2013白蒲中学高一数学教案:直线和圆的方程:06(苏教版)
《直线和圆的方程》单元教学设计
《直线和圆的方程》单元教学设计一、教学目标:1.理解直线和圆的概念及特征。
2.掌握直线和圆的标准方程和一般方程的求解方法。
3.能够通过已知条件列出直线和圆的方程并解决相关问题。
4.进一步拓展学生的数学思维和解题能力。
二、教学重难点:1.掌握直线和圆的标准方程和一般方程的应用。
2.解决一般情况下的直线和圆的方程的问题。
三、教学内容和步骤:1.直线的方程(1)回顾直线的一般方程Ax+By+C=0,其中A、B、C为常数。
(2)讲解直线的斜率和截距的概念,以及与一般方程的关系。
(3)通过示例演示如何根据直线上的已知点和斜率确定直线的方程。
(4)讲解直线的点斜式方程和两点式方程的求解方法,并通过例题进行练习。
2.圆的方程(1)讲解圆的概念、圆心和半径的关系。
(2)介绍圆的标准方程和一般方程的表达形式。
(3)通过相应的示意图让学生理解标准方程(x-a)^2+(y-b)^2=r^2和(x-a)^2+(y-b)^2=r^2的特点。
(4)通过例题和实际问题引导学生运用标准方程求解圆的方程。
3.直线和圆的方程应用问题解决(1)通过实例演示如何根据已知条件列出直线和圆的方程。
(2)讲解如何解决直线和圆相交和相切的问题,并通过例题进行讲解和练习。
四、教学方法:1.归纳法:通过比较不同形式的直线和圆的方程,归纳出直线和圆的标准方程和一般方程。
2.演绎法:通过具体实例和推导过程让学生理解和掌握直线和圆的方程的求解方法。
3.实践法:通过实际问题的解决让学生将直线和圆的方程运用到实际生活中。
五、教学资源和工具:1.教科书教材。
2. PowerPoint课件。
3.讲台、黑板和粉笔。
六、教学评估和反思:1.教师在课堂上通过练习题、思考题等形式对学生进行提问和检测,以便及时发现学生的问题并进行纠正。
2.教师在课后对学生的作业进行批改,评估学生的掌握程度,并根据学生的表现调整教学内容和方法。
3.教师在教学过程中应及时总结经验,改进教学方法和手段,提高教学效果,使学生能够更好地理解和应用直线和圆的方程。
直线与圆的方程教案
直线与圆的方程教案一、引言在平面几何中,直线和圆是基本的几何元素,它们的方程是解决许多几何问题的关键。
本教案将介绍直线与圆的方程及其应用。
二、直线的方程1. 一般式方程直线的一般式方程可以表示为Ax + By + C = 0,其中A、B、C为常数,A和B不同时为0。
通过该方程,可以方便地确定直线的斜率和截距。
2. 截距式方程直线的截距式方程可以表示为x/a + y/b = 1,其中a和b表示直线与x轴和y轴的截距。
该方程可以更直观地描述直线在坐标系中的位置和倾斜程度。
3. 点斜式方程直线的点斜式方程可以表示为y - y1 = m(x - x1),其中m为直线的斜率,(x1, y1)为直线上的一点。
通过该方程,可以直接得到直线的斜率和一个点的坐标。
三、圆的方程1. 标准方程圆的标准方程可以表示为(x - h)² + (y - k)² = r²,其中(h, k)表示圆心的坐标,r表示圆的半径。
通过该方程,可以方便地确定圆的圆心坐标和半径。
2. 参数方程圆的参数方程可以表示为x = h + r·cosθ,y = k + r·sinθ,其中(h, k)表示圆心的坐标,r表示圆的半径,θ为参数,取值范围为0到2π。
通过该方程,可以根据参数θ的变化描述圆上的点。
四、直线与圆的交点1. 相切情况当直线与圆相切时,直线只与圆相交于一个点。
可以通过解直线与圆的方程组来确定相切点的坐标。
2. 相离情况当直线与圆相离时,直线与圆没有交点。
3. 相交情况当直线与圆相交时,直线与圆有两个交点。
可以通过解直线与圆的方程组来确定交点的坐标。
五、应用示例1. 判断直线与圆的位置关系通过求解直线与圆的方程组,可以判断直线与圆的位置关系,包括相切、相离或相交。
2. 求直线与圆的交点坐标通过解直线与圆的方程组,可以求得直线与圆的交点坐标,进而进行进一步的几何推理和计算。
3. 圆的切线问题直线与圆相切时,直线为圆的切线。
2013白蒲中学高一数学教案:直线、平面、简单几何体:09(苏教版)
直线和平面平行的判定与性质(二)一、素质教育目标(一)知识教学点直线和平面平行的性质定理.(二)能力训练点用转化的方法掌握应用直线与平面平行的性质定理,即由线面平行可推得线线平行.(三)德育渗透点让学生认识到研究直线和平面平行的性质定理是实际生产的需要,充分体现了理论联系实际的原则.二、教学重点、难点、疑点及解决方法1.教学重点:直线和平面平行的性质定理.2.教学难点:直线和平面平行的性质定理的证明及应用.理4,平面α内与b平行的所有直线都与a平行(有无数条).否则,都与a是异面直线.三、课时安排1.7直线和平面的位置关系和1.8直线和平面平行的判定与性质这两个课题安排为2课时,本节课为第二课时,讲解直线和平面平行的性质定理.四、教与学过程设计(一)复习直线和平面的位置关系及直线和平面平行的判定(幻灯显示)师:直线和平面的位置关系有哪几种?生:有三种位置关系:直线在平面内,直线与平面相交,直线与平面平行.直线与平面相交或平行统称为直线在平面外.直线在平面内,说明直线与平面有无数个公共点;直线与平面相交,说明直线与平面只有1个公共点;直线与平面平行,说明直线与平面没有公共点.师:直线和平面的判定方法有哪几种?生:两种.第一种根据定义来判定,一般用反证法.第二种根据判定定理来判定:只要在平面内找出一条直线和已知直α,a∥b,则a∥α.(二)直线和平面平行的性质师:命题“若直线a平行于平面α,则直线a平行于平面α内的一切直线.”对吗?(幻灯显示)生:不对.师:为什么不对?(出示教具演示)平行的所有直线(为b′,b″)都与a平行(有无数条),否则,都与a是异面直线.师:在上面的论述中,平面α内的直线b满足什么条件时,可以与直线a平行呢?我们有下面的性质.直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.求证:a∥b.师提示:要证明同一平面β内的两条直线a、b平行,可用反证法,也可用直接证法.证明:(一)反证法.假设直线a不平行于直线b.∴直线a与直线b相交,假设交点为O,则a∩b=O.∴a∩α=O,这与“a∥α”矛盾.∴a∥b.(二)直接证法∵a∥α,∴a与α没有公共点.∴a与b没有公共点.a和b同在平面β内,又没有公共点,∴a∥b.下面请同学们完成例题与练习.(三)练习例2 有一块木料如图1-65,已知棱BC平行于面A′C′.要经过木料表面A′B′C′D′内的一点P和棱BC将木料锯开,应怎样画线?所画的线和面AC 有什么关系?解:(1)∵BC∥面A′C′,面BC′经过BC和面A′C′交于B′C′,∴BC∥B′C′.经过点P,在面A′C′上画线段EF∥B′C′,由公理4,得:EF∥BC.的线.(2)∵EF∥BC,根据判定定理,则EF∥面AC;BE、CF显然都和面AC相交.总结:解题时,应用直线和平面平行的性质定理,要注意把线面平行转化为线线平行.练习:(P.22中练习3)在例题的图中,如果AD∥BC,BC∥面A′C′,那么,AD和面BC′、面BF、面A′C′都有怎样的位置关系.为什么?∥面BC′.同理AD∥面BF.又因为BC∥面A′C′,过BC的面EC与面A′C′交于EF,(四)总结本节课我们复习了直线和平面平行的判定,学习了直线和平面平行的性质定理.性质定理的实质是线面平行,过已知直线作一平面和已知直线都与已知直线平行.五、作业P.22—23中习题三5、6、7、8.六、板书设计直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.性质定理的证明:求证:a∥b.例:有一块木料,已知棱BC平行于面A′C′,要经过木料表面A′B′C′D′内的一点P和棱BC将木料锯开,应怎样画线?所画的线和面AC有什么关系?练习:在例中,若AD∥BC,BC∥面A′C′,那么,AD和面BC′、面BF、面A′C′都有怎样的位置关系,为什么?。
直线与圆的方程教案
直线与圆的方程教案教案标题:直线与圆的方程教案教案目标:1. 学生能够理解直线和圆的基本概念。
2. 学生能够掌握直线和圆的方程表示方法。
3. 学生能够应用直线和圆的方程解决相关问题。
教案大纲:一、引入(5分钟)1. 引导学生回顾直线和圆的定义,并提问相关问题激发学生思考。
2. 展示一些直线和圆的图形,让学生观察并描述它们的特点。
二、直线的方程(15分钟)1. 介绍直线的一般方程形式:Ax + By + C = 0,并解释各项的含义。
2. 借助实例,演示如何由给定条件确定直线的方程。
3. 给学生一些练习题,让他们通过观察图形、计算斜率等方法确定直线的方程。
三、圆的方程(15分钟)1. 介绍圆的标准方程形式:(x - a)² + (y - b)² = r²,并解释各项的含义。
2. 借助实例,演示如何由给定条件确定圆的方程。
3. 给学生一些练习题,让他们通过观察图形、计算半径等方法确定圆的方程。
四、直线与圆的关系(15分钟)1. 讲解直线与圆的位置关系:相离、相切、相交。
2. 介绍直线与圆的方程联立求解的方法。
3. 给学生一些练习题,让他们通过联立方程解决直线与圆的位置关系问题。
五、综合应用(15分钟)1. 给学生一些综合性的问题,让他们综合运用直线和圆的方程解决问题。
2. 引导学生思考,让他们举一反三,将所学知识应用到实际生活中。
六、总结与拓展(5分钟)1. 总结直线和圆的方程表示方法及应用。
2. 提出一些拓展问题,鼓励学生深入思考和探索。
教案评估:1. 课堂练习题,检查学生对直线和圆的方程的掌握情况。
2. 综合应用问题,评估学生将所学知识应用到实际问题解决的能力。
教学资源:1. 直线和圆的示意图。
2. 相关练习题和答案。
3. 拓展问题的参考资料。
教学方法:1. 提问与讨论:激发学生思考,培养他们的观察能力和分析能力。
2. 演示与实例:通过具体的实例演示方程的确定过程,帮助学生理解和掌握知识。
直线和圆的方程教案
直线和圆的方程教案一、教学目标1. 知识与技能:(1)理解直线和圆的方程的基本概念;(2)掌握直线的斜截式、截距式和一般式方程的求法;(3)掌握圆的标准方程和一般方程的求法。
2. 过程与方法:(1)通过实例引导学生认识直线和圆的方程;(2)利用数形结合的方法,理解直线和圆的方程之间的关系;(3)培养学生的运算能力和解决问题的能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生克服困难的意志和合作精神;(3)引导学生认识到数学在实际生活中的应用。
二、教学内容1. 直线的方程(1)直线方程的基本概念;(2)直线的斜截式方程;(3)直线的截距式方程;(4)直线的一般式方程。
2. 圆的方程(1)圆的方程的基本概念;(2)圆的标准方程;(3)圆的一般方程。
三、教学重点与难点1. 教学重点:(1)直线和圆的方程的基本概念;(2)直线的斜截式、截距式和一般式方程的求法;(3)圆的标准方程和一般方程的求法。
2. 教学难点:(1)直线和圆的方程的求法;(2)直线和圆的位置关系的理解。
四、教学过程1. 导入:通过实例引导学生认识直线和圆的方程,激发学生的兴趣和好奇心。
2. 教学新课:(1)讲解直线方程的基本概念,引导学生理解直线的斜截式、截距式和一般式方程的求法;(2)讲解圆的方程的基本概念,引导学生掌握圆的标准方程和一般方程的求法。
3. 巩固练习:布置一些有关直线和圆的方程的练习题,帮助学生巩固所学知识。
4. 课堂小结:五、课后作业1. 完成教材上的相关练习题;2. 查找生活中与直线和圆相关的实例,分析其方程的应用。
教学评价:通过课后作业的完成情况、课堂练习和学生的参与程度,评价学生对直线和圆的方程的理解和应用能力。
六、教学策略1. 数形结合:通过图形展示直线和圆的方程,使学生更直观地理解方程的含义和应用。
2. 实例分析:通过生活中的实例,引导学生认识直线和圆的方程,提高学生的学习兴趣。
高中数学直线和圆教案
高中数学直线和圆教案
课题:直线和圆
一、教学目标:
1. 知识与技能:掌握直线和圆的基本概念、性质和公式;能够运用直线和圆的知识解决相关问题。
2. 过程与方法:通过例题分析、思维导向和讨论等方式,培养学生的数学思维和解决问题的能力。
3. 情感态度与价值观:鼓励学生积极思考、勇于探索,培养他们对数学的兴趣和自信心。
二、教学内容:
1. 直线的概念及斜率、方向角的相关性质;
2. 圆的概念及圆心、半径、弦、弧、切线等基本概念;
3. 直线和圆的位置关系及相关公式。
三、教学过程:
1. 引入:通过给出一道直线和圆的问题,让学生思考直线和圆之间的关系,并引出本节课的主题。
2. 学习直线的知识点:讲解直线的概念、斜率、方向角等基本知识,并通过例题演示如何计算直线的斜率和方向角。
3. 学习圆的知识点:讲解圆的概念、圆心、半径、弦、弧、切线等基本知识,并通过例题演示如何计算圆的相关参数。
4. 直线和圆的位置关系:讲解直线和圆的位置关系及相关公式,并通过例题演示如何判断直线和圆的位置关系。
5. 练习与巩固:布置练习题,让学生独立解题,并对答案进行核对和讲解。
6. 总结与拓展:总结本节课的重点知识,拓展相关知识,激发学生兴趣和探索欲望。
四、课堂评价:
考核学生对直线和圆的基本概念、性质以及相关公式的掌握情况,包括思维能力、解题能力等方面的评价。
五、课后作业:
1. 完成课后练习题;
2. 总结笔记,复习本节课所学知识。
2013年江苏省白蒲中学2013高一数学(苏教版)必修4《集合与简易逻辑》教案3
江苏省白蒲中学2013高一数学集合与简易逻辑教案3苏教版教材: 子集目的: 让学生初步了解子集的概念及其表示法,同时了解等集与真子集的有关概念.过程:一提出问题:现在开始研究集合与集合之间的关系.存在着两种关系:“包含”与“相等”两种关系.二“包含”关系—子集1. 实例: A={1,2,3} B={1,2,3,4,5} 引导观察.结论: 对于两个集合A和B,如果集合A的任何一个元素都是集合B的元素,则说:集合A包含于集合B,或集合B包含集合A,记作A⊆B (或B⊇A)也说: 集合A是集合B的子集.2. 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊄B (或B⊄A)⊂;⊇也可写成⊃。
注意: ⊆也可写成⊂;⊇也可写成⊃;⊆也可写成3. 规定: 空集是任何集合的子集 . φ⊆A三“相等”关系1.实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即: A=B2.①任何一个集合是它本身的子集。
A⊆A⊂≠②真子集:如果A⊆B ,且A≠ B那就说集合A是集合B的真子集,记作A B③空集是任何非空集合的真子集。
④如果 A⊆B, B⊆C ,那么 A⊆C证明:设x是A的任一元素,则 x∈AA⊆B,∴x∈B 又 B⊆C ∴x∈C 从而 A⊆C同样;如果 A⊆B, B⊆C ,那么 A⊆C⑤如果A⊆B 同时 B⊆A 那么A=B四例题: P8 例一,例二(略)练习 P9 补充例题《课课练》课时2 P3五小结:子集、真子集的概念,等集的概念及其符号几个性质: A⊆AA⊆B, B⊆C ⇒A⊆CA⊆B B⊆A⇒ A=B作业:P10 习题1.2 1,2,3 《课课练》课时中选择。
2013年江苏省白蒲中学2013高一数学(苏教版)《排列、组合和概率》教案06
江苏省白蒲中学2013高一数学 排列、组合和概率教案07 苏教版组 合 ⑵课题:组合的简单应用及组合数的两个性质目的:深刻理解排列与组合的区别和联系,熟练掌握组合数的计算公式;掌握组合数的两个性质,并且能够运用它解决一些简单的应用问题. 过程:一、复习回顾:1.复习排列和组合的有关内容:2.练习一:练习1:求证:11--=m n mn C mn C . (本式也可变形为:11--=m n m n nC mC )练习2:计算:① 310C 和710C ; ② 2637C C -与36C ;③ 511411C C +答案:① 120,120 ② 20,20 ③ 792 (此练习的目的为下面学习组合数的两个性质打好基础.) 3.练习二:⑴ 平面内有10个点,以其中每2个点为端点的线段共有多少条?⑵ 平面内有10个点,以其中每2个点为端点的有向线段共有多少条?答案:⑴45210=C (组合问题) ⑵90210=A (排列问题)二、新授:1.组合数的 性质1:mn n m n C C -=.理解: 一般地,从n 个不同元素中取出m 个元素后,剩下n - m 个元素.因为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n - m 个元素的每一个组合一一对应....,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:mn n m n C C -=.在这里,我们主要体现:“取法”与“剩法”是“一一对应”的思想.证明:∵)!(!!)]!([)!(!m n m n m n n m n n C mn n -=---=- 又 )!(!!m n m n C mn -=∴m n n m n C C -=注:1︒ 我们规定 10=n C2︒ 等式特点:等式两边下标同,上标之和等于下标.3︒ 此性质作用:当2n m >时,计算m n C 可变为计算mn n C -,能够使运算简化. 例如:20012002C =200120022002-C =12002C =2002.4︒ yn x n C C =y x =⇒或n y x =+2.示例一:(课本101例4)一个口袋内装有大小相同的7个白球和1个黑球.⑴ 从口袋内取出3个球,共有多少种取法?⑵ 从口袋内取出3个球,使其中含有1个黑球,有多少种取法? ⑶ 从口袋内取出3个球,使其中不含黑球,有多少种取法?解:⑴ 5638=C ⑵ 2127=C ⑶ 3537=C 引导学生发现:=38C +27C 37C .为什么呢?我们可以这样解释:从口袋内的8个球中所取出的3个球,可以分为两类:一类含有1个黑球,一类不含有黑球.因此根据分类计数原理,上述等式成立.一般地,从121,,,+n a a a 这n +1个不同元素中取出m 个元素的组合数是mn C 1+,这些组合可以分为两类:一类含有元素1a ,一类不含有1a .含有1a 的组合是从132,,,+n a a a 这n 个元素中取出m -1个元素与1a 组成的,共有1-m nC 个;不含有1a 的组合是从132,,,+n a a a 这n 个元素中取出m 个元素组成的,共有m n C 个.根据分类计数原理,可以得到组合数的另一个性质.在这里,我们主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.3.组合数的 性质2:m n C 1+=m n C +1-m nC .证明: )]!1([)!1(!)!(!!1---+-=+-m n m n m n m n C C m n m n )!1(!!)1(!+-++-=m n m m n m n n)!1(!!)1(+-++-=m n m n m m n)!1(!)!1(+-+=m n m n mn C 1+= ∴ mn C 1+=mn C +1-m nC .注:1︒ 公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与高的相同的一个组合数.2︒ 此性质的作用:恒等变形,简化运算.在今后学习“二项式定理”时,我们会看到它的主要应用.4.示例二:⑴ 计算:69584737C C C C +++⑵ 求证:nm C 2+=nm C +12-n m C +2-n m C⑶ 解方程:3213113-+=x x C C⑷ 解方程:333222101+-+-+=+x x x x x A C C⑸ 计算:4434241404C C C C C ++++和554535251505C C C C C C +++++ 推广:nn n n n n n n C C C C C 21210=+++++-5.组合数性质的简单应用: 证明下列等式成立:⑴ (讲解)11321++---=+++++k n k k k k k n k n k n C C C C C C⑵ (练习)1121++++++=++++k k n k n k k k k k k k C C C C C⑶ )(23210321n n n n nn n n n C C C n nC C C C +++=++++6.处理《教学与测试》76课例题 三、小结:1.组合数的两个性质;2.从特殊到一般的归纳思想. 四、作业: 课堂作业:《教学与测试》76课课外作业:课本习题10.3;课课练课时9。
江苏省白蒲中学高一数学 直线、平面、简单几何体教案13 苏教版
一、素质教育目标(一)知识教学点1.三垂线定理及其逆定理的形成和论证.2.三垂线定理及其逆定理的简单应用.(二)能力训练点1.猜想和论证能力的训练.2.由线面垂直证明线线垂直的方法(线面垂直法);3.训练学生分清三垂线定理及其逆定理中各条直线之间的关系;4.善于在复杂图形中分离出适用的直线用于解题.(三)德育渗透点通过定理的论证和练习的训练渗透化繁为简的思想和转化的思想.二、教学重点、难点、疑点及解决方法1.教学重点(1)掌握三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(2)掌握三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.2.教学难点:两个定理的证明及应用.3.教学疑点及解决方法(1)三垂线定理及其逆定理,揭示了平面内的直线与平面的垂线、斜线及斜线在平面内的射影这三条直线的垂直关系,其实质是平面内的一条直线与平面的一条斜线(或斜线在平面内的射影)垂直的判定定理.(2)本节课的两个定理,涉及的直线较多,学生在认识和理解上都会存在困难,为了加深印象并说明复杂的直线位置关系,可以采用一些教具,或者让学生准备三根竹签,按照教师的要求摆放.在学生感性认识的基础上,进行理性的证明和记忆,有助于定理的掌握.(3)三垂线定理是先有直线a垂直于射影AO的条件,然后得到a垂直于斜线PO的结论;而其逆定理则是已知直线a垂直于斜线PO,再推出a垂直于射影AO.在引用时容易引起混淆,解决的办法是,构造一个同时使用这两个定理的问题,引导学生分清.(4)教学核心是定理的形成教学,教学的指导思想是:遵循由具体探究抽象、由简单到复杂的认识规律,启发学生反复思考,不断内化成为自己的认知结构.三、课时安排本课题共安排2课时,本节课为第一课时.四、学生活动设计三垂线定理及其逆定理的条件和结论都比较简单,但应用却很广泛,为了培养学生的能力,应让学生探索定理的命题形式,充分利用好手中的三根竹签.设计学生活动符合建构主义的教学思想,也符合教师为主导、学生为主体的教学思想;教师根据教学要求,提出问题,创设情景,引导学生观察、猜想,主动发现,主动发展,从而调动了学生学习的积极性.五、教学步骤(一)温故知新,引入课题师:我们已经学习了直线和平面的垂直关系,学新课之前,让我们作个简单的回顾:1.直线和平面垂直的定义?2.直线和平面垂直的判定定理.3.什么叫做平面的斜线、斜线在平面上的射影?4.已知平面α和斜线l,如何作出l在平面α上的射影?(板书)l∩α=A,作出l在平面α上的射影(二)猜想推测,激发兴趣师:根据直线与平面垂直的定义我们知道,平面内的任意一条直线都和平面的垂线垂直,那么,平面内的任意一条直线是否也都和平面的一条斜线垂直呢?(教师演示教具,用一个三角板的一条直角边当平面的斜线,一根包有色纸的竹竿摆放在桌面的不同位置当作平面内的不同直线,学生容易看出它们不一定互相垂直.)师:是否平面内的任意一条直线都不和这条平面的斜线垂直呢?(教师将三角板的另一条直角边平放在桌面上,并提示学生注意这条直角边与平面的关系——在平面上,与斜线的关系——垂直.)师:在平面上有几条直线和这条斜线垂直?(学生可能会回答一条,也可能回答无数条,教师应调整桌面上的竹竿位置,使其平行于三角板的直角边,然后平行移动,并向学生说明,这些直线都与斜线垂直.)师:平面内一条直线具备什么条件,才能和平面的一条斜线垂直?(学生的直觉判断是要与那条和桌面接触的直角边平行,这是正确的,但无多大用途;这时教师提醒学生注意斜线在平面内的射影,并调整教具,将三角板的斜边当作平面的斜线,构成垂线、斜线和射影的立体模型;要求学生与同桌配合,摆放课前准备的竹签成教师示范的模型;然后在教师的引导之下观察、猜想,与同桌的探讨中发现了只要与斜线的射影垂直就和斜线垂直.)(三)层层推进,证明定理师:猜测和实验的结论不一定正确,那么你想怎样证明这个猜想呢?(若用幻灯或投影仪,可以节省板书时间.)已知:PA、PO分别是平面α的垂线、斜线,AO是PO在平面α求证:a⊥PO.师:这是证明两条直线互相垂直的问题,你准备怎么证明?分析:从直线和平面垂直的定义可知,要证两条直线互相垂直,只要证明其中一条直线垂直于另一条直线所在的平面即可.师:这个平面你找到了吗?生:是平面PAO.师:怎样证明a⊥平面PAO呢?生:只要证明a垂直于平面PAO内的两条相交直线.证明:说明:1.定理的证明,体现了“由线面垂直证明线线垂直”的方法;2.上述命题反映了平面内的直线、平面的斜线和斜线在平面内的射影这三条直线之间的垂直关系,这就是著名的三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.3.改变定理的题设和结论,得到逆命题:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.可以用同样的方法证明,这就是三垂线定理的逆定理(请学生简要说明其证明方法和步骤).4.定理中包含了三个垂直关系:PA⊥α,AO⊥a,PO⊥a,看出三垂线定理名称的来由.5.从定理的条件看,关键的是直线和平面的相对位置关系,而与平面本身是否水平放置无关;在平面内的直线a与斜线或斜线的射影的位置关系关键在于垂直;这样直线a的如下四种位置关系,都是三垂线定理及其逆定理常见的情形.6.从定理的结论看,三垂线定理及其逆定理是判断直线垂直的重要命题.(四)初步运用,提高能力1.(见课后练习题1.)已知:点O是△ABC的垂心,OP⊥平面ABC.求证:PA⊥BC.(学生先思考,教师作如下点拨)(1)什么叫做三角形垂心?(2)点O是△ABC的垂心可以得到什么结论?(3)可以考虑使用三垂线定理证明:你能找出本题中,应用三垂线定理必须涉及到的几个重要元素?生:首先先确定一个平面——平面ABC,斜线是PA,PA在平面ABC上的射影是AD,∵AD 垂直于BC,∴PA⊥BC.师:他的回答是否有缺漏?生:应该交代BC是平面ABC上的一条直线.师:对,这个交代是必需的!(视学生程度作适当补充,用教具演示,还可以举反例说明.)证明:连接AO并延长交BC与D.师:三垂线定理是证明空间两条直线互相垂直的重要方法,上面的示例反映了应用三垂线定理解题的一般步骤,即确定一个平面、平面的垂线、斜线和斜线在平面上的射影.同时要注意的是平面内的一条直线和射影垂直,有这条直线和斜线垂直(定理);平面内的一条直线和斜线垂直,有这条直线和射影垂直(逆定理),同学们必须理解掌握.2.(见课本例1)如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上.⊥AC,PO⊥α,垂足分别是E、F、O,PE=PF.求证:∠BAO=∠CAO.(学生思考,教师作适当的点拨.)(1)在平面几何中,证明点在角的平分线上的常规方法是什么?(2)PE=PF给我们提供了什么结论?(3)所缺的垂直关系可以用三垂线定理或逆定理证明,你能列出证明所需的条件吗?证明:3.(课堂练习,师生共同完成.)如图1-91,点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥AC.分析:证明直线与直线垂直的问题,可以考虑三垂线定理及其逆定理,图形中缺少的平面的垂线需要添加上去.证明:过P作平面ABC的垂线,垂足为O,连结AO、BO、CO.∵ PA⊥BC,∴AO⊥BC(三垂线逆定理).同理可证 CO⊥AB,∴O是△ABC的垂心.∵OB⊥AC,∴PB⊥AC(三垂线定理).(五)归纳小结,强化思想师:这节课,我们学习了三垂线定理及其逆定理,定理的证明方法是证明空间两条直线互相垂直的基本方法,我们称之为线面垂直法;还通过三个练习的训练加深了定理的理解,同时得到立体几何问题解决的一般思路.六、布置作业作为一般要求,完成习题四11、12、13.提高要求,完成以下两个补充练习:1.如图1-92,PA⊥△ABC所在平面,AB=AC=13,BC=10,PA=5,求点P到直线BC的距离.参考答案:设BC的中点为D,连结PD.∵AB=AC=13,BC=10,∴AD⊥BC.且AD=12.又∵PA⊥平面ABC,∴PD⊥BC.即 PD的长度就是P到直线BC的距离.而 PD=13.2.(课后练习题2略作改变)如图1-93,l是平面α的斜线,斜足是O,A是l上任意一点,AB是平面α的垂线,B是垂足,设OD是平面α内与OB不同的一条直线,AC垂直于OD于C,若直线l与平面α所成的角θ=45°,∠BOC=45°,求∠AOC的大小.参考答案:连结BC.中,有∠AOC=60°.讲评作业时说明:求角大小的问题,往往先确定(或构造)一个包含这个角的三角形,然后解三角形.由此,我们还验证了∠AOC>θ.。
苏教版高中必修1数学教案
苏教版高中必修1数学教案
1. 了解直线和圆的基本概念,掌握直线和圆的相关性质。
2. 掌握直线和圆的方程,能够进行相关计算。
3. 能够解决与直线和圆相关的实际问题。
教学重点和难点:
1. 直线和圆的基本概念和性质。
2. 直线和圆的方程的应用。
3. 实际问题的解决。
教学准备:
1. 教科书:苏教版高中数学必修1。
2. 教学课件和活动设计。
3. 相关实例和练习题。
教学过程:
一、导入(5分钟)
1. 介绍本节课的主题和教学目标。
2. 利用图片或实物引入直线和圆的概念,引起学生的兴趣。
二、讲解(20分钟)
1. 介绍直线和圆的基本性质,如直线的斜率和方向,圆的半径和直径等。
2. 讲解直线和圆的方程的概念和应用。
3. 展示一些实例,让学生理解直线和圆方程的求解过程。
三、练习(15分钟)
1. 让学生自行完成一些练习题,巩固直线和圆的相关知识。
2. 分组讨论解决实际问题,应用直线和圆的知识进行计算。
四、总结(5分钟)
1. 总结本节课的重点内容和难点。
2. 强调直线和圆在数学中的重要性和应用价值。
五、作业布置(5分钟)
1. 布置相关的练习题,巩固本节课的知识点。
2. 提醒学生认真复习和预习下节课内容。
教学反思:
通过本节课的教学,学生能够基本掌握直线和圆的概念和性质,能够进行相关计算和解决实际问题。
未来的教学中,可以增加更多的实例和案例,引导学生灵活运用所学知识解决问题。
2013年江苏省白蒲中学2013高一数学(苏教版)教案19
江苏省白蒲中学2013高一数学 平面向量教案19 苏教版教材:正弦定理和余弦定理的复习《教学与测试》76、77课目的:通过复习、小结要求学生对两个定理的掌握更加牢固,应用更自如。
过程:一、复习正弦定理、余弦定理及解斜三角形二、例一 证明在△ABC 中A a sin =B b sin =Cc sin =2R ,其中R 是三角形外接圆半径 证略 见P159注意:1.这是正弦定理的又一种证法(现在共用三种方法证明)2.正弦定理的三种表示方法(P159)例二 在任一△ABC 中求证:0)sin (sin )sin (sin )sin (sin =-+-+-B A c A C b C B a 证:左边=)sin (sin sin 2)sin (sin sin 2)sin (sin sin 2B A C R A C B R C B A R -+-+-=]sin sin sin sin sin sin sin sin sin sin sin [sin 2B C A C A B C B C A B A R -+-+-=0=右边例三 在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c 解一:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒ 即b <a ∴A=60︒或120︒当A=60︒时C=75︒ 22645sin 75sin 2sin sin +=== B C b c 当A=120︒时C=15︒ 22645sin 15sin 2sin sin -=== B C b c 解二:设c =x 由余弦定理 B ac c a b cos 2222-+= 将已知条件代入,整理:0162=+-x x 解之:226±=x 当226+=c 时2)13(231226223)226(22cos 22221=++=+⋅⋅-++=-+=bc a c b A从而A=60︒ C=75︒ 当226-=c 时同理可求得:A=120︒ C=15︒ 例四 试用坐标法证明余弦定理证略见P161例五 在△ABC 中,BC=a , AC=b , a, b 是方程02322=+-x x 的两个根,且2cos(A+B)=1 求 1︒角C 的度数 2︒AB 的长度 3︒△ABC 的面积解:1︒cosC=cos[π-(A+B)]=-cos(A+B)=-21 ∴C=120︒ 2︒由题设:⎩⎨⎧=-=+232b a b a ∴AB 2=AC 2+BC 2-2AC •BC •osC 120cos 222ab b a -+= ab b a ++=22102)32()(22=-=-+=ab b a 即AB=103︒S △ABC =2323221120sin 21sin 21=⋅⋅== ab C ab 例六 如图,在四边形ABCD 中,已知AD ⊥CD, AD=10, AB=14, ∠BDA=60︒, ∠BCD=135︒ 求BC的长 解:在△ABD 中,设BD=x则BDA AD BD AD BD BA ∠⋅⋅-+=cos 2222即 60cos 1021014222⋅⋅-+=x x整理得:096102=--x x解之:161=x 62-=x (舍去)由余弦定理:BCD BD CDB BC ∠=∠sin sin ∴2830sin 135sin 16=⋅= BC 例七 (备用)△ABC 中,若已知三边为连续正整数,最大角为钝角,1︒求最大角 2︒求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积。
江苏省白蒲中学高一数学 直线、平面、简单几何体教案18 苏教版
直线和平复习(四)教学目标结合第一章的内容,渗透数学思想方法.(数形结合思想;方程的思想;转化的思想;分类讨论的思想)教学重点和难点数学思想的渗透与培养.教学设计过程师:今天是复习课的最后一节.今天以复习题目中体现的数学思想为主线,研究几种常用数学思想在本章的体现.分类讨论的思想是同学们比较熟悉的.使用较多的是在代数课上y=ax2+bx+c的图象,当a>0时,开口向上;当a<0时,开口向下.几何中,分类讨论思想的应用,主要是依据图形中元素位置关系的不同而展开的.请看以下一组题目:例1已知:a∥b,直线a 平面α,直线b 平面α,直线c平面α,c∥a.若直线a与直线b的距离为6cm,直线b与直线c的距离5cm,直线c与平面α的距离为4cm.求:直线a与直线c的距离.(教师画图)生A:在直线c上任取一点A,作AB⊥α于B,过B作BC⊥a于C,反向延长交b于D,因为a∥b,所以BC⊥b.分别连结AC、AD,根据三垂线定理,a⊥AC,b⊥AD.据题意知:CD=6cm,AD=5cm,AB=4cm,在Rt△ABD中,求出BD=3cm,所以BC=3cm,在Rt△ABC中,求出AC=5cm.师:哪位同学对“生A”的解答有补充?师:生A的解答基础是依据我画的图.而原题中并没有给图,也没有“如图”这样的说明,因此我们先要研究图应该怎么画!生B:老师,我对“生A”的发言有补充.这个题目的图形还有以下两种可能:师:好.这道题目体现了分类讨论的思想.它是根据直线c在平面α内射影的不同位置来进行讨论的.生C:老师,我认为还有两种情况:情形1:直线c在平面α内射影与直线a重合.情形2:直线c在平面α内射影与直线b重合.师:“生C”同学的补充很好.例1应该分为5种情况来讨论.但是其中会有一些情况无解,请同学们现在实践一下.图一的位置.其余三种位置关系均无解.师:还有一点提醒同学们注意:对于不同的位置关系,解题时都要给予论述,对于无解的情形要讲清无解的原因。
苏教版数学高一《直线与圆》 名师教学设计 苏教
课题:直线与圆综合复习江苏省外国语学校【教学目标】1.掌握直线方程的几种形式,能判断两直线平行或垂直的位置关系,能用解方程组的方法求两条相交直线的交点坐标.理解两点间的距离公式,点到直线的距离公式,会求与此有关的距离问题.2.掌握圆的标准方程与一般方程,并能判断直线与圆的位置关系;能根据给定两个圆的方程,判断两圆的位置关系,初步了解用代数方法处理几何问题的思路. 【重点与难点】1. 掌握直线方程的几种形式;2. 掌握圆的标准方程与一般方程,并能判断直线与圆的位置关系、两圆的位置关系。
【教学过程】一、热身训练1.(2010年苏州质检)直线x +ay +3=0与直线ax +4y +6=0平行的充要条件是a =_______。
解析:由两条直线平行可知⎩⎪⎨⎪⎧4-a 2=0,6≠3a ,∴a =-2.答案:-22. (2009年高考安徽卷改编)直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是 。
解析:由题意知,直线l 的斜率为-32,因此直线l 的方程为y -2=-32(x +1),即3x +2y -1=0.答案:3x +2y -1=03. 若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是 . 解析:由题意,设圆心(x 0,1),∴|4x 0-3|42+(-3)2=1,解得x 0=2或x 0=-12(舍),∴所求圆的方程为(x -2)2+(y -1)2=1. 答案:(x -2)2+(y -1)2=14.已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为________________.解析:圆C 1:(x +1)2+(y -1)2=1的圆心为(-1,1).圆C 2的圆心设为(a ,b ),C 1与C 2关于直线x -y -1=0对称,∴⎩⎨⎧b -1a +1=-1,a -12-b +12-1=0,解得⎩⎪⎨⎪⎧a =2,b =-2,圆C 2的半径为1,∴圆C 2的方程为(x -2)2+(y +2)2=1.5. (2009年高考天津卷) 若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦的长为23,则a =________.解析:两圆方程作差易知弦所在直线方程为:y =1a,如图,由已知|AC |=3,|OA |=2,有|OC |=1a=1,∴a =1. 答案:1二、知识要点1.直线的倾斜角(1)在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴所在的直线绕着 按 方向旋转到和直线重合时所转的 记为α,那么α就叫做直线的倾斜角. (2)当直线与x 轴平行或重合时,规定直线的倾斜角 . (3)倾斜角的取值范围是 . 2.直线的斜率(1) 倾斜角不是 的直线,它的倾斜角α的 叫做这条直线的斜率,直线的斜率常用k 表示,即k = .(2)经过两点()11,P x y 和()()2212,Q x y x x ≠的直线的斜率公式为:k = . 3.直线方程的几种形式:4.平行(1)若两条直线的斜率k 1、k 2均存在,在y 轴上的截距分别为b 1、b 2,则l 1∥l 2的充要条件是 .(2)若两条直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1∥l 2的充要条件为 . 5.垂直(1)若两条直线的斜率k 1,k 2均存在,则l 1⊥l 2⇔ .(2)若两条直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0,则l 1⊥l 2⇔ . 6.点到直线的距离点P (x 0,y 0)到直线Ax +By +C =0的距离为d = ,特别地,两条平行直线Ax +By +C 1=0,Ax +By +C 2=0间的距离为d = . 7.直线系方程(1)平行直线系:与直线Ax +By +C =0平行的直线可以表示为 . (2)垂直直线系:与直线Ax +By +C =0垂直的直线可以表示为 . (3)过两条直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的交点的直线系为: . 8.圆的方程(1)标准方程:(x-a)2+(y-b)2=r2,其中为圆心,r为半径.(2)一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0)其中圆心为,半径为.9.直线l∶Ax+By+C=0与圆(x-a)2+(y-b)2=r2(r>0)的位置关系(1)几何方法:圆心(a,b)到直线Ax+By+C=0的距离d=,⇔直线与圆相交;⇔直线与圆相切;⇔直线与圆相离.(2)代数方法:由消元,得到一元二次方程判别式为Δ,则⇔直线与圆相交;⇔直线与圆相切;⇔直线与圆相离.。
高一数学 教案 1 苏教版高中数学必修2直线与圆的位置关系
第一课时 4.2.1直线与圆的位置关系(1课时)教学要求:理解和掌握直线与圆的位置关系,利用直线与圆的位置关系解决一些实际问题。
教学重点:直线与圆的位置关系教学难点:直线与圆的位置关系的几何判定. 教学过程:一、复习准备:1. 在初中我们知道直线现圆有三种位置关系:(1)相交,有一两个公共点;(2)相切,只有一个公共点;(3)相离,没有公共点。
2. 在初中我们知道怎样判断直线与圆的位置关系?现在如何用直线和圆的方程判断它们之间的位置关系? 二、讲授新课:设直线:0l Ax By C ++=,圆()()222:C x a y b r -+-=圆心到直线的距离22Aa Bb Cd A B++=+1. 利用直线与圆的位置直观特征导出几何判定:比较圆心到直线的距离d 与圆的半径r ① d r ⇔直线与圆相交②d r =⇔直线与圆相切③d r ⇔直线与圆相离2.看直线与圆组成的方程组有无实数解: 有解,直线与圆有公共点.有一组则相切:有两组,则相交:b 无解,则相离3.例题讲解:例1 直线y x =与圆()2221x y r +-=相切,求r 的值例2 如图1,已知直线:360l x y +-=和圆心为C 的圆22240x y y +--=.判断直线l 与圆的位置关系;如果相交,求出他们交点的坐标. 45 ,例3 如图2,已知直线l 过点()5,5M 且和圆22:25C x y +=相交,截得弦长为求l 的方程练习.已知超直线:3230l x y +-=,圆22:4C x y +=求直线l 被圆C 截得的弦长4.小结:判断直线与圆的位置关系有两种方法 (1) 判断直线与圆的方程组是否有解a 有解,直线与圆有公共点.有一组则相切;有两组,则相交b 无解,则直线与圆相离 (2) 圆心到直线的距离与半径的关系:22Aa Bb C d A B++=+如果d r < 直线与圆相交; 如果d r =直线与圆相切; 如果d r >直线与圆相离. 三、巩固练习:1.圆222430x y x y +++-=上到直线:10l x y ++=的距离为2的点的坐标2.求圆心在直线23x y -=上,且与两坐标轴相切的圆的方程.3.若直线430x y a -=+=与圆22100x y +=(1)相交(2)相切(3)相离分别求实数a 的取值范围 四.作业:p140 4题第二课时 4.2.2圆与圆的位置关系教学要求:能根据给定圆的方程,判断圆与圆的位置关系; 教学重点:能根据给定圆的方程,判断圆与圆的位置关系 教学难点:用坐标法判断两圆的位置关系 教学过程: 一、复习准备1. 两圆的位置关系有哪几种?2. 设圆两圆的圆心距设为d. 当d R r >+时,两圆 当d R r =+时,两圆当||R r d R r -<<+ 时,两圆 当||d R r =+时,两圆 当|d R r <+时,两圆3.如何根据圆的方程,判断它们之间的位置关系?(探讨) 二、讲授新课:1.两圆的位置关系利用半径与圆心距之间的关系来判断 例1. 已知圆221:2880C x y x y +++-=,圆222:4420C x y x y ++--=,试判断圆1C 与圆2C 的关系?(配方→圆心与半径→探究圆心距与两半径的关系) 2. 两圆的位置关系利用圆的方程来判断方法:通常是通过解方程或不等式和方法加以解决例2圆1C 的方程是:2222450x y mx y m +-++-=圆2C 的方程是:2222230x y x my m ++-+-=, m 为何值时,两圆(1)相切.(2)相交(3)相离(4)内含思路:联立方程组→讨论方程的解的情况(消元法、判别式法)→交点个数→位置关系)练习:已知两圆2260x y x +-=与224x y y m +-=,问m 取何值时,两圆相切。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两条直线所成的角
一、教学目标
(一)知识教学点
一条直线与另一条直线所成角的概念及其公式,两直线的夹角公式,能熟练运用公式解题.
(二)能力训练点
通过课题的引入,训练学生由特殊到一般,定性、定量逐层深入研究问题的思想方法;通过公式的推导,培养学生综合运用知识解决问题的能力.
(三)学科渗透点
训练学生由特殊到一般,定性、定量逐步深入地研究问题的习惯.
二、教材分析
1.重点:前面研究了两条直线平行与垂直,本课时是对两直线相交的情况作定量的研究.两直线所成的角公式可由一条直线到另一条直线的角公式直接得到,教学时要讲请l1、l2的公式的推导方法及这一公式的应用.2,难点:公式的记忆与应用.
3.疑点:推导l1、l2的角公式时的构图的分类依据.
三、活动设计
分析、启发、讲练结合.
四、教学过程
(一)引入新课
我们已经研究了直角坐标平面两条直线平行与垂直的情况,对于两条相交直线,怎样根据它们的直线方程求它们所成的角是我们下面要解决的问题.
(二)l1到l2的角正切
两条直线l1和l2相交构成四个角,它们是两对对顶角.为了区别这些角,我们把直线l1依逆时针方向旋转到与l2重合时所转的角,叫做l1到l2的角.图1-27中,直线l1到l2的角是θ1,l2到l1的角是θ2(θ1+θ2=180°).
l1到l2的角有三个要点:始边、终边和旋转方向.
现在我们来求斜率分别为k1、k2的两条直线l1到l2的角,设已知直线的方程分别是
l1∶y=k1x+b1 l2∶y=k2x+b2
如果1+k1k2=0,那么θ=90°,
下面研究1+k1k2≠0的情形.
由于直线的方向是由直线的倾角决定的,所以我们从研究θ与l1和l2的倾角的关系入手考虑问题.
设l1、l2的倾斜角分别是α1和α2(图1-32),甲图的特征是l1到l2的角是l1、l2和x轴围成的三角形的内角;乙图的特征是l1到l2的角是l1、l2与x 轴围成的三角形的外角.
tgα1=k1, tgα2=k2.
∵θ=α2-α1(图1-32),
或θ=π-(α1-α2)=π+(α2-α1),
∴tgθ=tg(α2-α1).
或tgθ=tg[π(α2-α1)]=tg(α2-α1).
可得
即
eq \x( )
上面的关系记忆时,可抓住分子是终边斜率减始边斜率的特征进行记忆.
(三)夹角公式
从一条直线到另一条直线的角,可能不大于直角,也可能大于直角,但我们常常只需要考虑不大于直角的角(就是两条直线所成的角,简称夹角)就可以了,这时可以用下面的公式
(四)例题
解:k1=-2,k2=1.
∴θ=arctg3≈71°34′.
本例题用来熟悉夹角公式.
例2 已知直线l1: A1x+B1y+C1=0和l2: A2x+B2y+C2=0(B1≠0、B2≠0、A1A2+B1B2≠0),l1到l2的角是θ,求证:
证明:设两条直线l1、l2的斜率分别为k1、k2,则
这个例题用来熟悉直线l1到l2的角.
例3等腰三角形一腰所在的直线l1的方程是x-2y-2=0,底边所在的直线l2的方程是x+y-1=0,点(-2,0)在另一腰上,求这腰所在直线l3的方程.
解:先作图演示一腰到底的角与底到另一腰的角相等,并且与两腰到底的角与底到另一腰的角相等,并且与两腰的顺序无关.
设l1、l2、l3的斜率分别是k1、k2、k3,l1到l2的角是θ1,l2到l3的角是θ2,则
.
因为l1、l2、l3所围成的三角形是等腰三角形,所以
θ1=θ2.
tgθ2=tgθ1=-3.
解得 k3=2.
因为l3经过点(-2,0),斜率为2,写出点斜式为
y=2[x-(-2)],
即 2x-y+4=0.
这就是直线l3的方程.
讲此例题时,一定要说明:无须作图,任一腰到底的角与底到另一腰的角都相等,要为锐角都为锐角,要为钝角都为钝角.
(五)课后小结
(1)l1到l2的角的概念及l1与l2夹角的概念;
(2)l1到l2的角的正切公式;
(3)l1与l2的夹角的正切公式;
(4)等腰三角形中,一腰所在直线到底面所在直线的角,等于底边所在直线到另一腰所在直线的角.
五、布置作业
1.(教材第32页,1.8练习第1题)求下列直线l1到l2的角与l2到l1的角:
∴θ1=45°.
l2到l1的角θ2=π-θ1=arctg3.
2.(教材第32页,1.8练习第2题)求下列直线的夹角:
∵k1·k2=-1,
∴l1与l2的夹角是90°.
(2)k1=1, k2=0.
两直线的夹角为45°.
∴l1与l2的夹角是90°.
3.(习题三第10题)已知直线l经过点P(2,1),且和直线5x+2y+3=0的夹角为45o,求直线l的方程.
即3x+7y-13=0或7x-3y-11=0.
4.等腰三角形一腰所在的直线l1的方程是2x-y+4=0,底面所在的直线l2的方程是x+y-1=0,点(-2,0)在另一腰上,求这腰所在的直线l3的方程.解:这是本课例3将l1与l3互换的变形题,解法与例3相同,所求方程为:x-2y-2=0.
六、板书设计。