材料科学基础作业答案

合集下载

材料科学基础习题与参考答案(doc14页)完美版

材料科学基础习题与参考答案(doc14页)完美版

材料科学基础习题与参考答案(doc14页)完美版第⼀章材料的结构⼀、解释以下基本概念空间点阵、晶格、晶胞、配位数、致密度、共价键、离⼦键、⾦属键、组元、合⾦、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第⼆相强化。

⼆、填空题1、材料的键合⽅式有四类,分别是(),(),(),()。

2、⾦属原⼦的特点是最外层电⼦数(),且与原⼦核引⼒(),因此这些电⼦极容易脱离原⼦核的束缚⽽变成()。

3、我们把原⼦在物质内部呈()排列的固体物质称为晶体,晶体物质具有以下三个特点,分别是(),(),()。

4、三种常见的⾦属晶格分别为(),()和()。

5、体⼼⽴⽅晶格中,晶胞原⼦数为(),原⼦半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶⾯为(),晶胞中⼋⾯体间隙个数为(),四⾯体间隙个数为(),具有体⼼⽴⽅晶格的常见⾦属有()。

6、⾯⼼⽴⽅晶格中,晶胞原⼦数为(),原⼦半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶⾯为(),晶胞中⼋⾯体间隙个数为(),四⾯体间隙个数为(),具有⾯⼼⽴⽅晶格的常见⾦属有()。

7、密排六⽅晶格中,晶胞原⼦数为(),原⼦半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶⾯为(),具有密排六⽅晶格的常见⾦属有()。

8、合⾦的相结构分为两⼤类,分别是()和()。

9、固溶体按照溶质原⼦在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原⼦与溶剂原⼦相对分布分为()和()。

10、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。

11、⾦属化合物(中间相)分为以下四类,分别是(),(),(),()。

12、⾦属化合物(中间相)的性能特点是:熔点()、硬度()、脆性(),因此在合⾦中不作为()相,⽽是少量存在起到第⼆相()作⽤。

13、CuZn、Cu5Zn8、Cu3Sn的电⼦浓度分别为(),(),()。

材料科学基础答案

材料科学基础答案

材料科学基础答案1.为什么室温下金属晶粒越细强度,硬度越高,塑性韧性也越好答:金属晶粒越细,晶界面积越大,位错障碍越多,需要协调的具有不同位向的晶粒越多,金属塑性变形的抗力越高,从而导致金属强度和硬度越高。

金属的晶粒越细,单位体积内晶粒数目越多,同时参与变形的晶粒数目也越多,变形越均匀,推迟了裂纹的形成和扩展,使得在断裂前发生较大的塑性变形。

在强度和塑性同时增加的情况下,金属在断裂前消耗的功增大,因而其韧性也比较好。

因此,金属的晶粒越细,其塑性和韧性也越好。

2.冷塑性变形金属产生加工硬化的原因随变形量增加,空密度增加。

④由于晶粒由有利位向而发生几何硬化,因此使变形抗力增加。

随变形量增加,亚结构细化,亚晶界对位错运动有阻碍作用。

答:①晶体内部存在位错源,变形时发生了位错增值,随变形量增加,位错密度增加。

由于位错之间的交互作用,使变形抗力增加。

3.某厂用冷拉钢丝绳吊运出炉热处理工件去淬火,钢丝绳的承载能力远超过工件的质量,但在工件的运送过程中钢丝绳发生断裂,试分析其原因答:冷拉钢丝绳是利用热加工硬化效应提高其强度的,在这种状态下的钢丝中晶体缺陷密度增大,强度增加,处于加工硬化状态。

在淬火的温度下保温,钢丝将发生回复、再结晶和晶粒长大过程,组织和结构恢复软化状态。

在这一系列变化中,冷拉钢丝的加工硬化效果将消失,强度下降,在再次起吊时,钢丝将被拉长,发生塑性变形,横截面积减小,强度将比保温前低,所以发生断裂。

4细化晶粒方法1.在浇注过程中: 1)增大过冷度; 2)加入变质剂; 3)进行搅拌和振动等。

2. 在热轧或锻造过程中: 1)控制变形度; 2)控制热轧或锻造温度。

3. 在热处理过程中:控制加热和冷却工艺参数利用相变重结晶来细化晶粒。

4. 对冷变形后退火态使用的合金: 1)控制变形度; 2)控制再结晶退火温度和时间5、试说明滑移,攀移及交滑移的条件,过程和结果,并阐述如何确定位错滑移运动的方向。

解答:滑移:切应力作用、切应力大于临界分切应力;台阶攀移:纯刃位错、正应力、热激活原子扩散;多余半原子面的扩大与缩小交滑移:纯螺位错、相交位错线的多个滑移面;位错增殖位错滑移运动的方向,外力方向与b一致时从已滑移区→未滑移区。

材料科学基础课后作业答案

材料科学基础课后作业答案

2
2
2
此反应满足几何条件但不满足能量条件,反应不能成立。
8. 在钢棒的表面,每20个铁的晶胞中有一个碳原子,在离表面
1mm处每30个铁的晶胞中有一个碳原子。温度为1000℃时扩散
系数是3×10-11m2/s,且结构为面心立方(a=0.365 nm)。问每
分钟因扩散通过单位晶胞的碳原子数是多少?
由已知可以计算出碳的浓度: C2=1/[30*(0.365×10-9m)3]=0.68×1027 /m3 C1=1/[20*(0.365×10-9m)3]=1.03×1027 /m3
a
b
• (c)[0 1 2]
(d)[1 3 3]
• (e)[1 1 1]
(f)[1 2 2]
• (g)[1 2 3]
(h)[1 0 3]
3. Determine the indices for the directions shown in the following cubic unit cell:222
此反应满足几何条件和 能量条件,反应能进行 。
解2: a[100] a [111] a [1 1 1]
2
2
(1)几何条件
反应前 a[100]
反应后
a [111] a [1 1 1]= a [200] a[100]
2
2
2
(2)能量条件
反应前
b2 a2
反应后
b2 ( a 12 12 12 )2 ( a 12 12 12 )2 3 a2 a2
9. 某固溶体的合金的相图如下图所示。合金成分为50 % B, 凝固到某温度时液相含有40 % B,固相含有80 % B,此时 液体和固体各占多少分数?
解:

材料科学基础作业参考答案

材料科学基础作业参考答案

《材料科学基础》作业参考答案第二章1.回答下列问题:(1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(132)与[123],(322)和[236]。

(2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。

解答:(1)(2)首先求(111)和(112)的交线。

由式(2-7),即得u=k1l2-k2l1=1x2-1x1=1v=l1h2-l2h1=1x1-2x1=-1w=h1k2-h2k1=1x1-1x1=0所以,(111)和(112)两晶面交线的晶向指数为[110]或者[110]。

如下图所示。

3 立方晶系的{111}、{110}、{123}晶面族各包括多少晶面?写出它们的密勒指数。

解答:++++++++=)213()231()321()132()312()321()231()123(}123{+++++++)312()132()213()123()132()312()231()132()123()213()321()231()213()123()312()321(++++++++注意:书中有重复的。

如(111)与(111)应为同一晶面,只是位于坐标原点的位置不同。

6.(略)7.(题略) (1)(2)用公式求。

(3) 用公式 求。

(1)d(100)=0.286nmd(110)=0.202nmd(123)=0.076nm显然,d(100)最大。

hkl d =(2) d(100)=0.365nmd(111)=0.211nmd(112)=0.149nm显然,d(100)最大。

(3) d(1120)=0.1605 nmd(1010)=0.278nmd(1012)=0.190nm显然,d(1010)最大。

由(1)、(2)、(3)得低指数的面间距较大,而高指数的晶面间距则较小8.回答下列问题:(1)通过计算判断(110)、(132)、(311)晶面是否属于同一晶带?(2)求(211)和(110)晶面的晶带轴,并列出五个属于该晶带的晶面的密勒指数。

材料科学基础试题及答案

材料科学基础试题及答案

材料科学基础试题及答案一、名词解释(每题5分,共25分)1. 晶体缺陷2. 扩散3. 塑性变形4. 应力5. 比热容二、选择题(每题2分,共20分)1. 下列哪种材料属于金属材料?A. 玻璃B. 塑料C. 陶瓷D. 铜2. 下列哪种材料属于陶瓷材料?A. 铁B. 铝C. 硅酸盐D. 聚合物3. 下列哪种材料属于高分子材料?A. 玻璃B. 钢铁C. 聚乙烯D. 陶瓷4. 下列哪种材料属于半导体材料?A. 铜B. 铝C. 硅D. 铁5. 下列哪种材料属于绝缘体?A. 铜B. 铝C. 硅D. 玻璃三、简答题(每题10分,共30分)1. 请简述晶体结构的基本类型及其特点。

2. 请简述塑性变形与弹性变形的区别。

3. 请简述材料的热传导原理。

四、计算题(每题15分,共30分)1. 计算一个碳化硅晶体的体积。

已知碳化硅的晶胞参数:a=4.05 Å,b=4.05 Å,c=8.85 Å,α=β=γ=90°。

2. 计算在恒定温度下,将一个100 cm³的铜块加热100℃所需的热量。

已知铜的比热容为0.39J/(g·℃),铜的密度为8.96 g/cm³。

五、论述题(每题20分,共40分)1. 论述材料科学在现代科技发展中的重要性。

2. 论述材料制备方法及其对材料性能的影响。

答案:一、名词解释(每题5分,共25分)1. 晶体缺陷:晶体在生长过程中,由于外界环境的影响,导致其内部结构出现不完整或不符合理想周期性排列的现象。

2. 扩散:物质由高浓度区域向低浓度区域自发地移动的过程。

3. 塑性变形:材料在受到外力作用下,能够产生永久变形而不恢复原状的性质。

4. 应力:单位面积上作用于材料上的力。

5. 比热容:单位质量的物质温度升高1℃所吸收的热量。

二、选择题(每题2分,共20分)1. D2. C3. C4. C5. D三、简答题(每题10分,共30分)1. 晶体结构的基本类型及其特点:晶体结构的基本类型有立方晶系、四方晶系、六方晶系和单斜晶系。

《材料科学基础》作业-答案全

《材料科学基础》作业-答案全

绪论一、填空题1、材料科学主要研究的核心问题是结构和性能的关系。

材料的结构是理解和控制性能的中心环节,结构的最微细水平是原子结构,第二个水平是原子排列方式,第三个水平是显微组织。

2. 根据材料的性能特点和用途,材料分为结构材料和功能材料两大类。

根据原子之间的键合特点,材料分为金属、陶瓷、高分子和复合材料四大类。

第一章材料的原子结构一、填空题1. 金属材料中原子结合以金属键为主,陶瓷材料(无机非金属材料)以共价键和离子键结合键为主,聚合物材料以共价键和氢键以及范德华键为主。

第二章材料的结构一、填空题1、晶体是基元(原子团)以周期性重复方式在三维空间作有规则的排列的固体。

2、晶体与非晶体的最根本区别是晶体原子排布长程有序,而非晶体是长程无序短程有序。

3、晶胞是晶体结构中的最小单位。

4、根据晶体的对称性,晶系有三大晶族,七大晶系,十四种布拉菲Bravais点阵,三十二种点群,230种空间群。

5、金属常见的晶格类型有体心立方、面心立方、密排六方。

6、fcc晶体的最密排方向为<110>,最密排面为{111},最密排面的堆垛顺序为ABCABCABCABC……。

7、fcc晶体的致密度为0.74,配位数为12,原子在(111)面上的原子配位数为6。

8、bcc晶体的最密排方向为<111>,最密排面为{110},致密度为0.68,配位数为8。

9、晶体的宏观对称要素有对称点、对称轴、对称面。

10、CsCl型结构属于简单立方格子,NaCl型结构属于面心立方格子,CaF2型结构属于面心立方格子。

11、MgO晶体具有NaCl型结构,其对称型是3 L44L36L29PC,晶族是高级晶族,晶系是立方晶系,晶体的键型是离子键。

12、硅酸盐晶体结构中的基本结构单元是硅氧四面体[SiO4]。

?13、几种硅酸盐晶体的络阴离子分别为[Si2O7]6-、[Si2O6]4-、[Si4O10]4-、[AlSi3O8]1-,它们的晶体结构类型分别为组群状,链状,层状,和架状。

材料科学基础习题与参考答案(doc 14页)(优质版)

材料科学基础习题与参考答案(doc 14页)(优质版)

第一章材料的结构一、解释以下基本概念空间点阵、晶格、晶胞、配位数、致密度、共价键、离子键、金属键、组元、合金、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第二相强化。

二、填空题1、材料的键合方式有四类,分别是(),(),(),()。

2、金属原子的特点是最外层电子数(),且与原子核引力(),因此这些电子极容易脱离原子核的束缚而变成()。

3、我们把原子在物质内部呈()排列的固体物质称为晶体,晶体物质具有以下三个特点,分别是(),(),()。

4、三种常见的金属晶格分别为(),()和()。

5、体心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有体心立方晶格的常见金属有()。

6、面心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有面心立方晶格的常见金属有()。

7、密排六方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),具有密排六方晶格的常见金属有()。

8、合金的相结构分为两大类,分别是()和()。

9、固溶体按照溶质原子在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原子与溶剂原子相对分布分为()和()。

10、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。

11、金属化合物(中间相)分为以下四类,分别是(),(),(),()。

12、金属化合物(中间相)的性能特点是:熔点()、硬度()、脆性(),因此在合金中不作为()相,而是少量存在起到第二相()作用。

13、CuZn、Cu5Zn8、Cu3Sn的电子浓度分别为(),(),()。

14、如果用M表示金属,用X表示非金属,间隙相的分子式可以写成如下四种形式,分别是(),(),(),()。

(完整版)材料科学基础习题及答案

(完整版)材料科学基础习题及答案

第一章材料的结构一、解释以下基本概念空间点阵、晶格、晶胞、配位数、致密度、共价键、离子键、金属键、组元、合金、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第二相强化.二、填空题1、材料的键合方式有四类,分别是(),( ),(),().2、金属原子的特点是最外层电子数(),且与原子核引力(),因此这些电子极容易脱离原子核的束缚而变成( )。

3、我们把原子在物质内部呈( )排列的固体物质称为晶体,晶体物质具有以下三个特点,分别是(),( ),( ).4、三种常见的金属晶格分别为(),( )和().5、体心立方晶格中,晶胞原子数为( ),原子半径与晶格常数的关系为( ),配位数是(),致密度是( ),密排晶向为(),密排晶面为( ),晶胞中八面体间隙个数为(),四面体间隙个数为( ),具有体心立方晶格的常见金属有()。

6、面心立方晶格中,晶胞原子数为( ),原子半径与晶格常数的关系为(),配位数是( ),致密度是(),密排晶向为( ),密排晶面为(),晶胞中八面体间隙个数为( ),四面体间隙个数为(),具有面心立方晶格的常见金属有()。

7、密排六方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为( ),密排晶面为(),具有密排六方晶格的常见金属有( )。

8、合金的相结构分为两大类,分别是()和( )。

9、固溶体按照溶质原子在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原子与溶剂原子相对分布分为()和()。

10、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。

11、金属化合物(中间相)分为以下四类,分别是( ),( ),( ),( )。

12、金属化合物(中间相)的性能特点是:熔点()、硬度( )、脆性(),因此在合金中不作为()相,而是少量存在起到第二相()作用。

13、CuZn、Cu5Zn8、Cu3Sn的电子浓度分别为(),( ),( ).14、如果用M表示金属,用X表示非金属,间隙相的分子式可以写成如下四种形式,分别是( ),(),( ),( ).15、Fe3C的铁、碳原子比为(),碳的重量百分数为(),它是( )的主要强化相。

材料科学基础答案(精心整理)

材料科学基础答案(精心整理)

材料科学基础答案(精⼼整理)第1章晶体结构1.在⽴⽅晶系中,⼀晶⾯在x轴的截距为1,在y轴的截距为1/2,且平⾏于z 轴,⼀晶向上某点坐标为x=1/2,y=0,z=1,求出其晶⾯指数和晶向指数,并绘图⽰之。

2.画出⽴⽅晶系中下列晶⾯和晶向:(010),(011),(111),(231),(321),[010], [011],[111],[231],[321]。

3.纯铝晶体为⾯⼼⽴⽅点阵,已知铝的相对原⼦质量Ar(Al)=27,原⼦半径r=0.143nm,求铝晶体的密度。

4.何谓晶体?晶体与⾮晶体有何区别?5.试举例说明:晶体结构与空间点阵?单位空间格⼦与空间点阵的关系?6.什么叫离⼦极化?极化对晶体结构有什么影响?7.何谓配位数(离⼦晶体/单质)?8.何谓对称操作,对称要素?9.计算⾯⼼⽴⽅结构(111)与(100)晶⾯的⾯间距及原⼦密度(原⼦个数/单位⾯积)。

10.已知室温下α-Fe(体⼼)的点阵常数为0.286nm,分别求(100)、(110)、(123)的晶⾯间距。

11.已知室温下γ-Fe(⾯⼼)的点阵常数为0.365nm,分别求(100)、(110)、(112)的晶⾯间距。

12.已知Cs+半径为0.170nm,Cl-半径为0.181 nm,计算堆积系数。

13.MgO 属NaCl型结构,若rMg 2+=0.078nm,rO2-=0.132nm,(1)试⽤鲍林规则分析氧化镁晶体结构?(2)计算堆积密度?(3)画出氧化镁在(100)、(110)、(111)晶⾯上的结点和离⼦排布图?答案1.答:晶⾯指数为:(120),见图ABCD ⾯;晶向指数为:[102],见图OP 向。

2.答:3. 4. 5.6. 答:离⼦极化:在离⼦紧密堆积时,带电荷的离⼦所产⽣的电场必然要对另⼀离⼦的电⼦云发⽣作⽤(吸引或排斥),因⽽使这个离⼦的⼤⼩和形状发⽣了改变,这种现象叫离⼦极化。

极化会对晶体结构产⽣显著影响,主要表现为极化会导致离⼦间距离缩短,离⼦配位数降低,同时变形的电⼦云相互重叠,使键性由离⼦键向共价键过渡,最终使晶体结构类型发⽣变化。

《材料科学基础》习题及参考答案

《材料科学基础》习题及参考答案

答案
2.试从晶体结构的角度,说明间隙固溶体、间隙相及
间隙化合物之间的区别。
答案
返回
3. 何谓玻璃?从内部原子排列和性能上看,
非晶态和晶态物质主要区别何在?
答案
4.有序合金的原子排列有何特点?这种排列
和结合键有什么关系?为什么许多有序合金
在高温下变成无序?
答案
5. 试分析H、N、C、B在Fe和Fe中形成固熔
6.离异共晶
答案
7.伪共晶
答案
8.杠杆定理
答案
返回
二、综合题
1.在图4—30所示相图中,请指出: (1) 水平线上反应的性质; (2) 各区域的组织组成物; (3) 分析合金I,II的冷却过程; (4) 合金工,II室温时组织组成物的相对量表达式。
答案
返回
2.固溶体合金的相图如下图所示,试根据相图确定: ①成分为ω(B)=40%的合金首
答案
返回
7. 根据图7-9所示的A1-Si共晶相图,试分析图中(a),(b),(c)3个金相组 织属什么成分并说明理由。指出细化此合金铸态组织的途径。
答案
返回
8. 青铜( Cu-Sn)和黄铜C Cu--fin)相图如图7-15(a),(b)所示:
①叙述Cu-10% Sn合金的不平衡冷却过程,并指出室温时的 金相组织。
化时是否会出现过热,为什么?
答案
3.欲获得金属玻璃,为什么一般选用液相线很陡,
从而有较低共晶温度的二元系?
答案
4.比较说明过冷度、临界过冷度、动态过冷度等
概念的区别。
答案
5.分析纯金属生长形态与温度梯度的关系。 答案
返回
6.简述纯金属晶体长大的机制。

材料科学基础经典习题及答案

材料科学基础经典习题及答案

材料科学基础经典习题及答案第一章 材料科学基础1.作图表示立方晶体的()()()421,210,123晶面及[][][]346,112,021晶向。

2.在六方晶体中,绘出以下常见晶向[][][][][]0121,0211,0110,0112,0001等。

3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。

4.镁的原子堆积密度和所有hcp 金属一样,为0.74。

试求镁单位晶胞的体积。

已知Mg 的密度3Mg/m 74.1=mg ρ,相对原子质量为24.31,原子半径r=0.161nm 。

5.当CN=6时+Na 离子半径为0.097nm ,试问:1) 当CN=4时,其半径为多少?2) 当CN=8时,其半径为多少?6. 试问:在铜(fcc,a=0.361nm )的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少?7.镍为面心立方结构,其原子半径为nm 1246.0=Ni r 。

试确定在镍的(100),(110)及(111)平面上12mm 中各有多少个原子。

8. 石英()2SiO 的密度为2.653Mg/m 。

试问: 1) 13m 中有多少个硅原子(与氧原子)?2) 当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球形的)?9.在800℃时1010个原子中有一个原子具有足够能量可在固体内移动,而在900℃时910个原子中则只有一个原子,试求其激活能(J/原子)。

10.若将一块铁加热至850℃,然后快速冷却到20℃。

试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。

11.设图1-18所示的立方晶体的滑移面ABCD 平行于晶体的上、下底面。

若该滑移面上有一正方形位错环,如果位错环的各段分别与滑移面各边平行,其柏氏矢量b ∥AB 。

1) 有人认为“此位错环运动移出晶体后,滑移面上产生的滑移台阶应为4个b ,试问这种看法是否正确?为什么?2)指出位错环上各段位错线的类型,并画出位错运动出晶体后,滑移方向及滑移量。

材料科学基础作业详细答案

材料科学基础作业详细答案

材料科学基础练习题参考答案第一章原子排列1. 作图表示立方晶系中的(123),(012),(421)晶面和[102],[211],[346]晶向.附图1-1 有关晶面及晶向2. 分别计算面心立方结构与体心立方结构的{100},{110}和{111}晶面族的面间距, 并指出面间距最大的晶面(设两种结构的点阵常数均为a).解由面心立方和体心立方结构中晶面间的几何关系, 可求得不同晶面族中的面间距如附表1-1所示.附表1-1 立方晶系中的晶面间距晶面{100} {110} {111}面间距FCC2a24a33aBCC2a22a36a显然, FCC中{111}晶面的面间距最大, 而BCC中{110}晶面的面间距最大.注意:对于晶面间距的计算, 不能简单地使用公式, 应考虑组成复合点阵时, 晶面层数会增加.3. 分别计算fcc和bcc中的{100},{110}和{111}晶面族的原子面密度和<100>,<110>和<111>晶向族的原子线密度, 并指出两种结构的差别. (设两种结构的点阵常数均为a) 解原子的面密度是指单位晶面内的原子数; 原子的线密度是指晶面上单位长度所包含的原子数. 据此可求得原子的面密度和线密度如附表1-2所示.附表1-2 立方晶系中原子的面密度和线密度晶面/晶向{100} {110} {111} <100> <110> <111>面/线密度BCC21a22a233a1a22a233aFCC22a22a2433a1a2a33a可见, 在BCC中, 原子密度最大的晶面为{110}, 原子密度最大的晶向为<111>; 在FCC 中, 原子密度最大的晶面为{111}, 原子密度最大的晶向为<110>.4. 在(0110)晶面上绘出[2113]晶向.解详见附图1-2.附图1-2 六方晶系中的晶向5. 在一个简单立方二维晶体中, 画出一个正刃型位错和一个负刃型位错. 试求:(1) 用柏氏回路求出正、负刃型位错的柏氏矢量.(2) 若将正、负刃型位错反向时, 说明其柏氏矢量是否也随之反向.(3) 具体写出该柏氏矢量的方向和大小.(4) 求出此两位错的柏氏矢量和.解正负刃型位错示意图见附图1-3(a)和附图1-4(a).(1) 正负刃型位错的柏氏矢量见附图1-3(b)和附图1-4(b).(2) 显然, 若正、负刃型位错线反向, 则其柏氏矢量也随之反向.(3) 假设二维平面位于YOZ坐标面, 水平方向为Y轴, 则图示正、负刃型位错方向分别为[010]和[010], 大小均为一个原子间距(即点阵常数a).(4) 上述两位错的柏氏矢量大小相等, 方向相反, 故其矢量和等于0.6. 设图1-72所示立方晶体的滑移面ABCD平行于晶体的上下底面, 该滑移面上有一正方形位错环. 如果位错环的各段分别与滑移面各边平行, 其柏氏矢量b // AB, 试解答:(1) 有人认为“此位错环运动离开晶体后, 滑移面上产生的滑移台阶应为4个b”, 这种说法是否正确? 为什么?(2) 指出位错环上各段位错线的类型, 并画出位错移出晶体后, 晶体的外形、滑移方向和滑移量. (设位错环线的方向为顺时针方向)图1-72 滑移面上的正方形位错环 附图1-5 位错环移出晶体引起的滑移 解 (1) 这种看法不正确. 在位错环运动移出晶体后, 滑移面上下两部分晶体相对移动的距离是由其柏氏矢量决定的. 位错环的柏氏矢量为b , 故其相对滑移了一个b 的距离.(2) A ′B ′为右螺型位错, C ′D ′为左螺型位错, B ′C ′为正刃型位错, D ′A ′为负刃型位错. 位错运动移出晶体后滑移方向及滑移量见附图1-5.7. 设面心立方晶体中的(111)晶面为滑移面, 位错滑移后的滑移矢量为[110]2a .(1) 在晶胞中画出此柏氏矢量b 的方向并计算出其大小.(2) 在晶胞中画出引起该滑移的刃型位错和螺型位错的位错线方向, 并写出此二位错线的晶向指数.解 (1) 柏氏矢量等于滑移矢量, 因此柏氏矢量的方向为[110], 大小为2/2a .(2) 刃型位错与柏氏矢量垂直, 螺型位错与柏氏矢量平行, 晶向指数分别为[112]和[110], 详见附图1-6.附图1-6 位错线与其柏氏矢量、滑移矢量8. 若面心立方晶体中有[101]2a b =的单位位错及[121]6a b =的不全位错, 此二位错相遇后产生位错反应.(1) 此反应能否进行? 为什么?(2) 写出合成位错的柏氏矢量, 并说明合成位错的性质.解 (1) 能够进行.因为既满足几何条件:[111]3a b b ==∑∑后前,又满足能量条件: . 22222133b a b a =>=∑∑后前. (2) [111]3a b =合, 该位错为弗兰克不全位错. 9. 已知柏氏矢量的大小为b = 0.25nm, 如果对称倾侧晶界的取向差θ = 1° 和10°, 求晶界上位错之间的距离. 从计算结果可得到什么结论?解 根据bD θ≈, 得到θ = 1°,10° 时, D ≈14.3nm, 1.43nm. 由此可知, θ = 10° 时位错之间仅隔5~6个原子间距, 位错密度太大, 表明位错模型已经不适用了.第二章 固体中的相结构1. 已知Cd, In, Sn, Sb 等元素在Ag 中的固熔度极限(摩尔分数)分别为0.435, 0.210, 0.130, 0.078; 它们的原子直径分别为0.3042 nm, 0.314 nm, 0.316 nm, 0.3228 nm; Ag 的原子直径为0.2883 nm. 试分析其固熔度极限差异的原因, 并计算它们在固熔度极限时的电子浓度.答: 在原子尺寸因素相近的情况下, 熔质元素在一价贵金属中的固熔度(摩尔分数)受原子价因素的影响较大, 即电子浓度e /a 是决定固熔度(摩尔分数)的一个重要因素, 而且电子浓度存在一个极限值(约为1.4). 电子浓度可用公式A B B B (1)c Z x Z x =-+计算. 式中, Z A , Z B 分别为A, B 组元的价电子数; x B 为B 组元的摩尔分数. 因此, 随着熔质元素价电子数的增加, 极限固熔度会越来越小.Cd, In, Sn, Sb 等元素与Ag 的原子直径相差不超过15%(最小的Cd 为5.5%, 最大的Sb 为11.96%), 满足尺寸相近原则, 这些元素的原子价分别为2, 3, 4, 5价, Ag 为1价, 据此推断它们的固熔度极限越来越小, 实际情况正好反映了这一规律; 根据上面的公式可以计算出它们在固熔度(摩尔分数)极限时的电子浓度分别为1.435, 1.420, 1.390, 1.312.2. 碳可以熔入铁中而形成间隙固熔体, 试分析是α-Fe 还是γ-Fe 能熔入较多的碳.答: α-Fe 为体心立方结构, 致密度为0.68; γ-Fe 为面心立方结构, 致密度为0.74. 显然, α-Fe 中的间隙总体积高于γ-Fe, 但由于α-Fe 的间隙数量多, 单个间隙半径却较小, 熔入碳原子将会产生较大的畸变, 因此, 碳在γ-Fe 中的固熔度较α-Fe 的大.3. 为什么只有置换固熔体的两个组元之间才能无限互熔, 而间隙固熔体则不能?答: 这是因为形成固熔体时, 熔质原子的熔入会使熔剂结构产生点阵畸变, 从而使体系能量升高. 熔质原子与熔剂原子尺寸相差越大, 点阵畸变的程度也越大, 则畸变能越高, 结构的稳定性越低, 熔解度越小. 一般来说, 间隙固熔体中熔质原子引起的点阵畸变较大, 故不能无限互熔, 只能有限熔解.第三章 凝固1. 分析纯金属生长形态与温度梯度的关系.答: 纯金属生长形态是指晶体宏观长大时固-液界面的形貌. 界面形貌取决于界面前沿液相中的温度梯度.(1) 平面状长大: 当液相具有正温度梯度时, 晶体以平直界面方式推移长大. 此时, 界面上任何偶然的、小的凸起深入液相时, 都会使其过冷度减小, 长大速率降低或停止长大, 而被周围部分赶上, 因而能保持平直界面的推移. 长大过程中晶体沿平行温度梯度的方向生长, 或沿散热的反方向生长, 而其它方向的生长则受到限制.(2) 树枝状长大: 当液相具有负温度梯度时, 晶体将以树枝状方式生长. 此时, 界面上偶然的凸起深入液相时, 由于过冷度的增大, 长大速率越来越大; 而它本身生长时又要释放结晶潜热, 不利于近旁的晶体生长, 只能在较远处形成另一凸起. 这就形成了枝晶的一次轴, 在一次轴成长变粗的同时, 由于释放潜热使晶枝侧旁液体中也呈现负温度梯度, 于是在一次轴上又会长出小枝来, 称为二次轴, 在二次轴上又长出三次轴……由此而形成树枝状骨架, 故称为树枝晶(简称枝晶).2. 简述纯金属晶体长大机制及其与固-液界面微观结构的关系.答: 晶体长大机制是指晶体微观长大方式, 即液相原子添加到固相的方式, 它与固-液界面的微观结构有关.(1) 垂直长大方式: 具有粗糙界面的物质, 因界面上约有50% 的原子位置空着, 这些空位都可以接受原子, 故液相原子可以进入空位, 与晶体连接, 界面沿其法线方向垂直推移, 呈连续式长大.(2) 横向(台阶)长大方式: 包括二维晶核台阶长大机制和晶体缺陷台阶长大机制, 具有光滑界面的晶体长大往往采取该方式. 二维晶核模式, 认为其生长主要是利用系统的能量起伏, 使液相原子在界面上通过均匀形核形成一个原子厚度的二维薄层状稳定的原子集团, 然后依靠其周围台阶填充原子, 使二维晶核横向长大, 在该层填满后, 则在新的界面上形成新的二维晶核, 继续填满, 如此反复进行.晶体缺陷方式, 认为晶体生长是利用晶体缺陷存在的永不消失的台阶(如螺型位错的台阶或挛晶的沟槽)长大的.第四章 相图1. 在Al-Mg 合金中, x Mg 为0.15, 计算该合金中镁的w Mg 为多少.解 设Al 的相对原子量为M Al , 镁的相对原子量为M Mg , 按1mol Al-Mg 合金计算, 则镁的质量分数可表示为Mg MgMg Al Al Mg Mg 100%x M w x M x M =⨯+.将x Mg = 0.15, x Al = 0.85, M Mg = 24, M Al = 27代入上式中, 得到w Mg = 13.56%.2. 根据图4-117所示二元共晶相图, 试完成:(1) 分析合金I, II 的结晶过程, 并画出冷却曲线.(2) 说明室温下合金I, II 的相和组织是什么, 并计算出相和组织组成物的相对量.(3) 如果希望得到共晶组织加上相对量为5%的β初的合金, 求该合金的成分.图4-117 二元共晶相图附图4-1 合金I的冷却曲线附图4-2 合金II的冷却曲线解(1) 合金I的冷却曲线参见附图4-1, 其结晶过程如下:1以上, 合金处于液相;1~2时, 发生匀晶转变L→α, 即从液相L中析出固熔体α, L和α的成分沿液相线和固相线变化, 达到2时, 凝固过程结束;2时, 为α相;2~3时, 发生脱熔转变, α→βII.合金II的冷却曲线参见附图4-2, 其结晶过程如下:1以上, 处于均匀液相;1~2时, 进行匀晶转变L→β;2时, 两相平衡共存, 0.50.9L β;2~2′ 时, 剩余液相发生共晶转变0.50.20.9L βα+;2~3时, 发生脱熔转变α→βII .(2) 室温下, 合金I 的相组成物为α + β, 组织组成物为α + βII .相组成物相对量计算如下:αβ0.900.20100%82%0.900.050.200.05100%18%0.900.05w w -=⨯=--=⨯=- 组织组成物的相对量与相的一致.室温下, 合金II 的相组成物为α + β, 组织组成物为β初 + (α+β).相组成物相对量计算如下:αβ0.900.80100%12%0.900.050.800.05100%88%0.900.05w w -=⨯=--=⨯=- 组织组成物相对量计算如下:β(α+β)0.800.50100%75%0.900.500.900.80100%25%0.900.50w w -=⨯=--=⨯=-初 (3) 设合金的成分为w B = x , 由题意知该合金为过共晶成分, 于是有β0.50100%5%0.900.50x w -=⨯=-初 所以, x = 0.52, 即该合金的成分为w B = 0.52.3. 计算w C 为0.04的铁碳合金按亚稳态冷却到室温后组织中的珠光体、二次渗碳体和莱氏体的相对量, 并计算组成物珠光体中渗碳体和铁素体及莱氏体中二次渗碳体、共晶渗碳体与共析渗碳体的相对量.解 根据Fe-Fe 3C 相图, w C = 4%的铁碳合金为亚共晶铸铁, 室温下平衡组织为 P + Fe 3C II + L d ′, 其中P 和Fe 3C II 系由初生奥氏体转变而来, 莱氏体则由共晶成分的液相转变而成, 因此莱氏体可由杠杆定律直接计算, 而珠光体和二次渗碳体则可通过两次使用杠杆定律间接计算出来.L d ′ 相对量: d L 4 2.11100%86.3%4.3 2.11w '-=⨯=-. Fe 3C II 相对量: 3II Fe C 4.34 2.110.77100% 3.1%4.3 2.11 6.690.77w --=⨯⨯=--. P 相对量: P 4.34 6.69 2.11100%10.6%4.3 2.11 6.690.77w --=⨯⨯=--. 珠光体中渗碳体和铁素体的相对量的计算则以共析成分点作为支点, 以w C = 0.001%和w C = 6.69%为端点使用杠杆定律计算并与上面计算得到的珠光体相对量级联得到.P 中F 相对量: F P 6.690.77100%9.38%6.690.001w w -=⨯⨯=-. P 中Fe 3C 相对量: 3Fe C 10.6%9.38% 1.22%w =-=.至于莱氏体中共晶渗碳体、二次渗碳体及共析渗碳体的相对量的计算, 也需采取杠杆定律的级联方式, 但必须注意一点, 共晶渗碳体在共晶转变线处计算, 而二次渗碳体及共析渗碳体则在共析转变线处计算.L d ′ 中共晶渗碳体相对量: d Cm L4.3 2.11100%41.27%6.69 2.11w w '-=⨯⨯=-共晶 L d ′ 中二次渗碳体相对量: d Cm L 6.69 4.3 2.110.77100%10.2%6.69 2.11 6.690.77w w '--=⨯⨯⨯=--IIL d ′ 中共析渗碳体相对量: d Cm L 6.69 4.3 6.69 2.110.770.0218100% 3.9%6.69 2.11 6.690.77 6.690.0218w w '---=⨯⨯⨯⨯=---共析 4. 根据下列数据绘制Au-V 二元相图. 已知金和钒的熔点分别为1064℃和1920℃. 金与钒可形成中间相β(AuV 3); 钒在金中的固熔体为α, 其室温下的熔解度为w V = 0.19; 金在钒中的固熔体为γ, 其室温下的熔解度为w Au = 0.25. 合金系中有两个包晶转变, 即1400V V V 1522V V V (1) β(0.4)L(0.25)α(0.27)(2) γ(0.52)L(0.345)β(0.45)w w w w w w =+===+==℃℃解 根据已知数据绘制的Au-V 二元相图参见附图4-3.附图4-3 Au-V 二元相图第五章 材料中的扩散1. 设有一条直径为3cm 的厚壁管道, 被厚度为0.001cm 的铁膜隔开, 通过输入氮气以保持在膜片一边氮气浓度为1000 mol/m 3; 膜片另一边氮气浓度为100 mol/m 3. 若氮在铁中700℃时的扩散系数为4×10-7 cm 2 /s, 试计算通过铁膜片的氮原子总数.解 设铁膜片左右两边的氮气浓度分别为c 1, c 2, 则铁膜片处浓度梯度为7421510010009.010 mol /m 110c c c c x x x --∂∆-≈===-⨯∂∆∆⨯ 根据扩散第一定律计算出氮气扩散通量为722732410(10)(9.010) 3.610 mol/(m s)c J D x---∂=-=-⨯⨯⨯-⨯=⨯∂ 于是, 单位时间通过铁膜片的氮气量为 3-22-63.610(310) 2.5410 mol/s 4J A π-=⨯⨯⨯⨯=⨯最终得到单位时间通过铁膜片的氮原子总数为-62318-1A () 2.5410 6.02102 3.0610 s N J A N =⨯=⨯⨯⨯⨯=⨯第六章 塑性变形1. 铜单晶体拉伸时, 若力轴为 [001] 方向, 临界分切应力为0.64 MPa, 问需要多大的拉伸应力才能使晶体开始塑性变形?解 铜为面心立方金属, 其滑移系为 {111}<110>, 4个 {111} 面构成一个八面体, 详见教材P219中的图6-12.当拉力轴为 [001] 方向时, 所有滑移面与力轴间的夹角相同, 且每个滑移面上的三个滑移方向中有两个与力轴的夹角相同, 另一个为硬取向(λ = 90°). 于是, 取滑移系(111)[101]进行计算.222222222222k s 0101111cos ,30011110(1)00111cos ,2001(1)011cos cos ,60.646 1.57 MPa.m mϕλϕλτσ⨯+⨯+⨯==++⨯++⨯-+⨯+⨯==++⨯-++====⨯=即至少需要1.57 MPa 的拉伸应力才能使晶体产生塑性变形.2. 什么是滑移、滑移线、滑移带和滑移系? 作图表示α-Fe, Al, Mg 中的最重要滑移系. 那种晶体的塑性最好, 为什么?答: 滑移是晶体在切应力作用下一部分相对于另一部分沿一定的晶面和晶向所作的平行移动; 晶体的滑移是不均匀的, 滑移部分与未滑移部分晶体结构相同. 滑移后在晶体表面留下台阶, 这就是滑移线的本质. 相互平行的一系列滑移线构成所谓滑移带. 晶体发生滑移时, 某一滑移面及其上的一个滑移方向就构成了一个滑移系.附图6-1 三种晶体点阵的主要滑移系α-Fe具有体心立方结构, 主要滑移系可表示为{110}<111>, 共有6×2 = 12个; Al具有面心立方结构, 其滑移系可表示为{111}<110>, 共有4×3 = 12个; Mg具有密排六方结构, 主要滑移系可表示为{0001}1120<>, 共有1×3 = 3个. 晶体的塑性与其滑移系的数量有直接关系, 滑移系越多, 塑性越好; 滑移系数量相同时, 又受滑移方向影响, 滑移方向多者塑性较好, 因此, 对于α-Fe, Al, Mg三种金属, Al的塑性最好, Mg的最差, α-Fe居中. 三种典型结构晶体的重要滑移系如附图6-1所示.3. 什么是临界分切应力? 影响临界分切应力的主要因素是什么? 单晶体的屈服强度与外力轴方向有关吗? 为什么?答:滑移系开动所需的作用于滑移面上、沿滑移方向的最小分切应力称为临界分切应力.临界分切应力τk的大小主要取决于金属的本性, 与外力无关. 当条件一定时, 各种晶体的临界分切应力各有其定值. 但它是一个组织敏感参数, 金属的纯度、变形速度和温度、金属的加工和热处理状态都对它有很大影响.如前所述, 在一定条件下, 单晶体的临界分切应力保持为定值, 则根据分切应力与外加轴向应力的关系: σs= τk/ m, m为取向因子, 反映了外力轴与滑移系之间的位向关系, 因此, 单晶体的屈服强度与外力轴方向关系密切. m越大, 则屈服强度越小, 越有利于滑移.4. 孪生与滑移主要异同点是什么? 为什么在一般条件下进行塑性变形时锌中容易出现挛晶, 而纯铁中容易出现滑移带?答:孪生与滑移的异同点如附表6-1所示.锌为密排六方结构金属, 主要滑移系仅3个, 因此塑性较差, 滑移困难, 往往发生孪生变形, 容易出现挛晶; 纯铁为体心立方结构金属, 滑移系较多, 共有48个, 其中主要滑移系有12个, 因此塑性较好, 往往发生滑移变形, 容易出现滑移带.第七章 回复与再结晶1. 已知锌单晶体的回复激活能为8.37×104 J/mol, 将冷变形的锌单晶体在-50 ℃进行回复处理, 如去除加工硬化效应的25% 需要17 d, 问若在5 min 内达到同样效果, 需将温度提高多少摄氏度?解 根据回复动力学, 采用两个不同温度将同一冷变形金属的加工硬化效应回复到同样程度, 回复时间、温度满足下述关系:122111exp t Q t R T T ⎛⎫⎛⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭ 整理后得到221111ln T t R T Q t =+.将41211223 K,/5/(172460),8.3710 J/mol, 8.314 J/(mol K)4896T t t Q R ==⨯⨯==⨯=⋅代入上式得到2274.7 K T =.因此, 需将温度提高21274.722351.7 T T T ∆=-=-=℃.2. 纯铝在553 ℃ 和627 ℃ 等温退火至完成再结晶分别需要40 h 和1 h, 试求此材料的再结晶激活能.解 再结晶速率v 再与温度T 的关系符合阿累尼乌斯(Arrhenius)公式, 即exp()Q v A RT=-再 其中, Q 为再结晶激活能, R 为气体常数.如果在两个不同温度T 1, T 2进行等温退火, 欲产生同样程度的再结晶所需时间分别为t 1, t 2, 则122112122111exp[()]ln(/)t Q t R T T RTT t t Q T T =--⇒=-依题意, 有T 1 = 553 + 273 = 826 K, T 2 = 627 + 273 = 900 K, t 1 = 40 h, t 2 = 1 h, 则58.314826900ln(40/1)3.0810J/mol 900826Q ⨯⨯⨯=⨯-3. 说明金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能特点与主要区别.答: 金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能特点与主要区别详见附表7-1.附表7-1 金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能第八章固态相变。

(完整版)材料科学基础试卷及答案7套

(完整版)材料科学基础试卷及答案7套

试题1一. 图1是Na2O的理想晶胞结构示意图,试回答:1.晶胞分子数是多少;2.结构中何种离子做何种密堆积;何种离子填充何种空隙,所占比例是多少;3.结构中各离子的配位数为多少,写出其配位多面体;4.计算说明O2-的电价是否饱和;5.画出Na2O结构在(001)面上的投影图。

二. 图2是高岭石(Al2O3·2SiO2·2H2O)结构示意图,试回答:1.请以结构式写法写出高岭石的化学式;2.高岭石属于哪种硅酸盐结构类型;3.分析层的构成和层的堆积方向;4.分析结构中的作用力;5.根据其结构特点推测高岭石具有什么性质。

三. 简答题:1.晶体中的结构缺陷按几何尺寸可分为哪几类?2.什么是负扩散?3.烧结初期的特征是什么?4.硅酸盐晶体的分类原则是什么?5.烧结推动力是什么?它可凭哪些方式推动物质的迁移?6.相变的含义是什么?从热力学角度来划分,相变可以分为哪几类?四. 出下列缺陷反应式:1.NaCl形成肖特基缺陷;2.AgI形成弗仑克尔缺陷(Ag+进入间隙);3.TiO2掺入到Nb2O3中,请写出二个合理的方程,并判断可能成立的方程是哪一种?再写出每个方程的固溶体的化学式。

4.NaCl溶入CaCl2中形成空位型固溶体五. 表面力的存在使固体表面处于高能量状态,然而,能量愈高系统愈不稳定,那么固体是通过何种方式降低其过剩的表面能以达到热力学稳定状态的。

六.粒径为1μ的球状Al2O3由过量的MgO微粒包围,观察尖晶石的形成,在恒定温度下,第一个小时有20%的Al2O3起了反应,计算完全反应的时间:⑴用杨德方程计算;⑵用金斯特林格方程计算。

七.请分析熔体结构中负离子团的堆积方式、聚合度及对称性等与玻璃形成之关系。

八.试从结构和能量的观点解释为什么D晶界>D晶内?九.试分析二次再结晶过程对材料性能有何影响?工艺上如何防止或延缓二次再结晶的发生?十.图3是A-B-C三元系统相图,根据相图回答下列问题:1.写出点P,R,S的成分;2.设有2kgP,问需要多少何种成分的合金Z才可混熔成6kg成分为R的合金。

材料科学基础习题及参考答案

材料科学基础习题及参考答案

材料科学基础参考答案材料科学基础第一次作业1.举例说明各种结合键的特点。

⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。

⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。

常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。

⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。

⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。

结合较弱。

⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。

2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。

(213)3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。

{1120}的等价晶面:(1120)(2110)(1210)(1120)(2110)(1210){1012}的等价晶面:(1012)(1102)(0112)(1012)(1102)(0112) (1012)(1102)(0112)(1012)(1102)(0112)2110<>的等价晶向:[2110][1210][1120][2110][1210][1120]1011<>的等价晶向:[1011][1101][0111][0111][1101][1011][1011][1101][0111][0111][1101][1011]4立方点阵的某一晶面(hkl )的面间距为M /,其中M 为一正整数,为晶格常数。

材料科学基础习题及参考答案

材料科学基础习题及参考答案

材料科学基础参考答案材料科学基础第一次作业1.举例说明各种结合键的特点。

⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。

⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。

常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。

⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。

⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。

结合较弱。

⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。

2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。

(213)3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。

{1120}的等价晶面:(1120)(2110)(1210)(1120)(2110)(1210){1012}的等价晶面:(1012)(1102)(0112)(1012)(1102)(0112) (1012)(1102)(0112)(1012)(1102)(0112)2110<>的等价晶向:[2110][1210][1120][2110][1210][1120]1011<>的等价晶向:[1011][1101][0111][0111][1101][1011][1011][1101][0111][0111][1101][1011]4立方点阵的某一晶面(hkl )的面间距为M /,其中M 为一正整数,为晶格常数。

材料科学基础课后作业及答案(分章节)

材料科学基础课后作业及答案(分章节)

材料科学基础课后作业及答案(分章节)第一章8.计算下列晶体的离于键与共价键的相对比例(1)NaF (2)CaO (3)ZnS 解:1、查表得:XNa=,XF= 根据鲍林公式可得NaF中离子键比例为:[1?e共价键比例为:%=% 2、同理,CaO中离子键比例为:[1?e共价键比例为:%=% 12?(?)412?(?)4]?100%?% ]?100%? % 23、ZnS中离子键比例为:ZnS 中离子键含量?[1?e?1/4(?)]?100%?% 共价键比例为:%=% 10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。

答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。

稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。

稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。

但在一定条件下,亚稳态结构向稳态结构转变。

第二章1.回答下列问题:(1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(132)与[123],(322)与[236](2)在立方晶系的一个晶胞中画出晶面族各包括多少晶面?写出它们的密勒指数。

[1101]4.写出六方晶系的{1012}晶面族中所有晶面的密勒指数,在六方晶胞中画出[1120]、晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。

5.根据刚性球模型回答下列问题:(1)以点阵常数为单位,计算体心立方、面心立方和密排六方晶体中的原子半径及四面体和八面体的间隙半径。

《材料科学基础》作业答案共109页

《材料科学基础》作业答案共109页
《材料பைடு நூலகம்学基础》作业答案
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利

材料科学基础章作业参考答案.

材料科学基础章作业参考答案.

作业参考答案第1章1. 结点数:7×2+3=17原子个数=1(底面中心)×0.5×2+6×1/6×2+3=1+2+3=6r=a/2配位数=1274.07401.02()660sin2221/[(6343≈=⨯⨯⨯︒⨯⨯⨯=rrrπ致密度2. α-Fe——BCC每个晶胞中有2个原子,质量=55.847×2/(6.02×1023)=18.554×10-23(g)体积=a3=(0.2866×10-7)=2.3541×10-23(cm3)872.7357.2554.18===体积质量ρ或直接用式(1.5)计算。

3.概念:晶面族、晶向族)101()011()110()101()011()110(}110{+++++={123}=(见教材P23)晶向族用上述同样的方法。

4. 晶面指数的倒数=截距如211)102(1)102(,,的截距∞==(102))211()312( [110] ]021[]213[5.晶向指数:]101[和]011[6.7.8. 9. (略,不要求) 10.设晶格常数为a22100a =)面密度(785.048210022==⨯=ππr r )面致密度( 222110a=)面密度(555.02428211022==⨯=ππrr )面致密度(2234321111a r ==)面密度(906.03232111122==⨯=ππr r )面致密度( 11. (略,不要求)12. (略,不要求) 13. 6/2+12/4=614.立方晶系晶面间距计算公式:)011()110()112(]011[]2[]111[222lk h na d ++=① )nm (143.0286.02100121222100=⨯=++=ad)nm (202.0286.021011222110=⨯=++=a d)nm (0764.0286.0141321222123=⨯=++=a d②)nm (1825.0365.02100121222100=⨯=++=ad)nm (2107.0365.031111222111=⨯=++=a d)nm (09125.0365.042121121222112=⨯=++=ad③(略,不要求)15. (略,不要求) 16. (略,不要求)一、 单项选择题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6、Ni为面心立方结构,原子半径 r=0.1243nm,求Ni的晶格常数和密度。
• 解:面心立方结构在面对角线上原子相 切,所以,代入条件可得,
a 4r 0.3516nm 2
4 a 3 M N A N i ( 0 .3 5 1 6 1 4 0 7 5 ) 8 3 . 6 6 9 .0 2 2 1 0 2 3 8 .9 6 7 ( g /c m 3 )
• 9、晶体的宏观对称要素有 对称点 、 对称轴 、 对称面 。
• 10、CsCl型结构属于 简单立方格子 ,NaCl型结 构属于 面心立方格子 ,CaF2型结构属于 面心立 方格子 。
• 11、MgO晶体具有 NaCl型结构,其对称型是
3L4 4L36L29PC ,晶族是 高级晶族 ,晶系是 立 方晶系 ,晶体的键型是 离子键 。
• 12、硅酸盐晶体结构中的基本结构单元是 硅 氧四面体[SiO4]。
• 13、几种硅酸盐晶体的络阴离子分别为[Si2O7]6-、 [Si2O6]4-、[Si4O10]4-、[AlSi3O8]1-,它们的晶体 结构类型分别为 组群状 , 链状 , 层状 ,和 架状 。
• 14、表征晶体中晶向和晶面的方法有 解析法 和 图示 法。(晶体投影图 )
二、分析计算
• 1、(2-3)(1)晶面A在x、y、z轴上的截距 分别是2a、3b和6c,求该晶面的米勒指数; (2)晶面B在x、y、z轴上的截距分别是a/3、 b/2和c,求该晶面的米勒指数。
1:1: 13:2:1 236
所以晶面指数为(3 2 1)
(2)截距倒数为:3,2,1; 晶面指数为(3 2 1)
• 6、fcc晶体的最密排方向为 <110> ,最密排
面为 {111} ,最密排面的堆垛顺序为
ABCABCABCABC……

• 7、fcc晶体的致密度为 0.74 ,配位数为 12 , 原子在(111)面上的原子配位数为 6 。
• 8、bcc晶体的最密排方向为 <111> ,最密排 面为 {110} ,致密度为 0.68 ,配位数为 8 。
• 2、晶体与非晶体的最根本区别是 晶体原子排布长程有 序,而非晶体是长程无序短程有序 。
• 3、晶胞是 晶体结构中的最小单位 。
• 4、根据晶体的对称性,晶系有 3 大晶族, 7 大晶系, 14 种布拉菲Bravais点阵, 32 种点群, 230 种空间群。
• 5、金属常见的晶格类型有 体心立方 、 面心立方 、 密排六方 。
7、Mo为体心立方结构,晶格常数 a=0.3147nm,求Mo的原子半径r 。
• 解:体心立方结构在体对角线上原子相切, 所以,
4r 3a
r 3a0.1363nm 4
8\2-15:CsCl中铯与氯的离子半径分别为0.167nm、 0.181nm。试问(1)在CsCl内离子在<100>或<111> 方向是否相接触?(2)每单位晶胞内有几个离子? (3)各离子的配位数是多少?(4)密度 ρ和 堆积系数(致密度)K?
168.358/(6.0238×1023)
CsCl结构:z=1
• CsClBiblioteka 密度ρZ M a /3 N A 1 1 6 (0 8 ..4 3 0 5 1 8 8 /( 6 1 .0 0 2 7 )3 1 0 2 3 ) 4 .3 1 (g /c m 3 )
陶瓷(无机非金属) 、 高分子 和复合材料四大类。
第一章 材料的原子结构
• 1. 金属材料中原子结合以 金属 键为主, • 陶瓷材料(无机非金属材料)以
共价键 和 离子键 结合键为主, 聚合物材料以 共价键 和 氢键和范德华 键 为主。
第二章 材料的结构
• 一、填空题
• 1、晶体是 基元(原子团)以周期性重复方式在 三维空间作有规则的排列的固体 。
3 a 2 (0 .1 6 7 0 .1 8 1 ) 0 .6 9 6
K4 3(r a 3 3r 3)4 3(0.1 06 .4 7 0 31 83 0.1813)0.683
•(4) CsCl的分子量为: (35.453 +132.905 )=168.358,
•阿佛加得罗常数是6.0238×1023; •每个CsCl分子的质量A为:
2\ P89,2-4:
Z
O
Y
X
P89,2-4:
思考!!{111}上的特征晶向 (111)与<110><112>的关系
3、写出立方晶系中晶面族{100}、 {110}、{111}包含的等价晶面。写出 <112>晶向族包含的等价晶向。
{100}=(100)+(010)+(001)
4、(2-9 )4、(2-9)求 (1)晶面(121)和(100) 的晶带轴指数;晶面(100)和(010)的晶带轴指数; (2)晶向[001]和[111]确定的晶面指数;包含[010]和 [100] 晶向的晶面指数。
材料科学基础作业答案
绪论
• 1、材料科学主要研究的核心问题是 结构 和 性能 的关系。
• 材料的结构是理解和控制性能的中心环节,结构 的最微细水平是 原子结构 ,第二个水平是 原子 排列方式 ,第三个水平是 显微组织 。
• 2. 根据材料的性能特点和用途,材料分为
结构材料 和 功能材料 两大类。 • 根据原子之间的键合特点,材料分为 金属 、
• (1)CsCl内离子在<111>方向 相接触.
• (2)每单位晶胞内有2个离子; • (3) Cs+和Cl-离子的
配位数是8.
[CsCl 8] 或 [ClCs8]配位六面体。
(4)
对CsCl晶体,晶体结构为简 单立方,晶胞中含有一个 正离子一个负离子,沿体 对角线正负离子相切:
3a2r 2r
a=0.4018nm
4、(2-9)
5、(2-11) (1)a≠b≠c、α=β=γ=90°的晶体属于什么 晶族和晶系?(2)a≠b≠c、α≠β≠γ=90°的晶体属于 什么晶族和晶系?(3)能否据此确定这2种晶体的 Bravis点阵?
• (1)属于正交晶系, • 由题中条件不能决定是什么布拉菲点阵,
因为正交晶系可以有体心、面心、底心和 简单正交点阵。 • (2)属于三斜晶系, • 因为三斜晶系只有一种简单点阵,可以 确定布拉菲点阵是三斜点阵。
相关文档
最新文档