的进展和评述[J].大科技,2013(15):278-279.。